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STRUCTURE FORMULAS FOR WAVE OPERATORS

By M. BECEANU and W. SCHLAG

Abstract. We revisit the structure formula for the intertwining wave operators W± associated with
H = −Δ+V in R

3 under suitable decay conditions on V . We establish quantitative bounds on the
structure function. Throughout we assume that 0 energy is regular for H =−Δ+V .

1. Introduction. In this paper we revisit the study of wave operators for
H = −Δ+V in three dimensions. Define Bβ , β ≥ 0, as the subspace of L2 con-
sisting of functions with the property that

‖f‖Bβ :=
∥
∥�[|x|≤1]f

∥
∥
2+

∞∑

j=0

2jβ
∥
∥�[2j≤|x|≤2j+1]f

∥
∥
2 < ∞.

Then for V ∈Bβ(R3), β ≥ 1
2 , V real-valued, the wave operators

W± = lim
t→±∞

eitHe−itH0

exist in the usual strong L2 sense, withH0 =−Δ. They are isometries fromL2 onto
the absolutely continuous spectral subspace of H in L2, and there is no singular
continuous spectrum (asymptotic completeness), see Sections 3, 4. In a series of
papers, Yajima [Yaj1, Yaj2, Yaj3, Yaj4], established the Lp boundedness of the
wave operators assuming that zero energy is neither an eigenvalue nor a resonance
(and later also obtained more restrictive results of this nature if this condition fails).
These results are very useful for nonlinear dispersive wave equations, since by
the intertwining property W±f(H)Pc = f(H0)W±, H0 := −Δ, we may transfer
Strichartz estimates from the free case H0 to the perturbed evolution ofH .

The first author combined some of Yajima’s formalism with his Wiener algebra
technique [Bec, BeGo] to obtain a structure formula for the wave operators [Bec1].
In fact, he showed that the wave operators act on functions by the superposition of
elementary operations. The paper [Bec1] is not entirely accurate. The first result
of this paper is to present a corrected version of the structure formula. By B1+ we
meanBβ for some β > 1. In Section 3 we will define what a zero energy resonance
or eigenfunction means in this context.M denotes signed Borel measures. We also
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752 M. BECEANU ANDW. SCHLAG

go beyond [Bec1] by obtaining quantitative control of the structure function as well
as stability estimates for it.

THEOREM 1.1. Assume that V ∈ B1+ is real-valued and that H = −Δ+

V admits no eigenfunction or resonance at zero energy. There exists (an iterated
space XY means that we first take the norm in Y and then in X) g(x,dy,ω) ∈
L1
ωMyL

∞
x , i.e.,

∫

S2

∥
∥g(x,dy,ω)

∥
∥
MyL∞

x
dω < ∞(1.1)

such that for f ∈ L2 one has the representation formula

(
W+f

)
(x) = f(x)+

∫

S2

∫

R3
g(x,dy,ω)f

(
Sωx−y

)
dω.(1.2)

where Sωx= x−2(x ·ω)ω is a reflection. A similar result holds for W−.
Let X be any Banach space of measurable functions on R

3 which is invariant
under translations and reflections, and in which Schwartz functions are dense (or
dense in Y with X = Y ∗). Assume further that ‖�Hf‖X ≤ A‖f‖X for all half
spaces H ⊂ R

3 and f ∈X with some uniform constant A. Then

∥
∥W+f

∥
∥
X
≤AC(V )‖f‖X ∀f ∈X(1.3)

where C(V ) is a constant depending on V alone.

The structure function g(x,dy,ω) only depends on x through the 1-
dimensional coordinate xω := x · ω, that is g(x,dy,ω) ≡ g̃(xω,dy,ω), and it
has the additional regularity

∥
∥∂xω g̃

(
xω,dy,ω

)∥
∥
L1
ωMyMxω

< ∞.(1.4)

In particular, W± andW ∗
± are bounded onX =Lp, 1≤ p≤ ∞: if f ∈L2∩Lp, then

∥
∥W±f

∥
∥
Lp +

∥
∥W ∗

±f
∥
∥
Lp � ‖f‖Lp .(1.5)

This improves on Yajima’s results since (i) less is required of V , and (ii), the
class of Banach spaces X in (1.3) is considerably more general than Lebesgue
or Sobolev spaces.

It is of course desirable to have a quantitative estimates on g in place of mere
finiteness in (1.1). This is a somewhat delicate matter, since the so-called limit-
ing absorption principle for the perturbed resolvent are typically noneffective (see
however [RodTao]). Clearly, any bound on g will require a quantitative version of
the zero energy condition. In the following theorem we obtain a bound in terms of a
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global (in energy) bound on the Birman-Schwinger operator, see (1.7). The some-
what unusual L∞ → L∞ limiting-absorption principle is natural in this context.

THEOREM 1.2. Let V ∈ B1+2γ , 0 < γ. Under the hypotheses of the previous
theorem we have the following quantitative bound on the structure function g,

∫

S2

∥
∥g(x,dy,ω)

∥
∥
MyL∞

x
dω ≤ C0

(
1+‖V ‖B1+2γ

)38+ 105
γ
(
1+M0

)4+ 3
γ(1.6)

where

sup
η∈R3

sup
ε>0

∥
∥
(
I+R0

(
|η|2± iε

)
V
)−1∥∥

∞→∞ =:M0 < ∞(1.7)

and C0 is some absolute constant. The right-hand side of (1.6) also controls C(V )

in (1.3) as well as (1.4).
Let Ṽ ∈B1+2γ satisfy

‖V − Ṽ ‖B1+2γ < c0min
(
M−1

0 ,‖V ‖B1+2γ

)
,(1.8)

where c0 � 1 is some absolute constant. Then Ṽ obeys the 0-energy condition, and
there is the following stability bound on the structure functions g, g̃:

∫

S2

∥
∥g(x,dy,ω)− g̃(x,dy,ω)

∥
∥
MyL∞

x
dω

≤ C1
(
γ,‖V ‖B1+2γ ,M0

)[
‖V − Ṽ ‖B1+2γ +

∥
∥(V − Ṽ )/

(
|V |+ |Ṽ |

)
�[|V |+|Ṽ |
=0]

∥
∥

∞

]

(1.9)

where C1 is as on the right-hand side of (1.6), albeit with different numbers in the
exponents.

The appearance of η ∈ R
3 in (1.7) is intended to emphasize a central aspect of

this paper, namely that the frequency parameter η needs to be a vector in R
3, and

not just a scalar. While this is not apparent in (1.7), this feature does fundamentally
influence our technique. The appearance of the L∞-norm on the right-hand side
of (1.9) is an unfortunate technical issue. The finiteness of M0 will be shown in
Section 3. It requires the 0-energy assumption we impose on H = −Δ+ V . It
would be interesting to have an effective bound on M0 in terms of the quantity

M00 :=
∥
∥
(
I+(−Δ)−1V

)−1∥∥
∞→∞ < ∞

which is precisely what our 0-energy assumption amounts to, and quantifiable
properties of V , cf. [RodTao]. But we do not pursue these matters here, and there-
fore bound g in terms of M0, rather than M00. Theorem 1.2 is only interesting
for large potentials. We remark that for V small in B1+ the 0-energy condition
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automatically holds, M0 � 1, and
∫

S2

∥
∥g(x,dy,ω)

∥
∥
MyL∞

x
dω ≤ C0‖V ‖B1+ .(1.10)

This will be a byproduct of our results.

Acknowledgments. The first author thanks the University of Chicago for its
hospitality during the summers of 2015 and 2016. Both authors thank two anony-
mous referees for their thorough reading and numerous helpful comments which
improved the paper.

2. Function spaces and interpolation. For more background on the ma-
terial in this section cf. [Bec, Appendices] and the comprehensive treatment in
[BeLö]. We recall the family of Lorentz spaces Lp,q(Rd) defined as

‖f‖Lp,q(Rd) =

(∫ ∞

0

(
t
1
p f ∗(t))q

dt

t

) 1
q

1≤ q < ∞

‖f‖Lp,∞(Rd) = sup
t≥0

t
1
p f ∗(t) q = ∞

(2.1)

where f ∗ is the nonincreasing rearrangement of f . The duality relations are
(Lp,q)′ = Lp′,q′ if 1 < p < ∞, 1 ≤ q < ∞. Under real interpolation one has for
1≤ p0 
= p1 ≤ ∞

(
Lp0,q0,Lp1,q1

)
θ,r

= Lp,r(2.2)

where 0< θ < 1, 1≤ r ≤ ∞, and 1
p = 1−θ

p0
+ θ

p1
. In particular,

(
Lp0,Lp1

)
θ,r

= Lp,r.

The Marcinkiewicz interpolation theorem in this setting states the following, see
[BeLö, Theorem 5.3.2]:

THEOREM 2.1. T : Lp0,r0 → Lq0,s0 and T : Lp1,r1 → Lq1,s1 with p0 
= p1 and
q0 
= q1 implies that T : Lp,r → Lq,s if ∞ ≥ s ≥ r > 0 and 1

p = θ
p0

+ 1−θ
p1

, 1
q =

θ
q0
+ 1−θ

q1
, 0< θ < 1.

One has Hölder’s inequalities, see [ONeil],

‖fg‖Lr,s ≤ r′‖f‖Lp1,q1‖g‖Lp2 ,q2 provided
1
p1

+
1
p2

=
1
r
< 1,

1
q1

+
1
q2

≥ 1
s

(2.3)

and the endpoint

‖fg‖L1 ≤ ‖f‖Lp,q1‖g‖Lp′,q2 ,
1
q1

+
1
q2

≥ 1(2.4)
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as well as Young’s inequalities:

‖f ∗g‖Lr,s ≤ 3r‖f‖Lp1,q1‖g‖Lp2 ,q2 provided
1
p1

+
1
p2

=
1
r
+1> 1,

1
q1

+
1
q2

≥ 1
s

(2.5)

and the endpoint

‖f ∗g‖L∞ ≤ ‖f‖Lp,q1‖g‖Lp′ ,q2 ,
1
q1

+
1
q2

≥ 1.(2.6)

For any Banach space X one defines the vector-valued space 	̇sq(X) and 	sq(X) as

∥
∥
{
fj

}
j

∥
∥
�̇sq(X)

=

⎛

⎝
∑

j∈Z

(
2js

∥
∥fj

∥
∥
X

)q

⎞

⎠

1
q

∥
∥
{
fj

}
j

∥
∥
�sq(X)

=

⎛

⎝
∑

j≥0

(
2js

∥
∥fj

∥
∥
X

)q

⎞

⎠

1
q

(2.7)

where s ∈R and 1≤ q < ∞. The usual modification needs to made for q = ∞.
Then, see [BeLö, Theorem 5.6.1],

(
	s0q0(X), 	s1q1 (X)

)
θ,q

= 	sq(X)(2.8)

where s0 
= s1, 0< q0,q1 ≤ ∞, 0< θ < 1, s= s0(1− θ)+ s1θ, 0< q ≤ ∞, and the
same holds for the dotted spaces.

Definition 2.1. Let Ak := {x ∈ R
d | 2k ≤ |x| ≤ 2k+1} for each k ∈ Z. For any

α ∈R we set

Ḃα :=

{

v ∈ L2
loc

(
R
d \{0}

)
|
∑

k∈Z
2αk

∥
∥�Ak

v
∥
∥
2 < ∞

}

Bα :=

⎧
⎨

⎩
v ∈ L2

loc

(
R
d
)
|
∥
∥�B(0,1)v

∥
∥
2+

∑

k≥0

2αk
∥
∥�Ak

v
∥
∥
2 < ∞

⎫
⎬

⎭

(2.9)

where the sums on the right-hand side are the respective norms.

In the notation of (2.7) one has

‖v‖Ḃα =
∥
∥
∥
{
�Ak

v
}
k∈Z

∥
∥
∥
�̇α1 (L

2(Rd))
=:

∥
∥ι(v)

∥
∥
�̇α1 (L

2(Rd))

‖v‖Bα =
∥
∥
∥
{
�Ak

v
}
k≥0∪

{
�B(0,1)v

}∥∥
∥
�α1 (L

2(Rd))
=:

∥
∥ι0(v)

∥
∥
�α1 (L

2(Rd))
.

(2.10)

This allows us to use interpolation as in (2.8).
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LEMMA 2.2. The spaces in Definition 2.1 satisfy the following properties:
• Ḃ2α = (L2, |x|−2L2)α,1 and B2α = (L2,〈x〉−2L2)α,1 for 0< α < 1.
• Ḃα = (Ḃα0 , Ḃα1)θ,1 where α= θα1+(1− θ)α0 where 0< θ < 1 and α0 
=

α1. The same holds for the undotted spaces.
• The embeddings Ḃ

1
2 ↪→ L

3
2 ,1(R3) and Ḃ1 ↪→ L

6
5 ,1(R3) hold, and the same

is true for the undotted spaces. By duality, L3,∞(R3) ↪→ (B
1
2 )′.

Proof. One has ‖v‖2 = ‖ι(v)‖�̇02(L2(Rd)) and

‖v‖|x|−2L2 �
∥
∥ι(v)

∥
∥
�̇22(L

2(Rd))
, ‖v‖〈x〉−2L2 �

∥
∥ι0(v)

∥
∥
�22(L

2(Rd))
.

Next, Ḃ0 ↪→ L2, B0 ↪→ L2 and Ḃ
3
2 ↪→ L1, B

3
2 ↪→ L1 (by Hölder). Therefore,

Ḃ
3
2 θ =

(
Ḃ0, Ḃ

3
2
)
θ,1 ↪→

(
L2,L1)

θ,1 = Lp,1(2.11)

where p= 2
1+θ , 0< θ < 1. Similarly, B

3
2 θ ↪→ Lp,1. �

3. Spectral theory. This section discusses zero energy eigenvalues and res-
onances, as well as embedded resonances. These are classical questions, but due to
the somewhat special class of potentials under consideration we supply the details.
See also [Bec].

Definition 3.1. Let V ∈ L
3
2 ,1(R3). We say that 0 energy is regular for H =

−Δ+V if

f =−R0(0)V f(3.1)

has no solution f ∈ L∞, f 
= 0.

It is standard that H = −Δ+V is a self-adjoint operator on L2(R3) if V ∈
L3/2,1 is real-valued; for example, such potentials obey the Rollnik condition, cf.
[Bec, Proposition 2.9]. The following lemma relates the 0 energy criterion of Def-
inition 3.1 with the more common definition involving weighted L2-spaces, see
[JeKa, IoSc]. For this we will assume more than V ∈L3/2,1, namely V ∈B

1
2 which

is a smaller space by Lemma 2.2.

LEMMA 3.1. Let V ∈ B
1
2 . If (3.1) holds with f ∈ L∞, then f ∈ (B

1
2 )′, and

conversely. Note that f ∈ (B
1
2 )′ if and only if

sup
k≥0

2−k/2
∥
∥�Ak

f
∥
∥
L2 +

∥
∥�B(0,1)f

∥
∥
2 < ∞.
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Proof. The kernel of R0(0) = (−Δ)−1 is explicitly given by R0(0)(x,y) =
1
4π

1
|x−y| . Note that |x|−1 ∈ L3,∞. Write V = V1+V2, where V1 is bounded of com-

pact support (and therefore in L1) and ‖V2‖L3/2,1 is small. Then
∥
∥R0(0)V2

∥
∥
L3,∞→L3,∞ < 1

by (2.4) and (2.5). Thus (I+R0(0)V2)
−1 is a bounded operator on L3,∞ and

f =−
(
I+R0(0)V2

)−1
R0(0)V1f.

Since V1f ∈ L1, R0(0)V1f ∈ L3,∞ by (2.5), so by Lemma 2.2,

f ∈ L3,∞ ↪→
(
B

1
2
)′
.

Now assume f ∈ (B1/2)′, then V f ∈ L1, so f = R0(0)V f ∈ L3,∞. With the
previous splitting V = V1+V2, write

f =−
(
I+R0(0)V2

)−1
R0(0)V1f.(3.2)

Here we used that
∥
∥R0(0)V2

∥
∥
L∞→L∞ < 1.

One has V1f ∈ L3/2,1 since V1f ∈ L2 with compact support, R0(0)V1f ∈ L∞, so
f ∈ L∞. �

We write the resolvent identity as

(
I+R0(z)V

)−1
= I−RV (z)V ; RV (z) =

(
I+R0(z)V

)−1
R0(z)(3.3)

for Imz > 0. Here RV (z) = (H−z)−1. The following lemma addresses the limits
Imz → 0+. In particular, we obtain a limiting absorption principle on L∞, see
[IoSc, Bec] for more background. By (3.3), I +R0V is invertible on L∞ if and
only if RV is bounded from L3/2,1 to L∞.

LEMMA 3.2. Assume that V ∈ L3/2,1 is real-valued. Then I+R0(|η|2+ i0)V
is invertible on L∞ for any η 
= 0. For η = 0 it is invertible if and only if zero energy
is regular in the sense of Definition 3.1. In that case, I +R0(|η|2 ± iε)V is also
invertible on L∞ and its inverse is bounded in B(L∞,L∞), uniformly for ε≥ 0 and
η.

