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ABSTRACT

In nature, high-speed rain drops often impact and spread on curved surfaces, e.g., leaves and animal bodies. Although a drop’s impact on a sur-
face is a traditional topic for industrial applications, drop-impact dynamics on curved surfaces are less known. In the present study, we examine
the time-dependent spreading dynamics of a drop onto a curved hydrophobic surface. We also observed that a drop on a curved surface spreads
farther than one on a flat surface. To further understand the spreading dynamics, a new analytical model is developed based on volume conser-
vation and temporal energy balance. This model converges to previous models at the early stage and the final stage of droplet impact. We com-
pared the new model with measured spreading lengths on various curved surfaces and impact speeds, which resulted in good agreement.

Published under an exclusive license by AIP Publishing. https://doi.org/10.
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I. INTRODUCTION

The impact of drops onto solid surfaces has been investigated for
a long time due to its application in industrial processes, such as cool-
ing, spray-painting, or ink-jet printing. A similar phenomenon can
also be observed in nature as high-speed raindrops impact onto tree
leaves.” Most leaves are not flat but curved down.” For biologists, cur-
vature is an indicator of the leaf’s conditions. For example, unhealthy
leaves are known to be curved upward or with a high curvature due to
a fungus or virus growing on the surface’ ° or due to water stress.””
When a raindrop hits a leaf surface, the drop experiences impact on a
curved surface rather than a flat one. Hence, observing droplet impacts
on curved surfaces will give insight into the spreading dynamics.
However, spreading dynamics in natural settings are more compli-
cated because most leaves are not only hydrophobic but also elastic
and curved.

Droplet impact dynamics on a rigid hydrophobic surface
have been extensively studied in the context of interfacial motions in
simple settings.”'” Roisman'’ developed a model based on the
assumption of the universal flow and residual thickness of the lamella.
Roisman obtained a semiempirical relation for the maximal spreading
factor, Rﬁ’:* ~ 0.87Re!/5 — 0.40Re?/We1/2, where Rpax is the maxi-
mum spreading radius, We = pUZ(2R,)/y the Weber number,
Re = pUy(2Ry)/p the Reynolds number, Uy the initial drop velocity,

p the density of the drop, u the dynamic viscosity, and y the surface
tension. Another proposal was carried out by Clanet et al;'* they pro-
posed that the maximum spreading radius Ry scales as R(I)/ * on par-
tially wettable surfaces using low-viscosity liquid (like water). As this
relation is not consistent with simple energy balance, an explanation is
that kinetic energy is transformed not only to surface energy after
impact but also to internal kinetic energy such as vortical motions.
Pasandideh-Fard et al'” derived another expression for maximum
spreading factor, &, (defined as the maximal spreading length nor-
malized by the initial drop diameter), from the total energy balance
which can be calculated as

s We + 12
ETA3(1 = cos 0) + 40

VRe

where 0 is the contact angle.

Rioboo et al.' categorized the time evolution of the spreading
factor into four phases: kinematic, spreading, relaxation, and wetting/
equilibrium phases. In the kinematic phase (#* < 0.1, where
t* = tUy /2R, is dimensionless time), the spreading factor grows cor-
responding to a power law, in which the experimental exponent lies
between 0.45 and 0.57. Other studies such as Bird et al'” and Kim
et al'® seem to support a similar exponent in accordance with
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experimental data (as Kim et al. point out, little data of early spread
exist because of the difficulty of measurement). Roisman et al."” also
developed a model for a spreading thin free liquid sheet. They identi-
fied three regimes in the time dependence of the height of the deform-
ing drop at the symmetry center. During the first two main regimes,
the dimensionless central height as a function of the dimensionless
time (hf = h./2Ry) can be approximated as follows: hf ~ 1 — t* at
t* < 04and b oc 1/t at 0.4 < t* < tyiscous in Which tiseous is large
and difficult to determine precisely.

The impact of a droplet on a curved surface has also been investi-
gated recently. Hung and Yao™ studied the impact of micrometric
droplets on cylindrical wires. Droplets impacting wires either disinte-
grate or drip depending on the Weber number and the Bond number.
The influence of surface roughness on spreading was also investigated
and turned out to be negligible.”"** Others studied the aftermaths of
the impact of liquid drops on cylindrical surfaces”** and rebound,
coalescence, or disintegration phenomena in both experimental or
computational approaches.”” *” In addition, several studies investi-
gated the impact of a droplet on a spherical target.”*” '

In this paper, we study the effect of curvature on the spreading of
a water drop onto a hydrophobic sphere and develop models of the
phenomenon.

Il. EXPERIMENTAL PROCEDURE

The experimental setup is illustrated in Fig. 1(a). The curved
surfaces used in the experiments were white Delrin spheres
(McMaster Co.) of four different diameters: 1.27, 1.90, 2.54, and
3.81 cm. The spheres were uniformly coated with a hydrophobic
spray (WX2100, Cytonix Co.). As a result, the contact angles of the
samples were increased from 50°-60° to 120°-130°. A Plexiglass
plate coated with hydrophobic spray was used to examine flat sur-
face case.

Drops were manually generated using a needle with a 0.34 mm
inner diameter (23 gauge). The droplets were dispensed with diameters
of 3.00 = 0.15 mm. The horizontal and vertical positions of the needle
were controlled with a XY stage (Thorlabs Co.). Initially, the horizontal
position of the needle was aligned with the apex of the ball. The

() (b)

FIG. 1. (a) Schematic diagram of the experimental setup. (b) Schematics of differ-
ent volumes of a droplet on a flat surface (upper panel) or on a curved surface
(lower panel).

scitation.org/journal/phf

vertical position was then varied from 5 to 50 cm to observe the effects
of impact velocity. Each trial was manually assessed to ensure impacts
occurred on the apex of the curved surface. Two different high-speed
cameras were used depending on the frame rate needed: Photron
Fastcam-APX RS at either 6000 or 20 000 fps and IDT N3 at 1000 fps.

