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ABSTRACT

In nature, high-speed rain drops often impact and spread on curved surfaces, e.g., leaves and animal bodies. Although a drop’s impact on a sur-
face is a traditional topic for industrial applications, drop-impact dynamics on curved surfaces are less known. In the present study, we examine
the time-dependent spreading dynamics of a drop onto a curved hydrophobic surface. We also observed that a drop on a curved surface spreads
farther than one on a flat surface. To further understand the spreading dynamics, a new analytical model is developed based on volume conser-
vation and temporal energy balance. This model converges to previous models at the early stage and the final stage of droplet impact. We com-
pared the new model with measured spreading lengths on various curved surfaces and impact speeds, which resulted in good agreement.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0120642

I. INTRODUCTION
The impact of drops onto solid surfaces has been investigated for

a long time due to its application in industrial processes, such as cool-
ing, spray-painting, or ink-jet printing. A similar phenomenon can
also be observed in nature as high-speed raindrops impact onto tree
leaves.1,2 Most leaves are not flat but curved down.3 For biologists, cur-
vature is an indicator of the leaf’s conditions. For example, unhealthy
leaves are known to be curved upward or with a high curvature due to
a fungus or virus growing on the surface4–6 or due to water stress.7,8

When a raindrop hits a leaf surface, the drop experiences impact on a
curved surface rather than a flat one. Hence, observing droplet impacts
on curved surfaces will give insight into the spreading dynamics.
However, spreading dynamics in natural settings are more compli-
cated because most leaves are not only hydrophobic but also elastic
and curved.

Droplet impact dynamics on a rigid hydrophobic surface
have been extensively studied in the context of interfacial motions in
simple settings.9–13 Roisman10 developed a model based on the
assumption of the universal flow and residual thickness of the lamella.
Roisman obtained a semiempirical relation for the maximal spreading
factor, Rmax

R0
! 0:87Re1=5 " 0:40Re2=5We"1=2, where Rmax is the maxi-

mum spreading radius, We ¼ qU2
0 ð2R0Þ=c the Weber number,

Re ¼ qU0ð2R0Þ=l the Reynolds number, U0 the initial drop velocity,

q the density of the drop, l the dynamic viscosity, and c the surface
tension. Another proposal was carried out by Clanet et al.;14 they pro-
posed that the maximum spreading radius Rmax scales as R

1=4
0 on par-

tially wettable surfaces using low-viscosity liquid (like water). As this
relation is not consistent with simple energy balance, an explanation is
that kinetic energy is transformed not only to surface energy after
impact but also to internal kinetic energy such as vortical motions.
Pasandideh-Fard et al.15 derived another expression for maximum
spreading factor, nmax (defined as the maximal spreading length nor-
malized by the initial drop diameter), from the total energy balance
which can be calculated as

nmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Weþ 12
3ð1" cos hÞ þ 4 Weffiffiffiffi

Re
p

s
;

where h is the contact angle.
Rioboo et al.16 categorized the time evolution of the spreading

factor into four phases: kinematic, spreading, relaxation, and wetting/
equilibrium phases. In the kinematic phase (t' < 0:1, where
t' ¼ tU0=2R0 is dimensionless time), the spreading factor grows cor-
responding to a power law, in which the experimental exponent lies
between 0.45 and 0.57. Other studies such as Bird et al.17 and Kim
et al.18 seem to support a similar exponent in accordance with
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experimental data (as Kim et al. point out, little data of early spread
exist because of the difficulty of measurement). Roisman et al.19 also
developed a model for a spreading thin free liquid sheet. They identi-
fied three regimes in the time dependence of the height of the deform-
ing drop at the symmetry center. During the first two main regimes,
the dimensionless central height as a function of the dimensionless
time (h'c ¼ hc=2R0) can be approximated as follows: h'c ! 1" t' at
t' < 0:4 and h'c / 1=t'2 at 0:4 < t' < tviscous in which tviscous is large
and difficult to determine precisely.

The impact of a droplet on a curved surface has also been investi-
gated recently. Hung and Yao20 studied the impact of micrometric
droplets on cylindrical wires. Droplets impacting wires either disinte-
grate or drip depending on the Weber number and the Bond number.
The influence of surface roughness on spreading was also investigated
and turned out to be negligible.21,22 Others studied the aftermaths of
the impact of liquid drops on cylindrical surfaces23,24 and rebound,
coalescence, or disintegration phenomena in both experimental or
computational approaches.25–27 In addition, several studies investi-
gated the impact of a droplet on a spherical target.25,27–31

In this paper, we study the effect of curvature on the spreading of
a water drop onto a hydrophobic sphere and develop models of the
phenomenon.

