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1 Introduction

We study the long-time behavior of small global-in-time solutions to the Cauchy

problem for the following (1 + 1)-dimensional Klein—-Gordon equation

(0 — 82 + m? + V(x)u = P(a(-)u?) on R,

(U, 3w li—o = (P, Pouy),

where the potential V(x) and the variable coefficient «(x) are sufficiently smooth and
decaying, where m > 0 is the mass parameter, and where the real-valued initial data
(ug, u;) are small in weighted Sobolev spaces. As a core assumption in this paper, we
suppose that the Schrédinger operator H = —2 + V(x) exhibits a zero energy resonance,
that is, a non-trivial bounded solution of Hyp = 0 that approaches 1 as x — oo and a
non-zero constant as x — —oo, see Definition 2.4. In other words, we assume that the
potential V(x) is non-generic. The projection onto the continuous spectral subspace of
L2(R) relative to H is denoted by P,.

The goal of this work is to continue the investigation of the occurrence of a
novel modified scattering behavior of small solutions to (1.1) that features a logarithmic
slow-down of the free decay rate along certain rays. This phenomenon was recently
discovered in [51] in the special case V(x) = 0 and is ultimately caused by the threshold
resonance of the linear operator —32+m? + V(x). In this regard it is worth to record that
a peculiar feature of the Laplacian in one space dimension—in contrast to higher odd
space dimensions—is that it possesses a zero energy resonance, namely the constant
function 1. We also refer to the beginning of Section 2 for precise definitions of some of

the spectral theory terminology used in this introduction.

1.1 Motivation

Our interest in the model (1.1) stems from the asymptotic stability problem for kink
solutions arising in classical scalar field theory models on the real line. Kinks are

special soliton solutions to scalar field equations
(32 — 82)¢p = —W'(¢) on R, (1.2)
where W: R — [0, 00) is a sufficiently regular scalar potential that features a double-

well, that is, there exist (at least) two consecutive (global) minima ¢_, ¢, € R of W with
¢_ < ¢, W(py) =W (py) =0, and W’ (¢,) > 0. Trivial solutions to (1.2) are given by the
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5120 H. Lindblad et al.

constant functions ¢(t,x) = ¢, for all ¢ € R. Correspondingly, ¢_ and ¢, are referred
to as vacuum solutions. A static solution ¥ (x) to (1.2) that connects the two consecutive

vacuua ¢_ and ¢, is called a kink and satisfies

32y = W' (y) on R,
(1.3)
XEIEOO w(X) - ¢i'

Solutions to (1.3) are unique up to spatial translations. Moreover, the Lorentz invariance
of (1.2) gives rise to moving kinks upon applying a Lorentz boost.

Kinks are simple 1D examples of topological solitons, see for example, [6, 46,
57, 71]. A fundamental question related to the dynamics of kinks is their asymptotic
stability under small perturbations. A perturbative approach to this problem generally
consists in decomposing the perturbed solution into the sum of a modulated kink,
possibly discrete modes, and a dispersive remainder term. One then studies the long-
time dynamics of the associated system of ordinary differential equations (ODEs) and
partial differential equations (PDEs). One of the key steps in that analysis is to conclude
that the dispersive remainder term decays to zero in a suitable sense. For concreteness,
we now take a closer look at what this part of the problem entails for two prime

examples of classical scalar field models on the real line, namely the ¢* model with

1
Wya(9) := 2~ $2)2, Yga (x) = tanh(%),
and the sine-Gordon model with
Wsc(@) =1 —cos(¢), Vsc(x) = 4arctan(e®).

To simplify matters, we do not take into account any modulational aspects. For
perturbations of the static kink Vga (X) in the ¢* model, the remainder term u(t,x) =
G, x) — Pya(x) satisfies

(8t2 — 0242 SSechz(%))u =-3 tanh(\%)u2 —ud, (1.4)
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while for perturbations of the static kink v, (x) in the sine-Gordon model, the remainder

term u(t, x) = ¥ (t, x) — Y,;(x) is a solution to

(82 — 82 + 1 — 2sech?(x))u = —sech(x) tanh(x)u? + (3 - %sech2 (x))u® + {higher order}.
(1.5)

The study of the decay and the asymptotics of small solutions to 1D Klein—-Gordon
equations such as (1.4) and (1.5) encompasses several difficulties: due to the slow dis-
persive decay of Klein-Gordon waves in one space dimension, the quadratic and cubic
nonlinearities cause long-range effects. In particular, subtle resonance phenomena can
occur in the interactions in the (variable coefficient) quadratic nonlinearities. Moreover,
the linearized operators may exhibit threshold resonances and may have internal modes,
that is, positive gap eigenvalues below the continuous spectrum. The latter are in fact
an obstruction to decay at the linear level. We note that the linearized operators for the
¢* model and the sine-Gordon model both exhibit threshold resonances and that the
linearized operator for the ¢* model additionally features an internal mode.

Delicate resonance phenomena in the quadratic nonlinearities in 1D Klein-
Gordon models such as (1.4) and (1.5) may lead to novel types of modified scattering
behaviors of the solutions that are deeply related to the presence of a threshold
resonance in the linearized operator. The purpose of this work is to uncover a precise
picture of such behavior for the simplified Klein—-Gordon model (1.1), building on the

recent analysis of the flat case V(x) = 0 in [51].

1.2 Previous results

The study of the asymptotic stability of kinks and of the asymptotics of solutions
to nonlinear Klein—Gordon equations is a fascinating and vast subject that cannot be
reviewed in its entirety here. In this subsection we give an overview of previous works
that are closely related to the contents of this paper.

We begin with a brief review of orbital and asymptotic stability results for
kinks. The orbital stability of kinks for general scalar field models was studied in the
classical work of Henry—Perez—Wreszinski [26]. In [39, 40] Komech-Kopylova proved the
asymptotic stability of kinks with respect to a weighted energy norm for a class of
scalar field models with a certain flatness assumption on the potential near the wells
and under suitable spectral assumptions (no resonances, presence of an internal mode).
Kowalczyk-Martel-Mufioz [41] established the asymptotic stability of the kink of the

#* model locally in the energy space under odd finite energy perturbations. In this
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5122 H. Lindblad et al.

regard, Delort—-Masmoudi [12] very recently obtained long-time dispersive estimates
for odd weighted perturbations of the kink of the ¢* model up to times T ~ s~4*¢,
for arbitrary ¢ > 0, where ¢ is the size of the initial data in a weighted Sobolev
space. A sufficient condition for the asymptotic stability locally in the energy space of
(moving) kinks in general (1 + 1)-scalar field models under arbitrary small finite energy
perturbations has been introduced by Kowalczyk-Martel-Mufoz-Van den Bosch [43].
Interestingly, the asymptotic stability properties of the kink of the sine-Gordon model
hinge delicately on the topology with respect to which the perturbations are measured.
The existence of special periodic solutions called wobbling kinks are an obstruction to
asymptotic stability in the energy space, see for instance Alejo-Mufioz—Palacios [1] for
a discussion. However, the sine-Gordon kink is asymptotically stable under sufficiently
strongly weighted perturbations, as has recently been shown by Chen-Liu-Lu [4] by
relying on the complete integrability of the model and using the nonlinear steepest
descent method. We also refer to the survey [42] and to the references therein.

Next, we give a survey of results on the dispersive decay and the asymptotics
of small solutions to 1D Klein—-Gordon equations with an eye towards Klein—Gordon
models that are related to the asymptotic stability problem for kinks. We note that the
investigation of the long-time behavior of small solutions to Klein-Gordon equations
with constant coefficient nonlinearities (in higher space dimensions) originates in the
pioneering works of Klainerman [35, 36] and Shatah [66].

Due to the slow decay of Klein—-Gordon waves in one space dimension, quadratic
and cubic nonlinearities exhibit long-range effects. Specifically, Delort [10, 11] estab-

lished modified scattering of small global solutions to the 1D Klein—-Gordon equation

(92 — 392 4+ Du = agu? + Byu® on R (1.6)

with «g, 8, € R in the sense that the solutions are shown to decay in L3° at the rate
=7 of free Klein-Gordon waves, but that their asymptotics feature logarithmic phase
corrections with respect to the free flow (We point out that the results of [10, 11] pertain
to more general quasilinear nonlinearities. With an eye towards the asymptotic stability
problem for kinks, here we emphasize the applicability of [10, 11] to the displayed Klein—
Gordon model (1.6).). An alternative physical space approach was later developed by
the first and fourth authors [52, 53] in the cubic case, providing a detailed asymptotic
expansion of the solution for large times. Subsequently, Hayashi-Naumkin [24, 25]
removed the compact support assumptions about the initial data required in [10, 52,
53], see also Stingo [70] and the work of Candy and the first author [3].
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The study of the asymptotics of small solutions to 1D Klein—-Gordon equations
with variable coefficient nonlinearities was initiated by the first and fourth authors [55]
and by Sterbenz [69] for the model

(82 — 82 + Du = aqu? + Byu® + (x)u® on R, (1.7)

where oy, B, € R and where B(x) is a spatially localized, variable coefficient. Surpris-
ingly, the addition of a variable coefficient cubic nonlinearity in (1.7) leads to non-
trivial difficulties of dealing with the long-range nature of the (non-localized) constant
coefficient quadratic and cubic nonlinearities. The latter typically requires to combine
energy estimates for weighted vector fields with an ODE argument and normal form
methods. In the case of the Klein-Gordon equation, the Lorentz boost Z = td, +x9, is the
only weighted vector field that commutes with the linear flow. However, differentiation
of the variable coefficient by a Lorentz boost produces a strongly divergent factor of
t, which seems to place corresponding slow energy growth estimates out of reach. In
[55, 69] the main idea to overcome this issue is the introduction of a variable coefficient
cubic normal form. More recently, three of the authors [50] obtained an improvement
of [65, 69] using local decay estimates for the Klein—-Gordon propagator to overcome
difficulties caused by the variable coefficient nonlinearity.

In [51] three of the authors recently considered the quadratic Klein—-Gordon

equation
(32 — 82 + Du = a(x)u? on R (1.8)

with a spatially localized coefficient «(x) and uncovered a novel modified scattering
behavior of small solutions that involves a logarithmic slow-down of the free decay
rate along certain rays. This discovery provided the impetus for the present work. We
note that the occurrence of a logarithmic-type slow-down of the decay rate due to
the presence of a space-time resonance was pointed out by Bernicot-Germain [2] in a
simpler setting of proving bilinear dispersive estimates for quadratic interactions of
1D free dispersive waves. See also [13, 14] for higher-dimensional instances, where the
optimal pointwise decay cannot be propagated by the nonlinear flow (but where the
obtained decay rate is not asserted to be sharp). We emphasize that [51, Theorem 1.1]
and Theorem 1.1 of the present work uncover a sharp picture of the asymptotics for 1D
nonlinear Klein-Gordon models, where a logarithmic slow-down of the free decay rate

occurs. In particular, the origin of the logarithmic loss is precisely identified to stem
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5124 H. Lindblad et al.

from the contribution of an explicit resonant source term that is deeply related to the
threshold resonance of the Klein-Gordon operator. Moreover, under the non-resonance
assumption @(++/3) =0, [51, Theorem 1.6] establishes that small solutions to

(02 — 92 4+ Du = a(@)u? + Bou’ + p(x)u® on R (1.9)

decay in LY at the free rate t™2 and that their asymptotics feature logarithmic phase
corrections (caused by the constant coefficient cubic nonlinearity ,Bou3).
Recently, Germain-Pusateri [20] studied the following general 1D quadratic

Klein—-Gordon equation with a linear potential

(32 — 32 +14 V(x)u = a(x)u? on R, (1.10)

where a(x) is a smooth coefficient satisfying a(x) — ¢,,, as x — =oo for arbitrary
fixed ¢, € R (and is thus not necessarily localized) and where H = —32 + V(x) has
no bound states. Under the key assumption that the distorted Fourier transform of the
solution %(t,0) = 0 vanishes at zero frequency at all times t € R, [20, Theorem 1.1]
establishes that small solutions to (1.10) decay in LY° at the free rate t~7 and that
their asymptotics feature logarithmic phase corrections (caused by the “non-zero limits”
by

potentials, while in the case of non-generic potentials this condition only holds for

« Of the coefficient a(x)). We note that @(¢,0) = 0 holds automatically for generic
solutions that are “orthogonal” to the zero energy resonance of H (in the sense of an
L1-L° pairing). The latter can for instance be enforced by imposing suitable parity
conditions. As an application, [20,Corollary 1.4] yields the full asymptotic stability
of kinks with respect to odd perturbations for the double sine-Gordon problem in an
appropriate range of the deformation parameter.

For closely related results on modified scattering for nonlinear Schrodinger
equations, we refer to [5, 8, 9, 19, 21, 23, 29, 34, 48, 49, 54, 58, 59, 61, 63] and the
references therein.

Finally, we anticipate that local decay estimates for the perturbed Klein—Gordon
propagator eit\/m2_+HPC play a major role in the proof of the main result in this paper.
Such local decay estimates for much larger classes of unitary operators originate in the
works of Rauch [64], Jensen-Kato [32], and Jensen [30, 31], see also [15, 17, 18, 22, 28, 33,
37, 38, 44, 47] as well as the survey [65] and the references therein.
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1.3 Main result

We are now in the position to state the main result of this paper on the long-time
behavior of small solutions to (1.1). Without loss of generality we set the mass parameter
m = 1. We write (D) = /1 + H on the positive spectrum of H = —8§ + V(x) and we denote
by F the distorted Fourier transform associated with H. We refer to the beginning of
Section 2 for a brief review of some basics of the spectral and scattering theory for
Schrodinger operators H.

Given a solution u(t) to (1.1), we introduce the new variable
1 =
v(t) = E(u(t) — (D) 9,u(t))
that satisfies the first-oder Klein—-Gordon equation
~ 1 ~
(3, — i(D))v = z—i(D)_lPC(oz(-)(V +7)?) on R !

with initial datum v(0) = 3 (P uq — i(D)~'P,u,). It suffices to derive decay estimates and

asymptotics for the variable v(t) since we have that
u(t) = v(t) + v(t). (1.11)

We will occasionally use (1.11) as a convenient short-hand notation. The following

theorem contains the main result of this paper.

Theorem 1.1. Assume that the real-valued potential V e L®(R) N C3(R) satisfies
x)°v(x) € LY(R) for all 0 < ¢ < 3, and that H = —32 + V(x) exhibits a zero energy
resonance ¢(x), cf. Definition 2.4. Suppose that ||(X)1501(X)||H3 < o0. Then there exists an

absolute constant 0 < ¢y < 1 such that for any initial condition v, satisfying
& 1= 1(x)°Vollg2 < &,
there exists a global-in-time solution v € C(R; H,%) to

(3, — i(D))v = %(ﬁ)*lpc(a(-)(v +1)%) on R!*? (1.12)

with initial datum v(0) = P_v,. Moreover, the solution v(t) exhibits the following

asymptotic behavior as t — oo:
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e (Resonant Case) Suppose
FlagXl(v/3) #0 or Flag?](—/3) # 0.

Then it holds

log(1 + (@)

OIS (1.13)
(t)2
In addition, v(t) admits a decomposition
V(t) = Vfree(t) + Vmod(t)/ t > ]-I
with the following properties:
(i) The component vg,,(t) satisfies
, t>1. (1.14)

(S

&
”Vfree(t) ”L;0 rS <t

Moreover, Vg, (t) scatters to a free Klein-Gordon wave in H? in the sense

that there exists v, € H2 such that

82

1)z

”Vfree(t) - eit@) Voo ||H§ 5 ’ t>1. (1.15)

(ii) There exists a small amplitude a, € C, |qy| < ¢, such that the component

Vimod (t) is given by
235 [ it-9B) 751 2, €%
Vinod(t) = 007/1 e PN D) 1P (ap )Tds, (1.16)

where the real constant ¢, only depends on the scattering matrix S(0) of

the potential V(x) at zero energy, cf. (2.10), and is explicitly given by

1 T(0)2
C,

0 = (271)% TR (0) where T(0) # 0. (1.17)

€20z dunp G0 Uo Jasn meT AsIoAlun sleA Ad GS0£Z2S9/81 L G/9/€Z0Z/310me/ulwl/wod dnoolwspese)/:sdjjy Woj papeojumoq



On Modified Scattering for 1D Quadratic KG 5127

For arbitrary 0 < § < 1, there exists a constant C; > 1 such that we have

uniformly

&2 V3 V3
[Vimoa (t: )| < C(;(t—% whenever x| < (7 - 3)t or |x|> (7 +8)t,

(1.18)

and along the rays x = j:@t the asymptotics of v,,,,(t) are given by

3 az . it~ log(t 2
Vmod(t,:tit) = c%—oelze‘%]-‘[ozgoz](:pﬁ) gl( ) + Or (8—1) t> 1.
2 8 tz b \¢z
(1.19)
In particular, when a; # 0 the decay estimate (1.13) is sharp.
e (Non-Resonant Case) Suppose
]?[oupz](@) =0 and ]-N'[agoz](—~/§) =0.
Then it holds
vl S —- (1.20)

[N

Moreover, v(t) scatters to a free Klein—-Gordon wave in H§ in the sense that

there exists v,, € H2 such that

- 2
v(t) — Py, <t
| g5

, t>1. (1.21)

Nl

We proceed with several remarks on Theorem 1.1:
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(i)

(ii)

(iii)

The amplitude a; € C in the statement of Theorem 1.1 is explicitly given by

_ Lo V) — (0, 0Ol — Lo a()72
ag = (g, vy) + 2(%05( o) — (@, a()|vgl®) 6(%“( Vo)
+ / e (g, ()35 (€75 v(s)) (e Fv(s))) ds
° (1.22)
- /0 e ¥ (@, a(1)d;((e"¥v(9))(e¥V(s)))) ds
1 [® . - -
-3 /0 e 35 (g, ()35 (57 (s)) (657 (s))) ds,
where we use the notation (f,g) := fkmg(x) dx. In particular, we have

ay # 0 when (¢, v,) # 0.

We did not optimize the decay and regularity assumptions on the initial data
and on the potential. The proof of Theorem 1.1 given below can be improved
to some extent to sharpen these assumptions.

Under certain conditions, the nonlinear solution v(¢) to (1.12) does not
exhibit modified scattering in the sense that it just scatters to a free
Klein—-Gordon wave. On the one hand, this occurs in the non-resonant case
Flag?(£+/3) = 0 for arbitrary (sufficiently small) initial data. On the other
hand, this may also occur in the resonant case for initial data satisfying
certain parity conditions. From the explicit formula (1.22) for the coefficient
ag it is evident that a; = 0 (and thus v,,,4(t) = 0) if ¢(x) is even and
v(t) as well as a(x) are odd, or if ¢(x) is odd and v(t) as well as a(x)
are even. Of course, a parity condition on the solution v(¢) to (1.12) in
turn imposes corresponding parity conditions on the potential V(x) and the
eigenfunctions of H = —32 + V(x).

