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We consider the asymptotic behavior of small global-in-time solutions to a 1D Klein–

Gordon equation with a spatially localized, variable coefficient quadratic nonlinearity

and a non-generic linear potential. The purpose of this work is to continue the

investigation of the occurrence of a novel modified scattering behavior of the solutions

that involves a logarithmic slow-down of the decay rate along certain rays. This

phenomenon is ultimately caused by the threshold resonance of the linear Klein–Gordon

operator. It was previously uncovered for the special case of the zero potential in

[51]. The Klein–Gordon model considered in this paper is motivated by the asymptotic

stability problem for kink solutions arising in classical scalar field theories on the real

line.
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1 Introduction

We study the long-time behavior of small global-in-time solutions to the Cauchy

problem for the following (1 + 1)-dimensional Klein–Gordon equation

⎧⎨⎩ (∂2t − ∂2x + m2 + V(x))u = Pc
(
α(·)u2) on R

1+1,

(u, ∂tu)|t=0 = (Pcu0, Pcu1),
(1.1)

where the potential V(x) and the variable coefficient α(x) are sufficiently smooth and

decaying, where m > 0 is the mass parameter, and where the real-valued initial data

(u0,u1) are small in weighted Sobolev spaces. As a core assumption in this paper, we

suppose that the Schrödinger operator H = −∂2x +V(x) exhibits a zero energy resonance,

that is, a non-trivial bounded solution of Hϕ = 0 that approaches 1 as x → ∞ and a

non-zero constant as x → −∞, see Definition 2.4. In other words, we assume that the

potential V(x) is non-generic. The projection onto the continuous spectral subspace of

L2(R) relative to H is denoted by Pc.

The goal of this work is to continue the investigation of the occurrence of a

novel modified scattering behavior of small solutions to (1.1) that features a logarithmic

slow-down of the free decay rate along certain rays. This phenomenon was recently

discovered in [51] in the special case V(x) = 0 and is ultimately caused by the threshold

resonance of the linear operator −∂2x +m2+V(x). In this regard it is worth to record that

a peculiar feature of the Laplacian in one space dimension—in contrast to higher odd

space dimensions—is that it possesses a zero energy resonance, namely the constant

function 1. We also refer to the beginning of Section 2 for precise definitions of some of

the spectral theory terminology used in this introduction.

1.1 Motivation

Our interest in the model (1.1) stems from the asymptotic stability problem for kink

solutions arising in classical scalar field theory models on the real line. Kinks are

special soliton solutions to scalar field equations

(∂2t − ∂2x )φ = −W ′(φ) on R
1+1, (1.2)

where W : R → [0,∞) is a sufficiently regular scalar potential that features a double-

well, that is, there exist (at least) two consecutive (global) minima φ−,φ+ ∈ R of W with

φ− < φ+, W(φ±) = W ′(φ±) = 0, and W ′′(φ±) > 0. Trivial solutions to (1.2) are given by the
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5120 H. Lindblad et al.

constant functions φ(t, x) = φ± for all t ∈ R. Correspondingly, φ− and φ+ are referred

to as vacuum solutions. A static solution ψ(x) to (1.2) that connects the two consecutive

vacuua φ− and φ+ is called a kink and satisfies

⎧⎪⎨⎪⎩
∂2xψ = W ′(ψ) on R,

lim
x→±∞ ψ(x) = φ±.

(1.3)

Solutions to (1.3) are unique up to spatial translations. Moreover, the Lorentz invariance

of (1.2) gives rise to moving kinks upon applying a Lorentz boost.

Kinks are simple 1D examples of topological solitons, see for example, [6, 46,

57, 71]. A fundamental question related to the dynamics of kinks is their asymptotic

stability under small perturbations. A perturbative approach to this problem generally

consists in decomposing the perturbed solution into the sum of a modulated kink,

possibly discrete modes, and a dispersive remainder term. One then studies the long-

time dynamics of the associated system of ordinary differential equations (ODEs) and

partial differential equations (PDEs). One of the key steps in that analysis is to conclude

that the dispersive remainder term decays to zero in a suitable sense. For concreteness,

we now take a closer look at what this part of the problem entails for two prime

examples of classical scalar field models on the real line, namely the φ4 model with

Wφ4(φ) := 1

4
(1 − φ2)2, ψφ4(x) = tanh( x√

2
),

and the sine-Gordon model with

WsG(φ) := 1 − cos(φ), ψsG(x) = 4arctan(ex).

To simplify matters, we do not take into account any modulational aspects. For

perturbations of the static kink ψφ4(x) in the φ4 model, the remainder term u(t, x) =
φ(t, x) − ψφ4(x) satisfies

(
∂2t − ∂2x + 2 − 3sech2( x√

2
)
)
u = −3 tanh( x√

2
)u2 − u3, (1.4)
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On Modified Scattering for 1D Quadratic KG 5121

while for perturbations of the static kink ψsG(x) in the sine-Gordonmodel, the remainder

term u(t, x) = ψ(t, x) − ψsG(x) is a solution to

(∂2t − ∂2x + 1 − 2sech2(x))u = −sech(x) tanh(x)u2 + (1
6 − 1

3sech
2(x)

)
u3 + {

higher order
}
.

(1.5)

The study of the decay and the asymptotics of small solutions to 1D Klein–Gordon

equations such as (1.4) and (1.5) encompasses several difficulties: due to the slow dis-

persive decay of Klein–Gordon waves in one space dimension, the quadratic and cubic

nonlinearities cause long-range effects. In particular, subtle resonance phenomena can

occur in the interactions in the (variable coefficient) quadratic nonlinearities. Moreover,

the linearized operators may exhibit threshold resonances andmay have internal modes,

that is, positive gap eigenvalues below the continuous spectrum. The latter are in fact

an obstruction to decay at the linear level. We note that the linearized operators for the

φ4 model and the sine-Gordon model both exhibit threshold resonances and that the

linearized operator for the φ4 model additionally features an internal mode.

Delicate resonance phenomena in the quadratic nonlinearities in 1D Klein–

Gordon models such as (1.4) and (1.5) may lead to novel types of modified scattering

behaviors of the solutions that are deeply related to the presence of a threshold

resonance in the linearized operator. The purpose of this work is to uncover a precise

picture of such behavior for the simplified Klein–Gordon model (1.1), building on the

recent analysis of the flat case V(x) = 0 in [51].

1.2 Previous results

The study of the asymptotic stability of kinks and of the asymptotics of solutions

to nonlinear Klein–Gordon equations is a fascinating and vast subject that cannot be

reviewed in its entirety here. In this subsection we give an overview of previous works

that are closely related to the contents of this paper.

We begin with a brief review of orbital and asymptotic stability results for

kinks. The orbital stability of kinks for general scalar field models was studied in the

classical work of Henry–Perez–Wreszinski [26]. In [39, 40] Komech–Kopylova proved the

asymptotic stability of kinks with respect to a weighted energy norm for a class of

scalar field models with a certain flatness assumption on the potential near the wells

and under suitable spectral assumptions (no resonances, presence of an internal mode).

Kowalczyk–Martel–Muñoz [41] established the asymptotic stability of the kink of the

φ4 model locally in the energy space under odd finite energy perturbations. In this
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5122 H. Lindblad et al.

regard, Delort–Masmoudi [12] very recently obtained long-time dispersive estimates

for odd weighted perturbations of the kink of the φ4 model up to times T ∼ ε−4+c,

for arbitrary c > 0, where ε is the size of the initial data in a weighted Sobolev

space. A sufficient condition for the asymptotic stability locally in the energy space of

(moving) kinks in general (1+ 1)-scalar field models under arbitrary small finite energy

perturbations has been introduced by Kowalczyk–Martel–Muñoz–Van den Bosch [43].

Interestingly, the asymptotic stability properties of the kink of the sine-Gordon model

hinge delicately on the topology with respect to which the perturbations are measured.

The existence of special periodic solutions called wobbling kinks are an obstruction to

asymptotic stability in the energy space, see for instance Alejo–Muñoz–Palacios [1] for

a discussion. However, the sine-Gordon kink is asymptotically stable under sufficiently

strongly weighted perturbations, as has recently been shown by Chen–Liu–Lu [4] by

relying on the complete integrability of the model and using the nonlinear steepest

descent method. We also refer to the survey [42] and to the references therein.

Next, we give a survey of results on the dispersive decay and the asymptotics

of small solutions to 1D Klein–Gordon equations with an eye towards Klein–Gordon

models that are related to the asymptotic stability problem for kinks. We note that the

investigation of the long-time behavior of small solutions to Klein–Gordon equations

with constant coefficient nonlinearities (in higher space dimensions) originates in the

pioneering works of Klainerman [35, 36] and Shatah [66].

Due to the slow decay of Klein–Gordon waves in one space dimension, quadratic

and cubic nonlinearities exhibit long-range effects. Specifically, Delort [10, 11] estab-

lished modified scattering of small global solutions to the 1D Klein–Gordon equation

(∂2t − ∂2x + 1)u = α0u
2 + β0u

3 on R
1+1 (1.6)

with α0,β0 ∈ R in the sense that the solutions are shown to decay in L∞
x at the rate

t− 1
2 of free Klein–Gordon waves, but that their asymptotics feature logarithmic phase

corrections with respect to the free flow (We point out that the results of [10, 11] pertain

to more general quasilinear nonlinearities. With an eye towards the asymptotic stability

problem for kinks, here we emphasize the applicability of [10, 11] to the displayed Klein–

Gordon model (1.6).). An alternative physical space approach was later developed by

the first and fourth authors [52, 53] in the cubic case, providing a detailed asymptotic

expansion of the solution for large times. Subsequently, Hayashi–Naumkin [24, 25]

removed the compact support assumptions about the initial data required in [10, 52,

53], see also Stingo [70] and the work of Candy and the first author [3].
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The study of the asymptotics of small solutions to 1D Klein–Gordon equations

with variable coefficient nonlinearities was initiated by the first and fourth authors [55]

and by Sterbenz [69] for the model

(∂2t − ∂2x + 1)u = α0u
2 + β0u

3 + β(x)u3 on R
1+1, (1.7)

where α0,β0 ∈ R and where β(x) is a spatially localized, variable coefficient. Surpris-

ingly, the addition of a variable coefficient cubic nonlinearity in (1.7) leads to non-

trivial difficulties of dealing with the long-range nature of the (non-localized) constant

coefficient quadratic and cubic nonlinearities. The latter typically requires to combine

energy estimates for weighted vector fields with an ODE argument and normal form

methods. In the case of the Klein–Gordon equation, the Lorentz boost Z = t∂x +x∂t is the

only weighted vector field that commutes with the linear flow. However, differentiation

of the variable coefficient by a Lorentz boost produces a strongly divergent factor of

t, which seems to place corresponding slow energy growth estimates out of reach. In

[55, 69] the main idea to overcome this issue is the introduction of a variable coefficient

cubic normal form. More recently, three of the authors [50] obtained an improvement

of [55, 69] using local decay estimates for the Klein–Gordon propagator to overcome

difficulties caused by the variable coefficient nonlinearity.

In [51] three of the authors recently considered the quadratic Klein–Gordon

equation

(∂2t − ∂2x + 1)u = α(x)u2 on R
1+1 (1.8)

with a spatially localized coefficient α(x) and uncovered a novel modified scattering

behavior of small solutions that involves a logarithmic slow-down of the free decay

rate along certain rays. This discovery provided the impetus for the present work. We

note that the occurrence of a logarithmic-type slow-down of the decay rate due to

the presence of a space-time resonance was pointed out by Bernicot–Germain [2] in a

simpler setting of proving bilinear dispersive estimates for quadratic interactions of

1D free dispersive waves. See also [13, 14] for higher-dimensional instances, where the

optimal pointwise decay cannot be propagated by the nonlinear flow (but where the

obtained decay rate is not asserted to be sharp). We emphasize that [51, Theorem 1.1]

and Theorem 1.1 of the present work uncover a sharp picture of the asymptotics for 1D

nonlinear Klein–Gordon models, where a logarithmic slow-down of the free decay rate

occurs. In particular, the origin of the logarithmic loss is precisely identified to stem
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5124 H. Lindblad et al.

from the contribution of an explicit resonant source term that is deeply related to the

threshold resonance of the Klein–Gordon operator. Moreover, under the non-resonance

assumption α̂(±√
3) = 0, [51, Theorem 1.6] establishes that small solutions to

(∂2t − ∂2x + 1)u = α(x)u2 + β0u
3 + β(x)u3 on R

1+1 (1.9)

decay in L∞
x at the free rate t− 1

2 and that their asymptotics feature logarithmic phase

corrections (caused by the constant coefficient cubic nonlinearity β0u
3).

Recently, Germain–Pusateri [20] studied the following general 1D quadratic

Klein–Gordon equation with a linear potential

(∂2t − ∂2x + 1 + V(x))u = a(x)u2 on R
1+1, (1.10)

where a(x) is a smooth coefficient satisfying a(x) → 	±∞ as x → ±∞ for arbitrary

fixed 	±∞ ∈ R (and is thus not necessarily localized) and where H = −∂2x + V(x) has

no bound states. Under the key assumption that the distorted Fourier transform of the

solution ũ(t, 0) = 0 vanishes at zero frequency at all times t ∈ R, [20, Theorem 1.1]

establishes that small solutions to (1.10) decay in L∞
x at the free rate t− 1

2 and that

their asymptotics feature logarithmic phase corrections (caused by the “non-zero limits”

	±∞ of the coefficient a(x)). We note that ũ(t, 0) = 0 holds automatically for generic

potentials, while in the case of non-generic potentials this condition only holds for

solutions that are “orthogonal” to the zero energy resonance of H (in the sense of an

L1x–L
∞
x pairing). The latter can for instance be enforced by imposing suitable parity

conditions. As an application, [20,Corollary 1.4] yields the full asymptotic stability

of kinks with respect to odd perturbations for the double sine-Gordon problem in an

appropriate range of the deformation parameter.

For closely related results on modified scattering for nonlinear Schrödinger

equations, we refer to [5, 8, 9, 19, 21, 23, 29, 34, 48, 49, 54, 58, 59, 61, 63] and the

references therein.

Finally, we anticipate that local decay estimates for the perturbed Klein–Gordon

propagator eit
√

m2+HPc play a major role in the proof of the main result in this paper.

Such local decay estimates for much larger classes of unitary operators originate in the

works of Rauch [64], Jensen–Kato [32], and Jensen [30, 31], see also [15, 17, 18, 22, 28, 33,

37, 38, 44, 47] as well as the survey [65] and the references therein.
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1.3 Main result

We are now in the position to state the main result of this paper on the long-time

behavior of small solutions to (1.1). Without loss of generality we set the mass parameter

m = 1. We write 〈D̃〉 = √
1 + H on the positive spectrum of H = −∂2x +V(x) and we denote

by F̃ the distorted Fourier transform associated with H. We refer to the beginning of

Section 2 for a brief review of some basics of the spectral and scattering theory for

Schrödinger operators H.

Given a solution u(t) to (1.1), we introduce the new variable

v(t) := 1

2

(
u(t) − i〈D̃〉−1∂tu(t)

)
that satisfies the first-oder Klein–Gordon equation

(∂t − i〈D̃〉)v = 1

2i
〈D̃〉−1Pc

(
α(·)(v + v̄)2

)
on R

1+1

with initial datum v(0) = 1
2 (Pcu0 − i〈D̃〉−1Pcu1). It suffices to derive decay estimates and

asymptotics for the variable v(t) since we have that

u(t) = v(t) + v̄(t). (1.11)

We will occasionally use (1.11) as a convenient short-hand notation. The following

theorem contains the main result of this paper.

Theorem 1.1. Assume that the real-valued potential V ∈ L∞(R) ∩ C3(R) satisfies

〈x〉9V(	)(x) ∈ L1(R) for all 0 ≤ 	 ≤ 3, and that H = −∂2x + V(x) exhibits a zero energy

resonance ϕ(x), cf. Definition 2.4. Suppose that ‖〈x〉15α(x)‖H3
x

< ∞. Then there exists an

absolute constant 0 < ε0 � 1 such that for any initial condition v0 satisfying

ε := ‖〈x〉5v0‖H2
x

≤ ε0,

there exists a global-in-time solution v ∈ C(R;H2
x ) to

(∂t − i〈D̃〉)v = 1

2i
〈D̃〉−1Pc

(
α(·)(v + v̄)2

)
on R

1+1 (1.12)

with initial datum v(0) = Pcv0. Moreover, the solution v(t) exhibits the following

asymptotic behavior as t → ∞:
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5126 H. Lindblad et al.

• (Resonant Case) Suppose

F̃
[
αϕ2](

√
3) �= 0 or F̃

[
αϕ2](−√

3) �= 0.

Then it holds

‖v(t)‖L∞
x
� log(1 + 〈t〉)

〈t〉 1
2

ε. (1.13)

In addition, v(t) admits a decomposition

v(t) = vfree(t) + vmod(t), t ≥ 1,

with the following properties:

(i) The component vfree(t) satisfies

‖vfree(t)‖L∞
x
� ε

〈t〉 1
2

, t ≥ 1. (1.14)

Moreover, vfree(t) scatters to a free Klein–Gordon wave in H2
x in the sense

that there exists v∞ ∈ H2
x such that

∥∥vfree(t) − eit〈D̃〉v∞
∥∥
H2
x
� ε2

〈t〉 1
2

, t ≥ 1. (1.15)

(ii) There exists a small amplitude a0 ∈ C, |a0| � ε, such that the component

vmod(t) is given by

vmod(t) := c20
a2
0

2

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2)e2is

s
ds, (1.16)

where the real constant c0 only depends on the scattering matrix S(0) of

the potential V(x) at zero energy, cf. (2.10), and is explicitly given by

c0 = 1

(2π)
3
2

T(0)2

1 + R−(0)
, where T(0) �= 0. (1.17)
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For arbitrary 0 < δ � 1, there exists a constant Cδ ≥ 1 such that we have

uniformly

∣∣vmod(t, x)
∣∣ ≤ Cδ

ε2

〈t〉 1
2

whenever |x| <
(√

3

2
− δ

)
t or |x| >

(√
3

2
+ δ

)
t,

(1.18)

and along the rays x = ±
√
3
2 t the asymptotics of vmod(t) are given by

vmod

(
t,±

√
3

2
t
)

= c20
a2
0√
8
ei

π
4 ei

t
2 F̃ [αϕ2](∓√

3)
log(t)

t
1
2

+ OL∞
t

( ε2

t
1
2

)
, t � 1.

(1.19)

In particular, when a0 �= 0 the decay estimate (1.13) is sharp.

• (Non-Resonant Case) Suppose

F̃
[
αϕ2](

√
3) = 0 and F̃

[
αϕ2](−√

3) = 0.

Then it holds

‖v(t)‖L∞
x
� ε

〈t〉 1
2

. (1.20)

Moreover, v(t) scatters to a free Klein–Gordon wave in H2
x in the sense that

there exists v∞ ∈ H2
x such that

∥∥v(t) − eit〈D̃〉v∞
∥∥
H2
x
� ε2

〈t〉 1
2

, t ≥ 1. (1.21)

We proceed with several remarks on Theorem 1.1:
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5128 H. Lindblad et al.

(i) The amplitude a0 ∈ C in the statement of Theorem 1.1 is explicitly given by

a0 = 〈ϕ, v0〉 + 1

2
〈ϕ,α(·)v20〉 − 〈ϕ,α(·)|v0|2〉 − 1

6
〈ϕ,α(·)v20〉

+
∫ ∞

0
eis〈ϕ,α(·)∂s

(
e−isv(s)

)(
e−isv(s)

)〉ds
−
∫ ∞

0
e−is〈ϕ,α(·)∂s

(
(e−isv(s))(eisv̄(s))

)〉ds
− 1

3

∫ ∞

0
e−3is〈ϕ,α(·)∂s

(
eisv̄(s)

)(
eisv̄(s)

)〉ds,
(1.22)

where we use the notation 〈f , g〉 := ∫
R
f (x)g(x)dx. In particular, we have

a0 �= 0 when 〈ϕ, v0〉 �= 0.

(ii) We did not optimize the decay and regularity assumptions on the initial data

and on the potential. The proof of Theorem 1.1 given below can be improved

to some extent to sharpen these assumptions.

(iii) Under certain conditions, the nonlinear solution v(t) to (1.12) does not

exhibit modified scattering in the sense that it just scatters to a free

Klein–Gordon wave. On the one hand, this occurs in the non-resonant case

F̃ [αϕ2](±√
3) = 0 for arbitrary (sufficiently small) initial data. On the other

hand, this may also occur in the resonant case for initial data satisfying

certain parity conditions. From the explicit formula (1.22) for the coefficient

a0 it is evident that a0 = 0 (and thus vmod(t) ≡ 0) if ϕ(x) is even and

v(t) as well as α(x) are odd, or if ϕ(x) is odd and v(t) as well as α(x)

are even. Of course, a parity condition on the solution v(t) to (1.12) in

turn imposes corresponding parity conditions on the potential V(x) and the

eigenfunctions of H = −∂2x + V(x).

(iv) The Klein–Gordon model (1.1) considered in this paper is a simplified model

for nonlinear Klein–Gordon equations with non-generic potentials such as

(1.4) and (1.5) that govern the dynamics of the dispersive remainder term in

a perturbative approach to the study of the asymptotic stability of kinks.

An important next step is to additionally allow for non-localized cubic

nonlinearities β0u
3 on the right-hand side of (1.12) and ultimately for non-

localized variable coefficient quadratic nonlinearities in the presence of

general non-generic potentials (say without bound states) without making

any parity assumptions on the initial data. In fact, even just for the case of

a pure non-localized cubic nonlinearity, it remains a very interesting open
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problem to establish decay estimates and asymptotics for small solutions

to the 1D Klein–Gordon equation

(∂2t − ∂2x + V(x) + 1)u = β0u
3 (1.23)

with a general non-generic potential V(x) (say without bound states) and

without making any parity assumptions on the initial data. In the case of

generic potentials and in the case of non-generic potentials under suitable

parity assumptions on the initial data (or under a related assumption

about the vanishing of the distorted Fourier transform of the solution at

zero frequency), two approaches have emerged over the past years to prove

modified scattering for small solutions to (1.23): one based on the distorted

Fourier transform, see [5, 19–21, 61, 62], and one using the wave operator, see

[9, 12]. Both approaches appear to crucially rely on genericity assumptions

or parity assumptions to by-pass the effects of the threshold resonances of

the linear operator.

The proof of Theorem 1.1 builds on the spatial localization of the

variable coefficient α(x) on the right-hand side of (1.12) in conjunction

with the use of refined local decay estimates. Correspondingly, it is not

straightforward to extend Theorem 1.1 to the above mentioned more general

settings involving non-localized quadratic or cubic nonlinearities. Non-

localized low power nonlinearities are to some extent incompatible with the

use of weighted norms as in the proof of Theorem 1.1.

After completion of this work, in the context of proving the asymp-

totic stability of the sine-Gordon kink under odd perturbations, two of the

authors [56] introduced an approach to study modified scattering problems

for Klein–Gordon equations with non-generic Pöschl–Teller potentials by

exploiting specific super-symmetric factorization properties of the corre-

sponding linear Klein–Gordon operators.

We note that the linearized Klein–Gordon equation around a (static) kink

solution to the scalar field equation (1.2) features a spatially localized

variable coefficient α(x) for the quadratic nonlinearity as in (1.1) if and only

if the scalar potential W in (1.2) satisfies W(3)(φ±) = 0. For example, this is

the case for the sine-Gordon model, but not for the φ4 model.

(v) We expect that in the presence of a non-generic potential V(x), a slow-down

of the decay rate as uncovered in Theorem 1.1 should occur more generally
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for coefficients α(x) that may also assume non-zero limits α(x) → α±∞ �= 0

as x → ±∞. However, we would like to emphasize again that it is by far

not straightforward to extend Theorem 1.1 to this more general setting.

The proof of Theorem 1.1 crucially exploits the spatial localization of the

coefficient α(x) in conjunction with the use of refined local decay estimates

for the perturbed Klein–Gordon propagator.

The extension of Theorem 1.1 for arbitrary small initial data to non-

localized coefficients α(x) likely requires to further advance normal form

techniques in the presence of a non-generic potential. The difficulty of

this step is deeply related to a loss of regularity of the distorted Fourier

transform of the profile g(t) := e−it〈D̃〉v(t) of the solution to (1.12) caused

by the quadratic nonlinearity. This also manifests itself prominently in the

difficulty to derive slowly growing energy estimates for a Lorentz boost

Z = t∂x + x∂t of the nonlinear solution to (1.1) in the flat case V(x) = 0.

Indeed, when the Lorentz boost falls onto the variable coefficient of the

quadratic nonlinearity, it produces a strongly divergent factor of t that is

hard to sufficiently compensate for.

For generic potentials as well as for non-generic potentials in the

special case of solutions that are “orthogonal” to the threshold resonance,

these difficulties have very recently been overcome in the remarkable

work of Germain–Pusateri [20]. We note that under the assumptions of

[20, Theorem 1.1], the nonlinear solutions to the model (1.10) decay in L∞
x

at the usual free decay rate t− 1
2 and their asymptotic behavior features

logarithmic phase corrections “caused by the non-zero limits” 	±∞ of the

coefficient a(x) in (1.10) at spatial infinity.

For a related discussion, we refer to Remark (6) following Theorem

1.1 in [20] and to the remarks at the end of Subsection 2.3 in [20].