Proof. Let C0 be the space of continuous functions that vanish at infinity. It
follows from (2.6) that R0(|η|2+ i0)V : L∞ → C0. Indeed,

lim
y→0

∥
∥(V f)(·+y)−V f

∥
∥
L3/2,1 = 0
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gives the continuity of R0(|η|2+ i0)V f for any f ∈ L∞(R3). Second, if ε > 0 then
there exists Ṽ ∈ Ccomp with ‖V − Ṽ ‖L3/2,1 < ε. Clearly,

(R0(|η|2+ i0)Ṽ f)(x)−→ 0

as |x| → ∞. By (2.6), we obtain the same for V in place of Ṽ .
By Arzelà-Ascoli, a set A⊂ C0 is precompact in C0 if and only if one has
• equicontinuity:

∀ε > 0 ∃δ > 0 ∀|y|< δ ∀a ∈A
∥
∥a(·−y)−a

∥
∥

∞ < ε;(3.4)

• uniform decay at infinity:

∀ε > 0 ∃R ∀a ∈A
∥
∥�|x|>R(x)a(x)

∥
∥

∞ < ε.(3.5)

We wish to verify these conditions for

A=
{
R0

(
|η|2+ i0

)
V f | f ∈ B

}

where B ⊂ L∞ is bounded; in fact, we may take it to be the unit ball. It suffices to
assume that V is continuous and compactly supported. Indeed, approximating V

in L3/2,1 by such potentials and using (2.6) as above implies the general case. For
the uniform vanishing at ∞, suppose that V (x) = 0 if |x| ≥M . Then

∣
∣R0

(
|η|2+ i0

)
V f(x)

∣
∣� ‖V f‖1

(
|x|−M

)−1 � ‖V ‖1
(
|x|−M

)−1
(3.6)

and the vanishing follows. For the equicontinuity we introduce for any λ ∈ R the
kernels

k1,λ(x) = �B(0,1)(x)
eiλ|x|

|x| , k2,λ(x) = �B(0,1)c(x)
eiλ|x|

|x| .

Then for any |y| ≤ 1
2 with absolute constants C ,

∥
∥k1,λ(·+y)−k1,λ(·)

∥
∥
L1 +

∥
∥k2,λ(·+y)−k2,λ(·)

∥
∥
L4 ≤ C(1+ |λ|)|y|(3.7)

It then follows that (with λ= |η| and using ‖f‖∞ ≤ 1)

∥
∥
(
R0

(
|η|2+i0

)
V f

)
(·+y)−

(
R0

(
|η|2+i0

)
V f

)
(·)

∥
∥

∞≤C〈η〉 |y|
(
‖V ‖∞+‖V ‖ 4

3

)
.

(3.8)

Since the right-hand side does not depend on f , equicontinuity holds. Thus,
R0(|η|2+ i0)V : L∞ → L∞ is a compact operator, and so is V R0(|η|2− i0) : L1 →
L1 (as the former is the adjoint of the latter).

By Fredholm’s alternative in Banach spaces, I+R0(|η|2+ i0)V is invertible
in L∞ if and only if the equation

f =−V R0
(
|η|2− i0

)
f(3.9)
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has no other than the trivial solution in L1. Let f solve (3.9). Then

g =R0
(
|η|2− i0

)
f ∈ L3,∞

and satisfies the equation

g =−R0
(
|η|2− i0

)
V g.

By the same argument as in (3.2) it follows that g ∈ L∞(R3). Assume at first that
η 
= 0. Since V is real-valued, 〈g,V g〉 ∈ R whence

Im
〈
V g,R0

(
|η|2− i0

)
V g

〉
= 0.

Hence

V̂ g ||η|S2= 0,

where f̂(ξ) =
∫
R3 e−ix·ξ f(x)dx is the Fourier transform. This is well defined since

V g ∈ L1. By [GoSc, Proposition 2.4]

g =−R0
(
|η|2− i0

)
V g ∈ 〈x〉1/2−εL2

for some ε > 0. Since g is a distributional solution of the equation

(
−Δ+V −|η|2

)
g = 0

and g ∈ L∞, it follows that

g ∈ 〈∇〉−2L
3/2,1
loc ⊂H1

loc.

By [IoJe, Theorem 2.1], for η 
= 0 we conclude from the preceding that g = 0. It
then follows that f = (−Δ−|η|2)g = 0 (distributionally), and so (3.9) only has the
trivial solution.

If η = 0, we refer to Definition 3.1 and to Lemma 3.1. To be specific, here too,
I+R0(0)V is invertible in L∞ if and only if the equation

f =−V R0(0)f(3.10)

has no other than the trivial solution in L1. But by the same argument as before
g = R0(0)f ∈ L∞ solves g = −R0(0)V g. Definition 3.1 then requires that g = 0
and therefore also f = 0. In summary, the inverse (I +R0(|η|2 + i0)V )−1 exists
for every η ∈ R

3.
The map λ �→R0(λ

2+ i0)V ∈ B(L∞,L∞) is continuous, and the inverses have
uniformly bounded norms when λ is in a compact set. By Lemma 3.3

∥
∥
(
R0

(
λ2+ i0

)
V
)2∥∥

∞→∞ −→ 0
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as λ→ ∞. Therefore,

(
I+R0

(
λ2+ i0

)
V
)−1

=
(
1−R0

(
λ2+ i0

)
V
)(
I−

(
R0

(
λ2+ i0

)
V
)2)−1

(3.11)

is uniformly bounded as operators on L∞ for all |λ| � 1.
This extends to any set in the complex plane at a positive distance away from

the eigenvalues—in particular to the whole right half-plane. �

It is easy to see that ‖R0(λ
2+ i0)V ‖∞→∞ does not depend on λ. In fact,

(
R0

(
λ2+ i0

)
V f

)
(0) =

1
4π

∫

R3

eiλ|y|

|y| V (y)f(y)dy = (−Δ)−1(eiλ|·|V f
)
(0)

and therefore

∥
∥R0

(
λ2+ i0

)
V
∥
∥

∞→∞ =
∥
∥(−Δ)−1V

∥
∥

∞→∞

which does not decay in λ. To circumvent this issue, one can square the operator
as in (3.11).

LEMMA 3.3. For V ∈ L
3
2 ,1(R3) we have

∥
∥
∥
(
R0

(
λ2+ i0

)
V
)2

∥
∥
∥

∞→∞
−→ 0 as λ−→ ∞.

Proof. We choose to give an elementary self-contained proof, rather than re-
lying on decay of the free resolvent relative to the energy in weighted L2 spaces.
In view of (2.6) we may reduce ourselves to the case of a smooth, compactly sup-
ported V . Then

(
R0

(
λ2+ i0

)
V
)2
f(x) =

∫

R3
Kλ(x,y)V (y)f(y)dy(3.12)

where

Kλ(x,y) :=
1

16π2

∫

R3

eiλ(|x−u|+|u−y|)

|x−u| |u−y| V (u)du.(3.13)

We claim that

sup
x,y∈R6

∣
∣Kλ(x,y)

∣
∣−→ 0 as λ−→ ∞.(3.14)
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If so, then ‖f‖∞ ≤ 1 implies that

∥
∥
(
R0

(
λ2+ i0

)
V
)2
f
∥
∥

∞ ≤
∥
∥Kλ(x,y)

∥
∥
L∞
x,y

‖V ‖1 −→ 0 as λ−→ ∞.

Given δ > 0 we let χ be a smooth radial bump function in R
3 with χ = 0 on the

unit ball and χ(u) = 1 if |u| ≥ 2. Then

Kλ(x,y)

=
1

16π2

∫

R3

eiλ(|x−u|+|u−y|)

|x−u| |u−y| χ
(
|u−x|/δ

)
χ
(
|u−y|/δ

)
V (u)du

+
1

16π2

∫

R3

eiλ(|x−u|+|u−y|)

|x−u| |u−y|
[
1−χ

(
|u−x|/δ

)
χ
(
|u−y|/δ

)]
V (u)du.

(3.15)

The second line contributes at most O(δ) to ‖Kλ(x,y)‖L∞
x,y

in (3.14). Fix some
small δ > 0. We integrate by parts in u in the first line of (3.15) using that

(iλ)−1�v(x,y,u) ·∇ue
iλ(|x−u|+|u−y|) =

∣
∣�v(x,y,u)

∣
∣2 eiλ(|x−u|+|u−y|)

with

�v(x,y,u) =
u−x

|u−x| +
u−y

|u−y| .

The degenerate case where �v(x,y,u) = 0 occurs if u lies on the line segment join-
ing the points x and y. This however contributes nothing to the integral in u. Simi-
larly, if �v is small, then that will contribute very little to the integral. Thus, introduce
a cut-off function χ(�v(x,y,u)/ε) into the first integral in (3.15), which we denote
by K̃λ(x,y):

K̃λ(x,y) =
1

16π2

∫

R3

eiλ(|x−u|+|u−y|)

|x−u| |u−y| χ
(
|u−x|/δ

)
χ
(
|u−y|/δ

)

×χ
(
�v(x,y,u)/ε

)
V (u)du

+
1

16π2

∫

R3

eiλ(|x−u|+|u−y|)

|x−u| |u−y|
(
1−χ

(
�v(x,y,u)/ε

))

×χ
(
|u−x|/δ

)
χ
(
|u−y|/δ

)
V (u)du.

(3.16)

The second line here contributes o(1) to ‖K̃λ(x,y)‖L∞
x,y

as ε→ 0, whereas in the
first line we integrate by parts (with ε > 0 small but fixed) using the operator

L :=
∣
∣�v(x,y,u)

∣
∣−2

(iλ)−1�v(x,y,u) ·∇u.

Sending λ→ ∞ then shows that this contributes o(1) to ‖K̃λ(x,y)‖L∞
x,y

. Note that
the separation δ > 0 avoids the degeneracies arising here from x,y coming too
close to u. �
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To summarize, we have shown that if V ∈ L3/2,1 is real-valued, and 0 energy
is regular as specified in Definition 3.1, then

sup
η∈R3

sup
ε>0

∥
∥
(
I+R0

(
|η|2± iε

)
V
)−1∥∥

∞→∞ =:M0 < ∞.(3.17)

4. Existence and properties of wave operators. Let V be as in Defini-
tion 3.1, and real-valued. The orthogonal projection Pp : L2 → L2 onto the point
spectrum is a finite-rank operator of the form

Pp =

N∑

�=1

〈
·,f�

〉
f�.(4.1)

where f� are an orthonormal family of eigenfunctions ofH =−Δ+V with eigen-
values Hf� = λ�f�. Since V ∈ L

3
2 obeys the Rollnick condition, cf. [Bec, (2.63)],

the Birman-Schwinger operator is Hilbert-Schmidt andN <∞. We are also assum-
ing that there are no zero energy eigenfunctions (or a resonance). The projection
Pc = I−Pp is the orthogonal projection on the subspace corresponding to the con-
tinuous spectrum. Lemma 3.2 implies that the continuous spectrum [0,∞) of H is
purely absolutely continuous, see [ReSi3, Theorem XIII.19]. Thus the entire L2

spectrum of H consists of finitely many negative eigenvalues (counted with mul-
tiplicity) and the absolutely continuous spectrum [0,∞). For “nice” potentials, Ag-
mon’s estimate shows that the eigenfunctions f� decay exponentially in the point-
wise sense. We have no need for this strong property, and the following lemma will
suffice.

LEMMA 4.1. Let V ∈ L
3
2 ,1(R3) and suppose f ∈ L2 solves Hf = −Ef with

E > 0 in the sense of tempered distributions. Then f ∈ (L1∩L∞)(R3).

Proof. Since R := (−Δ+E)−1 takes the Schwartz space to itself, it follows
that f =−RV f in the sense of distributions. Splitting V = V1+V2 as before with
‖V1‖

L
3
2 ,1

� 1 and V2 continuous with bounded support we also have

(
I+RV1

)
f =−RV2f(4.2)

Now RV1 : L∞ → L∞ with small norm and V2f ∈ L1∩L2 ⊂ L
3
2 ,1. Hence RV2f ∈

L∞ and f ∈ L∞, by inverting the operator on the left-hand side of (4.2).
So f ∈ L2 ∩L∞ ⊂ L3,∞ and V f ∈ L1(R3). The convolution RV f ∈ L1 by

Young’s inequality, and finally f ∈ L1 as desired. �

Next, we discuss the existence of the wave operators by the standard Cook’s
method. However, the class of potentials we consider requires more sophisticated
estimates to make Cook’s method work, namely the Keel-Tao endpoint [KeTa].

Lemma 4.2 was shown in [Bec] to also hold when V is in L
3
2 ,∞
0 (the closure of L

3
2

in L
3
2 ,∞).
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LEMMA 4.2. Let H = −Δ+V be self-adjoint as in Definition 3.1. Let Pc be
the projection on the continuous spectrum of H . Then

W+ = s-lim
t→∞

eitHPce
−itH0 = s-lim

t→∞
eitHe−itH0(4.3)

exists and is an isometry on L2. One has Pc = Pa.c. =W+W
∗
+. Moreover, for any

f ∈ L2(R3) the integrals

W+f = f + i

∫ ∞

0
eitHV e−itH0f dt

= Pcf + i

∫ ∞

0
eitHPcV e−itH0f dt

(4.4)

converge in the strong sense. There exist similar formulae for W− and W ∗
±; in

particular,

W ∗
−f = f + i

∫ 0

−∞
eitH0V e−itHf dt.(4.5)

Proof. The Strichartz estimates

∥
∥eitH0f

∥
∥
L2
tL

6,2
x

� ‖f‖L2

∥
∥
∥
∥

∫

R

e−isH0F (s)ds

∥
∥
∥
∥
L2
x

� ‖F‖
L2
tL

6/5,2
x

,
(4.6)

are the standard Keel-Tao endpoint [KeTa] for the Schrödinger evolution of H0 =

−Δ. They also hold for eitHPc, see [Bec].
Taking the time derivative of the left-hand side and integrating we obtain

eitHPce
−itH0f = Pcf + i

∫ t

0
eisHPcV e−isH0f ds.(4.7)

Note that by Hölder’s inequality (2.3) one has V :L6,2 →L6/5,2 as a multiplication
operator; in fact, this only requires V ∈ L3,∞(R3). Hence, by (4.6) the integral in
(4.7) converges in norm and we can send t→ ∞ and obtain the statement in (4.4)
involving Pc. Thus, endpoint Strichartz estimates imply the existence of the strong
limit s-limt→∞ e−itHPce

itH0 in L2.
We claim that

lim
t→∞

Pp e
−itH0f = 0(4.8)

for all f ∈ L2. Indeed, since L1 ∩L2 is dense in L2 we may assume that eitH0f

decays like |t|−3/2 in L∞. By Lemma 4.1 the pairing with f� ∈ L1 therefore decays
as desired.
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Consequently,

W+ = s-lim
t→∞

eitHe−itH0 = s-lim
t→∞

eitHPce
−itH0 .

To obtain the integral representation without the projection Pc we note that

s-lim
t→∞

i

∫ t

0
eisHPpV e−isH0 ds= s-lim

t→∞
Pp

(
eitHe−itH0 − I

)
=−Pp.

The final limit here is obtained from the time-decay of e−itH0f in L∞ for f ∈
L1∩L2 and the fact that f� ∈ L1. The relation Pc = Pa.c. =W+W

∗
+ follows from

the general principle that W+W
∗
+ = PRan(W+) for isometries. �

Expanding the right-hand side of (4.4) iteratively by means of the Duhamel
formula we obtain the formal expansion

W+f = f +W1+f + · · ·+Wn+f + · · · ,(4.9)

W1+f = i

∫

t>0
e−itΔV eitΔf dt, . . .

Wn+f = in
∫

t>s1>···>sn−1>0
e−i(t−s1)ΔV e−i(s1−s2)ΔV · · ·(4.10)

× e−isn−1ΔV eitΔf dtds1 · · · dsn−1

for f ∈ L2. The first term is the identity, hence always bounded. Yajima [Yaj1]
proved that each remaining term Wn+, n ≥ 1, is bounded as an Lp operator. And
the operator norm grows exponentially with n: in R

3

∥
∥Wn+f

∥
∥
Lp ≤ Cn‖V ‖n〈x〉−1−εL2‖f‖Lp .(4.11)

Thus, for small potentials, i.e., when ‖V ‖〈x〉−1−εL2 � 1, Weierstraß’s criterion
shows that (4.9) is summable, whence the full wave operatorsW± are Lp-bounded.
In general, however, the asymptotic expansion (4.9) may diverge.

In order to overcome this difficulty, for large V Yajima [Yaj1] estimated a finite
number of terms directly by this method. He used a separate argument to show the
boundedness of the remainder, for which he had to assume that V decays faster
than 〈x〉−5−ε. In this paper, we avoid summing (4.9) altogether and rely instead on
the first author’s Wiener algebra approach [Bec, BeGo].

Definition 4.1. For ε > 0 we introduce the regularized operators

W ε
n+f := in

∫

0≤t1≤···≤tn

ei(tn−tn−1)H0−ε(tn−tn−1)V · · ·

× ei(t2−t1)H0−ε(t2−t1)V eit1H0−εt1V e−itnH0f dt1 · · · dtn,
(4.12)



STRUCTURE FORMULAS FOR WAVE OPERATORS 765

together with

W ε
+ = I+ i

∫ ∞

0
eitH−εtV e−itH0 dt.(4.13)

These regularizations behave as expected under the limit ε→ 0.

LEMMA 4.3. W ε
+f → W+f strongly as ε → 0 for each f ∈ L2. Similarly,

W ε
n+f →Wn+f for each n≥ 1.

Proof. It obviously follows from the Strichartz estimates (4.6) that (with t≥ 0)

sup
ε≥0

∥
∥eitH0−εtf

∥
∥
L2
tL

6,2
x

� ‖f‖L2

∥
∥
∥
∥

∫

R

eisHPcF (s)ds

∥
∥
∥
∥
L2
x

� ‖F‖
L2
tL

6/5,2
x

.
(4.14)

Hence the tails of the integrals in (4.13) (under the projection Pc) are uniformly
small in ε > 0. On any compact interval [0,T ] we can pass to the limit ε→ 0 under
the integral by dominated convergence.

It remains to verify that for any f ∈ L2

lim
ε↓0

∫ ∞

0
eitH−εtPpV e−itH0f dt=

∫ ∞

0
eitHPpV e−itH0f dt,

Since each side is a bounded operator on L2 uniformly in ε > 0, it suffices to verify
this for f ∈ L2∩L∞. Specializing to a single eigenfunction f�,

lim
ε↓0

∫ ∞

0
eitλ�−εt

〈
f,eitH0V f�

〉
dt=

∫ ∞

0
eitλ�〈f,eitH0V f�〉dt.