The Klein—-Gordon model (1.1) considered in this paper is a simplified model
for nonlinear Klein—Gordon equations with non-generic potentials such as
(1.4) and (1.5) that govern the dynamics of the dispersive remainder term in
a perturbative approach to the study of the asymptotic stability of kinks.
An important next step is to additionally allow for non-localized cubic
nonlinearities fyu® on the right-hand side of (1.12) and ultimately for non-
localized variable coefficient quadratic nonlinearities in the presence of
general non-generic potentials (say without bound states) without making
any parity assumptions on the initial data. In fact, even just for the case of

a pure non-localized cubic nonlinearity, it remains a very interesting open
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problem to establish decay estimates and asymptotics for small solutions

to the 1D Klein—-Gordon equation
(82 — 82 + V(%) + Du = Byu® (1.23)

with a general non-generic potential V(x) (say without bound states) and
without making any parity assumptions on the initial data. In the case of
generic potentials and in the case of non-generic potentials under suitable
parity assumptions on the initial data (or under a related assumption
about the vanishing of the distorted Fourier transform of the solution at
zero frequency), two approaches have emerged over the past years to prove
modified scattering for small solutions to (1.23): one based on the distorted
Fourier transform, see [5, 19-21, 61, 62], and one using the wave operator, see
[9, 12]. Both approaches appear to crucially rely on genericity assumptions
or parity assumptions to by-pass the effects of the threshold resonances of
the linear operator.

The proof of Theorem 1.1 builds on the spatial localization of the
variable coefficient «(x) on the right-hand side of (1.12) in conjunction
with the use of refined local decay estimates. Correspondingly, it is not
straightforward to extend Theorem 1.1 to the above mentioned more general
settings involving non-localized quadratic or cubic nonlinearities. Non-
localized low power nonlinearities are to some extent incompatible with the
use of weighted norms as in the proof of Theorem 1.1.

After completion of this work, in the context of proving the asymp-
totic stability of the sine-Gordon kink under odd perturbations, two of the
authors [56] introduced an approach to study modified scattering problems
for Klein—Gordon equations with non-generic Péschl-Teller potentials by
exploiting specific super-symmetric factorization properties of the corre-
sponding linear Klein-Gordon operators.

We note that the linearized Klein—Gordon equation around a (static) kink
solution to the scalar field equation (1.2) features a spatially localized
variable coefficient o (x) for the quadratic nonlinearity as in (1.1) if and only
if the scalar potential W in (1.2) satisfies W® (¢, ) = 0. For example, this is
the case for the sine-Gordon model, but not for the ¢* model.

We expect that in the presence of a non-generic potential V(x), a slow-down

of the decay rate as uncovered in Theorem 1.1 should occur more generally
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(vi)

(vii)

for coefficients o (x) that may also assume non-zero limits a(x) - o, # 0
as x — +oo. However, we would like to emphasize again that it is by far
not straightforward to extend Theorem 1.1 to this more general setting.
The proof of Theorem 1.1 crucially exploits the spatial localization of the
coefficient «(x) in conjunction with the use of refined local decay estimates
for the perturbed Klein—Gordon propagator.

The extension of Theorem 1.1 for arbitrary small initial data to non-
localized coefficients «a(x) likely requires to further advance normal form
techniques in the presence of a non-generic potential. The difficulty of
this step is deeply related to a loss of regularity of the distorted Fourier
transform of the profile g(t) := e D y(¢) of the solution to (1.12) caused
by the quadratic nonlinearity. This also manifests itself prominently in the
difficulty to derive slowly growing energy estimates for a Lorentz boost
Z = td, + x9, of the nonlinear solution to (1.1) in the flat case V(x) = 0.
Indeed, when the Lorentz boost falls onto the variable coefficient of the
quadratic nonlinearity, it produces a strongly divergent factor of t that is
hard to sufficiently compensate for.

For generic potentials as well as for non-generic potentials in the
special case of solutions that are “orthogonal” to the threshold resonance,
these difficulties have very recently been overcome in the remarkable
work of Germain-Pusateri [20]. We note that under the assumptions of
[20, Theorem 1.1], the nonlinear solutions to the model (1.10) decay in LY
at the usual free decay rate t~2 and their asymptotic behavior features
logarithmic phase corrections “caused by the non-zero limits” ¢, of the
coefficient a(x) in (1.10) at spatial infinity.

For a related discussion, we refer to Remark (6) following Theorem
1.1 in [20] and to the remarks at the end of Subsection 2.3 in [20].

The explicit expression (1.16) for v,,,;(¢t) indicates that we would have
Vmod(t) = 0 for generic potentials V(x), because their transmission coef-
ficient vanishes at zero energy T'(0) = 0, whence ¢, = 0.

The proof of Theorem 1.1 easily generalizes to arbitrary mass parameters
m # 0 in the Klein—-Gordon model (1.1). Then the resonant case corresponds

to the condition

Flag?l(vV3m2) #0 or Flap?](—/3m2) #0,
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and a logarithmic slow-down of the decay rate also occurs along the rays
X = :t*/Tgt.

In the resonant case when a, # O the distorted Fourier transform of the
profile g(¢) := e~ D)y (t) of the solution v(¢) to (1.12) diverges logarithmically
at frequencies & = ++/3, see Remark 4.1. Specifically, one has that

2
G(t, £/3) = cﬁ%ﬁ[awz](iﬁ) log(t) + O(), t>1,

which indicates that the free LY decay rate =7 cannot be expected for the
solution v(t).

In the resonant case, the derivation of the asymptotics of v, ,;(¢) in the proof
of Theorem 1.1 along the special rays x = :t*/Tgt also applies to nearby rays
x = At with | — (:l:“/Tg)| « 1. One finds that uniformly for all |A» — (:l:‘/Tg)| <1,
a_(z)eiﬁei(lxz)létﬁ[a(pzl(_ A : )A(t, A)
2 (1-22)3 (1-22)2

82
<C—, t>1,

Vinod (t, At) — C2

1
t2 t2

where the amplitude correction A(t, 1) is of the form

t% eis(b(kﬂ)*%)
A(t, ) :=/ ——ds.
1 S

Clearly, along the special rays A = :I:‘/Tg, this yields the asymptotics (1.19)
featuring a logarithmic slow-down of the decay rate, while we obtain
uniformly for all nearby rays A # :I:“/T§ that

A, M| S ;> 1.

2-(1-22)"2
It appears that the novel type of modified scattering behavior uncovered
in Theorem 1.1 as well as in [51, Theorem 1.1] is reminiscent of a new
phenomenon observed in the remarkable recent work of Delort-Masmoudi
[12] on long-time dispersive estimates for odd perturbations of the (odd)
kink 4. (x) = tanh(%) in the ¢* model. We recall from (1.4) that the

corresponding remainder term u(t, x) = ¢ (¢, X)—Yya(X) satisfies the equation

(07 — 92 +2— SSechz(%))u =-3 tanh(\%)uz —ud. (1.24)
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5132 H. Lindblad et al.

The linear operator —8§ +2 - 3S€Ch2(%) exhibits an even threshold reso-

nance
px)=1-— gsech2 (i) (1.25)
2 V27!
and possesses an odd internal mode with eigenvalue 2, 1 = % given by
_3,_1 X X
Y(x) = 27132 tanh(ﬁ)sech(ﬁ), (Y,V) = 1. (1.26)

Note that for odd perturbations one can disregard the even zero eigenfunc-
tion of the linear operator stemming from the translation invariance of
the model. To study the long-time behavior of odd solutions to (1.24) one

therefore enacts a spectral decomposition
u(t,x) =zt)Y(x)+w(,x), (Y,w()) =0, (1.27)

where z(t) = (Y, u(t)) is the projection of u(t) onto the internal mode Y (x).
The presence of the internal mode is a major difficulty in the study of
the asymptotic dynamics of u(¢,x). In fact, at the linear level, it would be
an obstruction to decay. However, for the nonlinear Klein—-Gordon equation
(1.24), a coupling of the oscillations of the internal mode to the continuous
spectrum occurs through the so-called nonlinear Fermi Golden Rule, see
Sigal [67] and Soffer-Weinstein [68] for pioneering works in this direction.
This mechanism was exploited by Kowalczyk-Martel-Mufioz [41] to estab-
lish the decay of w(t) in a local energy sense and the decay of z(¢) in
an integrated sense. Delort-Masmoudi [12] recently obtained explicit decay
rates for z(t) and for w(t) in LY for times up to T ~ £~4*¢ for arbitrary c > 0,
where ¢ is the size of the initial data measured in a weighted Sobolev space.

It appears that the limitation to times O(¢~%) in [12] stems from a
possible slow-down of the decay rate of w(t,x) along the special rays § =
:I:\/g. The latter is caused by a resonant source term in the nonlinear Klein—
Gordon equation for w(t) whose contribution can be thought of to have the

following schematic Duhamel form

t 2 2, x 2ius
—s)./—82+2—3sech?(X e
/ ez(t s) + sec (ﬁ)PC(O(YZ) ds (1.28)
1

N
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with a(x) = tanh(%) and Y (x) defined in (1.26). It arises from the quadratic
contribution of the long-time behavior of the projection z(t)Y(x) to the
internal mode in the nonlinear Klein—-Gordon equation for w(t), see the
spectral decomposition (1.27) above. Interestingly, the structure of the
source term (1.28) is reminiscent of the source term (1.16) defining v, ;(%)
in the statement of Theorem 1.1. By the same mechanism described in
Subsection 1.4 below on the ideas of the proof of Theorem 1.1, the source
term (1.28) is resonant at the distorted frequencies §, satisfying ,/2 + f;‘ﬁ =
2u, that is, §, = =£2,if f"[aYz](isu) # 0. Correspondingly, one can expect a

slow-down of the decay rate of w(t, x) along the associated rays

X___ b ﬁ

t \/@ 3

In the context of the ¢* model, the resonance condition F [aYZ](:I:su) # 0is
referred to as the nonlinear Fermi Golden Rule and it is in fact key for the
projection z(¢)Y (x) of u(t) to the internal mode to decay at all as t — oo.

We stress that the displayed form (1.28) of the contribution of the
resonant source term is very schematic and just serves here to highlight
the intriguing resemblance of the source term (1.16) defining v, 4(¢) in
the statement of Theorem 1.1 and the source term (1.28) appearing in the
analysis of perturbations of the ¢* kink. While the source term (1.16) is
ultimately caused by a threshold resonance, the source term (1.28) is caused
by the internal mode of the ¢* model. Finally, we note that a possible
slow-down effect of the decay rate of w(t) in (1.27) due to the threshold
resonance (1.25), similar to the result in Theorem 1.1, is not expected for
odd perturbations of the ¢* kink since these are “orthogonal” to the even

threshold resonance (1.25).

Remark 1.2, A natural question is whether the non-resonance condition f[ag&z](ﬂ:ﬁ) =
0 happens to hold in concrete applications to asymptotic stability problems for kink
solutions. It turns out that the sine-Gordon model features this miraculous vanishing
property! Recall from (1.5) that the equation for a perturbation of the static sine-Gordon

kink involves the variable quadratic coefficient

a(x) = sech(x) tanh(x)

€20z dunp G0 Uo Jasn meT AsIoAlun sleA Ad GS0£Z2S9/81 L G/9/€Z0Z/310me/ulwl/wod dnoolwspese)/:sdjjy Woj papeojumoq



5134 H. Lindblad et al.

and the Schrédinger operator
= —3,% — 2sech?(x).

The latter belongs to the family of Poschl-Teller potentials, see for instance

[16, Problem 39] and admits a zero energy resonance that is explicitly given by
¢(x) = tanh(x).
It turns out that the distorted Fourier transform with respect to H of a¢? satisfies
Flag?](£v3) = 0. (1.29)
The authors are not aware of a reference in the literature for this observation (This
observation has previously been made by Jacob Sterbenz (unpublished note).). Below we

provide a simple proof of (1.29) using contour integration.

Proof of (1.29). By direct computation one can verify that the Jost solutions of the
Schrédinger operator H = —32 — 2sech?(x) are explicitly given by

i — tanh(x)

ix&

fix, &) = E 1 e,
_ —i& —tanh(x) _
fx8) = T

The distorted Fourier basis associated with H therefore takes the form

—tanh(x) X6 forg >0

(x,8) := ! o
e(x,

\/_ T(— S)%?(X)em for& <0,

where T(¢) denotes the transmission coefficient associated with H. Thus, in order to

evaluate the distorted Fourier transform of a¢? at frequencies & = ++/3,

Fla?|(EV3) = / e(x, £/3) a(x)p(x)? dx
R
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it suffices to evaluate the integrals

) inh3
Z,:= / ei“/gx(j:i\/g— tanh(x))LLL(X)
R cosh™(x)
To this end we observe that the function
, inh3
F,(2):= eﬂ*/gz(:ti\/g — tanh(z))LAL(Z), e C,
cosh™(z)

is meromorphic on C with poles at z; = i%(2k + 1), k € Z. It is easy to see that the
integral 7, can be obtained from the contour integral of F, along the rectangle with

vertices at +¢x, ¢ + ilw as £ — oo. By the residue theorem, it follows that

o
T, =2mi » Res,_, (F).
k=0

Using that cosh(z, + w) = i(—1)* sinh(w) and that sinh(z, + w) = i(—1)* cosh(w), we
find that

3 4
Fo(z, +w) = (~1)k1je¥V372k+D) (:I:i«/§ eiiﬁw—c?8h4(w) - eﬂﬁW—C?ShS (W)).
sinh*(w) sinh®(w)

Then we compute

)
sinh™(w) 3

Res (eiiﬁw cosh*(w) )
w=0 sinh®(w)

Correspondingly, we obtain for all k € Z that

1. b4 . i
ReSZ=Zk(Fi) — (—l)k lleq:\/gz(2k+1)(j:l\/§(iﬁ) — (—1)) =0,

whence Z, = 0, which implies the asserted vanishing property F[a¢?|(£+/3) = 0. [ ]
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1.4 Proof ideas

The analysis of the asymptotic behavior of small global solutions to the 1D quadratic

Klein—-Gordon equation

(3, — i(D))v = %(5)_1Pc(a(~)(v +¥)%) on R (1.30)

under the assumptions of Theorem 1.1 begins with the observation that due to the
spatial localization of the coefficient «(x), the nature of the quadratic nonlinearity
a(x)(v + 7)? is entirely determined by the local decay of the nonlinear solution v(t).

It is therefore instructive to first study the interactions in the quadratic
nonlinearity «(x)(v(t) + 7(t))> when v(t) is replaced by a linear Klein-Gordon wave
Vyin(t) = €D)P_ v, Since H = —92 + V(x) is assumed to exhibit a zero energy resonance
@(x), the local decay of ei“f))PCVO (measured in weighted spaces) is only of order 3.
Importantly, this slow local decay solely stems from a contribution of the zero energy
resonance ¢(x) in the sense that upon subtracting a suitable projection onto ¢(x),
the bulk of the linear Klein—-Gordon wave eit(f”PCVO exhibits faster local decay. More
specifically, one of the key local decay estimates for the Klein—-Gordon evolution on the
line, which we establish in Subsection 2.3, reads

e % ot
H <X) o (elt<D)PCVO — Cot—l«p, V0>(p) L
2

1
) S t—§||(X>GV0||L§, t>1, (1.31)
X 2

where o > % and the real constant ¢, defined in (1.17) only depends on the scattering
matrix S(0) of the potential V(x) at zero energy. The local decay estimate (1.31) suggests

that the leading order behavior of «(x)(vy, (t) + f/h-n(t))2 should be of the schematic form
2 21 ( iz oit 2 2 —iE ,—2it T2 1
SGape* < (€2 e (9, vo)? + 21(p, vo)l* + e Ee 2 (g, vg))?) + O (), 12 1.
Correspondingly, we can expect the asymptotic behavior of a solution v;,; () to

! (D) P (a() (Vi + Vpi)?) on RIFE (1.32)

(3 = UDNVinp =

to be determined by the contributions of three source terms given in Duhamel form by

2 t

C . L~ ]_ T . T fe ———

> / ¢t~ PN D) Potap?) < (2 € (g, vo))? + 21(, vo) P + € Ee 25 ((p, vo))?) .
1

(1.33)
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1 of these source terms, the overall time

Due to the non-integrable time decay s~
oscillations in the integrand ultimately determine the long-time behavior of v;,, ().
This becomes particularly transparent on the distorted Fourier side, where the overall
oscillations in time s for the three source terms in the parentheses in the integrand
of (1.33) are respectively given by i@~€) ¢=is¢) and e~@+E), where (£) = (1 + £2)2.
While the last two have good oscillatory behavior at all frequencies, the phase of /S~ {)
vanishes when 2 — (§) = 0, that is, at frequencies & = ++/3. In the non-resonant case this
is offset by the vanishing of Flag?l(£+/3) = 0 at these specific frequencies. However,
in the resonant case, where Flap?]l(v/3) # 0 or Flag?l(—v/3) # 0, these observations
indicate that the long-time behavior of v;,;(t) decomposes into the contribution of a

resonant source term of the form

c2 rto. ~ e2is
_q/ el t=9D)p (4y?) < ds,
21 /1 N
and a bulk term that can be expected to asymptotically behave like a free Klein—-Gordon
wave.

It turns out that the study of the asymptotic behavior of the nonlinear solution
v(t) to (1.30) can effectively be reduced to the above heuristics. The key step to achieve
this reduction is to identify the precise leading order behavior of the variable coefficient

quadratic nonlinearity o (x)(v(t) + 7(t))?. To this end we introduce the function

iZ it =1 gif pilt—s) )

w(t) = Cg—— (@, Vo)p + —_/ Co— (. a()(v(s) + 7(s)) )pds, t=1, (1.34)
tz 2i Jo (t—s)2

that can perhaps be thought of as a “projection” of the nonlinear solution v(t) to the

zero energy resonance ¢(x). Note that we may write w(t,x) = a(t)e(x) with the time-

dependent coefficient

i7 it 1 t=1  pif pit—9) 9
a(t) := cg— (9, vp) + T/ co— (. a()(v(s) + 7(s))")ds, t=1. (1.35)
t2 tJo (t—s)2

In Proposition 3.1 we establish the following local decay bounds for the nonlinear

solution v(t) to (1.30) via a bootstrap argument

sup {<t>—<°+> Iv®)lgz + B2 10 V@) 2 + OIE) 1~ xoE)VD 2
te

+ (BT VHVDl 2 + (B0 v E)lz) S e
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The proof of Proposition 3.1 crucially exploits the spatial localization of the coefficient
a(x) in conjunction with several local decay estimates for the Klein-Gordon propagator

”<5>PC summarized in Corollary 2.17, in particular (1.31). While v(t) has the slow local
decay ||{x)~° v(®)llz2 < gt*%, we then conclude in Corollary 3.2 that the difference v(t) —

w(t) enjoys the faster local decay

— 1
1{x)"° (v(@®) —w®)llz2 < 7 t>1.
The local decay bounds on v(t), in particular the faster local decay of the time derivative
of the “phase-filtered” component e~*v(t) given by | (x)~° 8t(e*itv(t))|| 12 < et~! enables
us in Corollary 3.3 to extract the asymptotics of the time-dependent coefficient a(t)
given by

i7 ot

1
a(t) =cy—— aO+OLoo( ) t>1,
t2 t

with a, defined in (1.22). This suggests that the leading order behavior of the quadratic

nonlinearity «(x)(v(t) + ¥(t))? is of the form

2itg2 4 2)q,|2 + e i e %G 2)+(9Loo(

)

Analogously to the preceding discussion of the simplified equation (1.32), we are

(X)) (@(t) + at))? = ca(x)p(x)? (e Ze

o~
N\wl =

reduced to analyzing the asymptotic behavior of the contribution of the possibly
resonant source term

2is

285 [* 9By -1 2\ €
Vmod(t) = C07A el( —s) )(D>7 Pc(ago )T dS,

and of the bulk term Viree(t) 1= V(t) — Vpyoq(D).