(vi) The explicit expression (1.16) for vmod(t) indicates that we would have

vmod(t) ≡ 0 for generic potentials V(x), because their transmission coef-

ficient vanishes at zero energy T(0) = 0, whence c0 = 0.

(vii) The proof of Theorem 1.1 easily generalizes to arbitrary mass parameters

m �= 0 in the Klein–Gordon model (1.1). Then the resonant case corresponds

to the condition

F̃
[
αϕ2](

√
3m2) �= 0 or F̃

[
αϕ2](−√3m2) �= 0,
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and a logarithmic slow-down of the decay rate also occurs along the rays

x = ±
√
3
2 t.

(viii) In the resonant case when a0 �= 0 the distorted Fourier transform of the

profile g(t) := e−it〈D̃〉v(t) of the solution v(t) to (1.12) diverges logarithmically

at frequencies ξ = ±√
3, see Remark 4.1. Specifically, one has that

g̃(t,±√
3) = c20

a2
0

4
F̃
[
αϕ2](±√

3) log(t) + O(ε), t � 1,

which indicates that the free L∞
x decay rate t− 1

2 cannot be expected for the

solution v(t).

(ix) In the resonant case, the derivation of the asymptotics of vmod(t) in the proof

of Theorem 1.1 along the special rays x = ±
√
3
2 t also applies to nearby rays

x = λt with |λ− (±
√
3
2 )| � 1. One finds that uniformly for all |λ− (±

√
3
2 )| � 1,

∣∣∣∣vmod(t, λt) − c20
a2
0

2

ei
π
4 ei(1−λ2)

1
2 t

(1 − λ2)
1
4

F̃ [αϕ2]
(
− λ

(1 − λ2)
1
2

)A(t, λ)

t
1
2

∣∣∣∣ ≤ C
ε2

t
1
2

, t � 1,

where the amplitude correction A(t, λ) is of the form

A(t, λ) :=
∫ t

1
2

1

eis(2−(1−λ2)
− 1
2 )

s
ds.

Clearly, along the special rays λ = ±
√
3
2 , this yields the asymptotics (1.19)

featuring a logarithmic slow-down of the decay rate, while we obtain

uniformly for all nearby rays λ �= ±
√
3
2 that

|A(t, λ)| � 1

2 − (1 − λ2)− 1
2

, t � 1.

(x) It appears that the novel type of modified scattering behavior uncovered

in Theorem 1.1 as well as in [51, Theorem 1.1] is reminiscent of a new

phenomenon observed in the remarkable recent work of Delort–Masmoudi

[12] on long-time dispersive estimates for odd perturbations of the (odd)

kink ψφ4(x) = tanh( x√
2
) in the φ4 model. We recall from (1.4) that the

corresponding remainder term u(t, x) = φ(t, x)−ψφ4(x) satisfies the equation

(
∂2t − ∂2x + 2 − 3sech2( x√

2
)
)
u = −3 tanh( x√

2
)u2 − u3. (1.24)
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The linear operator −∂2x + 2 − 3sech2( x√
2
) exhibits an even threshold reso-

nance

ϕ(x) = 1 − 3

2
sech2

( x√
2

)
, (1.25)

and possesses an odd internal mode with eigenvalue μ2, μ =
√

3
2 , given by

Y(x) = 2− 3
4 3

1
2 tanh

( x√
2

)
sech

( x√
2

)
, 〈Y,Y〉 = 1. (1.26)

Note that for odd perturbations one can disregard the even zero eigenfunc-

tion of the linear operator stemming from the translation invariance of

the model. To study the long-time behavior of odd solutions to (1.24) one

therefore enacts a spectral decomposition

u(t, x) = z(t)Y(x) + w(t, x), 〈Y,w(t)〉 = 0, (1.27)

where z(t) = 〈Y,u(t)〉 is the projection of u(t) onto the internal mode Y(x).

The presence of the internal mode is a major difficulty in the study of

the asymptotic dynamics of u(t, x). In fact, at the linear level, it would be

an obstruction to decay. However, for the nonlinear Klein–Gordon equation

(1.24), a coupling of the oscillations of the internal mode to the continuous

spectrum occurs through the so-called nonlinear Fermi Golden Rule, see

Sigal [67] and Soffer–Weinstein [68] for pioneering works in this direction.

This mechanism was exploited by Kowalczyk–Martel–Muñoz [41] to estab-

lish the decay of w(t) in a local energy sense and the decay of z(t) in

an integrated sense. Delort–Masmoudi [12] recently obtained explicit decay

rates for z(t) and forw(t) in L∞
x for times up to T ∼ ε−4+c for arbitrary c > 0,

where ε is the size of the initial data measured in a weighted Sobolev space.

It appears that the limitation to times O(ε−4) in [12] stems from a

possible slow-down of the decay rate of w(t, x) along the special rays x
t =

±
√

2
3 . The latter is caused by a resonant source term in the nonlinear Klein–

Gordon equation for w(t) whose contribution can be thought of to have the

following schematic Duhamel form

∫ t

1
e
i(t−s)

√
−∂2x+2−3sech2( x√

2
)
Pc
(
αY2)e2iμs

s
ds (1.28)
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with α(x) = tanh( x√
2
) and Y(x) defined in (1.26). It arises from the quadratic

contribution of the long-time behavior of the projection z(t)Y(x) to the

internal mode in the nonlinear Klein–Gordon equation for w(t), see the

spectral decomposition (1.27) above. Interestingly, the structure of the

source term (1.28) is reminiscent of the source term (1.16) defining vmod(t)

in the statement of Theorem 1.1. By the same mechanism described in

Subsection 1.4 below on the ideas of the proof of Theorem 1.1, the source

term (1.28) is resonant at the distorted frequencies ξμ satisfying
√
2 + ξ2μ =

2μ, that is, ξμ = ±2, if F̃ [αY2](±ξμ) �= 0. Correspondingly, one can expect a

slow-down of the decay rate of w(t, x) along the associated rays

x

t
= − ξμ√

2 + ξ2μ

= ∓
√
2

3
.

In the context of the φ4 model, the resonance condition F̃ [αY2](±ξμ) �= 0 is

referred to as the nonlinear Fermi Golden Rule and it is in fact key for the

projection z(t)Y(x) of u(t) to the internal mode to decay at all as t → ∞.

We stress that the displayed form (1.28) of the contribution of the

resonant source term is very schematic and just serves here to highlight

the intriguing resemblance of the source term (1.16) defining vmod(t) in

the statement of Theorem 1.1 and the source term (1.28) appearing in the

analysis of perturbations of the φ4 kink. While the source term (1.16) is

ultimately caused by a threshold resonance, the source term (1.28) is caused

by the internal mode of the φ4 model. Finally, we note that a possible

slow-down effect of the decay rate of w(t) in (1.27) due to the threshold

resonance (1.25), similar to the result in Theorem 1.1, is not expected for

odd perturbations of the φ4 kink since these are “orthogonal” to the even

threshold resonance (1.25).

Remark 1.2. A natural question is whether the non-resonance condition F̃ [αϕ2](±√
3) =

0 happens to hold in concrete applications to asymptotic stability problems for kink

solutions. It turns out that the sine-Gordon model features this miraculous vanishing

property! Recall from (1.5) that the equation for a perturbation of the static sine-Gordon

kink involves the variable quadratic coefficient

α(x) = sech(x) tanh(x)
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and the Schrödinger operator

H = −∂2x − 2sech2(x).

The latter belongs to the family of Pöschl-Teller potentials, see for instance

[16, Problem 39] and admits a zero energy resonance that is explicitly given by

ϕ(x) = tanh(x).

It turns out that the distorted Fourier transform with respect to H of αϕ2 satisfies

F̃
[
αϕ2](±√

3) = 0. (1.29)

The authors are not aware of a reference in the literature for this observation (This

observation has previously been made by Jacob Sterbenz (unpublished note).). Below we

provide a simple proof of (1.29) using contour integration.

Proof of (1.29). By direct computation one can verify that the Jost solutions of the

Schrödinger operator H = −∂2x − 2sech2(x) are explicitly given by

f+(x, ξ) = iξ − tanh(x)

iξ − 1
eixξ ,

f−(x, ξ) = −iξ − tanh(x)

−iξ + 1
e−ixξ .

The distorted Fourier basis associated with H therefore takes the form

e(x, ξ) := 1√
2π

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T(ξ)

iξ − tanh(x)

iξ − 1
eixξ for ξ ≥ 0,

T(−ξ)
iξ − tanh(x)

iξ + 1
eixξ for ξ < 0,

where T(ξ) denotes the transmission coefficient associated with H. Thus, in order to

evaluate the distorted Fourier transform of αϕ2 at frequencies ξ = ±√
3,

F̃
[
αϕ2](±√

3) =
∫
R

e(x,±√
3) α(x)ϕ(x)2 dx,
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it suffices to evaluate the integrals

I± :=
∫
R

e±i
√
3x(±i

√
3 − tanh(x)

) sinh3(x)

cosh4(x)
dx.

To this end we observe that the function

F±(z) := e±i
√
3z(±i

√
3 − tanh(z)

) sinh3(z)

cosh4(z)
, z ∈ C,

is meromorphic on C with poles at zk = iπ
2 (2k + 1), k ∈ Z. It is easy to see that the

integral I± can be obtained from the contour integral of F± along the rectangle with

vertices at ±	π , ±	π + i	π as 	 → ∞. By the residue theorem, it follows that

I± = 2π i
∞∑
k=0

Resz=zk(F±).

Using that cosh(zk + w) = i(−1)k sinh(w) and that sinh(zk + w) = i(−1)k cosh(w), we

find that

F±(zk + w) = (−1)k−1ie∓√
3 π
2 (2k+1)

(
±i

√
3 e±i

√
3w cosh3(w)

sinh4(w)
− e±i

√
3w cosh4(w)

sinh5(w)

)
.

Then we compute

Resw=0

(
e±i

√
3w cosh3(w)

sinh4(w)

)
= ± i√

3
,

Resw=0

(
e±i

√
3w cosh4(w)

sinh5(w)

)
= −1.

Correspondingly, we obtain for all k ∈ Z that

Resz=zk(F±) = (−1)k−1ie∓√
3 π
2 (2k+1)

(
±i

√
3
(
± i√

3

)
− (−1)

)
= 0,

whence I± = 0, which implies the asserted vanishing property F̃
[
αϕ2

]
(±√

3) = 0. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/6/5118/6523055 by Yale U
niversity Law

 user on 05 June 2023



5136 H. Lindblad et al.

1.4 Proof ideas

The analysis of the asymptotic behavior of small global solutions to the 1D quadratic

Klein–Gordon equation

(∂t − i〈D̃〉)v = 1

2i
〈D̃〉−1Pc

(
α(·)(v + v̄)2

)
on R

1+1 (1.30)

under the assumptions of Theorem 1.1 begins with the observation that due to the

spatial localization of the coefficient α(x), the nature of the quadratic nonlinearity

α(x)(v + v̄)2 is entirely determined by the local decay of the nonlinear solution v(t).

It is therefore instructive to first study the interactions in the quadratic

nonlinearity α(x)(v(t) + v̄(t))2 when v(t) is replaced by a linear Klein–Gordon wave

vlin(t) = eit〈D̃〉Pcv0. Since H = −∂2x + V(x) is assumed to exhibit a zero energy resonance

ϕ(x), the local decay of eit〈D̃〉Pcv0 (measured in weighted spaces) is only of order t− 1
2 .

Importantly, this slow local decay solely stems from a contribution of the zero energy

resonance ϕ(x) in the sense that upon subtracting a suitable projection onto ϕ(x),

the bulk of the linear Klein–Gordon wave eit〈D̃〉Pcv0 exhibits faster local decay. More

specifically, one of the key local decay estimates for the Klein–Gordon evolution on the

line, which we establish in Subsection 2.3, reads

∥∥∥〈x〉−σ
(
eit〈D̃〉Pcv0 − c0

ei
π
4 eit

t
1
2

〈ϕ, v0〉ϕ
)∥∥∥

L2x
� 1

t
3
2

‖〈x〉σv0‖L2x , t ≥ 1, (1.31)

where σ > 9
2 and the real constant c0 defined in (1.17) only depends on the scattering

matrix S(0) of the potential V(x) at zero energy. The local decay estimate (1.31) suggests

that the leading order behavior of α(x)(vlin(t) + v̄lin(t))2 should be of the schematic form

c20α(x)ϕ(x)2
1

t

(
ei

π
2 e2it(〈ϕ, v0〉)2 + 2|〈ϕ, v0〉|2 + e−i π

2 e−2it(〈ϕ, v0〉)2
)

+ OL∞
t

( 1

t2

)
, t ≥ 1.

Correspondingly, we can expect the asymptotic behavior of a solution vinh(t) to

(∂t − i〈D̃〉)vinh = 1

2i
〈D̃〉−1Pc

(
α(·)(vlin + v̄lin)2

)
on R

1+1 (1.32)

to be determined by the contributions of three source terms given in Duhamel form by

c20
2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc(αϕ2)

1

s

(
ei

π
2 e2is(〈ϕ, v0〉)2 + 2|〈ϕ, v0〉|2 + e−i π

2 e−2is(〈ϕ, v0〉)2
)
ds.

(1.33)
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Due to the non-integrable time decay s−1 of these source terms, the overall time

oscillations in the integrand ultimately determine the long-time behavior of vinh(t).

This becomes particularly transparent on the distorted Fourier side, where the overall

oscillations in time s for the three source terms in the parentheses in the integrand

of (1.33) are respectively given by eis(2−〈ξ〉), e−is〈ξ〉, and e−is(2+〈ξ〉), where 〈ξ〉 = (1 + ξ2)
1
2 .

While the last two have good oscillatory behavior at all frequencies, the phase of eis(2−〈ξ〉)

vanishes when 2−〈ξ 〉 = 0, that is, at frequencies ξ = ±√
3. In the non-resonant case this

is offset by the vanishing of F̃ [αϕ2](±√
3) = 0 at these specific frequencies. However,

in the resonant case, where F̃ [αϕ2](
√
3) �= 0 or F̃ [αϕ2](−√

3) �= 0, these observations

indicate that the long-time behavior of vinh(t) decomposes into the contribution of a

resonant source term of the form

c20
2i

∫ t

1
ei(t−s)〈D̃〉Pc(αϕ2)

e2is

s
ds,

and a bulk term that can be expected to asymptotically behave like a free Klein–Gordon

wave.

It turns out that the study of the asymptotic behavior of the nonlinear solution

v(t) to (1.30) can effectively be reduced to the above heuristics. The key step to achieve

this reduction is to identify the precise leading order behavior of the variable coefficient

quadratic nonlinearity α(x)(v(t) + v̄(t))2. To this end we introduce the function

w(t) := c0
ei

π
4 eit

t
1
2

〈ϕ, v0〉ϕ + 1

2i

∫ t−1

0
c0

ei
π
4 ei(t−s)

(t − s)
1
2

〈
ϕ,α(·)(v(s) + v̄(s)

)2〉
ϕ ds, t ≥ 1, (1.34)

that can perhaps be thought of as a “projection” of the nonlinear solution v(t) to the

zero energy resonance ϕ(x). Note that we may write w(t, x) = a(t)ϕ(x) with the time-

dependent coefficient

a(t) := c0
ei

π
4 eit

t
1
2

〈ϕ, v0〉 + 1

2i

∫ t−1

0
c0

ei
π
4 ei(t−s)

(t − s)
1
2

〈
ϕ,α(·)(v(s) + v̄(s)

)2〉ds, t ≥ 1. (1.35)

In Proposition 3.1 we establish the following local decay bounds for the nonlinear

solution v(t) to (1.30) via a bootstrap argument

sup
t∈R

{
〈t〉−(0+)‖v(t)‖H2

x
+ 〈t〉 1

2 ‖〈x〉−σv(t)‖L2x + 〈t〉‖〈x〉−σ (1 − χ0(H))v(t)‖L2x

+ 〈t〉‖〈x〉−σ
√
Hv(t)‖L2x + 〈t〉‖〈x〉−σ ∂t(e

−itv(t))‖L2x
}
� ε.
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The proof of Proposition 3.1 crucially exploits the spatial localization of the coefficient

α(x) in conjunction with several local decay estimates for the Klein–Gordon propagator

eit〈D̃〉Pc summarized in Corollary 2.17, in particular (1.31). While v(t) has the slow local

decay ‖〈x〉−σv(t)‖L2x � εt− 1
2 , we then conclude in Corollary 3.2 that the difference v(t) −

w(t) enjoys the faster local decay

‖〈x〉−σ (v(t) − w(t))‖L2x � ε

t
, t ≥ 1.

The local decay bounds on v(t), in particular the faster local decay of the time derivative

of the “phase-filtered” component e−itv(t) given by ‖〈x〉−σ ∂t(e
−itv(t))‖L2x � εt−1 enables

us in Corollary 3.3 to extract the asymptotics of the time-dependent coefficient a(t)

given by

a(t) = c0
ei

π
4 eit

t
1
2

a0 + OL∞
t

(1
t

)
, t ≥ 1,

with a0 defined in (1.22). This suggests that the leading order behavior of the quadratic

nonlinearity α(x)(v(t) + v̄(t))2 is of the form

α(x)ϕ(x)2(a(t) + ā(t))2 = c20α(x)ϕ(x)2
1

t

(
ei

π
2 e2ita2

0 + 2|a0|2 + e−i π
2 e−2itā2

0

)+ OL∞
t

( 1

t
3
2

)
.

Analogously to the preceding discussion of the simplified equation (1.32), we are

reduced to analyzing the asymptotic behavior of the contribution of the possibly

resonant source term

vmod(t) := c20
a2
0

2

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2)e2is

s
ds,

and of the bulk term vfree(t) := v(t) − vmod(t).

The derivation of the asymptotic behavior of vmod(t) and vfree(t) asserted in

Theorem 1.1 is carried out in Section 4. It combines the local decay bounds for v(t)

established in Proposition 3.1 and Corollary 3.2 with pointwise linear estimates and

asymptotics for the propagator eit〈D̃〉Pc established in Lemma 2.18 and in Lemma 2.19. In

particular, in the resonant case, a careful stationary phase analysis of the asymptotics

of vmod(t, x) reveals the logarithmic slow-down (1.19) of the decay rate of vmod(t) along

the rays x
t = ∓

√
3
2 that are associated with the resonant frequencies ξ = ±√

3 for which

the phase of eis(2−〈ξ〉) vanishes.
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This concludes a sketch of some of the main ideas entering the proof of

Theorem 1.1.

1.5 Notation and conventions

For non-negative X, Y we write X � Y or X = O(Y) if X ≤ CY for some constant C > 0.

We employ the notation X �ν Y to indicate that the implicit constant depends on a

parameter ν and we write X � Y if the implicit constant should be considered as small.

Further, we use the Japanese bracket notation 〈x〉 = (1 + x2)
1
2 , 〈t〉 = (1 + t2)

1
2 , and

〈ξ〉 = (1 + ξ2)
1
2 . For a real number b ∈ R we denote by b+, respectively by b−, a number

that is larger, respectively smaller, than b, but that can be taken arbitrarily close to b.

Throughout we denote by χ0(ξ) a smooth cutoff to |ξ | � 1, equal to 1 near ξ = 0.

Moreover, we denote by χ(ξ) a smooth bump function with support near |ξ | � 1.

We denote the inner L2x product by 〈f , g〉 := ∫
R
f (x)g(x)dx, and we denote the

“projection” onto the resonance ϕ by

(ϕ ⊗ ϕ)g := 〈ϕ, g〉ϕ. (1.36)

We use the notation f̃ (ξ) = F̃ [f ](ξ) for the distorted Fourier transform associated with

H = −∂2x+V. Finally, we work with the following definition for the Sobolev spaces Hk
x (R),

k = 1, 2, given by

‖g‖Hk
x
:=

k∑
j=0

‖∂ jxg‖L2x .

2 Spectral and Scattering Theory

This section is devoted to the study of the linear flow generated by the Klein–Gordon

equation with a potential. In other words, we investigate the linear PDE (∂t−i〈D̃〉)v = Pcf

with datum v(0) = Pcv0 where v0 lies in suitable weighted Sobolev spaces. Recall that

〈D̃〉 is the nonnegative operator with the property 〈D̃〉2Pc = (1 + H)Pc and H = −∂2x + V

with V and finitely many of its derivatives decaying at a sufficiently rapid polynomial

rate. Moreover, Pc is the projection onto the continuous spectrum of H. Throughout, we

will focus on the case where H exhibits a 0 energy resonance that is commonly referred

to as the non-generic case. A 0 energy resonance simply means that there is a globally

bounded nontrivial solution of Hf = 0. Or, equivalently, that the bounded solution as

x → −∞, which is unique up to a nonzero constant, is linearly dependent with its
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5140 H. Lindblad et al.

cousin that remains bounded as x → +∞. All of this is equivalent with the Laurent

expansion of the resolvent (H − z2)−1 around z = 0 in the upper half plane Im z > 0,

starts with a z−1 power. The Laurent expansion needs to be understood in the weighted

L2(R) sense, and the coefficient of z−1 is a rank-1 operator given by (1.36). In the generic

case, there is no singular power in this expansion.

The easier generic H is essentially a special case of our analysis and statements

relevant to it can be obtained by carrying out straightforward modifications. An

important technical device in our estimates is the distorted Fourier transform. This

refers to the map f → f̃ (ξ) := ∫
f (x)e(x, ξ)dx, and its inverse f (x) = ∫

f̃ (ξ)e(x, ξ)dξ ,

which holds for all f ∈ L1 ∩ L2(R) that are perpendicular to all eigenfunctions of H.

Here He(·, ξ) = ξ2e(·, ξ) suitably normalized so that Plancherel holds with spectral

measure dξ , that is, ‖f ‖2 = ‖f̃ ‖2. In the non-generic case the distorted Fourier basis is

discontinuous at ξ = 0. We therefore do not use it for small energies but rather directly

work with the resolvent (Green function).

2.1 Spectral theory and distorted Fourier transform

This subsection recalls the Jost solutions, and the standard Volterra perturbation

theory needed to construct them.

Definition 2.1. Fix two positive integers N0 and M0, both exceeding 2. We consider

H = −∂2x + V on the domain C2
comp(R) ⊂ L2(R) with real-valued continuous V ∈ L∞(R) ∩

CM0(R), and 〈x〉N0V(	)(x) ∈ L1(R) for all 0 ≤ 	 ≤ M0. The Friedrichs extension of H is

self-adjoint with domain H2(R).

For such V, it is a standard fact that the spectrum of H consists of [0,∞),

which is essential spectrum, and finitely many negative simple eigenvalues, more

precisely the number of eigenvalues must be less than or equal to 1+ ∫
R

|x||V(x)|dx, see
[7, p. 149]. Moreover, the spectrum on [0,∞) is absolutely continuous, which follows

from the usual explicit representation of the Green function, that is, the kernel of the

resolvent (H − z2)−1 as Im z → 0+, see Lemma 2.6. As already mentioned, 0 energy

occupies a special role here and the resolvent may or may not be singular around z = 0.

The latter is generic, whereas the former is non-generic. It is worth mentioning that 0

cannot be an eigenvalue under our assumptions on V, since the solutions f of Hf = 0

can only approach constants but not decay as x → ±∞. It can only be a resonance.

We now begin the technical work by recalling basic notions of scattering theory

on the line. See [7] for much sharper statements. Throughout, constants of the form
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C(V) depend on V only via the norms ‖〈x〉N0V(	)(x)‖L1 for 0 ≤ 	 ≤ M0. Constants may also

depend on the resonance function ϕ, see Definition 2.4 below. The latter is only relevant

for estimates involving 0 energy.

Lemma 2.2. Let V(x) be as in Definition 2.1. There exist unique solutions f±(x, ξ) for

every ξ ∈ R of

Hf±(·, ξ) = ξ2f±(·, ξ)

satisfying f±(x, ξ) ∼ e±ixξ as x → ±∞. They are of the form f±(x, ξ) = e±ixξm±(x, ξ)

where m±(x, ξ) ∼ 1 as x → ±∞, and one has the bounds |∂	
ξ ∂kxm±(x, ξ)| ≤ C for all

0 ≤ k ≤ M0, 0 ≤ 	 ≤ N0 − 1 uniformly in ±x ≥ 0, ξ ∈ R.

Proof. We solve the ODEs

m′′±(x, ξ) ± 2iξm′(x, ξ) = V(x)m±(x, ξ)

by means of the Volterra equation

m+(x, ξ) = 1 +
∫ ∞

x

∫ y−x

0
e2iξt dt V(y)m+(y, ξ)dy

= 1 +
∫ ∞

x

e2iξ(y−x) − 1

2iξ
V(y)m+(y, ξ)dy

(2.1)

By iteration one finds that for all x ≥ 0 and uniformly in ξ ∈ R

|m+(x, ξ) − 1| ≤ eγ (x) − 1, γ (x) :=
∫ ∞

x
y|V(y)|dy (2.2)

An analogous bound holds for |m−(x, ξ) − 1| on x ≤ 0. Next, differentiating (2.1) in ξ

yields

∂ξm+(x, ξ) = 2i
∫ ∞

x

∫ y−x

0
e2iξt tdt V(y)m+(y, ξ)dy

+
∫ ∞

x

e2iξ(y−x) − 1

2iξ
V(y)∂ξm+(y, ξ)dy

(2.3)
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5142 H. Lindblad et al.

whence, with |m+(x, ξ)| ≤ M for all x ≥ 0 and ξ ∈ R,

|∂ξm+(x, ξ)| ≤
∫ ∞

x
(y − x)2|V(y)|M dy +

∫ ∞

x
(y − x)|V(y)||∂ξm+(y, ξ)|dy

≤ η(x)eγ (x), η(x) :=
∫ ∞

x
y2|V(y)|dy

(2.4)

where the last line follows by iteration. Similarly one checks that

|∂2ξ m+(x, ξ)| ≤ C
∫ ∞

x
(1 + y3)|V(y)|dy

for all x ≥ 0, ξ ∈ R, and C = C(V). The higher ξ derivatives are handled analogously.

