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STRUCTURE FORMULAS FOR WAVE OPERATORS

By M. BECEANU and W. SCHLAG

Abstract. We revisit the structure formula for the intertwining wave operators W, associated with
H = —A+V in R? under suitable decay conditions on V. We establish quantitative bounds on the
structure function. Throughout we assume that 0 energy is regular for H = —A+ V.

1. Introduction. In this paper we revisit the study of wave operators for
H = —A+V in three dimensions. Define B”, 5 > 0, as the subspace of L? con-
sisting of functions with the property that

1155 = (| Lai<i Il + D 2P L piciaizaion £1], < o
=0

Then for V € B5(R?), 3 > %, V real-valued, the wave operators

Wi = lim et itHo
t—>too

exist in the usual strong L? sense, with Hy = —A. They are isometries from L? onto
the absolutely continuous spectral subspace of H in L?, and there is no singular
continuous spectrum (asymptotic completeness), see Sections 3, 4. In a series of
papers, Yajima [Yajl, Yaj2, Yaj3, Yaj4], established the L” boundedness of the
wave operators assuming that zero energy is neither an eigenvalue nor a resonance
(and later also obtained more restrictive results of this nature if this condition fails).
These results are very useful for nonlinear dispersive wave equations, since by
the intertwining property W, f(H)P. = f(Hy)Wx, Hy := —A, we may transfer
Strichartz estimates from the free case Hj to the perturbed evolution of H.

The first author combined some of Yajima’s formalism with his Wiener algebra
technique [Bec, BeGo] to obtain a structure formula for the wave operators [Bec1].
In fact, he showed that the wave operators act on functions by the superposition of
elementary operations. The paper [Becl] is not entirely accurate. The first result
of this paper is to present a corrected version of the structure formula. By B'* we
mean B? for some 3 > 1. In Section 3 we will define what a zero energy resonance
or eigenfunction means in this context. M denotes signed Borel measures. We also

Manuscript received May 3, 2017; revised May 11, 2018.
Research of the second author supported in part by NSF grant DMS-1500696.
American Journal of Mathematics 142 (2020), 751-807. (© 2020 by Johns Hopkins University Press.

751



752 M. BECEANU AND W. SCHLAG

go beyond [Bec1] by obtaining quantitative control of the structure function as well
as stability estimates for it.

THEOREM 1.1. Assume that V € B'Y is real-valued and that H = —A +
V' admits no eigenfunction or resonance at zero energy. There exists (an iterated
space XY means that we first take the norm in 'Y and then in X) g(z,dy,w) €
LIM LS, ie.,

(1.1) /SzHg(a:,dy,w)HMyL;dw<oo
such that for f € L* one has the representation formula

(1.2) (Wi f)(z)=f(z) —F/S2 /RSg(m,dy,w)f(wa—y) dw.

where S,x =z —2(x-w)w is a reflection. A similar result holds for W_.

Let X be any Banach space of measurable functions on R? which is invariant
under translations and reflections, and in which Schwartz functions are dense (or
dense in' Y with X = Y™). Assume further that |1 f|x < Al f||x for all half
spaces H C R3 and f € X with some uniform constant A. Then

(1.3) Wi flly <ACV)[Iflx YfeX

where C(V) is a constant depending on 'V alone.

The structure function ¢(z,dy,w) only depends on z through the 1-
dimensional coordinate x, := x - w, that is g(z,dy,w) = j(zy,dy,w), and it
has the additional regularity

(1.4) 10,9 (2, Ay, @) | 11 g, an,, < =
In particular, W, and W7 are bounded on X = LP, 1 <p <oco:if f € L?>NLP, then

(1.5) Wl + WS o S 11l

This improves on Yajima’s results since (i) less is required of V, and (ii), the
class of Banach spaces X in (1.3) is considerably more general than Lebesgue
or Sobolev spaces.

It is of course desirable to have a quantitative estimates on g in place of mere
finiteness in (1.1). This is a somewhat delicate matter, since the so-called limit-
ing absorption principle for the perturbed resolvent are typically noneffective (see
however [RodTao]). Clearly, any bound on g will require a quantitative version of
the zero energy condition. In the following theorem we obtain a bound in terms of a
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global (in energy) bound on the Birman-Schwinger operator, see (1.7). The some-
what unusual L” — L limiting-absorption principle is natural in this context.

THEOREM 1.2. Let V € B2, 0 < ~. Under the hypotheses of the previous
theorem we have the following quantitative bound on the structure function g,

105 3
(1.6) /S2 Hg(:v,dy,w)HMyL: dw < Co(1+ ||V||Bl+2'y)38+ (1 _|_M0)4+v

where

(1.7) sup supH([—l—Ro(\mziis)V)
neR3 e>0

M= My <

and Cy is some absolute constant. The right-hand side of (1.6) also controls C (V')
in (1.3) as well as (1.4).
Let V € B'™27 satisfy

(1.8) |V = V|| gy < comin (M, ', ||V | greay),

where co < 1 is some absolute constant. Then V obeys the 0-energy condition, and
there is the following stability bound on the structure functions g, §:

(L.9)
/Sz lo(,dy,w) = (. dy.w)|| o, 1 o

< CL 3 IV 12, Mo) IV = Pl groas + [V = )/ (IVI+ ) Ly 0

where C is as on the right-hand side of (1.6), albeit with different numbers in the
exponents.

The appearance of 7 € R? in (1.7) is intended to emphasize a central aspect of
this paper, namely that the frequency parameter 7 needs to be a vector in R, and
not just a scalar. While this is not apparent in (1.7), this feature does fundamentally
influence our technique. The appearance of the L*-norm on the right-hand side
of (1.9) is an unfortunate technical issue. The finiteness of M will be shown in
Section 3. It requires the O-energy assumption we impose on H = —A + V. It
would be interesting to have an effective bound on My in terms of the quantity

Moo = [|(I+(=2)"'V) < oo

I
c0—%o0
which is precisely what our 0-energy assumption amounts to, and quantifiable
properties of V, cf. [RodTao]. But we do not pursue these matters here, and there-
fore bound ¢ in terms of My, rather than Myy. Theorem 1.2 is only interesting
for large potentials. We remark that for V' small in B'* the 0-energy condition
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automatically holds, My ~ 1, and

(1.10) /SzHg(m,dy,w)HMyL;,dwSCOHVHBH.
This will be a byproduct of our results.

Acknowledgments. The first author thanks the University of Chicago for its
hospitality during the summers of 2015 and 2016. Both authors thank two anony-
mous referees for their thorough reading and numerous helpful comments which
improved the paper.

2. Function spaces and interpolation. For more background on the ma-
terial in this section cf. [Bec, Appendices] and the comprehensive treatment in
[BeL]. We recall the family of Lorentz spaces LP4(R%) defined as

< d @
flinnen = [ Grap®)” 1<o<e

Lo
1| o= (ray = suptv f7(t)  q=eo
t>0

(2.1)

where f* is the nonincreasing rearrangement of f. The duality relations are
(LP7) = P9 if 1 < p < oo, 1 < g < o0. Under real interpolation one has for
1 <po#p1<e

2.2) (LP07QO7LP17Q1)9 = LPT

)

where 0 <0 < 1,1 <17 < oo, and:l—ljzlp;f+l%.lnparticular,

(LPO’LPI)Q L= ILPT.

)

The Marcinkiewicz interpolation theorem in this setting states the following, see
[BeLLo, Theorem 5.3.2]:

THEOREM 2.1. T': LP0"0 — L9050 qpd T : LPV"™ — L95" with py # p and
qo # qi implies that T : LP" — L% ifoo232r>0and%:i+ﬁ, 1=

p I—o Po P1 q
%+T’O<9<1‘

One has Holder’s inequalities, see [ONeil],

. 1 1 1 1
2.3) I fgllzrs <7l fllova llgllLre provided —+ — == <1, —
p1r P2 r q1

and the endpoint

1
24 1£ gl < Izl s -t =21

1
q2
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as well as Young’s inequalities:

(2.5)
lf*gllrre <3| fl|rria]lg||Lr2.e provided — 4+ — =—-+1>1, —+— > —
and the endpoint
1 1
26) 1f *gllz= < flzrarllgl o ar  —+—>1.
ARN)

For any Banach space X one defines the vector-valued space ZZ(X ) and £;(X) as

SN

H{fj}]

woo = | 2 (275l )”

jez

e = 2 CF1lly)"

Jj=0

2.7)

Q=

H{fj}]

where s € R and 1 < g < eo. The usual modification needs to made for g = ee.
Then, see [BeLo, Theorem 5.6.1],

(2.8) (£ (X),£51(X)) g, = £3(X)

a1

where 59 # 51,0 < qo,q1 <0, 0<0 <1, s=50(1—0)+ 10,0 < g < oo, and the
same holds for the dotted spaces.