The derivation of the asymptotic behavior of v, ,(t) and Vfree(t) asserted in
Theorem 1.1 is carried out in Section 4. It combines the local decay bounds for v(t)
established in Proposition 3.1 and Corollary 3.2 with pointwise linear estimates and
asymptotics for the propagator ei“ﬁ)PC established in Lemma 2.18 and in Lemma 2.19. In
particular, in the resonant case, a careful stationary phase analysis of the asymptotics
of v,,,4(t, x) reveals the logarithmic slow-down (1.19) of the decay rate of v,,,4(t) along
the rays § = q:*/T§ that are associated with the resonant frequencies & = ++/3 for which

the phase of €52~ () yanishes.
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This concludes a sketch of some of the main ideas entering the proof of

Theorem 1.1.

1.5 Notation and conventions

For non-negative X, Y we write X < Y or X = O(Y) if X < CY for some constant C > 0.
We employ the notation X <, Y to indicate that the implicit constant depends on a
parameter v and we write X « Y if the implicit constant should be considered as small.
Further, we use the Japanese bracket notation (x) = (1 + Xz)%, (t) = 1+ tz)%, and
(&)y=Q0Q+ 52)%. For a real number b € R we denote by b+, respectively by b—, a number
that is larger, respectively smaller, than b, but that can be taken arbitrarily close to b.

Throughout we denote by x,(§) a smooth cutoff to |£] < 1, equal to 1 near £ = 0.
Moreover, we denote by x (¢§) a smooth bump function with support near || >~ 1.

We denote the inner L2 product by (f,g) := meg(X) dx, and we denote the

“projection” onto the resonance ¢ by

(0 ®9)g = (9, g)op. (1.36)

We use the notation f(’g‘) = ]?[f](é) for the distorted Fourier transform associated with
H = —32+V. Finally, we work with the following definition for the Sobolev spaces H)’§ (R),
k=1,2, given by

k
gl == D 13kgll2-

J=0

2 Spectral and Scattering Theory

This section is devoted to the study of the linear flow generated by the Klein—-Gordon
equation with a potential. In other words, we investigate the linear PDE (8t—i(f)))v =P f
with datum v(0) = P,v, where v, lies in suitable weighted Sobolev spaces. Recall that
(D) is the nonnegative operator with the property (E)ZPC =(1+HP,and H = 32+ V
with ¥ and finitely many of its derivatives decaying at a sufficiently rapid polynomial
rate. Moreover, P, is the projection onto the continuous spectrum of H. Throughout, we
will focus on the case where H exhibits a 0 energy resonance that is commonly referred
to as the non-generic case. A 0 energy resonance simply means that there is a globally
bounded nontrivial solution of Hf = 0. Or, equivalently, that the bounded solution as

x — —oo, which is unique up to a nonzero constant, is linearly dependent with its
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cousin that remains bounded as x — +o0. All of this is equivalent with the Laurent
expansion of the resolvent (H — z%)~! around z = 0 in the upper half plane Imz > 0,
starts with a z~! power. The Laurent expansion needs to be understood in the weighted
L?(R) sense, and the coefficient of z~! is a rank-1 operator given by (1.36). In the generic
case, there is no singular power in this expansion.

The easier generic H is essentially a special case of our analysis and statements
relevant to it can be obtained by carrying out straightforward modifications. An
important technical device in our estimates is the distorted Fourier transform. This
refers to the map f — f(§) := [f(x)e(x,£)dx, and its inverse f(x) = [f(&)e(x,&)ds,
which holds for all f € L' N L?(R) that are perpendicular to all eigenfunctions of H.
Here He(-, &) = &2e(-,£) suitably normalized so that Plancherel holds with spectral
measure d§, that is, [|f|, = ||f||2. In the non-generic case the distorted Fourier basis is
discontinuous at § = 0. We therefore do not use it for small energies but rather directly

work with the resolvent (Green function).

2.1 Spectral theory and distorted Fourier transform

This subsection recalls the Jost solutions, and the standard Volterra perturbation

theory needed to construct them.

Definition 2.1. Fix two positive integers N, and M, both exceeding 2. We consider
H = —02 + V on the domain C3,,,,(R) C L*(R) with real-valued continuous V € L*(R) N
CMo(R), and (x)M V¥ (x) € L}(R) for all 0 < ¢ < M,. The Friedrichs extension of H is
self-adjoint with domain H?(R).

For such V, it is a standard fact that the spectrum of H consists of [0, 00),
which is essential spectrum, and finitely many negative simple eigenvalues, more
precisely the number of eigenvalues must be less than or equal to 1 + fR |x||V(x)| dx, see
[7, p. 149]. Moreover, the spectrum on [0, c0) is absolutely continuous, which follows
from the usual explicit representation of the Green function, that is, the kernel of the
resolvent (H — z?)~! as Imz — 0+, see Lemma 2.6. As already mentioned, 0 energy
occupies a special role here and the resolvent may or may not be singular around z = 0.
The latter is generic, whereas the former is non-generic. It is worth mentioning that 0
cannot be an eigenvalue under our assumptions on V, since the solutions f of Hf = 0
can only approach constants but not decay as x — $oc0. It can only be a resonance.

We now begin the technical work by recalling basic notions of scattering theory

on the line. See [7] for much sharper statements. Throughout, constants of the form
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C(V) depend on V only via the norms ||(x)M° V¥ (x)||;: for 0 < ¢ < M,. Constants may also
depend on the resonance function ¢, see Definition 2.4 below. The latter is only relevant

for estimates involving O energy.

Lemma 2.2. Let V(x) be as in Definition 2.1. There exist unique solutions f, (x, £) for

every £ € R of

Hf (- 6) = E2F (&)

satisfying f,(x,&) ~ e*™*¢ as x — +oo. They are of the form f, (x,&) = e**m_ (x,&)
where m(x,&) ~ 1 as x — =oo, and one has the bounds |8§8§mi(x,§)| < C for all
0<k<M,0<¢<Ny—1uniformlyin +x > 0,& e R.

Proof. We solve the ODEs
mi(x, &) £2iEm'(x,§) = V(x)m,(x,§)

by means of the Volterra equation

00 rY-Xx
m,(x,€) =1+ / / e2t dt V(yym, (7, ) dy

(2.1)
[} 21§(y X) _ 1
=1 +/ ——V(y)m, (y,§dy
X
By iteration one finds that for all x > 0 and uniformly in § € R
o

m,(x,6) — 1| <e’® -1, yx :=/ yIV(y)ldy (2.2)

X

An analogous bound holds for |m_(x,&) — 1| on x < 0. Next, differentiating (2.1) in &

yields

oo

y—x ,
dem, (x,§) = 2i /X /0 et edt V(y)ym, (v, &) dy

(2.3)
o0 emy X _q
+ / — 57— Vom, (v, &) dy
X
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whence, with Im, (x,§)| <M forall x > 0 and ¢ € R,

|8gm+(x,é)|§/ (y—X)ZIV(y)IMdy+/ Y —=0IVWIom, (v, &) dy

X

- (2.4)
< @D, px) = / V2V dy

where the last line follows by iteration. Similarly one checks that

102m., (x, 8)] < c/ 1 +y) V)l dy

forall x > 0, § € R, and C = C(V). The higher ¢ derivatives are handled analogously.
Note that in particular f, (x, &) are continuous in (x,&) € R2. For the derivatives in x we

compute

00 ez;’g(y—x) -1
Do, (x,€) = / VM, .6 dy

X

_ Ooa wv d (2.5)
——/X v 2if yym, (v, §)dy :

o0 Q2i(y—x) _ |
- [ eV m 56+ Vam. 5, dy

which implies the uniform boundedness of 3,m_(x,£) inx > 0, £ € R from yV'(y) € L.
The higher x-derivatives follow by repeating this procedure. For the mixed derivatives,

we combine the two Volterra methods. |
Next, we establish symbol-type behavior for large &. Throughout, m/, =9, m,.

Lemma 2.3. With V as in Definition 2.1, and with m_ as in Lemma 2.2,

sup olm.(x,£)| < C(V, &)+ (2.6)

forall |£] > &) > 0 and 1 <j < N,. Furthermore, the same bound holds for x derivatives:

sup |olm!.(x,£)| < C(V, &)1 2.7)

forall || > &) >0and 1 <j <N,.
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Proof. We freeze &, > 0 and allow constants to depend on it. Returning to the Volterra

equation (2.1), we compute

o) eZiS(y—X) -1
B, (x,6) = — / G VOm r.ody

X

00 Q2iE(Y—X) _

© eZiS(Y_X)
+/ Y—(y—x)V(y)m+(Y'5)dY+/ 2i¢

2ie? V(y)ogm, (v, &) dy

- —/w A ym, (&) dy
x 2i&2 R
00 ezié(yfx)_l
2i

0 Q2iE(y—X)
—/X —5 -0 Vym, (¥, 8] dy+/x V(y)dem, (v, &) dy

21£2
whence, by the bounds of Lemma 2.2, and Volterra iteration,

sup [9;m, (x,§)] < C(V)§

x>0

Repeating this procedure yields

sup [3fm., (x,£)| < C(V)[§|~°

x>0

and similarly for the third and higher derivatives and m_ on x < 0. For the x-derivatives,

we start from (2.5) to conclude that

o0 eZiS(y—X) -1
0, (x,6) = — / SV Om. 5,6+ Ve 7,6) dy

o0 eZig(Y_X) -1
_/X Tay[(y ~ 0V (y)m,(v,&) +Vy)m, (v, £)]dy (2.8

0 eZiE(y—X) -1
+ / gV Wm 5,6+ V@)em! 7,€) dy

This yields via Volterra iteration, our assumptions on V, and the bound on d;m_(y,§),
that

sup |9, m/, (x, &) < C& 2

x>0

Taking higher & derivatives of (2.8) concludes the proof. |
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The asymptotics of f (x,&) as x — —oo are expressed via the scattering data. In

fact,
TEf &) =f_(, =8 +R_(ES (&) 2.9
TESf (&) =f.C,—E+R . Ef, (&
where TEW(F, (,&),f (&) = —2i& with W = W() being the Wronskian. By
Lemmas 2.2 and 2.3, W € CNo~1(R). The scattering matrix
T
S) = |: e R_(E)] (2.10)
R, (§) T&)

is unitary. We now formally introduce the class of non-generic potentials that we

consider.

Definition 2.4. We assume that H exhibits a 0-energy resonance, that is, that H is
non-generic. This means that W(0) = 0, equivalently, T(0) # 0, and f, (x,0) ~ ¢ # 0
as x — —oo. Thus, there exists a nonzero solution of Hp = 0 with ¢ € L*(R), ¢ # O,
normalized so that ¢(x) = f, (x,0) approaches 1 as x — oo and a nonzero constant as

X — —OQ.

The following lemma collects the analytic properties of the transmission and

reflection coefficients that are needed later.

Lemma 2.5. The transmission coefficient satisfies T € CNo—1(R \ {0}) N CNo—2(R) and
TE =1+0¢", [l > o0 (2.11)

where E%(’)(S_l) = OE ' J)as || > coforall0 <j < Ny — 1. Furthermore, T # 0
everywhere, T is bounded with its first Ny — 2 derivatives on R, and its first Ny — 1
derivatives on |§| > &, for any fixed &, > 0. The reflection coefficients satisfy R, ¢
cNo—1(R\ {0}) N CNo—2(R) and

R. (&) =0¢"Y, |g—> o0 (2.12)
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where 8§O(§*1) = OE ' J)as|g| » oo forall 0 <j < Ny— 1. Additionally, R, is bounded
with its first N, — 2 derivatives on R, and its first N, — 1 derivatives on |£| > &, for any
fixed &, > 0.

Proof. Writing W(f, (-, §),f_(-,£)) =: W(§), we have (with m/, (x,£) = 9, m_ (x,£))

W) =m,(0,8)(=iEm_(0,§) + m_(0,£)) — m_(0,§)(iEm  (0,§) + m/.(0,£))

= —2itm, (0,6)m_(0,8) + m(0,£)m_(0,&) — m_(0,6)m/, (0, §)

By Lemma 2.2, the final two terms are O(1) uniformly in ¢ € R, together with N, — 1

derivatives in &. Thus,

W) = —2i& + 2iE(1 —m,(0,§)m_(0,£)) + O(1)

1-m,(0,§5m_(0,§)=1-m,(0,§)m_(0,§) +1—-m_(0,§)
By (2.1), we have
2i6(1 - m, (0,6)) = — /0 (€257 — 1) V(y)m, (v, &) dy = O(1)
together with N, — 1 derivatives in £. In conclusion,
W) = —2is + O(1)
as & — too with O(1) as above. Thus, (2.11) holds. Around & = 0 we have
1
W) = é/o W'(s§) ds
whence T(€) = —2i( JEw(sg) ds)_l. Since |T(€)| < 1, we have W'(0) # 0 and thus

T € CNo=2(R), and by T(§)W (&) = —2i&, T # 0 everywhere. For large £, we write

G
141r¢)

r€) :=m,(0,6)m_(0,€) — 1+ (—2i&) " (m,(0,£)m”(0,&) — m_(0,£)m,(0,4))

TE =[14+r®]", TE =1

By the preceding, r(§) = O(~!) as £ — oo, and r(§) = OE™?), r'(§) = OE9), etc.,

which concludes the treatment of the transmission coefficient.
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Next we consider the reflection coefficient R_(§), the treatment of R, (§) being
identical. Computing the Wronskian of T(¢)f (-, &) and f_(-, —§) in two different ways
using (2.9), we find that

R_(§)2i€ = TOW(f (-, §),f_(,—§) = T()(m,.(0,5)m_ (0, —§) — m/.(0,)m_(0, —§)).

We may then infer the asserted regularity and decay properties of R_(¢) by proceeding

as above. [ |

By the lemma, T € CYo—2(R), T # 0 everywhere, and

fi(x,8) =TE f (x,—&) + R_(E)f_(x,8)]
f &8 =TE f (x,—§ + R, (E)f .(x,6)]

(2.13)

for all (x,&) € R%. We will use (2.13) for fi(x,&) on the half-axis x < 0, respectively, for
f_(x,&) onx > 0.

The Jost solutions f, give rise to the kernel of the resolvent on the real axis
(approached from the upper half plane), and by Stone’s formula, therefore also to the

spectral measure on the positive half-axis. The starting point is the expression

Fr G OF (7, )Ly + [ 7 O (6, ) 1y

2.14
W(f+('r$)lf7('/§)) ( )

H— (2 +i0) ' (x,y) =

forall x,y e Rand & € R.

Lemma 2.6. The density of the spectral resolution E(d&2) of H on the continuous

spectrum [0, co) has the kernel

E(ds%(x )_|T<s>|2
de V= o

for all x,y € R and all £ € R. Alternatively,

1 | Re[TEf (x,.6)f_(v,8)] x>y
(x,y) = ; (2.16)

Re[TE)f, (v, 6)f-(x,6)] x<y

and all £ € R.
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Proof. By Stone's formula, for x > y,

E(d&?) & o 1 y
de () = —((H = E*+i0) 7" = (H = ¢* = i0) ™) (x,y)
— S WO OF 5,6~ W=, 00 —0F (7, 6)

1
= E(T(E)f+(X,$)f_(Y,§) + T(=6)f (x, =§)f_(y, —§)).

The final line here gives (2.16). On the other hand, using that T(—§) = T(¢), R.(-§) =
R, (&), and the unitarity of the scattering matrix in (2.10), the last line here can be

rewritten as

Ed&?)
de

1
(x,y) = Z[T(E)er(X,é)(T(—f)er(Y, —§) —R_(-§)f_(y.—§))

+ T-E(TEf-(x,8) — R x, ENf_ (v, —8)],

which is the desired expression (2.15) for x > y. By self-adjointness, one has

P%gz)(x, y) = E(ifz) (y,x), which concludes the proof. [ |

The definition of the distorted Fourier transform F can now be read off from

(2.15). Indeed, we define the distorted Fourier basis as

1 [ T(E)f,(x, &) §=0 (2.17)

=T | Teof -6 £<o

and define f (&) = Ff(€) = (e(-, &), f) for all f € L'NL2(R). The reason for writing f_(x, —&)
rather than f_(x, &) is due to the map R — [0, 00), & — £2 of multiplicity 2. We associate

f with the second cover, so to speak, of [0, c0) from & > 0, and f with the first cover by
& < 0. Then, one can read off from (2.15) that

f,9) = (Ff,Fg) Yf.geL'nLi®)

where L2 := P_L%. In other words, Plancherel holds, F : L2 — L? is an isometry, and

F*F = Id;z. Explicitly, the inverse Fourier transform is given by

fx) = (e(x,),f)
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provided f decays sufficiently for this inner product to exist. The reader will easily
recover the standard Fourier transform for V = 0. Note that for generic V, the Fourier
basis vanishes at £ = 0, whereas in the non-generic case there is a discontinuity at zero

energy.

2.2 Sobolev and product estimates

In this subsection we present several technical estimates, in particular a weighted
Sobolev estimate and a product estimate, which will be needed in the nonlinear analysis
in Sections 3 and 4.

Recall that we denote by xy(¢§) a smooth cutoff to |§|] < 1, equal to 1 near
& = 0, and that we denote by x(¢) a smooth bump function with support near || ~ 1.
We assume throughout that V is non-generic, although the following results also hold

generically.