Note that in particular f±(x, ξ) are continuous in (x, ξ) ∈ R
2. For the derivatives in x we

compute

∂xm+(x, ξ) =
∫ ∞

x
∂x

e2iξ(y−x) − 1

2iξ
V(y)m+(y, ξ)dy

= −
∫ ∞

x
∂y

e2iξ(y−x) − 1

2iξ
V(y)m+(y, ξ)dy

=
∫ ∞

x

e2iξ(y−x) − 1

2iξ
(V ′(y)m+(y, ξ) + V(y)∂ym+(y, ξ))dy

(2.5)

which implies the uniform boundedness of ∂xm+(x, ξ) in x ≥ 0, ξ ∈ R from yV ′(y) ∈ L1.

The higher x-derivatives follow by repeating this procedure. For the mixed derivatives,

we combine the two Volterra methods. �

Next, we establish symbol-type behavior for large ξ . Throughout, m′± = ∂xm±.

Lemma 2.3. With V as in Definition 2.1, and with m± as in Lemma 2.2,

sup
±x≥0

|∂ jξm±(x, ξ)| ≤ C(V, ξ0)|ξ |−1−j
(2.6)

for all |ξ | ≥ ξ0 > 0 and 1 ≤ j ≤ N0. Furthermore, the same bound holds for x derivatives:

sup
±x≥0

|∂ jξm′±(x, ξ)| ≤ C(V, ξ0)|ξ |−1−j
(2.7)

for all |ξ | ≥ ξ0 > 0 and 1 ≤ j ≤ N0.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/6/5118/6523055 by Yale U
niversity Law

 user on 05 June 2023



On Modified Scattering for 1D Quadratic KG 5143

Proof. We freeze ξ0 > 0 and allow constants to depend on it. Returning to the Volterra

equation (2.1), we compute

∂ξm+(x, ξ) = −
∫ ∞

x

e2iξ(y−x) − 1

2iξ2
V(y)m+(y, ξ)dy

+
∫ ∞

x

∂y e
2iξ(y−x)

2iξ2
(y−x)V(y)m+(y, ξ)dy+

∫ ∞

x

e2iξ(y−x) − 1

2iξ
V(y)∂ξm+(y, ξ)dy

= −
∫ ∞

x

e2iξ(y−x) − 1

2iξ2
V(y)m+(y, ξ)dy

−
∫ ∞

x

e2iξ(y−x)

2iξ2
∂y
[
(y−x)V(y)m+(y, ξ)

]
dy+

∫ ∞

x

e2iξ(y−x)−1

2iξ
V(y)∂ξm+(y, ξ)dy

whence, by the bounds of Lemma 2.2, and Volterra iteration,

sup
x≥0

|∂ξm+(x, ξ)| ≤ C(V)ξ−2

Repeating this procedure yields

sup
x≥0

|∂2ξ m+(x, ξ)| ≤ C(V)|ξ |−3

and similarly for the third and higher derivatives andm− on x ≤ 0. For the x-derivatives,

we start from (2.5) to conclude that

∂ξm
′+(x, ξ) = −

∫ ∞

x

e2iξ(y−x) − 1

2iξ2
(V ′(y)m+(y, ξ) + V(y)m′+(y, ξ))dy

−
∫ ∞

x

e2iξ(y−x) − 1

2iξ2
∂y
[
(y − x)(V ′(y)m+(y, ξ) + V(y)m′+(y, ξ))

]
dy

+
∫ ∞

x

e2iξ(y−x) − 1

2iξ
(V ′(y)∂ξm+(y, ξ) + V(y)∂ξm

′+(y, ξ))dy

(2.8)

This yields via Volterra iteration, our assumptions on V, and the bound on ∂ξm+(y, ξ),

that

sup
x≥0

|∂ξm
′+(x, ξ)| ≤ Cξ−2

Taking higher ξ derivatives of (2.8) concludes the proof. �
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The asymptotics of f+(x, ξ) as x → −∞ are expressed via the scattering data. In

fact,

T(ξ)f+(·, ξ) = f−(·,−ξ) + R−(ξ)f−(·, ξ)

T(ξ)f−(·, ξ) = f+(·,−ξ) + R+(ξ)f+(·, ξ)

(2.9)

where T(ξ)W(f+(·, ξ), f−(·, ξ)) = −2iξ with W = W(ξ) being the Wronskian. By

Lemmas 2.2 and 2.3, W ∈ CN0−1(R). The scattering matrix

S(ξ) =
[
T(ξ) R−(ξ)

R+(ξ) T(ξ)

]
(2.10)

is unitary. We now formally introduce the class of non-generic potentials that we

consider.

Definition 2.4. We assume that H exhibits a 0-energy resonance, that is, that H is

non-generic. This means that W(0) = 0, equivalently, T(0) �= 0, and f+(x, 0) ∼ c �= 0

as x → −∞. Thus, there exists a nonzero solution of Hϕ = 0 with ϕ ∈ L∞(R), ϕ �= 0,

normalized so that ϕ(x) = f+(x, 0) approaches 1 as x → ∞ and a nonzero constant as

x → −∞.

The following lemma collects the analytic properties of the transmission and

reflection coefficients that are needed later.

Lemma 2.5. The transmission coefficient satisfies T ∈ CN0−1(R \ {0}) ∩ CN0−2(R) and

T(ξ) = 1 + O(ξ−1), |ξ | → ∞ (2.11)

where ∂
j
ξO(ξ−1) = O(ξ−1−j) as |ξ | → ∞ for all 0 ≤ j ≤ N0 − 1. Furthermore, T �= 0

everywhere, T is bounded with its first N0 − 2 derivatives on R, and its first N0 − 1

derivatives on |ξ | ≥ ξ0 for any fixed ξ0 > 0. The reflection coefficients satisfy R± ∈
CN0−1(R \ {0}) ∩ CN0−2(R) and

R±(ξ) = O(ξ−1), |ξ | → ∞ (2.12)
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where ∂
j
ξO(ξ−1) = O(ξ−1−j) as |ξ | → ∞ for all 0 ≤ j ≤ N0−1. Additionally, R± is bounded

with its first N0 − 2 derivatives on R, and its first N0 − 1 derivatives on |ξ | ≥ ξ0 for any

fixed ξ0 > 0.

Proof. Writing W(f+(·, ξ), f−(·, ξ)) =: W(ξ), we have (with m′±(x, ξ) = ∂xm±(x, ξ))

W(ξ) = m+(0, ξ)(−iξm−(0, ξ) + m′−(0, ξ)) − m−(0, ξ)(iξm+(0, ξ) + m′+(0, ξ))

= −2iξm+(0, ξ)m−(0, ξ) + m+(0, ξ)m′−(0, ξ) − m−(0, ξ)m′+(0, ξ)

By Lemma 2.2, the final two terms are O(1) uniformly in ξ ∈ R, together with N0 − 1

derivatives in ξ . Thus,

W(ξ) = −2iξ + 2iξ(1 − m+(0, ξ)m−(0, ξ)) + O(1)

1 − m+(0, ξ)m−(0, ξ) = (1 − m+(0, ξ))m−(0, ξ) + 1 − m−(0, ξ)

By (2.1), we have

2iξ(1 − m+(0, ξ)) = −
∫ ∞

0

(
e2iξy − 1

)
V(y)m+(y, ξ)dy = O(1)

together with N0 − 1 derivatives in ξ . In conclusion,

W(ξ) = −2iξ + O(1)

as ξ → ±∞ with O(1) as above. Thus, (2.11) holds. Around ξ = 0 we have

W(ξ) = ξ

∫ 1

0
W ′(sξ)ds

whence T(ξ) = −2i
( ∫ 1

0 W ′(sξ)ds
)−1

. Since |T(ξ)| ≤ 1, we have W ′(0) �= 0 and thus

T ∈ CN0−2(R), and by T(ξ)W(ξ) = −2iξ , T �= 0 everywhere. For large ξ , we write

T(ξ) = [
1 + r(ξ)

]−1, T(ξ) = 1 − r(ξ)

1 + r(ξ)

r(ξ) := m+(0, ξ)m−(0, ξ) − 1 + (−2iξ)−1(m+(0, ξ)m′−(0, ξ) − m−(0, ξ)m′+(0, ξ))

By the preceding, r(ξ) = O(ξ−1) as ξ → ±∞, and r′(ξ) = O(ξ−2), r′′(ξ) = O(ξ−3), etc.,

which concludes the treatment of the transmission coefficient.
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Next we consider the reflection coefficient R−(ξ), the treatment of R+(ξ) being

identical. Computing the Wronskian of T(ξ)f+(·, ξ) and f−(·,−ξ) in two different ways

using (2.9), we find that

R−(ξ)2iξ = T(ξ)W(f+(·, ξ), f−(·,−ξ)) = T(ξ)
(
m+(0, ξ)m′−(0,−ξ) − m′+(0, ξ)m−(0,−ξ)

)
.

We may then infer the asserted regularity and decay properties of R−(ξ) by proceeding

as above. �

By the lemma, T ∈ CN0−2(R), T �= 0 everywhere, and

f+(x, ξ) = T(ξ)−1[f−(x,−ξ) + R−(ξ)f−(x, ξ)
]

f−(x, ξ) = T(ξ)−1[f+(x,−ξ) + R+(ξ)f+(x, ξ)
] (2.13)

for all (x, ξ) ∈ R
2. We will use (2.13) for f+(x, ξ) on the half-axis x ≤ 0, respectively, for

f−(x, ξ) on x ≥ 0.

The Jost solutions f± give rise to the kernel of the resolvent on the real axis

(approached from the upper half plane), and by Stone’s formula, therefore also to the

spectral measure on the positive half-axis. The starting point is the expression

(H − (ξ2 + i0))−1(x, y) = f+(x, ξ)f−(y, ξ)1[x>y] + f+(y, ξ)f−(x, ξ)1[y>x]

W(f+(·, ξ), f−(·, ξ))
(2.14)

for all x, y ∈ R and ξ ∈ R.

Lemma 2.6. The density of the spectral resolution E(d ξ2) of H on the continuous

spectrum [0,∞) has the kernel

E(d ξ2)

dξ
(x, y) = |T(ξ)|2

2π
(f+(x, ξ)f+(y,−ξ) + f−(x, ξ)f−(y,−ξ)) (2.15)

for all x, y ∈ R and all ξ ∈ R. Alternatively,

E(d ξ2)

dξ
(x, y) = 1

π

⎧⎨⎩ Re
[
T(ξ)f+(x, ξ)f−(y, ξ)

]
x > y

Re
[
T(ξ)f+(y, ξ)f−(x, ξ)

]
x < y

(2.16)

and all ξ ∈ R.
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Proof. By Stone’s formula, for x > y,

E(d ξ2)

dξ
(x, y) = ξ

π i

(
(H − (ξ2 + i0))−1 − (H − (ξ2 − i0))−1)(x, y)

= ξ

π i
(W(ξ)−1f+(x, ξ)f−(y, ξ) − W(−ξ)−1f+(x,−ξ)f−(y,−ξ))

= 1

2π
(T(ξ)f+(x, ξ)f−(y, ξ) + T(−ξ)f+(x,−ξ)f−(y,−ξ)).

The final line here gives (2.16). On the other hand, using that T(−ξ) = T(ξ), R±(−ξ) =
R±(ξ), and the unitarity of the scattering matrix in (2.10), the last line here can be

rewritten as

E(d ξ2)

dξ
(x, y) = 1

2π

[
T(ξ)f+(x, ξ)(T(−ξ)f+(y,−ξ) − R−(−ξ)f−(y,−ξ))

+ T(−ξ)(T(ξ)f−(x, ξ) − R+(ξ)f+(x, ξ))f−(y,−ξ)
]
,

which is the desired expression (2.15) for x > y. By self-adjointness, one has
E(d ξ2)

dξ
(x, y) = E(d ξ2)

dξ
(y, x), which concludes the proof. �

The definition of the distorted Fourier transform F̃ can now be read off from

(2.15). Indeed, we define the distorted Fourier basis as

e(x, ξ) := 1√
2π

{
T(ξ)f+(x, ξ) ξ ≥ 0

T(−ξ)f−(x,−ξ) ξ < 0
(2.17)

and define f̃ (ξ) = F̃f (ξ) = 〈e(·, ξ), f 〉 for all f ∈ L1∩L2(R). The reason for writing f−(x,−ξ)

rather than f−(x, ξ) is due to the map R → [0,∞), ξ �→ ξ2 of multiplicity 2. We associate

f+ with the second cover, so to speak, of [0,∞) from ξ > 0, and f− with the first cover by

ξ < 0. Then, one can read off from (2.15) that

〈f , g〉 = 〈F̃f , F̃g〉 ∀ f , g ∈ L1 ∩ L2c(R)

where L2c := PcL
2. In other words, Plancherel holds, F̃ : L2c → L2 is an isometry, and

F̃∗F̃ = IdL2c
. Explicitly, the inverse Fourier transform is given by

f (x) = 〈e(x, ·), f̃ (·)〉
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provided f̃ decays sufficiently for this inner product to exist. The reader will easily

recover the standard Fourier transform for V = 0. Note that for generic V, the Fourier

basis vanishes at ξ = 0, whereas in the non-generic case there is a discontinuity at zero

energy.

2.2 Sobolev and product estimates

In this subsection we present several technical estimates, in particular a weighted

Sobolev estimate and a product estimate, which will be needed in the nonlinear analysis

in Sections 3 and 4.

Recall that we denote by χ0(ξ) a smooth cutoff to |ξ | � 1, equal to 1 near

ξ = 0, and that we denote by χ(ξ) a smooth bump function with support near |ξ | � 1.

We assume throughout that V is non-generic, although the following results also hold

generically.

Lemma 2.7 (Kernel bounds). Let N ≥ 1 and k ≥ 0 be integers, and let ν ∈ R. Assume

that the potential V(x) satisfies 〈x〉N+2V(	) ∈ L1(R) for all 0 ≤ 	 ≤ max(k − 1, 1). Then we

have for all x, y ∈ R that

∣∣[∂kx 〈D̃〉νχ0(H)Pc
]
(x, y)

∣∣ ≤ C(V,N, ν, k)
∑
±

1

〈x ± y〉N , (2.18)

and the same holds for the kernel of
√
Hχ0(H)Pc. Moreover, we have for all λ ≥ 1 and for

all x, y ∈ R that

∣∣[〈D̃〉νχ(D̃/λ)Pc
]
(x, y)

∣∣ ≤ C(V,N, ν)
∑
±

λν λ

〈λ(x ± y)〉N . (2.19)

∣∣[(√H)νχ(D̃/λ)Pc
]
(x, y)

∣∣ ≤ C(V,N, ν)
∑
±

λν λ

〈λ(x ± y)〉N . (2.20)

Proof. We have

[〈D̃〉νχ0(H)Pc
]
(x, y) = 1

2π
1[x>y]

∫ ∞

−∞
T(ξ)f+(x, ξ)f−(y, ξ) 〈ξ〉νχ0(ξ

2)dξ

+ 1

2π
1[x<y]

∫ ∞

−∞
T(ξ)f−(x, ξ)f+(y, ξ) 〈ξ〉νχ0(ξ

2)dξ

=: K1(x, y) + K2(x, y)
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For the operator
√
Hχ0(H)Pc, we would have a similar expression but with ξχ0(ξ

2)

in place of 〈ξ〉νχ0(ξ
2). This does not have any significant bearing on the subsequent

arguments. If x ≥ 0, then we write

K1(x, y) = 1

2π
1[x≥0>y]

∫ ∞

−∞
ei(x−y)ξm+(x, ξ)m−(y, ξ) 〈ξ〉νχ0(ξ

2)T(ξ)dξ

+ 1

2π
1[x>y≥0]

∫ ∞

−∞
ei(x−y)ξm+(x, ξ)m+(y,−ξ) 〈ξ〉νχ0(ξ

2)dξ

+ 1

2π
1[x>y≥0]

∫ ∞

−∞
ei(x+y)ξm+(x, ξ)m+(y, ξ) 〈ξ〉νR+(ξ)χ0(ξ

2)dξ

(2.21)

Integrating by parts N times gives the desired bound on K1(x, y) provided 〈x〉N+2V(	)(x) ∈
L1(R) for 	 = 0, 1, see Lemma 2.2. The reason for the N + 2 rather than N + 1, and with

the need to include V ′ here lies with the transmission and reflection coefficients being

ratios of Wronskians, see Lemma 2.5. The contributions of x < 0 and the kernel K2 are

treated analogously. We now consider k > 0 and without loss of generality ν = 0. The

latter can be done since χ0 can be replaced with any bump function supported near 0,

and we may thus absorb 〈D̃〉ν into χ0. We compute

[
∂xχ0(H)Pc

]
(x, y) = 1

2π
1[x>y]

∫ ∞

−∞
T(ξ)∂xf+(x, ξ)f−(y, ξ) 〈ξ〉νχ0(ξ

2)dξ

+ 1

2π
1[x<y]

∫ ∞

−∞
T(ξ)∂xf−(x, ξ)f+(y, ξ) 〈ξ〉νχ0(ξ

2)dξ

(2.22)

Notice that the ±δ0(x − y) singularities that arise by differentiating 1[x>y], resp. 1[x<y],

cancel each other. For k = 2 we could differentiate once more. However, we write

∂2x = V − H, whence

[
∂2xχ0(H)Pc

]
(x, y) = [

(V(x) − H)χ0(H)Pc
]
(x, y)

The right-hand side satisfies the bounds in (2.18), multiplied by the factor 1 + ‖V‖∞ ≤
1 + ‖V ′‖1. The bound (2.18) with k = 1 requires 〈x〉N+1V(	) ∈ L1(R) for 	 = 0, 1 by (2.22)

and Lemma 2.2. The higher order derivatives in x follow by iteration, for example

[
∂3xχ0(H)Pc

]
(x, y) = ∂x

[
(V(x) − H)χ0(H)Pc

]
(x, y)[

∂4xχ0(H)Pc
]
(x, y) = [

(V(x) − H)2χ0(H)Pc
]
(x, y)

with (V − H)2 = V2 − HV − VH + H2 = V2 − 2VH + V ′′ + 2V ′∂x + H2.
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5150 H. Lindblad et al.

For (2.19) consider the operator

Mλ := λ−ν〈D̃〉νχ(D̃/λ), λ ≥ 1

with the distorted Fourier representation

MλPcg(x) = 1√
2π

∫ ∞

0
T(ξ)f+(x, ξ)λ−ν〈ξ〉νχ(ξ/λ)g̃(ξ)dξ

+ 1√
2π

∫ 0

−∞
T(−ξ)f−(x,−ξ)λ−ν〈ξ〉νχ(ξ/λ)g̃(ξ)dξ

(2.23)

Assuming x > 0 and inserting the expression for the distorted Fourier transform g̃ yields

the explicit kernel representation

M+
λ Pc(x, y)

=
∫ ∞

0
|T(ξ)|2ei(x−y)ξm+(x, ξ)m+(y,−ξ)θ+(y)λ−ν〈ξ〉νχ(ξ/λ)

dξ

2π

+
∫ ∞

0
T(ξ)eixξm+(x, ξ)

(
e−iyξm−(y, ξ) + R−(−ξ)eiyξm−(y,−ξ)

)
θ−(y)λ−ν〈ξ〉νχ(ξ/λ)

dξ

2π

(2.24)

for the contribution of the positive frequencies ξ in (2.23). We leave the analogous

contributions of negative ξ to the reader. Combining the oscillatory integrals with phase

(x − y)ξ and rescaling ξ = λη leads to the estimate

∣∣∣λ ∫ ∞

0
eiλ(x−y)ηm+(x, λη)

{
|T(λη)|2m+(y,−λη)θ+(y)+T(λη)m−(y, λη)θ−(y)

}
λ−ν〈λη〉νχ(η)

dη

2π

∣∣∣
≤ C(V)λ〈λ(x − y)〉−N

We integrated here by parts N times if |λ(x−y)| ≥ 1, otherwise just use the trivial bound

λ. We use the symbol type bounds on m±, T,R± in ξ as above, uniform in the respective

regimes of x, y, as well as that

λ−ν〈λη〉νχ(η) = (λ−2 + η2)
ν
2 χ(η)
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is bounded with all its derivatives uniformly in λ ≥ 1. The treatment of the phase

function (x + y)ξ is essentially the same, leading to the kernel bound

C(V)λ〈λ(x + y)〉−N

This concludes the proof of (2.19). These bounds require that 〈x〉N+1V ∈ L1.

The estimate (2.20) follows in essentially the same way. The only difference being

that in (2.24) the multiplier 〈ξ〉 is replaced with ξ . We leave the remaining details to the

reader. �

Remark 2.8. In the nonlinear analysis in Sections 3 and 4, we will occasionally use

without further mentioning that the operators χ0(H)Pc and ∂xχ0(H)Pc are bounded on

weighted Lp(R) spaces, 1 ≤ p ≤ ∞, in the sense that

∥∥〈x〉−σ χ0(H)Pcg
∥∥
Lpx

+ ∥∥〈x〉−σ ∂xχ0(H)Pcg
∥∥
Lpx

≤ C(V,p, σ)‖〈x〉−σPcg‖Lpx

for σ ≥ 0. These bounds follow easily from the preceding kernel bounds (2.18) via

Young’s inequality.

To carry out complex interpolation, it will be useful to also allow imaginary ν in

Lemma 2.7. The following lemma states the concrete estimate that we require for that

purpose.

Lemma 2.9. Fix σ ∈ R and assume 〈x〉N+2V(	) ∈ L1(R) for 	 = 0, 1 where N > |σ | + 1 is

an integer. Then

‖〈x〉σ 〈D̃〉isPc〈x〉−σ ‖2→2 ≤ C(V, σ)〈s〉N (2.25)

for all s ∈ R. We also have

‖〈x〉−σ 〈D̃〉H− 1
2 (1 − χ0(H))Pc‖2→2 ≤ C(V, σ)

Proof. The limit

〈x〉σ 〈D̃〉isPc〈x〉−σ = lim
L→∞〈x〉σ 〈D̃〉isχ0(H/L2)Pc〈x〉−σ

=: lim
L→∞AL
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exists in the strong L2 sense. The kernel of the operator AL is of the form

AL(x, y) = 1

2π
1[x>y]

∫ ∞

−∞
T(ξ)f+(x, ξ)f−(y, ξ) 〈ξ〉isχ0(ξ

2/L2)dξ

+ 1

2π
1[x<y]

∫ ∞

−∞
T(ξ)f−(x, ξ)f+(y, ξ) 〈ξ〉isχ0(ξ

2/L2)dξ

and we bound it as in the previous proof, that is, after N integrations by parts we arrive

at the upper bound

〈x〉σ |AL(x, y)|〈y〉−σ ≤ C〈s〉N〈x〉σ 〈y〉−σ max± 〈x ± y〉−N (2.26)

uniformly in L. Indeed, (2.21) now takes the form

K1(x, y) = 1

2π
1[x≥0>y]

∫ ∞

−∞
ei(x−y)ξm+(x, ξ)m−(y, ξ) 〈ξ〉isχ0(ξ

2/L2)T(ξ)dξ

+ 1

2π
1[x>y≥0]

∫ ∞

−∞
ei(x−y)ξm+(x, ξ)m+(y,−ξ) 〈ξ〉isχ0(ξ

2/L2)dξ

+ 1

2π
1[x>y≥0]

∫ ∞

−∞
ei(x+y)ξm+(x, ξ)m+(y, ξ) 〈ξ〉isR+(ξ)χ0(ξ

2/L2)dξ

Integrating by parts at least twice in these expressions produces an absolutely conver-

gent integrand, uniformly in L (note N ≥ 2). Via Schur’s test, (2.26) implies (2.25) for AL,

and thus also in the limit L → ∞.

The final statement of the lemma is proved in exactly the same fashion, but with

〈ξ〉ξ−1(1 − χ0(ξ
2))χ0(ξ

2/L2) in place of 〈ξ〉isχ0(ξ
2/L2). The same arguments go through

with this symbol. �

As an application of these bounds, we can now give a self-contained argument

for the equivalence of weighted Sobolev norms defined via H, respectively, H0 = −∂2x .