II. EXPERIMENTAL PROCEDURE
The experimental setup is illustrated in Fig. 1(a). The curved

surfaces used in the experiments were white Delrin spheres
(McMaster Co.) of four different diameters: 1.27, 1.90, 2.54, and
3.81 cm. The spheres were uniformly coated with a hydrophobic
spray (WX2100, Cytonix Co.). As a result, the contact angles of the
samples were increased from 50(–60( to 120(–130(. A Plexiglass
plate coated with hydrophobic spray was used to examine flat sur-
face case.

Drops were manually generated using a needle with a 0.34mm
inner diameter (23 gauge). The droplets were dispensed with diameters
of 3.006 0.15mm. The horizontal and vertical positions of the needle
were controlled with a XY stage (Thorlabs Co.). Initially, the horizontal
position of the needle was aligned with the apex of the ball. The

vertical position was then varied from 5 to 50 cm to observe the effects
of impact velocity. Each trial was manually assessed to ensure impacts
occurred on the apex of the curved surface. Two different high-speed
cameras were used depending on the frame rate needed: Photron
Fastcam-APX RS at either 6000 or 20 000 fps and IDT N3 at 1000 fps.

From experiments, we measured five major quantities: the initial
drop size R0 and speed U0, the time evolution of the spreading radius
R(t), the maximal spreading radius Rmax, and the central height of the
impacting drop hcðtÞ. These measurements are performed either auto-
matically using MATLAB or manually using ImageJ when images can
be difficult to analyze automatically.

III. THEORETICAL MODEL
A. Volume conservation

Initially, a falling drop is considered as a sphere of radius R0 fall-
ing with a velocity U0 as shown in Fig. 1(a). However, at the moment
of impact, the geometry of a spreading drop has a segment of a spheri-
cal drop and a thin lamella on its surface. As shown in Fig. 1(b), we
can divide the impacting drop into three distinct volumes: (i) the vol-
ume of the remaining part of the original impacting drop (Vremain), (ii)
the volume in contact with the solid surface (Vmiddle), and (iii) the vol-
ume of the lamella (Vlamella). The volume conservation which is a sum
of these three volumes (Vremain þ Vmiddle þ Vlamella) equals to its origi-
nal volume (4p3 R

3
0) can be expressed in terms of a spreading radius

R(t), a lamella thickness h(t), and other geometric coordinates and
lengths. This volume-conservation equation becomes

ðRb þ R0 " dÞ 8ð1" cos h1Þhð3R2
b þ 3Rbhþ h2Þ

"

" ðhþ dÞ2ð3Rb þ 3R0 þ 2h" dÞ)

þ 3ðdþ hÞ2ðR0 " Rb " hÞ2 ¼ 0; (1)

which is solved further with an energy conservation equation.

B. Energy balance
Total energy is assumed to be constant at every moment.

Therefore, a sum of the initial kinetic energy EðinitialÞk ð¼ qð2=3ÞpR3
0U

2
0 Þ

and the surface energy EðinitialÞs ð¼ c4pR2
0Þ should be equal to the sum of

the subsequent kinetic energy EkðtÞ, surface energy EsðtÞ, and viscous
workW as follows:

EðinitialÞk þ EðinitialÞs ¼ EkðtÞ þ EsðtÞ þ
ðt

0
Wdt0: (2)

Instantaneous kinetic energy EkðtÞ can be estimated by adding the
kinetic energy of the remaining volume of the original drop and the
kinetic energy of the lamella. The kinetic energy of the lamella can be
calculated using an assumption of the semiparabolic velocity in the
lamella. This semiparabolic velocity profile is often assumed for a free-
surface flow.32–34

Next, surface energy EsðtÞ depends on the area of the water–air
and water–solid surfaces as EsðtÞ ¼ cALGðtÞ þ ðcLS " cSGÞALSðtÞ. The
subscripts for surface area (A), L, G, and S represent liquid, gas, and
solid, respectively. The two areas [ALGðtÞ; ALSðtÞ] will be expressed in
terms of R(t), h(t), and other known geometric parameters. Therefore,
the total energy balance becomes

FIG. 1. (a) Schematic diagram of the experimental setup. (b) Schematics of differ-
ent volumes of a droplet on a flat surface (upper panel) or on a curved surface
(lower panel).
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c 2pðRb þ hÞ2ðcos h2 " cos h1Þ þ 4pR2
0 " 2pR0d