From experiments, we measured five major quantities: the initial
drop size Ry and speed U, the time evolution of the spreading radius
R(#), the maximal spreading radius Ry, and the central height of the
impacting drop h.(t). These measurements are performed either auto-
matically using MATLAB or manually using Image] when images can
be difficult to analyze automatically.

I1l. THEORETICAL MODEL
A. Volume conservation

Initially, a falling drop is considered as a sphere of radius R, fall-
ing with a velocity U, as shown in Fig. 1(a). However, at the moment
of impact, the geometry of a spreading drop has a segment of a spheri-
cal drop and a thin lamella on its surface. As shown in Fig. 1(b), we
can divide the impacting drop into three distinct volumes: (i) the vol-
ume of the remaining part of the original impacting drop (Vyemain)» (ii)
the volume in contact with the solid surface (Viniadie), and (iii) the vol-
ume of the lamella (Vizmea). The volume conservation which is a sum
of these three volumes (Viemain + Vimiddie + Viamella) €quals to its origi-
nal volume (*£R}) can be expressed in terms of a spreading radius
R(f), a lamella thickness h(t), and other geometric coordinates and
lengths. This volume-conservation equation becomes

(Rp + Ry — 0)[8(1 — cos 01)h(3R: + 3Ryh + h*)
— (h+08)*(3Ry, + 3Ry + 2h — 9)]
+3(0+h)*(Ry — Ry — h)* =0, (1)

which is solved further with an energy conservation equation.

B. Energy balance

Total energy is assumed to be constant at every moment.
Therefore, a sum of the initial kinetic energy El(cmmul) (= p(2/3)mR3VR)
and the surface energy £") (= y4nR2) should be equal to the sum of

the subsequent kinetic energy Ei(t), surface energy &(t), and viscous
work W as follows:

PR P !
gl(clmtlal) + ggmmal) _ gk(t) + gs(t) + J wdt'. (2)
0

Instantaneous kinetic energy Ex(t) can be estimated by adding the
kinetic energy of the remaining volume of the original drop and the
kinetic energy of the lamella. The kinetic energy of the lamella can be
calculated using an assumption of the semiparabolic velocity in the
lamella. This semiparabolic velocity profile is often assumed for a free-
surface flow.”” "

Next, surface energy &£(t) depends on the area of the water—air
and water—solid surfaces as £(t) = yArg(t) + (Vs — Vsg)ALs(t). The
subscripts for surface area (A), L, G, and S represent liquid, gas, and
solid, respectively. The two areas [A;G(t), Ars(t)] will be expressed in
terms of R(¢), h(t), and other known geometric parameters. Therefore,
the total energy balance becomes
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Y |:27'C(Rb + h)*(cos 0, — cos 0,) + 4nR2 — 21RO

h
+27 (Rb + E) sin 0;h — 2R}, cos O(1 — cos 91)}

2 |2RE 3 (0
74))7ZR3+TCPI’I§ |:0 beYond+jln( 1):|

3 2n 10 \0,
_ 2mpUgR}
3

For energy dissipation due to the viscous work (W), we consider

only shear rates along lamella as W = -[Vlamdla 1(0U/9z)*dQ, where

is the fluid viscosity and Q is the lamella volume. Here, the lamella

velocity (U) is assumed to be semiparabolic in the lamella, which

incorporates zero stress on the free surface. Therefore, on the spherical

surface, the radial velocity is expressed as U(s, z, t) = U (t) R"T@%,

where z is the coordinate normal to the surface, and s is the curvilinear

abscissa that can be easily calculated as s = R,0(t). Finally, the velocity
of the lamella is given as follows:

3|els (1)
4h3s
where sy(t) = Ryparcsin(a/Ry). Here, a is the half-length of Vieyona [see
the full expression in Eq. (B1) of Appendix B]. By taking the z-gradient

on the above velocity profile, the energy dissipation (W) is calculated.

+W=0. 3)

U(s,z,t) = z(2h — z), (4)

C. Numerical and asymptotic solutions

We have two sets of equations: one from volume conservation
[Eq. (1)] and the other from energy conservation [Eq. (3)]. There are
two unknowns to be determined: lamella thickness h(f) and spreading
radius R(#). This set of equations can be numerically solved to deter-
mine the two unknowns. Hence, at every moment, an appropriate
region in the (R, h) space was meshed thinner and thinner according
to the expected set of (R, h) from the previous iteration. Both equa-
tions were computed at every node, and the solutions were then calcu-
lated as the coordinates of the minimum value of the multiplication of
both equations [Eqs. (1) and (3)].

First, let us check two asymptotic solutions analytically. At the
early stage (t < 1), we can assume both spreading radius and penetra-
tion depth R(t),d = Uyt < Ry, Ry, so that sin 0, ~ R(t)/R;, and the
viscous work on the lamella can be considered as negligible. Then,
simplifying volume conservation and energy balance yields at early

stage

4Rb I/Z(UO )1/2

R(t) ~ Ro| —— —t . 5
0~ k(1) ©

At the later stage (f > 1), we can assume the penetration depth
0 ~ 2R, and then 0, < 1, h < Ry, so that the total energy balance
combined with the volume conservation can be simplified as follows:

4 R(1)? R?
We {I_E 1(22) } :6R—g(l—cos Oadvance) (1 — cos 01) — 12, (6)
0 0

In terms of the maximum spreading radius, we approximate R(f) and
0, as Riyax and Ry, /Ry, respectively. Then, we can solve for R,y at
given parameters (We, Re, Ry, Ry, and Odvance)-

scitation.org/journal/phf

In the limit of the flat case (R, — +o00, 1 — cos 0; ~ 1 (R*(r)/
R?), R(t — +00) = Ryax), the above spreading equation becomes

Ruax We + 12
Ry 3(1 — Cos HAdvance) + 4We(Re)71/2‘

This drop-spreading equation is exactly same as the one from
Pasandideh-Fard et al."” It is noteworthy that a drop will spread less
on a hydrophobic surface (Oagvance — 7).