Lemma 2.10 (Equivalence of norms). For k = 1, 2 and σ ≥ 0, there exists a constant

C ≡ C(V, k, σ) such that

1

C

∥∥〈x〉σ 〈D̃〉kPcg
∥∥
L2x

≤ ‖〈x〉σPcg‖Hk
x

≤ C
∥∥〈x〉σ 〈D̃〉kPcg

∥∥
L2x
. (2.27)

The conditions on V are the same as in Lemma 2.9.
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Proof. For k = 2 we use 〈D̃〉2Pc = (1 + H)Pc = (1 + V − ∂2x )Pc, which gives

∥∥〈x〉σ 〈D̃〉2Pcg
∥∥
L2x

≤ (1 + ‖V‖∞)‖〈x〉σPcg‖L2x + ‖〈x〉σ ∂2xPcg‖L2x
≤ C(1 + ‖V ′‖1)‖〈x〉σPcg‖H2

x

with a constant C = C(σ ). For the second inequality in (2.27) we first note that

‖〈x〉σPcg‖H2
x
� ‖〈x〉σ ∂2xPcg‖L2x + ‖∂x(〈x〉σPcg)‖L2x + ‖〈x〉σPcg‖L2x
� ‖〈x〉σ ∂2xPcg‖L2x + ε‖∂2x (〈x〉σPcg)‖L2x + ε−1‖〈x〉σPcg‖L2x

The middle term here on the last line we move to the left-hand side for sufficiently small

ε, which yields

‖〈x〉σPcg‖H2
x
� ‖〈x〉σ ∂2xPcg‖L2x + ‖〈x〉σPcg‖L2x
� ‖〈x〉σ 〈D̃〉2Pcg‖L2x + ‖〈x〉σPcg‖L2x

Now

‖〈x〉σPcg‖L2x = ‖R 〈x〉σ 〈D̃〉2Pcg‖L2x � ‖〈x〉σ 〈D̃〉2Pcg‖L2x

since R := 〈x〉σ 〈D̃〉−2Pc〈x〉−σ : L2(R) → L2(R) is bounded by Schur’s test and the previous

lemma. Indeed, performing a dyadic partition of unity, we can sum up the respective

estimates in (2.18) and (2.19) with ν = −2, provided N > σ + 1. This settles k = 2 of the

lemma, while k = 1 follows by interpolation of this with k = 0. To be more specific, we

use complex interpolation, which requires (2.27) on both the vertical lines is and 2 + is

with s ∈ R with bounds that grow at most exponentially (say) in s. In fact, Lemma 2.9

allows us to extend the previous bounds from 0, resp. 2, to the entire vertical lines

through those points, with at most polynomial growth in s. �

In the nonlinear analysis we will frequently use the following weighted Sobolev

estimate.

Lemma 2.11 (Weighted Sobolev). Fix σ ≥ 0 and assume 〈x〉N+2V(	) ∈ L1(R) for 	 = 0, 1

where N > σ + 1
2 is an integer. For any μ > 0 we have

‖〈x〉−σPcg‖L∞
x

≤ C(V, σ ,μ)
(‖〈x〉−σPcg‖L2x + ‖〈x〉−σ (

√
H)

1
2+μPcg‖L2x

)
. (2.28)
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5154 H. Lindblad et al.

Proof. We begin by decomposing

Pcg = χ0(H)Pcg +
∑
j≥0

χ(D̃/2j)Pcg. (2.29)

We first treat the low-energy piece. Observe that we have uniformly for all x, y ∈ R that

〈x〉−σ 1

〈x ± y〉N 〈y〉σ � 〈x〉−σ 〈x ± y〉σ + 〈x〉σ
〈x ± y〉N � 1

〈x ± y〉N−σ
.

Hence, by the kernel bound (2.18) and by Young’s inequality, we obtain the desired

estimate

∥∥〈x〉−σ χ0(H)Pcg
∥∥
L∞
x
�
∑
±

sup
x∈R

∫
R

〈x〉−σ 1

〈x ± y〉N 〈y〉σ 〈y〉−σ |g(y)|dy

�
∑
±

sup
x∈R

∫
R

1

〈x ± y〉N−σ
〈y〉−σ |g(y)|dy

�
∥∥〈·〉−(N−σ)

∥∥
L2x

‖〈x〉−σg‖L2x
� ‖〈x〉−σg‖L2x .

Next we turn to the high-energy estimate. In the following we prove that for any λ ≥ 1,

∥∥〈x〉−σ χ(D̃/λ)Pcg
∥∥
L∞
x
� λ−μ

∥∥〈x〉−σ (
√
H)

1
2+μPcg

∥∥
L2x
. (2.30)

Then the asserted weighted Sobolev estimate (2.28) follows from the decomposition

(2.29) and the preceding bounds by summing over j ≥ 0. For the proof of (2.30) we write

〈x〉−σ χ(D̃/λ)Pcg = 〈x〉−σ (
√
H)−

1
2−μχ(D̃/λ)Pc(

√
H)

1
2+μPcg.

Since we have uniformly for all x, y ∈ R and for all λ ≥ 1 that

〈x〉−σ 1

〈λ(x ± y)〉N 〈y〉σ � 〈x〉−σ 〈x ± y〉σ + 〈x〉σ
〈λ(x ± y)〉N � 〈x〉−σ 〈λ(x ± y)〉σ + 〈x〉σ

〈λ(x ± y)〉N � 1

〈λ(x ± y)〉N−σ
,
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the kernel bound (2.20) for (
√
H)− 1

2−μχ(D̃/λ)Pc together with Young’s inequality yields

the desired estimate

∥∥〈x〉−σ χ(D̃/λ)Pcg
∥∥
L∞
x
�
∑
±

sup
x∈R

∫
R

λ− 1
2−μ λ

〈λ(x ± y)〉N−σ
〈y〉−σ

∣∣(√H)
1
2+μPcg(y)

∣∣dy
� λ

1
2−μ‖〈λ·〉−(N−σ)‖L2x

∥∥〈x〉−σ (
√
H)

1
2+μPcg

∥∥
L2x

� λ−μ
∥∥〈x〉−σ (

√
H)

1
2+μPcg

∥∥
L2x

and we are done. �

The nonlinear analysis will require that we interchange standard derivatives

with powers of H.

Lemma 2.12 (Weighted derivative bound). Under the same assumptions as in

Lemma 2.9 one has

∥∥〈x〉−σ ∂xPcg
∥∥
L2x

� ‖〈x〉−σPcg‖L2x + ‖〈x〉−σ
√
HPcg‖L2x . (2.31)

Proof. We claim that (2.31) follows from the case k = 1 of

∥∥〈x〉−σ ∂kxPcg
∥∥
L2x

� ‖〈x〉−σPcg‖L2x + ‖〈x〉−σ 〈D̃〉kPcg‖L2x . (2.32)

To see this, note that

‖〈x〉−σ 〈D̃〉Pcg‖L2x ≤ ‖〈x〉−σ 〈D̃〉χ0(H)Pcg‖L2x + ‖〈x〉−σ 〈D̃〉(1 − χ0(H))Pcg‖L2x
≤ ‖〈x〉−σ 〈D̃〉χ0(H)Pc〈x〉σ ‖2→2‖〈x〉−σPcg‖L2x

+ ‖〈x〉−σ 〈D̃〉H− 1
2 (1 − χ0(H))Pc‖2→2‖〈x〉−σ

√
HPcg‖L2x

By Lemma 2.7 and Schur’s test, ‖〈x〉−σ 〈D̃〉χ0(H)Pc〈x〉σ ‖2→2 ≤ C(V, σ), while the operator

norm in the last line is finite by Lemma 2.9. We now perform the following further

reduction with H0 := −∂2x :

∥∥〈x〉−σ ∂xPcg
∥∥
L2x

�
∥∥〈x〉−σ ∂xχ0(H0)Pcg

∥∥
L2x

+ ∥∥〈x〉−σ ∂x(1 − χ0(H0))Pcg
∥∥
L2x

�
∥∥〈x〉−σ ∂xχ0(H0)Pc〈x〉σ∥∥2→2‖〈x〉−σPcg

∥∥
L2x

+ ∥∥〈x〉−σ ∂x(1 − χ0(H0))Pcg
∥∥
L2x
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The operator norm in the last line is bounded by the rapid off-diagonal decay of the

kernel, and Schur’s test. Therefore, it suffices to prove the k = 1 case of

∥∥〈x〉−σ ∂kx (1 − χ0(H0))Pcg
∥∥
L2x

� ‖〈x〉−σPcg‖L2x + ‖〈x〉−σ 〈D̃〉kPcg‖L2x . (2.33)

Writing ∂2x = V − H, the estimate (2.32) is obvious with k = 2 since 〈D̃〉2 = 1 + H and

∥∥〈x〉−σ ∂2xPcg
∥∥
L2x

≤ ‖V ′‖1‖〈x〉−σPcg‖L2x + ‖〈x〉−σHPcg‖L2x

As before, we can introduce the cut-off 1 − χ0(H0) on the left-hand side, hence (2.33)

holds for k = 0 and k = 2. Moreover, these bounds extend to the vertical lines is, resp.

2+ is, on the left-hand side only due to the fact that ‖〈x〉−σ ∂ isx (1−χ0(H0))〈x〉σ ‖2→2 ≤ C(s),

which grows polynomially as |s| → ∞. Therefore, by complex interpolation, we conclude

that the desired bounds hold at k = 1 and we are done. �

We can now establish Leibniz rules as they appear in the nonlinear estimates.

Corollary 2.13 (Product estimates). Fix σ ≥ 0. Assume that 〈x〉N+2V(	) ∈ L1(R) for

	 = 0, 1 where N > σ + 1 is an integer. Then we have

∥∥〈D̃〉Pc
(
α(Pcg)(Pch)

)∥∥
L1x

� ‖〈x〉1+2σ α‖W1,∞
x

(
‖〈x〉−σPcg‖L2x + ‖〈x〉−σ

√
HPcg‖L2x

)
×

×
(
‖〈x〉−σPch‖L2x + ‖〈x〉−σ

√
HPch‖L2x

) (2.34)

and

∥∥〈D̃〉Pc
(
α(Pcg)(Pch)

)∥∥
L2x

� ‖〈x〉2σ α‖W1,∞
x

(
‖〈x〉−σPcg‖L2x + ‖〈x〉−σ

√
HPcg‖L2x

)
×

×
(
‖〈x〉−σPch‖L2x + ‖〈x〉−σ

√
HPch‖L2x

)
.

(2.35)

Proof. We give the proof of the first product estimate (2.34), the proof of (2.35) being

identical. By Hölder’s inequality and by the equivalence of norms from Lemma 2.10, we

have that

∥∥〈D̃〉Pc
(
α(Pcg)(Pch)

)∥∥
L1x

� ‖〈x〉−1‖L2x
∥∥〈x〉〈D̃〉Pc

(
α(Pcg)(Pch)

)∥∥
L2x

�
∥∥〈x〉α(Pcg)(Pch)

∥∥
H1
x
.
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Then by the standard product rule for the derivative and by Hölder’s inequality, we

obtain

∥∥〈x〉α(Pcg)(Pch)
∥∥
H1
x
� ‖〈x〉1+2σ α‖W1,∞

x
‖〈x〉−σPcg‖L2x‖〈x〉−σPch‖L∞

x

+ ‖〈x〉1+2σ α‖L∞
x

‖〈x〉−σ ∂xPcg‖L2x‖〈x〉−σPch‖L∞
x

+ ‖〈x〉1+2σ α‖L∞
x

‖〈x〉−σPcg‖L∞
x

‖〈x〉−σ ∂xPch‖L2x .

(2.36)

The product estimate (2.34) now follows from the weighted Sobolev inequality in Lemma

2.11 and the weighted derivative bound in Lemma 2.12. �

Our final technical lemma arises in that part of the nonlinear analysis dealing

with the non-resonant case of the main theorem.

Lemma 2.14. Fix σ ∈ R and assume 〈x〉N+2V(	) ∈ L1(R) for 	 = 0, 1 where N > |σ | + 1 is

an integer. Let 〈x〉σ+3g ∈ L2x(R) and assume that

F̃ [g](±√
3) = 0.

Then we have for m ∈ {0, σ } and 	 = 0,±1 that

∥∥〈x〉m(2 − 〈D̃〉)−1〈D̃〉	Pcg
∥∥
L2x

� ‖〈x〉m+3g‖L2x . (2.37)

Proof. We introduce a smooth partition of unity 1 = χ2(ξ)+χ3(ξ), where χ2(ξ) vanishes

outside a small neighborhood of the set {3}, and equals to 1 near 3. Then

∥∥〈x〉m(2 − 〈D̃〉)−1〈D̃〉	χ3(H)Pc〈x〉−mg
∥∥
L2x

≤ C(V,m)‖g‖L2x

by a small variant of the final statement in the proof of Lemma 2.9. It therefore suffices

to prove (2.37) for χ2(H)Pcg in place of Pcg on the left-hand side. One has

(2 − 〈D̃〉)−1〈D̃〉	χ2(H)Pcg(x)

= 1√
2π

∫ ∞

0
T(ξ)f+(x, ξ)(2 − 〈ξ 〉)−1〈ξ〉	χ2(ξ

2)(g̃(ξ) − g̃(
√
3))dξ

+ 1√
2π

∫ 0

−∞
T(−ξ)f−(x,−ξ)(2 − 〈ξ 〉)−1〈ξ〉	χ2(ξ

2)(g̃(ξ) − g̃(−√
3))dξ

≡ G+(x) + G−(x).

(2.38)
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5158 H. Lindblad et al.

We denote by χ4(ξ) a slight fattening of the bump function χ2 such that χ4(ξ) = 1 on

the support of χ2(ξ
2) and such that χ4(ξ) = 0 in a neighborhood of zero. Clearly, we

may freely insert χ4(ξ) in the integrands on the right-hand side of (2.38). We now prove

the bound (2.37) for G+(x), the bound for G−(x) being analogous. Using the assumption

g̃(
√
3) = 0, we write

χ4(ξ)g̃(ξ) = χ4(ξ)g̃(ξ) − χ4(
√
3)g̃(

√
3) = (ξ − √

3)

∫ 1

0
(χ4g̃)′(sξ + (1 − s)

√
3)ds.

Then we observe that the function

(0,∞) � ξ �→ (2 − 〈ξ 〉)−1〈ξ〉	χ2(ξ
2)(ξ − √

3) = − 2 + 〈ξ 〉√
3 + ξ

〈ξ〉	χ2(ξ
2)

is smooth and bounded on its support, with all of its derivatives bounded there as well.

Hence, integrating by parts in ξ for N = m+1 times in the integrand of G+(x) and using

the symbol type bounds on m±,T,R± in ξ uniformly in the respective regimes of x, we

conclude that

|G+(x)| ≤ C(V,N)〈x〉−σ−1 sup
1≤n≤σ+2

∥∥∂nξ (χ4g̃)(ξ)
∥∥
L∞

ξ
≤ C(V,N)〈x〉−σ−1

∥∥〈x〉σ+2g
∥∥
L1x
.

This implies (2.37) for G+(x) and finishes the proof of the lemma. �

2.3 Decay estimates for the Klein–Gordon propagator

We now establish local decay estimates as well as pointwise decay estimates for the

linear Klein–Gordon flow relative to H = −∂2x +V(x), that is, the propagator of (∂2t +H +
1)u = 0. We write 〈D̃〉 = √

1 + H on the positive spectrum of H.

Lemma 2.15. Let V ∈ L∞(R)∩C1(R) be real-valued, and assume that 〈x〉6V(	)(x) ∈ L1(R)

for all 0 ≤ 	 ≤ 1. Let χ0(ξ
2) be a smooth cutoff to |ξ | � 1, equal to 1 near ξ = 0 and set

w(x) = 〈x〉4. With Pc the projection onto the continuous spectral subspace of H,

∥∥∥w−1
(
eit〈D̃〉χ0(H)Pc g − c0

ei
π
4 eit

t
1
2

(ϕ ⊗ ϕ)g
)∥∥∥

L∞
x

≤ C

t
3
2

‖wg‖L1x , t ≥ 1, (2.39)

∥∥∥w−1∂x

(
eit〈D̃〉χ0(H)Pcg − c0

ei
π
4 eit

t
1
2

(ϕ ⊗ ϕ)g
)∥∥∥

L∞
x

≤ C

t
3
2

‖wg‖L1x , t ≥ 1. (2.40)
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The real constant c0 only depends on the scattering matrix S(0) of the potential V(x) at

zero energy, cf. (2.10) and is explicitly given by

c0 = 1

(2π)
3
2

T(0)2

1 + R−(0)
. (2.41)

More generally, let ω = ω(ξ) be a function bounded on the support of χ0(ξ
2) with its

derivatives up to order four. Then

∥∥∥w−1
(
eit〈D̃〉ω(H)χ0(H)Pc g − c0ω(0)

ei
π
4 eit

t
1
2

(ϕ ⊗ ϕ)g
)∥∥∥

L∞
x

≤ C(ω)

t
3
2

‖wg‖L1x , t ≥ 1, (2.42)

∥∥∥w−1∂x

(
eit〈D̃〉ω(H)χ0(H)Pcg − c0ω(0)

ei
π
4 eit

t
1
2

(ϕ ⊗ ϕ)g
)∥∥∥

L∞
x

≤ C(ω)

t
3
2

‖wg‖L1x , t ≥ 1.

(2.43)

Proof. We first derive the local decay estimates (2.39) and (2.40). Afterwards we

comment on the proofs of the generalized versions (2.42) and (2.43). Fix g,h ∈ Ccomp(R).

By Lemma 2.6, and using that T(−ξ) = T(ξ),

(
eit〈D̃〉χ0(H)Pcg

)
(x) = 1

π

∫ ∞

0

∫ x

−∞
eit〈ξ 〉Re

[
T(ξ)f+(x, ξ)f−(y, ξ)

]
g(y)dy χ0(ξ

2)dξ

+ 1

π

∫ ∞

0

∫ ∞

x
eit〈ξ 〉Re

[
T(ξ)f−(x, ξ)f+(y, ξ)

]
g(y)dy χ0(ξ

2)dξ

= 1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ 〉T(ξ)f+(x, ξ)f−(y, ξ) χ0(ξ

2)dξ g(y)dy

+ 1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ 〉T(ξ)f−(x, ξ)f+(y, ξ) χ0(ξ

2)dξ g(y)dy.

(2.44)

To isolate 0 energy we rewrite these expressions in the form

(
eit〈D̃〉χ0(H)Pcg

)
(x) = 1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)dξ f+(x, 0)f−(y, 0)g(y)dy

+ 1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)dξ f−(x, 0)f+(y, 0)g(y)dy

+ 1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)F>(x, y; ξ)dξ g(y)dy

+ 1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)F<(x, y; ξ)dξ g(y)dy,
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5160 H. Lindblad et al.

where

F>(x, y; ξ) = f+(x, ξ)f−(y, ξ) − f+(x, 0)f−(y, 0),

F<(x, y; ξ) = f−(x, ξ)f+(y, ξ) − f−(x, 0)f+(y, 0).
(2.45)

Taking the inner product with h, we obtain

〈h, eit〈D̃〉χ0(H)Pc g〉 = 1

2π

∫
R2

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)dξ f+(x, 0)f−(y, 0)g(y)h(x)1[x>y] dy dx

+ 1

2π

∫
R2

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)dξ f−(x, 0)f+(y, 0)g(y)h(x)1[x<y] dy dx

+ 1

2π

∫
R2

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)F>(x, y; ξ)dξ g(y)h(x)1[x>y] dy dx

+ 1

2π

∫
R2

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)F<(x, y; ξ)dξ g(y)h(x)1[x<y] dy dx

≡ A> + A< + B> + B<.

(2.46)

By (2.9),

f−(x, 0) = T(0)

1 + R−(0)
f+(x, 0) =: κϕ(x).

Note that κ ∈ R and 1 + R−(0) �= 0 due to |T(0)|2 + |R−(0)|2 = 1 and T(0) �= 0. Then we

have

A> + A< = κ

2π
〈h,ϕ〉〈ϕ, g〉

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)dξ .

Setting k = 2 in [27, Theorem 7.7.5] yields

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)dξ = eiπ/4

√
2πt

eit T(0) + R(t), |R(t)| ≤ C0 t
− 3

2 , (2.47)

where C0 depends on the derivatives of T(ξ)χ(ξ2) up to and including fourth order. Thus,

A> + A< = c0〈h, (ϕ ⊗ ϕ)g〉
(eiπ/4

√
t
eit + OL∞

t
(t−

3
2 )
)
, c0 = κ

2π
√
2π

T(0), (2.48)
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where the constants in the OL∞
t

(·) term depend on T(ξ). Applying [27, Theorem 7.7.5] to

B> with k = 2 and using that F>(x, y; 0) = 0 yields

∣∣∣B> − C1e
itt−

3
2

∫
R2

∂2ξ
(
T(ξ)χ0(ξ

2)F>(x, y; ξ)
)∣∣

ξ=0 1[x>y] g(y)h(x)dx dy
∣∣∣

≤ C2 t
−2
∫
R2

sup
ξ∈R

sup
	≤4

∣∣∣∂	
ξ

(
T(ξ)χ0(ξ

2)F>(x, y; ξ)
)∣∣∣1[x>y]

∣∣g(y)h(x)
∣∣dx dy (2.49)

with some constants C1,C2. By (2.45) and (2.13),

sup
|ξ |�1

sup
	≤4

∣∣∂	
ξF>(x, y; ξ)

∣∣ ≤ C〈x〉4〈y〉4.

The bound on B< is analogous. In summary,

∣∣∣〈h, eit〈D̃〉χ0(H)Pc g〉 − c0〈h, (ϕ ⊗ ϕ)g〉e
iπ/4

√
t
eit
∣∣∣ ≤ Ct−

3
2 ‖wh‖L1x‖wg‖L1x ,

which implies the desired local decay estimate (2.39) given by

∥∥∥w−1[eit〈D̃〉χ0(H)Pc − c0 e
iπ/4t−

1
2 eit(ϕ ⊗ ϕ)

]
g
∥∥∥
L∞
x

≤ Ct−
3
2 ‖wg‖L1x . (2.50)

Next, we turn to the proof of (2.40). From the representation (2.44), we obtain

upon taking a derivative in x that

∂x
(
eit〈D̃〉χ(H)Pcg

)
(x) = 1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ 〉T(ξ)(∂xf+)(x, ξ)f−(y, ξ) χ0(ξ

2)dξ g(y)dy

+ 1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ 〉T(ξ)(∂xf−)(x, ξ)f+(y, ξ) χ0(ξ

2)dξ g(y)dy.
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In order to isolate 0 energy, we then write

∂x
(
eit〈D̃〉χ(H)Pcg

)
(x) = 1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)dξ (∂xf+)(x, 0)f−(y, 0)g(y)dy

+ 1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)dξ (∂xf−)(x, 0)f+(y, 0)g(y)dy

+ 1

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)G>(x, y; ξ)dξ g(y)dy

+ 1

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)G<(x, y; ξ)dξ g(y)dy

≡ I + II + III + IV

(2.51)

with

G>(x, y; ξ) := (∂xf+)(x, ξ)f−(y, ξ) − (∂xf+)(x, 0)f−(y, 0),

G<(x, y; ξ) := (∂xf−)(x, ξ)f+(y, ξ) − (∂xf−)(x, 0)f+(y, 0).

Using that f−(x, 0) = κf+(x, 0) with κ := T(0)
1+R−(0)

and therefore (∂xf−)(x, 0) = κ(∂xf+)(x, 0),

we obtain for the first two terms that

I + II = κ

2π

∫ x

−∞

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)dξ (∂xf+)(x, 0)f+(y, 0)g(y)dy

+ κ

2π

∫ ∞

x

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)dξ (∂xf+)(x, 0)f+(y, 0)g(y)dy

= κ

2π

(∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)dξ

)(∫
R

f+(y, 0)g(y)dy
)

(∂xf+)(x, 0).

Using (2.47), we find that

I + II = c0
ei

π
4 eit

t
1
2

〈ϕ, g〉(∂xϕ)(x) + R(t)〈ϕ, g〉(∂xϕ)(x), |R(t)| ≤ C0t
− 3

2 , t ≥ 1.
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Thus, taking the inner product of (2.51) with h, we have

〈
h, ∂x

(
eit〈D̃〉χ0(H)Pcg − c0

ei
π
4 eit

t
1
2

(ϕ ⊗ ϕ)g
)〉

= R(t)〈h, ∂xϕ〉〈ϕ, g〉

+ 1

2π

∫
R2

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)G>(x, y; ξ)dξ g(y)h(x)1[x>y] dy dx

+ 1

2π

∫
R2

∫ ∞

−∞
eit〈ξ 〉T(ξ)χ0(ξ

2)G<(x, y; ξ)dξ g(y)h(x)1[x<y] dy dx.

Now using that G>(x, y; 0) = G<(x, y; 0) = 0, the fact that ∂xϕ ∈ L∞
x (R), and that

sup
|ξ |�1

sup
	≤4

(∣∣∂	
ξG>(x, y; ξ)

∣∣+ ∣∣∂	
ξG<(x, y; ξ)

∣∣) ≤ C〈x〉4〈y〉4,

we can conclude the proof of (2.40) by arguing as in the preceding proof of (2.39).

Finally, regarding the proofs of the generalized versions (2.42) and (2.43)

involving the operator ω(H), note that the conditions on ω are such that the preceding

arguments still apply. �

The weights in Lemma 2.15 are most likely not sharp. We remark that a bound as

in Lemma 2.15 cannot hold for large energies ξ . In fact, it is an immediate consequence

of stationary phase that derivatives of g are needed to bound the pointwise size of the

evolution in (2.42). We will pursue this in more detail below, but first establish local

L2-decay for energies separated from 0. For the following lemma, the distinction

between V generic and non-generic is irrelevant. Moreover, we use the notation

〈D̃〉 := √
1 + H on the positive spectrum of H.