Definition 2.1. Let Ay := {x € R% | 2% < |z| < 2¥*!} for each k € Z. For any
a € R we set

B~

{v € Line (R {0}) | > 2°%||14,0]|, < oo}
(2'9) keZ

B*:= v e L (RY) | [[1p0nvl, + Y27 1a,0]], <o
k>0

where the sums on the right-hand side are the respective norms.

In the notation of (2.7) one has

[l o = H{]lAkv}kEZ ix(L2RY) ) e gy

(2.10)

lollze = [[{14.0} 00U { Lm0} ey = 10O a2

This allows us to use interpolation as in (2.8).
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LEMMA 2.2. The spaces in Definition 2.1 satisfy the following properties:

o B = (12 |x| 2[?) 01 and B** = (L?,(x) 2 L?)a1 for 0 < a < 1.

o B = (BO‘O,BO“)QJ where o = 0ap + (1 — 0)ag where 0 < 0 < 1 and o #
«y. The same holds for the undotted spaces.

e The embeddings B — L3\ (R?) and B! — Lg’l(R3) hold, and the same
is true for the undotted spaces. By duality, L3>*(R3) < (B1)'.

Proof. One has |[v]|; = HL(U)HZ(Z)(Lz(Rd)) and
H’L)H‘x‘—sz = ||L(U)“f%(L2(Rd))> H,UH<JC>*2L2 = HLO(U)HE%(LZ(]Rd))'
Next, B® < L2, B® < L2 and B> — L', B < L' (by Hélder). Therefore,

(2.11) B = (B%,BY),, < (L*,L"),, = L"'

where p = 25,0 < 0 < 1. Similarly, B3? — L, O

3. Spectral theory. This section discusses zero energy eigenvalues and res-
onances, as well as embedded resonances. These are classical questions, but due to
the somewhat special class of potentials under consideration we supply the details.
See also [Bec].

Definition 3.1. Let V € L%’l(R3). We say that O energy is regular for H =
—A+4+Vif

3.1 f=—Ro(O)V f
has no solution f € L=, f # 0.

It is standard that H = —A +V is a self-adjoint operator on L?(R3) if V €
L3/%1 is real-valued; for example, such potentials obey the Rollnik condition, cf.
[Bec, Proposition 2.9]. The following lemma relates the 0 energy criterion of Def-
inition 3.1 with the more common definition involving weighted L2-spaces, see
[JeKa, IoSc]. For this we will assume more than V' € L3/%1 namely V € B > which
is a smaller space by Lemma 2.2.

LEMMA 3.1. Let V € Bz. If (3.1) holds with f € L=, then f € (B2), and
conversely. Note that f € (B%)’ if and only if

sup2~*2 || La, f| 2 + Lm0, /]|, < o=
k>0
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Proof. The kernel of Ry(0) = (—A)~! is explicitly given by Ry(0)(z,y) =
L _L_ Note that |z|~! € L*>. Write V = V| + V5, where V] is bounded of com-

4m Jz—y]

pact support (and therefore in L') and ||V5|| 3/2.1 is small. Then
HRO(O)V'ZHLL”HLL“ <l
by (2.4) and (2.5). Thus (I + Ry(0)V>) ! is a bounded operator on L** and
J==(I+Ro(0)V2) ' Ro(O)VA f.
Since Vi f € L', Ry(0)Vy f € L>* by (2.5), so by Lemma 2.2,
fer? — (B2).

Now assume f € (B'/2), then Vf € L', so f = Ry(0)V f € L>. With the
previous splitting V' = V| 4 V>, write

(3.2) f=—(I+Ro(0)V2) ' Ro(0) Vi .
Here we used that
HRO(O)V'ZHL”HL” <l

One has Vi f € L*>/%! since V| f € L? with compact support, Ry(0)V; f € L*, so
fer”. O

We write the resolvent identity as
(33)  (I+Ro(2)V) '=I—=Ry(2)V; Ry(z)=(I+Ro(2)V) 'Ro(2)

for Imz > 0. Here Ry (z) = (H — z)~!. The following lemma addresses the limits
Imz — 0+. In particular, we obtain a limiting absorption principle on L*, see
[loSc, Bec] for more background. By (3.3), I + RyV is invertible on L™ if and
only if Ry is bounded from L3/%! to L=

LEMMA 3.2. Assume that V € L3/>" is real-valued. Then I + Ro(|n|* 4-i0)V
is invertible on L* for any ) # 0. For n =0 it is invertible if and only if zero energy
is regular in the sense of Definition 3.1. In that case, I + Ro(|n|* £ic)V is also
invertible on L™ and its inverse is bounded in B(L”, L*), uniformly for e > 0 and

n.

Proof. Let Cy be the space of continuous functions that vanish at infinity. It
follows from (2.6) that Ry (|n|* +i0)V : L= — C. Indeed,

?}%H(Vf)( +y) — VfHLS/Z,l =0
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gives the continuity of Ry(|n|? +i0)V f for any f € L=(IR?®). Second, if ¢ > 0 then
there exists V' € Coomp With ||V = V|| ;3/21 < €. Clearly,

(Ro(|nl* +i0)V f)(z) —0

as || — 0. By (2.6), we obtain the same for V' in place of V.
By Arzela-Ascoli, a set A C Cy is precompact in Cy if and only if one has
e cquicontinuity:

(3.4) Ve>030>0V|y|<dVaec A Ha(-—y)—aHm<€;
e uniform decay at infinity:
(3.5) Ve>03RVa€ A ||L=r(z)a(z)], <e.
We wish to verify these conditions for
A={Ro(Inf*+i0)V f | f € B}

where 5 C L= is bounded; in fact, we may take it to be the unit ball. It suffices to
assume that V' is continuous and compactly supported. Indeed, approximating V'
in L3/ by such potentials and using (2.6) as above implies the general case. For
the uniform vanishing at o, suppose that V' (z) = 0 if |z| > M. Then

3.6)  |Ro(InP+i0)Vf(@)| S IV LI (el = M) S VL (je] - M)~

and the vanishing follows. For the equicontinuity we introduce for any A € R the
kernels
ei)\\m\ ei)\\m\
kia(z) = 1go1)(2)——=, k()= 1pgo1)(2)——-
|z ||
Then for any |y| < 1 with absolute constants C,

G [kaC+9) = kaG)l g+ [[kaaC+9) = kaa()l 4 < CO+ Ay
It then follows that (with A = || and using || f||. < 1)

(3.8)
[(Ro(In]*+i0)V ) (- +5) = (Ro(In*+i0) V £) ()| . <) [yl (IV [l + [V ]| ).

Since the right-hand side does not depend on f, equicontinuity holds. Thus,
Ro(|n|*>+1i0)V : L — L is a compact operator, and so is V Ry (|n|*> —i0) : L' —
L' (as the former is the adjoint of the latter).

By Fredholm’s alternative in Banach spaces, I + R (|n|*> +i0)V is invertible
in L™ if and only if the equation

(3.9) f==VRo(In]*—i0) f



STRUCTURE FORMULAS FOR WAVE OPERATORS 759
has no other than the trivial solution in L'. Let f solve (3.9). Then
_ 2 3,00
g=Ro(ln|>~i0)f € L
and satisfies the equation
g=—Ro(|Inf*~i0)Vg.