Like other studies, we can express it in terms of the maximum
spreading factor; ... = Ry0,(t — +00)/Ry. For larger spheres com-
pared with the drop size (R,/Ry < 1) and smaller spreading distance
(0, < 1),Eq. (6) becomes

7)

4

We{l—\/R_e

ﬁrznax:| = 3(1 — COs eAdvance)ﬁfnax — 12,
(®)

P We + 12
e 3(1 — cos Opdvance) -+ 4We(Re) ™ /?

It is worth noting that this is an approximate solution with several
assumptions listed above. Also, this is different from the previous ana-
lytical model in Ref. 30 (8/f,,.x is missing).

D. Comparison with experiments

First, we measured the central height k. of the impacting drop as
in Fig. 2. At an early stage (t* < 0.5), h! decreases linearly with nor-
malized time as i} ~ 1 — t*. At the later stage (0.5 < t*), h; deviates
from the linear trend and follows h = 0.5/(t* 4 0.5)>. It is also
noticeable that this trend remains the same regardless of the curvature
of the substrate (see Fig. 2).

Next, the effect of curvature on the spreading dynamics is charac-
terized as shown in Fig. 3(a). A water drop (Ry = 1.5 mm) impacts
spheres of different curvatures at a speed of Uy = 1.2 m/s. The drop

1.0
—~ LN O TFlat
& LN £ 1.90cm
Y508 Q 2.54
3 a .04CIm
£ e
I e
2y
‘Z 0.6 N = Later
= A\ Stage
= NG
£ ~2
_ W\
8 0.4 ﬁ\\g _
2 Early o 7045 _
N Stage -k ONg, T 05+t7)
= \{ WL T
g 02+ T T i
£ WLT§E3~=]
© \ T I 8 N 7‘?~x‘_
Z 1—t* \\ T I T B il
0.0 T T T 4 T
1.4

| |
00 02 04 06 08 10 12
Normalized time (tUy/2Rg)

FIG. 2. Measurements of the time evolution of normalized central height (hc /2Ry)
with normalized time (tUp /2R,). Symbols represent experimental data with different
spheres. Experimental data show hc/(2Ry) = 1 — t* in the beginning (* < 0.5)
and then follows h /(2Ry) = 0.5/(0.5 -+ t*)°.
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appears to spread almost the same on the projected distance but has a
slightly more spreading distance along the curved surface as the radius
of the surface decreases. Figure 4(a) shows the normalized spreading
distance R* = R/Ry = R0 /Ry vs the normalized time, showing a
very slight increase with curvature. The normalized spreading radius
R* initially increases as a power law with respect to normalized time ¢*
such as R(t) /Ry = 2.15(tUy/2Ry)"/* [see Fig. 4(b)]. This result is con-
sistent with the asymptotic solution derived in Sec. I1I C [Eq. (5)]. It is

3mm

@ =0 2=

ARTICLE scitation.org/journal/phf

worth noting that the prefactor value, 2.15, of the best fit is very close
to the one from our calculation: (4R,/(R; + Ro))l/2 ~1.8—1.9.
Figure 3(b) shows the effect of the impact speed. The higher the veloc-
ity, the longer the maximum spreading radius and the faster it expands
[see Fig. 4(c)].

Finally, Fig. 5 shows the comparison of our experiments with var-
ious theoretical predictions. All models are listed in Table I and the
root mean square error (RMSE) is computed for each model as

1.32ms 3.08ms

|

}

|

(b) V=09 ms

I

3.08ms

FIG. 3. (a) Image sequences of a drop impacting spheres with diameters 2R, = 1.27, 1.90, 2.54, and 3.81 cm, and a flat surface, respectively. The impact speed is at
Up = 1.2 m/s, and the drop diameter is 2Ry = 3 mm. (b) Image sequences of a drop impacting a sphere of 2.54 cm in diameter at different speeds (Uy = 0.9 and 2.6 m/s).
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FIG. 4. Measurements of normalized spreading radius (R(t)/Ro) with normalized time
(tUb/2Ry) (a) and (b) with different radii of curvature at a speed of 1.2m/s and (c) with dif-
ferent velocities for a sphere with 2.54cm diameter. In panel (b), the dotted line is
R(t)/Ro = 2.15(tUp/ 2R0)1/ 2 to confim a power-law increase with an exponent of 1/2.

N,
| Ve i
RMSE = > (B — por ),
exp i:l

where Ny, is the number of experiments, ;" and fF are the

numerical and experiment spreading factors, respectively. Here, we
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FIG. 5. Comparison of experimental spreading factor Rax/Ro With theoretical normal-
ized maximal spreading factor from various studies (see Table | for detailed expressions).

will consider two different regimes: S < 3 and b > 3. First, the
models of Akao et al.”” and Scheller and Bousfield”® seem to systemati-
cally overestimate the maximal spreading diameter for all Y. For
small spreading factors P < 3, the model of Clanet et al." gives the
best agreement with our experimental data. For ﬂ;xaﬂ > 3, our model,
the model of Pasandideh-Fard et al."” and the model of Liu et al.”
show the best results. A higher foF is of our interest as the lamella
spreads along the surface more than the drop size.