$

þ2p Rb þ
h
2

% &
sin h1h" 2pR2

b cos hð1" cos h1Þ
'

"4cpR2
0 þ pq _h

2
c
2R3

0

3
"
Vbeyond

2p
þ 3s40
10h

ln
h1
h2

% &" #

" 2pqU2
0R

3
0

3
þW ¼ 0 : (3)

For energy dissipation due to the viscous work (W), we consider
only shear rates along lamella as W ¼

Ð
Vlamella

lð@U=@zÞ2dX, where l
is the fluid viscosity and X is the lamella volume. Here, the lamella
velocity (U) is assumed to be semiparabolic in the lamella, which
incorporates zero stress on the free surface. Therefore, on the spherical
surface, the radial velocity is expressed as Uðs; z; tÞ ¼ "U ðtÞ Rbh2

s
zð2h"zÞ

h2 ,
where z is the coordinate normal to the surface, and s is the curvilinear
abscissa that can be easily calculated as s ¼ RbhðtÞ. Finally, the velocity
of the lamella is given as follows:

Uðs; z; tÞ ¼ 3j _hcjs20ðtÞ
4h3s

zð2h" zÞ; (4)

where s0ðtÞ ¼ Rbarcsinða=RbÞ. Here, a is the half-length of Vbeyond [see
the full expression in Eq. (B1) of Appendix B]. By taking the z-gradient
on the above velocity profile, the energy dissipation (W) is calculated.

C. Numerical and asymptotic solutions
We have two sets of equations: one from volume conservation

[Eq. (1)] and the other from energy conservation [Eq. (3)]. There are
two unknowns to be determined: lamella thickness h(t) and spreading
radius R(t). This set of equations can be numerically solved to deter-
mine the two unknowns. Hence, at every moment, an appropriate
region in the (R, h) space was meshed thinner and thinner according
to the expected set of (R, h) from the previous iteration. Both equa-
tions were computed at every node, and the solutions were then calcu-
lated as the coordinates of the minimum value of the multiplication of
both equations [Eqs. (1) and (3)].

First, let us check two asymptotic solutions analytically. At the
early stage (t * 1), we can assume both spreading radius and penetra-
tion depth RðtÞ; d ! U0t * R0, Rb, so that sin h1 ! RðtÞ=Rb and the
viscous work on the lamella can be considered as negligible. Then,
simplifying volume conservation and energy balance yields at early
stage

RðtÞ ! R0
4Rb

Rb þ R0

% &1=2 U0

2R0
t

% &1=2

: (5)

At the later stage (t + 1), we can assume the penetration depth
d ! 2R0 and then h2 * 1; h* Rb, so that the total energy balance
combined with the volume conservation can be simplified as follows:

We 1" 4ffiffiffiffiffi
Re
p RðtÞ2

R2
0

" #

¼ 6
R2
b

R2
0
ð1" cos hAdvanceÞð1" cos h1Þ"12: (6)

In terms of the maximum spreading radius, we approximate R(t) and
h1 as Rmax and Rmax=Rb, respectively. Then, we can solve for Rmax at
given parameters (We;Re;R0;Rb, and hAdvance).

In the limit of the flat case (Rb ! þ1; 1" cos h1 ! 1
2 ðR

2ðtÞ=
R2
bÞ; Rðt ! þ1Þ ¼ Rmax), the above spreading equation becomes

Rmax

R0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Weþ 12

3ð1" cos hAdvanceÞ þ 4WeðReÞ"1=2

s
: (7)

This drop-spreading equation is exactly same as the one from
Pasandideh-Fard et al.15 It is noteworthy that a drop will spread less
on a hydrophobic surface (hAdvance ! p).

Like other studies, we can express it in terms of the maximum
spreading factor; bmax , Rbh1ðt ! þ1Þ=R0. For larger spheres com-
pared with the drop size (Rb=R0 * 1) and smaller spreading distance
(h1 * 1), Eq. (6) becomes

We 1" 4ffiffiffiffiffi
Re
p b2

max

$ '
¼ 3ð1" cos hAdvanceÞb2

max " 12;

bmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Weþ 12

3ð1" cos hAdvanceÞ þ 4WeðReÞ"1=2

s
:

(8)

It is worth noting that this is an approximate solution with several
assumptions listed above. Also, this is different from the previous ana-
lytical model in Ref. 30 (8=bmax is missing).