By the same argument as in (3.2) it follows that g € L=(R?). Assume at first that
1 # 0. Since V is real-valued, (g,V g) € R whence

Im <Vg, Ry (\7]|2 - iO) Vg> =0.
Hence
@ |‘77|§2: 07

where f(£) = Jgs € ¢ f(x)da is the Fourier transform. This is well defined since
Vge L By [GoSc, Proposition 2.4]

9=—Ro(|nf —i0)Vg € (x)"/>L?
for some € > 0. Since g is a distributional solution of the equation
(—A+V—|n[*)g=0
and g € L~, it follows that

g€ (V) Lyt C Hy.
By [loJe, Theorem 2.1], for 1 # 0 we conclude from the preceding that g = 0. It
then follows that f = (—A — |n|?)g = 0 (distributionally), and so (3.9) only has the
trivial solution.
If n =0, we refer to Definition 3.1 and to Lemma 3.1. To be specific, here too,
I+ Ry(0)V is invertible in L™ if and only if the equation

(3.10) f=—=VRo(0)f

has no other than the trivial solution in L'. But by the same argument as before
g = Ry(0)f € L solves g = —Ry(0)V g. Definition 3.1 then requires that g = 0
and therefore also f = 0. In summary, the inverse (I + Ro(|n|> +40)V )~ exists
for every n € R°.
The map A — Ro(\?+i0)V € B(L, L*) is continuous, and the inverses have
uniformly bounded norms when A is in a compact set. By Lemma 3.3
[(Ro(A2+i0)V)?||_,. —0

co—yo0
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as A — oo, Therefore,
@11 (I+Ro(A+i0)V) " = (1= Ro(\2+i0)V) (I — (Ro(A2 +i0)V)*) "

is uniformly bounded as operators on L* for all |A| > 1.
This extends to any set in the complex plane at a positive distance away from
the eigenvalues—in particular to the whole right half-plane. U

It is easy to see that || Ro(A? 4 i0)V||_e. does not depend on \. In fact,

iyl .
(RO()‘2+Z.O)Vf)(O):%/RS o7V W)y = (=2) (V1))

and therefore
[Bo(X2+i0) V|| = [[(=2)"'V].. ..

which does not decay in A. To circumvent this issue, one can square the operator
asin (3.11).

LEMMA 3.3. ForV € L%71(R3) we have

|[(Ro(2+i0)V)*|_ —0 asA—se
co—y00

Proof. We choose to give an elementary self-contained proof, rather than re-
lying on decay of the free resolvent relative to the energy in weighted L? spaces.

In view of (2.6) we may reduce ourselves to the case of a smooth, compactly sup-
ported V. Then

G12 (R(P+0)V) f@) = [ K@)V @y
where

1 ez —ul+u—yl)
(3.13) Ky(z,y) = 62 /R3 Py — V(u)du.
We claim that
(3.14) sup ‘KA(m,y)‘ —0 as\— oo

x,yE€RO
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If so, then || f||. < 1 implies that

[(Ro(¥ +i0)V)*f|l < [[Er(@. ) o [VIH—0 asA— e

Given § > 0 we let x be a smooth radial bump function in R? with y = 0 on the
unit ball and x(u) = 1 if |u| > 2. Then

K)\(‘Thy)

1 etz —ul+|u—y|)
s —iet ) — (=l /) (= l/8) V ()

B [z —ullu

et lz—ul+|u—yl)
i 1= x(fu—1/8)x(fu— y1/8)]V ()

s |z —ullu—yl

L1
1672

The second line contributes at most O(6) to || Kx(z,y)||zz, in (3.14). Fix some
small § > 0. We integrate by parts in « in the first line of (3.15) using that

(iN) 5z, y,u) - VyeMleultluyl) — w(l«,y’u)|2ei/\(lw*U\+\u*y\)

with

uU—z u—y

U(x,y,u) = .
The degenerate case where U(x,y,u) = 0 occurs if u lies on the line segment join-
ing the points x and y. This however contributes nothing to the integral in w. Simi-
larly, if ¢/ is small, then that will contribute very little to the integral. Thus, introduce
a cut-off function x(¥(z,y,u)/e) into the first integral in (3.15), which we denote

by K)\(l‘,y)

i Mo —ul+lu—y))
R(ey) = — / x(lu—1/6)x (ju—yl/6)

1672 Jrs |z —ul|u—1yl

< X (U(@,y,u) /) V (u) du
eiM[z—ul+lu—yl)
t 1o [ o (Y 0/2)

1672 Jps |x—ul|u—1y]
< X (Ju—2/8)x(lu—yl/0)V(u)du.

The second line here contributes o(1) to || K (z,y)|| Lz, as € — 0, whereas in the
first line we integrate by parts (with € > 0 small but fixed) using the operator

(3.16)

L= |0(x,y,u)| (2)\) Uz, y,u) - Vy.

Sending A — o then shows that this contributes o(1) to || K (z,y)|| = ,- Note that
the separation § > 0 avoids the degeneracies arising here from x,y coming too
close to u. U
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To summarize, we have shown that if V € L3/ is real-valued, and 0 energy
is regular as specified in Definition 3.1, then

(3.17) sup sup || (I + Ro(|n|* £ic) V')
neR3 >0

71H°o%m =: My < oo.

4. Existence and properties of wave operators. Let V' be as in Defini-
tion 3.1, and real-valued. The orthogonal projection P, : L?> — L? onto the point
spectrum is a finite-rank operator of the form

N

4.1) By=) (. fo)fe

=1

where fy are an orthonormal family of eigenfunctions of H = —A 4V with eigen-
values H f; = Ay fy. Since V' € % obeys the Rollnick condition, cf. [Bec, (2.63)],
the Birman-Schwinger operator is Hilbert-Schmidt and N < eo. We are also assum-
ing that there are no zero energy eigenfunctions (or a resonance). The projection
P.= I — P, is the orthogonal projection on the subspace corresponding to the con-
tinuous spectrum. Lemma 3.2 implies that the continuous spectrum [0, ) of H is
purely absolutely continuous, see [ReSi3, Theorem XIII.19]. Thus the entire L?
spectrum of H consists of finitely many negative eigenvalues (counted with mul-
tiplicity) and the absolutely continuous spectrum [0, o). For “nice” potentials, Ag-
mon’s estimate shows that the eigenfunctions f; decay exponentially in the point-
wise sense. We have no need for this strong property, and the following lemma will
suffice.

LEMMA 4.1. Let V € L%’I(R3) and suppose f € L? solves Hf = —E f with
E > 0 in the sense of tempered distributions. Then f € (L' N L*)(R?).

Proof. Since R := (—A+ E)~! takes the Schwartz space to itself, it follows
that f = — RV f in the sense of distributions. Splitting V' = V) 4V as before with
Vi ”L%’l < 1 and V; continuous with bounded support we also have

(4.2) (I+RVi)f=—-RVpf

Now RV; : L* — L* with small norm and V> f € L' N L* C L3!. Hence RV, f €
L~ and f € L, by inverting the operator on the left-hand side of (4.2).

So feL’NL>c L*> and Vf € L'(R?). The convolution RV f € L! by
Young’s inequality, and finally f € L' as desired. U

Next, we discuss the existence of the wave operators by the standard Cook’s
method. However, the class of potentials we consider requires more sophisticated
estimates to make Cook’s method work, namely the Keel-Tao endpoint [KeTa].

3

Lemma 4.2 was shown in [Bec] to also hold when V' is in Lg " (the closure of %
3
in L27).
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LEMMA 4.2. Let H = —A+V be self-adjoint as in Definition 3.1. Let P, be
the projection on the continuous spectrum of H. Then

(4.3) W, =slim ¢H pe~itHo — s-lim ¢t g —itHo
—yo0 —oo

exists and is an isometry on L*. One has P, = P, . = W, WZ. Moreover, for any
f € L*(R?) the integrals

W f=f+i / eHy e~ tHo £ gy

(4.4) o .