Experimental and numerical spreading factors with different
ball diameters are listed in Table II. Our model overpredicts the
spreading factor compared with the experimental results.
Nevertheless, the numerical spreading factor increases with curva-
ture, in accordance with experimental data. Both experimental and
numerical data show that the influence of curvature is quite small.
Additionally, the influence of velocity is presented in Table III. The
spreading factor increases with velocity as also shown in numerical
simulations. The overall trends of experimental and numerical
results are consistent, and follow the intuition that higher impact
velocities result in greater spreading radius.

IV. CONCLUSION AND DISCUSSION

We studied how a droplet impacts and spreads over a sphere,
which is inspired by the natural phenomena of raindrops impacting
curved biological surfaces. In this work, the spreading dynamics on a
sphere has been theoretically formulated and compared with experi-
ments. The underlying concept of this study is to consider a spherical
segment and a skirting lamella of a spreading droplet after impact.
First, we characterized the height of the spherical segment, 4, which
decreases linearly in time and then decays with the power law. Second,
by considering the volume conservation and the energy balance, we
can capture the spreading lamella over time. In the beginning, the
lamella increases its radius as #!/2, which is verified in experiments.
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TABLE I. Various models for predicting the maximum spreading factor.

scitation.org/journal/phf

Reference Predicted model Type of surface RMSE (2P <3)  RMSE (fab > 3)
Akao et al.” 0.613We"* Flat 0.67 1.40
Scheller et al.* 0.61Re1/5(WeRe*2/5)1/6 Flat 1.19 1.05
Clanet et al."* 0.9We!/* Flat (a 0.9 coefficient is 0.25 0.46

used for fitting in Ref. 14)

Roisman et al."’ 0.87Re!/® — 0.4Re?*We™1/2 Flat 0.71 0.35

Pasandideh-Fard et al."” We + 12 Flat 0.50 0.21
3(1 — cos Oadyance) + 4We(Re)71/2

Liu et al.” We+ 12+ By =81 + S, + 4y—Rieﬁfmx Flat and curved 0.47 0.21

Our model Eq. (6) Flat and curved 0.51 0.21

TABLE II. Evolution of spreading factor with different radii of spheres. ACKNOWLEDGMENTS

Ball diameter ~ Velocity Error This work was supported by the National Science Foundation

(cm) (m/s) o num (BE — pumy /goum Grant No. ISO-2120739.

1.27 1.2 2603 2919 0.316 (+11%) AUTHOR DECLARATIONS

1.90 1.2 2574 2902 0.328 (+11%) Conflict of Interest

2.54 1.2 2.563  2.896 0.333 (+11%) The authors have no conflicts to disclose.

3.81 1.2 2.534  2.892 0.358 (+12%)

Flat 1.2 2449  2.888 0.439 (+15%) Author Contributions

TABLE IlI. Evolution of spreading factor with different velocities.

Ball diameter ~ Velocity Error

(cm) (m/s) mx  Pmax  (Bruax = Broae)/ Boax
2.54 0.9 2.158  2.520 0.362 (+14%)
2.54 1.3 2812  3.011 0.199 (+7%)
2.54 1.8 3195 3515 0.320 (+9%)
2.54 2.3 3946 3917 —0.029 (—12%)
2.54 2.6 3918 4123 0.205 (4-5%)
2.54 3.0 4117 4364 0.247 (46%)

Finally, the maximum spreading factor is theoretically predicted and
compared with experimental observations.

This study focused on the drop spreading on a fixed sphere.
However, plant leaves will undergo bending and twisting motions”
and deformations, thereby changing the local surface curvature
and angle. Futher studies should be performed to examine how a
drop spreads on a thin elastic substrate as the bottom surface
deforms due to the pressure from the impacting drop.
Additionally, the bottom curvature and particles’” could change
the generation rate of drop splashes/aerosols.”® As the thin lamella
moves along a convex surface, it becomes unstable and may gener-
ate and eject more splashes. Such splashes could affect both water
retention on plants””*’ and spore dispersal,”’ which leads to inter-
esting questions and implications.
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APPENDIX A: CASE OF A FLAT RIGID SURFACE

This section will show calculations on a flat surface based on
the geometry of an impacting drop, volume conservation, and
energy balance.

1. Geometry of the model

Prior to impact, the droplet assumes a spherical shape with
radius R, while falling at the velocity Up. The part of the liquid in
immediate contact with the surface is transferred to the lamella dur-
ing the impact, i.e., Vieyond is transferred to Viamea in Fig. 1(b). The
volumes Vipiadie and Vieyona are defined as the volumes of a two-base
spherical segment of height 4 and a spherical cap of depth 6,
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respectively. The droplet at the point of maximal spreading is
assumed to deform into a cylinder with radius R and height .

2. Flow in the lamella

A general form of the radial velocity given by mass conservation
in the lamella is assumed to be U(r,z,t) = U(t) "’TWW at time t,
assuming a semi-parabolic profile due to viscosity as shown in Fig. 6,

and & small so that the edge of Vi,idqle can be approximated by a cylin-

der of height h and radius 7o(t) = Ryy/1 — (1 — 6(t)/Ro)’.