D. Comparison with experiments
First, we measured the central height hc of the impacting drop as

in Fig. 2. At an early stage (t' < 0:5), h'c decreases linearly with nor-
malized time as h'c ’ 1" t'. At the later stage (0:5 < t'), h'c deviates
from the linear trend and follows h'c ! 0:5=ðt' þ 0:5Þ2. It is also
noticeable that this trend remains the same regardless of the curvature
of the substrate (see Fig. 2).

Next, the effect of curvature on the spreading dynamics is charac-
terized as shown in Fig. 3(a). A water drop (R0 ¼ 1:5 mm) impacts
spheres of different curvatures at a speed of U0 ¼ 1:2 m/s. The drop

FIG. 2. Measurements of the time evolution of normalized central height (hc=2R0)
with normalized time (tU0=2R0). Symbols represent experimental data with different
spheres. Experimental data show hc=ð2R0Þ ¼ 1" t' in the beginning (t' < 0:5)
and then follows hc=ð2R0Þ ¼ 0:5=ð0:5þ t'Þ2.
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appears to spread almost the same on the projected distance but has a
slightly more spreading distance along the curved surface as the radius
of the surface decreases. Figure 4(a) shows the normalized spreading
distance R' , R=R0 ¼ Rbh1=R0 vs the normalized time, showing a
very slight increase with curvature. The normalized spreading radius
R' initially increases as a power law with respect to normalized time t'

such as RðtÞ=R0 ¼ 2:15ðtU0=2R0Þ1=2 [see Fig. 4(b)]. This result is con-
sistent with the asymptotic solution derived in Sec. III C [Eq. (5)]. It is

worth noting that the prefactor value, 2.15, of the best fit is very close
to the one from our calculation: ð4Rb=ðRb þ R0ÞÞ1=2 ! 1:8" 1:9.
Figure 3(b) shows the effect of the impact speed. The higher the veloc-
ity, the longer the maximum spreading radius and the faster it expands
[see Fig. 4(c)].

Finally, Fig. 5 shows the comparison of our experiments with var-
ious theoretical predictions. All models are listed in Table I and the
root mean square error (RMSE) is computed for each model as

FIG. 3. (a) Image sequences of a drop impacting spheres with diameters 2Rb = 1.27, 1.90, 2.54, and 3.81 cm, and a flat surface, respectively. The impact speed is at
U0 ¼ 1:2 m/s, and the drop diameter is 2R0 ¼ 3 mm. (b) Image sequences of a drop impacting a sphere of 2.54 cm in diameter at different speeds (U0 ¼ 0:9 and 2.6 m/s).
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N exp

XN exp

i¼1
ðbnum

max " b exp
maxÞ

2

vuut ;

where N exp is the number of experiments, bnum
max and b exp

max are the
numerical and experiment spreading factors, respectively. Here, we

will consider two different regimes: b exp
max - 3 and b exp

max > 3. First, the
models of Akao et al.35 and Scheller and Bousfield36 seem to systemati-
cally overestimate the maximal spreading diameter for all b exp

max. For
small spreading factors b exp

max < 3, the model of Clanet et al.14 gives the
best agreement with our experimental data. For b exp

max > 3, our model,
the model of Pasandideh-Fard et al.15 and the model of Liu et al.30

show the best results. A higher b exp
max is of our interest as the lamella

spreads along the surface more than the drop size.
Experimental and numerical spreading factors with different

ball diameters are listed in Table II. Our model overpredicts the
spreading factor compared with the experimental results.
Nevertheless, the numerical spreading factor increases with curva-
ture, in accordance with experimental data. Both experimental and
numerical data show that the influence of curvature is quite small.
Additionally, the influence of velocity is presented in Table III. The
spreading factor increases with velocity as also shown in numerical
simulations. The overall trends of experimental and numerical
results are consistent, and follow the intuition that higher impact
velocities result in greater spreading radius.

IV. CONCLUSION AND DISCUSSION
We studied how a droplet impacts and spreads over a sphere,

which is inspired by the natural phenomena of raindrops impacting
curved biological surfaces. In this work, the spreading dynamics on a
sphere has been theoretically formulated and compared with experi-
ments. The underlying concept of this study is to consider a spherical
segment and a skirting lamella of a spreading droplet after impact.
First, we characterized the height of the spherical segment, hc, which
decreases linearly in time and then decays with the power law. Second,
by considering the volume conservation and the energy balance, we
can capture the spreading lamella over time. In the beginning, the
lamella increases its radius as t1=2, which is verified in experiments.