Since V f� ∈ L1,

∣
∣〈f,eitH0V f�

〉∣∣� t−
3
2 ∀t≥ 1

whence the tails in these integrals are again uniformly small in ε. On compact time
intervals we may pass to the limit ε → 0. In summary, W ε

+f → W+f strongly
as ε → 0. The argument for W ε

n+f → Wn+f is similar and we leave it to the
reader. �

The operators Wn+ will be expressed in terms of the following kernels. Defi-
nition 4.2 is somewhat formal, but the subsequent lemmas will justify the formulas
rigorously in the context of the wave operators. Our convention for the Fourier
transform and its inverse is as follows:

(Ff)(ξ) =

∫

R3
e−ix·ξ f(x)dx, (F−1g)(ξ) =

1
(2π)3

∫

R3
eix·ξ g(ξ)dξ.
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Definition 4.2. Let V be a Schwartz function inR3. For ε> 0, let T ε
1±(x0,x1,y)

be defined in the sense of distributions as

(F−1
x0

Fx1,yT
ε
1±)(ξ0, ξ1,η) :=

V̂ (ξ1− ξ0)

|ξ1+η|2−|η|2± iε
(4.15)

and, more generally, for any n≥ 1

(F−1
x0

Fxn,yT
ε
n±)(ξ0, ξn,η) :=

∫

R3(n−1)

∏n
�=1 V̂ (ξ�− ξ�−1)dξ1 . . . dξn−1∏n

�=1(|ξ�+η|2−|η|2± iε)
.(4.16)

Also let T ε
± be given by the distributional Fourier transform

FyT
ε
±
(
x0,x1,η

)
:= eix0η

(
RV

(
|η|2∓ iε

)
V
)(
x0,x1

)
e−ix1η;(4.17)

where we assume that 0 energy is regular for H = −Δ+V ; see Lemma 4.6 for
a justification. Throughout we will follow the convention that x0 is the “input”
variable, and x1 the “output” variable.

The right-hand sides of (4.15) and (4.16) are tempered distributions, whence
the kernels T ε

n±(ξ0, ξn,η) are tempered distributions onR9. In the following section
we will find this kernel for n = 1. Two variables are sufficient for representing
W ε

n+, but a meaningful algebra structure requires one more variable. This is the
reason for the presence of a third variable x0 in (4.15) and (4.16). For three-variable
kernels T (x0,x1,y) the expressions above suggests the following composition law
�, which we define formally.

Definition 4.3. We formally compose three variable kernels T (x0,x1,y) on R9

as follows:

(
T1�T2

)(
x0,x2,y

)
=

∫

R6
T1

(
x0,x1,y1

)
T2

(
x1,x2,y−y1

)
dx1 dy1.(4.18)

Dually (i.e., on the Fourier side), � takes the from
(
F−1
x0

Fx2,y

(
T1�T2

))(
ξ0, ξ2,η

)

=

∫

R3

(
F−1
x0

Fx1,yT1
)(
ξ0, ξ1,η

)(
F−1
x1

Fx2,yT2
)(
ξ1, ξ2,η

)
dξ1.

(4.19)

Thus, � consists of convolution in the y variable—i.e., multiplication in the dual
variable η—and composition of operators relative to the other two. In the dual
variables ξ0, ξ1, and ξ2 composition of operators is preserved. As already noted,
x0 is the input variable, and x1 the output variable, whereas y is the dual energy
variable.

We will study � more systematically in Section 7. For now, Lemma 4.4 serves
as an example of how we use � to recursively generate all W ε

n+, n ≥ 1, starting
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fromW ε
1+. We use the dual formulation (4.19) to define � rather than the convolu-

tion (4.18).

LEMMA 4.4. Let V be a Schwartz potential. For any ε > 0 we have for any
n,m≥ 1

T ε
m+�T ε

n+ = T ε
(m+n)+

in the sense of (4.19).

Proof. This follows from (4.15). For example,

F−1
x0

Fx2,yT
ε
2+

(
ξ0, ξ2,η

)

=

∫

R3

V̂
(
ξ2− ξ1

)

∣
∣ξ2+η|2−|η|2+ iε

·
V̂
(
ξ1− ξ0

)

∣
∣ξ1+η

∣
∣2−|η|2+ iε

dξ1

= F−1
x0

Fx2,y

(
T ε
1+�T ε

1+

)(
ξ0, ξ2,η

)

(4.20)

both in the pointwise sense, as well as in the space of distributions. �

The following lemma exhibits the relation with the resolvent operators.

LEMMA 4.5. Let V be a Schwartz function, and ε > 0. Then

F−1
x0

Fx1,yT
ε
1+

(
ξ0, ξ1,η

)
= F−1

a Fb

(
R0

(
|η|2− iε

)
V
)(
ξ0+η,ξ1+η

)
(4.21)

and, for any n≥ 1,

F−1
x0

Fx1,yT
ε
n+

(
ξ0, ξ1,η

)
= F−1

a Fb

((
R0

(
|η|2− iε

)
V
)n)(

ξ0+η,ξ1+η
)
.(4.22)

Furthermore,

FyT
ε
1+

(
x0,x1,η

)
= eix0η

(
R0

(
|η|2− iε

)
V
)(
x0,x1

)
e−ix1η(4.23)

and

F−1
x0

Fx1,yT
ε
+

(
ξ0, ξ1,η

)
= F−1

a Fb

(
RV

(
|η|2− iε

)
V
)(
ξ0+η,ξ1+η

)
.(4.24)

Proof. One has

F−1
a Fb

(
R0

(
|η|2− iε

)
V
)
(α,β) =

∫

R6
ei(a·α−b·β)R0

(
|η|2− iε

)
(b−a)V (a)dadb

=

∫

R6
ei(a·(α−β)−b·β)R0

(
|η|2− iε

)
(b)V (a)dadb

= V̂ (β−α)
(
|β|2−|η|2+ iε

)−1
.

Plugging α = ξ0+ η and β = ξ1+ η into the right-hand side yields (4.15), which
gives (4.21). From this, (4.23) follows easily. The representation of T ε

n+ follows



768 M. BECEANU ANDW. SCHLAG

using the composition � from above. The remaining statements in the lemma are
obtained by analogous formal computations, and are left to the reader. �

Lemma 3.2 immediately yields the following boundedness. As usual, B(X1,

X2) are the bounded operators X1 →X2 for any Banach spaces X1 and X2.

LEMMA 4.6. Assuming that V ∈ L
3
2 ,1 one has (FyT

ε
1+)(η) ∈ B(L∞

x0
,L∞

x1
) and

(FyT
ε
1+)(η) ∈ B(L1

x1
,L1

x0
) uniformly in ε > 0 and η ∈R

3. Let 0 energy be regular
as in Definition 3.1. Then uniformly in ε > 0 and η ∈ R

3, one has (FyT
ε
+)(η) ∈

B(L∞
x0
,L∞

x1
) and (FyT

ε
+)(η) ∈ B(L1

x1
,L1

x0
). The respective operator norms are

bounded by C‖V ‖
L

3
2 ,1

with some absolute constant C .

Proof. The statements about T ε
1+ are easily obtained from (2.3). The second

statement concerning L1 boundedness follows from the first by duality (note the
reversal of the order of the variables). As far as T ε

+ is concerned, the first statement
is Lemma 3.2, whereas the second follows by duality. �

We shall employ the following form of the operators W ε
n+ andW ε

+, introduced
by Yajima in [Yaj1].

LEMMA 4.7. Let V be a Schwartz function. Then for any Schwartz functions
f,g and for ε > 0, n≥ 1,

〈
W ε

n+f,g
〉
= (−1)n

∫

R6
F−1
x0

T ε
n+(0,x,y)f(x−y)g(x)dydx(4.25)

and

〈
W ε

+f,g
〉
=

〈
f,g

〉
−

∫

R6
F−1
x0

T ε
+(0,x,y)f(x−y)g(x)dydx.(4.26)

These integrals are to be understood as distributional duality pairings. All our
conclusions concerning T ε

+ apply equally to T ε
−.

Proof. By Plancherel’s identity

〈
W ε

1+f,g
〉
=

i

(2π)3

∫ ∞

0

∫

R6
eit|η1 |

2−εtV̂
(
η1−η0

)
e−it|η0 |2 f̂

(
η0

)
ĝ
(
η1

)
dη1 dη0 dt

=− 1
(2π)3

∫

R6

V̂
(
η1−η0

)

∣
∣η1

∣
∣2−

∣
∣η0

∣
∣2+ iε

f̂
(
η0

)
ĝ
(
η1

)
dη1 dη0.

Setting η0 = η, η1−η0 = ξ, we obtain

〈
W ε

1+f,g
〉
=− 1

(2π)3

∫

R6

V̂ (ξ)

|η+ ξ|2−|η|2+ iε
f̂(η)ĝ(η+ ξ)dηdξ.(4.27)
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More generally, when n≥ 1,

〈
W ε

n+f,g
〉

=
in

(2π)3n

∫

0=t0≤t1≤···≤tn

∫

R3(n+1)

n∏

�=1

(
ei(t�−t�−1)|η�|2−(t�−t�−1)εV̂

(
η�−η�−1

))

× e−itn|η0|2 f̂
(
η0

)
ĝ
(
ηn

)
dη0 · · · dηn dt1 · · · dtn,

with t0 = 0. Integrating in t1, . . . , tn gives

〈
W ε

n+f,g
〉
=

(−1)n

(2π)3n

∫

R3(n+1)

∏n
�=1 V̂

(
η�−η�−1

)

∏n
�=1

(
|η�|2−|η0|2+ iε

) f̂
(
η0

)
ĝ
(
ηn

)
dη0 · · · dηn.

Renaming η0 = η, η�−η0 = ξ� leads to

〈
W ε

n+f,g
〉

=
(−1)n

(2π)3n

∫

R3(n+1)

∏n
�=1 V̂

(
ξ�− ξ�−1

)
dξ1 · · · dξn−1

∏n
�=1

(
|η+ ξ�|2−|η|2+ iε

) f̂(η)ĝ
(
η+ ξn

)
dηdξn,

(4.28)

with ξ0 = 0. Then

〈
W ε

n+f,g
〉
=

(−1)n

(2π)6

∫

R6
F−1
x0

Fxn,yT
ε
n+

(
0, ξn,η

)
f̂(η)ĝ

(
η+ ξn

)
dηdξn

= (−1)n
∫

R6
F−1
x0

T ε
n+(0,x,y)f(x−y)g(x)dydx.

(4.29)

As far as the wave operators are concerned, we have

〈
W ε

+f,g
〉

= 〈f,g〉+ i

(2π)6

∫ ∞

0

∫

R6
F−1
a Fb

(
eitH−tεV

)(
η0,η1

)
e−it|η0 |2 f̂

(
η0

)
ĝ(η1)dη1 dη0 dt

= 〈f,g〉− 1
(2π)6

∫

R6
F−1
a Fb

(
RV

(
|η0|2− iε

)
V
)(
η0,η1

)
f̂
(
η0

)
ĝ
(
η1

)
dη1 dη0

= 〈f,g〉− 1
(2π)6

∫

R6
F−1
a Fb

(
RV

(
|η|2− iε

)
V
)
(η,η+ ξ)f̂(η)ĝ(η+ ξ)dηdξ.

Then

〈W ε
+f,g〉= 〈f,g〉− 1

(2π)3

∫

R6
F−1
x0

Fx1,yT
ε
+(0, ξ1,η)f̂(η)ĝ(η+ ξ1)dηdξ1

= 〈f,g〉−
∫

R9
F−1
x0

T ε
+(0,x,y)f(x−y)g(x)dydx

(4.30)

as desired. �
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5. The first order term in the Born series. We now set out to analyze the
operator

W ε
1+f = i

∫ ∞

0
e−itΔV eitΔ−tεf dt

introduced in the previous section. From (4.25), for Schwartz functions V and f ,

W ε
1+f(x) =

∫

R3
Kε

1+(x,x−y)f(y)dy

Kε
1+(x,z) =− lim

R→∞

∫

R6

eix·ξ V̂ (ξ)eiz·η

|ξ+η|2−|η|2+ iε
e−

|η|2
2R2 dξdη.

(5.1)

The Gaussian was introduced to ensure convergence of the η integral. In this sec-
tion, we will show the existence of the limit in (5.1) and find the kernel.

For future reference, we remark that by (4.27) the kernel associated to W1+ is
−T1+, i.e.,

(
Fx,yK

ε
1+

)
(ξ,η) =−

(
F−1
x0

Fx,yT
ε
1+

)
(0, ξ,η)

=− V̂ (ξ)

|η+ ξ|2−|η|2+ iε

Kε
1+(x,y) =−

∫

R3
T ε
1+

(
x0,x,y

)
dx0

(5.2)

where the final equality is formal. Integrating in x0, as in (4.25) and (4.26), corre-
sponds to setting ξ0 = 0 in (4.15) and (4.16).

LEMMA 5.1. For any ε > 0 and all a,x ∈R one has

lim
N→∞

∫ N

−N

eixξ

ξ+a+ iε
dξ =−2πi�[x<0]e

εxe−ixa.(5.3)

The left-hand side agrees with the inverse distributional Fourier transform of (ξ+
a+ iε)−1.

Proof. This is a standard residue calculation. �

The denominator in (5.1) is |ξ + η|2 − |η|2 + iε = |ξ|2 + 2ξ · η+ iε. Up to a
rotation this leads to an integral of the type (5.3).

LEMMA 5.2. For any ε > 0, R > 0, and ξ ∈ R
3, ξ 
= 0, one has

∫

R3

eiz·ηe−
|η|2
2R2

|ξ|2+2ξ ·η+ iε
dη = const · R

2

|ξ| e
−R2

2 |P⊥
ξ z|2

∫ 0

−∞
e

εu
2|ξ| e−iu2 |ξ|Re−

R2
2 (z·ξ̂−u)2 du

(5.4)

with ξ̂ = ξ
|ξ| and |P⊥

ξ z|2 = |z|2− (ξ̂ · z)2.
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Proof. We first treat the case ξ = (|ξ|,0,0). Then the left-hand side of (5.4)
equals

1
8|ξ|3

∫

R3

e
i z·η2|ξ| e

− |η|2
8R2|ξ|2

ξ̂ ·η+ |ξ|2+ iε
dη

=
1

8|ξ|3
∫

R

e
i
z1η1
2|ξ| e

− η21
8R2|ξ|2

η1+ |ξ|2+ iε
dη1

∫

R2
e
i z

′·η′
2|ξ| e

− |η′ |2
8R2|ξ|2 dη′

= const ·R2e−
R2
2 |z′|2R

∫ 0

−∞
eεve−iv|ξ|2e−2R2|ξ|2( z1

2|ξ| −v)2
dv

(5.5)

where we used (5.3) in the final equality. Substituting v = u
2|ξ| in the integral on the

right-hand side shows that the previous line equals

const · R
2

|ξ| e
−R2

2 |z′|2
∫ 0

−∞
e

εu
2|ξ| e−iu2 |ξ|Re−

R2
2 (z1−u)2 du

as desired. The general case now follows by rotating the coordinate frame. �

In the limit R→ ∞ the right-hand side of (5.4) converges in the sense of distri-
butions to

const · |ξ|−1δ0(P
⊥
ξ z)�[z·ξ<0] e

εz·ξ̂
2|ξ| e−iz·ξ/2.

We can now compute the kernel in (5.1).

LEMMA 5.3. Assume V is a Schwartz potential. For any ε≥ 0 and x,z ∈ R
3,

z 
= 0, one has

Kε
1+(x,z) = const · |z|−2

∫ ∞

0
e−isẑ·(x−z/2)V̂ (−sẑ)e−ε |z|

2s sds(5.6)

where ẑ = z/|z|.

Proof. By (5.1),

Kε
1+(x,z) = lim

R→∞

∫

R6

eix·ξ V̂ (ξ)eiz·η

|ξ+η|2−|η|2+ iε
e−

|η|2
2R2 dξdη

= const · lim
R→∞

∫

R3
eix·ξ

V̂ (ξ)

|ξ| R2 exp

(

− R2

2
|P⊥

ξ z|2
)

·
(∫ 0

−∞
e

εu
2|ξ| e−iu2 |ξ|Re−

R2
2 (z·ξ̂−u)2 du

)

dξ.

(5.7)
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We set

J(ξ;ε,R,z) =

∫ 0

−∞
e

εu
2|ξ| e−iu2 |ξ|Re−

R2
2 (z·ξ̂−u)2 du.

Then

0≤ J(ξ;ε,R,z) ≤
∫ ∞

−∞
e−

u2
2 du

=
√
2π ∀z,ξ ∈ R

3, ξ 
= 0, ε≥ 0, R > 0

J(ξ;ε,R,z) −→ const ·�[z·ξ<0]e
− i

2z·ξeε
z·ξ̂
2|ξ| as R−→ ∞.

(5.8)

By Lebesgue’s dominated convergence theorem,

lim
R→∞

∫

R3
J(ξ;ε,R,z)f(ξ)dξ = const ·

∫

R3
�[z·ξ<0]e

− i
2 z·ξeε

z·ξ̂
2|ξ| f(ξ)dξ

for any f ∈ L1(R3). In particular, this holds in the sense of tempered distributions
in R3. Writing ξ =−sω, |ω|= 1, one has

Kε
1+(x,z) = const · lim

R→∞

∫ ∞

0

∫

S2
e−isx·ω V̂ (−sω)

R2e−
1
2R

2|z|2 sin2(∠(z,ω))J(−sω;ε,R,z)sdsdω

= const · |z|−2 lim
R→∞

∫ ∞

0

∫

S2
e−isx·ω V̂ (−sω)

R2e−
1
2R

2 sin2(∠(z,ω))J
(
− sω;ε,R|z|−1,z

)
sdsdω.