Lemma 2.16. Let H = −∂2x +V(x) with real-valued V ∈ L∞(R) ∩C3(R), and assume that

〈x〉6V(	)(x) ∈ L1(R) for all 0 ≤ 	 ≤ 3. Fix ξ0 > 0. Let χ0 be a smooth bump function such

that χ0(ξ) = 1 for |ξ | ≤ 1 and χ0(ξ) = 0 for |ξ | ≥ 2. Then

∥∥〈x〉−2eit〈D̃〉(1 − χ0(H/ξ20 )
)
Pcg

∥∥
L2x

≤ C〈t〉−2‖〈x〉2g‖L2x (2.52)

with some constant C > 0 depending on ξ0 and V. The same estimate holds with eit〈D̃〉

replaced by eit〈D̃〉ω(H) where |∂	
ξ ω(ξ)| ≤ C(ξ0) for all |ξ | ≥ ξ0 and 0 ≤ 	 ≤ 5.
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Proof. By (2.15) the distorted Fourier basis takes the form

e(x, ξ) := 1√
2π

⎧⎨⎩T(ξ)f+(x, ξ), ξ ≥ 0,

T(−ξ)f−(x,−ξ), ξ < 0.
(2.53)

Thus, the distorted Fourier transform of g = Pcg and its inverse are given by

g̃(ξ) =
∫
R

e(x, ξ)g(x)dx, g(x) =
∫
R

e(x, ξ )̃g(ξ)dξ

and Plancherel’s theorem reads ‖g‖L2x = ‖g̃‖L2ξ . The Klein–Gordon evolution therefore

takes the form

(
eit〈D̃〉(1 − χ0(H/ξ20 )

)
Pcg

)
(x) =

∫
R

e(x, ξ)eit〈ξ 〉(1 − χ0(ξ
2/ξ20 )

)̃
g(ξ)dξ .

In view of the cutoff 1−χ0(ξ
2/ξ20 ) we can treat the regions ξ ≥ ξ0 and ξ ≤ −ξ0 separately.

We also introduce smooth cutoff functions θ±(x) such that θ+(x)+ θ−(x) = 1 for all x ∈ R

and such that θ±(x) = 0 for ±x < −1. By symmetry, it suffices to consider the case ξ ≥ ξ0

which contributes the following expression to the time evolution:

∫ ∞

0
e(x, ξ)eit〈ξ 〉(1 − χ0(ξ

2/ξ20 )
)̃
g(ξ)dξ

= θ+(x)

∫ ∞

0
T(ξ)f+(x, ξ)eit〈ξ 〉(1 − χ0(ξ

2/ξ20 )
)̃
g(ξ)dξ

+ θ−(x)

∫ ∞

0
T(ξ)f+(x, ξ)eit〈ξ 〉(1 − χ0(ξ

2/ξ20 )
)̃
g(ξ)dξ

=: I+ + I−.

We further rewrite the term I+ as

I+ = θ+(x)

∫ ∞

0
eixξeit〈ξ 〉T(ξ)m+(x, ξ)

(
1 − χ0(ξ

2/ξ20 )
)̃
g(ξ)dξ

and using the identity

T(ξ)f+(x, ξ) = f−(x,−ξ) + R−(ξ)f−(x, ξ) = eixξm−(x,−ξ) + R−(ξ)e−ixξm−(x, ξ),
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we can express the term I− as

I− = θ−(x)

∫ ∞

0
eixξeit〈ξ 〉m−(x,−ξ)

(
1 − χ0(ξ

2/ξ20 )
)̃
g(ξ)dξ

+ θ−(x)

∫ ∞

0
e−ixξeit〈ξ 〉m−(x, ξ)

(
1 − χ0(ξ

2/ξ20 )
)̃
g(ξ)dξ .

(2.54)

Let us further consider the term I+. Using that ∂ξ (e
it〈ξ 〉) = it ξ

〈ξ〉e
it〈ξ 〉 and integrating by

parts once, we obtain

I+ = − 1

it
θ+(x)

∫ ∞

0
eit〈ξ 〉∂ξ

( 〈ξ〉
ξ

eixξT(ξ)m+(x, ξ)
(
1 − χ0(ξ

2/ξ20 )
)̃
g(ξ)

)
dξ

= − ix

it
θ+(x)

∫ ∞

0
eixξeit〈ξ 〉 〈ξ〉

ξ
T(ξ)m+(x, ξ)

(
1 − χ0(ξ

2/ξ20 )
)̃
g(ξ)dξ

− 1

it
θ+(x)

∫ ∞

0
eixξeit〈ξ 〉∂ξ

( 〈ξ〉
ξ

T(ξ)m+(x, ξ)
(
1 − χ0(ξ

2/ξ20 )
))

g̃(ξ)dξ

− 1

it
θ+(x)

∫ ∞

0
eixξeit〈ξ 〉 〈ξ〉

ξ
T(ξ)m+(x, ξ)

(
1 − χ0(ξ

2/ξ20 )
)
∂ξ g̃(ξ)dξ

=: I(a)
+ + I(b)

+ + I(c)+ .

We view

t〈x〉−1I(a)
+ = − x

〈x〉
∫ ∞

0
eixξ

( 〈ξ〉
ξ

T(ξ)θ+(x)m+(x, ξ)χ̃{ξ≥ξ0/2}(ξ)
(
1 − χ0(ξ

2/ξ20 )
))

eit〈ξ 〉̃g(ξ)dξ

as a pseudo-differential operator on the line (after introducing another smooth cutoff

χ̃{ξ≥ξ0/2}(ξ)) with symbol

a(x, ξ) := − x

〈x〉
〈ξ〉
ξ

T(ξ)θ+(x)m+(x, ξ)χ̃{ξ≥ξ0/2}(ξ)
(
1 − χ0(ξ

2/ξ20 )
)

By the Calderon–Vaillancourt theorem, see for example, [60, Proposition 9.4], we infer

that

∥∥〈x〉−1I(a)
+
∥∥
L2x

�ξ0

1

t

∥∥eit〈ξ 〉̃g(ξ)
∥∥
L2ξ

� 1

t
‖̃g(ξ)‖L2ξ � 1

t
‖g‖L2x .

Lemmas 2.2 and 2.5 imply that the hypotheses of that theorem hold, that is, that the

symbol a satisfies

|∂ jxa(x, ξ)| + |∂kξ a(x, ξ)| ≤ C ∀ j, k = 0, 1, 2, 3 (2.55)
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5166 H. Lindblad et al.

Note that it makes no difference in that lemma if we assume x ≥ 0 or x ≥ −10, say, for

the bounds on m+. The terms I(b)
+ and I(c)+ can be handled analogously, together with the

terms in the identity (2.54) for I− since we now are dealing with m−(x, ξ) on x � 1. The

L2 estimate of I(c)+ requires the bound

‖∂ξ g̃(ξ)‖L2(|ξ |≥ξ0)
� ‖〈x〉g‖L2x (2.56)

which again follows from the Calderon–Vaillancourt theorem. Indeed, for ξ � ξ0, by

(2.53),

∂ξ g̃(ξ) =
∫
R

∂ξe(x, ξ)g(x)dx

=
∫
R

∂ξe(x, ξ)θ+(x)g(x)dx +
∫
R

∂ξe(x, ξ)θ−(x)g(x)dx

= 1√
2π

∫
R

∂ξ (T(−ξ)f+(x,−ξ))θ+(x)g(x)dx

+ 1√
2π

∫
R

∂ξ (f−(x, ξ) + R−(−ξ)f−(x,−ξ))θ−(x)g(x)dx

= S+(g)(ξ) + S−(g)(ξ)

(2.57)

where the last line follows from (2.13). On the one hand,

√
2π S+(g)(ξ) =

∫
R

∂ξ (T(−ξ)f+(x,−ξ))θ+(x)g(x)dx

=
∫
R

∂ξ (e
−ixξ T(−ξ)m+(x,−ξ))θ+(x)g(x)dx

=
∫
R

e−ixξ
[− ixT(−ξ)m+(x,−ξ) + ∂ξ (T(−ξ)m+(x,−ξ))

]
θ+(x)g(x)dx

By Lemmas 2.2 and 2.5, the symbol

b+(x, ξ) := [− ixT(−ξ)m+(x,−ξ) + ∂ξ (T(−ξ)m+(x,−ξ))
]
θ+(x)〈x〉−1
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satisfies the hypotheses of the Calderon–Vaillancourt theorem, cf (2.55), and we obtain

the desired L2 bound from the term S+(g)(ξ). On the other hand,

√
2π S−(g)(ξ) =

∫
R

∂ξ (f−(x, ξ) + R−(−ξ)f−(x,−ξ))θ−(x)g(x)dx

=
∫
R

∂ξ

[
e−ixξm−(x, ξ) + R−(−ξ)eixξm−(x,−ξ)

]
θ−(x)g(x)dx

=
∫
R

e−ixξ
[− ixm−(x, ξ) + ∂ξm−(x, ξ)

]
θ−(x)g(x)dx

+
∫
R

eixξ
[
ixR−(−ξ)m−(x,−ξ) + ∂ξ (R−(−ξ)m−(x,−ξ))

]
θ−(x)g(x)dx

=
∫
R

e−ixξb−−(x, ξ)〈x〉g(x)dx +
∫
R

eixξb−+(x, ξ)〈x〉g(x)dx

The symbols b−−(x, ξ) and b−+(x, ξ) also satisfy the hypotheses of the Calderon–

Vaillancourt theorem as before. In conclusion, we may again apply Calderon–

Vaillancourt theorem, which proves (2.56), at least for positive ξ . However, the

contributions by negative ξ is analogous. In summary, we have only obtained t−1-

decay at the expense of one power of x. Integrating by parts one more time gives the

desired t−2 estimate. The same proof that implied (2.56) also yields

‖∂2ξ g̃(ξ)‖L2(|ξ |≥ξ0)
� ‖〈x〉2g(x)‖L2x .

The assumptions on V(x) are compatible with the requirements in this proof: integrating

by parts twice in ξ leads to ∂
j
ξm±(x, ξ) with 0 ≤ j ≤ 2. For the Calderon–Vaillancourt

theorem one then needs three derivatives in x and ξ , but separately. For the final

statement involving the operator ω(H), note that the conditions on ω are such that the

Calderon–Vaillancourt theorem still applies. �

We can now state a complete list of local L2 decay estimates on the linear

evolution eit〈D̃〉Pc that will be needed in the nonlinear analysis.

Corollary 2.17. Let H = −∂2x + V(x) with real-valued V ∈ L∞(R) ∩ C3(R), and assume

that 〈x〉6V(	)(x) ∈ L1(R) for all 0 ≤ 	 ≤ 3. Let ψ(ξ) be a smooth function with ψ(ξ) = 0 for

|ξ | ≤ ξ0 for some ξ0 > 0 and such that |∂	
ξ ψ(ξ)| ≤ C(ψ) for 0 ≤ 	 ≤ 5. Then for σ > 9

2 and

all t ∈ R,

∥∥〈x〉−σeit〈D̃〉Pcg
∥∥
L2x

� 〈t〉− 1
2 ‖〈x〉σg‖L2x , (2.58)
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5168 H. Lindblad et al.∥∥〈x〉−σ
√
H〈D̃〉−1eit〈D̃〉Pcg

∥∥
L2x

� 〈t〉− 3
2 ‖〈x〉σg‖L2x , (2.59)

∥∥∥〈x〉−σ 〈D̃〉 − 1

〈D̃〉 eit〈D̃〉Pcg
∥∥∥
L2x

� 〈t〉− 3
2 ‖〈x〉σg‖L2x , (2.60)

∥∥〈x〉−σ ψ(D̃)eit〈D̃〉Pcg
∥∥
L2x

� 〈t〉− 3
2 ‖〈x〉σg‖L2x . (2.61)

as well as

∥∥∥〈x〉−σ
(
eit〈D̃〉Pcg − c0

ei
π
4 eit

t
1
2

(ϕ ⊗ ϕ)g
)∥∥∥

L2x
� 〈t〉− 3

2 ‖〈x〉σg‖L2x , t ≥ 1, (2.62)

∥∥∥〈x〉−σ ∂x

(
eit〈D̃〉χ0(H)Pcg − c0

ei
π
4 eit

t
1
2

(ϕ ⊗ ϕ)g
)∥∥∥

L2x
� 〈t〉− 3

2 ‖〈x〉σg‖L2x , t ≥ 1, (2.63)

where c0 defined in (2.41) is an absolute constant that only depends on the the scattering

matrix S(0) of the potential V(x) at zero energy. Finally, we have the variants

∥∥〈x〉−σ 〈D̃〉−1eit〈D̃〉Pcg
∥∥
L2x

� 〈t〉− 1
2 ‖〈x〉σg‖L2x , (2.64)

∥∥〈x〉−σ ψ(D̃)〈D̃〉−1eit〈D̃〉Pcg
∥∥
L2x

� 〈t〉− 3
2 ‖〈x〉σg‖L2x . (2.65)

∥∥∥〈x〉−σ
(
〈D̃〉−1eit〈D̃〉Pcg − c0

ei
π
4 eit

t
1
2

(ϕ ⊗ ϕ)g
)∥∥∥

L2x
� 〈t〉− 3

2 ‖〈x〉σg‖L2x , t ≥ 1, (2.66)

∥∥∥〈x〉−σ ∂x

(
〈D̃〉−1eit〈D̃〉χ0(H)Pcg − c0

ei
π
4 eit

t
1
2

(ϕ ⊗ ϕ)g
)∥∥∥

L2x
� 〈t〉− 3

2 ‖〈x〉σg‖L2x , t ≥ 1. (2.67)

Proof. Lemmas 2.16 and 2.15 imply that (2.62) holds with σ > 9
2 . Lemma 2.15 also

implies that (2.63) holds with σ > 9
2 . Moreover, (2.61) with σ = 2 is a direct consequence

of Lemma 2.16. For 0 < t ≤ 1, (2.58) follows from L2 boundedness of the evolution, while

for t ≥ 1 it follows from (2.62). For the latter, we use that ‖〈x〉− 1
2−(ϕ ⊗ ϕ)f ‖2 � ‖〈x〉 1

2+f ‖2.
Applying the more general version of Lemma 2.15 with ω(ξ) = ξ 〈ξ〉−1, respec-

tively, ω(ξ) = 〈ξ〉−1
〈ξ〉 = ξ2

〈ξ〉(1+〈ξ〉) , which both vanish at ξ = 0, eliminates the projection

ϕ ⊗ ϕ from (2.62). By the same argument as before, invoking the more general version of

Lemma 2.16, we therefore obtain (2.59) and (2.60). In the same way one derives the final

estimates (2.64), (2.65), (2.66), and (2.67). �

We expect the local decay estimates for the Klein–Gordon evolution eit〈D̃〉Pc
established in this paper to be of independent interest. In particular, the refined local

decay estimates (2.62) and (2.63) seem to not have appeared in the literature yet. Their
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proofs are inspired by the method of proof of Proposition 9 in the joint work [45] of

the third author with Krieger, where pointwise decay estimates are established for a

perturbed 3D wave evolution upon subtracting off a projection to a resonance function.

We refer to Komech–Kopylova [37], Kopylova [38], and Egorova–Kopylova–Marchenko–

Teschl [15] for prior results on local decay estimates for 1D Klein–Gordon equations

with potential terms.

Next, we establish a pointwise bound on the evolution for all energies.

Lemma 2.18. Let H = −∂2x +V(x) with real-valued V ∈ L∞(R) ∩C3(R), and assume that

〈x〉6V(	)(x) ∈ L1(R) for all 0 ≤ 	 ≤ 3. Then

‖eit〈D̃〉Pcg‖L∞
x

≤ C(μ,V)

t
1
2

‖〈D̃〉 3
2+μg‖L1x (2.68)

for all t > 0 and μ > 0.

Proof. Throughout, g ∈ S(R). Let χ be a bump function supported on R \ {0} and fix

any λ ≥ 1. Using the distorted Fourier basis (2.53), consider the evolution

(
eit〈D̃〉χ(D̃/λ)Pcg

)
(x) =

∫
R

eit〈ξ 〉e(x, ξ)χ(ξ/λ)g̃(ξ)dξ

= 1√
2π

∫ ∞

0
eit〈ξ 〉T(ξ)f+(x, ξ)χ(ξ/λ)g̃(ξ)dξ

+ 1√
2π

∫ 0

−∞
eit〈ξ 〉T(−ξ)f−(x,−ξ)χ(ξ/λ)g̃(ξ)dξ

=: (�+
λ (t)g)(x) + (�−

λ (t)g)(x)

(2.69)

Without loss of generality we assume x > 0. Then using θ± from the proof of Lemma

2.16,

(�+
λ (t)g)(x) = 1√

2π

∫ ∞

0
eit〈ξ 〉T(ξ)eixξm+(x, ξ)χ(ξ/λ)g̃(ξ)dξ

= 1

2π

∫
R

∫ ∞

0
eit〈ξ 〉|T(ξ)|2ei(x−y)ξm+(x, ξ)m+(y,−ξ)θ+(y)χ(ξ/λ)dξ g(y)dy

+ 1

2π

∫
R

∫ ∞

0
eit〈ξ 〉T(ξ)eixξm+(x, ξ)

(
e−iyξm−(y, ξ)

+ R−(−ξ)eiyξm−(y,−ξ)
)
θ−(y)χ(ξ/λ)dξ g(y)dy

=:
∫
R

K+−
λ (t, x, y)g(y)dy +

∫
R

K++
λ (t, x, y)g(y)dy
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5170 H. Lindblad et al.

with

K+−
λ (t, x, y) =

∫ ∞

0
eit[〈ξ 〉+ξ(x−y)/t]ωλ(x, y, ξ)dξ

ωλ(x, y, ξ) := 1

2π
T(ξ)m+(x, ξ)

[
T(−ξ)m+(y,−ξ)θ+(y) + m−(y, ξ)θ−(y)

]
χ(ξ/λ)

K++
λ (t, x, y) =

∫ ∞

0
eit[〈ξ 〉+ξ(x+y)/t]ω̃λ(x, y, ξ)dξ

ω̃λ(x, y, ξ) := 1

2π
T(ξ)R−(−ξ)m+(x, ξ)m−(y,−ξ)θ−(y)χ(ξ/λ)

There exists a constant C0 > 1 so that C−1
0 λ < |ξ | < C0λ on the support of χ(ξ/λ). By

Lemmas 2.3 and 2.5, |∂	
ξ ωλ(x, y, ξ)| ≤ Cλ−	 for 	 = 0, 1, 2 uniformly in x ≥ 0, and y, ξ ∈ R.

By the same lemmas the analogous bounds holds for ω̃λ(x, y, ξ). We rescale to obtain

K+−
λ (t, x, y) = λ

∫ ∞

0
eiλt[λ

−1〈λξ 〉+ξ(x−y)/t]ωλ(x, y, λξ)dξ

One has the bound |K+−
λ (t, x, y)| ≤ Cλ uniformly in x ≥ 0, y ∈ R, t > 0, λ ≥ 1. If t ≥ λ,

then we claim the stronger bound

|K+−
λ (t, x, y)| ≤ Cλ

3
2 t−

1
2 . (2.70)

We write

K+−
λ (t, x, y) = λ

∫ ∞

0
eisϕ

+
λ (ξ ;t,x−y)ωλ(x, y, λξ)dξ (2.71)

with s := λ−1t and phase ϕ+
λ (ξ ; t, x − y) := λ2[λ−1〈λξ 〉 + ξ(x − y)/t]. Then

∂ξϕ
+
λ (ξ ; t, x − y) = λ2

[ λξ

〈λξ 〉 + (x − y)/t
]

∂2ξ ϕ+
λ (ξ ; t, x − y) = λ3

〈λξ 〉3 � 1

∂3ξ ϕ+
λ (ξ ; t, x − y) = −3

λ5ξ

〈λξ 〉5 � 1

(2.72)

on the support I0 := [ξ1, ξ2] ⊂ (0,∞) of χ (recall λ ≥ 1). We distinguish the following two

cases, for fixed x, y, t, λ as above:

(a) min |∂ξϕ
+
λ (ξ ; t, x − y)| � s− 1

2 on I0
(b) min |∂ξϕ

+
λ (ξ ; t, x − y)| � s− 1

2 on I0

In the first Case (a), we deduce from the second derivative in (2.72) that

|∂ξϕ
+
λ (ξ ; t, x − y)| � s− 1

2 + min
{|ξ − ξ1|, |ξ − ξ2|

} ∀ ξ ∈ I0
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Integrating by parts once in (2.71) yields

|K+−
λ (t, x, y)| ≤ Cλs−1

∫
I0

( |∂2ξ ϕ+
λ (ξ ; t, x − y)|

(∂ξϕ
+
λ (ξ ; t, x − y))2

+ 1

|∂ξϕ
+
λ (ξ ; t, x − y)|

)
dξ

≤ Cλs− 1
2

as claimed by (2.70). On the other hand, in Case (b) suppose the minimum of

min |∂ξϕ
+
λ (ξ ; t, x − y)| is attained at ξ∗ ∈ I0. Then we infer from the second derivative

that

|∂ξϕ
+
λ (ξ ; t, x − y)| � |ξ − ξ∗| on ξ ∈ I0, |ξ − ξ∗| ≥ s− 1

2

Let ψ be a smooth bump function which equals 1 on [−1, 1]. Then with L := 1
i∂ξ ϕ+

λ

∂ξ , We

write

|K+−
λ (t, x, y)| ≤ λ

∣∣∣ ∫ ∞

0
eisϕ

+
λ (ξ ;t,x−y)ωλ(x, y, λξ)ψ((ξ − ξ∗)s

1
2 )dξ

∣∣∣
+ λs−2

∣∣∣ ∫ ∞

0
eisϕ

+
λ (ξ ;t,x−y)(L∗)2

[
ωλ(x, y, λξ)

(
1 − ψ((ξ − ξ∗)s

1
2 )
)]
dξ

∣∣∣
� λs− 1

2 + λs−2
∫
I0
1
[|ξ−ξ∗|≥s−

1
2 ]

(
|ξ − ξ∗|−4 + |ξ − ξ∗|−2s

)
dξ

� λs− 1
2

which establishes the claim (2.70). The analysis of K++
λ (t, x, y) is completely analogous,

as is the evolution of the negative frequencies given by �−
λ (t), see (2.69). In summary, for

all λ ≥ 1, t > 0,

‖eit〈D̃〉χ(D̃/λ)Pcg‖L∞
x

≤ C(V,χ)t−
1
2 λ

3
2 ‖g‖L1x (2.73)

For small energies we proceed as in the proof of Lemma 2.15, and write with a cutoff χ0

around zero energies(
eit〈D̃〉χ0(H)Pc g

)
(x)

= 1

2π

∫
R

∫ ∞

−∞
eit〈ξ 〉T(ξ)f+(x, ξ)f−(y, ξ) χ0(ξ

2)dξ g(y)1[x>y] dy

+ 1

2π

∫
R

∫ ∞

−∞
eit〈ξ 〉T(ξ)f−(x, ξ)f+(y, ξ) χ0(ξ

2)dξ g(y)1[x<y] dy

=: �>(t)Pcg(x) + �<(t)Pcg(x)

(2.74)
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5172 H. Lindblad et al.

We again restrict to x > 0 without loss of generality, and write �>(t)Pcg(x) in the form

�>(t)Pcg(x) =
∫
R

K>(t, x, y)g(y)dy

K>(t, x, y) = 1

2π
1[x>0>y]

∫ ∞

−∞
ei[t〈ξ〉+(x−y)ξ ]T(ξ)m+(x, ξ)m−(y, ξ) χ0(ξ

2)dξ

+ 1

2π
1[x>y>0]

∫ ∞

−∞
ei[t〈ξ〉+xξ ]m+(x, ξ)[e−iyξm+(y,−ξ) + eiyξR+(ξ)m+(y, ξ)]χ0(ξ

2)dξ

By Lemmas 2.3 and 2.5 the non-oscillatory integrands possess two ξ derivatives

uniformly bounded on their supports. The preceding stationary phase analysis therefore

applies to K>(t, x, y) by setting λ = 1, in particular s = t in this case, cf. (2.71). As a result

one obtains

‖�>(t)Pcg‖L∞
x

≤ Ct−
1
2 ‖g‖L1x ∀t > 0 (2.75)

and the same also holds for �<(t)g by a similar argument. Performing a dyadic

decomposition of energies and adding up all contributions from (2.73) and (2.75) yield

‖eit〈D̃〉Pcg‖L∞
x

≤ C(V)t−
1
2

(
‖χ0(H)Pcg‖L1x +

∞∑
j=0

23j/2‖χ(D̃/2j)Pcg‖L1x
)

= C(V)t−
1
2

(
‖χ0(H)Pcg‖L1x +

∞∑
j=0

2−jμ‖ψj(H)Pc〈D̃〉 3
2+μg‖L1x

) (2.76)

with μ > 0 arbitrary and

ψj(H) := 2( 32+μ)j〈D̃〉− 3
2−μχ(D̃/2j), j ≥ 0.