FIG. 5. Comparison of experimental spreading factor Rmax=R0 with theoretical normal-
ized maximal spreading factor from various studies (see Table I for detailed expressions).

FIG. 4. Measurements of normalized spreading radius (RðtÞ=R0) with normalized time
(tU0=2R0) (a) and (b) with different radii of curvature at a speed of 1.2m/s and (c) with dif-
ferent velocities for a sphere with 2.54 cm diameter. In panel (b), the dotted line is
RðtÞ=R0 ¼ 2:15ðtU0=2R0Þ1=2 to confirm a power-law increase with an exponent of 1/2.
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Finally, the maximum spreading factor is theoretically predicted and
compared with experimental observations.

This study focused on the drop spreading on a fixed sphere.
However, plant leaves will undergo bending and twisting motions2

and deformations, thereby changing the local surface curvature
and angle. Futher studies should be performed to examine how a
drop spreads on a thin elastic substrate as the bottom surface
deforms due to the pressure from the impacting drop.
Additionally, the bottom curvature and particles37 could change
the generation rate of drop splashes/aerosols.38 As the thin lamella
moves along a convex surface, it becomes unstable and may gener-
ate and eject more splashes. Such splashes could affect both water
retention on plants39,40 and spore dispersal,41 which leads to inter-
esting questions and implications.
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APPENDIX A: CASE OF A FLAT RIGID SURFACE

This section will show calculations on a flat surface based on
the geometry of an impacting drop, volume conservation, and
energy balance.

1. Geometry of the model
Prior to impact, the droplet assumes a spherical shape with

radius R0 while falling at the velocity U0. The part of the liquid in
immediate contact with the surface is transferred to the lamella dur-
ing the impact, i.e., Vbeyond is transferred to Vlamella in Fig. 1(b). The
volumes Vmiddle and Vbeyond are defined as the volumes of a two-base
spherical segment of height h and a spherical cap of depth d,

TABLE II. Evolution of spreading factor with different radii of spheres.

Ball diameter
(cm)

Velocity
(m/s) b exp

max bnum
max

Error
ðb exp

max " bnum
max Þ=b

num
max

1.27 1.2 2.603 2.919 0.316 (þ11%)
1.90 1.2 2.574 2.902 0.328 (þ11%)
2.54 1.2 2.563 2.896 0.333 (þ11%)
3.81 1.2 2.534 2.892 0.358 (þ12%)
Flat 1.2 2.449 2.888 0.439 (þ15%)

TABLE III. Evolution of spreading factor with different velocities.

Ball diameter
(cm)

Velocity
(m/s) b exp

max bnum
max

Error
ðb exp

max " bnum
max Þ=b

num
max

2.54 0.9 2.158 2.520 0.362 (þ14%)
2.54 1.3 2.812 3.011 0.199 (þ7%)
2.54 1.8 3.195 3.515 0.320 (þ9%)
2.54 2.3 3.946 3.917 "0.029 ("12%)
2.54 2.6 3.918 4.123 0.205 (þ5%)
2.54 3.0 4.117 4.364 0.247 (þ6%)

TABLE I. Various models for predicting the maximum spreading factor.

Reference Predicted model Type of surface RMSE (b exp
max - 3) RMSE (b exp

max > 3Þ

Akao et al.35 0:613We0:39 Flat 0.67 1.40
Scheller et al.36 0:61Re1=5ðWeRe"2=5Þ1=6 Flat 1.19 1.05
Clanet et al.14 0:9We1=4 Flat (a 0.9 coefficient is

used for fitting in Ref. 14)
0.25 0.46

Roisman et al.10 0:87Re1=5 " 0:4Re2=5We"1=2 Flat 0.71 0.35
Pasandideh-Fard et al.15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Weþ 12

3ð1" cos hAdvanceÞ þ 4WeðReÞ"1=2

s
Flat 0.50 0.21

Liu et al.30 Weþ 12þ Bg ¼ S1 þ S2 þ 4 Weffiffiffiffi
Re
p b2

max Flat and curved 0.47 0.21
Our model Eq. (6) Flat and curved 0.51 0.21
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respectively. The droplet at the point of maximal spreading is
assumed to deform into a cylinder with radius R and height h.

2. Flow in the lamella
A general form of the radial velocity given by mass conservation

in the lamella is assumed to be Uðr; z; tÞ ¼ "U ðtÞ r0ðtÞr
zð2h"zÞ

h2 at time t,
assuming a semi-parabolic profile due to viscosity as shown in Fig. 6,
and h small so that the edge of Vmiddle can be approximated by a cylin-

der of height h and radius r0ðtÞ ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1" ð1" dðtÞ=R0Þ2

q
.