(5.9)

The integral in the final expression is the action of the tempered distribution in R
3

(with z and ε fixed)

UR(ξ) := s−1R2e−
1
2R

2 sin2(∠(z,ω))J
(
− sω;ε,R|z|−1,z

)
, ξ = sω

on the Schwarz function e−ix·ξ V̂ (−ξ). In view of the preceding, one has the dis-
tributional limit

lim
R→∞

UR(ξ) = const · δẑ(ξ̂)�[z·ξ<0]e
− i

2z·ξeε
z·ξ̂
2|ξ|

where ẑ, ξ̂ = ω are the unit vectors determined by these vectors. In summary,

Kε
1+(x,z) = const · |z|−2

∫ ∞

0
e−isx·ẑ V̂ (−sẑ)eis|z|/2e−ε |z|

2s sds(5.10)

which is (5.6). �

Following Yajima, we express the kernel in Lemma 5.3 in terms of the function
L which we now define.
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Definition 5.1. Let V be a Schwartz potential. Then for any ω ∈ S
2, r ∈ R

L(r,ω) :=
∫ ∞

0
V̂ (−sω)ei

rs
2 sds.(5.11)

In particular, from (5.6),

K1+(x,z) = const · |z|−2L
(
|z|−2x · ẑ, ẑ

)
.(5.12)

The kernels Kε
1+(x,z) are of the form, see (5.10),

Kε
1+(x,z) = const ·Lε

(
|z|−2x · ẑ, z

)
(5.13)

where

Lε(r,ω) :=
∫ ∞

0
V̂ (−sω)ei

rs
2 |ω|e−

ε
2s sds.(5.14)

In the previous line ω need not be a unit vector.

COROLLARY 5.4. Assume V is Schwartz. Let Sωx := x− 2(ω · x)ω be the
reflection about the plane ω⊥. Then for all Schwartz functions f one has

(
W1+f

)
(x) =

∫

S2

∫

R3
g1(x,dy,ω)f

(
Sωx−y

)
dω(5.15)

where for fixed x ∈ R
3, ω ∈ S

2 the expression g1(x, ·,ω) is a measure satisfying
∫

S2

∥
∥g1(x,dy,ω)

∥
∥
MyL∞

x
dω ≤

∫

S2

∫

R

∣
∣L(r,ω)

∣
∣drdω(5.16)

where ‖ · ‖M refers to the total variation norm of Borel measures.

Proof. Eq. (5.1) and (5.6) imply that

(
W1+f

)
(x) =

∫ ∞

0

∫

S2
L(r−2ω ·x,ω)f(x− rω)drdω

=

∫

S2

∫

R

�[r>−2ω·x]L(r,ω)f
(
x−2(ω ·x)ω− rω

)
drdω.

(5.17)

Set

g1(x,dy,ω) := �[(y+2x)·ω>0]L(y ·ω,ω)H1
�ω(dy)(5.18)

where 	ω = {rω | r ∈ R} and H1
�ω

is the 1-dimensional Hausdorff measure on the
line 	ω. Then (5.15) holds and

∥
∥g1(x,dy,ω)

∥
∥
L∞
x
=

∣
∣L(y ·ω,ω)

∣
∣H1

�ω
(dy)(5.19)

which implies (5.16). �
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6. Estimating the function L(r,ω) and the kernel K1+. Next, we esti-
mate various norms of L(r,ω) such as the one in (5.16), in terms of norms of V in
the B-spaces from Definition 2.1.

PROPOSITION 6.1. LetL be as in Definition 5.1, and V be a Schwartz function.
Then, with r ∈ R and ω ∈ S

2,
∥
∥L(r,ω)

∥
∥
L2
r,ω

� ‖V ‖L2(6.1)

and
∥
∥L(r,ω)

∥
∥
L1
r,ω

�
∑

k∈Z
2k/2

∥
∥�[2k ,2k+1]

(
|r|

)
L(r,ω)

∥
∥
L2
r,ω

� ‖V ‖
Ḃ

1
2
� ‖V ‖

B
1
2
.(6.2)

Moreover, if 0< α < 1, then
∑

k∈Z
2αk

∥
∥�[2k,2k+1]

(
|r|

)
L(r,ω)

∥
∥
L2
r,ω

� ‖V ‖Ḃα .(6.3)

Proof. By Plancherel’s identity,
∫

R

∣
∣L(r,ω)

∣
∣2dr �

∫ ∣
∣V̂ (sω)

∣
∣2s2ds.

Integrating over ω ∈ S
2 yields

‖L‖2L2
r,ω

=

∫

S2

∫

R

∣
∣L(r,ω)

∣
∣2drdω � ‖V̂ ‖2L2 = C‖V ‖2L2 .(6.4)

Integrating by parts one obtains

ir

2
L(r,ω) =−

∫ ∞

0
∂s

(
V̂ (−sω)s

)
eirs/2 ds,

whence again by Plancherel,

‖rL‖2L2
r,ω

=

∫

S2

∫

R

∣
∣rL(r,ω)

∣
∣2drdω�‖∇V̂ ‖22+

∥
∥|ξ|−1V̂

∥
∥2
L2
ξ
�‖V ‖2|x|−1L2 .(6.5)

When V ∈ Ḃ
1
2 we now prove (6.2) by applying the real interpolation method, see

Section 2. Begin by partitioning L into dyadic pieces

Lj(r,ω) = L(r,ω)
(
χ
(
2−j−1|r|

)
−χ

(
2−j+1|r|

))
, L :=

{
Lj

}
j∈Z

where χ is a cutoff function such that χ(s) = 1 when s ≤ 1 and χ(s) = 0 when
s≥ 2. When V ∈L2, we can then rewrite (6.4) in the form (using the vector spaces
from (2.7))

L(r,ω) ∈ 	̇02
(
L2
r,ω

)
,

∥
∥L(r,ω)

∥
∥
�̇02(L

2
r,ω)

� ‖V ‖2.
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Likewise, (6.5) becomes

L(r,ω) ∈ 	̇12
(
L2
r,ω

)
,

∥
∥L(r,ω)

∥
∥
�̇12(L

2
r,ω)

� ‖V ‖|x|−1L2 .

By real interpolation, see Lemma 2.2 and (2.8),

∥
∥L(r,ω)

∥
∥
�̇α1 (L

2
r,ω)

� ‖V ‖Ḃα ,

for any 0< α < 1. In particular,

‖L‖L1
r,ω

�
∥
∥L(r,ω)

∥
∥
�̇01(L

1
r,ω)

�
∥
∥L(r,ω)

∥
∥
�̇
1
2
1 (L2

r,ω)
� ‖V ‖

Ḃ
1
2
.

This establishes (6.2), (6.3) in the range 0< α < 1. �

As an immediate corollary we obtain via (5.18), (5.19) that

∫

S2

∫

R3

∥
∥g1(x,dy,ω)

∥
∥
L∞
x
dω � ‖V ‖

B
1
2

(6.6)

from which we deduce via Corollary 5.4 that

∥
∥W1+f

∥
∥
p
≤ C‖V ‖

B
1
2
‖f‖p.

In order to bound other termsWn+ as well as the full wave operator we will rely on
a certain function algebra framework that is presented in Section 7. This function
algebra formalism will need to respect the composition law of Definition 4.3. To
motivate the definitions of the function spaces in the following section, we now
establish some estimates on the kernel Kε

1+. Recall from (5.2) that

Kε
1+(x,y) =−F−1

x0
T ε
1+(0,x,y).(6.7)

LEMMA 6.2. Let V be a Schwartz function. Then for any 0≤ σ, and uniformly
in ε > 0,

∥
∥Kε

1+(x,y)
∥
∥
L∞
xL

1
y
� ‖V ‖

B
1
2

(6.8)
∥
∥v(x)Kε

1+(x,y)
∥
∥
L1
yB

σ
x
� ‖v‖

B
1
2+σ‖V ‖

B
1
2

(6.9)

for any v ∈B
1
2+σ. With f a Schwartz function, define a kernel

K̃ε
1+(x,y) =

∫

R3
f
(
x0

)
T ε
1+

(
x0,x,y

)
dx0(6.10)
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with the integral being understood as distributional duality pairing. Note that this
kernel is the same asKε

1+ in which V is replaced with fV . Then uniformly in ε> 0,

∥
∥K̃ε

1+(x,y)
∥
∥
L∞
xL

1
y
� ‖fV ‖

B
1
2

(6.11)
∥
∥v(x)K̃ε

1+(x,y)
∥
∥
L1
yB

σ
x
� ‖v‖

B
1
2+σ‖fV ‖

B
1
2

(6.12)

for any v ∈B
1
2+σ.

Proof. It suffices to give the proof for the limit ε = 0 since for ε > 0 an addi-
tional exponential decay factor arises, cf. (5.11) and (5.14). So all estimates below
cover the case ε > 0 as well. From (5.12) one has

∥
∥K1+(x,y)

∥
∥
L∞
xL

1
y
= const ·

∫ ∞

−∞

∫

S2

∣
∣L(r,ω)

∣
∣drdω � ‖V ‖

B
1
2

(6.13)

as we already noted above, cf. (6.6). For the second estimate (6.9) we proceed as
follows:

∥
∥v(x)K1+(x,y)

∥
∥
L1
yB

σ
x

= const ·
∫

R3

∥
∥v(x)|u|−2L

(
|u|−2û ·x, û

)∥
∥
Bσ

x
du

= const ·
∫

S2

∫ ∞

0

∥
∥v(x)L(r−2ω ·x,ω)

∥
∥
Bσ

x
drdω

�
∫

S2

∫ ∞

0

∥
∥�[|x|�1]v(x)L(r−2ω ·x,ω)

∥
∥
L2
x
drdω

+

∞∑

�=0

2σ�
∫

S2

∫ ∞

0

∥
∥�[|x|�2�]v(x)L(r−2ω ·x,ω)

∥
∥
L2
x
drdω.

(6.14)

The term involving �[|x|�1] is estimated as follows:

∫

S2

∫ ∞

0

∥
∥�[|x|�1]v(x)L(r−2ω ·x,ω)

∥
∥
L2
x
drdω

�
(∫

S2

∫ 1

0

∥
∥�[|x|�1]v(x)L(r−2ω ·x,ω)

∥
∥2
L2
x
drdω

) 1
2

+
∞∑

k=0

2
k
2

(∫

S2

∫

2k≤r≤2k+1

∥
∥�[|x|�1]v(x)L(r−2ω ·x,ω)

∥
∥2
L2
x
drdω

) 1
2

�
∥
∥�[|x|�1]v(x)

∥
∥
2

∞∑

k=0

2
k
2

(∫

S2

∫

2k−1≤|r|≤2k+2

∣
∣L(r,ω)

∣
∣2 drdω

) 1
2

� ‖v‖2‖V ‖
B

1
2
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by Proposition 6.1. Next,

∞∑

�=0

2σ�
∫

S2

∫ ∞

0

∥
∥�[|x|�2�]v(x)L(r−2ω ·x,ω)

∥
∥
L2
x
drdω

�
∞∑

�=0

2σ�
∑

k≥�+10

2
k
2

(∫

S2

∫

[r�2k]

∥
∥�[|x|�2�]v(x)L(r−2ω ·x,ω)

∥
∥2
L2
x
drdω

) 1
2

+

∞∑

�=0

2�(
1
2+σ)

(∫

S2

∫

[0<r�2�]

∥
∥�[|x|�2�]v(x)L(r−2ω ·x,ω)

∥
∥2
L2
x
drdω

) 1
2

.

In the first sum on the right-hand side r dominates, but for the second it does not.
Hence, we continue to bound these terms as follows:

�
∞∑

�=0

2σ�
∥
∥�[|x|�2�]v(x)

∥
∥
2

∑

k≥�+10

2
k
2

(∫

S2

∫

[r�2k]

∣
∣L(r,ω)

∣
∣2drdω

) 1
2

+
∞∑

�=0

2�(
1
2+σ)

∥
∥�[|x|�2�]v(x)

∥
∥
2

(∫

S2

∫

[|r|�2�]

∣
∣L(r,ω)

∣
∣2 drdω

) 1
2

� ‖v‖
Bσ+ 1

2
‖V ‖

B
1
2

(6.15)

as claimed. Finally, we have the relation

Fx,yK̃
ε
1+

(
ξ1,η

)
=

∫

R3
f̂
(
ξ0

)
F−1
x0

Fx,yT
ε
1+

(
ξ0, ξ1,η

)
dξ0

=

∫

R3

f̂
(
ξ0

)
V̂
(
ξ1− ξ0

)

∣
∣ξ1+η

∣
∣2−|η|2+ iε

dξ0

=
f̂V

(
ξ1

)

∣
∣ξ1+η

∣
∣2−|η|2+ iε

.

(6.16)

In view of (4.15), this corresponds to the kernel Kε
1+ associated with the potential

fV . So the previous estimates yield (6.11), (6.12). �

Note that the proof of (6.12) suffers a loss of a half power in the sense that
‖v‖B1 appears on the right-hand side instead of ‖v‖

B
1
2
. However, since an estimate

of the form ‖Kε
1+(x,y)‖L1

yL
∞
x
� ‖V ‖

B
1
2
is false, removing such a loss in the context

of the L2-based theory seems delicate.
In Section 8 we will make use of the following technical variant of (6.9). While

we only need the case γ1 = γ2, we choose this more general formulation to illustrate
the distribution of the different weights.
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LEMMA 6.3. Let V be a Schwartz function, and 0 ≤ γ1 <
1
2 , γ2 ≥ 0, and set

σ = 1
2 +γ2. Then uniformly in ε > 0,

∫

R3
〈y〉γ1

∥
∥v(x)Kε

1+(x,y)
∥
∥
Bσ

x
dy � ‖v‖

B
1
2+σ+γ1

‖V ‖
B

1
2+γ1

(6.17)

for any v ∈B
1
2+σ+γ1 .

Proof. The proof is a variant of the one for the previous lemma. First,

∫

R3
〈y〉γ1

∥
∥v(x)K1+(x,y)

∥
∥
B

1
2+γ2
x

dy

= const ·
∫

R3
〈u〉γ1

∥
∥v(x)|u|−2L

(
|u|−2û ·x, û

)∥
∥
B

1
2+γ2
x

du

= const ·
∫

S2

∫ ∞

0
〈r〉γ1

∥
∥v(x)L(r−2ω ·x,ω)

∥
∥
B

1
2+γ2
x

drdω

�
∫

S2

∫ ∞

0

∥
∥�[|x|�1]v(x)L(r−2ω ·x,ω)

∥
∥
L2
x
〈r〉γ1 drdω

+

∞∑

�=0

2�(
1
2+γ2)

∫

S2

∫ ∞

0

∥
∥�[|x|�2�]v(x)L(r−2ω ·x,ω)

∥
∥
L2
x
〈r〉γ1 drdω.

The term involving �[|x|�1] is estimated as follows:

∫

S2

∫ ∞

0

∥
∥�[|x|�1]v(x)L(r−2ω ·x,ω)

∥
∥
L2
x
〈r〉γ1 drdω

�
(∫

S2

∫ 1

0

∥
∥�[|x|�1]v(x)L(r−2ω ·x,ω)

∥
∥2
L2
x
〈r〉γ1 drdω

) 1
2

+

∞∑

k=0

2k(
1
2+γ1)

(∫

S2

∫

2k≤r≤2k+1

∥
∥�[|x|�1]v(x)L(r−2ω ·x,ω)

∥
∥2
L2
x
drdω

) 1
2

�
∥
∥�[|x|�1]v(x)

∥
∥
2

∞∑

k=0

2k(
1
2+γ1)

(∫

S2

∫

2k−1≤|r|≤2k+2

∣
∣L(r,ω)

∣
∣2 drdω

) 1
2

� ‖v‖2‖V ‖
B

1
2+γ1

by Proposition 6.1. Next,

∞∑

�=0

2�(
1
2+γ2)

∫

S2

∫ ∞

0

∥
∥�[|x|�2�]v(x)L(r−2ω ·x,ω)

∥
∥
L2
x
〈r〉γ1 drdω

�
∞∑

�=0

2�(
1
2+γ2)

∑

k≥�+10

2k(
1
2+γ1)

(∫

S2

∫

[r�2k]

∥
∥�[|x|�2�]v(x)L(r−2ω ·x,ω)

∥
∥2
L2
x
drdω

)1
2
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+

∞∑

�=0

2�(1+γ1+γ2)

(∫

S2

∫

[0<r�2�]

∥
∥�[|x|�2�]v(x)L(r−2ω ·x,ω)

∥
∥2
L2
x
drdω

) 1
2

�
∞∑

�=0

2�(
1
2+γ2)

∥
∥�[|x|�2�]v(x)

∥
∥
2

∑

k≥�+10

2k(
1
2+γ1)

(∫

S2

∫

[r�2k]

∣
∣L(r,ω)

∣
∣2drdω

) 1
2

+

∞∑

�=0

2�(1+γ1+γ2)
∥
∥�[|x|�2�]v(x)

∥
∥
2

(∫

S2

∫

[|r|�2�]

∣
∣L(r,ω)

∣
∣2 drdω

) 1
2

� ‖v‖B1+γ1+γ2‖V ‖
B

1
2+γ1

as claimed. �

The important feature of (6.17) is that the weights only accumulate on v, but
not on V , which is the internal function in K1+. This is important since the same
B-norm then appears in the integral on the left-hand side as on the right-hand side
of (6.17), by setting γ1 = γ2. Without this feature the algebra formalism developed
in the next two sections would be impossible. We also remark that γ1 = γ2 > 0 is
needed in the Wiener theorem, to ensure that conditions (8.27), (8.28) hold. To be
specific, γ1 > 0 gives the decay in y needed to guarantee the asymptotic vanishing
in (8.28).

7. Function algebras andW ε
n+. Next, we establish a framework in which

� as in Definition 4.3 is a bounded operation. This is needed in order to express
the relation between T ε

1+ and T ε
+. The following space is very natural in view of

the operators T ε
n+ from the previous sections.