Lemma 2.7 (Kernel bounds). Let N > 1 and k > 0 be integers, and let v € R. Assume
that the potential V(x) satisfies (x)Y+2V® e L1(R) for all 0 < ¢ < max(k — 1, 1). Then we
have for all x,y € R that

[9£(D)" xoE)P,](x, y)| < C(V, N, v, k)z iy) (2.18)

and the same holds for the kernel of \/ﬁXO(H)PC. Moreover, we have for all A > 1 and for
all x,y € R that

A

(D)’ x (D/M)P,](x,y)| < C(V,N, v)ZA”MTy))N. (2.19)
v = v A
[[VE)’x(D/2)P)x,y)| < C<v,N,v>§A CESTL (2.20)

Proof. We have

(D) xoEDB 5, 1) = 5 Tisey / TEf, %, OF(1,6) (€) %02 de

1
+ 5 ix<y) / TEf-(x,EF (7. &) (6) xo(E™) dé

= KI(XIY) +K2(X!Y)
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For the operator vH xo(H)P,, we would have a similar expression but with & xo(éz)
in place of (£)"xo(£2). This does not have any significant bearing on the subsequent

arguments. If x > 0, then we write

1 oo
Kyx,9) = 5 liop) | T x 6m (7, 6) 6 10T ()

1 e

+ E]l[x>y20] [m el(X_y)Em_;’_(Xré)mJ,_(YI _S) (E)VXO(EZ) dé (221)
1 e

+ 5= Tpeyso [ T e (7,8 ) R ©x0 ") d

Integrating by parts N times gives the desired bound on K| (x, y) provided (x)V "2V (x) e
L'(R) for £ = 0,1, see Lemma 2.2. The reason for the N + 2 rather than N + 1, and with
the need to include V' here lies with the transmission and reflection coefficients being
ratios of Wronskians, see Lemma 2.5. The contributions of x < 0 and the kernel K, are
treated analogously. We now consider k > 0 and without loss of generality v = 0. The
latter can be done since yx, can be replaced with any bump function supported near 0,

and we may thus absorb (D)’ into Xo- We compute
1 o0
[0 x0H)P,|(x,y) = g]l[x>y]/ TE)of, (x,6)f (v, §) (5)”)(0(52)(315
- (2.22)

2n _

1 o
+—]1[X<y1/ TE)0f_ (X, OF, (7, €) (§) x5 d§

Notice that the £6,(x — y) singularities that arise by differentiating 1j,_,;, resp. 1j,_,
cancel each other. For k = 2 we could differentiate once more. However, we write

32 = V — H, whence

[0Zx0(EDP,](x,y) = [(V(x) — H) xo(H)P,]|(x, V)

The right-hand side satisfies the bounds in (2.18), multiplied by the factor 1 + ||V| <
1 + ||[V’|l;. The bound (2.18) with k = 1 requires (x)"*1V©® ¢ L1(R) for ¢ = 0,1 by (2.22)

and Lemma 2.2. The higher order derivatives in x follow by iteration, for example

[02 %0 (EDP,](x,y) = 8, [(V(x) — H) xo(H)P,](x,y)

[0%x0 (HDP:](x,y) = [(V(x) — H)?xo(H)P,] (%, )

with (V - H)2 =V2 - HV — VH + H? = V? - 2VH + V" + 2V'3, + H.
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For (2.19) consider the operator
M, :=2""(D)"x(D/»), r=1
with the distorted Fourier representation

M; P.g(x) = TEf(x,6)27"(E) x (E/M)g(E) A&

1 o0
=,
0 (2.23)
i \/% /m T(—6)f_(x,—6)A™" (€)' x (€/1)F(&) d&

Assuming x > 0 and inserting the expression for the distorted Fourier transform g yields

the explicit kernel representation

M;_PC(X,Y)
00 ) d
= /0 IT&) 12 sm, (x,6)m (v, —£)0, (A~ (E) x ¢/ %
00 . ) . d
+ /0 TE)e™ m, (x,6) (e m_(y,&) + R_L(=£)eT m_(y, —£))0_(»)A " (€) x (/1) 5
(2.24)

for the contribution of the positive frequencies & in (2.23). We leave the analogous
contributions of negative & to the reader. Combining the oscillatory integrals with phase

(x — y)¢ and rescaling &€ = An leads to the estimate

o d
i [ e (1T G P (7, —a6 )+ TGy o)} ) 3

< CMAAx—y) Y

We integrated here by parts N times if [A(x—y)| > 1, otherwise just use the trivial bound
A. We use the symbol type bounds on m_, T, R, in & as above, uniform in the respective

regimes of x, y, as well as that

AT X () = 072 + P2 ()
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is bounded with all its derivatives uniformly in A > 1. The treatment of the phase
function (x + y)¢ is essentially the same, leading to the kernel bound

CNAAx+y) N

This concludes the proof of (2.19). These bounds require that (x)V*1v e L1.
The estimate (2.20) follows in essentially the same way. The only difference being
that in (2.24) the multiplier (¢) is replaced with &. We leave the remaining details to the

reader. [ |

Remark 2.8. In the nonlinear analysis in Sections 3 and 4, we will occasionally use
without further mentioning that the operators x,(H)P, and 9, x,(H)P, are bounded on
weighted LP(R) spaces, 1 < p < oo, in the sense that

|0~ %o EPog|| 2 + [ ()0 o EPoG || p < C(V, p, ) ()P gl

for 0 > 0. These bounds follow easily from the preceding kernel bounds (2.18) via

Young's inequality.

To carry out complex interpolation, it will be useful to also allow imaginary v in
Lemma 2.7. The following lemma states the concrete estimate that we require for that

purpose.

Lemma 2.9. Fix o € R and assume (x)V+27® ¢ LI(R) for £ = 0,1 where N > |o| + 1 is

an integer. Then
14x)°(D)* P (%) llp—2 < C(V, 0)(s)" (2.25)
for all s € R. We also have
[1{x)~° (E)H_%(l — XoH)P;lla—p = C(V,0)

Proof. The limit

(x)° (D)"SP,(x)™° = lim (x)° (D)% xo(H/L*)P,(x)~°

L—o00

=: lim A;
L—oo
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exists in the strong L? sense. The kernel of the operator 4; is of the form
1 > is 2,72
AL X y) = oLy TES (x,EF_(v,8) (§)"xo(§7/L7) d&
—00

1 o0 i
+ o=y [ T (%, ), (7, 6) (€)1 x0(E2/12) dé

and we bound it as in the previous proof, that is, after V integrations by parts we arrive

at the upper bound
(x)71ALE PI) ™ < OV (x)7 (y) " max(x £y) " (2.26)

uniformly in L. Indeed, (2.21) now takes the form

1 0o .
Ky (%) = 5—Tix=0-y) /_ N eV, (x,5)m_(y,£) (§)Sxo (62 /LT (&) d&

1 oo .
L T /_ T L ) m (v, —8) € xo 6 /1) d

1 1 = iyt isp 2/13d
g lieyzo | €M OmL 1,6 )R, ©x0(E"/17) ds

Integrating by parts at least twice in these expressions produces an absolutely conver-
gent integrand, uniformly in L (note N > 2). Via Schur’s test, (2.26) implies (2.25) for A,
and thus also in the limit L — oo.

The final statement of the lemma is proved in exactly the same fashion, but with
(EEIA — xo(E2)x0(E%/L?) in place of (£)xy(£2/L?). The same arguments go through
with this symbol. |

As an application of these bounds, we can now give a self-contained argument

for the equivalence of weighted Sobolev norms defined via H, respectively, Hy = —2.

Lemma 2.10 (Equivalence of norms). For k = 1,2 and o > 0, there exists a constant
C =C(V,k,o0) such that

1 oWk o oWk
ST D Pz < 1) Pegligy < €| (x)7 (D) Peg] - (2.27)

The conditions on V are the same as in Lemma 2.9.
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Proof. For k =2 we use (D)?P, = (1 + H)P, = (1 + V — 32)P,,, which gives

| x)7(DY2Peg |z < (1 + IVI)IX) Pogllyz + 11x)7 92Pegll2

< CA+ IVIIDIKX) Pegllg2

with a constant C = C(0). For the second inequality in (2.27) we first note that

1x)° Pogliz S 1x)70Pegll 2 + 10,((x) Pog)ll 2 + (%)% Pogll 2
S 1) 05 Pogll 2 + €9z () Peg)l 2 + 6~ I1(x)7 Pogll 2

The middle term here on the last line we move to the left-hand side for sufficiently small

&, which yields

1x)° Pogligz < 12)°82P,gll 2 + [1(x)° Pogll 2

S 1) (DY*Pygllz + 1(x)° Pogll 2

Now

1x)° Pogliz = IR (x)°(D)*Pegl 2 < 1(x)7 (D)*Pogli 2

since R := (x)?(D)"2P,(x)~° : L*(R) — L(R) is bounded by Schur’s test and the previous
lemma. Indeed, performing a dyadic partition of unity, we can sum up the respective
estimates in (2.18) and (2.19) with v = —2, provided N > o + 1. This settles k = 2 of the
lemma, while k = 1 follows by interpolation of this with k = 0. To be more specific, we
use complex interpolation, which requires (2.27) on both the vertical lines is and 2 + is
with s € R with bounds that grow at most exponentially (say) in s. In fact, Lemma 2.9
allows us to extend the previous bounds from 0, resp. 2, to the entire vertical lines

through those points, with at most polynomial growth in s. |

In the nonlinear analysis we will frequently use the following weighted Sobolev

estimate.

Lemma 2.11 (Weighted Sobolev). Fix o > 0 and assume (x)V*27® ¢ LI(R) for £ = 0, 1

where N > o + % is an integer. For any u > 0 we have

12)  Pogllye < C(V, 0, ) (I1(x) " Peglzz + 1x) 7 WEDEHP gl 2). (2.28)
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Proof. We begin by decomposing

P.g = xo(H)P,g+ > x(D/2)P.g. (2.29)
Jj=0

We first treat the low-energy piece. Observe that we have uniformly for all x, y € R that

1 N R P

B g W R T W S g

Hence, by the kernel bound (2.18) and by Young's inequality, we obtain the desired

estimate

—0 —0 ]' o —0
| )~ xoEPeg | 0 5§i2§ /]R @) VW 9wl dy

1
< z —  (y)%lg()| dy

ST 2l gl

S I gllz2.
Next we turn to the high-energy estimate. In the following we prove that for any A > 1,
~ 1
| )= xD/WPeg|| e S 27" | (x) T V)2 Peg] . (2.30)

Then the asserted weighted Sobolev estimate (2.28) follows from the decomposition

(2.29) and the preceding bounds by summing over j > 0. For the proof of (2.30) we write
~ 1 ~ 1
(X)X (D/MPog = ()7 (VH) 27" x (D/MP,(VH) T P,g.

Since we have uniformly for all x,y € R and for all A > 1 that

o 1 - X EY)T +(x)7

e BEEP)T + (x)7 1
X 4
Gk~ GEEPN T G Ey)Ve
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the kernel bound (2.20) for (\/ITI)_%_“X(E/A)PC together with Young's inequality yields

the desired estimate

P A —o 3+u
|67 X D/MBe] e 5 3 5up /IR eIy W g dy

SRRVl |0 (VED 2 Pg

<A (x) "0 (VE) TP Pg 2
and we are done. [ |

The nonlinear analysis will require that we interchange standard derivatives

with powers of H.

Lemma 2.12 (Weighted derivative bound). Under the same assumptions as in

Lemma 2.9 one has
| )7 9xPegll 2 S 12 Pogllzz + 11(x) "7 VEPgl 12 (2.31)
Proof. We claim that (2.31) follows from the case k = 1 of

|~ 9£Pg| 12 S 1620~ Pogllyz + 1)~ (DY¥P gl 2. (2.32)
To see this, note that

1)~ (D)P,gll 2 < (x) "7 (D) xo(H)P,gll 2 + 1(x) " (D)(1 — xo(ED)Pegll 2
< 1(x) (D) xo(H)P (%) ll 3,21 (x) " Pegll 2
+ 1x) T DY H 2 (1 — xo(HD)Pyllo—s 2l (%) ~° VEPgll 2
By Lemma 2.7 and Schur's test, ||(x)™° (5)X0(H)PC(X)" oo < C(V,0), while the operator

norm in the last line is finite by Lemma 2.9. We now perform the following further

reduction with Hy := —92:

I (X>_58XPCQ||L§ Sl XXO(HO)PCQHL; + [[(x) 778, (1 — xo(Ho))P, 9HL2

S 43077 8x0 H) P (%) | 5 o 102) 7 Pog| 12 + [[ ()77 8, (1 = xo(Ho) P9 2
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5156 H. Lindblad et al.

The operator norm in the last line is bounded by the rapid off-diagonal decay of the

kernel, and Schur's test. Therefore, it suffices to prove the k = 1 case of

| )77 951 = xoH)Pog 2 S 1103077 Peglizz + 1(x) 7 (D) Pegllyz.- (2.33)

Writing 82 = V — H, the estimate (2.32) is obvious with k = 2 since (D)2 =1+ H and

|(x)=702Pogll 2 < IVl 11(x) " Pegllyz + 1(x) " HP.gll ;2

As before, we can introduce the cut-off 1 — x,(H,) on the left-hand side, hence (2.33)
holds for kK = 0 and k = 2. Moreover, these bounds extend to the vertical lines is, resp.
2+1is, on the left-hand side only due to the fact that ||(x)™® 8};5(1 — XoH ) (%) g p < C(5),
which grows polynomially as |s| — oco. Therefore, by complex interpolation, we conclude
that the desired bounds hold at k = 1 and we are done. |

We can now establish Leibniz rules as they appear in the nonlinear estimates.

Corollary 2.13 (Product estimates). Fix o > 0. Assume that (x)V+2v® < LI1(R) for

¢ =0,1where N > o + 1 is an integer. Then we have

| B)P.(@(Peg) Bl |1, S 1620 27l g (1)~ Pegllyz + 112~ VPl 2 ) x
(2.34)
x (1607 Pohllz + 11x) =" VEP 2 )

and

|B)Po(«Beg) Bem) [z < 1402 all e (1107 Poglyz + 1100) ™ VEPgll 2) %
x (16077 PRl z + 1)~ VEHPGhll3).

(2.35)

Proof. We give the proof of the first product estimate (2.34), the proof of (2.35) being
identical. By Holder's inequality and by the equivalence of norms from Lemma 2.10, we
have that

| (D)Pe((Peg) (P ch)) [ 11 < 1160 ™ 2 [ () DY P (¢ (Pog) Poh) | 12 S [[ () (Pog) Poh) | 1.
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Then by the standard product rule for the derivative and by Hélder's inequality, we

obtain

| X)) ) |1 S 1) 27l o l1(x) T Pogl 2 11 (2) " Pehll oo
+ 1) 27 oo (%) 77 0 Pegll 2 11 (X) ~° Pehll oo (2.36)

102 0l oo 1)~ Poglloe (%)~ 3 Poll 2

The product estimate (2.34) now follows from the weighted Sobolev inequality in Lemma

2.11 and the weighted derivative bound in Lemma 2.12. |

Our final technical lemma arises in that part of the nonlinear analysis dealing

with the non-resonant case of the main theorem.

Lemma 2.14. Fix o € R and assume (x)Y*t2V® ¢ L1(R) for £ = 0,1 where N > |o| + 1 is

an integer. Let (x)°*3g € L2(R) and assume that
Flgl(£v/3) = 0.
Then we have for m € {0,0} and £ = 0, =1 that
[ x)™ (2 = (D)D) Pog| 1z S 1™ gl 2. (2.37)

Proof. We introduce a smooth partition of unity 1 = x,(§)+ x3(§), where x, (&) vanishes

outside a small neighborhood of the set {3}, and equals to 1 near 3. Then
| x)™ (2 = (D) ~HD) x5 (H)Pe(x) gl 12 < C(V.m)lgll 2

by a small variant of the final statement in the proof of Lemma 2.9. It therefore suffices

to prove (2.37) for x,(H)P.g in place of P_g on the left-hand side. One has

(2 — (D)) "1 (D) xo (H)P,g(x)

1 o0 . -
=— / T(E)f, (%, 6)(2 — ENTHE X (6D (G(E) — §(V/3)) dE
V2 Jo (2.38)

1 0
— T(— ,—E)(2 — () THE K (ED)(@G(E) — g(—+/3)) d
+m/_oo (—Ef_(x, —6)(2 — (ENTHE X (ED)(G(E) — G(—/3)) de

=G, (x) +G_(x).
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5158 H. Lindblad et al.

We denote by x,(£) a slight fattening of the bump function x, such that x,(¢§) =1 on
the support of x,(£2) and such that x,(£) = 0 in a neighborhood of zero. Clearly, we
may freely insert x,(&) in the integrands on the right-hand side of (2.38). We now prove
the bound (2.37) for G_ (x), the bound for G_(x) being analogous. Using the assumption
g(+/3) = 0, we write

1
Xa©)IE) = x2(E)FE) — x4(V3)G(V3) = (¢ — V3) /O (Xa9)'(s& + (1 — 5)¥/3) ds.

Then we observe that the function

24 (&)

€, (g2
ﬁ+§(€> x2(8%)

(0,00) 3 £ > (2 — () HE)  np(62)(E — V/3) = —

is smooth and bounded on its support, with all of its derivatives bounded there as well.
Hence, integrating by parts in £ for N = m + 1 times in the integrand of G (x) and using
the symbol type bounds on m, T, R, in & uniformly in the respective regimes of x, we

conclude that

G, (x)| < C(V,N){x)~" ! 1 sup+2}lag<x4§><5)ﬂL§o < C(V, N)(x) | ()7 g .

This implies (2.37) for G (x) and finishes the proof of the lemma. |

2.3 Decay estimates for the Klein—-Gordon propagator

We now establish local decay estimates as well as pointwise decay estimates for the
linear Klein-Gordon flow relative to H = —32 + V(x), that is, the propagator of (32 + H +
1)u = 0. We write (D) = /1 + H on the positive spectrum of H.

Lemma 2.15. Let V € L®(R)NC!(R) be real-valued, and assume that (x)6V® (x) e L} (R)
forall0 < ¢ < 1. Let Xo(éz) be a smooth cutoff to |§] < 1, equal to 1 near & = 0 and set

w(x) = (x)*. With P, the projection onto the continuous spectral subspace of H,

P
17 plt

HW_I (eit<ﬁ)X0(H)Pc9 —Co = zlwglly,  t=1, (2.39)

(¢ ® p)9)

~
N\wl Q

1
tz Ly

L.
17 olt

H w o, (ei“”> Xo(H)P,g — ¢, (0 ® w)g) H o =

o~
S| O

lwglpp,  t=1.  (2.40)

1
tz
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The real constant ¢, only depends on the scattering matrix S(0) of the potential V(x) at
zero energy, cf. (2.10) and is explicitly given by
1 T(0)2

= . 2.41
“ (27.[)% 1+R_(0) ( )

More generally, let w = w(&) be a function bounded on the support of XO(SZ) with its

derivatives up to order four. Then

—1( it(D) eldelt Clw)
|w (P () xo ()P, g — cao O —— (@ ® 0)g)| = gl ez 1, (242
X 2
o eiielt C)
w0, (P 1o DP9 ~ o0 00 019) | . = lwely, ez

(2.43)

Proof. We first derive the local decay estimates (2.39) and (2.40). Afterwards we
comment on the proofs of the generalized versions (2.42) and (2.43). Fix g, h € Cgppp(R).
By Lemma 2.6, and using that T(—§) = T(§),

(e*D) o (H)P,g) (x) = / / ORe[T(E)f, (x, ) (7,5)|9) dy xo(E2) d&

(2.44)

41 / / FUEORE[TE)F (x,6)f, (7, )]9) dy xo(E?) dé
/ / OTEF, %, Ef_ (7. £) x0(ED) dé gy) dy

o / / et TN (x,6)f, (7, 6) xo(E?) dE g(y) dy.