Summing up (2.76) will complete the proof provided we have the operator bounds

‖χ0(H)Pcg‖L1x � ‖g‖L1x , sup
j≥0

‖ψj(H)Pcg‖L1x � ‖g‖L1x (2.77)

with constants only depending on H. The latter operator bounds are immediate

consequences of the kernel bounds (2.18) and (2.19) with N = 2 established in

Lemma 2.7. �

Finally, we present a result on the asymptotics of the linear Klein–Gordon

evolution eit〈D̃〉Pcg for initial conditions supported away from zero energy.
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Lemma 2.19. Let H = −∂2x +V(x) with real-valued V ∈ L∞(R) ∩C3(R), and assume that

〈x〉6V(	)(x) ∈ L1(R) for all 0 ≤ 	 ≤ 3. Let χ0(ξ
2) be a smooth cutoff to |ξ | � 1, equal to 1

near ξ = 0. Set χ1(H) := 1 − χ0(H). Then we have

∥∥∥eit〈D̃〉χ1(H)Pcg − 1

t
1
2

ei
π
4 eiρχ1(ξ

2
0 )〈ξ0〉

3
2 g̃(ξ0)1(−1,1)(

x
t )

∥∥∥
L∞
x

≤ C(V,χ1)

t
2
3

‖〈x〉g‖H2
x
, t ≥ 1,

(2.78)

where ρ ≡ ρ(t, x) := √
t2 − x2 and ξ0〈ξ0〉 = −x

t .

Before we turn to the proof of Lemma 2.19, we record the useful relations

ξ0

〈ξ0〉
= −x

t
⇔ ξ0 = −x

ρ
, 〈ξ0〉 = t

ρ
.

Proof of Lemma 2.19. We have

(
eit〈D̃〉χ1(H)Pcg

)
(x) = 1√

2π

∫ ∞

0
eit〈ξ 〉T(ξ)f+(x, ξ)χ1(ξ

2)g̃(ξ)dξ

+ 1√
2π

∫ 0

−∞
eit〈ξ 〉T(−ξ)f−(x,−ξ)χ1(ξ

2)g̃(ξ)dξ

=: (E+(t)g̃)(x) + (E−(t)g̃)(x)

(2.79)

By reflection symmetry it suffices to assume that x ≥ 0. Then with φ±(ξ ,u) := 〈ξ 〉 ± uξ ,

u := x/t,

(E+(t)g̃)(x) =
∫ ∞

0
eitφ+(ξ ,u)T(ξ)m+(x, ξ)χ1(ξ

2)g̃(ξ)
dξ√
2π

(E−(t)g̃)(x) =
∫ 0

−∞

(
eitφ+(ξ ,u)m+(x, ξ) + eitφ−(ξ ,u)R+(−ξ)m+(x,−ξ))χ1(ξ

2)g̃(ξ)
dξ√
2π

If x ≥ t ≥ 1, then

|∂ξφ±(ξ ,u)| = |ξ 〈ξ〉−1 ± u| ≥ 1 − |ξ |〈ξ 〉−1 ≥ 〈ξ 〉−2/2

∂2ξ φ±(ξ ,u) = 〈ξ 〉−3
(2.80)

We break up the integration in E+(t) by means of the smooth partition of unity

1 = χ1(ξ
2/t) + χ0(ξ

2/t) and integrate by parts in the latter integral. Using (2.80) and
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the bounds on m+,T from above yields

|(E+(t)g̃)(x)| �
∫ ∞

0
χ1(ξ

2/t)|g̃(ξ)|dξ + t−1
∫ ∞

0

|∂2ξ φ+(ξ ,u)|
∂ξφ±(ξ ,u)2

χ0(ξ
2/t)χ1(ξ

2)|g̃(ξ)|dξ

+ t−1
∫ ∞

0
|∂ξφ±(ξ ,u)|−1

∣∣∣∂ξ

[
T(ξ)m+(x, ξ)χ0(ξ

2/t)χ1(ξ
2)g̃(ξ)

]∣∣∣dξ

� t−
3
4
(‖〈ξ 〉2g̃(ξ)‖L2ξ + ‖〈ξ 〉2∂ξ g̃(ξ)‖L2ξ

)
(2.81)

By analogous calculations one derives the same bound on (E−(t)g̃)(x). Now suppose

|x| < t. The phases φ±(ξ0,u) have stationary points given by ξ±
0 = ∓〈ξ±

0 〉u or ξ±
0 = ∓u√

1−u2
.

In either case one has φ±(ξ±
0 ,u) = √

1 − u2, which implies tφ±(ξ±
0 ,u) = √

t2 − x2 = ρ.

We now claim that the bounds (2.80) continue to hold (up to multiplicative

constants) for all ξ ∈ R \ I(ξ±
0 ) where

I(ξ±
0 ) := [ξ±

0 − 〈ξ±
0 〉/100, ξ±

0 + 〈ξ±
0 〉/100]

In fact,

|∂ξφ±(ξ ,u)| = |∂ξφ±(ξ ,u) − ∂ξφ±(ξ±
0 ,u)| = |ξ 〈ξ〉−1 − ξ0〈ξ0〉−1|

= |ξ2 − ξ20 |
(〈ξ〉〈ξ0〉)2|ξ 〈ξ〉−1 + ξ0〈ξ0〉−1|

(2.82)

where we dropped the ± superscript for simplicity. Without loss of generality, assume

ξ0 ≥ 0. Then if ξ ≥ ξ0 + 〈ξ0〉/100, (2.82) implies that

|∂ξφ±(ξ ,u)| � 〈ξ0〉−2 � 〈ξ〉−2

while for ξ ≤ ξ0 − 〈ξ0〉/100 one has |∂ξφ±(ξ ,u)| � 〈ξ〉−2. Setting

ω±
u (ξ) := χ

(
C0(ξ − ξ±

0 )〈ξ±
0 〉−1)
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for some large constant C0, and repeating the arguments leading to (2.81) therefore

yields

∣∣∣(eit〈D̃〉χ1(H)Pcg
)
(x) −

∫ ∞

0
eitφ+(ξ ,u)T(ξ)m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ√
2π

−
∫ 0

−∞
eitφ+(ξ ,u)m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ√
2π

−
∫ 0

−∞
eitφ−(ξ ,u)R+(−ξ)m+(x,−ξ)χ1(ξ

2)ω−
u (ξ)g̃(ξ)

dξ√
2π

∣∣∣
� t−

3
4
(‖〈ξ 〉2g̃(ξ)‖L2ξ + ‖〈ξ 〉2∂ξ g̃(ξ)‖L2ξ

)
(2.83)

which holds uniformly in t ≥ 1 and x ≥ 0. Note that χ1(ξ
2)ω+

u (ξ) = 0 on ξ ≥ 0,

χ1(ξ
2)ω−

u (ξ) = 0 on ξ ≤ 0 if C0 is large. Thus, only the second integral in (2.83)

contributes, and we denote it by (�(t)g̃)(x). To analyze it, we write (again suppressing

superscripts ±)

φ+(ξ ,u) − φ+(ξ0,u) = 〈ξ 〉 + uξ − 〈ξ0〉 − uξ0

= (ξ − ξ0)
2

〈ξ0〉(1 + ξξ0 + 〈ξ 〉〈ξ0〉)
=: η2

The change of variables ξ �→ η is a diffeomorphism on the support of ω+
u (ξ) given by

η = ξ − ξ0√〈ξ0〉(1 + ξξ0 + 〈ξ 〉〈ξ0〉)
,

dη

dξ
� 〈ξ0〉−

3
2

Therefore, using the standard Fourier transform,

(�(t)g̃)(x) = eiρ√
2π

∫ ∞

−∞
eitη

2
G(η; t, x)dη

= eiρei
π
4

2π
√
2t

∫ ∞

−∞
e− iy2

4t Ĝ(y; t, x)dy (2.84)

G(η; t, x) = m+(x, ξ)χ1(ξ
2)ω+

u (ξ)g̃(ξ)
dξ

dη

1

2π

∫ ∞

−∞
Ĝ(y; t, x)dy = G(0; t, x) = m+(x, ξ0)χ1(ξ

2
0 )ω+

u (ξ0)g̃(ξ0)
dξ

dη
(ξ0)

= √
2m+(x, ξ0)χ1(ξ

2
0 )〈ξ0〉

3
2 g̃(ξ0) (2.85)
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5176 H. Lindblad et al.

By (2.2), |m+(x, ξ0) − 1| � 〈x〉−5 with an implicit constant depending only on V. If

χ1(ξ
2
0 ) = 1, then |ξ0| � 1, and |x/t| = |ξ0|〈ξ0〉−1 � 1. Therefore,

(2.85) = √
2χ1(ξ

2
0 )〈ξ0〉

3
2 g̃(ξ0) + O(t−5χ1(ξ

2
0 )〈ξ0〉

3
2 g̃(ξ0))

and inserting this into (2.84),

(�(t)g̃)(x) = eiρei
π
4√

t
χ1(ξ

2
0 )〈ξ0〉

3
2 g̃(ξ0) + O(t−

11
2 χ1(ξ

2
0 )〈ξ0〉

3
2 g̃(ξ0))

+ O
(
t−

1
2

∫ ∣∣e− iy2

4t − 1
∣∣ |Ĝ(y; t, x)|dy

) (2.86)

The integral in the last line is estimated as follows:

∫ ∣∣e− iy2

4t − 1
∣∣ |Ĝ(y; t, x)|dy � t−

1
2

∫
[|y|2≤t]

|y| |Ĝ(y; t, x)|dy +
∫
[|y|2≥t]

|Ĝ(y; t, x)|dy

� t−
1
4 ‖y Ĝ(y; t, x)‖L2y � t−

1
4 ‖∂ηG(η; t, x)‖L2η

By definition,

∫ ∣∣∂ηG(η; t, x)
∣∣2 dη =

∫ ∣∣∣dξ

dη

∣∣∣ ∣∣∂ξ

[
m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ

dη

]∣∣2dξ

�
∫ ∣∣∂ξ

[
m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ

dη

]∣∣2〈ξ〉 3
2 dξ

Now we note that by complex interpolation of the preceding bound with

∫ ∣∣G(η; t, x)
∣∣2 dη �

∫ ∣∣m+(x, ξ)χ1(ξ
2)ω+

u (ξ)g̃(ξ)
dξ

dη

∣∣2〈ξ〉− 3
2 dξ

we obtain that for all 1
2 < β ≤ 1,

∫ ∣∣e− iy2

4t − 1
∣∣ |Ĝ(y; t, x)|dy � t

1
4− β

2
∥∥|y|β Ĝ(y; t, x)

∥∥
L2y

� t
1
4− β

2 ‖(−∂2η )
β
2G(η; t, x)‖L2η

� t
1
4− β

2

( ∫ ∣∣(−∂2ξ )
β
2
[
m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ

dη

]∣∣2〈ξ〉− 3
2+3βdξ

) 1
2
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On the one hand,

( ∫ ∣∣m+(x, ξ)χ1(ξ
2)ω+

u (ξ)g̃(ξ)
dξ

dη

∣∣2dξ
) 1

2 �
( ∫

|g̃(ξ)|2〈ξ〉3dξ
) 1

2

and, on the other hand,

( ∫ ∣∣(−∂2ξ )
1
2
[
m+(x, ξ)χ1(ξ

2)ω+
u (ξ)g̃(ξ)

dξ

dη

]∣∣2dξ
) 1

2 �
( ∫ [|g̃(ξ)|2〈ξ〉 + |∂ξ g̃(ξ)|2〈ξ〉3]dξ

) 1
2

In conclusion, we can bound with β = 5
6 ,

∫ ∣∣e− iy2

4t − 1
∣∣ |Ĝ(y; t, x)|dy � t−

1
6

( ∫ [|g̃(ξ)|2 + |∂ξ g̃(ξ)|2] 〈ξ〉4dξ
) 1

2 (2.87)

Combining (2.81), (2.83), (2.86), and (2.87) yields

∣∣∣(eit〈D̃〉χ1(H)Pcg
)
(x) − eiρei

π
4√

t
χ1(ξ

2
0 )〈ξ0〉

3
2 g̃(ξ0)1[|x/t|<1]

∣∣∣
� t−

11
2 χ1(ξ

2
0 )〈ξ0〉

3
2 |g̃(ξ0)| + t−

2
3
(‖〈ξ 〉2g̃(ξ)‖L2ξ + ‖〈ξ 〉2∂ξ g̃(ξ)‖L2ξ

)
� t−

2
3
(‖〈ξ 〉2g̃(ξ)‖L2ξ + ‖〈ξ 〉2∂ξ g̃(ξ)‖L2ξ

)
(2.88)

which holds uniformly in t ≥ 1 and x ≥ 0. The t− 11
2 -term on the second line is estimated

by Sobolev, and ξ0 = ξ+
0 = − x√

t2−x2
. We may of course assume that g̃(ξ) = 0 for |ξ | � 1.

It remains to prove that for all Schwartz functions g,

‖〈ξ 〉2χ1(ξ
2)g̃(ξ)‖L2ξ + ‖χ1(ξ

2)〈ξ〉2∂ξ g̃(ξ)‖L2ξ � ‖〈·〉g‖H2
x

This follows again by means of Calderon–Vaillancourt, see (2.57). The estimate (2.56)

controls ‖χ1(ξ
2)∂ξ g̃(ξ)‖L2ξ by ‖〈x〉g(x)‖L2x . To incorporate the ξ2 factor, we compute

ξ2g̃(ξ) =
∫
R

ξ2e(x, ξ) θ+(x)g(x)dx +
∫
R

ξ2e(x, ξ) θ−(x)g(x)dx

= − 1√
2π

∫
R

∂2x (e−ixξ )T(−ξ)m+(x,−ξ)θ+(x)g(x)dx

− 1√
2π

∫
R

(∂2x (e−ixξ )m−(x, ξ) + R−(−ξ)∂2x (eixξ )m−(x,−ξ))θ−(x)g(x)dx
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5178 H. Lindblad et al.

Integrating by parts in x, and multiplying by χ1(ξ
2), we can then apply Calderon–

Vaillancourt as in (2.57). �

3 Local Decay Bounds

The main goal of this section is to establish global existence and local decay bounds

for the solution v(t) to (1.12). The key ingredient for the proof are the local L2x
decay estimates for the Klein–Gordon propagator eit〈D̃〉Pc ≡ eit

√
1+HPc established in

Corollary 2.17.

Proposition 3.1 (Global existence and local decay bounds). Assume that V(x) and α(x)

are as in the statement of Theorem 1.1, and let σ = 5. There exists a small absolute

constant ε0 > 0 so that for any initial datum v0 with

ε := ‖〈x〉σv0‖H2
x

≤ ε0,

there exists a global-in-time solution v ∈ C(R;H2
x ) to (1.12) satisfying the uniform

bounds

sup
t∈R

{
〈t〉−(0+)‖v(t)‖H2

x
+ 〈t〉 1

2 ‖〈x〉−σv(t)‖L2x + 〈t〉‖〈x〉−σ (1 − χ0(H))v(t)‖L2x

+ 〈t〉‖〈x〉−σ
√
Hv(t)‖L2x + 〈t〉‖〈x〉−σ ∂t(e

−itv(t))‖L2x
}
� ε.

(3.1)

Proof. By time reversal symmetry, it suffices to argue forward in time. Assuming

that the absolute constant 0 < ε0 � 1 is sufficiently small, by a standard contraction

mapping argument, we obtain a local solution v ∈ C([0,T0];H
2
x ) on a time interval [0,T0]

for some T0 ≥ 1. In order to then conclude that v(t) exists globally in time, it is enough

to show that the H2
x norm of v(t) does not blow up in finite time. We now establish global

existence and the uniform bounds (3.1) via a bootstrap argument. For any 0 < T ≤ T0 we

consider the bootstrap quantity

M(T) := sup
0≤t≤T

{
〈t〉−(0+)‖v(t)‖H2

x
+ 〈t〉 1

2 ‖〈x〉−σv(t)‖L2x + 〈t〉‖〈x〉−σ (1 − χ0(H))v(t)‖L2x

+ 〈t〉‖〈x〉−σ
√
Hv(t)‖L2x + 〈t〉‖〈x〉−σ ∂t(e

−itv(t))‖L2x
}
.

Since the absolute constant 0 < ε0 � 1 can be chosen sufficiently small, in what follows

we may freely assume that T ≥ 1, and that M(T) ≤ 1 to simplify the bookkeeping

for some of the nonlinear estimates. We also recall that under the assumptions of

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/6/5118/6523055 by Yale U
niversity Law

 user on 05 June 2023



On Modified Scattering for 1D Quadratic KG 5179

Theorem 1.1, we have that v(t) = Pcv(t) for all t ∈ [0,T0]. Moreover, we stress that we

will frequently use that by the weighted Sobolev estimate from Lemma 2.11,

‖〈x〉−σv(t)‖L∞
x
� ‖〈x〉−σv(t)‖L2x + ‖〈x〉−σ

√
Hv(t)‖L2x ≤ M(T)

〈t〉 1
2

, 0 ≤ t ≤ T. (3.2)

In order to derive bounds on all components of the bootstrap quantity M(T), we work

with Duhamel’s formula for the solution v(t) given by

v(t) = eit〈D̃〉Pcv0 + 1

2i

∫ t

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds.

Growth bound for the H2
x norm of v(t): We begin with a growth bound for the H2

x norm

of the solution v(t). Using the equivalence of norms from Lemma 2.10 and the product

estimate (2.35), we obtain from Duhamel’s formula for v(t) for any 0 ≤ t ≤ T that

‖v(t)‖H2
x
� ‖〈D̃〉2v(t)‖L2x � ‖〈D̃〉2Pcv0‖L2x +

∫ t

0

∥∥〈D̃〉Pc
(
α(·)u(s)2

)∥∥
L2x

ds

� ‖v0‖H2
x

+
∫ t

0
‖〈x〉2σ α‖W1,∞

x

(‖〈x〉−σv(s)‖L2x + ‖〈x〉−σ
√
Hv(s)‖L2x

)2 ds
� ‖v0‖H2

x
+
∫ t

0

M(T)2

〈s〉 ds

� ‖v0‖H2
x

+ log(1 + 〈t〉)M(T)2.

Local decay for ∂t(e
−itv(t)): Now we derive an improved local decay bound for the time

derivative of the phase-filtered component ∂t
(
e−itv(t)

)
. To this end we compute that

∂t
(
e−itv(t)

) = e−it
(

(〈D̃〉 − 1)eit〈D̃〉Pcv0 + 1

2i
〈D̃〉−1Pc

(
α(·)u(t)2

)
+ 1

2

∫ t

0

〈D̃〉 − 1

〈D̃〉 ei(t−s)〈D̃〉Pc
(
α(·)u(s)2

)
ds
)
.

(3.3)
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By the local decay estimate (2.60) for the Klein–Gordon propagator, it then follows for

0 ≤ t ≤ T

∥∥〈x〉−σ ∂t
(
e−itv(t)

)∥∥
L2x

�
‖〈x〉σ 〈D̃〉Pcv0‖L2x

〈t〉 3
2

+ ‖〈x〉2σ α‖L2x‖〈x〉−σv(t)‖2L∞
x

+
∫ t

0

∥∥∥∥〈x〉−σ 〈D̃〉 − 1

〈D̃〉 ei(t−s)〈D̃〉Pc〈x〉−σ

∥∥∥∥
L2x→L2x

∥∥〈x〉3σ α
∥∥
L2x

‖〈x〉−σv(s)‖2L∞
x
ds

�
‖〈x〉σv0‖H1

x

〈t〉 3
2

+ M(T)2

〈t〉 +
∫ t

0

1

〈t − s〉 3
2

M(T)2

〈s〉 ds

� 1

〈t〉
(‖〈x〉σv0‖H1

x
+ M(T)2

)
.

Local decay for (1 − χ0(H))v(t): Next, we conclude an improved local decay bound for

the high-energy part (1 − χ0(H))v(t) of the solution v(t). Observe that (1 − χ0(H))v(t) is

given in Duhamel form by

(1 − χ0(H))v(t) = (1 − χ0(H))eit〈D̃〉Pcv0 + 1

2i

∫ t

0
(1 − χ0(H))ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds.

Using the improved local decay estimates (2.61) and (2.65) for the Klein–Gordon

propagator away from zero energy, it is straightforward to obtain for 0 ≤ t ≤ T the

desired bound

‖〈x〉−σ (1 − χ0(H))v(t)‖L2x
�

‖〈x〉σ (1 − χ0(H))Pcv0‖L2x
〈t〉 3

2

+
∫ t

0

∥∥∥〈x〉−σ (1 − χ0(H))〈D̃〉−1ei(t−s)〈D̃〉Pc〈x〉−σ
∥∥∥
L2x→L2x

∥∥〈x〉σ (α(·)u(s)2
)∥∥

L2x
ds

�
‖〈x〉σv0‖L2x

〈t〉 3
2

+
∫ t

0

1

〈t − s〉 3
2

‖〈x〉3σ α‖L2x‖〈x〉−σv(s)‖2L∞
x
ds

�
‖〈x〉σv0‖L2x

〈t〉 3
2

+
∫ t

0

1

〈t − s〉 3
2

M(T)2

〈s〉 ds

� 1

〈t〉
(‖〈x〉σv0‖L2x + M(T)2

)
.
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Local decay for
√
Hv(t): In a similar manner we obtain an improved local decay bound

for
√
Hv(t). Note that

√
Hv(t) is given in Duhamel form by

√
Hv(t) = √

Heit〈D̃〉Pcv0 + 1

2i

∫ t

0

√
H〈D̃〉−1ei(t−s)〈D̃〉Pc

(
α(·)u(s)2

)
ds.

Using the improved local decay estimate (2.59) for the Klein–Gordon propagator, we

easily obtain for 0 ≤ t ≤ T the desired bound

‖〈x〉−σ
√
Hv(t)‖L2x

�
‖〈x〉σ 〈D̃〉Pcv0‖L2x

〈t〉 3
2

+
∫ t

0

∥∥∥〈x〉−σ
√
H〈D̃〉−1ei(t−s)〈D̃〉Pc〈x〉−σ

∥∥∥
L2x→L2x

∥∥〈x〉σ (α(·)u(s)2
)∥∥

L2x
ds

�
‖〈x〉σv0‖H1

x

〈t〉 3
2

+
∫ t

0

1

〈t − s〉 3
2

‖〈x〉3σ α‖L2x‖〈x〉−σv(s)‖2L∞
x
ds

�
‖〈x〉σv0‖H1

x

〈t〉 3
2

+
∫ t

0

1

〈t − s〉 3
2

M(T)2

〈s〉 ds

� 1

〈t〉
(‖〈x〉σv0‖H1

x
+ M(T)2

)
.

Local decay for v(t): Finally, the derivation of the local decay bound for v(t) requires a

much more careful argument. The first step is to determine the leading order behavior

of the variable coefficient quadratic nonlinearity. To this end we introduce the function

w(t) := c0
ei

π
4 eit

t
1
2

〈ϕ, v0〉ϕ + 1

2i

∫ t−1

0
c0

ei
π
4 ei(t−s)

(t − s)
1
2

〈
ϕ,α(·)u(s)2

〉
ϕ ds, t ≥ 1, (3.4)

with c0 defined in (2.41). Then we may write

w(t, x) = a(t)ϕ(x), t ≥ 1,

with the time-dependent coefficient

a(t) := c0
ei

π
4 eit

t
1
2

〈ϕ, v0〉 + 1

2i

∫ t−1

0
c0

ei
π
4 ei(t−s)

(t − s)
1
2

〈
ϕ,α(·)u(s)2

〉
ds. (3.5)
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The key property of the function w(t) is that the difference v(t) − w(t) has faster local

decay in the sense that uniformly for all 1 ≤ t ≤ T

∥∥〈x〉−σ
(
v(t) − w(t)

)∥∥
L2x

� 1

〈t〉
(‖〈x〉σv0‖L2x + M(T)2

)
. (3.6)

To prove (3.6) we write for any 1 ≤ t ≤ T

v(t) − w(t) =
(
eit〈D̃〉Pcv0 − c0

ei
π
4 eit

t
1
2

〈ϕ, v0〉ϕ
)

+ 1

2i

∫ t−1

0

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)− c0
ei

π
4 ei(t−s)

(t − s)
1
2

〈
ϕ,α(·)u(s)2

〉
ϕ

)
ds

+ 1

2i

∫ t

t−1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds.

Then we use the improved local decay estimates (2.62) and (2.66) to bound the first two

terms on the right-hand side, while the standard local decay estimate (2.58) suffices to

estimate the third term on the right-hand side. Specifically, we obtain for 1 ≤ t ≤ T that

∥∥〈x〉−σ
(
v(t) − w(t)

)∥∥
L2x

�
‖〈x〉σv0‖L2x

〈t〉 3
2

+
∫ t−1

0

1

〈t − s〉 3
2

∥∥〈x〉σ α(x)u(s)2
∥∥
L2x

ds

+
∫ t

t−1

1

〈t − s〉 1
2

∥∥〈x〉σ α(x)u(s)2
∥∥
L2x

ds

�
‖〈x〉σv0‖L2x

〈t〉 3
2

+
∫ t−1

0

1

〈t − s〉 3
2

∥∥〈x〉3σ α
∥∥
L2x

‖〈x〉−σv(s)‖2L∞
x
ds

+
∫ t

t−1

1

〈t − s〉 1
2

∥∥〈x〉3σ α
∥∥
L2x

‖〈x〉−σv(s)‖2L∞
x
ds

�
‖〈x〉σv0‖L2x

〈t〉 3
2

+
∫ t−1

0

1

〈t − s〉 3
2

M(T)2

〈s〉 ds +
∫ t

t−1

1

〈t − s〉 1
2

M(T)2

〈s〉 ds

� 1

〈t〉
(‖〈x〉σv0‖L2x + M(T)2

)
.