To determine "U ðtÞ, one can apply mass conservation to
Vmiddle, still approximated as a cylinder. Mass coming in through
the top surface is assumed to have the same velocity as the apex of
the impacting drop _hcðtÞ, whose expression was determined experi-
mentally (as shown in Sec. III D). Thus, it can be written as
Min ¼ qpr0ðtÞ2j _hcj. Mass coming out through the edges can be

expressed as Mout ¼ q2pr0ðtÞhU'ðtÞ, where U' ¼ 1
h

Ð h
0 Udz ¼ 2"U ðtÞ

3
is the mean velocity on the edge of Vmiddle. Mass conservation of the

middle part then yields "U ðtÞ ¼ 3r0ðtÞj _hc j
4h and radial velocity

Uðr; z; tÞ ¼ 3j _hcjr20ðtÞ
4h3r

zð2h" zÞ: (A1)

3. Governing equations
The volume conservation is obtained by equating the virtual vol-

ume Vbeyond with the lamella volume Vlamella. Using the aforementioned
geometry of the flat impact, the volumes in Fig. 1(b) are given by

Vbeyond ¼
p
3

d2ð3R0 " dÞ; (A2)

Vmiddle ¼ ph " h2

3
" d2 þ 2dR0 þ R0h" dh

% &
; (A3)

Vlamella ¼ pR2h" Vmiddle: (A4)

The volume conservation condition Vbeyond¼Vlamella reduces to

3R0ðdþ hÞ2 " 3hR2 " ðdþ hÞ3 ¼ 0: (A5)

Total energy is assumed to be constant at every moment and
described by Eki þ Esi ¼ EkðtÞ þ EsðtÞ þW, where Esi ¼ c4pR2

0 is

the surface energy and Eki ¼ ð1=2ÞqU2
0 ð4=3ÞpR3

0 is the kinetic
energy. The surface energy during the impact is

EsðtÞ ¼ cSLG þ ðcLS " cSGÞSLS; (A6)

where the surface subscripts L, G, and S represent liquid, gas, and
solid, respectively. The surface areas of liquid–solid and liquid–gas
interfaces are as follows:

SLS ¼ pR2; (A7)

SLG ¼ Slamella þ Sremain; (A8)

Slamella ¼ 2pRhþ pR2 " p R2
0 " ðR0 " d" hÞ2

h i
; (A9)

Sremain ¼ 4pR2
0 " 2pðdþ hÞR0: (A10)

The lamella’s surface area, Slamella, is computed by taking the difference
of the surface area of a bottomless cylinder with radius R and height h,

with the area of a circle with radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 " ðR0 " d" hÞ2

q
(i.e., the top

surface of Vmiddle). The droplet’s remaining surface area, Sremain, is the
difference between the surface area of the original droplet and the
spherical cap with radius R0 and height dþ h.

The kinetic energy EkðtÞ can be estimated by adding the
kinetic energy of the remaining portion of the droplet with the
kinetic energy of the lamella. Integrating the kinetic energy of

the lamella, divided in annuli of volume 2prdr, yields EkðtÞ ¼ 1
2 q _h

2
c

. 4
3pR

3
0 " Vbeyond

) *
þ
Ð h
z¼0
Ð RðtÞ
r0ðtÞ

1
2 qU22prdrdz. Using the radial

velocity from Eq. (A1) and the defined volumes, the kinetic energy
simplifies to

EkðtÞ ¼ pq _h
2
c
2
3
R3
0 "

d2

6
ð3R0 " dÞ þ 3r40

10h
ln

R
r0

% &" #

: (A11)

The energy dissipation due to viscous workW is approximated
by assuming vertical shear flows and the velocity profile in Eq. (A1),

W !
ðt

0

ð ð ð

Vlamella

l
@U
@z

% &2

dXdt0 ¼
ðt

0

3pl _h
2
c r

4
0

2h3
ln

R
r0

% &
dt0: (A12)

Using Eqs. (A6), (A11), and (A12) and Young’s relation
c cos h ¼ cSG " cSL, the total energy balance reduces to

c 2Rhþð1"coshÞR2þðdþhÞðdþh"4R0Þ
" +

þq
3 _h

2
c r

4
0

10h
ln

R
r0

% &
þ2ð _h2

c "U2
0 ÞR3

0

3
"