=FPef+i / e PVe M fdt
0

converge in the strong sense. There exist similar formulae for W_ and W7, in
particular,

0
(4.5) W f=f+i / etHoy = itH ¢ gt

—oo

Proof. The Strichartz estimates
HeitHOfHL%Lgvz 5 HfHL2

/ e R(s)dsl| S|, e
R L2 x

(4.6)
‘ L2L

are the standard Keel-Tao endpoint [KeTa] for the Schrodinger evolution of Hy =
—A. They also hold for '/ P,, see [Bec].
Taking the time derivative of the left-hand side and integrating we obtain

t
4.7) eZtHPceﬂtH"f =P.f+ z/ e“HPCVeﬂSH"de.
0

Note that by Holder’s inequality (2.3) one has V' : L6 — L8/52 as a multiplication
operator; in fact, this only requires V € L*»*(R?). Hence, by (4.6) the integral in
(4.7) converges in norm and we can send ¢ — oo and obtain the statement in (4.4)
involving FP,. Thus, endpoint Strichartz estimates imply the existence of the strong
limit s-limy_,e. e ~*H P10 in 1.2,

We claim that

(4.8) lim P, et f —

for all f € L?. Indeed, since L' N L? is dense in L?> we may assume that ¢ f
decays like [t|~3/? in L. By Lemma 4.1 the pairing with f, € L' therefore decays
as desired.
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Consequently,

W, =s-lim et o=itHo — o Jjm etH Pce*”H".
oo t—soo

To obtain the integral representation without the projection P, we note that

t
s-limi / e p,ve s s = s-lim B, (e e 0 — ) = — P,
t—roo 0 t—roo

The final limit here is obtained from the time-decay of e 0 f in L* for f €
L'N L? and the fact that f, € L'. The relation P, = P, . = W, W7 follows from
the general principle that W, W2 = Pg,nw, ) for isometries. U

Expanding the right-hand side of (4.4) iteratively by means of the Duhamel
formula we obtain the formal expansion

W1+f:i/ e TAVEIRfdt, ...
>0
@ioy  Wwop=it ol s)A Y gils Ay
t>s51>>8p1>0
« €7isn71AV€itAfdtdsl dSn,1

for f € L?. The first term is the identity, hence always bounded. Yajima [Yajl]
proved that each remaining term W,,, n > 1, is bounded as an LP operator. And
the operator norm grows exponentially with n: in R3

(4.11) Wi fll e < CTM IV Iy -1-e 2l fll o

Thus, for small potentials, i.e., when [[V'[[(;-1-<7> < 1, WeierstraB’s criterion
shows that (4.9) is summable, whence the full wave operators W are LP-bounded.
In general, however, the asymptotic expansion (4.9) may diverge.

In order to overcome this difficulty, for large V' Yajima [Yajl] estimated a finite
number of terms directly by this method. He used a separate argument to show the
boundedness of the remainder, for which he had to assume that V' decays faster
than (x) . In this paper, we avoid summing (4.9) altogether and rely instead on
the first author’s Wiener algebra approach [Bec, BeGo].

Definition 4.1. For € > 0 we introduce the regularized operators

W£+f — Zn/ ei(tnftnfl)H()*g(tnftnfl)v .

0<t) <<ty

(4.12)
% eita—t1)Ho—e(ta—t1) 1/ giti Ho—ety Veiit”Hofdtl e dty,
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together with
(4.13) Wi _ I—H’/ eitHfatvefitHo dt.
0

These regularizations behave as expected under the limit e — 0.

LEMMA 4.3. WS f — W, f strongly as € — 0 for each f € L. Similarly,
Wy f = Wy f foreachn > 1.

Proof. 1t obviously follows from the Strichartz estimates (4.6) that (with ¢t > 0)

supl |74 302 5 111

(4.14) ‘

/ e P.F(s)ds
R

< |F .
o S 1Pl
Hence the tails of the integrals in (4.13) (under the projection F.) are uniformly
small in £ > 0. On any compact interval [0,7"] we can pass to the limit £ — 0 under
the integral by dominated convergence.

It remains to verify that for any f € L?

lim [ "t P Vet fatr = / e p,ve M fat,
€10 Jo 0

Since each side is a bounded operator on L? uniformly in & > 0, it suffices to verify

this for f € L?> N L. Specializing to a single eigenfunction f,

oo

lig)l eit)\gfat<f7 ettHo Vf£> dt = / pRI2: {f, etHo V fo)dt.
€ 0 0

Since V fy € L',
(e VN St7 i1

whence the tails in these integrals are again uniformly small in €. On compact time
intervals we may pass to the limit € — 0. In summary, W$ f — W, f strongly
as € — 0. The argument for W, f — W, f is similar and we leave it to the
reader. (]

The operators W, will be expressed in terms of the following kernels. Defi-
nition 4.2 is somewhat formal, but the subsequent lemmas will justify the formulas
rigorously in the context of the wave operators. Our convention for the Fourier
transform and its inverse is as follows:

DO = [ e e (6 = s [ e ealeae
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Definition 4.2. Let V be a Schwartz function in R3. For & > 0, let 7%, (z0,71,9)
be defined in the sense of distributions as

V&%)
&1+ 0> —|n|* £ie

(4.15) (Frg FaryTi) (€0:€1,m) :

and, more generally, for any n > 1

_ P V(& =& 1)dEr . dg
(416) fz lfz T;:L '8Ny ::/ Hf ln - .
( 0 nY :I:)(&) § 7]) Ri(—1) ngl(‘§£+77|2_ |7']‘22|:Z€)

Also let T’ be given by the distributional Fourier transform
(4.17) FyT5 (w0, 21,m) =™ (Ry (In|* Fic) V) (w0, 1) e 7;

where we assume that O energy is regular for H = —A 4+ V; see Lemma 4.6 for
a justification. Throughout we will follow the convention that x( is the “input”
variable, and x| the “output” variable.

The right-hand sides of (4.15) and (4.16) are tempered distributions, whence
the kernels T (£, &,,m) are tempered distributions on R. In the following section
we will find this kernel for n = 1. Two variables are sufficient for representing
W}, but a meaningful algebra structure requires one more variable. This is the
reason for the presence of a third variable x( in (4.15) and (4.16). For three-variable
kernels T'(zg,x1,y) the expressions above suggests the following composition law

®, which we define formally.

Definition 4.3. We formally compose three variable kernels T'(x¢,x1,y) on R°
as follows:

4.18) (T1®Ty)(20,22.y) = /6 Ty (zo,x1,91) Ta (21, 22,y —y1) dy dys .
R
Dually (i.e., on the Fourier side), ® takes the from

(Fos Fany (T1 ®T2)) (€0.62,m)
(4.19)
= [ B F s ) (60,6100 () P T2) (1. 2m)

Thus, ® consists of convolution in the y variable—i.e., multiplication in the dual
variable n—and composition of operators relative to the other two. In the dual
variables &y, &;, and & composition of operators is preserved. As already noted,
xo is the input variable, and z; the output variable, whereas y is the dual energy
variable.

We will study ® more systematically in Section 7. For now, Lemma 4.4 serves
as an example of how we use ® to recursively generate all W, , n > 1, starting
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from W, . We use the dual formulation (4.19) to define ® rather than the convolu-
tion (4.18).

LEMMA 4.4. Let V be a Schwartz potential. For any £ > 0 we have for any
n,m>1
TT?LJr ® T7§+ - Tfm+n)+
in the sense of (4.19).

Proof. This follows from (4.15). For example,

fxiolfoyTZiL (607 627 7])

Vie-¢) V(& —&)
(4.20) = > — > .
® | &2+ = [nf? +ie & +n|”— 0> +ie
= ‘F:;()lfwzyy (Tlg+ ®Tf+) (50752777)
both in the pointwise sense, as well as in the space of distributions. U

The following lemma exhibits the relation with the resolvent operators.

LEMMA 4.5. Let V be a Schwartz function, and € > 0. Then

@21)  Fp ' Fu oI5 (0,61.m) = Fy ' Fo(Ro(Inl* —ie) V) (éo+m,&1 +1n)

and, for any n > 1,

@422) Fp ' Fo o T (80.61,1) = Fo ' Fo(Ro(Inl? —ie) V)™) (€0 + .61 +1).
Furthermore,

(4.23) FyT5. (z0,21,m) = € (Ro(|n|> —ie) V') (o, 1 ) 1"

and

@.24)  Fo ' Fo T (G0.60,m) = F 'Ry (Ry (Inf —ie) V) (So+m,61+1).