This yields the desired faster local decay bound (3.6), which suggests that the leading

order behavior of the variable coefficient quadratic nonlinearity α(x)(v+ v̄)2 is governed

by α(x)(w + w̄)2. In order to further analyze the latter, we will need the following
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estimates related to w(t) that hold uniformly for all 1 ≤ t ≤ T,

‖w(t)‖L∞
x
� log(1 + 〈t〉)

〈t〉 1
2

(‖〈x〉σv0‖L2x + M(T)2
)
, (3.7)

|a(t)| � log(1 + 〈t〉)
〈t〉 1

2

(‖〈x〉σv0‖L2x + M(T)2
)
, (3.8)

|∂t(e−ita(t))| � 1

〈t〉
(‖〈x〉σv0‖L2x + M(T)2

)
. (3.9)

These estimates follow directly from the definitions of w(t) and a(t). Indeed, from the

definition of w(t), we obtain uniformly for all 1 ≤ t ≤ T that

‖w(t)‖L∞
x
� 1

t
1
2

∥∥〈ϕ, v0〉ϕ(x)
∥∥
L∞
x

+
∫ t−1

0

1

(t − s)
1
2

∥∥〈ϕ,α(·)u(s)2〉ϕ(x)
∥∥
L∞
x
ds

�
‖v0‖L1x
〈t〉 1

2

+
∫ t−1

0

1

(t − s)
1
2

‖〈x〉2σ α‖L1x‖〈x〉−σv(s)‖2L∞
x
ds

�
‖〈x〉σv0‖L2x

〈t〉 1
2

+
∫ t−1

0

1

(t − s)
1
2

M(T)2

〈s〉 ds

� log(1 + 〈t〉)
〈t〉 1

2

(‖〈x〉σv0‖L2x + M(T)2
)
.

This proves (3.7). Similarly, from the definition of a(t) we infer uniformly for all 1 ≤ t ≤ T

that

|a(t)| � |〈ϕ, v0〉|
〈t〉 1

2

+
∫ t−1

0

1

(t − s)
1
2

‖〈x〉2σ α(x)‖L1x‖〈x〉−σv(s)‖2L∞
x
ds

�
‖v0‖L1x
〈t〉 1

2

+
∫ t−1

0

1

(t − s)
1
2

M(T)2

〈s〉 ds

� log(1 + 〈t〉)
〈t〉 1

2

(‖〈x〉σv0‖L2x + M(T)2
)
,

which yields (3.8). Finally, to prove (3.9), we compute

∂t
(
e−ita(t)

) = − 1

2
c0

ei
π
4

t
3
2

〈ϕ, v0〉 + 1

2i
c0e

i π
4 e−i(t−1)〈ϕ,α(·)u(t − 1)2〉

− 1

4i

∫ t−1

0
c0

ei
π
4 e−is

(t − s)
3
2

〈ϕ,α(·)u(s)2〉ds.
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Hence, we obtain uniformly for all 1 ≤ t ≤ T

∣∣∂t(e−ita(t))
∣∣ � |〈ϕ, v0〉|

t
3
2

+ ∥∥〈x〉2σ α
∥∥
L1x

‖〈x〉−σv(t − 1)‖2L∞
x

+
∫ t−1

0

1

(t − s)
3
2

‖〈x〉2σ α‖L1x
∥∥〈x〉−σv(s)‖2L∞

x
ds

�
‖v0‖L1x
t
3
2

+ M(T)2

〈t − 1〉 +
∫ t−1

0

1

(t − s)
3
2

M(T)2

〈s〉 ds

� 1

〈t〉
(‖〈x〉σv0‖L2x + M(T)2

)
.

We are now prepared to prove the local decay bound for v(t). For short times

0 ≤ t ≤ 1, using the local decay estimates (2.58) and (2.64), we easily obtain

sup
0≤t≤1

‖〈x〉−σv(t)‖L2x � ‖v0‖L2x + M(T)2.

It therefore suffices to consider times t ≥ 1. We begin by decomposing the Duhamel

formula for v(t) into

v(t) = eit〈D̃〉Pcv0 + 1

2i

∫ t

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

= eit〈D̃〉Pcv0 + 1

2i

∫ 1

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

+ 1

2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)((v(s) + v̄(s))2 − (w(s) + w̄(s))2

))
ds

+ 1

2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)(w(s) + w̄(s))2

)
ds

≡ I + II + III + IV.

(3.10)

Then the first two terms on the right-hand side of (3.10) can be easily estimated. Using

the standard local decay estimates (2.58) and (2.64), we have for any 1 ≤ t ≤ T

‖〈x〉−σ I‖L2x = ∥∥〈x〉−σeit〈D̃〉Pcv0
∥∥
L2x

�
‖〈x〉σv0‖L2x

〈t〉 1
2
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and

‖〈x〉−σ II‖L2x �
∫ 1

0

∥∥〈x〉−σ 〈D̃〉−1ei(t−s)〈D̃〉Pc〈x〉−σ
∥∥
L2x→L2x

∥∥〈x〉σ (α(·)u(s)2
)∥∥

L2x
ds

�
∫ 1

0

1

〈t − s〉 1
2

‖〈x〉3σ α‖L2x‖〈x〉−σv(s)‖2L∞
x
ds

�
∫ 1

0

1

〈t − s〉 1
2

‖〈x〉3σ α‖L2xM(T)2 ds

� M(T)2

〈t〉 1
2

.

In order to estimate the third term on the right-hand side of (3.10), we combine the

local decay estimate (2.58) with the improved local decay bound (3.6) for the difference

v(t) − w(t) and the bound (3.7) for w(t) to obtain for any 1 ≤ t ≤ T that

‖〈x〉−σ III‖L2x
�
∫ t

1

∥∥〈x〉−σ 〈D̃〉−1ei(t−s)〈D̃〉Pc〈x〉−σ
∥∥
L2x→L2x

∥∥〈x〉σ α(x)
(
(v(s) + v̄(s))2 − (w(s) + w̄(s))2

∥∥
L2x

ds

�
∫ t

1

1

〈t − s〉 1
2

‖〈x〉3σ α‖L∞
x

‖〈x〉−σ (v(s) − w(s))‖L2x
(‖〈x〉−σv(s)‖L∞

x
+ ‖〈x〉−σw(s)‖L∞

x

)
ds

�
∫ t

1

1

〈t − s〉 1
2

1

〈s〉
(‖〈x〉σv0‖L2x + M(T)2

)(M(T)

〈s〉 1
2

+ log(1 + 〈s〉)
〈s〉 1

2

(‖〈x〉σv0‖L2x + M(T)2
))

ds

� 1

〈t〉 1
2

(‖〈x〉σv0‖L2x + M(T)2
)2.

The estimate for the fourth term on the right-hand side of (3.10) is the most delicate

due to the slow time decay of α(x)(w(s)+ w̄(s))2. We decompose the term further so that

we can exploit the time oscillations of w(s). To this end we introduce a cutoff function

ψ ∈ C∞
c (R) that is supported in small neighborhoods around ξ = ±√

3 and such that
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ψ(ξ) = 1 for say |ξ − (±√
3)| ≤ 10−2. Then we write

IV = 1

2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)(w(s) + w̄(s))2

)
ds

= 1

2i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))(a(s) + ā(s))2 ds

= 1

2i

∫ t

1

(
ψ(D̃)ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))(a(s) + ā(s))2 ds

+ 1

2i

∫ t

1

((
1 − ψ(D̃)

)
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))(a(s) + ā(s))2 ds

≡ IV(a) + IV(b).

(3.11)

The first term on the right-hand side of (3.11) can be easily estimated using the improved

local decay estimate (2.65) for the Klein–Gordon propagator away from zero energy and

the bound (3.8). Uniformly for all 1 ≤ t ≤ T we obtain that

‖〈x〉−σ IV(a)‖L2x �
∫ t

1

∥∥∥〈x〉−σ
(
ψ(D̃)ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))∥∥∥

L2x
|a(s)|2 ds

�
∫ t

1

1

〈t − s〉 3
2

∥∥〈x〉σ αϕ2
∥∥
L2x

(
log(1 + 〈s〉))2

〈s〉
(‖〈x〉σv0‖L2x + M(T)2

)2 ds
� 1

〈t〉1−
(‖〈x〉σv0‖L2x + M(T)2

)2.
To estimate the second term on the right-hand side of (3.11), we further expand it as

IV(b) = 1

2i

∫ t

1

((
1 − ψ(D̃)

)
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))e2is(e−isa(s)

)2 ds
+ 1

i

∫ t

1

((
1 − ψ(D̃)

)
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))∣∣e−isa(s)

∣∣2 ds
+ 1

2i

∫ t

1

((
1 − ψ(D̃)

)
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))e−2is(e−isa(s)

)2 ds
≡ IV(1)

(b)
+ IV(2)

(b)
+ IV(3)

(b)
.

(3.12)

Then we integrate by parts in time s. Note that for the first term IV(1)

(b)
this could

potentially be problematic, because on the distorted Fourier side the phase of eis(2−〈ξ〉)

vanishes at frequencies ξ = ±√
3. However, owing to the cutoff (1− ψ(ξ)), the integrand

is zero in a neighborhood of ξ = ±√
3. We only provide the details for the treatment of

the term IV(1)

(b)
, the other terms being easier. We find that uniformly for all 1 ≤ t ≤ T one
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has that

IV(1)

(b)
= −1

2

∫ t

1
eit〈D̃〉( d

ds

(
eis(2−〈D̃〉))(2 − 〈D̃〉)−1〈D̃〉−1(1 − ψ(D̃)

)
Pc
(
αϕ2))(e−isa(s)

)2 ds
= −1

2

(
(2 − 〈D̃〉)−1〈D̃〉−1(1 − ψ(D̃)

)
Pc
(
αϕ2))a(t)2

+ 1

2
ei(t−1)〈D̃〉((2 − 〈D̃〉)−1〈D̃〉−1(1 − ψ(D̃)

)
Pc
(
αϕ2))a(1)2

+
∫ t

1

(
ei(t−s)〈D̃〉(2 − 〈D̃〉)−1〈D̃〉−1(1 − ψ(D̃)

)
Pc
(
αϕ2))(e−isa(s)

)
∂s
(
e−isa(s)

)
ds.

Then using the standard local decay estimate (2.58), the bounds (3.8) and (3.9) for the

coefficient a(t), and Lemma 2.14, we finally obtain that

‖〈x〉−σ IV(1)

(b)
‖L2x

�
∥∥∥〈x〉−σ

(
(2 − 〈D̃〉)−1〈D̃〉−1(1 − ψ(D̃)

)
Pc
(
αϕ2))∥∥∥

L2x
|a(t)|2

+
∥∥∥〈x〉−σei(t−1)〈D̃〉((2 − 〈D̃〉)−1〈D̃〉−1(1 − ψ(D̃)

)
Pc
(
αϕ2))∥∥∥

L2x
|a(1)|2

+
∫ t

1

∥∥∥〈x〉−σ
(
ei(t−s)〈D̃〉(2 − 〈D̃〉)−1〈D̃〉−1(1 − ψ(D̃)

)
Pc
(
αϕ2))∥∥∥

L2x

∣∣e−isa(s)
∣∣∣∣∂s(e−isa(s)

)∣∣ds
�
∥∥∥((2 − 〈D̃〉)−1〈D̃〉−1(1 − ψ(D̃)

)
Pc
(
αϕ2))∥∥∥

L2x

(
log(1 + 〈t〉))2

〈t〉
(‖〈x〉σv0‖L2x + M(T)2

)2
+ 1

〈t〉 1
2

∥∥∥〈x〉σ
(
(2 − 〈D̃〉)−1〈D̃〉−1(1 − ψ(D̃)

)
Pc
(
αϕ2))∥∥∥

L2x

(‖〈x〉σv0‖L2x + M(T)2
)2

+
∫ t

1

1

〈t − s〉 1
2

∥∥∥〈x〉σ (2 − 〈D̃〉)−1〈D̃〉−1(1 − ψ(D̃)
)
Pc
(
αϕ2))∥∥∥

L2x
×

× log(1 + 〈s〉)
〈s〉 3

2

(‖〈x〉σv0‖L2x + M(T)2
)2 ds

� 1

〈t〉 1
2

∥∥〈x〉σ+3αϕ2
∥∥
L2x

(‖〈x〉σv0‖L2x + M(T)2
)2.

Putting all of the preceding estimates together (and using that we may freely

assume that M(T) ≤ 1), we arrive at the estimate

M(T) � ‖〈x〉σv0‖H2
x

+ M(T)2.

The assertion of Proposition 3.1 now follows by a standard continuity argument. �
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A key step in the derivation of the local decay bounds for the solution v(t) in

Proposition 3.1 was to isolate the leading order behavior of the variable coefficient

quadratic nonlinearity α(x)(v + v̄)2. It is determined by α(x)(w + w̄)2, where w(t)

is defined in (3.4) and where we write w(t, x) = a(t)ϕ(x), t ≥ 1, with the time-

dependent coefficient a(t) defined in (3.5). From the local decay bounds established in

Proposition 3.1, we infer two improved local decay bounds for the difference χ0(H)v(t)−
w(t) for t ≥ 1. These will be needed later in the proof of Theorem 1.1.

Corollary 3.2. Under the assumptions of Proposition 3.1, we have

∥∥〈x〉−σ
(
χ0(H)v(t) − w(t)

)∥∥
L2x

� ε

〈t〉 , t ≥ 1, (3.13)

∥∥〈x〉−σ ∂x
(
χ0(H)v(t) − w(t)

)∥∥
L2x

� ε

〈t〉 , t ≥ 1. (3.14)

Proof. We present the details for the derivation of the second asserted local decay

bound (3.14). We proceed similarly as in the proof of the preceding Proposition 3.1.

By Duhamel’s formula for the solution v(t) and the definition (3.4) of w(t), we have

for t ≥ 1

∂x
(
χ0(H)v(t) − w(t)

)
= ∂x

(
eit〈D̃〉χ0(H)Pcv0 − c0

ei
π
4 eit

t
1
2

〈ϕ, v0〉ϕ
)

+ 1

2i

∫ t−1

0
∂x

(
ei(t−s)〈D̃〉χ0(H)〈D̃〉−1Pc

(
α(·)u(s)2

)− c0
ei

π
4 ei(t−s)

(t − s)
1
2

〈
ϕ,α(·)u(s)2

〉
ϕ

)
ds

+ 1

2i

∫ t

t−1
∂x

(
ei(t−s)〈D̃〉χ0(H)〈D̃〉−1Pc

(
α(·)u(s)2

))
ds.

Using the local decay estimates (2.63) and (2.67) for the Klein–Gordon propagator along

with the local decay bounds for v(t) from Proposition 3.1 and the Sobolev estimate (3.2),
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we obtain for t ≥ 1∥∥〈x〉−σ ∂x
(
χ0(H)v(t) − w(t)

)∥∥
L2x

�
‖〈x〉σv0‖L2x

〈t〉 3
2

+
∫ t−1

0

1

〈t − s〉 3
2

∥∥〈x〉σ α(x)u(s)2
∥∥
L2x

ds +
∫ t

t−1

∥∥α(x)u(s)2
∥∥
L2x

ds

�
‖〈x〉σv0‖L2x

〈t〉 3
2

+
∫ t−1

0

1

〈t − s〉 3
2

‖〈x〉3σ α‖L2x‖〈x〉−σv(s)‖2L∞
x
ds

+
∫ t

t−1
‖〈x〉2σ α‖L2x‖〈x〉−σv(s)‖2L∞

x
ds

� ε

〈t〉 3
2

+
∫ t−1

0

1

〈t − s〉 3
2

ε2

〈s〉 ds +
∫ t

t−1

ε2

〈s〉 ds

� ε

〈t〉 ,

as desired. The proof of the first asserted local decay bound (3.13) proceeds similarly,

using the local decay estimates (2.61), (2.62), (2.65), and (2.66). �

As a further corollary of the local decay bounds for v(t) from Proposition 3.1, we

deduce the asymptotics of the coefficient function a(t).

Corollary 3.3. (Asymptotics of a(t)) Under the assumptions of Proposition 3.1, the

coefficient

a(t) := c0
ei

π
4 eit

t
1
2

〈ϕ, v0〉 + 1

2i

∫ t−1

0
c0

ei
π
4 ei(t−s)

(t − s)
1
2

〈
ϕ,α(·)u(s)2

〉
ds, t ≥ 1,

has the asymptotics

a(t) = c0
ei

π
4 eit

t
1
2

a0 + OL∞
t

(ε2

t

)
, t ≥ 1, (3.15)

where

a0 = 〈ϕ, v0〉 + 1

2
〈ϕ,α(·)v20〉 − 〈ϕ,α(·)|v0|2〉 − 1

6
〈ϕ,α(·)v20〉

+
∫ ∞

0
eis〈ϕ,α(·)∂s

(
e−isv(s)

)(
e−isv(s)

)〉ds
−
∫ ∞

0
e−is〈ϕ,α(·)∂s

(
(e−isv(s))(eisv̄(s))

)〉ds
− 1

3

∫ ∞

0
e−3is〈ϕ,α(·)∂s

(
eisv̄(s)

)(
eisv̄(s)

)〉ds.
(3.16)
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Proof. We proceed similarly to the proof of Proposition 3.2 in [51]. We begin by writing

a(t) = c0
ei

π
4 eit

t
1
2

(
〈ϕ, v0〉 + 1

2i

∫ t−1

0

t
1
2

(t − s)
1
2

e−is〈ϕ,α(·)u(s)2〉ds
)
.

Then the main work goes into peeling off the leading order behavior of the second term

in the parentheses. To this end we insert the decomposition of u(s) into its “phase-

filtered components”

u(s) = eis(e−isv(s)) + e−is(eisv̄(s))

to find that

1

2i

∫ t−1

0

t
1
2

(t − s)
1
2

e−is〈ϕ,α(·)u(s)2〉ds = 1

2i

∫ t−1

0

t
1
2

(t − s)
1
2

eis〈ϕ,α(·)(e−isv(s)
)2〉ds

+ 2

2i

∫ t−1

0

t
1
2

(t − s)
1
2

e−is〈ϕ,α(·)∣∣e−isv(s)
∣∣2〉ds

+ 1

2i

∫ t−1

0

t
1
2

(t − s)
1
2

e−3is〈ϕ,α(·)(eisv̄(s)
)2〉ds

≡ 1

2i

(
I + II + III

)
.

Now we describe in detail how to peel off the leading order behavior of the term I,

noting that the other terms can be treated analogously. We first exploit the oscillations

and integrate by parts in time s to find that

I =
∫ t−1

0

t
1
2

(t − s)
1
2

eis〈ϕ,α(·)(e−isv(s)
)2〉ds

= −it
1
2 ei(t−1)〈ϕ,α(·)(e−i(t−1)v(t − 1)

)2〉
+ i〈ϕ,α(·)v(0)2〉

+ i

2

∫ t−1

0

t
1
2

(t − s)
3
2

eis〈ϕ,α(·)(e−isv(s)
)2〉ds

+ 2i
∫ t−1

0

t
1
2

(t − s)
1
2

eis〈ϕ,α(·)∂s
(
e−isv(s)

)(
e−isv(s)

)〉ds
≡ I(a) + I(b) + I(c) + I(d).
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Clearly, the term I(b) contributes to the leading order behavior of I. We now show that

the terms I(a) and I(c) decay as t → ∞, and we extract the leading order contribution

from the term I(d). Using the local decay bounds for v(t) from Proposition 3.1, we obtain

that

|I(a)| � t
1
2 ‖〈x〉2σ α(x)‖L∞

x
‖〈x〉−σv(t − 1)‖2

L2x
� ε2

〈t〉 1
2

and

|I(c)| � t
1
2

∫ t−1

0

1

(t − s)
3
2

‖〈x〉2σ α(x)‖L∞
x

‖〈x〉−σv(s)‖2
L2x

ds � t
1
2

∫ t−1

0

1

(t − s)
3
2

ε2

〈s〉 ds �
ε2

〈t〉 1
2

.

Then we rewrite the last term I(d) as

I(d) = 2i
∫ t−1

0

t
1
2

(t − s)
1
2

eis〈ϕ,α(·)∂s
(
e−isv(s)

)(
e−isv(s)

)〉ds
= 2i

∫ ∞

0
eis〈ϕ,α(·)∂s

(
e−isv(s)

)(
e−isv(s)

)〉ds
− 2i

∫ ∞
t
2

eis〈ϕ,α(·)∂s
(
e−isv(s)

)(
e−isv(s)

)〉ds
+ 2i

∫ t−1

t
2

t
1
2

(t − s)
1
2

eis〈ϕ,α(·)∂s
(
e−isv(s)

)(
e−isv(s)

)〉ds
+ 2i

∫ t
2

0

(
t
1
2

(t − s)
1
2

− 1
)
eis〈ϕ,α(·)∂s

(
e−isv(s)

)(
e−isv(s)

)〉ds
≡ I(1)

(d)
+ I(2)

(d)
+ I(3)

(d)
+ I(4)

(d)
.

Using the local decay bounds from Proposition 3.1, in particular that ‖〈x〉−σ ∂t(e
−itv(t))‖L2x

has faster decay, it is easy to see that the improper integral I(1)

(d)
converges and

contributes to the leading order behavior of the term I, while the other terms I(2)

(d)
,

I(3)

(d)
, and I(4)

(d)
are of the order OL∞

t
(ε2〈t〉− 1

2 ). Indeed, we find that

|I(1)

(d)
| �

∫ ∞

0
‖〈x〉2σ α‖L∞

x
‖〈x〉−σ ∂s(e

−isv(s))‖L2x‖〈x〉−σv(s)‖L2x ds �
∫ ∞

0

ε2

〈s〉 3
2

ds � ε2
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and

|I(2)

(d)
| �

∫ ∞
t
2

‖〈x〉2σ α‖L∞
x

‖〈x〉−σ ∂s(e
−isv(s))‖L2x‖〈x〉−σv(s)‖L2x ds �

∫ ∞
t
2

ε2

〈s〉 3
2

ds � ε2

〈t〉 1
2

.

Analogously, we obtain that

|I(3)

(d)
| �

∫ t−1

t
2

t
1
2

(t − s)
1
2

ε2

〈s〉 3
2

ds � ε2

〈t〉 1
2

,

|I(4)

(d)
| �

∫ t
2

0

s

(t − s)
1
2 (t

1
2 + (t − s)

1
2 )

ε2

〈s〉 3
2

ds � ε2

〈t〉 1
2

.

Thus, the leading order behavior of the term I is given by

I = i〈ϕ,α(·)v20〉 + 2i
∫ ∞

0
eis〈ϕ,α(·)∂s

(
e−isv(s)

)(
e−isv(s)

)〉ds + OL∞
t

(
ε2

〈t〉 1
2

)
.

Similarly, we compute that the leading order behaviors of the terms II and III are given

by

II = −2i〈ϕ,α(·)|v0|2〉 − 2i
∫ ∞

0
e−is〈ϕ,α(·)∂s

(
(e−isv(s))(e+isv̄(s))

)〉ds + OL∞
t

(
ε2

〈t〉 1
2

)
,

III = − i

3
〈ϕ,α(·)v̄20〉 − 2i

3

∫ ∞

0
e−3is〈ϕ,α(·)∂s

(
e+isv̄(s)

)(
e+isv̄(s)

)〉ds + OL∞
t

(
ε2

〈t〉 1
2

)
.

Putting things together, we conclude that the asymptotic behavior of the coefficient a(t)

is given by (3.15). This concludes the proof. �

4 Proof of Theorem 1.1

Now we are in the position to provide the proof of Theorem 1.1. We first consider the

non-resonant case. Afterwards we turn to the treatment of the more delicate resonant

case. In the course of the proof we will frequently invoke the local decay bounds

established in Proposition 3.1 and Corollary 3.2. Throughout we let σ = 5.

Non-Resonant Case: We begin with the proof of the decay estimate (1.20). By

time-reversal symmetry, it suffices to consider positive times t > 0. For short times

0 < t ≤ 1 we just use the Sobolev estimate from Lemma 2.11 together with the local
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decay bounds (3.1). From Duhamel’s formula we obtain that

sup
0≤t≤1

‖v(t)‖L∞
x
� sup

0≤t≤1

(‖v(t)‖L2x + ‖√Hv(t)‖L2x
)

� ‖Pcv0‖L2x + ‖√HPcv0‖L2x +
∫ 1

0
‖α(x)v(s)2‖L2x ds

� ‖v0‖H1
x

+
∫ 1

0
‖〈x〉2σ α‖L2x‖〈x〉−σv(s)‖2L∞

x
ds

� ε.

Then for times t ≥ 1, we first peel off the leading order behavior of the variable

coefficient quadratic nonlinearity in Duhamel’s formula for v(t) by inserting the

function w(t) defined in (3.4) as well as the asymptotics for the coefficient a(t) from

Corollary 3.3. Exploiting the non-resonance assumption F̃ [αϕ2](±√
3) = 0, we may then

integrate by parts in time in the leading order term in Duhamel’s formula to recast it

into a more favorable form. Subsequently, we apply the dispersive decay estimate (2.68)

for the Klein–Gordon propagator to infer the decay estimate (1.20).