To determine U(t), one can apply mass conservation to
Vimiddle> Still approximated as a cylinder. Mass coming in through
the top surface is assumed to have the same velocity as the apex of
the impacting drop hc(t), whose expression was determined experi-
mentally (as shown in Sec. IIID). Thus, it can be written as
My, = prrg(t)*|h.|. Mass coming out through the edges can be
expressed as Moy = p27ro(t)hU*(t), where U* = %f: Udz = %(1)
is the mean velocity on the edge of Viniqqe. Mass conservation of the

_ 3ro(B)|h|

middle part then yields U (t) = =< and radial velocity
3| el (1)
U(r,z,t) = T;)rz(Zh —-2). (A1)

3. Governing equations

The volume conservation is obtained by equating the virtual vol-
ume Vieyond With the lamella volume Vigmena. Using the aforementioned
geometry of the flat impact, the volumes in Fig. 1(b) are given by

T
Vbeyond = 552(3R0 - 5)7 (AZ)

hz
Viniddie = Th (7 3 0% 4 20Ry + Roh — 5h), (A3)
Vlamella - ﬂth - Vmiddle~ (A4)
The volume conservation condition Vieyong = Viamena reduces to

3Ry(6 4 h)* —3hR? — (6 +h)® = 0. (A5)

Total energy is assumed to be constant at every moment and
described by Ey, + Eg = Ex(t) + Es(t) + W, where E; = p4nR? is

_ 31k 050

Ulrz,n = W0r 2(2h —2)

6 Vbeyond

FIG. 6. Semi-parabolic velocity profile in the lamella.

scitation.org/journal/phf

the surface energy and Ey, = (1/2)pUZ(4/3)nR} is the kinetic
energy. The surface energy during the impact is

E(t) = 816 + (715 = 7s6)Sts» (A6)
where the surface subscripts L, G, and S represent liquid, gas, and

solid, respectively. The surface areas of liquid-solid and liquid-gas
interfaces are as follows:

Sis = nR?, (A7)

SLG = Stamella + Sremain (A8)

Stamella = 27Rh + R? — 7 [Rg —(Ry— 0 — h)z], (A9)
Sremain = 47RS — 27(S + h)Ry. (A10)

The lamella’s surface area, Syeis is computed by taking the difference
of the surface area of a bottomless cylinder with radius R and height h,
with the area of a circle with radius /R2 — (Ry — & — h)? (i.e., the top
surface of V,,44.). The droplet’s remaining surface area, Sy is the
difference between the surface area of the original droplet and the
spherical cap with radius R, and height 6 + h.

The kinetic energy Ex(t) can be estimated by adding the
kinetic energy of the remaining portion of the droplet with the
kinetic energy of the lamella. Integrating the kinetic energy of
the lamella, divided in annuli of volume 27rdr, yields Ei(t) = %phf
X ($7R3 — Vieyond) + f::o L}jgg 1pUP2nrdrdz. Using the radial
velocity from Eq. (A1) and the defined volumes, the kinetic energy
simplifies to

a2y & 3ry (R

The energy dissipation due to viscous work W is approximated
by assuming vertical shear flows and the velocity profile in Eq. (A1),

! 8U)2 ’3nuh2r4 R
W — | dQdt = c0In(=)dr. (A12
Jo “mena#(az L " (rO) (A1)

Using Egs. (A6), (All), and (Al2) and Young’s relation
ycos 0 = yg; — Vgp» the total energy balance reduces to

7[2Rh+ (1—cosO)R* + (5 +h) (8 +h—4Ry)]

') -2 -2
3hcr31 R Z(hc —Ug)RS hc Vbeyond
n({— |+ —
10h 3 2

w

+p +—=0. (A13)

To

At the early stage, we can assume J < Ry, hc ~ Uy, R~ ry as
R is small, so that W becomes negligible and 6 = n. The volume
conservation in Eq. (A5) results in ¢ ~ h. With these assumptions
and neglecting high-order terms in J, Eq. (A13) simplifies to

R? + Rh — 2Ry(8 + h) = 0. (A14)

A solution of Eq. (A14) can be approximated as R ~ 2+v/0R;
~ 24/TUyRy /1 at early stage, which is consistent with the experimen-
tal exponent reported in literature and in Bird ef al. derivation."”

At the final stage, 6 ~ 2Ry, h < R, and h, =~ 0, simplifying
Eq. (A13) to
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2 w
7[2Rh + (1 — cos O)R* + h* — 4R} ] — ng(?Rg +—=0. (A5

Assuming 1 — cos = O(1), and approximating the viscous work
W with the expression used by Pasandideh-Fard et al,'”

~3 pUZ(2Ry)(2R)*//Re, results in the same expression for the
maximal spreading distance as the one found by Pasandideh-Fard
et al., which was found to give a good approximation to the follow-
ing ratio:

Riax We + 12
Ry  \/3(1 —cos0) +4%e

where 0 is the advancing contact angle, and Ry, is the spread dis-
tance at the final stage, which corresponds to the maximum spread
distance.

(Ale6)

APPENDIX B: CASE OF A CURVED RIGID SURFACE

1. Geometry of the model

Figure 1(b) shows the schematic diagram of a drop impacting a
spherical ball. As in Sec. III, we use rigid spheres with curvature radius
Ry, Now, R represents half of the total spreading length along a curved
surface. Due to the change in geometry, Vieyonq can now be calculated
as the intersection volume of two spheres of radius R, and Ry, and
Vbeyond + Vmiddle as the intersection of two spheres of radius R, + h
and Ry. Viamella + Vimiddle €an be expressed as the intersection of two
spherical sectors of radii and arc lengths (R, + h,0;) and (R, 6,),
where 0; = R/R, is the arc length. As in Appendix A, we assume that
the original drop and the remaining part are spherical. Additionally, the
height of the lamella is assumed to be much smaller than the surface
radii, that is, h < R,.