Proof. One has
Fi ' By (Ro(Inf* —ie) V) (e, B) = / @b Ry (1n|* —ig) (b—a)V (a) dadb
]R6
_ / @D 0B) B (Inf? — i) (B)V (a) dadb
]R6

=V (B—a)(I8P = |n|*+ie) .

Plugging oo = £y +n and § = £ + 7 into the right-hand side yields (4.15), which
gives (4.21). From this, (4.23) follows easily. The representation of 77, follows
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using the composition ® from above. The remaining statements in the lemma are
obtained by analogous formal computations, and are left to the reader. O

Lemma 3.2 immediately yields the following boundedness. As usual, B(X|,
X,) are the bounded operators X; — X, for any Banach spaces X and X5.

LEMMA 4.6. Assuming that V € L' one has (FyT7,)(n) € B(Ly,, Ly, ) and
(FyT5,)(n) € B(LY,, L) uniformly in e > 0 and n € R*. Let 0 energy be regular
as in Definition 3.1. Then uniformly in E > 0 and 1 € R3, one has (F,T<)(n) €
B(Lg,,Ly) and (F,T5)(n) € B(LL, L

g 1) ) The respective operator norms are
bounded by C HVHL% | with some absolute constant C.

Proof. The statements about 77, are easily obtained from (2.3). The second
statement concerning L' boundedness follows from the first by duality (note the
reversal of the order of the variables). As far as T is concerned, the first statement
is Lemma 3.2, whereas the second follows by duality. U

We shall employ the following form of the operators W7, and W, introduced
by Yajima in [Yaj1].

LEMMA 4.7. Let V be a Schwartz function. Then for any Schwartz functions
f,gandfore>0,n>1,

425 (WE.f.g)= / FoT2, (0,2,y) f (= — y)g(x) dy dc
and
426 (W) =(f.0) / FoT2(0,2,9) f (x — y)g(x) dy de.

These integrals are to be understood as distributional duality pairings. All our
conclusions concerning T apply equally to T<.

Proof. By Plancherel’s identity

(Wr, f.g) = (2%)3/0 /R6 etlm |27€t‘7(771 —770)67“‘770‘2(]?(770)?(771) dmy dno dt

1 ‘7(771 770) \=
_ dny dno.
" s T Hgf(no)g(m) 1 dno

Setting 19 =1, n1 — 1o = &, we obtain

cey 1 Ve o=
(4.27) <W1+f,g>——(27T)3 /}R R EE [ ied (Ml + &) dnde.
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More generally, when n > 1,
< ot d 9>
7 L 2
_ i(te=te-1)Inel’=(te—te-1)eyy
SR A (n=1-1)

O=to<t,<--<t, s

“italml Fpo)g(n,) dno- - dn dty -+ dty,

with ¢ = 0. Integrating in ¢1,...,1,, gives

. (=" V=) = =
W — ) dno - - dn,.
(Weif.g) (2 /RW” H£:1(|W|2_|770|2+25)f(770)g(n )dno--- dn

Renaming ng =7, n¢ — no = & leads to

(Wi fo9)

@28)  (cr o T V(e Ge) gt 5
- n dnd n
(2m)¥ Jgowen - TTozy (n+&el? = Inf> +ie) Fg(n+ &) dnd

with £y = 0. Then

(Wiefa) =" / Fil Fon o (0.60m) F) (0 + &) dndéin
4.29)

—1) /f IT‘€ 0,z,y)f(z—y)g(x)dy dz.

As far as the wave operators are concerned, we have

(Wsf.9)
={hart / / F  Fo (=) (mo,m ) e F(no)g(mi) dy i dt
=(f.9)— (27r)6 F(Ry (Inof? = &) V) (noym ) F (10) @ (m) din dio

= (9= e [ Fa Bl (0P =) V) (ron+ O Tl +€) dnd.

Then

~

(We f,g) = / Fol For T2 (0.60,m) F )G 1+ 60) dnde
(4.30)

~ (f,9) / FolT5(0,2,9) f(x - y)g(x) dy da

as desired. O
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5. The first order term in the Born series. We now set out to analyze the
operator

ng+f _ Z/ e*itﬁveitAftaf dt
0
introduced in the previous section. From (4.25), for Schwartz functions V" and f,
Wi f(w) = [ Ky =) () dy

iz{f/\' 1zm 2
Kf, (z,z) = — lim / ¢ (e T dédn.
R Jgo [§+ 1| — [n|* + e

(5.1)

The Gaussian was introduced to ensure convergence of the 7 integral. In this sec-
tion, we will show the existence of the limit in (5.1) and find the kernel.

For future reference, we remark that by (4.27) the kernel associated to W is
—T1+, i.C.,

(‘Fw,yKleJr)(gﬂ?) = _(F:;()lfm,ny+)(07£777)
_V©
62 € =[P +ie

KleJr(x»y) = —A3Tf+($o,$,y) d:EO

where the final equality is formal. Integrating in x, as in (4.25) and (4.26), corre-
sponds to setting £y = 0 in (4.15) and (4.16).

LEMMA 5.1. For any € > 0 and all a,x € R one has
N etr€ .
(5.3) ]\lllinw . m dé = —2milp, g e e,
The left-hand side agrees with the inverse distributional Fourier transform of (§ +
a+ig)~l
Proof. This is a standard residue calculation. O

The denominator in (5.1) is |£ 4+ 7[> — |n|> +ie = []* + 26 -n+ie. Up to a
rotation this leads to an integral of the type (5.3).

LEMMA 5.2. Foranye >0, R>0,and £ € R3, &£ #£0, one has
(5.4)

2

/ K;j;%dn:const%e%%zlz/ o7 1516l R4 B (2. E—u g
R3 n+ie -

with § = Fr and | Pz = |2 — (- 2).

o |€|
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Proof. We first treat the case & = (|£],0,0). Then the left-hand side of (5.4)

equals
- |2
1 e o] e SRIEP
3 / 7 —dn
81E1 Jrs - m+ €2 +ie
z17]1 "7%
) ! / e e d / 2/|£\, 81‘:2|‘;2d
= m e e n
81&1° Jr mi +[€]> +ie R?

0
R 2 Cale2 2 R2IEP(EL )2
— const- R2e~ 7 | R/ el WIEl ¢ €1 G =v)" oy

where we used (5.3) in the final equality. Substituting v = ﬁ in the integral on the

right-hand side shows that the previous line equals

2

2 ) o
const~%eRT|Z/|2/ eTe e 1% lEl Re— % 2 (z1—u) du

as desired. The general case now follows by rotating the coordinate frame (]

In the limit R — oo the right-hand side of (5.4) converges in the sense of distri-

butions to
e~ §/2

const - [£|~100(P; 2) 1 ,.e<o €

We can now compute the kernel in (5.1).

LEMMA 5.3. Assume V is a Schwartz potential. For any € > 0 and x,z € R3

z # 0, one has

Ed

56 K@) —const[o 2 [ e Vst s
0

where £ = z/|z|.
Proof. By (5.1),
i€ V(f)eiz'” Inf?
K = lim “2rT dEd
) = i, ro [+ 02— [P +ie s
V 2
z:cf (é) RZCXP <_ R?‘PSJ_ZP)

5.7) = const - lim
R JR3 €]

0
(/ oFE cmi81el pe ¥ (=€ “>2du>d§.
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We set
0 -
J(f;E,R,z):/ eTe o5 1El R B (2 6-u) du.
Then
S
0§J<£;E,R,z>s/ % du
69 —V3r VnEER} ££0,6>0, R>0

i z:€
J(&e,R,z) — const - l[z.§<0]e*72'5e€2|_ﬂ as R — oo,

By Lebesgue’s dominated convergence theorem,

im [ J(&e R.2)f(€)de = const- / 1, cqe 2765 f(€)de

R—oo JR3
for any f € L'(R?). In particular, this holds in the sense of tempered distributions

in R3. Writing £ = —sw, |w| = 1, one has

R—boo

Kf{,(z,z) = const- hm// *MWV (—sw)
NG

R2e 1R sin* (=) (12, R, 2) s ds dw

— const - |Z| th/ / ZSCCWV SW)
R—oo S?
Rl AR sint(Z @9 J(— swie, R|2| ", 2) sds dw.