Definition 7.1. We define the Banach space Z of tempered distributions as

Z :=
{
T
(
x0,x1,y

)
∈ S′(

R
9) | FyT

(
x0,x1,η

)
∈ L∞

ηL
∞
x1
L1
x0

}
(7.1)

with norm

‖T‖Z := sup
η∈R3

∥
∥FyT

(
x0,x1,η

)∥
∥
L∞
x1

L1
x0

(7.2)

where the sup is the essential supremum. We adjoin the identity I to Z , which
corresponds to the kernel T = δ0(y)δ0(x1−x0). The operation � on T1,T2 ∈ Z is
defined by

(
T1�T2

)(
x0,x2,y

)
= F−1

η

[∫

R3
FyT1

(
x0,x1,η

)
FyT2

(
x1,x2,η

)
dx1

]

(y).(7.3)

LEMMA 7.1. Let Z is a Banach algebra under � with identity I . If V ∈L3/2,1

then T ε
1+ defined by (4.15) is in Z and FyT

ε
1+ is given by

FyT
ε
1+

(
x0,x1,η

)
= e−ix1ηR0

(
|η|2− iε

)(
x0,x1

)
V
(
x0

)
eix0η.(7.4)
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Moreover,

sup
ε>0

∥
∥T ε

1+

∥
∥
Z
� ‖V ‖L3/2,1 � ‖V ‖

Ḃ
1
2
.(7.5)

If, in addition, 0 energy is regular for H =−Δ+V in the sense of Definition 3.1,
then T ε

+ also belongs to Z and

(
I+T ε

1+

)
�

(
I−T ε

+

)
=

(
I−T ε

+

)
�

(
I+T ε

1+

)
= I.(7.6)

Proof. Z is clearly a Banach space. The expressions in brackets in (7.3) satis-
fies

sup
η∈R3

∥
∥
∥
∥

∫

R3
FyT1

(
x0,x1,η

)
FyT2

(
x1,x2,η

)
dx1

∥
∥
∥
∥
L∞
x2

L1
x0

≤
∥
∥FyT1

∥
∥
L∞
ηL

∞
x1

L1
x0

∥
∥FyT2

∥
∥
L∞
ηL

∞
x2

L1
x1

=
∥
∥T1

∥
∥
Z

∥
∥T2

∥
∥
Z

(7.7)

whence it is a tempered distribution in R9. Therefore, the composition (7.3) is well
defined in Z and

∥
∥T1�T2

∥
∥
Z
≤

∥
∥T1

∥
∥
Z

∥
∥T2

∥
∥
Z

so Z is a Banach algebra under ‖ · ‖Z .
Formula (7.4) is the same as (4.23). That T ε

1+ ∈ Z and T ε
+ ∈ Z under the 0 en-

ergy condition is a restatement of Lemma 4.6. The resolvent identity (3.3) implies
that

R0
(
|η|2− iε

)
V −RV

(
|η|2− iε

)
V +R0

(
|η|2− iε

)
V RV

(
|η|2− iε

)
V = 0(7.8)

whence, with eixηf(x) =: (Mηf)(x),

M−1
η R0

(
|η|2− iε

)(
x0,x1

)
V
(
x0

)
Mη−M−1

η RV

(
|η|2− iε

)(
x0,x1

)
V
(
x0

)
Mη

+M−1
η R0

(
|η|2−iε

)(
x2,x1

)
V
(
x2

)
Mη ◦M−1

η RV

(
|η|2−iε

)(
x0,x2

)
V
(
x0

)
Mη=0

(7.9)

where ◦ signifies integration. In view of (7.4) this means

0= T ε
1+−T ε

++T ε
1+�T ε

+(7.10)

or (I+T ε
1+)� (I−T ε

+) = I . The second identity in (7.6) holds because the resol-
vent identity also implies (7.8) with R0 and RV reversed:

R0
(
|η|2− iε

)
V −RV

(
|η|2− iε

)
V +RV

(
|η|2− iε

)
V R0

(
|η|2− iε

)
V = 0(7.11)

and so that same argument as before concludes the proof. �
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The space Z by itself is not sufficient to control the wave operators via
Wiener’s theorem. This requires other spaces, mainly the algebra Y , to which we
now turn.

Definition 7.2. Fix some number 1
2 ≤ σ < 1, and a function v ∈Bσ which does

not vanish a.e. (Bσ is the space from Definition 2.1). We introduce the following
structures depending on v:

• the seminormed space v−1B is defined as

v−1B =
{
f measurable | v(x)f(x) ∈Bσ

}

with the seminorm ‖f‖v−1B := ‖vf‖Bσ .
• Set Xx,y := L1

yv
−1Bx. Let Y be the space of three-variable kernels

Y :=

{

T
(
x0,x1,y

)
∈ Z | ∀f ∈ L∞

(fT )
(
x1,y

)
:=

∫

R3
f
(
x0

)
T
(
x0,x1,y

)
dx0 ∈Xx1,y

}

,

(7.12)

with norm

‖T‖Y := ‖T‖Z +‖T‖B(v−1Bx0 ,Xx1,y)
.(7.13)

In (7.12) we take f ∈ L∞ rather than f ∈ v−1B in order to ensure that the integral
on the second line of (7.12) is well defined, cf. the L1

x0
condition in (7.2). However,

L∞ is dense in v−1B, see Lemma 7.3. We adjoin an identity element to Y , in the
form of

I
(
x0,x1,y

)
= δx0

(
x1

)
δ0(y) = δx1

(
x0

)
δ0(y).(7.14)

While we keep this definition more general with regard to the function v, in
our applications below we will set v = V , the potential in H = −Δ+V . Since
v ∈Bσ, we have

L∞ ⊂ v−1B, ‖f‖v−1B ≤ ‖v‖Bσ‖f‖∞.(7.15)

Moreover, L∞ is dense in v−1B. The spaces v−1B and Y depend on σ, but so as
not to overload the notation we suppress this dependence. Note that the x0-integral
in (7.12) is well defined for any f ∈ L∞ due to T ∈ Z , and that this integration
produces a tempered distribution in the variables (x1,y). The condition is then that
the Schwartz kernel of this distribution satisfies a bound of the form, for all f ∈L∞,

‖fT‖Xx1,y
=

∫

R3

∥
∥v

(
x1

)
(fT )

(
x1,y

)∥
∥
Bσ

x1
dy ≤A‖vf‖Bσ(7.16)

for some finite constant A, cf. with (6.12).
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We first record some formal properties of these spaces. In what follows, the
parameter 1

2 ≤ σ < 1 will be kept fixed. In principle we would like to set σ = 1
2

which is optimal. But in order to obtain decay in y for the Y algebra, which is
needed in Wiener’s theorem in the next section, we require σ > 1

2 , cf. Lemma 6.3.

LEMMA 7.2. For any T ∈ Y

‖T‖Y � ‖T‖L1
y B(v−1Bx0 ,L

∞
x1

)(7.17)

provided the right-hand side is finite.

Proof. Apply the embedding L∞ ↪→ v−1B and Minkowski’s inequality (to pull
out the L1

y norm). �

The algebras used in [Bec, BeGo] have the structure of L1
y convolution al-

gebras, taking values in the bounded operators on some Banach space X, cf. the
right-hand side of (7.17). In [Bec, BeGo] it suffices to consider the one-dimensional
Fourier transform of R0(λ

2 + i0)(x0,x1) relative to λ, which is a measure sup-
ported on the sphere of radius |x0 − x1| in R

3. However, because of the phases
e±ix·η in (7.9), the dependence on η is truly three-dimensional and the Fourier
transform of (7.4) relative to η is not a measure.

LEMMA 7.3. The spaces in the previous definition possess the following prop-
erties:

(i) Let f ∈ v−1B. Then ‖f‖v−1B = 0, if and only if f = 0 a.e. on the set
{v 
= 0}. Restricting all functions in v−1B to the set {v 
= 0} turns v−1B into a
Banach space. Both L∞ and L1 ∩L∞ are dense in v−1B, and so bounded (com-
pactly supported) functions are dense in v−1B.X0

x,y := L1
yL

∞
x is dense inXx,y .

(ii) The space Y is a Banach space. The Y norm is invariant under translation
in y. If χ is a Schwartz function in R

3, then

‖T ∗χ‖Y ≤ ‖T‖Y ‖χ‖1

where ∗ denotes convolution relative to y in the distributional sense.
(iii) For X ∈X0, define the contraction of T ∈ Y by X via

(XT )(x,y) :=
∫

R6
X
(
x0,y0

)
T
(
x0,x,y−y0

)
dx0 dy0.(7.18)

Then XT ∈Xx,y and ‖XT‖X ≤ ‖T‖Y ‖X‖X . The right-hand side of (7.18) is to
be interpreted on the Fourier side as

F−1
η

[∫

R3
Fy0X

(
x0,η

)
Fy0T

(
x0,x,η

)
dx0

]

(y).(7.19)
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The integral is absolutely convergent, and the inverse Fourier transform relative
to η is a tempered distribution. By density of X0 in X, the contraction XT is well
defined for any X ∈X.

(iv) Any T ∈ Y possesses a distributional Fourier transform in the y variable(
FyT (η)

)
(x0,x1), and

FyT (η) ∈ B(L∞)∩B(v−1B) =: FY(7.20)

where B(E) denotes the bounded linear operators on the (semi)normed space E.
Moreover,

sup
η

∥
∥FyT (η)

∥
∥FY

=
∥
∥FyT

∥
∥
L∞
ηB(v−1B)

+
∥
∥FyT

∥
∥
L∞
ηB(L∞)

� ‖T‖Y .(7.21)

(v) A kernel of the form S(x0,x1)χ(y) where χ ∈ L1 and S ∈ FY belongs to
Y and

∥
∥S

(
x0,x1

)
χ(y)

∥
∥
Y
� ‖S‖FY ‖χ‖L1 .

More generally, L1
yFY ⊂ Y .

(vi) Let U ∈ FY . Then for any T = T (x0,x1,y) ∈ Y one has

(U ◦T )
(
x0,x2,y

)
:=

∫

R3
U
(
x1,x2

)
T
(
x0,x1,y

)
dx1 ∈ Y

and

‖U ◦T‖Y � ‖U‖FY ‖T‖Y .

Analogous results hold for T ◦U .

Proof. The properties of v−1B follow from simple measure theory, and we
skip the details. By (7.15),

‖X‖L1
yv

−1Bx
≤ ‖v‖Bσ‖X‖L1

yL
∞
x

and so X0 embeds continuously into X, and is dense in X.
The Z component in (7.13) guarantees that ‖ · ‖Y is truly a norm. We further

note that B(v−1Bx0 ,L
1
yv

−1Bx1) is a Banach space provided we restrict both x0 and
x1 to {v 
= 0}. Thus, Y is complete relative to both components of the Y -norm.

For (iii), one has

∥
∥(XT )(x,y)

∥
∥
Xx,y

=

∥
∥
∥
∥

∫

R3

[
X
(
·,y0

)
T (·)

](
x,y−y0

)
dy0

∥
∥
∥
∥
Xx,y

≤ ‖T‖Y
∫

R3

∥
∥X

(
·,y0

)∥
∥
v−1B

dy0

(7.22)
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as claimed. For (iv), first note that T ∈ Y ⊂ Z has the property that

FyT
(
x0,x1,η

)
∈ L∞

ηL
∞
x1
L1
x0

= L∞
ηB

(
L∞
x0
,L∞

x1

)
.

Second, for any Schwartz function f ,

sup
η∈R3

∥
∥
∥
∥

∫

R3
FyT

(
x0,x1,η

)
f
(
x0

)
dx0

∥
∥
∥
∥
v−1Bx1

≤
∥
∥
∥
∥

∫

R3
T
(
x0,x1,y

)
f
(
x0

)
dx0

∥
∥
∥
∥
v−1Bx1L

1
y

≤ ‖T‖B(v−1Bx0 ,L
1
yv

−1Bx1 )
‖f‖v−1B

≤ ‖T‖B(v−1Bx0 ,Xx1,y)
‖f‖v−1B .

(7.23)

Properties (v) and (vi) are evident from the definitions. �

The space Y is by definition the space of kernels T ∈Z so that the contraction
fT for any f ∈ v−1B lies inX, where we define the contraction by (7.12). This is
what Lemma 6.2 expresses for T ε

1+ with v = V .

COROLLARY 7.4. Let V be Schwartz and apply Definition 7.2 with v= V , the
potential. Then for every ε > 0 we have T ε

1+ ∈ Y (where σ ∈ [12 ,1) is arbitrary but
fixed) and

sup
ε>0

∥
∥T ε

1+

∥
∥
Y
� ‖V ‖

B
1
2+σ .(7.24)

Proof. By (7.5) we have

sup
ε>0

∥
∥T ε

1+

∥
∥
Z
� ‖V ‖

B
1
2
.

Lemma 6.2 implies that

sup
ε>0

∥
∥
∥
∥

∫

R3
f
(
x0

)
T ε
1+

(
x0,x,y

)
dx0

∥
∥
∥
∥
Xx,y

� ‖fV ‖Bσ‖V ‖
B

1
2+σ(7.25)

which concludes the proof that T ε
1+ ∈ Y with given σ ∈ [12 ,1). �

By the same proof, Lemma 6.2 evidently allows allows for a stronger conclu-
sion, namely

sup
ε>0

∥
∥T ε

1+

∥
∥
Y e � ‖V ‖

B
1
2+σ(7.26)

where Y e is the extended (with respect to the norm) space Y . It is defined as above,
but usingXe :=X∩L∞

xL
1
y instead ofX. We do not include the L∞

xL
1
y-norm in our

construction of X and Y above as this would invalidate the condition (9.2), which
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is crucial for the Wiener theorem. However, once we have applied the Wiener the-
orem in the larger algebra Y , we are then able to control the L∞

xL
1
y-norm.

We now state the algebra property of Y (which also holds for Y e).

LEMMA 7.5. Y defined by (7.12) is a Banach algebra with the operation �
defined in the ambient algebra Z .

Proof. The fact that � is associative (and non-commutative) is clear in Z , and
the unit element is given by (7.14). Since Y ⊂ Z , the same is true in Y .

The definitions of X and Y imply that each contraction XT (see (7.18)) is in
X and ‖XT‖X � ‖X‖X‖T‖Y . We have

∫

R3
f
(
x0

)
T3

(
x0,x2,y

)
dx0

=

∫

R9
f
(
x0

)
T1

(
x0,x1,y1

)
T2

(
x1,x2,y−y1

)
dx1dy1 dx0.

(7.27)

As in the case of (7.18), the y-integral is to be understood in the distributional
Fourier sense. Integrating in x0, we obtain an expression of the formXT2 forX∈X

with ‖X‖X � ‖f‖V −1B‖T1‖Y . Then XT2 belongs to X as stated above and has a
norm at most � ‖f‖V −1B‖T1‖Y ‖T2‖Y . Thus, T3 = T1�T2 ∈ Y and

∥
∥T1�T2

∥
∥
Y
≤ C

∥
∥T1

∥
∥
Y

∥
∥T2

∥
∥
Y

with some absolute constant C . Multiplying the norm by C removes this constant
from the previous inequality, and so Y is an algebra under this new norm. �

Thus, provided I+T ε
1+ is invertible in Y , hence in Z , its inverse will be I−T ε

+

both in Z and in Y , hence we obtain that T ε
+ ∈ Y .

PROPOSITION 7.6. Let V be a Schwartz potential. Then T ε
n+ ∈ Y (where σ ∈

[12 ,1) is arbitrary but fixed) for any n≥ 1 and ε > 0 and

sup
ε>0

∥
∥T ε

n+

∥
∥
Y
≤ Cn‖V ‖n

B
1
2+σ

(7.28)

with some absolute constant C . Moreover, for all Schwartz functions f one has

(
W ε

n+f
)
(x) =

∫

S2

∫

R3
gεn(x,dy,ω)f

(
Sωx−y

)
dω(7.29)

where for fixed x ∈ R
3, ω ∈ S

2 the expression gεn(x, ·,ω) is a measure satisfying

sup
ε>0

∫

S2

∥
∥gεn(x,dy,ω)

∥
∥
MyL∞

x
dω ≤ Cn‖V ‖n

B
1
2+σ

(7.30)

where ‖ ·‖M refers to the total variation norm of Borel measures. Relations (7.29)
and (7.30) remain valid if V ∈B

1
2+σ.
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Proof. By Lemma 4.4, T ε
n+ = T ε

1+�T ε
(n−1)+. Corollary 7.4 and Lemma 7.5

imply (7.28) by induction.
From Lemma 4.7, using the contraction formalism from above, and identifying

the operator W ε
n+ with its kernel one has

W ε
n+ = (−1)n�R3T ε

n+ = (−1)n�R3

(
T ε
(n−1)+�T ε

1+

)

=−
(
(−1)n−1

�R3T ε
(n−1)+

)
T ε
1+ =−W ε

(n−1)+T
ε
1+.

(7.31)

The notation in the second line contraction of a kernel in Y by an element ofX; this
follows again by induction starting from W ε

0+ = �R3 via (7.18). Strictly speaking,
we have so far considered contractions only against Schwartz functions. But �R3 is
the limit in the space V −1B of smooth bump functions χ(·/R) as R → ∞ (where
χ is smooth compactly supported and χ= 1 on the unit ball). By the boundedness
of T ε

n+ in Y it follows that the right-hand side of (7.31) is well defined in Y . Thus,
by the first equality sign in (7.31),

sup
ε>0

∥
∥W ε

n+

∥
∥
X
≤

∥
∥�R3

∥
∥
V −1B

sup
ε>0

∥
∥T ε

n+

∥
∥
Y
≤ Cn‖V ‖n+1

B
1
2+σ

.(7.32)

We denote the kernel of W ε
1+ by Xε

V , where V is the potential. Thus,

Xε
V (x,y) =−

∫

R3
T ε
1+

(
x0,x,y

)
dx0 =−

(
�R3T ε

1+

)
(x,y) ∈X.(7.33)

By the final equality sign in (7.31),

W ε
n+(x,y) =−

∫

R6
W ε

(n−1)+(x
′,y′)T ε

1+(x
′,x,y−y′)dx′dy′

=

∫

R3
Xε
fε
y′V

(x,y−y′)dy′.