2. Flow in the lamella

The lamella assumes a semi-parabolic velocity profile, similar
to the flat case. However, due to the curvature of the rigid surface,
the radial velocity is modified as U(s, z,t) = U(t) @%{”, where
s is the curvilinear abscissa, defined as the arc length s = R,0. The
curvilinear abscissa spreading over time is so(t) = Rparcsin (Rib),
where half of the chord in Vieyond is

o \/(6+h)(6—h—2Ry)(6+h—2Rg)(2Ry+2R, — 5 +h) (BD)
2(Ro+Ry—9) ‘
Therefore, the velocity profile of the lamella obtained by applying
mass conservation is

3| cls5 ()

U(s,z,t) = s

z(2h — z). (B2)

3. Governing equations

The volume conservation is obtained by equating the virtual
(beyond) volume with the lamella volume [in the curved case of
Fig. 1(b)]. The volumes for the curved case account for the middle
section of the impacting droplet. That is, the volume conservation is
Viniddle+beyond = Viamella+middle- Using the geometric properties of
the curved surface, these volumes are as follows:

scitation.org/journal/phf

7>
evond = ——————[(Ry + Ry — 8)(3R Ry — 6
Vbeyond 12(Rh+R075)[(b+ 0 —6)(3Ry + 3Ry — )
—3(Ry — Ry, (B3)
(8 +h)* )
Viniddle-+beyond = == [(Rs + Ry — 9)(3R
ddle-+beyond 12(Rb+R0*5)[(b+ o —0)(3Ry
+3Rg+2h—0) —3(Ry— Ry —h)?],  (B4)
27h
Viamella+ middle = % (1 —cos 01)(3R; + 3Rph + 1), (BS)

where 0, is the angle between the centerline and the edge of the
lamella. In the limit of R, — +00, these volumes converge the flat
surface case. By applying the volume conservation and simplifying
it, it becomes

(Ry + Ry — 0)[8(1 — cos 01)h(3R. + 3Ryh + h?)
— (h+0)*(3Ry, + 3Ry + 2h — 9)]
+3(8+h)*(Ry — Ry — h)* = 0. (B6)

The total energy balance is computed similar to the flat case,
but the curvature must be addressed in the computation of the sur-
face and kinetic energies and the viscous work. The expressions for
the areas of the solid-liquid and liquid—-gas interfaces are as follows:

Sis = 27IR§(1 —cos 0y), (B7)
SLG = Slamella + Sremaim (BS)

h
Stamella = 27(Rp + h)*(cos B, — cosby) +2mh <Rb + E) sin0;, (B9)

Sremain = 4TR% — 21Ry (8 + h), (B10)

where 0, is the angle between the centerline and the contact of a
drop on a solid. The liquid-solid and liquid-gas interfaces are com-
puted similar to the flat case. That is, the liquid-solid interface is
computed as the surface area of a spherical cap, while the liquid-gas
interface is computed as the sum of the surface areas of the lamella
and the remaining droplet. The terms in the Spmena equation repre-
sent the surface areas of the top and side of the lamella, respectively.
Sremain 18 computed similar to the flat case. In the limit case when
R, — oo and letting R,0; — Rand Ry0, — R — (Rg — & — h)z, we
see convergence to the terms S;s and S of the flat case.

Another distinction between the cases is captured in the radial
component, s(¢), which now spans from R,0, to Ry0,. The surface
energy is computed using the curved surface areas, Eq. (A6), and
Young’s relation. Calculations of the kinetic energy and viscous
work are also done similar to the flat case. Therefore, the total
energy balance for the curved case is as follows:

Y [Zn(Rb + h)*(cos 0, — cos 0,) + 4nR2 — 27Ry (3 + h)

h
4 27h (Rb + E) sin0; — ZnRi cos (1 — cos 0;)]

2 2R3 Vbe ond 354 01

— 4ynR? J | 220 hevond TR0 1, (2L
’”°+RPC[3 m 10n 0\,
2npUZR3

St W =0, (B11)
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where

’3n,uilfsg 0(1)\ ,,

At the early stage, we can assume R =~ s) < Ry, R < Rj and 6 <
Ry, 0 < Ry sothatsin 6; ~ R/R;, and viscous work becomes negligible.
Simplifying volume conservation and total energy balance gives

R~ (5 + h)RhRQ

B13
R Ry (B13)

and
sz. (B14)

Combining these equations and letting 6 ~ Upt at the early stage
gives the following approximation

(B15)

R2:6(1+ ! )RbRO

1—R/Ry) Ry + Ry

If we assume R/R, < 1 for the early time of spreading, then

RyR RyR R,R2 Ut
o 5 BB gy g ek Dot
Rb+R0 Rb+R0 Rh+R0 2R0

1/2 1/2
R(t)zRo( 4Ry ) (ﬂt) . (B17)

R, + Ro 2R,

R* ~ 20 (B16)

This implies that during the early stage, a droplet would spread far-
ther on a curved surface than on a flat one. )

At the later stage, assuming d ~ 2Ry, 0, < 1, h = 0, h < Ry,
the total energy balance can be expressed as
4 R(t) R

We|l — \/ﬁ R’ = R—%(l — €08 Oadvance) (1 — cos 0;) — 12.

(B18)

In the limit of the flat case (R, — 400 and 1 — cos0; ~ 1 (R*(t)/
R?)), Eq. (B11) reduces the drop-spreading equation of Pasandideh-
Fard et al.'” in Eq. (A16).

REFERENCES

1S. Kim, Z. Wu, E. Esmaili, J. ]. Dombroskie, and S. Jung, “How a raindrop gets
shattered on biological surfaces,” Proc. Natl. Acad. Sci. 117(25), 13901-13907
(2020).