To isolate 0 energy we rewrite these expressions in the form
(P oEng) 0 = 5 [ [ T 10 def, (x,0F. 7, 09(5) dy

+§ / / MO T(E)xo(6%) dE £ (x, 0)f (v, 0)g(y) dy
1 X [
t o / / e*CITE) xo(H F..(x,y:§) d§ g(y) dy

X
—00 J —00
oo

1 o0
/ / OT(E) 1o (€D F_(x,v; £) dt () dy,

]
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5160 H. Lindblad et al.

where

F (x,y:8) =fLxf_ (.5 —frL(x,0f_(y,0),

(2.45)
F_(x,y;6) =f.(x8f .86 —f.(x,0f (v, 0).
Taking the inner product with h, we obtain
(h, e"P) xo(EDP, g) / / eI () 1o (6%) A& f1 (x, 0f (v, 0)g(¥)h(x) I, dy dx

o /R 2 / e“OIT(6) 4o (6) d& f_(x, O)f, (v, 0)g(AX) 1,y dy dx
1 o o
or L, | T @0 F. 06, de 9GO Ly dy dx

1 oo _
— / / e T(E) xg(E*) F_(x,y;€) A€ g(y)h(x) I,y dy dx
T JR2 ) —c0

=A_+A_+B_+B_.
(2.46)

By (2.9),

. T(0) .
f_(X, 0) = mf_,_(X, 0) =: K(p(X).
Note that x € R and 1 + R_(0) # 0 due to |T(0)|?> + [R_(0)|*> = 1 and T(0) # 0. Then we

have

A A= hleg) [ OTE e de.
Setting k = 2 in [27, Theorem 7.7.5] yields
eiterp ae = & Gtro) 4R R Cot 2 (2.47)
= . t ) < Cyt 2, :
| eregen s - = TO+RD,  R®] <y

where C, depends on the derivatives of T'(§)x (& 2) up to and including fourth order. Thus,

m/4

T(0), (2.48)
NG 0)

A_+A_=cylh (9 ® (p)g)( eit + OLoo(t*f)) co =

K
2mA/ 2
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where the constants in the OL?O (-) term depend on T(§). Applying [27, Theorem 7.7.5] to
B_ with k = 2 and using that F_ (x, y; 0) = 0 yields

B. — Cyeit 2 /]R JE(TEXEDF. xy:8) | ﬂ[x>y]g(y)%dxdy]

(2.49)
<Cyt? / sup sup |0} (T(6) xoEIF.. (x,¥: )| Lixey1 [9)AE)]| dx dy
R2 £cR (<4
with some constants C;, C,. By (2.45) and (2.13),
sup sup|dgF. (x,y;6)| < Clx)*(p)*.
<1 £=4
The bound on B_ is analogous. In summary,
it(D) e/t 3
(h, e xo(H)P, g) — co(h, (9 ® w)g)we = Ctz|\whilwgllzy,
which implies the desired local decay estimate (2.39) given by
Hw—l [e“<5> xo(H)P, — ¢, e/t 16l (g @ w)]gH o = ct 2 lwgllyy .- (2.50)

Next, we turn to the proof of (2.40). From the representation (2.44), we obtain

upon taking a derivative in x that

L~ 1 [X [0 .
(P x EDP,g) 00 = / / S T(E) () (x, (7, £) x0(€?) dE gly) dy

1 o0 oo
+o- / / eEIT(E) (3,1 ) (x, E)f (7, 6) xo(E?) dE g(y) dy.
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5162 H. Lindblad et al.

In order to isolate O energy, we then write

0, (D) y ()P,g) (x) = / / OT(E) 10 (62) A (3,f,) (x, 0)f_ (v, 0) g(y) dy

/ / €T x0(6?) G_(x, 7€) dé g(y) dy

/ 1T (&) x0(E%) dE (3f_) (X, 0)f (¥, 0) g(y) dy
/ CTE) x0(E%) 6. (x,7:§) A& g(y) dy (2.51)

=I+I0+0I+1V

with

G.(x,y:§) := (0 L)X Ef_(v,§) — (0,f1)(x,0)f_(y,0),
G_(x,y:8) = Of )X, E)f (v, §) — (0 ) (x,0)f (v, 0).

Using that f_(x,0) = kf, (x,0) with k 1= 22 )(0) and therefore (3,f_)(x,0) = k (3,f,)(x,0),

we obtain for the first two terms that

[+m=2 / / () 10 (E2) dE (0, (x, 0)f, (v, 0) g(y) dy
/ / O xo(E%) dE (0, (x, 0)f, (v, 0) g(y) dy

= L(/ ©TE) xo(E )dé) (/ [y, 09(y) dY)(ax (X, 0).

2
Using (2.47), we find that

14 it

[+1 = (0.9} 000 + RDIp, 9 000, IR < Cot™%, t>1.
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Thus, taking the inner product of (2.51) with h, we have

LT
17 plt

t2
= R(t)(h, 3,9)(¢, 9)

/R 2 / OT(E) xo(62) G (x, y; €) A g)R() 1y, dy dx

— / / e“IT(E)xo(EH) G_(x,y;£) d& g(y)h(Xx) 1y, dy dx.
T JR2 -0
Now using that G_ (x,y;0) = G_(x,y; 0) = 0, the fact that 3,9 € LY (R), and that

sup sup (|0£G..(x,y; )] + |9 G_(x,7: )] ) = Cx)*()*,
‘$‘<1 <4

we can conclude the proof of (2.40) by arguing as in the preceding proof of (2.39).
Finally, regarding the proofs of the generalized versions (2.42) and (2.43)
involving the operator w(H), note that the conditions on w are such that the preceding

arguments still apply. |

The weights in Lemma 2.15 are most likely not sharp. We remark that a bound as
in Lemma 2.15 cannot hold for large energies &. In fact, it is an immediate consequence
of stationary phase that derivatives of g are needed to bound the pointwise size of the
evolution in (2.42). We will pursue this in more detail below, but first establish local
L?-decay for energies separated from 0. For the following lemma, the distinction
between V generic and non-generic is irrelevant. Moreover, we use the notation

= 4+/1 + H on the positive spectrum of H.

Lemma 2.16. LetH = —8}% + V(x) with real-valued V € L®(R) N C3(R), and assume that
x)67(x) € LI(R) for all 0 < ¢ < 3. Fix &, > 0. Let x, be a smooth bump function such
that x¢(&§) =1 for |£] <1 and yxy(¢) = O for |¢| > 2. Then

[ 022 (1 — xo(H/ED)Peg 2 < C8)211(x)2gll (2.52)

with some constant C > 0 depending on &; and V. The same estimate holds with eitD)
replaced by e*'?) o (H) where |a§a)(g)| < C(&y) forall |£] > & and 0 < ¢ < 5.
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5164 H. Lindblad et al.

Proof. By (2.15) the distorted Fourier basis takes the form

e(x, &) = —— .
V2T | T(-6)f_(x,—§), £<O0,
Thus, the distorted Fourier transform of g = P,g and its inverse are given by
5(6) = [ e B0 dx, 960 = [ et £)5(6)de
and Plancherel’s theorem reads ||g|| 2 = gl 72 The Klein—-Gordon evolution therefore

takes the form
(€P)(1 = xo(H/E2))Pog) (x) = /R e(x, )€ (1 — x(62/£2))g(&) ds.

In view of the cutoff 1 — XO(SZ/Eg) we can treat the regions £ > &, and £ < —§, separately.
We also introduce smooth cutoff functions 6, (x) such that 6, (x) +6_(x) = 1 forall x e R
and such that 6, (x) = 0 for £x < —1. By symmetry, it suffices to consider the case £ > &,

which contributes the following expression to the time evolution:

/0 e(x, £)6E) (1 — xo(E2/62))F(&) d
— 6, () /0 TV, (x, )" (1 — xo(62/52))5(E) de

+0_(x) /0 T(E)f, (x, £)e8) (1 — xo(62/52))(E) d

=I +1.
We further rewrite the term I as
I, =0, /0 e ETEOTEM (x,6)(1 — xo(E?/ED)) (&) dE
and using the identity

T(E)f, (x,&) =f_(x,—&) + R_(E)f_(x,&) = eXm_(x,—£) + R_(§)e X m_(x,¢),
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we can express the term I_ as

L =6_(x / el m_(x, —£)(1 — xo(€2/E2)T(E) d&
0 (2.54)

+6_(x) /O e X etm_(x,8)(1 — xo(62/E3) () dt.

Let us further consider the term I, . Using that 9, (%)) = it%eit@ ) and integrating by

parts once, we obtain

= ——e () / ey ( eXT(E)m, (x,6)(1 — xo& /so>)g(s)) dg
= ——e+< ) / e ettt T(s)m+<x £)(1— xo(&?/8)9(%) d&
- —9+(X) / el (<§—>T(§)m+(x £)(1— xo&*/80) ))g(é)dé
-~ E“X’ /0 e e"”@(i—)T(s)m(x,s)(l — X0(E*/ED)) 9, 9(€) dg
=19+ 1P 410,

We view

t<x>*11‘+‘”=—<§—> /O ei"é(%T(sm(x)m(x,s>z{g>go/2}(é>( — xo& /so>)) g() de

as a pseudo-differential operator on the line (after introducing another smooth cutoff

Xi&>£,/2)(6)) with symbol

a(x,§) = —%%T(é)e+<x>m+<x,s>i{szgo/2}@)(1 — x0E%/8))

By the Calderon—Vaillancourt theorem, see for example, [60, Proposition 9.4], we infer
that

1 1
607 10 1z Sy £ 1695E) |2 = $1T@1z2 < gl

Lemmas 2.2 and 2.5 imply that the hypotheses of that theorem hold, that is, that the

symbol a satisfies

oax, &) + 1Fax, 6| <C  Vjk=0,1,2,3 (2.55)
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Note that it makes no difference in that lemma if we assume x > 0 or x > —10, say, for
the bounds on m, . The terms Iﬁrb) and If) can be handled analogously, together with the
terms in the identity (2.54) for I since we now are dealing with m_(x,&) on x < 1. The

L? estimate of Iff) requires the bound

189 lr2e260) S 1x)GII2 (2.56)

which again follows from the Calderon-Vaillancourt theorem. Indeed, for £ 2 &, by
(2.53),

3g§(§)=/ dze(x, £)g(x) dx
R

- /R 0,00, )6, ()g(x) dx + /R 0,00, E)0_(x)g(x) dx

1
= —Tn/Rag(T(—é)er(X, —£))0, (x)g(x) dx (2.57)
1
+—,—2n/Rag(f_(X,é)JrR_(—é)f_(X, —§)6_(x)g(x) dx

=S, @& +S_(9&)

where the last line follows from (2.13). On the one hand,

V21 S, (9)(€) = /R 0p (T(—8)f  (x, —£))0,, (x)g(x) dx
- /R (67 T(—)m,, (x,—£))0, (0g(x) dx

= /Re_ixs[ —ixT(=&)m (x,—§) + 0 (T(=§)m, (x, —E))]9+(X)9(X) dx
By Lemmas 2.2 and 2.5, the symbol

b, (x,&) = — ixT(—&)m  (x, =€) + 0 (T(—&)m  (x, —£)) |0, (%) (x)
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satisfies the hypotheses of the Calderon—Vaillancourt theorem, cf (2.55), and we obtain
the desired L2 bound from the term S +(9)(€). On the other hand,

V2T S_(9)®) = /]R 0 (F_(x,6) + R_(~5)f (x,~£)0_(x)g(x) dx
- /R o[ ™ m_(x,6) + R_(-E)e™m_(x,~§)]6_(0g(x) dx
_ /R e X[ — ixm_(x,) + dym_(x,6)]0_(x)g(x) dx
+ /]R P [ixR_(~5)m_(x, —§) + 9, (R_(—E)m_(x, ~£)]6_(x0)g(x) dx
= /R e ™p__ (x,&)(x)g(x)dx + /R e b_, (x,£)(x)g(x) dx

The symbols b__(x,&) and b_, (x,£) also satisfy the hypotheses of the Calderon-
Vaillancourt theorem as before. In conclusion, we may again apply Calderon-
Vaillancourt theorem, which proves (2.56), at least for positive &. However, the
contributions by negative £ is analogous. In summary, we have only obtained t~!-
decay at the expense of one power of x. Integrating by parts one more time gives the

desired t=2 estimate. The same proof that implied (2.56) also yields

182G 21250 < 100290l 2.

The assumptions on V(x) are compatible with the requirements in this proof: integrating
by parts twice in & leads to %mi(x,é) with 0 < j < 2. For the Calderon—Vaillancourt
theorem one then needs three derivatives in x and &, but separately. For the final
statement involving the operator w(H), note that the conditions on w are such that the

Calderon—Vaillancourt theorem still applies. |

We can now state a complete list of local L? decay estimates on the linear

evolution eit(D>PC that will be needed in the nonlinear analysis.

Corollary 2.17. Let H = —32 + V(x) with real-valued V € L*(R) N C3(R), and assume
that (x)67® (x) € L (R) for all 0 < ¢ < 3. Let ¥ (£) be a smooth function with v (£) = 0 for
|&] < & for some &; > 0 and such that |8§¢($)| < C(y) for 0 < £ < 5. Then foro > % and
allt e R,

[~ “PPeg]l,2 < (62 1x)7 gz, (2.58)
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5168 H. Lindblad et al.

|¢x) =" VED) e PP 2 < (0 2Nx) gl (2.59)
|~ @(g S| L < 0 Hix7 gy, (2.60)
[~y D" P Pogll e S (872 1x)7 gllyz. (2.61)
as well as
|7 (P Pog — t - o), <o gl 121, @62
|77 0, (P 4o (B Pg — 6 KLAPAN 09)|, s O Hiwrglz =1, @69

where ¢, defined in (2.41) is an absolute constant that only depends on the the scattering

matrix S(0) of the potential V(x) at zero energy. Finally, we have the variants

|0)= (D) P)P g| 1, < ()2 I(x) gz, (2.64)
[ =7w D)D) P Pg]| 7 < (077 1) gllzz- (2.65)
i7 it
|07 (D)2 P P — @@ 0g) | , S O FI7gl =1, (2.66)
t2 Ly
|70 (1B P g P - 0= “weog)|, LS00l 121 (267

Proof. Lemmas 2.16 and 2.15 imply that (2.62) holds with o > %. Lemma 2.15 also
implies that (2.63) holds with o > %. Moreover, (2.61) with o = 2 is a direct consequence
of Lemma 2.16. For 0 < t < 1, (2.58) follows from L? boundedness of the evolution, while
for t > 1 it follows from (2.62). For the latter, we use that || (X)7%7(¢ ®e)flly S lix 2J“fllz

Applying the more general version of Lemma 2.15 with w(£) = £(£)~!, respec-

2
tively, w (&) = g)l = <E>(f+<E>)’ which both vanish at & = 0, eliminates the projection

¢ ® ¢ from (2.62). By the same argument as before, invoking the more general version of
Lemma 2.16, we therefore obtain (2.59) and (2.60). In the same way one derives the final
estimates (2.64), (2.65), (2.66), and (2.67). |

We expect the local decay estimates for the Klein—Gordon evolution eit<ﬁ)PC
established in this paper to be of independent interest. In particular, the refined local

decay estimates (2.62) and (2.63) seem to not have appeared in the literature yet. Their
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proofs are inspired by the method of proof of Proposition 9 in the joint work [45] of
the third author with Krieger, where pointwise decay estimates are established for a
perturbed 3D wave evolution upon subtracting off a projection to a resonance function.
We refer to Komech—Kopylova [37], Kopylova [38], and Egorova—Kopylova-Marchenko—
Teschl [15] for prior results on local decay estimates for 1D Klein—-Gordon equations
with potential terms.

Next, we establish a pointwise bound on the evolution for all energies.

Lemma 2.18. Let H = —32 + V(x) with real-valued V € L*(R) N C3(R), and assume that
(x)6V®(x) e LY(R) for all 0 < ¢ < 3. Then
C(u, V)

1
t2

= ~ 3
e P gl e < D)2+ gl (2.68)

forallt > 0and u > 0.

Proof. Throughout, g € S(R). Let x be a bump function supported on R \ {0} and fix

any A > 1. Using the distorted Fourier basis (2.53), consider the evolution
(€D x (B/i)P.g) (x) = /]R eEe(x, &) (6/1)5(5) d&

- L = it(E) MaE) d
= /0 SOTEf, (x, 8)x (E/0)F(E) de -

1 ° it(§) J
1 it(€) p(— ,— MFE) d
\/2_/ eI T(—E)f_(x, —§)x (5/M)G(§) d§

= (&} (DY X) + (P (P ()

Without loss of generality we assume x > 0. Then using 6, from the proof of Lemma
2.16,

(®] (Hg)x) = J% /0 T OT () m, (x,£)x(6/05(6) A
1 © .
= Z/R/O elt(g}|T(‘§)|2e’(x_y)gm+(x,E)m+(y, _S)QJF(Y)X(%_/A) dé‘g(y) dy
N L/ / T MOTE)Em, ) (e m_(y,)
2 RrR.JO

+R_(—&)eY m_(y, —£)0_(y)x(/») d& g(y) dy

=: /R K7 (t,x,y)g(y) dy + /R K" (t,x,y)9(y) dy
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5170 H. Lindblad et al.
with

o0
K (t,x,y) = / GOV, (x y &) d
0

1
w, (X,¥,8) = ET(E)mﬁX'S)[T(—%‘)mJF(Y, —£)0,(¥) + m_(y, §)0_(¥)] x (¢/3)

K;+(t,X, y) = /Ooo eit[(SHS("J“Y)/ﬂcZ)A(X, v, &) dg
1
), (X,,8) = ET(E)R_(—f‘E)mJF(X,f)m_(Yr —§)0_(y)x(E/H)

There exists a constant C; > 1 so that Calk < |&] < Cyi on the support of x(£/1). By
Lemmas 2.3 and 2.5, |3§a)l\(x, V.8 < Crtfore=0,1,2 uniformly in x > 0, and y, & € R.

By the same lemmas the analogous bounds holds for &, (x, y, £). We rescale to obtain

o0
K;—_(t, X, y) — k/ el)ﬂf[)\71<)L%‘)+%‘(X*y)/t]a)}L (X, YI )\%—) dé
0

One has the bound |K; ~(¢,x,y)| < CA uniformlyinx >0,y e R, t > 0,1 > 1. If t > A,

then we claim the stronger bound

K} (t,x,y)| < CA2t 2, (2.70)

We write

o0
K (t,x,y) :x/ &S XD, (x,y, 0E) dE (2.71)
0

with s := A7!¢ and phase ¢} (§; ¢, x — y) := 22[A"1 (X&) + &£(x — y)/t]. Then
%3

+ s _ _ 2[0S _
ey (Et,x—y) =2 [</\E> + (x—y)/t]
3
ol &t x—y) = s =] (2.72)
A5&
3 +is. _ _ ~
8§¢k (%‘,t,X Y)— 3()%:)5 ~1

on the support I := [, &,] C (0, 00) of x (recall A > 1). We distinguish the following two
cases, for fixed x, y, t, A as above:

(@) min|d.; (& t,x—y)| 2 s™2 on I,

(b) min |35(P;_(§; tLx -yl K s on Iy

In the first Case (a), we deduce from the second derivative in (2.72) that

0.0, (&:t,x — )| 2 572 + min{lE — &1, — &1} VE el
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Integrating by parts once in (2.71) yields

( 029} (5;t,x — p)] 1 )dé

K~ (@t x,p)| < C)\s‘l/ +
g Do Eit,x—y)? 008 Eit,x—y)]

Io

as claimed by (2.70). On the other hand, in Case (b) suppose the minimum of
min |8€<pr(€; t,x — y)| is attained at &, € I,. Then we infer from the second derivative
that

1
00, it x =) 2|5 —6,] on Eely, [§—§]>s"2

Let ¢ be a smooth bump function which equals 1 on [-1, 1]. Then with £ := ﬁag, We
(308

write
Kyl <] [ e,y awe - cash def
4572 [ L P, (,y,06) (1 e — 55h)] e
0

Sishaas? [ 1 (16 =617+ 16 — 6,17%) de

I le—&lzs"2]

N~

SAsT

which establishes the claim (2.70). The analysis of K;Jr(t, x,y) is completely analogous,
as is the evolution of the negative frequencies given by @, (¢), see (2.69). In summary, for
allx>1,t> 0,

it(D ~ _1.3
1€ x (D/M)Pgllpe < C(V, )t 222 |gll (2.73)

For small energies we proceed as in the proof of Lemma 2.15, and write with a cutoff yx,

around zero energies
(€ xo(H)P, g) ()

1 o
= /IR / eOITES X, EF_ (¥, &) xo(E?) dE g(¥) 1,y dy
- (2.74)

1 .
+ o /IR / e OITES (X, f (v, &) xo(E?) dE g(¥) 1y dy

= W_()P,g(x) + W_(HP,g(x)
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5172 H. Lindblad et al.