(7.34)

Here we wrote f ε
y′(x

′) =W ε
(n−1)+(x

′,y′) and we used (6.16). We also assumed that
f ε
y′(x

′) is Schwartz in x′ to make this calculation rigorous. Later this assumption
by approximation.

We now invoke the representation from Corollary 5.4. Specifically, by (5.15)
there exists gε1,fε

y′
(x,dy,ω) so that for every φ ∈ S one has

(
Xε
fε
y′V

φ
)
(x) =

∫

S2

∫

R3
gε1,fε

y′
(x,dy,ω)φ

(
Sωx−y

)
dω(7.35)

where for fixed x ∈R
3, ω ∈ S

2 the expression gε1,fε
y′
(x, ·,ω) is a measure satisfying

sup
ε>0

∫

S2

∥
∥gε1,fε

y′
(x,dy,ω)

∥
∥
MyL∞

x
dω ≤ C

∥
∥f ε

y′V
∥
∥
B

1
2
≤ C

∥
∥f ε

y′V
∥
∥
Bσ

= C
∥
∥W ε

(n−1)+(x
′,y′)

∥
∥
V −1Bx′

.

(7.36)
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Thus, with φy′(·) = φ(·− y′),

(
W ε

n+φ
)
(x) =

∫

R3
W ε

n+(x,y)φ(x−y)dy

=

∫

R6
Xε
fε
y′V

(x,y−y′)φ(x−y)dydy′

=

∫

R6
Xε
fε
y′V

(x,y)φ(x−y−y′)dydy′

=

∫

R3

(
Xε
fε
y′V

φy′
)
(x)dy′

=

∫

R3

∫

S2

∫

R3
gε1,fε

y′
(x,dy,ω)φ

(
Sωx−y′ −y

)
dωdy′

=

∫

S2

∫

R3

[∫

R3
gε1,fε

y′

(
x,d(y−y′),ω

)
dy′

]

φ
(
Sωx−y

)
dω.

(7.37)

The expressions in brackets is the kernel we seek, i.e.,

gεn(x,dy,ω) :=
∫

R3
gε1,fε

y′

(
x,d(y−y′),ω

)
dy′.(7.38)

This object is a measure in the y-coordinate and we have the representation

(
W ε

n+φ
)
(x) =

∫

S2

∫

R3
gεn(x,dy,ω)φ

(
Sωx−y

)
dω(7.39)

as well as the size control uniformly in ε > 0

∫

S2

∥
∥gεn(x,dy,ω)

∥
∥
MyL∞

x
dω

=

∫

S2

∫

R3

∥
∥gε1,fε

y′

(
x,d(y−y′),ω

)∥
∥
MyL∞

x
dy′dω

=

∫

S2

∫

R3

∥
∥gε1,fε

y′
(x,dy,ω)

∥
∥
MyL∞

x
dy′dω

≤ C

∫

R3

∥
∥W ε

(n−1)+(x
′,y′)

∥
∥
V −1Bx′

dy′

≤ C
∥
∥W ε

(n−1)+

∥
∥
X
≤ Cn‖V ‖n

B
1
2+σ

(7.40)

by (7.32) as desired. Recall that we assumed that f ε
y′(x

′) is a Schwartz function.

To remove this assumption, we can make ‖W ε
(n−1)+(x

′,y′)− f̃ ε
y′(x

′)‖X arbitrarily

small with a Schwartz function f̃ ε
y′(x

′) in R6. Then the previous calculation shows
that

∫

S2

∥
∥gεn(x,dy,ω)− g̃εn(x,dy,ω)

∥
∥
MyL∞

x
dω
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can be made as small as we wish where g̃εn(x,dy,ω) is the function generated by
f̃ ε
y′(x

′). Passing to the limit concludes the proof.
To remove the assumption that V be a Schwartz function, we approximate

V ∈B
1
2+σ by Schwartz functions in the norm ‖·‖

B
1
2+σ . We achieve convergence of

of the functions gn by means of (7.30) and of the kernelsW ε
n+ themselves by means

of (7.32). To be specific, denoting by W̃ ε
n+ and g̃n the quantities corresponding to

the potential Ṽ , taking differences yields

‖W̃ ε
n+−W ε

n+

∥
∥
X
+

∫

S2

∥
∥gεn(x,dy,ω)− g̃εn(x,dy,ω)

∥
∥MyL∞

x
dω

≤ Cn‖V − Ṽ ‖
B

1
2+σ

(
‖V ‖n−1

B
1
2+σ

+‖Ṽ ‖n−1

B
1
2+σ

)

uniformly in ε > 0. �

If the potential is small, then we can sum the geometric series which arises in
the previous proposition and therefore obtain the structure theorem with explicit
bounds in that case. For large potentials we now introduce the Wiener formalism.

8. Wiener’s theorem and the proof of the structure formula. To set the
stage for the technique of this section, we first recall the following classical result
by Norbert Wiener. It concerns the invertibility problem of δ0 + f in the algebra
L1(Rd) with unit (we formally adjoin δ0 to L1(R)). Here the dimension d ≥ 1 is
arbitrary. Throughout this section, we let χ be a Schwartz function with χ̂(ξ)= 1 on
|ξ| ≤ 1 and χ̂(ξ) = 0 on |ξ| ≥ 2. Then

∫
χ= χ̂(0) = 1. Further, χR(x) =Rdχ(Rx),

so that χ̂R = χ̂(R−1ξ). We can further assume that χ is radial.

PROPOSITION 8.1. Let f ∈ L1(Rd). Then there exists g ∈ L1(Rd) so that

(1+ f̂ )(1+ ĝ) = 1 on R
d(8.1)

if and only if 1+ f̂ 
= 0 everywhere. Equivalently, there exists g ∈ L1(Rd) so that
(
δ0+ f

)
∗
(
δ0+ g

)
= δ0(8.2)

if and only if 1+ f̂ 
= 0 everywhere on R
d. The function g is unique.

Proof. The idea is to find local solutions of (8.1) and then patch them together
using a partition of unity to obtain a single function g ∈ L1. First, we will find
g0 ∈ L1 so that (8.1) holds for all |ξ| ≥R, R large. We select R≥ 1 so large that

∥
∥f −χR ∗f

∥
∥
1 =

∥
∥
(
δ0−χR

)
∗f

∥
∥
1 <

1
2
.(8.3)

In particular, ‖(1− χ̂R)f̂‖∞ < 1
2 . Set f0 := (δ0−χR)∗f and note that

(
δ0+ f0

)−1
= δ0− f0+ f0 ∗f0− f0 ∗f0 ∗f0+ · · ·
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as a norm convergent series in L1, by (8.3). This means that (δ0+f0)
−1 = δ0+F0,

F0 ∈ L1. Define

g0 :=−
(
δ0−χR

)
∗f ∗

(
δ0+F0

)
∈ L1

which implies that

ĝ0 :=−
(
1− χ̂R

)
f̂

1+
(
1− χ̂R

)
f̂

or equivalently

(
1+

(
1− χ̂R

)
f̂
)(
1+ ĝ0

)
= 1

which means that

(
1+ f̂(ξ)

)(
1+ ĝ0(ξ)

)
= 1 ∀|ξ| ≥ 2R.(8.4)

By construction, g0 ∈ L1 is therefore a solution of (8.1) on |ξ| ≥ 2R.
As a second step, we need to find g1 ∈ L1 so that

(
1+ f̂(ξ)

)(
1+ ĝ1(ξ)

)
= 1 ∀|ξ| ≤ 3R.(8.5)

This will then easily finish the proof. Indeed, let ψ0,ψ1 be Schwartz functions
with the property that ψ1(ξ) = 1 if |ξ| ≤ 2R and ψ1(ξ) = 0 if |ξ| > 3R. Then set
ψ0 = 1−ψ1, and let φ̂0 = ψ0, φ̂1 = ψ1. Then

g := φ0 ∗g0+φ1 ∗g1 ∈ L1

solves the full equation (8.1). Indeed, (8.4) and (8.5) imply that

1= ψ0(ξ)+ψ1(ξ)

=
(
1+ f̂(ξ)

)(
1+ ĝ0(ξ)

)
ψ0(ξ)+

(
1+ f̂(ξ)

)(
1+ ĝ1(ξ)

)
ψ1(ξ)

=
(
1+ f̂(ξ)

)(
1+ψ0(ξ)ĝ0(ξ)+ψ1(ξ)ĝ1(ξ)

)
=

(
1+ f̂(ξ)

)(
1+ ĝ(ξ)

)
(8.6)

for all ξ ∈R
d.

To find g1 which satisfies (8.5), we solve (8.1) near any ξ0 ∈R
d with |ξ0| ≤ 3R.

As before, we then patch up these local solutions by means of a partition of unity.
Define, for any 1> ε > 0,

ωε,ξ0(x) = eix·ξ0εdχ(εx)

or

ω̂ε,ξ0(ξ) = χ̂
(
ε−1(ξ− ξ0

))
.
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We first claim that

sup
ξ0∈Rd

∥
∥f ∗ωε,ξ0 − f̂

(
ξ0

)
ωε,ξ0

∥
∥
1 −→ 0 as ε−→ 0.(8.7)

In fact, one has

f ∗ωε,ξ0(x)− f̂
(
ξ0

)
ωε,ξ0(x)

=

∫

Rd

f(y)ei(x−y)·ξ0εd
[
χ
(
ε(x−y)

)
−χ(εx)

]
dy

(8.8)

whence
∥
∥f ∗ωε,ξ0(x)− f̂

(
ξ0

)
ωε,ξ0(x)

∥
∥
L1
x

=

∫

Rd
|f(y)|

∥
∥εd

[
χ
(
ε(x−y)

)
−χ(εx)

]∥
∥
L1
x
dy

=

∫

Rd
|f(y)|

∥
∥χ(·− εy)−χ(·)

∥
∥
L1
x
dy.

(8.9)

The right-hand side here tends to 0 as ε→ 0 by the Lebesgue dominated conver-
gence theorem, and so (8.7) holds. Therefore, we may take ε small enough such
that

(
1+ f̂

(
ξ0

))
δ0+ f ∗ωε,ξ0 − f̂

(
ξ0

)
ωε,ξ0

=
(
1+ f̂

(
ξ0

))[
δ0+

(
1+ f̂

(
ξ0

))−1(
f ∗ωε,ξ0 − f̂

(
ξ0

)
ωε,ξ0

)](8.10)

is invertible for all ξ0 ∈ R
d (in fact, we only need |ξ0| ≤ 3R). This follows from

m := inf
ξ0∈Rd

∣
∣1+ f̂

(
ξ0

)∣∣> 0

and so the second term in the bracket of (8.10) satisfies

sup
ξ0∈Rd

∥
∥
(
1+ f̂

(
ξ0

))−1(
f ∗ωε,ξ0 − f̂

(
ξ0

)
ωε,ξ0

)∥
∥
1 ≤

1
2

(8.11)

for ε > 0 small enough. Fix such an ε > 0. Then for all ξ0 ∈ R
d,

[(
1+ f̂

(
ξ0

))
δ0+ f ∗ωε,ξ0 − f̂

(
ξ0

)
ωε,ξ0

]−1
=

(
1+ f̂

(
ξ0

))−1(
δ0+Hξ0

)
(8.12)

whereHξ0 ∈ L1, ‖Hξ0‖1 ≤ 1. Let Ωε,ξ0 be defined as

Ω̂ε,ξ0(ξ) = χ̂
(
2ε−1(ξ− ξ0

))
.

By construction, Ωε,ξ0 ∗ωε,ξ0 =Ωε,ξ0. Define

gξ0 :=−
(
1+ f̂

(
ξ0

))−1
f ∗Ωε,ξ0 ∗

(
δ0+Hξ0

)
∈ L1.(8.13)
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Then

ĝξ0 =− f̂ Ω̂ε,ξ0

1+ f̂
(
ξ0

)
+

(
f̂ − f̂

(
ξ0

))
ω̂ε,ξ0

=− f̂ Ω̂ε,ξ0

1+ f̂
(
ξ0

)
ω̂ε,ξ0 +

(
f̂ − f̂

(
ξ0

))
ω̂ε,ξ0

=− f̂ Ω̂ε,ξ0

1+ f̂ ω̂ε,ξ0

.

(8.14)

The fraction in the last line is well defined since on the support of the numerator the
cut-off function in the denominator satisfies ω̂ε,ξ0 = 1. In particular, if Ω̂ε,ξ0(ξ) = 1,
then

(
1+ f̂(ξ)

)(
1+ ĝξ0(ξ)

)
= 1.(8.15)

In other words, we have solved (8.1) locally near ξ0. Covering the ball |ξ| ≤ 3R by
finitely many balls of radius ε/2 and summing up these local solutions by means of
a subordinate partition of unity as in (8.6) concludes the proof. To be specific, let
{φj}Nj=1 be Schwartz functions so that

∑N
j=1 φ̂j(ξ) = 1 for all |ξ| ≤ 3R. Moreover,

if φ̂j(ξ) 
= 0, then Ω̂ε,ξj(ξ) = 1 for some ξj with |ξj| ≤ 3R. Now set

g1 :=
N∑

j=1

φj ∗gξj .(8.16)

By construction,

1=
N∑

j=1

φ̂j(ξ) =
N∑

j=1

φ̂j(ξ)
(
1+ f̂(ξ)

)(
1+ ĝξ0(ξ)

)

=
(
1+ f̂(ξ)

)(
1+ ĝ1(ξ)

)
(8.17)

if |ξ| ≤ 3R, and so g1 ∈ L1 is a solution of (8.5). �

The main goal in this section is to formulate and apply a version of Proposition
8.1 to the algebra Y from Definition 7.2. We noted just below Lemma 7.2 that Y
does not have the structure of and L1

y convolution algebra taking values in the
bounded operators on some Banach space. This prevents us from simply citing the
abstract Wiener theorems from [Bec, BeGo]. Assuming that 0 energy is regular, we
have equation (7.6), viz.,

(
I+T ε

1+

)
�

(
I−T ε

+

)
=

(
I−T ε

+

)
�

(
I+T ε

1+

)
= I.

This holds in the algebra Z , uniformly in ε ≥ 0, see Lemma 7.1. This guarantees
that (I+T ε

1+)
−1 = I−T ε

+ in Z . We now wish to show that this relation also holds
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in Y and this requires a Wiener theorem. For this it is natural that we begin by
taking the Fourier transform relative to the variable y of (7.6). T ε

1+ with ε = 0
refers to the limit ε→ 0+.

LEMMA 8.2. Let V ∈B
1
2 and assume that 0 energy is regular ofH =−Δ+V .

Then for any η ∈ R
3, the operator I+ T̂ ε

1+(η) is invertible in B(L∞) (the bounded
operators on L∞) and

sup
ε≥0

sup
η∈R3

∥
∥
(
I+ T̂ ε

1+(η)
)−1∥∥

B(L∞)
< ∞.(8.18)

Moreover, in B(L∞) one has the identity

(
I+ T̂ ε

1+(η)
)−1

= I− T̂ ε
+(η) ∀η ∈R

3.(8.19)

The second term on the right-hand side satisfies

sup
ε≥0

sup
η∈R3

∥
∥T̂ ε

+(η)
∥
∥
B(V −1B,L∞)

< ∞(8.20)

where V −1B is defined with any σ ≥ 1
2 . In fact, withM0 as in (3.17),

sup
ε≥0

sup
η∈R3

∥
∥T̂ ε

+(η)
∥
∥
FY

� ‖V ‖BσM0.(8.21)

If V ∈ Bσ, 1
2 < σ < 1, then uniformly in ε > 0, the map η �→ T̂ ε

1+(η) is uniformly
Hölder continuous as a map R

3 → B(V −1B,L∞), and therefore also as a map
R
3 →FY = B(L∞)∩B(V −1B). Quantitatively speaking, one has

∥
∥T̂ ε

1+(η)− T̂ ε
1+(η̃)

∥
∥
FY

� |η− η̃|ρ‖V ‖Bσ(8.22)

where 0< ρ= σ− 1
2 .

Proof. By equation (3.3)

RV (z) =
(
I+R0(z)V

)−1
R0(z) ∀ Imz > 0.

By Lemma 3.2,

sup
ε≥0

sup
η∈R3

∥
∥
(
I+R0

(
|η|2± iε

)
V
)−1∥∥

B(L∞)
< ∞.

Since R0(|η|2± iε) : L
3
2 ,1 → L∞ uniformly in η,ε and Ḃ

1
2 ↪→L

3
2 ,1 this implies that

sup
ε≥0

sup
η∈R3

∥
∥RV

(
|η|2± iε

)
V
∥
∥
B(V −1B,L∞)

< ∞.
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Let (Mηf)(x) = e−iη·xf(x). Then by Lemma 4.5,

T̂ ε
1+(η) =M−1

η R0
(
|η|2− iε

)
VMη, T̂ ε

+(η) =M−1
η RV

(
|η|2− iε

)
VMη.(8.23)

Passing to the Fourier transform of (7.6) therefore yields
(
I+ T̂ ε

1+(η)
)
◦
(
I− T̂ ε

+(η)
)
= I

(
I+ T̂ ε

1+(η)
)−1

= I−M−1
η RV

(
|η|2− iε

)
VMη

as equations in B(L∞), and so (8.19), (8.20) hold.
For the uniform continuity compute

∣
∣
[
R0

(
|η|2− iε

)
V −R0

(
|η̃|2− iε

)
V
](
x0,x1

)∣
∣

�
min

(
1, |η− η̃|

∣
∣x0−x1

∣
∣
)

∣
∣x0−x1

∣
∣

∣
∣V

(
x0

)∣∣

� |η− η̃|ρ
∣
∣x0−x1

∣
∣−1+ρ∣∣V

(
x0

)∣
∣

(8.24)

where we take ρ = σ− 1
2 ∈ (0,1). By Lemma 2.2, Bσ ↪→ L

3
2+ρ ,1, and |x|−1+ρ ∈

L
3

1−ρ ,∞ = (L
3

2+ρ ,1)∗, we conclude by means of (2.4) that
∥
∥R0

(
|η|2− iε

)
V −R0

(
|η̃|2− iε

)
V
∥
∥
B(V −1B,L∞)

� |η− η̃|ρ.