2Y. Bhosale, E. Esmaili, K. Bhar, and S. Jung, “Bending, twisting and flapping
leaf upon raindrop impact,” Bioinspiration Biomimetics 15(3), 036007 (2020).

3Z. Liu, L. Jia, Y. Mao, and Y. He, “Classification and quantification of leaf
curvature,” J. Exp. Bot. 61(10), 2757-2767 (2010).

“H. Wu, L. Yu, X. R. Tang, R. J. Shen, and Y. K. He, “Leaf downward curvature
and delayed flowering caused by AtLH overexpression in Arabidopsis
thaliana,” J. Integr. Plant Biol. 46(9), 1106-1113 (2004). https://www.jipb.net/
EN/Y2004/V46/19/1106

5N. Kawano, T. Kawano, and F. Lapeyrie, “Inhibition of the indole-3-acetic acid-
induced epinastic curvature in tobacco leaf strips by 2,4-dichlorophenoxyacetic
acid,” Ann. Bot. 91(4), 465-471 (2003).

®R. W. Curtis, “Curvatures and malformations in bean plants caused by culture
filtrate of Aspergillus niger,” Plant Physiol. 33(1), 17 (1958).

7M. Fuchs, A. N. Hooshanginejad, J. Yuk, and S. Jung, “Fluttering leaves to
quantify leaf’s stiffness,” in 2021 ASABE Annual International Virtual Meeting
(American Society of Agricultural and Biological Engineers, 2021), p. 1.

ARTICLE scitation.org/journal/phf

8]. Yuk, J. Lee, C. Graves, and S. Jung, “Visual measurements of fluttering leaf to
quantify internal water stress,” in 2022 ASABE Annual International Meeting
(American Society of Agricultural and Biological Engineers, 2022), p. 1.

9A. L. Yarin, “Drop impact dynamics: Splashing, spreading, receding,
bouncing,” Annu. Rev. Fluid Mech. 38(1), 159-192 (2006).

101, V. Roisman, “Inertia dominated drop collisions. II. An analytical solution of
the Navier-Stokes equations for a spreading viscous film,” Phys. Fluids 21(5),
052104 (2009).

TA. S. Grinspan and R. Gnanamoorthy, “Impact force of low velocity liquid
droplets measured using piezoelectric PVDF film,” Colloids Surf. A 356(1-3),
162-168 (2010).

121, V. Roisman, R. Rioboo, and C. Tropea, “Normal impact of a liquid drop on a
dry surface: Model for spreading and receding,” Proc. R. Soc. London, Ser. A
458(2022), 1411-1430 (2002).

13E. S. Quintero, G. Riboux, and J. M. Gordillo, “Splashing of droplets impacting
superhydrophobic substrates,” J. Fluid Mech. 870, 175-188 (2019).

. Clanet, C. Béguin, D. Richard, and D. Quéré, “Maximal deformation of an
impacting drop,” J. Fluid Mech. 517, 199-208 (2004).

'5M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi, “Capillary
effects during droplet impact on a solid surface,” Phys. Fluids 8(3), 650-659
(1996).

18R, Rioboo, M. Marengo, and C. Tropea, “Time evolution of liquid drop impact
onto solid, dry surfaces,” Exp. Fluids 33(1), 112-124 (2002).

17J. C. Bird, S. S. Tsai, and H. A. Stone, “Inclined to splash: Triggering and inhib-
iting a splash with tangential velocity,” New J. Phys. 11(6), 063017 (2009).

8H. Y. Kim, Z. C. Feng, and J. H. Chun, “Instability of a liquid jet emerging from
a droplet upon collision with a solid surface,” Phys. Fluids 12(3), 531-541
(2000).

191, V. Roisman, E. Berberovi¢, and C. Tropea, “Inertia dominated drop collisions.
1. On the universal flow in the lamella,” Phys. Fluids 21(5), 052103 (2009).

201, S, Hung and S. C. Yao, “Experimental investigation of the impaction of
water droplets on cylindrical objects,” Int. J. Multiphase Flow 25(8),
1545-1559 (1999).

21]. B. Lee, N. Laan, K. G. de Bruin, G. Skantzaris, N. Shahidzadeh, D. Derome, J.
Carmeliet, and D. Bonn, “Universal rescaling of drop impact on smooth and
rough surfaces,” J. Fluid Mech. 786, R4 (2016).

22C. Tang, M. Qin, X. Weng, X. Zhang, P. Zhang, J. Li, and Z. Huang,
“Dynamics of droplet impact on solid surface with different roughness,” Int. J.
Multiphase Flow 96, 56-69 (2017).

23M. Arogeti, E. Sher, and T. Bar-Kohany, “Drop impact on small targets with
different target-to-drop diameters ratio,” Chem. Eng. Sci. 193, 89-101 (2019).

24G. Liang, Y. Guo, X. Mu, and S. Shen, “Experimental investigation of a drop
impacting on wetted spheres,” Exp. Therm. Fluid Sci. 55, 150-157 (2014).

255, A. Banitabaei and A. Amirfazli, “Droplet impact onto a solid sphere: Effect
of wettability and impact velocity,” Phys. Fluids 29(6), 062111 (2017).

26p), Khojasteh, A. Bordbar, R. Kamali, and M. Marengo, “Curvature effect on
droplet impacting onto hydrophobic and superhydrophobic spheres,” Int. J.
Comput. Fluid Dyn. 31(6-8), 310-323 (2017).

27, Chen and V. Bertola, “Drop impact on spherical soft surfaces,” Phys. Fluids
29(8), 082106 (2017).