We again restrict to x > 0 without loss of generality, and write W_ (£)P_,g(x) in the form

‘I’>(t)ch(X)Z/RK>(t,X,Y)g(Y) dy

1 oo
K.(6.5,9) = 5oy [w T CDET () (x, EYm_(y,€) xo(6?) A

1

+ o Leay-0 / et (x,6)le” W m (v, —&) + € R, (E)m, (v, 6)] xo(£?) d&

By Lemmas 2.3 and 2.5 the non-oscillatory integrands possess two & derivatives
uniformly bounded on their supports. The preceding stationary phase analysis therefore
applies to K_ (¢, x,y) by setting A = 1, in particular s = ¢ in this case, cf. (2.71). As a result

one obtains
V. (PGl < Ct 2lgl VE>0 (2.75)

and the same also holds for W_(t)g by a similar argument. Performing a dyadic

decomposition of energies and adding up all contributions from (2.73) and (2.75) yield

o0
P 1 . ~ .
e P Pogllpee < C(V)E2 (||x0<H>ch||L;( + ZZSJ/an(D/ZOPanL;)
j=0
(2.76)
1 > . ~ 3
= ct (IxoEDP.glyy + D 27"y (E)P.(D) gl )
j=0

with ¢ > 0 arbitrary and
Yi(H) = 2GH0I (D) "8y (D/2)), j=o.
Summing up (2.76) will complete the proof provided we have the operator bounds

Ixo@EP.gllzs < ligllzs,  sup 1¥;EDPoglz < llgly (2.77)
j=0

with constants only depending on H. The latter operator bounds are immediate
consequences of the kernel bounds (2.18) and (2.19) with N = 2 established in
Lemma 2.7. ]

Finally, we present a result on the asymptotics of the linear Klein—Gordon

evolution eit(f”ch for initial conditions supported away from zero energy.
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Lemma 2.19. Let H = —32 + V(x) with real-valued V € L*(R) N C3(R), and assume that
x)6V® (x) € L}(R) for all 0 < ¢ < 3. Let x,(£2) be a smooth cutoff to |£| < 1, equal to 1
near £ = 0. Set x;(H) := 1 — xo(H). Then we have

. 1 .» 3. CV, x1)
&Py, (H)P,g — Fe‘4el”x1(s§)<so>2g<so)1(_1,1)(§)HLw = TRl e 1,
2 X 3
(2.78)
where p = p(t,x) := Vt2 — x% and é% =7
Before we turn to the proof of Lemma 2.19, we record the useful relations
&o b ¢ x t
So X 4 == =2
(5o) t 0 o "
Proof of Lemma 2.19. We have
it(D) L[ we 2\~
(e Xl(H)ch)(X) = —/ eI TE)f, (x,8)x,(67)g(§) d&
v 2m Jo
(2.79)

1 o i
" an /_oo " OT(—E)f_(x, —E) 1, EHFE) d&
= ETDP@ + (E OP®)

By reflection symmetry it suffices to assume that x > 0. Then with ¢, (§,u) := (§) + u§,

u:=x/t,

ETOPE) = / h e EWNT(EYm (x,8)x (sz)§<s>d—E

0 + 1 m
~ 0 i u i u ~ d

E P =[m (e W+EWm_ (x,8) +-CYR (-6)m_ (x, —s))xl(sz)g(g)%

If x> t>1, then
0., w|=15E) " £ul =1 [g|(5)" = (§)7%/2
(2.80)

(€, u)=(£)"°

We break up the integration in £7(t) by means of the smooth partition of unity
1 = x;(2/t) + xo(£2/t) and integrate by parts in the latter integral. Using (2.80) and
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the bounds on m,,T from above yields

< |07¢, (5, W)

[CRGEEIES /0 x1(E2/D)1g(E)dE + 7! / e XoE2 /DX (ED)g(&)| dg

0 (€, u
L /0 10656, w1 [0 [T@m, (6, 6) 1062/ D, €D3(©)] | de

SEH(IE29© 112 + 16)°0:9©)112) (2.81)

By analogous calculations one derives the same bound on (£7(¢)g)(x). Now suppose
|x| < t. The phases ¢ (£, u) have stationary points given by Sgt = :F(Egt)u or Egt = %
u
In either case one has ¢i(€g[, u) = /1 — u?, which implies t¢i(£§0 JU) =At2 —x2 = p.
We now claim that the bounds (2.80) continue to hold (up to multiplicative

constants) for all £ € R\ I(Eé‘) where
I(&y) = &5 — (§5)/100,&5 + (§57)/100]
In fact,

056, (&, w)| = 104 (&, ) — 0, (&5 w)| = |E(5) 1 — &y (€)™

~ 162 — £2]
(E)(ENZIEE) T + EolEo) 1]

(2.82)

where we dropped the £ superscript for simplicity. Without loss of generality, assume
& > 0. Then if £ > &, + (£,)/100, (2.82) implies that

004 (E,w)| 2 ()2 2 (5) 2

while for & < & — (£,)/100 one has |0;¢, (§, w)| 2 (§)2. Setting

wF (&) = x(Co€ — D) EH ™)
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for some large constant Cj, and repeating the arguments leading to (2.81) therefore

yields
o % . d
(P, (E)Pog) ) — /0 e EITE)m , (x,6) 11 (D) ()F(E) \/%
_ / D et ()5, 6Dt ©)5(6)
—00 V2mn (2.83)
- / ’ et-CWR (—£)m, (x,—£)x (f%w*(&)g(s)ﬁ
. + +E 1 u V2r

< 1©25© Iz + 1620.5©)l52)

which holds uniformly in ¢ > 1 and x > 0. Note that x;((%)w () = 0 on & > 0,
Xl(éz)wlj(éf) = 0 on & < 0 if C, is large. Thus, only the second integral in (2.83)
contributes, and we denote it by (¥ (¢)g)(x). To analyze it, we write (again suppressing

superscripts +)

b & u) — 9 (&g, u) = (&) +ué — (§) — u§
(& —&)? .2

(§0) (1 + §&o + (8)(&0))

The change of variables & > 7 is a diffeomorphism on the support of w; (§) given by

n= ik D (g
JENAFEE + E)(E) de  °

Therefore, using the standard Fourier transform,

(W(H)F) (%) = 52% e Gt
erelt [0 gy
= Bk ; 2.84
et ) C G(y; t,x)dy (2.84)
C(n: AP AN d";:
Gni t,30) = m (%, 6) (E)og )FE) 7
1 = . =0- 2y 4+ ~ dé
27 /_ Gt 0 dy = 6(0:t,x) = m, (x,6) 11 o)y 03 E0) 7 - (5o)

= V2Zm, (x,&)x; ED) (E) 2 3(&p) (2.85)
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By (2.2), Im (x,§) — 1] < (x)~% with an implicit constant depending only on V. If
Xl(gg) =1, then [§y| 2 1, and |x/t| = |.§0|($O)‘1 2 1. Therefore,

(2.85) = /2 x; (2)(E0) 29(Ey) + Ot 5 x, () (E0) 25(E,))

and inserting this into (2.84),

ip ol 11
(WD E) = o xy (E2)(Eg) 2 (Eg) + O 2 5, (ED)(Eg) 25(EQ))
ﬁ (2.86)

iy? —~
+o(e [le % — |Gt i ay)
The integral in the last line is estimated as follows:

_i? - 1
le” — 1|1G(y; t,x)|dy S ¢ 2

Iyl 1G(y; t,%)| dy + / IG(y; t, x)| dy
lly|2<tl lly|2>t]

1 _1
Sty Gy; 602 St A9,G(n; 6 )2

By definition,

das N3
[ 18,60 t,x>|2dn=/)d—n\ 9 [ 00,600 €)oo €196 ]

. ..d
< / |ag[m+<x,s)xl(s%x(é)g@)d—i]|2<s>%ds

Now we note that by complex interpolation of the preceding bound with

dé 2

6ot 2dn S [ [m. e 00 €0k ©36) 5 [26)~Hde
dn

we obtain that for all % <B=<1,

iy? ~ —~
/|e*% ~ 1[Gt 0l dy  ti 2 Iyl Cyit, ) 22

S E D560t Dl
1 _d }
s b ( [l iim, won @i ©a 51 0 ae)
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On the one hand,
([ Im xomeEoi©ae g|2 1 < ([ e
and, on the other hand,
/ |(—03)2 [m (x, )1, (¢ )w*@g@)—]l ds / [19E)1%(€) + 10:g()1*(6)°] ds)%
In conclusion, we can bound with g = 2,
/!e*% ~ 16t oldy S ( [ [9©F +9©)P] ©r)’ 28y

Combining (2.81), (2.83), (2.86), and (2.87) yields

.~ PRE
‘(emD)Xl(H)ch) x) - 7)(1(ég)(éo)%g(éoﬂux/tkl]‘
£% 16 (E0)? 196 + 173 (116)2TE)l 2 + 16)9,9)I2) (2.88)

%(||<s>2§(5)||Lg +IE)*0:9() 1 2)

which holds uniformly in ¢ > 1 and x > 0. The ¢t~ 2 -term on the second line is estimated
by Sobolev, and &, = 50 = — t2—x2

It remains to prove that for all Schwartz functions g,

. We may of course assume that g(¢) = 0 for |§] < 1.

62X EBIE N2 + 11 EDE*:9E) Iz S 100Gl

This follows again by means of Calderon—Vaillancourt, see (2.57). The estimate (2.56)

controls ||X1(§2)35§(§)||L§ by [[(x)g(x)l 2. To incorporate the £2 factor, we compute

£2g(5) = /]R £%e(x,£) 0, (x)g(x) dx + /R £%e(x,€) 0_(x)g(x) dx

1 —ix
=~ Ra};(e HT(—&)m, (x, —£)0, (x)g(x) dx

- «/%_n /R<a§(e*ixf ym_(x,€) + R_(=§)33 (€™ )m_(x, —§)0_(0)g(x) dx
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Integrating by parts in x, and multiplying by x;(£2), we can then apply Calderon—

Vaillancourt as in (2.57). [ |

3 Local Decay Bounds

The main goal of this section is to establish global existence and local decay bounds
for the solution v(t) to (1.12). The key ingredient for the proof are the local L2
decay estimates for the Klein—-Gordon propagator eit<f’)Pc = e”mPC established in
Corollary 2.17.

Proposition 3.1 (Global existence and local decay bounds). Assume that V(x) and a(x)
are as in the statement of Theorem 1.1, and let 0 = 5. There exists a small absolute

constant ¢; > 0 so that for any initial datum v, with
£ 1= (x)7 Vol < o,

there exists a global-in-time solution v € C(R;H?) to (1.12) satisfying the uniform

bounds

sup {<t>*<°+>||v<t>||H; HOZIE) VD2 + ©1x) A — xoE)V®) 2
te
(3.1)

+ (O VHVO g + (01070 ez} S e

Proof. By time reversal symmetry, it suffices to argue forward in time. Assuming
that the absolute constant 0 < ¢; <« 1 is sufficiently small, by a standard contraction
mapping argument, we obtain a local solution v € C([0, T;]; H,%) on a time interval [0, T;)]
for some Ty > 1. In order to then conclude that v(?) exists globally in time, it is enough
to show that the H2 norm of v(t) does not blow up in finite time. We now establish global
existence and the uniform bounds (3.1) via a bootstrap argument. For any 0 < T < T, we

consider the bootstrap quantity

M(T) = sup {7 vl + (07|

Sup x) vz + @1x) 771 = xoHE)V®)ll 12
<t<

+ (O x) O VHV@O) 2 + @)11(x)° Bt(e’”V(t))llL;}-

Since the absolute constant 0 < ¢y « 1 can be chosen sufficiently small, in what follows
we may freely assume that T > 1, and that M(T) < 1 to simplify the bookkeeping

for some of the nonlinear estimates. We also recall that under the assumptions of
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Theorem 1.1, we have that v(t) = P,v(¢) for all ¢t € [0, Ty]. Moreover, we stress that we

will frequently use that by the weighted Sobolev estimate from Lemma 2.11,

M(T)

1x) " VDl S I1x) V@2 + I1(x) " VHV@)ll 2 < e 0<t<T. (3.2
2

~

In order to derive bounds on all components of the bootstrap quantity M(T), we work

with Duhamel’s formula for the solution v(t) given by
.= 1 [t . =
v(t) = e"PP v, + o / e IPND)IP (e u(s)?) ds.
0

Growth bound for the H2 norm of v(t): We begin with a growth bound for the H? norm

of the solution v(t). Using the equivalence of norms from Lemma 2.10 and the product

estimate (2.35), we obtain from Duhamel’s formula for v(¢) for any 0 < t < T that

~ o~ t ~
V@l S 1D vz S ID)?Pavollz + /0 | ()P (¢ u()?)] ;2 ds
t
S Ivollgz + /0 1002 @y (160 "7V () gz + 11x) 7 VEV(S) 1) ds

ds

tM(T)Z
<
Sl + [ 20

S Ivoligz +log(1 + (£)M(T)?.

Local decay for 3,(e v (t)): Now we derive an improved local decay bound for the time

derivative of the phase-filtered component 3, (e*itv(t)). To this end we compute that

3, (e7v (1)) = e_it(((ﬁ) — 1)etPp v, + 2%,(13)*196 (@Cu®?)
(3.3)

t = _ . ~

€20z dunp G0 Uo Jasn meT AsIoAlun sleA Ad GS0£Z2S9/81 L G/9/€Z0Z/310me/ulwl/wod dnoolwspese)/:sdjjy Woj papeojumoq



5180 H. Lindblad et al.
By the local decay estimate (2.60) for the Klein—-Gordon propagator, it then follows for

0<t<T

| )79, (e v (®)) | 2

I1(x)? (D)P, vl 2
S S @)% a2 0 T v
(t)2
t 5 -1 . ~
- /0 <x>—“%e‘“‘”<D>Pc<x>“’ o [ )% a2 11x) T v(s)lIFee ds
< ) vollgr  M(T)? /t 1 M(T)? ds
BT (t) 0 (t—s)5 (8
1
S = (110) vl g + M(T)?).

(t)

Local decay for (1 — xo(H))v(t): Next, we conclude an improved local decay bound for
the high-energy part (1 — xo(H))v(t) of the solution v(t). Observe that (1 — x,(H))v(t) is

given in Duhamel form by

_ t , ~
(1 — xoE)V(E) = (1 — xoH)D P v, + %/ (1 — xo(H))e =9 PUDY 1P (a(-)u(s)?) ds.
0

Using the improved local decay estimates (2.61) and (2.65) for the Klein—Gordon
propagator away from zero energy, it is straightforward to obtain for 0 < ¢t < T the

desired bound

1x) =7 (1 = xoE)V (D)l 12
< I1{x)7 (1 = xo(H)Pvpll 2
(t)2

t ~
+ [ oo = xom @ P p -
0

697 (Ous)] 2 ds

12512

_ 17wl

b1
4 /0 I el oI ds

N

(t)2 t—s)
o ) t 2
< 1) v;an . / 1 gM(T) &
(t)2 0 (t—s)2 (s)
<1

< (1) voll 2 + M(T)?),
(t) :
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On Modified Scattering for 1D Quadratic KG 5181

Local decay for ~/Hv(t): In a similar manner we obtain an improved local decay bound
for «/Hv(t). Note that vHv(t) is given in Duhamel form by

VHV() = VASDIp v, + ~ /f ~1it=9DIp (or(yu(s)?) ds

Using the improved local decay estimate (2.59) for the Klein—-Gordon propagator, we

easily obtain for 0 < ¢t < T the desired bound

X)_"\/ITIV(t)IILz
< I(x)° (D)P cVollz2

()2

MR vol 1 1
S / el x) O v(s) |2 ds
(1) 0 (t—s)}
1(x)7 Vol 2 /t 1 M(T)?
—— Tt 3
(t)z 0 (t—s)z (9

(1) vl + M(T)?).

/H o JH(D) it s)(D)P< x)~°

| x)7 (@Cus)?) |2 ds

L1212

ds

A

<1
~

Local decay for v(t): Finally, the derivation of the local decay bound for v(t) requires a

much more careful argument. The first step is to determine the leading order behavior

of the variable coefficient quadratic nonlinearity. To this end we introduce the function

i7 it e'%ei(t s)

1 t—1
(0, Vol + — 2 / co— (e, a(us)?)pds, t>1, (3.4)
tz l (t—s)2

w(t) := ¢y

with ¢, defined in (2.41). Then we may write
w(t, x) =at)ex), t=1,

with the time-dependent coefficient

iz eit 1 [t=1  giZilt—s)
/0 c —((p,a()u(s) )ds (3.5)

a(®) :=co— (@, Vo) + =
O T 2 (t—s)2
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5182 H. Lindblad et al.

The key property of the function w(t) is that the difference v(t) — w(t) has faster local

decay in the sense that uniformly forall1 <t <T

@~ (v —w®) ]z < <t)(||< )7 vollz +M(T)?). (3.6)
To prove (3.6) we write forany 1 <t <T
o el%eit
v(t) — w(t) = (e”“”Pch —co—— {9, v@cp)
t2
1 t—1 o )@) ~ ) ez4 i(t—s)
+ = (e‘ SPND) P, (e (Y u($)?) — cg— (@, a(Yu(s)?)e )

2t Jo (t—s)2

t . = o~
N zll/ l e TSDPUDY P (a(u(s)?) ds
t7

Then we use the improved local decay estimates (2.62) and (2.66) to bound the first two
terms on the right-hand side, while the standard local decay estimate (2.58) suffices to

estimate the third term on the right-hand side. Specifically, we obtain for 1 < ¢t < T that

[I{x)° vyl =1
[0~ (v(ty - w®) |2 < (t—SOL’Z‘ + /0 : | x)7 e us)?] ; ds

t 1
+/ o (X)Ga(x)u(s)2||Lz ds
t—1 (t—s)2 X

11{x)7 Vol 2 =1 ] _
S———+ / = 1227 || 2 1(x) v ($) |70 ds
(t)2 0 )2 * x

t
+/ - )|| a2 1x) V()2 ds

t—1 2 t 2
ll{x)° VSOHL)Z‘, +/ 1 3M(T) ds+/ 1 1M(T) ds
(t)2 0 (t—s)z () t-1 (t—s)z (S

(I4x)7voll 2 + M(T)?).