The second line in (8.24) follows from, with a > 0, and uniformly in ε > 0,
∣
∣
∣e−ia

√
|η|2−iε− e−ia

√
|η̃|2−iε

∣
∣
∣

≤min
(
2,a

∣
∣
∣
√

|η|2− iε−
√

|η̃|2− iε
∣
∣
∣
)

≤ 2min

(

1,a

∣
∣|η|2−|η̃|2

∣
∣

∣
∣
√

|η|2− iε+
√
|η̃|2− iε

∣
∣

)

≤ 2min
(
1,a|η− η̃|

)
.

(8.25)

Here Im
√

|η|2− iε < 0, Im
√

|η̃|2− iε < 0.
In view of (8.23), we next need to bound the differences involving the terms

Mη as η changes. Thus,
∣
∣
(
Mηf −Mη̃f

)
(x)

∣
∣≤min

(
2, |η− η̃||x|

)
|f(x)| ≤ 2|η− η̃|ρ|x|ρ

∣
∣f(x)

∣
∣.(8.26)

We absorb the |x0|ρ factor into |V (x0)|. For the exterior operator M−1
η acting in

the variable x1, we write |x1|ρ � |x0|ρ+ |x1−x0|ρ. The first term is passed onto
V , whereas the second is absorbed as in (8.24).

To summarize,
∥
∥T̂ ε

1+(η)f − T̂ ε
1+(η̃)f

∥
∥
L∞ ≤ C|η− η̃|ρ‖f‖V −1B

which establishes uniform continuity. �
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We now state the Wiener theorem in the algebra Y . The conditions (8.27),
(8.28) in the following proposition are precisely the two properties of L1 functions
that made the proof of the scalar Wiener’s theorem above work (here SN denotes
N -fold composition of S with itself using �, and χ is the function from above).
Indeed, (8.3) corresponds to (8.27) with ε=R−1, and (8.28) will allow us to obtain
an analogue of (8.7). This is natural, as (8.28) localizes in y and therefore regular-
izes in η which makes the essential discretization property in η possible, cf. (8.16).
Throughout, the standard convolution symbol ∗ means convolution relative to the
y-variable. Finally, the pointwise invertibility condition of the Fourier transform is
modeled after Lemma 8.2.

PROPOSITION 8.3. Let V ∈ Bσ where 1
2 ≤ σ < 1, and define the algebra Y

with this value of σ. Suppose that S ∈ Y satisfies, for some N ≥ 1

lim
ε→0

∥
∥ε−3χ(·/ε)∗SN −SN

∥
∥
Y
= 0(8.27)

lim
L→∞

∥
∥
(
1− χ̂(y/L)

)
S(y)

∥
∥
Y
= 0.(8.28)

Assume that I+ Ŝ(η) has an inverse inB(L∞) of the form (I+ Ŝ(η))−1 = I+U(η),
with U(η) ∈ FY for all η ∈ R

3, and uniformly so, i.e.,

sup
η∈R3

∥
∥U(η)

∥
∥
FY

< ∞.(8.29)

Finally, assume that η �→ Ŝ(η) is uniformly continuous as a map R
3 → B(L∞).

Then it follows that I+S is invertible in Y under �.

Proof. We need to construct L ∈ Y with the property that
(
I+ L̂(η)

)
◦
(
I+ Ŝ(η)

)
= I ∀η ∈ R

3.(8.30)

For |η| ≥ 2R this is the same as

(
I+ L̂(η)

)
◦
(
I+ Ŝ(η)− χ̂(εη)Ŝ(η)

)
= I

with ε=R−1. Taking R so large that
∥
∥ε−3χ(·/ε)∗SN −SN

∥
∥
Y
< 2−N(8.31)

by (8.27), we can write with με :=−δ0+ ε−3χ(·/ε),

(
I−με ∗S

)−1
=

(
I−μN

ε ∗SN
)−1�

(

I+

N−1∑

�=1

μ�
ε ∗S�

)

=

(

I+

∞∑

n=1

μnN
ε ∗SnN

)

�
(

I+

N−1∑

�=1

μ�
ε ∗S�

)(8.32)
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and the infinite series converges in Y since ‖με‖Y ≤ 2 and

∥
∥μN

ε ∗SN
∥
∥
Y
≤

∥
∥με

∥
∥N−1
Y

∥
∥με ∗SN

∥
∥
Y
≤ 2N−12−N =

1
2
.

Then

L :=

(

I+

∞∑

n=1

μnN
ε ∗SnN

)

�
(

I+

N−1∑

�=1

μ�
ε ∗S�

)

− I ∈ Y(8.33)

has the property that (8.30) holds for |η| ≥ 2R. Note that the scalar convolution
does act commutatively relative to �, which itself is not commutative (due to the
non-commutativity of operator composition).

Using the same patching method as in the scalar Wiener theorem above, it
suffices to construct a local solution of (8.30) on |η| ≤ 3R. As in the proof of the
scalar Wiener theorem, for any 1> ε > 0, η0 ∈ R

3,

ωε,η0(x) = eiy·η0ε3χ(εy), ω̂ε,η0(η) = χ̂
(
ε−1(η−η0

))
.

We claim that

sup
η0∈R3

∥
∥S ∗ωε,η0 − Ŝ

(
η0

)
ωε,η0

∥
∥
Y
−→ 0 as ε−→ 0.(8.34)

By Lemma 7.3, property (ii),
∥
∥S ∗ωε,η0

∥
∥
Y
≤ ‖S‖Y

∥
∥ωε,η0

∥
∥
1 � ‖S‖Y

uniformly in ε > 0, η0 ∈ R
3. By properties (iv) and (v) of the same lemma,

∥
∥Ŝ

(
η0

)
ωε,η0

∥
∥
Y
�

∥
∥Ŝ

(
η0

)∥
∥
FY

∥
∥ωε,η0

∥
∥
1 � ‖S‖Y .

To prove the claim, we may therefore assume that S(y) = 0 if |y| ≥ L for some L,
using (8.28). With this in mind, we compute

D :=
(
S ∗ωε,η0

)
(y)

(
x0,x1

)
− Ŝ

(
η0

)(
x0,x1

)
ωε,η0(y)

=

∫

R3
S(u)

(
x0,x1

)
ei(y−u)·η0ε3

[
χ
(
ε(y−u)

)
−χ(εy)

]
du.

(8.35)

We begin estimating the ‖D‖Z term in the Y -norm. Thus,

‖D‖Z = sup
η

∥
∥FyD

(
x0,x1,η

)∥
∥
L∞
x1

L1
x0

= sup
η

∥
∥
(
Ŝ(η)− Ŝ

(
η0

))(
x0,x1

)
ω̂ε,η0(η)

∥
∥
B(L∞)

.
(8.36)

By assumption of uniform continuity of Ŝ(η) as a map from R
3 to B(L∞) this tends

to 0 uniformly in η0 as ε→ 0.
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Next, assume that ‖f‖V −1B ≤ 1. With fD referring to the contraction of D by
f in the x0-variable,

‖fD‖Xx1,y
�

∫

R3

∥
∥(fS)(u)

(
x1

)∥
∥
V −1Bx1

ε3
∣
∣χ

(
ε(y−u)

)
−χ(εy)

∣
∣dydu

� εLsup
x1

∫

R3

∥
∥(fS)(u)

(
x1

)∥
∥
V −1Bx1

du� εL‖fS‖Xx1,y

� εL‖S‖B(V −1Bx0 ,Xx1,y)
� εL‖S‖Y .

(8.37)

This concludes the proof of our claim (8.34).
Fix some η0 ∈ R

3, and define Hη0 ∈ Y via the relation

[
I+D+U

(
η0

)
◦D

]−1
= I+Hη0(8.38)

where U(η0) is as in the statement of the proposition. Note that by Lemma 7.3,
property (vi), the composition U(η0) ◦D ∈ Y . By (8.29) and (8.34) there exists
ε > 0 so that irrespective of the choice of η0 we have

∥
∥D+U

(
η0

)
◦D

∥
∥
Y
<

1
2

(8.39)

which guarantees that Hη0 ∈ Y is well defined from (8.38) via a Neumann series.
Moreover, ‖Hη0‖Y ≤ 1. The significance of Hη0 lies with the following property:
if ω̂ε,η0(η) = 1, then

(
I+ Ŝ(η)

)
◦
(
I+ Ĥη0(η)

)
= I+ Ŝ

(
η0

)
in B

(
L∞).(8.40)

In fact, (8.38) is equivalent with the equation in Y

[
I+D+U

(
η0

)
◦D

]
�

(
I+Hη0

)
= I.(8.41)

Taking the Fourier transform in y yields

(
I+ D̂+U(η0

)
◦ D̂

)
◦
(
I+ Ĥη0

)
= I in B

(
L∞).(8.42)

By assumption that (I+ Ŝ(η0))
−1 = I+U(η0) in B(L∞), (8.42) is the same as

(
I+ Ŝ

(
η0

)
+ D̂(η)

)
◦
(
I+ Ĥη0

)
= I+ Ŝ

(
η0

)
in B

(
L∞)

.(8.43)

If ω̂ε,η0(η) = 1, then (8.35) implies that (8.43) is the same as

(
I+ Ŝ(η)

)
◦
(
I+ Ĥη0(η)

)
= I+ Ŝ

(
η0

)

which is (8.40). Next, define

Lη0 := U
(
η0

)
ωε,η0 +Hη0 +Hη0 ◦U

(
η0

)
∈ Y.(8.44)
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Then ω̂ε,η0(η) = 1 implies that

L̂η0(η) = U
(
η0

)
+ Ĥη0(η)+ Ĥη0(η)◦U

(
η0

)

=
(
I+ Ĥη0(η)

)
◦
(
I+U

(
η0

))
− I

=
(
I+ Ĥη0(η)

)
◦
(
I+ Ŝ

(
η0

))−1− I

which further gives

(
I+ L̂η0(η)

)
◦
(
I+ Ŝ

(
η0

))
= I+ Ĥη0(η)

for all η near η0. Using (8.40) we infer that

(
I+ L̂η0

)
◦ (I+ Ŝ) = I

which solves (8.30) near η0. Note that the size of the neighborhood is uniform in
η0. Using a partition of unity as we did towards the end of the proof of the scalar
Wiener theorem, we can patch up these local solutions to a solution on the ball
|η| ≤ 3R.

Thus, we have constructed a left inverse, i.e., L ∈ Y with

(I+L)� (I+S) = I.

In the same fashion we can construct a right inverse, L̃ ∈ Y with

(I+S)� (I+ L̃) = I.

But then

I+L= (I+L)� (I+S)� (I+ L̃) = I+ L̃

whence L= L̃. So I+S is invertible in Y , as claimed. �

The proof of this Wiener theorem implies the following quantitative version,
by means of which we can control the norm of the inverse.

COROLLARY 8.4. Under the same hypotheses as in Proposition 8.3, we let

M1 := 1+ sup
η∈R3

∥
∥U(η)

∥
∥FY

.(8.45)

Let 0< ε0 < 1, and L0 > 1 satisfy

∥
∥ε−3

0 χ
(
·/ε0

)
∗SN −SN

∥
∥
Y
< 2−N(8.46)

∥
∥
(
1− χ̂

(
y/L0

))
S(y)

∥
∥
Y
≤ cM−1

1(8.47)
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where c is a suitable small absolute constant. Furthermore, let 1> ε1 > 0 be such
that

sup
|η−η0|≤ε1

∥
∥Ŝ(η)− Ŝ

(
η0

)∥
∥
B(L∞)

≤ cM−1
1 .(8.48)

Then the inverse of I+S in Y exists and satisfies
∥
∥(I+S)−1

∥
∥
Y
� ε−3

0

(
ε−3
1 +L3

0M
3
1 ‖S‖3Y

)
M1.(8.49)

Proof. Condition (8.31) is precisely (8.46) with ε= ε0. Then on |η| ≥R= ε−1
0

we obtain a solution L of norm ‖L‖Y � 1, see (8.33). In view of (8.36) we have
‖D‖Z �M−1

1 by (8.48). Setting ε= ε2 := c(M1L0‖S‖Y )−1 in (8.37) with L=L0

we obtain

‖D‖B(V −1Bx0 ,Xx1,y)
� ε2L0‖S‖Y �M−1

1

if we choose c small. Hence, ε = min(ε1,ε2) =: ε3 guarantees that ‖D‖Y �M1,
uniformly in η0 ∈ R

3. This further insures that (8.39) holds, which defines Hη0 via
(8.38) with ‖Hη0‖Y ≤ 1. The local inverse Lη0 given by (8.44) satisfies ‖Lη0‖Y �
M1.

Patching together these local solutions requires � R3ε−3
3 choices of η0 over

which we sum up this M1 bound on L. Together with the solution exterior to the
R-ball, the cumulative bound on the global inverse amounts to

‖L‖� 1+R3ε−3
3 M1 � ε−3

0

(
ε−3
1 + ε−3

2

)
M1

� ε−3
0

(
ε−3
1 +L3

0M
3
1 ‖S‖3Y

)
M1,

(8.50)

as claimed. �

9. The proof of Theorems 1.1 and 1.2. We first verify the conditions
(8.27), (8.28) for T ε

1+. It is precisely at this point that we need to define the al-
gebra Y using V −1B with σ > 1

2 . All spaces B without superscript refer to Bσ.

LEMMA 9.1. Let V ∈ B2σ where 1
2 < σ < 1 is arbitrary but fixed. Then S =

T ε
1+ ∈ Y satisfies, for sufficiently large N ≥ 1

lim
δ→0

∥
∥δ−3χ(·/δ)∗SN −SN

∥
∥
Y
= 0(9.1)

lim
L→∞

∥
∥
(
1− χ̂(y/L)

)
S(y)

∥
∥
Y
= 0(9.2)

uniformly in ε≥ 0.

Proof. We begin with (9.2). By definition of the Z space
∥
∥
(
1− χ̂(y/L)

)
S(y)

∥
∥
Z
= sup

η∈R3

∥
∥
[(
δ0−L3χ(·L)

)
∗ T̂ ε

1+

]
(η)

∥
∥
B(L∞)

.(9.3)
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By Lemma 8.2, T̂ ε
1+(·) is uniformly continuous as a map R→B(L∞), which pre-

cisely means that (9.3) vanishes in the limit L→ ∞.
Next, (6.17) and with σ = 1

2 +γ > 1
2 ,

∫

R3
〈y〉γ

∥
∥V (x)Kε

1+(x,y)
∥
∥
Bσ

x
dy � ‖V ‖B1+2γ‖V ‖Bσ .(9.4)

Consequently, since 1+2γ = 2σ,

sup
ε>0

∫

R3
�[|y|≥L]

∥
∥V (x)

(
fT ε

1+

)
(x,y)

∥
∥
Bσ dy � L−γ‖fV ‖Bσ‖V ‖B2σ

which is equivalent with

sup
ε>0

∥
∥�[|y|≥L]

(
fT ε

1+

)
(x,y)

∥
∥
Xx,y

� L−γ‖f‖V −1B‖V ‖B2σ

and thus also with, for all L≥ 1,

sup
ε>0

∥
∥�[|y|≥L]T

ε
1+(x,y)

∥
∥
B(V −1B,Xx,y)

� L−γ‖V ‖B2σ(9.5)

with an absolute implicit constant. In conjunction with (9.3) this proves (9.2).
To prove (9.1) we may therefore assume that T (y) = 0 for |y| ≥ L, with some

large L. Using Lemma 7.2 we estimate

∥
∥�[|y|≤L]

(
δ−3χ(·/δ)∗SN −SN

)∥
∥
Y

�
∥
∥�[|y|≤L]

(
δ−3χ(·/δ)∗SN −SN

)∥∥
L1
yB(V −1Bx0 ,L

∞
x1

)

� L3
∥
∥δ−3χ(·/δ)∗SN −SN

∥
∥
L∞
yB(V −1Bx0 ,L

∞
x1

)

� L3
∥
∥
(
1− χ̂(δη)

)
FyS

N (η)
∥
∥
L1
ηB(V −1Bx0 ,L

∞
x1

)
.

(9.6)

By (4.23),

Fy

(
T ε
1+

)N(
x0,x1,η

)
= eix0η

(
R0

(
|η|2− iε

)
V
)N(

x0,x1
)
e−ix1η.

We claim that if N is large enough, then uniformly in ε > 0,

∥
∥FyS

N (η)
∥
∥
B(V −1Bx0 ,L

∞
x1

)
≤ C|η|−4.(9.7)

We do not claim optimality here, but |η|−4 is sufficient. If so, then (9.6) vanishes
in the limit δ → 0, and (9.1) holds. Recall the Stein-Tomas type bound for the free
resolvent, see [KeRuSo],

∥
∥R0(1+ iε)f

∥
∥
L4(R3)

≤ C‖f‖
L

4
3 (R3)
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uniformly in ε > 0. By scaling, this implies

sup
ε>0

∥
∥R0

(
λ2+ iε

)∥
∥
L

4
3 (R3)→L4(R3)

≤ Cλ− 1
2(9.8)

for all λ > 0, and therefore

sup
ε>0

∥
∥
(
R0

(
λ2+ iε

)
V
)8∥∥

L4(R3)→L4(R3)
≤ Cλ−4(9.9)

where we used that V ∈L2(R3). Recall R0(λ
2+ iε)V : V −1B → L∞ uniformly in

λ,ε, see Lemma 7.1. Next, V ∈ L
6
5 ∩L2 ↪→ L

4
3 , see Lemma 2.2. Therefore,

sup
ε>0

∥
∥
(
R0

(
λ2+ iε

)
V
)9∥∥

V −1B→L4(R3)
≤ Cλ−4(9.10)

for all λ ≥ 1. Since V ∈ L
12
7 ,1(R3), see (2.11), we have MV : L4 → L

6
5 ,1 by (2.3)

where MV is the multiplication operator by V . Furthermore, by (2.6), one has
R0 : L

6
5 ,1 → L6,1 andMV : L6,1 →L

3
2 ,1 since V ∈L2. Finally, R0 : L

3
2 ,1 → L∞. To

summarize,

sup
ε>0

∥
∥
(
R0

(
λ2+ iε

)
V
)11∥∥

V −1B→L∞(R3)
≤ Cλ−4(9.11)

and (9.7) holds with N = 11. �

We are ready to prove the structure theorem on the wave operators for poten-
tials V ∈B2σ, σ > 1

2 .