28M. Iwamatsu, “Four stages of droplet spreading on a spherical substrate and in
a spherical cavity: Surface tension versus line tension and viscous dissipation
versus frictional dissipation,” Phys. Rev. E 98(6), 062801 (2018).

295, Bakshi, I. V. Roisman, and C. Tropea, “Investigations on the impact of a
drop onto a small spherical target,” Phys. Fluids 19(3), 032102 (2007).

30X, Liu, X. Zhang, and J. Min, “Maximum spreading of droplets impacting
spherical surfaces,” Phys. Fluids 31(9), 092102 (2019).

31D, Khojasteh, N. M. Kazerooni, and M. Marengo, “A review of liquid droplet
impacting onto solid spherical particles: A physical pathway to encapsulation
mechanisms,” J. Ind. Eng. Chem. 71, 50-64 (2019).

32G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University
Press, 1967).

331, D. Landau and E. M. Lifshitz, Theory of Elasticity (Elsevier, 2012).

34H. Lamb, Hydrodynamics (Dover, New York, 1945), Vol. 43.

35F, Akao, K. Araki, S. Mori, and A. Moriyama, “Deformation behaviors of a lig-
uid droplet impinging onto hot metal surface,” Trans. Iron Steel Inst. Jpn.
20(11), 737-743 (1980).

Phys. Fluids 34, 102115 (2022); doi: 10.1063/5.0120642
Published under an exclusive license by AIP Publishing

34,102115-9

Jpd-auluo™ L7611 Z01/8522.2591/27902L0°S/€901 0 1/1oP/pd-ajonte/jod/die/bio-die sqndj/:dpy woy papeojumoq


https://doi.org/10.1073/pnas.2002924117
https://doi.org/10.1088/1748-3190/ab68a8
https://doi.org/10.1093/jxb/erq111
https://www.jipb.net/EN/Y2004/V46/I9/1106
https://www.jipb.net/EN/Y2004/V46/I9/1106
https://doi.org/10.1093/aob/mcg043
https://doi.org/10.1104/pp.33.1.17
https://doi.org/10.1146/annurev.fluid.38.050304.092144
https://doi.org/10.1063/1.3129283
https://doi.org/10.1016/j.colsurfa.2010.01.005
https://doi.org/10.1098/rspa.2001.0923
https://doi.org/10.1017/jfm.2019.258
https://doi.org/10.1017/S0022112004000904
https://doi.org/10.1063/1.868850
https://doi.org/10.1007/s00348-002-0431-x
https://doi.org/10.1088/1367-2630/11/6/063017
https://doi.org/10.1063/1.870259
https://doi.org/10.1063/1.3129282
https://doi.org/10.1016/S0301-9322(98)00085-8
https://doi.org/10.1017/jfm.2015.620
https://doi.org/10.1016/j.ijmultiphaseflow.2017.07.002
https://doi.org/10.1016/j.ijmultiphaseflow.2017.07.002
https://doi.org/10.1016/j.ces.2018.08.013
https://doi.org/10.1016/j.expthermflusci.2014.03.008
https://doi.org/10.1063/1.4990088
https://doi.org/10.1080/10618562.2017.1349312
https://doi.org/10.1080/10618562.2017.1349312
https://doi.org/10.1063/1.4996587
https://doi.org/10.1103/PhysRevE.98.062801
https://doi.org/10.1063/1.2716065
https://doi.org/10.1063/1.5117278
https://doi.org/10.1016/j.jiec.2018.11.030
https://doi.org/10.2355/isijinternational1966.20.737
https://scitation.org/journal/phf

Physics of Fluids

6B, L. Scheller and D. W. Bousfield, “Newtonian drop impact with a solid
surface,” AIChE J. 41(6), 1357-1367 (1995).

57, Esmaili, Z. Y. Chen, A. Pandey, S. Kim, S. Lee, and S. Jung, “Corona splash-
ing triggered by a loose monolayer of particles,” Appl. Phys. Lett. 119(17),
174103 (2021).

8], Shen and X. Wang, “Substrate counts: Quantitative effects of surface rough-
ness on fingering pattern and rim shape of an impacting drop,” Phys. Fluids
32(9), 093313 (2020).

ARTICLE scitation.org/journal/phf

39H. Kang, P. M. Graybill, S. Fleetwood, J. B. Boreyko, and S. Jung, “Seasonal
changes in morphology govern wettability of Katsura leaves,” PLoS One 13(9),
0202900 (2018).

“CA. K. Lenz, U. Bauer, and G. D. Ruxton, “An ecological perspective on water
shedding from leaves,” ]. Exp. Bot. 73(4), 1176-1189 (2022).

413, Kim, H. Park, H. A. Gruszewski, D. G. Schmale III, and S. Jung, “Vortex-
induced dispersal of a plant pathogen by raindrop impact,” Proc. Natl. Acad.
Sci. 116(11), 4917-4922 (2019).

Phys. Fluids 34, 102115 (2022); doi: 10.1063/5.0120642
Published under an exclusive license by AIP Publishing

34, 102115-10

Jpd-auluo™ L7611 Z01/8522.2591/27902L0°S/€901 0 1/1oP/pd-ajonte/jod/die/bio-die sqndj/:dpy woy papeojumoq


https://doi.org/10.1002/aic.690410602
https://doi.org/10.1063/5.0059466
https://doi.org/10.1063/5.0021447
https://doi.org/10.1371/journal.pone.0202900
https://doi.org/10.1093/jxb/erab479
https://doi.org/10.1073/pnas.1820318116
https://doi.org/10.1073/pnas.1820318116
https://scitation.org/journal/phf