(5.9)

The integral in the final expression is the action of the tempered distribution in R3
(with z and ¢ fixed)

UR(&) . 1R2 71R2§1n (4(z, ‘*’))J(—sw;z—:,R|z|*1,z), £ = sw

on the Schwarz function e~ 17(—5 ). In view of the preceding, one has the dis-
tributional limit

A i z€
lim Ug(§) = const- 65(§) 1 ,.c<o€ =8 oF 0]

R—o0

where 2, f = w are the unit vectors determined by these vectors. In summary,

(5.10) Ty (z,2) :const-|z|2/ —isrE 7 (_gz)elslA2e —e5 s ds
0

which is (5.6). 0

Following Yajima, we express the kernel in Lemma 5.3 in terms of the function
L which we now define.
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Definition 5.1. Let V be a Schwartz potential. Then for any w € S?, » € R
(5.11) L(r,w) := /ONV(—sw)eir_; sds.
In particular, from (5.6),
(5.12) K4 (v,2) = const- |z| 2L(|z| — 2z -2,2).

The kernels K7, (x,z) are of the form, see (5.10),

(5.13) i (x,z) =const- L. (|z| — 2z - 2, 2)

where

(5.14) L.(r,w) ::/ V(—sw)eir_;l‘”le*% sds.
0

In the previous line w need not be a unit vector.

COROLLARY 5.4. Assume V is Schwartz. Let S,r := x —2(w - z)w be the
reflection about the plane w™. Then for all Schwartz functions f one has

(5.15) (Wi f) (= / / g1(z,dy,w) f (Swr —y) dw
where for fixed x € R3, w € S? the expression gi(x,-,w) is a measure satisfying

5.16 . dy, Ldw < L(r,w)| drd
s16 [ o aos [ [ 200

where || - || m refers to the total variation norm of Borel measures.

Proof. Eq. (5.1) and (5.6) imply that

(Wi f) (@ //S2 (r—2w-z,w)f(r—rw)drdw

(5.17)
— /S2 /R 1[T>*2w*w]L(T7w)f(x — 2(CU . m)w _ ,r,w) d"r’dw

Set

o1 91(2,dy,w) = Ly 20050 L(y - w,w) Hy, (dy)

where ¢, = {rw | r € R} and ”Héw is the 1-dimensional Hausdorff measure on the
line ¢,,. Then (5.15) holds and

(5.19) 91 (@, dy,w)| . = [L(y-w,w)| My, (dy)

which implies (5.16). U
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6. Estimating the function L(r,w) and the kernel K. Next, we esti-
mate various norms of L(7,w) such as the one in (5.16), in terms of norms of V' in
the B-spaces from Definition 2.1.

PROPOSITION 6.1. Let L be as in Definition 5.1, and V' be a Schwartz function.
Then, withr € R and w € S?,

©6.1) L), S 1V
and

6.2) | L(rw)llpy D 2|1 pvey (IP) L) | 2 SV SIVILy.-
keZ

Moreover, if 0 < o < 1, then

(63) Zzak’H 1[2k72k+1] (|T|)L(T7W)HL%M 5 ||V||Ba
keZ

Proof. By Plancherel’s identity,
2 > 2 9
/|L(r,w)‘ dr,ﬁ/‘V(swﬂ s-ds.
R

Integrating over w € S? yields

2 o~
66 1Ll = [ [ L) Pards IVIE: = CIVIE-

Integrating by parts one obtains
ir _ - 17 irs/2
EL(r,w) =— | 0s(V(—sw)s)e"™*ds,
0

whence again by Plancherel,
2 = 15312
65) [IrL|3; = /S 2 /R [rLGrw)drde SIVVIB+ €7V S IVIR - o

When V € B? we now prove (6.2) by applying the real interpolation method, see
Section 2. Begin by partitioning L into dyadic pieces

LI (r,w) = L(r,w)(x(277 r)) = x (277 r]), L£:= {Lj}jez

where  is a cutoff function such that x(s) = 1 when s < 1 and x(s) = 0 when
s>2.When V € L?, we can then rewrite (6.4) in the form (using the vector spaces
from (2.7))

L) €B(IR), (160l SIVIE.
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Likewise, (6.5) becomes
£lrw) €B(L7.), €0z ) S IV lsprze:
By real interpolation, see Lemma 2.2 and (2.8),
126 Mogza ) S IVl g
for any 0 < v < 1. In particular,

IE0es,, S Ly SIEE s, SV

1 T,w

This establishes (6.2), (6.3) in the range 0 < o < 1. U

As an immediate corollary we obtain via (5.18), (5.19) that

66 L )] o 171

from which we deduce via Corollary 5.4 that

Wi £, < IV £
In order to bound other terms W, as well as the full wave operator we will rely on
a certain function algebra framework that is presented in Section 7. This function
algebra formalism will need to respect the composition law of Definition 4.3. To

motivate the definitions of the function spaces in the following section, we now
establish some estimates on the kernel K7, . Recall from (5.2) that

(6.7) () = —Fo, ' T5(0,2,y).

LEMMA 6.2. Let V be a Schwartz function. Then for any 0 < o, and uniformly
ine >0,

6:8) 1T @)l 2y STV
(6.9) 0@ K @9) 1y 5y S 10V

forany v € B>t With f a Schwartz function, define a kernel

(6.10) ~1‘€+($,y) = /R3 f(a:o)Tf+ (:ro,:r,y) dxg
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with the integral being understood as distributional duality pairing. Note that this
kernel is the same as K7 in which'V is replaced with fV'. Then uniformly in € > 0,

(6.11) ||[~(1€+($79)HL;% S ||fV||B%

(6.12) lo@) Ky (@0l 1 o < 10l 1o IV

for any v € B2+,

Proof. 1t suffices to give the proof for the limit € = 0 since for € > 0 an addi-
tional exponential decay factor arises, cf. (5.11) and (5.14). So all estimates below
cover the case € > 0 as well. From (5.12) one has

(6.13) HKH(m,y)HL:qu :const-/m/Sz ‘L(r,w)|drdw < HVHB%

as we already noted above, cf. (6.6). For the second estimate (6.9) we proceed as
follows:

Hv(m)KlJr(xay)HLLBg

:const-/ Hv(m)\u|72L(\u|—21%3:,@)‘ du
R3

Bg

:const-/ /mHv(az)L(r—2w-m,w)HBg dr dw
s2Jo ¥

5/82/0 H]l[|x|§1]v(ac)L(r—2w'x,w)HLg drdw

+2204/Sz/0 H]l[|x|zzl]v(l‘)L(r—2w.:L»’w)HL% dr dw.
=0

(6.14)

The term involving ;<) is estimated as follows:

1

/S2 /O°° H]l[|w|51]v(m)L(r—2w-m,w)HLi dr dw
1 =
S </2/ H]l[|x|§1]v(m)L(r—2w.x,w)Hiz drdw) ’
S2J0 *
1

oo . 2 2
+k§_;)22 </SZ \/2k§7"§2k+1 H]lﬂx‘suv('f)L(T—ZWw’w)HLi d?"du})

oo 1
<1y, 2’“(// L(r, 2dd>2< 1%
S @R 222 [, [ | EOI drdo ) S TRV
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by Proposition 6.1. Next,

2"4/82/0 H]l“ﬂ:zz]v(a:)L(T—Zw-x,w)HLg dr dw
1

- ) !
gz 2° 22 </§2/ o ‘]l[|x|~2z 7‘—2w~m,w)HL%drdw>
k>£+10

1

2
24(5“7)(// H]lﬁx‘gze]v(a;)L(r—2w-a;,w)Hiz drdw) .
s? Jjo<r<2f] *

In the first sum on the right-hand side r dominates, but for the second it does not.
Hence, we continue to bound these terms as follows:

oo

Sl X 2( [ [ o)

=0 k>0+10

+Zz€ j+o) HH\I\NZZ H </§2/ o L(r,w | drdw>

S ||v|| VIV,

(6.15)

B2

as claimed. Finally, we have the relation

‘Fm,y[fgla» (51777) = /1‘{3 f(£0)F5;()1~Fx,ny+ (50751777) dfo
_ f(ﬁo)f/(& —&)
R3 |§1+77|2— |2 +ie
_ ﬁ(&) .
&+ n|” = |2 +ie

(6.16)

In view of (4.15), this corresponds to the kernel K7, associated with the potential
fV. So the previous estimates yield (6.11), (6.12). O

Note that the proof of (6.12) suffers a loss of a half power in the sense that
||v|| g appears on the right-hand side instead of HUHB ;- However, since an estimate
of the form || KT (z,y) HL;/L;. N HVHB% is false, removing such a loss in the context
of the L?-based theory seems delicate.