Proof of Theorem 1.1. All assumptions of our abstract Wiener theorem, Propo-
sition 8.3, hold for T ε

1+. And they do so uniformly in ε > 0. Thus we can invert
I+T ε

1+ in Y . By uniqueness of the inverse in the ambient algebra Z , see (7.6), this
inverse is given by

(
I+T ε

1+

)−1
= I−T ε

+, M2 := sup
ε>0

∥
∥T ε

+

∥
∥
Y
< ∞.(9.12)

Hence

T ε
+ = I−

(
I+T ε

1+

)−1
=

(
I+T ε

1+

)−1�T ε
1+

=
(
I−T ε

+

)
�T ε

1+ = T ε
1+�

(
I−T ε

+

)
.

(9.13)

By Lemma 4.7, eq. (4.26), for any Schwartz function f ,

(
W ε

+f
)
(x) = f(x)−

∫

R3

(
�R3T ε

+

)
(x,y)f(x−y)dy,
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cf. (7.31). SetXε
+(x,y) :=−(�R3T ε

+)(x,y) which satisfies, by (9.12) and withX =

L1
yV

−1Bx,

sup
ε>0

∥
∥Xε

+

∥
∥
X
≤ sup

ε>0

∥
∥T ε

+

∥
∥
Y

∥
∥�R3

∥
∥
V −1B

�M2‖V ‖B2σ < ∞.(9.14)

By (7.33) we have

Xε
V (x,y) =−

(
�R3T ε

1+

)
(x,y) ∈X

∥
∥Xε

V

∥
∥
L1
yV

−1B
=

∥
∥Xε

V

∥
∥
X
�

∥
∥T ε

1+

∥
∥
Y

∥
∥�R3

∥
∥
V −1B

� ‖V ‖2B2σ

and (9.13) implies that

Xε
+ = Xε

V −Xε
+T

ε
1+(9.15)

where we used the contraction notation (7.18) in the final term. The first term in
(9.15) has the desired form by Corollary 5.4. For the second term, in analogy with
(7.34), we have

(
Xε
+T

ε
1+

)
(x,y) =

∫

R3
Xε
fε
y′V

(x,y−y′)dy′, f ε
y′(x

′) := Xε
+(x

′,y′).(9.16)

This kernel operates on Schwartz functions by contraction, i.e.,

(
Xε
+φ

)
(x′) =

∫

R3
Xε
+(x

′,y′)φ(x′ −y′)dy′.

Formulas (7.35), (7.36) apply here. Viz., from Corollary 5.4, eq. (5.15), there exists
gε1,fε

y′
(x,dy,ω) so that for every φ ∈ S one has

(
Xε
fε
y′V

φ
)
(x) =

∫

S2

∫

R3
gε1,fε

y′
(x,dy,ω)φ

(
Sωx−y

)
dω(9.17)

where for fixed x ∈R
3, ω ∈ S

2 the expression gε1,fε
y′
(x, ·,ω) is a measure satisfying

sup
ε>0

∫

S2

∥
∥gε1,fε

y′
(x,dy,ω)

∥
∥
MyL∞

x
dω ≤ C‖f ε

y′V ‖
B

1
2
≤ C

∥
∥f ε

y′V
∥
∥
Bσ

= C
∥
∥Xε

+(x
′,y′)

∥
∥
V −1Bx′

.

(9.18)

The exact same calculations that we carried out in eq. (7.37)–(7.40) now yield

hε(x,dy,ω) :=
∫

R3
gε1,fε

y′

(
x,d(y−y′),ω

)
dy′(9.19)

and

(
Xε
+T

ε
1+φ

)
(x) =

∫

S2

∫

R3
hε(x,dy,ω)φ

(
Sωx−y

)
dω
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where hε satisfies
∫

S2

∥
∥hε(x,dy,ω)

∥
∥MyL∞

x
dω ≤ C

∫

R3

∥
∥Xε

+(x
′,y′)

∥
∥
V −1Bx′

dy′

= C
∥
∥Xε

+

∥
∥
X
≤ CM2‖V ‖B2σ

uniformly in ε > 0. Setting gε := gε1−hε, where gε1 is from (5.15), we arrive at the
structure formula

(
W ε

+f
)
(x) = f(x)+

∫

S2

∫

R3
gε(x,dy,ω)f

(
Sωx−y

)
dω

sup
ε>0

∫

S2

∥
∥gε(x,dy,ω)

∥
∥
MyL∞

x
dω �

(
1+M2

)
‖V ‖B2σ .

(9.20)

Finally, we pass to the limit ε→ 0 by Lemma 4.3.
The claim concerning the general Banach space X (with a different meaning

than then one appearing in Y ) and (1.3) in Theorem 1.1 follows from Corollary 5.4,
eq. (5.18), and (9.19). Indeed, (5.18) shows that g1 has this half-space structure,
and the global structure functions is an average of such operators. To be specific,
let H(ω,y) := {x ∈R

3 : (y+2x) ·ω > 0}. Then by (5.18)
∥
∥
∥
∥

∫

S2

∫

R3
g1(x,dy,ω)f

(
Sωx−y

)
dω

∥
∥
∥
∥
X

≤
∫

S2

∫

R3

∥
∥�H(ω,y)f

(
Sωx−y

)∥∥
X

∣
∣LV (y ·ω,ω)

∣
∣H1

�ω(dy)dω

≤A‖f‖X
∫

S2

∫

R

∣
∣LV (r,ω)

∣
∣drdω �A‖V ‖

Ḃ
1
2
‖f‖X ≤AC(V )‖f‖X .

(9.21)

Passing to the limit ε→ 0 in hε we have

h(x,dy,ω) =

∫

R3
�H(ω,y−y′)(x)Lfy′V

(
(y−y′) ·ω,ω

)
H1

�ω

(
d(y−y′)

)
dy′

whence in analogy with (9.21)
∥
∥
∥
∥

∫

S2

∫

R3
h(x,dy,ω)f

(
Sωx−y

)
dω

∥
∥
∥
∥
X

≤A‖f‖X
∫

R3

∫

S2

∫

R

∣
∣Lfy′V (r,ω)

∣
∣drdωdy′

�A‖f‖X
∫

R3

∥
∥Xε

+(x
′,y′)

∥
∥
V −1Bx′

dy′ �M2‖V ‖B2σA‖f‖X .

The claim concerning the variable xω, and the associated bound (1.4), follow in the
same way. �

In order to obtain quantitative estimates on the structure function g(x,y,ω),
we verify the conditions of Corollary 8.4.
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LEMMA 9.2. Let V ∈B2σ where 1
2 +γ = σ, with 0< γ < 1

2 . Then the condi-
tions in Corollary 8.4 hold with

K := 1+‖V ‖B2σ

L0 = c−1(KM1
) 1

γ

M1 = 1+KM0

ε0 = cK−10− 33
γ

ε1 = cK−2M−2
1

(9.22)

whereM0 is as in (3.17), and c is a small absolute constant. Thus, there is a bound

sup
ε>0

∥
∥T ε

+

∥
∥
Y
�M2 :=K37+ 105

γ
(
1+M0

)4+ 3
γ .(9.23)

Therefore, in combination with (9.20) we obtain

sup
ε>0

∫

S2

∥
∥gε(x,dy,ω)

∥
∥
MyL∞

x
dω �K38+ 105

γ
(
1+M0

)4+ 3
γ .(9.24)

Proof. The choice of M1 is dictated by (8.21) and (8.45). The Hölder bound
(8.22) holds with ρ= 1

2 :

∥
∥T̂ ε

1+(η)− T̂ ε
1+(η̃)

∥
∥
FY

� |η− η̃| 12 ‖V ‖Bσ �M−1
1(9.25)

by our choice of ε1. In view of (9.3) we need to take L0 ≥ ε−1
1 for the Z-part of the

Y -norm. For the other part we use (9.4) and (9.5) to conclude that in total

L0 = ε−1
1 +

(
M1K

) 1
γ

suffices. But for γ ≤ 1
2 this gives the choice above. For (8.46), we bound

∥
∥ε−3

0 χ
(
·/ε0

)
∗SN −SN

∥
∥
Y

≤
∥
∥ε−3

0 χ
(
·/ε0

)
∗ S̃N − S̃N

∥
∥
Y
+2

∥
∥SN − S̃N

∥
∥
Y

� ‖S̃‖N−1
∥
∥ε−3

0 χ
(
·/ε0

)
∗ S̃− S̃

∥
∥
Y
+N

(
‖S‖Y +‖S̃‖Y

)N−1‖S− S̃‖Y

(9.26)

where S̃ = �[|y|≥L1]S, where L1 needs to be determined (and the truncation is a
smooth one). Note that we saw above that N = 11 suffices, and that

‖S− S̃‖Y � L−γ
1 K.

Hence, (9.26) yields

∥
∥ε−3

0 χ
(
·/ε0

)
∗SN −SN

∥
∥
Y
� ε0L

3
1K

10+K11L−γ
1 .
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The first term on the right-hand side follows from (9.6)–(9.11). The optimal choice
is ε0 =KL−γ−3

1 , and L1 must then satisfy

K11L−γ
1 � 1

which leads to ε0 above. �

Proof of Theorem 1.2. The quantitative estimate (1.6) is a restatement of
(9.24).

Let Ṽ be as in the statement of the theorem. The resolvent identity implies that
for any z in the upper half-plane

(
I+R0(z)Ṽ

)−1
=

(
I+R0(z)V

)−1−
(
I+R0(z)V

)−1
(Ṽ −V )

(
I+R0(z)Ṽ

)−1

whence in the operator norm on L∞

∥
∥
(
I+R0(z)Ṽ

)−1∥∥≤
∥
∥
(
I+R0(z)V

)−1∥∥+CM0‖V − Ṽ ‖
L

3
2 ,1

∥
∥
(
I+R0(z)Ṽ

)−1∥∥.

By (1.8)

CM0‖V − Ṽ ‖
L

3
2 ,1

≤ CM0‖V − Ṽ ‖B1+2γ ≤ 1
2
,

then

sup
z 
∈R

∥
∥
(
I+R0(z)Ṽ

)−1∥∥≤ 2M0.

In particular, H = −Δ+ Ṽ satisfies the 0-energy condition and its structure func-
tion g̃ satisfies a bound comparable to (1.6) (by (1.8)).

Note that g and g̃ are each constructed in their own respective algebras, Y and
Ỹ . The former is based on V −1B, whereas the latter uses Ṽ −1B. However, if we
set U := |V |+ |Ṽ | ∈B1+2γ , then

‖V f‖B1+2γ +‖Ṽ f‖B1+2γ � ‖Uf‖B1+2γ .

Consequently, we can carry out the construction of g and g̃ simultaneously, using
the algebra based on U . We will denote this new algebra by Y . Let T ε

1+ and T̃ ε
1+ be

the operators associated with V and Ṽ , respectively. Recall from (9.12) that

(
I+T ε

1+

)−1
= I−T ε

+,
(
I+ T̃ ε

1+

)−1
= I− T̃ ε

+

whence

T̃ ε
+−T ε

+ =
(
I+T ε

1+

)−1−
(
I+ T̃ ε

1+

)−1

=
(
I+T ε

1+

)−1�
(
T ε
1+− T̃ ε

1+

)
�

(
I+ T̃ ε

1+

)−1

=
(
I−T ε

+

)
�

(
T ε
1+− T̃ ε

1+

)
�

(
I− T̃ ε

+

)

∥
∥T̃ ε

+−T ε
+

∥
∥
Y
�M2

2 ‖V − Ṽ ‖B1+2γ .

(9.27)
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In the last line we used that same constant M2, up to an absolute factor, controls
‖T ε

+‖Y as well as ‖T̃ ε
+‖Y , see (9.23). In view of (9.14)

sup
ε>0

∥
∥Xε

+− X̃ε
+

∥
∥
X
≤ sup

ε>0

∥
∥T ε

+− T̃ ε
+

∥
∥
Y
�M2

2K‖V − Ṽ ‖B2σ < ∞.(9.28)

The calculations (9.14)–(9.20) yield

gε− g̃ε = gε1 − g̃ε1 +hε− h̃ε.

First, by linearity
∫

S2

∥
∥gε1 − g̃ε1

∥
∥
MyL∞

x
dω � ‖V − Ṽ ‖B2σ .(9.29)

For hε− h̃ε we have, using the notation (9.15)–(9.18),

hε− h̃ε = gε1,fε
y′
− g̃ε1,f̃ε

y′
= gε1,fε

y′−f̃ε
y′
+(g− g̃)ε1,fε

y′

f ε
y′(x

′) := Xε
+(x

′,y′), f̃ ε
y′(x

′) := X̃ε
+(x

′,y′)
(9.30)

and g̃1 refers to the structure functions defined in terms of Ṽ instead of V . By
(9.18),

sup
ε>0

∫

R3

∫

S2

∥
∥gε1,fε

y′−f̃ε
y′
(x,dy,ω)

∥
∥
MyL∞

x
dωdy′ � sup

ε>0

∥
∥Xε

+− X̃ε
+

∥
∥
L1
yU

−1Bx′

� sup
ε>0

‖U‖Bσ

∥
∥T ε

+− T̃ ε
+

∥
∥
Y

�M2
2K

2‖V − Ṽ ‖B2σ

(9.31)

by (9.28). The second term in (9.30) is bounded by

sup
ε>0

∫

R3

∫

S2

∥
∥(g− g̃)ε1,fε

y′
(x,dy,ω)

∥
∥MyL∞

x
dωdy′

� sup
ε>0

∫

R3

∥
∥(V − Ṽ )(x)Xε

+(x,y)
∥
∥
Bσ

x
dy

� sup
ε>0

∫

R3

∥
∥(V − Ṽ )U−1

�[U 
=0]

∥
∥

∞

∥
∥Xε

+(x,y)
∥
∥
U−1Bx

dy

�
∥
∥(V − Ṽ )U−1

�[U 
=0]

∥
∥

∞M2K

(9.32)

see (9.14). In summary, this concludes the proof of Theorem 1.2. �

For the sake of completeness, we now return to the L∞
xL

1
y-norm that we could

not include in Y , see (7.26). From (9.13), we have

T ε
+ = T ε

1+−T ε
1+�T ε

+.(9.33)
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From (7.26) we have

∥
∥T ε

1+

∥
∥
B(U−1B,L∞L1

y)
� ‖V ‖B2σ .

Since

∥
∥T ε

+

∥
∥
B(U−1B,L1

yU
−1B)

�M2

we conclude that (using the contraction notation against a Schwartz function f )

∥
∥f

(
T ε
1+�T ε

+

)∥∥
L∞
x2

L1
y
=

∥
∥
∥
∥

∫

R6
T ε
1+

(
x1,x2,y−y′

)(
fT+

)(
x1,y

′)dx1dy
′
∥
∥
∥
∥
L∞
x2

L1
y

=

∥
∥
∥
∥

∫

R3

((
fT+

)
(·,y′)T ε

1+

)(
x2,y−y′

)
dy′

∥
∥
∥
∥
L∞
x2

L1
y

≤
∫

R3

∥
∥
((
fT+

)
(·,y′)T ε

1+

)(
x2,y

)∥
∥
L∞
x2

L1
y
dy′

≤
∫

R3

∥
∥T ε

1+

∥
∥
B(U−1B,L∞L1

y)

∥
∥
(
fT+

)
(·,y′)

∥
∥
U−1B

dy′

≤ ‖T ε
1+

∥
∥
B(U−1B,L∞L1

y)

∥
∥T+

∥
∥
B(U−1B,L1

yU
−1B)

‖f‖U−1B .

So it follows that

∥
∥T ε

1+�T ε
+

∥
∥B(U−1B,L∞L1

y)
�M2‖V ‖B2σ

which in conjunction with (9.33) implies that

∥
∥T ε

+

∥
∥
B(U−1B,L∞L1

y)
�M2‖V ‖B2σ .(9.34)

This shows that after the fact, this norm is also controlled. But it cannot be included
in Y to begin with, since this would render the Wiener theorem above inapplica-
ble (as the asymptotic vanishing in y were then to fail in the Y norm). Also note
that this does not improve (9.32), since factoring out ‖V − Ṽ ‖Bσ would require
finiteness of the L1

yL
∞
x -norm, which is not attainable.

DEPARTMENT OF MATHEMATICS, UNIVERSITY AT ALBANY, STATE UNIVERSITY OF

NEW YORK, 1400 WASHINGTON AVENUE, ALBANY, NY 12222

E-mail:mbeceanu@albany.edu

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF CHICAGO, 5734 SOUTH UNI-

VERSITY AVENUE, CHICAGO, IL 60637

E-mail: schlag@math.uchicago.edu



STRUCTURE FORMULAS FOR WAVE OPERATORS 807

REFERENCES

[Agm] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151–218.

[Bec] M. Beceanu, New estimates for a time-dependent Schrödinger equation, Duke Math. J. 159 (2011),
no. 3, 417–477.

[Bec1] , Structure of wave operators for a scaling-critical class of potentials, Amer. J. Math. 136
(2014), no. 2, 255–308.

[BeGo] M. Beceanu and M. Goldberg, Schrödinger dispersive estimates for a scaling-critical class of poten-
tials, Comm. Math. Phys. 314 (2012), no. 2, 471–481.
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