A

<1
~ )

This yields the desired faster local decay bound (3.6), which suggests that the leading
order behavior of the variable coefficient quadratic nonlinearity o (x)(v+7)? is governed

by a(x)(w + w)?. In order to further analyze the latter, we will need the following
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On Modified Scattering for 1D Quadratic KG 5183

estimates related to w(t) that hold uniformly forall1 <t < T,

log(1 + (t))

WOl £ =5 e (1007 ollig + MCT)?), 3.7)
log(1 + (t
la®)| < %(HW%HQ + M(TY?), (3.8)
2
, 1
8.(e " a)] < — (Ix) Vol 2 + M(T)?). (3.9)

t)

These estimates follow directly from the definitions of w(t) and a(t). Indeed, from the

definition of w(t), we obtain uniformly for all 1 < ¢ < T that

1 t—1
Il S e vohoeol s + /0 O ez ds
2 — 952

Ivollzy =1 _
S —X+/0 =102 el (%) "V(S)Ilio(c ds

()2 (t—s)t
- 1{x)° voll 2 +/“ 1 M(T)? ds
Y 0 (t—s)z ()
< B (oo + (D2,

(t)2

This proves (3.7). Similarly, from the definition of a(t) we infer uniformly foralll1 <t < T
that

t—1
a5 ool /0 -2 (@)l 11(x) 0 v(s) |2 ds

(t)2 (t—s)2
< ”V0||1L)1( +/t—1 1 1 M(T)2
(t)2 0o (t—s)z (9
log(l (t ))(
(t)z

ds
1x)7voll 2 + M(T)?),

which yields (3.8). Finally, to prove (3.9), we compute

d,(e Ma(t)) = — %C 6;: (@, vo) + —c eie D g a(yu(t — 1))

L e aue?
- — co—= (. a(u(s
aifo CG_gt"
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5184 H. Lindblad et al.

Hence, we obtain uniformly forall 1 <t <T

|9,(e  a)| < % + [ @)% a0~ vE = Dif
2

t—1 1
+ [y | e vl ds

(t—>s)2
< IIVOJI L M(T)? /H 1 3 M(T)? ds
t2 (t—1) 0 (t—s)z (8

1

S (1) vl 2 + M(T)?).

We are now prepared to prove the local decay bound for v(t). For short times

0 <t <1, using the local decay estimates (2.58) and (2.64), we easily obtain

sup [1(x)"7v(t)lzz < IVollyz + M(T)2.
0<t<1

It therefore suffices to consider times ¢t > 1. We begin by decomposing the Duhamel

formula for v(t) into

Lo~ 1 [t . =
v(t) = ezt(D>PCV0 + z/0 2l t=)(D) (D)_IPC(Oé(‘)u(S)z) ds

= 1 1. ~
PPy + o / e IPNDYTIP (a(u(s)?) ds
0

t -
5 /1 9D B) 1P, () (v(s) + 72 — w(s) + wis)?))as P10

t -
+ zil /1 =D By 1P (a(-)(wr(s) + w(s)?) ds

=I+10+II+1V.

Then the first two terms on the right-hand side of (3.10) can be easily estimated. Using
the standard local decay estimates (2.58) and (2.64), we have forany 1 <t < T

o
1) vl 2

160 Tl = [ (x) =7 P Pevg | 12 S ol
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On Modified Scattering for 1D Quadratic KG 5185

and

1 _ . ~
1(x) " |2 < /0 [ )7 (D) e I PP (x) 77 | 2 1 [ (07 (¢ (Ouls)?) | 2 ds
1

1
< / 103 a2 1) v(s)1 2 ds
0 (t—s)2

1

1

S / = 114x)%7 || 2 M(T)* ds
0 (t—s)2

M(T)?
(1)

<

In order to estimate the third term on the right-hand side of (3.10), we combine the
local decay estimate (2.58) with the improved local decay bound (3.6) for the difference
v(t) — w(t) and the bound (3.7) for w(t) to obtain for any 1 < ¢t < T that

I {x) =0 Il 2

t _ ) ~
< /1 [ )7 (D) e I PP (x) 77 | o 12 [ (007 @GO ((V(5) + () — (W(s) + W(s)? ||z ds
t

1
< /1 . )l||<x>3“a||Lf||<x>*“(v(s>—w(s))||L;(||<x>*”v(s>||L,go+||<x>*”w<s)||L;o)ds
—s)2
| 1 M(T) log(1
S / 1—(||(X)“VOIIL§+M(T)2)( @) , log +1(S>)(||<x>"v0||L;+M<T)2)) ds
1 (t—s)z (9 (s)2 (s)2
1
S o (1x)7 voll 2 + M(T)?)?.

The estimate for the fourth term on the right-hand side of (3.10) is the most delicate
due to the slow time decay of «(x)(w(s) + w(s))?. We decompose the term further so that
we can exploit the time oscillations of w(s). To this end we introduce a cutoff function
¥ € C°(R) that is supported in small neighborhoods around & = ++/3 and such that
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5186 H. Lindblad et al.
V(&) = 1 for say |£€ — (£+/3)| < 1072, Then we write

t ~
W= zil /1 9D/ DY 1P (a(-)(w(s) + W(s))?) ds
1

¢t
= ZA (el(tfs)(D)(D>71PC(a(p2))(a(s)+&(s))2 ds

t
= 2—l ) (w(D)el(t s)(D) (D) 1P ((Xgo ))(a(s) +C_l(S))2 ds (3.11)

t -
+ ziz/ ((1 — y(D))elt=D) (15)*1P0(a<p2))(a(s) +a(s)?ds
1

The first term on the right-hand side of (3.11) can be easily estimated using the improved
local decay estimate (2.65) for the Klein—-Gordon propagator away from zero energy and
the bound (3.8). Uniformly for all 1 < ¢t < T we obtain that

160~ Vi) llz S / |60 (¥ D D) P ) | e ds
1 1 14+
< / . ||<x>"oup2||LzM(nwmuz +M(T)?)* ds
1 (t—s)2 X (s) x

— (1) vz +M(T)?).

To estimate the second term on the right-hand side of (3.11), we further expand it as
_1 ! V) £it—5)(D) 75y —1 2\ ,2i
—S - S(,—1S
IV(b) = Zi/l ((1 _ I/f(D))eL ( >(D) PC(OHP ))e i ( i a(s))

t
+ 1/ (1= ¥ (D) =221 (D) 7 Py (ap?) ) [e~a(s)|* ds
i (3.12)

+ % / ((1 = v D)2 (D)7 P, (ag?) ) e~ (e Fa(s))* ds

o)) (2) (3
= IV(b) + IV(b) + IV(b)

Then we integrate by parts in time s. Note that for the first term IV((;)) this could

potentially be problematic, because on the distorted Fourier side the phase of e!s(2—¢)
vanishes at frequencies & = ++/3. However, owing to the cutoff (1 — ¥ (&)), the integrand
is zero in a neighborhood of £ = ++/3. We only provide the details for the treatment of

the term IV}

(- the other terms being easier. We find that uniformly forall 1 <t < T one
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has that

1 [t 5 d ~ ~ ;
IV<(;)) EA elt(D)(dS( 18(2 )(2 (D ))*1<D)*1(1 _ w(D))PC(a§02))(eflSa(s))2 ds
1 ~ ~ ~
= —5(@= @' D) (1 - v D)Pc(av?) v’
+ 5P (@ = B) D) (1 - ¥ (D) Pofes?) ) a1’

t . = ~ ~ ~
+ / (e“t*SWJ)(z— D)D)y (1 - w(D))PC(a(pz))( e Sa(s))ds (e Sa(s)) ds
1

Then using the standard local decay estimate (2.58), the bounds (3.8) and (3.9) for the

coefficient a(t), and Lemma 2.14, we finally obtain that

— 1
1)~ IV 2

<o (@-m D (- v D)P(er?))

el

+ [P (@ = BT (1 - v (D)) P (p?))

lar

+ /1 |7 (9P 2 — D)D) (1 = v D) Polaw?) )|, leFals)][a5(e a(s)| ds

(log(1 + (1)) )

< (@-@mD v DR, ()

(1) Vol 2 + M(T)?)?

(@= @)D (1 - v D)Pe(as?))

ol (107 vollz +M(T)%)°

LA |
+/ :
1 (t—s)2

7@ — (D)D) (1 = ¥ D)P(ag?) )

X
L

10g(1 (s ))(

1) vl 2 +M(T)?)* ds
(s)%

1
- (t_lH ()7 Ba? | 2 (1107 ol 2 + M(D2)”.

N

Putting all of the preceding estimates together (and using that we may freely

assume that M(T) < 1), we arrive at the estimate
M(T) S 1(x)7 vollgz + M(T)>.

The assertion of Proposition 3.1 now follows by a standard continuity argument. |
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5188 H. Lindblad et al.

A key step in the derivation of the local decay bounds for the solution v(¢) in
Proposition 3.1 was to isolate the leading order behavior of the variable coefficient
quadratic nonlinearity «(x)(v + 7)%. It is determined by a(x)(w + W)2, where w(t)
is defined in (3.4) and where we write w(t,x) = a(t)p(x), t > 1, with the time-
dependent coefficient a(t) defined in (3.5). From the local decay bounds established in
Proposition 3.1, we infer two improved local decay bounds for the difference xo(H)v(t) —
w(t) for t > 1. These will be needed later in the proof of Theorem 1.1.

Corollary 3.2. Under the assumptions of Proposition 3.1, we have

€
—, t>1, (3.13)

|7 (oEv) —w)lz < 70 12

Lots1. (3.14)

|78 (xo EDv(®) —w) | 12 <

Proof. We present the details for the derivation of the second asserted local decay
bound (3.14). We proceed similarly as in the proof of the preceding Proposition 3.1.
By Duhamel’s formula for the solution v(t) and the definition (3.4) of w(t), we have

fort>1

I (XoEV(®) — w(t))
i7 it

= 0y (eit(D> XoH)P,vy — CoT(‘P: VO)Q")
2

t—1 . = = et
N Zl 8X(el(t—s)(D)XO(H)<D)_1PC(O((-)U(S)2) - coe—l(‘/’,a(-)u(s)z)‘/?) ds
/. (t—s)2
¢ -
n zll 1 9, (ei(t—s)(D) Xo(H) (ﬁ)—lPC(O((-)u(S)z)) ds.
t_

Using the local decay estimates (2.63) and (2.67) for the Klein—-Gordon propagator along

with the local decay bounds for v(t) from Proposition 3.1 and the Sobolev estimate (3.2),
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we obtain fort > 1

)70, (o EDV(®) = w(®) | 12

Ix)°vollz =1 1 t
< # +/ - || (x)7a(x)u(s)?| 2 ds +/ le@)u(s)?||,. ds
(t)2 0 (t—s)2 x t—1 *
1(x)7 vyl =1
L / 10 @l 211 (x) V() Il ds
(t)2 0 (t—s)2

t
+ / 1227 el 2 11(x) = v($) |70 ds
t—1

t—1 2 t 2
S ‘9§+/ %idw/ °_ds
tz Jo  (t—s)z(s) t—1 (S)

&

{t’

<

as desired. The proof of the first asserted local decay bound (3.13) proceeds similarly,
using the local decay estimates (2.61), (2.62), (2.65), and (2.66). | |

As a further corollary of the local decay bounds for v(¢) from Proposition 3.1, we

deduce the asymptotics of the coefficient function a(t).

Corollary 3.3. (Asymptotics of a(t)) Under the assumptions of Proposition 3.1, the

coefficient
ei% eit 1 t—1 ei% elt—9) )
a(t) .= co— (¢, vg) + = Co—l(tp,a(-)u(s) )dS, t>1,
1 ZL 1
t2 0 (t—9)2

has the asymptotics

e’Zeit 82
a(t):cot—%ao—i—(’)L?o(T), t>1, (3.15)
where
1 2 2 1 —2
ag = (¢, vy) + E(‘pla(')v()> — (@, a()|vyl?) — g(fﬂ,a(')Vo)

(3.16)
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5190 H. Lindblad et al.

Proof.

% ot
a(t) =Ch——— —
t2 2 t—s)2

We proceed similarly to the proof of Proposition 3.2 in [51]. We begin by writing

1 -1 42 ) )
(((p,vo>+ /O (—16_‘S(¢,oc(-)u(3)>d5)-

Then the main work goes into peeling off the leading order behavior of the second term

in the parentheses. To this end we insert the decomposition of u(s) into its “phase-

filtered components”

u(s) = (e Sv(s)) + e (e (s))

to find that

1 t—1 t% 1 t—1 t%

2Jo  (t—s)2 2o (t—g)t

Nl—

2 (=1 ¢

2i Jo (t—S)%

NI~

1 1 ¢

+ —
21 0 (t—S)%

|~

(I + I+ 10).

N

i

e S a(uE)ds=— [ —— ¢

S(p,a() (e Pv(s)?) ds

e B, a()|e Bv(s)|) ds

e % (p, a () (e57(s))%) ds

Now we describe in detail how to peel off the leading order behavior of the term I,

noting that the other terms can be treated analogously. We first exploit the oscillations

and integrate by parts in time s to find that
t-1 1
t . .
I= / —zle‘S(go, oe(~)(e“sv(s))2) ds
0 (t—s)2
= —it2e“ V(g a() (e Dy(t - 1))?)

+i(p, a(-)v(0)?%)

;tl ¢z . ,
+ %/ —de“(w,at)(e‘”V(S))z) d
0 (t—s)2

1

S

t—1 7
+2i/ e g, 0010, (e () e () ds
0

(t—9)2
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Clearly, the term I ;) contributes to the leading order behavior of I. We now show that
the terms I, and I, decay as ¢ — oo, and we extract the leading order contribution
from the term I 4. Using the local decay bounds for v(¢) from Proposition 3.1, we obtain
that

1 —
iyl S 21107 @)l [(x) T v(E— D), S

L2 ~ e

and

Nl

AR 2 2 RS RS &2
o] S t2 / —— T a@) [l [{x) " v(s)ll; ds S ¢ / — oA —
0 (t—s)2 X 0 (t—s)z (8 (t)z

Then we rewrite the last term I 4 as

=1 4z . .
Ly =2 / —zle”(so,ac)as(e*”v(s))(e*wv(s>)> ds
0 (t—s9)2

=21 [ ¥p,atriy(evo) V) ds
0

~2i [ a0 (e vis) (e o) ds
2
t—1 t% . g i
+2i / ———1e%(p,a()3;(eFv(s)) (e V(9))) ds
5 t-92
0o : ' /
+ Zi/ (— - 1)e“<so,a<->as (e v(s) (e v(9)) ds
0 \(t—5)2

_ ) @ G @
=Ig +1g+15+1g

Using the local decay bounds from Proposition 3.1, in particular that || (x)~° 8t(e*itv(t)) 2

has faster decay, it is easy to see that the improper integral I((Cli; converges and

contributes to the leading order behavior of the term I, while the other terms 1%

@’
I((S;, and I((;L; are of the order OL?C (sz(t)_%). Indeed, we find that

1)) « * 20 —0 —is —o ds < * 82 ds < 2
gy < A 1) el e [1{x) " a5 (e " v(sH I 2 [ (x) " v(s)ll 2 ds S o w3 53¢
s)2

€20z dunp G0 Uo Jasn meT AsIoAlun sleA Ad GS0£Z2S9/81 L G/9/€Z0Z/310me/ulwl/wod dnoolwspese)/:sdjjy Woj papeojumoq
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and
2 2

o0 o0
: &
LS / 1) 27 el e 11(x) 2 B (€S v () 211 x) "7 V() 2 ds < / sds < —.
$ 5 (92 (t)2

Analogously, we obtain that

t—1 L 2 2

t2 e e
@is ) et
. 1 3 1
7 (=952 (s)2 (t)2

t
2 S & &
s [ e S
0 (t—9)2(@2+(t—-95)2)(s)? ()2

Thus, the leading order behavior of the term I is given by

I=ilp aCvg) + Zi/ (g, () (€5 v(9)) (e7FV(s))) ds + Ope (%)
0 !

Similarly, we compute that the leading order behaviors of the terms II and III are given
by

00 . . . 2
I = —2i{p, a()|vyl*) — Zi/o e ¥, a()0s((e"¥v(s)) (e V(s)))) ds + OL§°( £ )

. . oo 2
I = — 2 (g, a()i72) — z / e 35 (p, ()3, (eT7(s)) (€757 (5))) ds + Oy (5—1)
3 3 Jo " \()2

Putting things together, we conclude that the asymptotic behavior of the coefficient a(t)
is given by (3.15). This concludes the proof. |

4 Proof of Theorem 1.1

Now we are in the position to provide the proof of Theorem 1.1. We first consider the
non-resonant case. Afterwards we turn to the treatment of the more delicate resonant
case. In the course of the proof we will frequently invoke the local decay bounds
established in Proposition 3.1 and Corollary 3.2. Throughout we let o = 5.
Non-Resonant Case: We begin with the proof of the decay estimate (1.20). By

time-reversal symmetry, it suffices to consider positive times ¢ > 0. For short times

0 < t < 1 we just use the Sobolev estimate from Lemma 2.11 together with the local
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decay bounds (3.1). From Duhamel’s formula we obtain that

sup V(@) < sup (Iv(l + IVHV ()] ,2)

0<t<l 0<t<

1
< I1Pvolz + IWHPvoll2 + / lex)v(s)?ll,2 ds
0

1
S vl + / 160* @z 11() "7 v($) I ds
0

<e.

Then for times ¢t > 1, we first peel off the leading order behavior of the variable
coefficient quadratic nonlinearity in Duhamel’s formula for v(¢) by inserting the
function w(t) defined in (3.4) as well as the asymptotics for the coefficient a(t) from
Corollary 3.3. Exploiting the non-resonance assumption Flag?l(++/3) = 0, we may then
integrate by parts in time in the leading order term in Duhamel’s formula to recast it
into a more favorable form. Subsequently, we apply the dispersive decay estimate (2.68)
for the Klein-Gordon propagator to infer the decay estimate (1.20).

More specifically, we begin by writing for any ¢ > 1,
= 1/t ~
v(t) = e'P' Py, + 2—1/ e!t=9)D) (D)_ch(oe(~)u(s)2) ds
0

e 1 /1. =
= PPy + / eI PND) TP (@ (Yu(s)?) ds
iJo

1 [t~
+ 2_1/1 ez(H)(D)(D)*lpc(oe(.)((v(s) + 7(s))% — (W(S)Jrv—v(s))z)) ds 4.1)

t,
+2il . (el(t—S)<D> (D>_1PC(“¢2))(a(s) +a(s))2 ds

=I+1I+0I+1V.