In Section 8 we will make use of the following technical variant of (6.9). While
we only need the case v; = 72, we choose this more general formulation to illustrate
the distribution of the different weights.
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LEMMA 6.3. Let V be a Schwartz function, and 0 < v, < %, Y2 > 0, and set
= % ~+ 2. Then uniformly in € > 0,

617 [ W @K @)l g dy S [0l IV 1

1
forany v € B2,

Proof. The proof is a variant of the one for the previous lemma. First,

Lo @Rl g, do

—const/ o)l 2Ll ~20-2,)| 4., du

= const - /82/ ) |v(@ r—2w-a:,w)HB%H2drdw

g// Hll[‘x‘sl]v(a:)L(r—2w-m,w HL2 ) dr dw
s2Jo

—1—;24(%*72) /SZ/ONH]lMsz]U(a:) (r—2w-z,w HL2 )T dr dw.
=0

The term involving 1y, <) is estimated as follows:

1

//wHﬂ[msuv(x) (r=2w-2,w)|| o () dr duw
S22 Jo
1 1
§<// | Lfzznv(@) L(r — 2w z,0) HLz ’Yldrdw>2
s2Jo
1

- k(L 2 2
+k§_;)2 (2+m)</§2 /2k§r§2k+1 | Ljzi<iv(@) Lr — 2w - z,w)| 2 drdw)

) 1
< k(3+m) 2 ’
NHﬂ[zsnv(w)H2§2 o </SZ/2M<T<2M\L(W)| d?’dW>

S lolllV

B

by Proposition 6.1. Next,

22(%+72)/ / H]l[|w|:2z]v(a:)L(r—2w-a:,w HL2 Y dr dw
s2Jo
o 1

Z 3+m) Z k(34 </ /mzk]H]l[:cNZZ]”(x)L(T_ZW'w’w)||2L§ drdw)z

k>0+10
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o 1
2
+sz(1+’vl+%)</ / H]1[|x|:2l]v($)L(7“—2w‘$7w)Hiz drdw)
= s? Jjo<r<2f] ’

I 1
<3201y (@), S 2k<%+m></sz/[ Zk]|L(r,w)|2drdw>2
£=0 =

k>0+10
had 1
2 2
+22€(1+71+%)H]l[lwlzzz]v(a:)Hz</ / ‘L(r,w)‘ drdw)
£=0 $2 J|r[52¢]
5 HUHBHWWW ||V||B%Hl
as claimed. 0

The important feature of (6.17) is that the weights only accumulate on v, but
not on V, which is the internal function in K. This is important since the same
B-norm then appears in the integral on the left-hand side as on the right-hand side
of (6.17), by setting vy, = ~,. Without this feature the algebra formalism developed
in the next two sections would be impossible. We also remark that v = v, > 0 is
needed in the Wiener theorem, to ensure that conditions (8.27), (8.28) hold. To be
specific, y; > 0 gives the decay in y needed to guarantee the asymptotic vanishing
in (8.28).

7. Function algebras and W7, . Next, we establish a framework in which
® as in Definition 4.3 is a bounded operation. This is needed in order to express
the relation between T, and T%5. The following space is very natural in view of
the operators 7;, from the previous sections.

Definition 7.1. We define the Banach space Z of tempered distributions as
(7.1) Z = {T(azo,xl,y) € S’(Rg) | fyT(xo,xl,n) € LyLy, L}EO}
with norm

(7.2) 7|z = sup | FyT (zo,21.m) |, ;.
neR3 1o

where the sup is the essential supremum. We adjoin the identity I to Z, which
corresponds to the kernel 7" = 6y(y)do(z1 — o). The operation ® on 1,75 € Z is
defined by

(1.3) (i ®T) (w0, 22,y) = F, " [/RS FyTi (z0,21,n) FyTa(x1,22,m) da1 | (y).

LEMMA 7.1. Let Z is a Banach algebra under & with identity I. If V € L3/%!

then Tt defined by (4.15) is in Z and F,Tt is given by

(7.4) FyTi . (wo,1,m) = e ™" Ro(|nf* — ie) (wo, 1) V (wo) €.
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Moreover,

(7.5) i;llgHTﬁHz SV SV

If, in addition, O energy is regular for H = —A +V in the sense of Definition 3.1,
then T’ also belongs to Z and

(7.6) (I+T5)e(I-T)=(I-T%)®(I+T5,) =1.

Proof. Z is clearly a Banach space. The expressions in brackets in (7.3) satis-
fies

sup FyTi (zo,21,n) FyTa (z1,22,m) day

(7.7) neRk?

R3

= H}—yTl

L;;ZL;O

FyT> = HTl Tz”z

HL‘;;L;;IL;O HL‘;;L‘;ZL;;I |Z

whence it is a tempered distribution in R?. Therefore, the composition (7.3) is well
defined in Z and

1T @], < |71, 72

Iz = I

so Z is a Banach algebra under || - || 7.

Formula (7.4) is the same as (4.23). That T}, € Z and T € Z under the 0 en-
ergy condition is a restatement of Lemma 4.6. The resolvent identity (3.3) implies
that

(7.8) Ro(|n|* —ie)V — Ry (In|> — i)V + Ro(|n|* —ie) V Ry (In|* — i)V =0
whence, with €' f(z) =: (M, f)(z),

(7.9)
M,;l R0(|77|2 — iz—:) (mo,xl)V(:ro) M, — M;l Rv(|77|2 — iz—:) (xo,xl)V(a:O) M,
+M7;1R0(|n|2—i5) (mz,azl)V(a:z)MnoM,;le(|77|2—iz—:) (a:o,azz)V(aco)ano

where o signifies integration. In view of (7.4) this means
(7.10) 0=T7, - TS +Ty, . ®T%

or (I+1T7,)® (I —T%) = I. The second identity in (7.6) holds because the resol-
vent identity also implies (7.8) with Ry and Ry reversed:

(7.11) Ro(|n|* —ie)V = Ry (In|* — i)V + Ry (In]* —ie) V Ro(In|* — i)V =0

and so that same argument as before concludes the proof. U
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The space Z by itself is not sufficient to control the wave operators via
Wiener’s theorem. This requires other spaces, mainly the algebra Y, to which we
now turn.

Definition 7.2. Fix some number % <o < 1, and a function v € B? which does
not vanish a.e. (B¢ is the space from Definition 2.1). We introduce the following
structures depending on v:

e the seminormed space v~! B is defined as

v~ 'B = { f measurable | v(z)f(z) € B’}

with the seminorm || f||,-15 := |[vf] e -
o Set X, = L;U*IBI. Let Y be the space of three-variable kernels

Y = {T(:L‘o,:L‘l,y) eZ|VfelL”

(7.12)

(D) ar9) = [ @) T (aoon) doo € Xy,
with norm
(7.13) IZlly == IT02 + | Tlls0 5, x...)-

In (7.12) we take f € L™ rather than f € v~ !B in order to ensure that the integral
on the second line of (7.12) is well defined, cf. the L;U condition in (7.2). However,
L* is dense in v~ ' B, see Lemma 7.3. We adjoin an identity element to Y, in the
form of

(7.14) I(a:o,xl,y) = Jg, (xl)éo(y) =0y, (a;o)do(y).