_h
2
cVbeyond

2p

" #

þW
p
¼0: (A13)

At the early stage, we can assume d* R0; _hc ! U0; R ! r0 as
R is small, so that W becomes negligible and h ¼ p. The volume
conservation in Eq. (A5) results in d ! h. With these assumptions
and neglecting high-order terms in d, Eq. (A13) simplifies to

R2 þ Rh" 2R0ðdþ hÞ ¼ 0: (A14)

A solution of Eq. (A14) can be approximated as R ! 2
ffiffiffiffiffiffiffiffi
dR0
p

! 2
ffiffiffiffiffiffiffiffiffiffi
U0R0
p ffiffi

t
p

at early stage, which is consistent with the experimen-
tal exponent reported in literature and in Bird et al. derivation.17

At the final stage, d ! 2R0; h* R, and _hc ! 0, simplifying
Eq. (A13) toFIG. 6. Semi-parabolic velocity profile in the lamella.
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c 2Rhþ ð1" cos hÞR2 þ h2 " 4R2
0

" +
" 2
3
qU2

0R
3
0 þ

W
p
¼ 0: (A15)

Assuming 1" cos h ¼ Oð1Þ, and approximating the viscous work
W with the expression used by Pasandideh-Fard et al.,15

W ! p
3 qU2

0 ð2R0Þð2RÞ2=
ffiffiffiffiffi
Re
p

, results in the same expression for the
maximal spreading distance as the one found by Pasandideh-Fard
et al., which was found to give a good approximation to the follow-
ing ratio:

Rmax

R0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Weþ 12

3ð1" cos hÞ þ 4 Weffiffiffiffi
Re
p

s
; (A16)

where h is the advancing contact angle, and Rmax is the spread dis-
tance at the final stage, which corresponds to the maximum spread
distance.

APPENDIX B: CASE OF A CURVED RIGID SURFACE

1. Geometry of the model
Figure 1(b) shows the schematic diagram of a drop impacting a

spherical ball. As in Sec. III, we use rigid spheres with curvature radius
Rb. Now, R represents half of the total spreading length along a curved
surface. Due to the change in geometry, Vbeyond can now be calculated
as the intersection volume of two spheres of radius Rb and R0, and
Vbeyond þ Vmiddle as the intersection of two spheres of radius Rb þ h
and R0. Vlamella þ Vmiddle can be expressed as the intersection of two
spherical sectors of radii and arc lengths ðRb þ h; h1Þ and ðRb; h1Þ,
where h1 ¼ R=Rb is the arc length. As in Appendix A, we assume that
the original drop and the remaining part are spherical. Additionally, the
height of the lamella is assumed to be much smaller than the surface
radii, that is, h* Rb.

2. Flow in the lamella
The lamella assumes a semi-parabolic velocity profile, similar

to the flat case. However, due to the curvature of the rigid surface,
the radial velocity is modified as Uðs; z; tÞ ¼ "U ðtÞ s0ðtÞs

zð2h"zÞ
h2 , where

s is the curvilinear abscissa, defined as the arc length s ¼ Rbh. The
curvilinear abscissa spreading over time is s0ðtÞ ¼ Rbarcsin a

Rb

) *
,

where half of the chord in Vbeyond is

a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþhÞðd"h"2RbÞðdþh"2R0Þð2R0þ2Rb"dþhÞ

p

2ðR0þRb"dÞ
: (B1)

Therefore, the velocity profile of the lamella obtained by applying
mass conservation is

Uðs; z; tÞ ¼ 3j _hcjs20ðtÞ
4h3s

zð2h" zÞ: (B2)

3. Governing equations
The volume conservation is obtained by equating the virtual

(beyond) volume with the lamella volume [in the curved case of
Fig. 1(b)]. The volumes for the curved case account for the middle
section of the impacting droplet. That is, the volume conservation is
Vmiddleþbeyond ¼ Vlamellaþmiddle. Using the geometric properties of
the curved surface, these volumes are as follows:

Vbeyond ¼
pd2

12ðRb þ R0 " dÞ
ðRb þ R0 " dÞð3Rb þ 3R0 " dÞ½

" 3ðR0 " RbÞ2); (B3)

Vmiddleþbeyond ¼
pðdþ hÞ2

12ðRb þ R0 " dÞ
ðRb þ R0 " dÞð3Rb½

þ 3R0 þ 2h" dÞ " 3ðR0 " Rb " hÞ2); (B4)