The L° bounds for the terms I and IT in (4.1) are straightforward and we omit the details.
We now consider the term III, afterwards we estimate the delicate term IV. In the case
of the term IIT in (4.1), we have by the dispersive decay estimate (2.68) (with u = %) for
all t > 1 that

t
T | .0 5/
1
t
<[ —
1 (t—9)2

ds
LY

e IPUD) 1P (a() ((v(s) + ()2 = (Wis) + Wi(s)?))

D)Pe (¢ (((5) + () — (Wi(s) + W(s))?))

ds.
L}
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5194 H. Lindblad et al.

We now show that

(DYP(a () ((V(s) + 7(s)? — (W(s) + W(5))?)
L

which immediately implies the desired decay estimate

t 2 2
1 € &

T || 5/ ———ds<—, t>1.

1 (T—9)2(s)2 t

[N}

We may ignore the complex conjugates to simplify the notation and now prove that

82
1 S —3 S > 1. (42)
X <s)§

| B)Po(0)(v(9)? = w(s)?))

To this end we first further decompose v(s) into a low-energy and a high-energy part

v(s) = xog(H)V(S) + (1 — xo(H))v(s),

where we recall that x, denotes a smooth bump function supported on || < 1 with
Xo(é) = 1 near £ = 0. We obtain

D)2 («() (v(5)? = w()2)) = DIP (a() (o EDV($)? — w(s)?))
+ (D)P, («() (o EV(©) (A — 1o EV(S)) ) s
+ (DIP (a() (1 = xo V() V(5)) |
= Il g, + Iy, + M.
By exploiting the faster local decay of the high-energy component (1 — x,(H))v of the
solution as well as the faster local decay of vHv established in Proposition 3.1, the

product estimate (2.34) already yields the desired bound for the last two terms on the
right-hand side of (4.3),

Iy 1 + 1T g1 S 11027 oo (1) W (S) 12 + 11 (%)~ VEV(S) l2) %

x (1) (1 = xoED)V(S) 2 + 1x) 7 VEV(S) I 2)
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It remains to estimate the more subtle first term on the right-hand side of (4.3). By
Holder's inequality, the equivalence of norms from Lemma 2.10, and the usual product

rule for the derivative, we have

Mgyl S |07 DIP () (o EDV(S)? - wis)?))

L

S 07 @) (o EVS)? = w)2) |

< ||(X)1+2"Ot||w§'°° 1) 77 (xo E)V(s) — w(s)) “L,% [(x) =7 (xoEV(S) + w(s)) ||L§;°
+ ” <X>1+2(Ta||L§o || <X>*U 8}( (XO(H)V(S) — W(S)) HL§ || (X)ia (XO(H)V(S) + W(S)) ||L‘,°(o

1)l [ (07 (X0 EDV(S) — w(9) ] 2] ()78 (xo EDV(S) + W () || oo-

The kernel bounds (2.18) and the local decay bound for v(s) imply

’

[ )7 (xoE@VE)| 1o + |28, (X0 EDVE) | oo S 1) V)12 S o
s)2

while the asymptotics for the coefficient function a(s) from Corollary 3.3 give

1) "W ()l zee + 1(x) 7 8, W ()l e S 1a(®)|(Ilgllpee + 1859 lzee) < oy
s)2

Combining the preceding estimates with the faster local decay for (x,(H)v(s) —w(s)) and

for 9, (xq(H)v(s) — w(s)) from Corollary 3.2 given by

&

(s)

’

107 (xoEV(S) = w(s)) || 2 + [ @) "8k (xoEIV(S) = w(9)) || 2 <

we arrive at the desired bound |11 ,, [ < s‘z(s)_% fors>1.
Finally, we consider the delicate term IV in the decomposition (4.1) of Duhamel’s

formula for v(t). We further decompose it by inserting the asymptotics for the coeffi-
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cient a(t) from Corollary 3.3 and find that

2is

az [t, . = e
v = 0370 /1 (el(t—SWJ> <D)—1PC(a<p2)) —ds

2180” [*( 5By 7)1 2))
—I—CoT/ (=P D) 1P, (g ));ds
1

—2is
ds (4.4)

25‘(2) L ites)D) 1 21\ €
—007/1 (el( 0D P (g ))

+ zil lt(e"“””5> (D) Pe(wp?)) Oy (i) ds

3
S2

We observe that the term IV, can be thought of to determine the leading order behavior
of v(t), because on the distorted Fourier side in the integrand of IV, the phase of
e52—) vanishes when 2 — (£) = 0, that is, for £ = ++/3. In contrast, the integrands
in the terms IV, and IV, have better oscillatory behavior in time (at all frequencies)
and the term IV 4 has better decay in s of the integrand anyway. However, thanks to the
non-resonance assumption Flag?](£+/3) = 0, we can still integrate by parts in time s in
the delicate term IV, and cast it into a better form. We find that
a2 _ _ e2it a?, . ~ - ~ ;
IV, = cgz—fl?(z — D)D) Pelep?) — - cgz_g(el@—mm(z — (D! (D)‘lpc(mpz))eZ‘
2

as [t/ io_oi® ~ 1= 1

+ 220 / (el(t D) (2 — (D))~ 1(D) 1PC(a¢2))—2ds.
21 ) S

At this point we can infer the desired decay estimate for IV 4. For times 1 <t < 2 we

just use the Sobolev estimate from Lemma 2.11, while we invoke the dispersive decay

estimate (2.68) (with u = %) and Lemma 2.14 to obtain uniformly for all times ¢t > 2 that

2 ~ ~
Vgl S @H 2~ (D) D) Pe(eg?) ] e

lag|? -1/ 2
N - — D) DP(ae?) |

(t—1)2

t 1 _ _ 1
+ |ao|2/1 m” 2 - (D))_I(D)Pc(a(pz)”L}{S—z ds

2
lagl

S 7 Pa®|

~

1
tz
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The terms IV, and IV, can be estimated analogously after integrating by parts in
time s, and the term IV, can be bounded directly. This finishes the proof of the decay
estimate (1.20) in the non-resonant case.

In order to specify the asymptotic behavior of the solution v(t), we define the

scattering data

1 (1 s~
Voo 1= PCV0+2—i/O e‘ls(D)(D)_ch(oe(~)u(s)2) ds

+ ZLL e—is(fi) (5)—1PC(0£(-)((V(S) + I_/(s))2 — (W(s) + W(s))Z)) ds (4.5)
1
1 o0 L= )
g1 ), (7DD Ro(a?) )@l + a(s))? ds.

Then by mimicking the preceding arguments, it follows that v,, € H? and that v()
scatters in H? to a free Klein-Gordon wave in the sense that

~ 2
v(t) — Py S £
| SPES

, t>1.

D=

This concludes the treatment of the non-resonant case.

Resonant Case: We begin with the proof of the decay estimate (1.13). Again, it

suffices to consider positive times ¢t > 0. For times 0 < t < 1 we just use the Sobolev
estimate from Lemma 2.11 together with the local decay bounds (3.1), as in the preceding
treatment of the non-resonant case. Then it remains to consider times ¢ > 1. To this end
we combine the dispersive decay estimate (2.68) for the Klein—-Gordon propagator (with
w= %) and the product estimate (2.34) with the local decay bounds (3.1) for v(¢), to infer

from Duhamel’s formula for v(¢) that uniformly for all ¢ > 1,
OIS
. = t . = o~
S 1 PPyl + [ 9P D) P Ooucs) | ds
X 0 'X

~

ID?Pevollyy |t 1 -
S—— =+ / —— [DP(eOu®?)|, ds
t2 0 (t—ys)2 )

1(x)7 (D)2 P, vl £t
S s /0 160 2 all 1o (1) (S) 2 + 1)~ VEV(9)]l2)* dis

~ t (t—s)%
g t 2

< ll(x) ‘lfolng +/ 1 18_
t2 0 (t—s)2 (s)

< log(1 1+ @)
t2

DN
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5198 H. Lindblad et al.

This proves the decay estimate (1.13).
Next, we consider the asymptotic behavior of the solution v(t). To this end, we

first decompose Duhamel’s formula for v(t) as in (4.1) and (4.4) to write for times ¢ > 1,

L~ 1 1. = .
v(t) = PPvy + /O e IPND) TP (@ (u(s)?) ds

t . = ~
+ 31 | @IPBY TR a0 ((05) + TP = wis) + W(s))?)) ds
280 1 it-s)B) 7 20) €25
+ CO? / (e‘(t_s)< ><D>_1PC(O£(p )) T ds
' (4.6)

2 |“0|2 ¢ i(t—s)(D) ;79\ —1 20\ 1
+COT/ (el <D) PC(Ol(p ));ds
1
) EL(ZJ t 6721'5

_00? 1 (ei(tfs)(ﬁ)(5>flpc(a(p2))

ds

N %/lt(ei(t—sﬂf)) <5>—1P0(a¢2))(9L§o (j_;) ds.

In what follows we show that the modified scattering behavior of the nonlinear solution

v(t) is caused by the fourth term on the right-hand side of (4.6), which we denote by
2 afz) ‘ i(t—s)(D) ;7\ —1 2 e?is
Vinod(t) = co?/ (e (D)"'P, (g ))— ds.
1 S
We group all other terms in Duhamel’'s formula (4.6) for v(¢) into

Vfree(t) = V(1) — Vg (D).

Proceeding as in the proof of the decay estimate (1.20) for the non-resonant case, we

obtain the asserted decay estimate (1.14) for v, (¢) given by

&

N>
Nl—~
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Moreover, upon defining the scattering data

1 /Y=
Voo 1= Po¥o + o /O e D) TPy (w(u(s)?) ds
o

o [ e DB, (a0 () + 760 — wis) + w(s)?)) ds
1
2|a0|2 sy -1 20\ 1
+ = /1 (e75PB) " Py (e ))E ds
_ Cza_g Oo(efis<5) <E)71P (a¢2)) efzis ds
0 2 1 c
1 o] o~ 82
I —is(D) ;75\ —1 2 &
+ 2 /. (e (D)"'P,(ag ))OL?o (s%) ds,

we find by proceeding as in the non-resonant case that v, € H2 and that Viree (1) sCatters

in H? to a free Klein-Gordon wave in the sense that
I Vree(t) — Py HH)% < —, t>1.

Finally, we analyze the asymptotic behavior of v,,,;(¢) for ¢t > 1. Here we follow
relatively closely the corresponding derivation in the proof of Theorem 1.1 in [51]. In

what follows we use the short-hand notation
Y i=ap”.

Let ¥ € C°(R) be a smooth bump function such that ¢ (¢) = 1 in a small neighborhood
around £ = 0 and such that

Y(@E) =0 forlg|>35 (4.8)

for some small § = §(5) > 0, whose size will be specified further below. Then we

decompose the distorted Fourier transform Y (¢) of ¥ into
Y(E) =Y, (6) + V() + Y, (5)
with

Y€)=y (EFVITVE).
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5200 H. Lindblad et al.

Correspondingly, we define for times ¢ > 1,

a(Z) t, . ~ eZis

Vinod,+(t) == 037/1 (el(t_sxD)(D)_chYi) 5 ds, (4.9)
25 (Y i—sB) 751 e’

Vimodnr(t) = /1 (el( —SD)(D)~ PCan)Tds. (4.10)

Decay of Vpyoqnr(t): Since Y, (++/3) = 0 by construction, we can integrate by
parts in time s in the Duhamel integral for v, (). Then using the standard dispersive
decay estimate for the Klein—-Gordon propagator from Lemma 2.18, we obtain uniformly
for all t > 1 that

&
”Vmod,nr(t)”L,ﬁO f, 1
tz
Decay of Vp,,q+(t) away from small conic neighborhoods of x = j:“/Tgt: it

suffices to consider v,,,4 . (t), the treatment of v,,,4 _(f) being analogous. Assume that
x > 0. Using the distorted Fourier transform and noting that iﬁ(&) is supported on

(0, 0), we write

Vimod,+ (& X) = Cg%/lt/ﬂkT(é)m+(x,S)ei(xﬂ(”_s)(f))(é)_l?+(§)dg ? ds. (4.11)
The phase
B(s, & t, %) = xE + (t — s)(E)
satisfies
hos bt —x+ (-9, RGN =

For any given 0 < § < 1, we may choose the constant § = §(8) > 0 in the definition (4.8)

of the cut-off function v above so small such that

(=

€ \2

© )‘ < g whenever S?+(§) # 0.
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Moreover, we have |8§¢(S,$; t,x)| >~ (t — s) on the support of Y(&). We distinguish two

cases. Suppose x > (‘/Tg + 8)t. Then on the support of S?+(§) the phase satisfies

&1 >(f+6)t_(ﬁ 5

8
3| > x| — (t —5)— = —)t— > —t.
10:0| = |x] —( S)@)_ 2+2( S)_2
Correspondingly, integrating by parts in & and using Lemma 2.3 as well as Lemma 2.5,
we find

t182 82

Vinod,+ (%) §s,v/l i ds 5 a

V3

Now suppose 0 < x < (73 — 5)t. We divide the time integration interval into two

subintervals
where

5
t, ;= ——t.
L 2(V349)

On the support of ?+($) the phase satisfies for 1 <s < ¢; that

2 2

sl () (L) ()

9 to (x| -5 >t X2 -
00l = by X =5y = 2 2J3+9)

t.

8
4

Integration by parts in & therefore pays off for 1 < s < t;. Instead for times s > t; we can

just use the usual (¢t — s)_% dispersive decay of the retarded Klein-Gordon propagator

¢it=9)D) from Lemma 2.18 and crudely bound % < % <s % Hence, in the case 0 < x <

(*/T§ — 8)t, we obtain that

™

-|

|Vmod+(t,X)|,§5V/tllids—i—/t;lfdsgi—z_—i- 2 4.12)
' w1 ts o (t—s)z t t tz 'tz

If instead x < 0, we start from the representation (4.11) for v,,,, . (¢, x) and first express
T()f . (x,£) in terms of f_(x,-) using (2.9). Then we may proceed as above.

This concludes the derivation of the decay estimate (1.18) for v,,,;(t) away from
small conic neighborhoods of the rays x = :I:‘/Tgt, as asserted in the statement of
Theorem 1.1.

Asymptotics of V.44 (t,x) along the rays x = :i:‘/Tgt: We consider v,,,q _(t,X)
in detail, noting that the treatment of Vimod,+ (& X) proceeds analogously. First, we may

restrict the time integration in the definition of Vinod,— (&, X) to times 1 <s <t—1 at the
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5202 H. Lindblad et al.

expense of picking up a remainder term of order OLgo (szt_l). Moreover, by Lemma 2.19

on the asymptotics of the Klein—-Gordon propagator (and observing that =3 (.§0>% ()71 =

p*% for &, as in the statement of Lemma 2.19), we have for 1 <s <t —1 that

(ei“*)@) (ﬁ)’lPCY_) (i“/?gt)

iZ io(t— V3 ﬁ
ez4elp(t s, E5°1) :I:Tt x 1
- ] IY—(— 7 )Jl(_l,n(t_s) + FO(1X)Y_lz2),
p(t—s,£5°1)2 p(t—s,£5°t) (t—s)3

(4.13)
where
1 2,1
p(t—s, £ = ((t—5)% - 33)7 = L(1 -85 +45)2.
Inserting the asymptotics (4.13) into (4.9) gives
V3 P i I R 134 2is o2
Vmod,— (t,:l:—t) :Cg—o 1 Y_ (— 2 )— ds + OLoo (2—)
2 2 )i p(t—s,+31)2 p(t—s,+2t)) s C\g5-

Since Y_ (&) = 0 for £ > 0, we have along the ray x = _TBt that

Vo (6= 220) = 0 ().

t3—

Moreover, due to the sharp localization of the frequency support of Y_(£) around
£ = —/3, for t > 1 the time integration in the last identity for v,,,4 _(t, ‘/Tgt) is in
fact only over an interval 1 < s < ct for some small constant 0 < ¢ <« 1. Thus, along the

ray x = */T§t, one has that

R _

NG

ﬁ a2 ct ei%eip(t—s, t eZiS 82
L p(t—s, %202 pt—s, 3ty S t5~

(4.14)

In view of the approximate identities

ey 1 2
oy o) ﬁ=£l+@(is)'
pt—s,%20) t pt—s G2 2 t2
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it follows that

2 ct 2
ag ;n = 1 ; NE] 1 3
= C%J_%elz Y(_ﬁ)_l / el(p(tfs,T3t)+25)§ ds =+ OL;)O (—1) (415)
tz2 J1 t2

%3,

Vimod,— (t, >

Now we observe that the phase

o(s;t) = p(t —s, ?t) + 2s

is stationary at s = 0 and that its Taylor expansion about s = 0 is of the form

o(s;t) = % + O(%)

Thus, for times 1 < s K t7 the phase ¢(s; t) is essentially constant and the integrand in
(4.15) is effectively monotone, which leads to the buildup of a log(t) factor. In order to
arrive at a sharp formula for the asymptotics, we split the time integration interval into
the two subintervals 1 <s < 103t and 10~3tZ < s < ct. For the interval 1 < s < 10-3¢2

we compute that

N =+

10-3¢2 ) 1 y 10-3¢2 1 10-3¢2 s &l
/ PN Z ds = etz / —ds +/ (’)(—) ds = — log(®) + O(1).
1 s 1 s 1 2

Instead, on the interval 10*3t% < s < ct, we integrate by parts. Since d,¢(s; t) = O(%) and

32¢(s; t) = O(1) on that time integration interval, we find

ct . ct —ct
/ e‘¢(s?t)lds </ ids+ L <1
10-3¢7 s |~ Jio-sz s3 s2 ls=10-3¢2
Hence, we obtain the asymptotics
\/§ a2 x i~ log(t g2
Ymod,— (t, Tt) = c2"Cele'2 Flap?l(—/3) gl( ) + Op (_1)' t> 1.
\/§ t2 t2

This finishes the proof of Theorem 1.1.

Remark 4.1. In the resonant case when a; # O the distorted Fourier transform of
it

the profile g(t) := e Py (t) of the solution v(t) to (1.12) diverges logarithmically at the
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5204 H. Lindblad et al.

frequencies & = ++/3, specifically we have

2
G(t, £/3) = Cg%f[agaz](:l:\/g) log(t) + O(), t> 1.

To see this, recall that v,,,;(¢t) is the fourth term on the right-hand side of the

decomposition (4.6) of the Duhamel formula for v(¢). The distorted Fourier transform
it(D

of the profile g,,,4(t) := e Py, . (t) of v,,,4(t) is given by

~ a? ~ to. 1

Gmoa(t,) = 2 61 Flag1(e) [ =)~ as,
1

Since 2 — (¢) = 0 for & = ++/3, we correspondingly obtain that Tmoa(t, &) diverges

logarithmically at the frequencies & = ++/3,

~ a? - ty a?
Tmoalt, £V3) = ¢§- 2 Flag?1(6) / S ds = 5> Flaw™1(§) log(®).
1

The contributions of all other terms on the right-hand side of the decomposition (4.6)
to the distorted Fourier transform g(t, &) of the profile are uniformly bounded in time
(at all frequencies), which follows readily using the local decay bounds for v(t) from
Proposition 3.1. For the contributions of the fifth and sixth terms one additionally has

to exploit the oscillations.
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