More specifically, we begin by writing for any t ≥ 1,

v(t) = eit〈D̃〉Pcv0 + 1

2i

∫ t

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

= eit〈D̃〉Pcv0 + 1

2i

∫ 1

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

+ 1

2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)((v(s) + v̄(s))2 − (w(s) + w̄(s))2

))
ds

+ 1

2i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))(a(s) + ā(s))2 ds

≡ I + II + III + IV.

(4.1)

The L∞
x bounds for the terms I and II in (4.1) are straightforward and we omit the details.

We now consider the term III, afterwards we estimate the delicate term IV. In the case

of the term III in (4.1), we have by the dispersive decay estimate (2.68) (with μ = 1
2 ) for

all t ≥ 1 that

‖III‖L∞
x
�
∫ t

1

∥∥∥ei(t−s)〈D̃〉〈D̃〉−1Pc
(
α(·)((v(s) + v̄(s))2 − (w(s) + w̄(s))2

))∥∥∥
L∞
x
ds

�
∫ t

1

1

(t − s)
1
2

∥∥∥〈D̃〉Pc
(
α(·)((v(s) + v̄(s))2 − (w(s) + w̄(s))2

))∥∥∥
L1x

ds.
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We now show that

∥∥∥〈D̃〉Pc
(
α(·)((v(s) + v̄(s))2 − (w(s) + w̄(s))2

))∥∥∥
L1x

� ε2

〈s〉 3
2

, s ≥ 1,

which immediately implies the desired decay estimate

‖III‖L∞
x
�
∫ t

1

1

(t − s)
1
2

ε2

〈s〉 3
2

ds � ε2

t
1
2

, t ≥ 1.

We may ignore the complex conjugates to simplify the notation and now prove that

∥∥∥〈D̃〉Pc
(
α(·)(v(s)2 − w(s)2

))∥∥∥
L1x

� ε2

〈s〉 3
2

, s ≥ 1. (4.2)

To this end we first further decompose v(s) into a low-energy and a high-energy part

v(s) = χ0(H)v(s) + (
1 − χ0(H)

)
v(s),

where we recall that χ0 denotes a smooth bump function supported on |ξ | � 1 with

χ0(ξ) = 1 near ξ = 0. We obtain

〈D̃〉Pc
(
α(·)(v(s)2 − w(s)2

)) = 〈D̃〉Pc
(
α(·)((χ0(H)v(s))2 − w(s)2

))
+ 〈D̃〉Pc

(
α(·)(χ0(H)v(s)

)(
(1 − χ0(H))v(s)

))
+ 〈D̃〉Pc

(
α(·)((1 − χ0(H))v(s)

)
v(s)

)
≡ III(a) + III(b) + III(c).

(4.3)

By exploiting the faster local decay of the high-energy component (1 − χ0(H))v of the

solution as well as the faster local decay of
√
Hv established in Proposition 3.1, the

product estimate (2.34) already yields the desired bound for the last two terms on the

right-hand side of (4.3),

‖III(b)‖L1x + ‖III(c)‖L1x � ‖〈x〉1+2σ α‖L∞
x

(‖〈x〉−σv(s)‖L2x + ‖〈x〉−σ
√
Hv(s)‖L2x

)×
× (‖〈x〉−σ (1 − χ0(H))v(s)‖L2x + ‖〈x〉−σ

√
Hv(s)‖L2x

)
� ε2

〈s〉 3
2

.
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It remains to estimate the more subtle first term on the right-hand side of (4.3). By

Hölder’s inequality, the equivalence of norms from Lemma 2.10, and the usual product

rule for the derivative, we have

‖III(a)‖L1x �
∥∥∥〈x〉σ 〈D̃〉Pc

(
α(·)((χ0(H)v(s))2 − w(s)2

))∥∥∥
L2x

�
∥∥〈x〉σ α(x)

(
(χ0(H)v(s))2 − w(s)2

)∥∥
H1
x

� ‖〈x〉1+2σ α‖W1,∞
x

∥∥〈x〉−σ
(
χ0(H)v(s) − w(s)

)∥∥
L2x

∥∥〈x〉−σ
(
χ0(H)v(s) + w(s)

)∥∥
L∞
x

+ ‖〈x〉1+2σ α‖L∞
x

∥∥〈x〉−σ ∂x
(
χ0(H)v(s) − w(s)

)∥∥
L2x

∥∥〈x〉−σ
(
χ0(H)v(s) + w(s)

)∥∥
L∞
x

+ ‖〈x〉1+2σ α‖L∞
x

∥∥〈x〉−σ
(
χ0(H)v(s) − w(s)

)∥∥
L2x

∥∥〈x〉−σ ∂x
(
χ0(H)v(s) + w(s)

)∥∥
L∞
x
.

The kernel bounds (2.18) and the local decay bound for v(s) imply

∥∥〈x〉−σ
(
χ0(H)v(s)

)∥∥
L∞
x

+ ∥∥〈x〉−σ ∂x
(
χ0(H)v(s)

)∥∥
L∞
x
� ‖〈x〉−σv(s)‖L2x � ε

〈s〉 1
2

,

while the asymptotics for the coefficient function a(s) from Corollary 3.3 give

‖〈x〉−σw(s)‖L∞
x

+ ‖〈x〉−σ ∂xw(s)‖L∞
x
� |a(s)|(‖ϕ‖L∞

x
+ ‖∂xϕ‖L∞

x

)
� ε

〈s〉 1
2

.

Combining the preceding estimates with the faster local decay for (χ0(H)v(s)−w(s)) and

for ∂x(χ0(H)v(s) − w(s)) from Corollary 3.2 given by

∥∥〈x〉−σ
(
χ0(H)v(s) − w(s)

)∥∥
L2x

+ ∥∥〈x〉−σ ∂x
(
χ0(H)v(s) − w(s)

)∥∥
L2x

� ε

〈s〉 ,

we arrive at the desired bound ‖III(a)‖L1x � ε−2〈s〉− 3
2 for s ≥ 1.

Finally, we consider the delicate term IV in the decomposition (4.1) of Duhamel’s

formula for v(t). We further decompose it by inserting the asymptotics for the coeffi-
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cient a(t) from Corollary 3.3 and find that

IV = c20
a2
0

2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))e2is

s
ds

+ c20
|a0|2
i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))1

s
ds

− c20
ā2
0

2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))e−2is

s
ds

+ 1

2i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))OL∞

s

( ε2

s
3
2

)
ds

≡ IV(a) + IV(b) + IV(c) + IV(d).

(4.4)

We observe that the term IV(a) can be thought of to determine the leading order behavior

of v(t), because on the distorted Fourier side in the integrand of IV(a) the phase of

eis(2−〈ξ〉) vanishes when 2 − 〈ξ 〉 = 0, that is, for ξ = ±√
3. In contrast, the integrands

in the terms IV(b) and IV(c) have better oscillatory behavior in time (at all frequencies)

and the term IV(d) has better decay in s of the integrand anyway. However, thanks to the

non-resonance assumption F̃ [αϕ2](±√
3) = 0, we can still integrate by parts in time s in

the delicate term IV(a) and cast it into a better form. We find that

IV(a) = c20
a2
0

2i
(2 − 〈D̃〉)−1〈D̃〉−1Pc

(
αϕ2)e2it

t
− c20

a2
0

2i

(
ei(t−1)〈D̃〉(2 − 〈D̃〉)−1〈D̃〉−1Pc

(
αϕ2))e2i

+ c20
a2
0

2i

∫ t

1

(
ei(t−s)〈D̃〉(2 − 〈D̃〉)−1〈D̃〉−1Pc

(
αϕ2)) 1

s2
ds.

At this point we can infer the desired decay estimate for IV(a). For times 1 ≤ t ≤ 2 we

just use the Sobolev estimate from Lemma 2.11, while we invoke the dispersive decay

estimate (2.68) (with μ = 1
2 ) and Lemma 2.14 to obtain uniformly for all times t ≥ 2 that

‖IV(a)‖L∞
x
� |a0|2

t

∥∥(2 − 〈D̃〉)−1〈D̃〉−1Pc
(
αϕ2)∥∥

L∞
x

+ |a0|2
(t − 1)

1
2

∥∥(2 − 〈D̃〉)−1〈D̃〉Pc
(
αϕ2)∥∥

L1x

+ |a0|2
∫ t

1

1

(t − s)
1
2

∥∥(2 − 〈D̃〉)−1〈D̃〉Pc
(
αϕ2)∥∥

L1x

1

s2
ds

�
∥∥〈x〉σ+3αϕ2

∥∥
L2x

|a0|2
t
1
2

.
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The terms IV(b) and IV(c) can be estimated analogously after integrating by parts in

time s, and the term IV(d) can be bounded directly. This finishes the proof of the decay

estimate (1.20) in the non-resonant case.

In order to specify the asymptotic behavior of the solution v(t), we define the

scattering data

v∞ := Pcv0 + 1

2i

∫ 1

0
e−is〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

+ 1

2i

∫ ∞

1
e−is〈D̃〉〈D̃〉−1Pc

(
α(·)((v(s) + v̄(s))2 − (w(s) + w̄(s))2

))
ds

+ 1

2i

∫ ∞

1

(
e−is〈D̃〉〈D̃〉−1Pc

(
αϕ2))(a(s) + ā(s))2 ds.

(4.5)

Then by mimicking the preceding arguments, it follows that v∞ ∈ H2
x and that v(t)

scatters in H2
x to a free Klein–Gordon wave in the sense that∥∥v(t) − eit〈D̃〉v∞

∥∥
H2
x
� ε2

〈t〉 1
2

, t ≥ 1.

This concludes the treatment of the non-resonant case.

Resonant Case: We begin with the proof of the decay estimate (1.13). Again, it

suffices to consider positive times t > 0. For times 0 < t ≤ 1 we just use the Sobolev

estimate from Lemma 2.11 together with the local decay bounds (3.1), as in the preceding

treatment of the non-resonant case. Then it remains to consider times t ≥ 1. To this end

we combine the dispersive decay estimate (2.68) for the Klein–Gordon propagator (with

μ = 1
2 ) and the product estimate (2.34) with the local decay bounds (3.1) for v(t), to infer

from Duhamel’s formula for v(t) that uniformly for all t ≥ 1,

‖v(t)‖L∞
x

�
∥∥eit〈D̃〉Pcv0

∥∥
L∞
x

+
∫ t

0

∥∥ei(t−s)〈D̃〉〈D̃〉−1Pc
(
α(·)u(s)2

)∥∥
L∞
x
ds

�
‖〈D̃〉2Pcv0‖L1x

t
1
2

+
∫ t

0

1

(t − s)
1
2

∥∥〈D̃〉Pc
(
α(·)u(s)2

)∥∥
L1x

ds

�
‖〈x〉σ 〈D̃〉2Pcv0‖L2x

t
1
2

+
∫ t

0

1

(t − s)
1
2

‖〈x〉1+2σ α‖W1,∞
x

(‖〈x〉−σv(s)‖L2x + ‖〈x〉−σ
√
Hv(s)‖L2x

)2 ds
�

‖〈x〉σv0‖H2
x

t
1
2

+
∫ t

0

1

(t − s)
1
2

ε2

〈s〉 ds

� log(1 + 〈t〉)
t
1
2

ε.
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This proves the decay estimate (1.13).

Next, we consider the asymptotic behavior of the solution v(t). To this end, we

first decompose Duhamel’s formula for v(t) as in (4.1) and (4.4) to write for times t ≥ 1,

v(t) = eit〈D̃〉Pcv0 + 1

2i

∫ 1

0
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

+ 1

2i

∫ t

1
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
α(·)((v(s) + v̄(s))2 − (w(s) + w̄(s))2

))
ds

+ c20
a2
0

2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))e2is

s
ds

+ c20
|a0|2
i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))1

s
ds

− c20
ā2
0

2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))e−2is

s
ds

+ 1

2i

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))OL∞

s

( ε2

s
3
2

)
ds.

(4.6)

In what follows we show that the modified scattering behavior of the nonlinear solution

v(t) is caused by the fourth term on the right-hand side of (4.6), which we denote by

vmod(t) := c20
a2
0

2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1Pc

(
αϕ2))e2is

s
ds.

We group all other terms in Duhamel’s formula (4.6) for v(t) into

vfree(t) := v(t) − vmod(t).

Proceeding as in the proof of the decay estimate (1.20) for the non-resonant case, we

obtain the asserted decay estimate (1.14) for vfree(t) given by

‖vfree(t)‖L∞
x
� ε

〈t〉 1
2

, t ≥ 1. (4.7)
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Moreover, upon defining the scattering data

v∞ := Pcv0 + 1

2i

∫ 1

0
e−is〈D̃〉〈D̃〉−1Pc

(
α(·)u(s)2

)
ds

+ 1

2i

∫ ∞

1
e−is〈D̃〉〈D̃〉−1Pc

(
α(·)((v(s) + v̄(s))2 − (w(s) + w̄(s))2

))
ds

+ c20
|a0|2
i

∫ ∞

1

(
e−is〈D̃〉〈D̃〉−1Pc

(
αϕ2))1

s
ds

− c20
ā2
0

2

∫ ∞

1

(
e−is〈D̃〉〈D̃〉−1Pc

(
αϕ2))e−2is

s
ds

+ 1

2i

∫ ∞

1

(
e−is〈D̃〉〈D̃〉−1Pc

(
αϕ2))OL∞

s

( ε2

s
3
2

)
ds,

we find by proceeding as in the non-resonant case that v∞ ∈ H2
x and that vfree(t) scatters

in H2
x to a free Klein–Gordon wave in the sense that

∥∥vfree(t) − eit〈D̃〉v∞
∥∥
H2
x
� ε2

〈t〉 1
2

, t ≥ 1.

Finally, we analyze the asymptotic behavior of vmod(t) for t � 1. Here we follow

relatively closely the corresponding derivation in the proof of Theorem 1.1 in [51]. In

what follows we use the short-hand notation

Y := αϕ2.

Let ψ ∈ C∞(R) be a smooth bump function such that ψ(ξ) = 1 in a small neighborhood

around ξ = 0 and such that

ψ(ξ) = 0 for |ξ | ≥ δ̃ (4.8)

for some small δ̃ ≡ δ̃(δ) > 0, whose size will be specified further below. Then we

decompose the distorted Fourier transform Ỹ(ξ) of Y into

Ỹ(ξ) = Ỹ+(ξ) + Ỹ−(ξ) + Ỹnr(ξ)

with

Ỹ±(ξ) := ψ(ξ ∓ √
3)Ỹ(ξ).
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Correspondingly, we define for times t ≥ 1,

vmod,±(t) := c20
a2
0

2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1PcY±

)e2is
s

ds, (4.9)

vmod,nr(t) := c20
a2
0

2

∫ t

1

(
ei(t−s)〈D̃〉〈D̃〉−1PcYnr

)e2is
s

ds. (4.10)

Decay of vmod,nr(t): Since Ỹnr(±
√
3) = 0 by construction, we can integrate by

parts in time s in the Duhamel integral for vmod,nr(t). Then using the standard dispersive

decay estimate for the Klein–Gordon propagator from Lemma 2.18, we obtain uniformly

for all t ≥ 1 that

‖vmod,nr(t)‖L∞
x
� ε2

t
1
2

.

Decay of vmod,±(t) away from small conic neighborhoods of x = ±
√
3
2 t: it

suffices to consider vmod,+(t), the treatment of vmod,−(t) being analogous. Assume that

x ≥ 0. Using the distorted Fourier transform and noting that Ỹ+(ξ) is supported on

(0,∞), we write

vmod,+(t, x) = c20
a2
0

2
√
2π

∫ t

1

∫
R

T(ξ)m+(x, ξ)ei(xξ+(t−s)〈ξ〉)〈ξ〉−1Ỹ+(ξ)dξ
e2is

s
ds. (4.11)

The phase

φ(s, ξ ; t, x) := xξ + (t − s)〈ξ〉

satisfies

∂ξφ(s, ξ ; t, x) = x + (t − s)
ξ

〈ξ〉 , ∂2ξ φ(s, ξ ; t, x) = t − s

〈ξ〉3 .

For any given 0 < δ � 1, we may choose the constant δ̃ ≡ δ̃(δ) > 0 in the definition (4.8)

of the cut-off function ψ above so small such that

∣∣∣ ξ

〈ξ〉 −
(
±

√
3

2

)∣∣∣ ≤ δ

2
whenever Ỹ+(ξ) �= 0.
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Moreover, we have |∂2ξ φ(s, ξ ; t, x)| � (t − s) on the support of Ỹ(ξ). We distinguish two

cases. Suppose x ≥ (√
3
2 + δ

)
t. Then on the support of Ỹ+(ξ) the phase satisfies

|∂ξφ| ≥ |x| − (t − s)
|ξ |
〈ξ〉 ≥

(√
3

2
+ δ

)
t −

(√
3

2
+ δ

2

)
(t − s) ≥ δ

2
t.

Correspondingly, integrating by parts in ξ and using Lemma 2.3 as well as Lemma 2.5,

we find ∣∣vmod,+(t, x)
∣∣ �δ,V

∫ t

1

1

t

ε2

s
ds � ε2

t1− .

Now suppose 0 ≤ x ≤ (√
3
2 − δ

)
t. We divide the time integration interval into two

subintervals

[1, t] = [1, t1] ∪ [t1, t],

where

t1 := δ

2(
√
3 + δ)

t.

On the support of Ỹ+(ξ) the phase satisfies for 1 ≤ s ≤ t1 that

|∂ξφ| ≥ t
|ξ |
〈ξ〉 − |x| − s

|ξ |
〈ξ〉 ≥ t

(√
3

2
− δ

2

)
− t

(√
3

2
− δ

)
− δ

2(
√
3 + δ)

t
(√

3

2
+ δ

2

)
= δ

4
t.

Integration by parts in ξ therefore pays off for 1 ≤ s ≤ t1. Instead for times s ≥ t1 we can

just use the usual (t − s)− 1
2 dispersive decay of the retarded Klein–Gordon propagator

ei(t−s)〈D̃〉 from Lemma 2.18 and crudely bound 1
s ≤ 1

t1
�δ

1
t . Hence, in the case 0 ≤ x ≤(√

3
2 − δ

)
t, we obtain that

|vmod,+(t, x)| �δ,V

∫ t1

1

1

t

ε2

s
ds +

∫ t

t1

1

(t − s)
1
2

ε2

t
ds � ε2

t1− + ε2

t
1
2

� ε2

t
1
2

. (4.12)

If instead x < 0, we start from the representation (4.11) for vmod,+(t, x) and first express

T(ξ)f+(x, ξ) in terms of f−(x, ·) using (2.9). Then we may proceed as above.

This concludes the derivation of the decay estimate (1.18) for vmod(t) away from

small conic neighborhoods of the rays x = ±
√
3
2 t, as asserted in the statement of

Theorem 1.1.

Asymptotics of vmod,±(t, x) along the rays x = ±
√
3
2 t: We consider vmod,−(t, x)

in detail, noting that the treatment of vmod,+(t, x) proceeds analogously. First, we may

restrict the time integration in the definition of vmod,−(t, x) to times 1 ≤ s ≤ t − 1 at the
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expense of picking up a remainder term of order OL∞
t

(
ε2t−1

)
. Moreover, by Lemma 2.19

on the asymptotics of the Klein–Gordon propagator (and observing that t− 1
2 〈ξ0〉

3
2 〈ξ0〉−1 =

ρ− 1
2 for ξ0 as in the statement of Lemma 2.19), we have for 1 ≤ s ≤ t − 1 that

(
ei(t−s)〈D̃〉〈D̃〉−1PcY−

)(
±

√
3

2
t
)

= ei
π
4 eiρ(t−s,±

√
3
2 t)

ρ(t − s,±
√
3
2 t)

1
2

Ỹ−
(

− ±
√
3
2 t

ρ(t − s,±
√
3
2 t)

)
1(−1,1)

(
x

t − s

)
+ 1

(t − s)
2
3

O
(‖〈x〉Y−‖H2

x

)
,

(4.13)

where

ρ(t − s,±
√
3
2 t) = (

(t − s)2 − 3
4 t

2) 12 = t
2

(
1 − 8 s

t + 4 s2

t2
) 1
2 .

Inserting the asymptotics (4.13) into (4.9) gives

vmod,−
(
t,±

√
3

2
t
)
=c20

a2
0

2

∫ t−
√
3
2 t

1

ei
π
4 eiρ(t−s,±

√
3
2 t)

ρ(t − s,±
√
3
2 t)

1
2

Ỹ−
(

− ±
√
3
2 t

ρ(t − s,±
√
3
2 t)

)
e2is

s
ds + OL∞

t

( ε2

t
2
3−
)
.

Since Ỹ−(ξ) = 0 for ξ > 0, we have along the ray x = −
√
3
2 t that

vmod,−
(
t,−

√
3

2
t
)

= OL∞
t

( ε2

t
2
3−
)
.

Moreover, due to the sharp localization of the frequency support of Ỹ−(ξ) around

ξ = −√
3, for t � 1 the time integration in the last identity for vmod,−(t,

√
3
2 t) is in

fact only over an interval 1 ≤ s ≤ ct for some small constant 0 < c � 1. Thus, along the

ray x =
√
3
2 t, one has that

vmod,−
(
t,

√
3

2
t
)

= c20
a2
0

2

∫ ct

1

ei
π
4 eiρ(t−s,

√
3
2 t)

ρ(t − s,
√
3
2 t)

1
2

Ỹ−
(

−
√
3
2 t

ρ(t − s,
√
3
2 t)

)
e2is

s
ds + OL∞

t

( ε2

t
2
3−
)
.

(4.14)

In view of the approximate identities

−
√
3
2 t

ρ(t − s,
√
3
2 t)

= −√
3 + O

(s
t

)
,

1

ρ(t − s,
√
3
2 t)

1
2

=
√
2

t
1
2

+ O
( s

t
3
2

)
,
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it follows that

vmod,−
(
t,

√
3

2
t
)

= c20
a2
0√
2
ei

π
4 Ỹ(−√

3)
1

t
1
2

∫ ct

1
ei(ρ(t−s,

√
3
2 t)+2s) 1

s
ds + OL∞

t

( ε2

t
1
2

)
. (4.15)

Now we observe that the phase

φ(s; t) := ρ
(
t − s,

√
3

2
t
)

+ 2s

is stationary at s = 0 and that its Taylor expansion about s = 0 is of the form

φ(s; t) = t

2
+ O

(s2
t

)
.

Thus, for times 1 ≤ s � t
1
2 the phase φ(s; t) is essentially constant and the integrand in

(4.15) is effectively monotone, which leads to the buildup of a log(t) factor. In order to

arrive at a sharp formula for the asymptotics, we split the time integration interval into

the two subintervals 1 ≤ s ≤ 10−3t
1
2 and 10−3t

1
2 ≤ s ≤ ct. For the interval 1 ≤ s ≤ 10−3t

1
2

we compute that

∫ 10−3t
1
2

1
eiφ(s;t) 1

s
ds = ei

t
2

∫ 10−3t
1
2

1

1

s
ds +

∫ 10−3t
1
2

1
O
(s
t

)
ds = ei

t
2

2
log(t) + O(1).

Instead, on the interval 10−3t
1
2 ≤ s ≤ ct, we integrate by parts. Since ∂sφ(s; t) = O

( s
t

)
and

∂2s φ(s; t) = O
(1
t

)
on that time integration interval, we find

∣∣∣∣∫ ct

10−3t
1
2
eiφ(s;t) 1

s
ds

∣∣∣∣ � ∫ ct

10−3t
1
2

t

s3
ds +

∣∣∣∣ ts2
∣∣∣s=ct

s=10−3t
1
2

∣∣∣∣ � 1.

Hence, we obtain the asymptotics

vmod,−
(
t,

√
3

2
t
)

= c20
a2
0√
8
ei

π
4 ei

t
2 F̃ [αϕ2](−√

3)
log(t)

t
1
2

+ OL∞
t

( ε2

t
1
2

)
, t � 1.

This finishes the proof of Theorem 1.1.

Remark 4.1. In the resonant case when a0 �= 0 the distorted Fourier transform of

the profile g(t) := e−it〈D̃〉v(t) of the solution v(t) to (1.12) diverges logarithmically at the
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frequencies ξ = ±√
3, specifically we have

g̃(t,±√
3) = c20

a2
0

4
F̃ [αϕ2](±√

3) log(t) + O(ε), t � 1.

To see this, recall that vmod(t) is the fourth term on the right-hand side of the

decomposition (4.6) of the Duhamel formula for v(t). The distorted Fourier transform

of the profile gmod(t) := e−it〈D̃〉vmod(t) of vmod(t) is given by

g̃mod(t, ξ) = c20
a2
0

2
〈ξ〉−1F̃ [αϕ2](ξ)

∫ t

1
eis(2−〈ξ〉) 1

s
ds.

Since 2 − 〈ξ 〉 = 0 for ξ = ±√
3, we correspondingly obtain that g̃mod(t, ξ) diverges

logarithmically at the frequencies ξ = ±√
3,

g̃mod(t,±√
3) = c20

a2
0

4
F̃ [αϕ2](ξ)

∫ t

1

1

s
ds = c20

a2
0

4
F̃ [αϕ2](ξ) log(t).

The contributions of all other terms on the right-hand side of the decomposition (4.6)

to the distorted Fourier transform g̃(t, ξ) of the profile are uniformly bounded in time

(at all frequencies), which follows readily using the local decay bounds for v(t) from

Proposition 3.1. For the contributions of the fifth and sixth terms one additionally has

to exploit the oscillations.
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