Vlamellaþmiddle ¼
2ph
3
ð1" cos h1Þð3R2

b þ 3Rbhþ h2Þ; (B5)

where h1 is the angle between the centerline and the edge of the
lamella. In the limit of Rb ! þ1, these volumes converge the flat
surface case. By applying the volume conservation and simplifying
it, it becomes

ðRb þ R0 " dÞ 8ð1" cos h1Þhð3R2
b þ 3Rbhþ h2Þ

"

" ðhþ dÞ2ð3Rb þ 3R0 þ 2h" dÞ)
þ3ðdþ hÞ2ðR0 " Rb " hÞ2 ¼ 0: (B6)

The total energy balance is computed similar to the flat case,
but the curvature must be addressed in the computation of the sur-
face and kinetic energies and the viscous work. The expressions for
the areas of the solid–liquid and liquid–gas interfaces are as follows:

SLS ¼ 2pR2
bð1" cos h1Þ; (B7)

SLG ¼ Slamella þ Sremain; (B8)

Slamella¼ 2pðRbþhÞ2 cosh2" cosh1ð Þþ2ph Rbþ
h
2

% &
sinh1; (B9)

Sremain ¼ 4pR2
0 " 2pR0ðdþ hÞ; (B10)

where h2 is the angle between the centerline and the contact of a
drop on a solid. The liquid–solid and liquid–gas interfaces are com-
puted similar to the flat case. That is, the liquid–solid interface is
computed as the surface area of a spherical cap, while the liquid–gas
interface is computed as the sum of the surface areas of the lamella
and the remaining droplet. The terms in the Slamella equation repre-
sent the surface areas of the top and side of the lamella, respectively.
Sremain is computed similar to the flat case. In the limit case when
Rb !1 and letting Rbh1 ! R and Rbh2 ! R2

0 " ðR0 " d" hÞ2, we
see convergence to the terms SLS and SLG of the flat case.

Another distinction between the cases is captured in the radial
component, s(t), which now spans from Rbh2 to Rbh1. The surface
energy is computed using the curved surface areas, Eq. (A6), and
Young’s relation. Calculations of the kinetic energy and viscous
work are also done similar to the flat case. Therefore, the total
energy balance for the curved case is as follows:

c 2pðRb þ hÞ2ðcos h2 " cos h1Þ þ 4pR2
0 " 2pR0ðdþ hÞ

h

þ 2ph Rb þ
h
2

% &
sin h1 " 2pR2

b cos hð1" cos h1Þ)

" 4cpR2
0 þ pq _h

2
c
2R3

0

3
"
Vbeyond

2p
þ 3s40
10h

ln
h1
h2

% &" #

" 2pqU2
0R

3
0

3
þW ¼ 0; (B11)
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where

W ¼
ðt

0

3pl _h
2
c s

4
0

2h3
ln

h1ðtÞ
h2ðtÞ

% &
dt0: (B12)

At the early stage, we can assume R ! s0 * R0; R* Rb and d*
R0; d* Rb so that sin h1 ! R=Rb and viscous work becomes negligible.
Simplifying volume conservation and total energy balance gives

R2 ! ðdþ hÞRbR0

Rb þ R0
(B13)

and

R ! R0ðdþ hÞ
h

: (B14)

Combining these equations and letting d ! U0t at the early stage
gives the following approximation

R2 ¼ d 1þ 1
1" R=R0

% &
RbR0

Rb þ R0
: (B15)

If we assume R=R0 * 1 for the early time of spreading, then

R2 ! 2d
RbR0

Rb þ R0
¼ 2

RbR0

Rb þ R0
U0t ¼ 4

RbR2
0

Rb þ R0

U0t
2R0

; (B16)

RðtÞ ! R0
4Rb

Rb þ R0

% &1=2 U0

2R0
t

% &1=2

: (B17)

This implies that during the early stage, a droplet would spread far-
ther on a curved surface than on a flat one.

At the later stage, assuming d ! 2R0; h2 * 1; _hc ! 0; h* Rb,
the total energy balance can be expressed as

We 1" 4ffiffiffiffiffi
Re
p RðtÞ2

R2
0

" #

¼ 6
R2
b

R2
0
ð1" cos hAdvanceÞð1" cos h1Þ " 12:

(B18)

In the limit of the flat case (Rb ! þ1 and 1" cos h1 ! 1
2 ðR

2ðtÞ=
R2
bÞ), Eq. (B11) reduces the drop-spreading equation of Pasandideh-

Fard et al.15 in Eq. (A16).
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