While we keep this definition more general with regard to the function v, in
our applications below we will set v =V, the potential in H = —A 4 V. Since
v € B?, we have

(7.15) L”Cv'B, |l < vllBe | f]l-

Moreover, L= is dense in v~ ! B. The spaces v~!B and Y depend on ¢, but so as
not to overload the notation we suppress this dependence. Note that the xy-integral
in (7.12) is well defined for any f € L™ due to T" € Z, and that this integration
produces a tempered distribution in the variables (z1,y). The condition is then that
the Schwartz kernel of this distribution satisfies a bound of the form, for all f € L™,

@16) Tl = [ @) T @10) |y < Alof 5o

for some finite constant A, cf. with (6.12).
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We first record some formal properties of these spaces. In what follows, the
parameter % < o < 1 will be kept fixed. In principle we would like to set o = %
which is optimal. But in order to obtain decay in y for the Y algebra, which is

needed in Wiener’s theorem in the next section, we require o > %, cf. Lemma 6.3.

LEMMA 7.2. ForanyT €Y
(7.17) Ay e Py—
provided the right-hand side is finite.

Proof. Apply the embedding L < v~!' B and Minkowski’s inequality (to pull
out the L; norm). O

The algebras used in [Bec, BeGo] have the structure of L; convolution al-
gebras, taking values in the bounded operators on some Banach space X, cf. the
right-hand side of (7.17). In [Bec, BeGo] it suffices to consider the one-dimensional
Fourier transform of Ry(\? +i0)(wo,z;) relative to A, which is a measure sup-
ported on the sphere of radius |xo — x| in R3. However, because of the phases
e in (7.9), the dependence on 7 is truly three-dimensional and the Fourier
transform of (7.4) relative to 7 is not a measure.

LEMMA 7.3. The spaces in the previous definition possess the following prop-
erties:

() Let f € v 'B. Then ||f|l,-1g =0, if and only if f =0 a.e. on the set
{v # 0}. Restricting all functions in v—'B to the set {v # 0} turns v_'B into a
Banach space. Both L and L'N L= are dense in v~'B, and so bounded (com-
pactly supported) functions are dense in v B. ng = L;L‘;cc is dense in X, .

(i1) The space Y is a Banach space. The Y norm is invariant under translation
iny. If x is a Schwartz function in R3, then

1T xlly < 1Ty lIxlls

where x denotes convolution relative to vy in the distributional sense.
(iii) For X € XO, define the contraction of T € Y by X via

(718) (%T)(ZL‘,Q) = /R6%($0>y0)T($07$7y_y0) diUOdQO-

Then XT € X, and ||XT | x < ||T||y|X||x. The right-hand side of (7.18) is to
be interpreted on the Fourier side as

(719) Fq;l |:/R3 ‘Fy()%(x()vn)fyoT(xva?n) deO (y)
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The integral is absolutely convergent, and the inverse Fourier transform relative
to 1 is a tempered distribution. By density of X° in X, the contraction XT is well
defined for any X € X.

(iv) Any T €'Y possesses a distributional Fourier transform in the y variable

(‘FyT(Tl))(l’o,m), and
(7.20) F,T(n) € BL*)NB(v 'B) = FY

where B(E) denotes the bounded linear operators on the (semi)normed space E.
Moreover,

020 sl ZT0 ]y = |7 g+ 15T ey S T

(v) A kernel of the form S(xzo,z1)x(y) where x € L' and S € FY belongs to
Y and

1S (o, z1)xW) ||y S ISIEy X -

More generally, L;]—" Y CY.
(vi) Let U € FY. Then for any T =T (xo,x1,y) € Y one has

(UOT)(:L‘o,:L‘z,y) = /R3U(a:1,a:2)T(:ro,x1,y) dr; €Y

and
[UeTlly S INUl#y Ty
Analogous results hold for T o U.

Proof. The properties of v~' B follow from simple measure theory, and we
skip the details. By (7.15),

1%l 015, < lvllBe Xl Ly 25

and so X embeds continuously into X, and is dense in X.

The Z component in (7.13) guarantees that || - ||y is truly a norm. We further
note that B(v~—! By, LZIIU*IBQC1 ) is a Banach space provided we restrict both zp and
x1 to {v # 0}. Thus, Y is complete relative to both components of the Y -norm.

For (iii), one has

D@D, = | [ ECm)TO] ) do
(7.22) = Xay

<ITly [ 1),
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as claimed. For (iv), first note that 7' € Y C Z has the property that
FyT(xo,x1,m) € Ly Ly Ly = LyB(L L)),

Second, for any Schwartz function f,

sup
neR3

(7.23) < H A}T(xo,xl,y)f(xo) dxo
<T@ 15

<|Tllsw1B,,,x

T T,y

fyT(x07xlan)f(m0) dflf()

R3 v By,

U*IBIILL
Lgljv*'le)Hvale

W -5

Properties (v) and (vi) are evident from the definitions. ]

R

The space Y is by definition the space of kernels 7" € Z so that the contraction
fT for any f € v~ !B lies in X, where we define the contraction by (7.12). This is
what Lemma 6.2 expresses for 77, withv = V.

COROLLARY 7.4. Let V be Schwartz and apply Definition 7.2 with v ="V, the
potential. Then for every ¢ > 0 we have T, €Y (where o € [%, 1) is arbitrary but
fixed) and

(7.24) up |54 |y S 1V 40
Proof. By (7.5) we have
sup [ 542 S V154

Lemma 6.2 implies that

0251 sl [ Fo)TE (e g)do| SV IV
e>0 R3 Xuy
which concludes the proof that 77, € Y with given o € [%, 1). O

By the same proof, Lemma 6.2 evidently allows allows for a stronger conclu-
sion, namely

ve SVl e

(7.26) sup || 17, |
e>0
where Y€ is the extended (with respect to the norm) space Y. It is defined as above,
but using X°€ := XN L;"Lé instead of X. We do not include the L‘;L;—norm in our
construction of X and Y above as this would invalidate the condition (9.2), which
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is crucial for the Wiener theorem. However, once we have applied the Wiener the-
orem in the larger algebra Y, we are then able to control the L;"L;-norm.
We now state the algebra property of Y (which also holds for Y¢).

LEMMA 7.5. Y defined by (7.12) is a Banach algebra with the operation ®
defined in the ambient algebra Z.

Proof. The fact that ® is associative (and non-commutative) is clear in Z, and
the unit element is given by (7.14). Since Y C Z, the same is true in Y.

The definitions of X and Y imply that each contraction X7' (see (7.18)) is in
X and [|XT||x < || %] x||T]|y - We have

/R3 f(20) T3 (20, 22,y) dxo

(7.27)
Z/Rgf(l’o)ﬂ (zo,x1,y1)Ta (w1, 22,y —y1) dy dyy dao.

As in the case of (7.18), the y-integral is to be understood in the distributional
Fourier sense. Integrating in x(, we obtain an expression of the form X75 for X € X
with ||X|lx < [IfIlv-15]T1|ly. Then XT5 belongs to X as stated above and has a
norm at most < || f|lv -1 gl 71|y | 72|y - Thus, T5 =T ® T, € Y and

H]}C}]& <:CM11

ly < |72

I 172l

with some absolute constant C'. Multiplying the norm by C removes this constant
from the previous inequality, and so Y is an algebra under this new norm. (]

Thus, provided 7 + 77 "\ is invertible in Y, hence in Z, its inverse will be I —T'¢
both in Z and in Y, hence we obtain that 77 € Y.

PROPOSITION 7.6. Let V' be a Schwartz potential. ThenT);, €Y (where o €
[%, 1) is arbitrary but fixed) for any n > 1 and £ > 0 and

(7.28) sup |75, ||y < ™IV,
e>0 B2
with some absolute constant C. Moreover, for all Schwartz functions f one has
(7.29) (W§+f)(:r) = /S2 /RngL(:E,dy,w)f(wa—y) dw
where for fixed x € R3, w € S? the expression g (z,-,w) is a measure satisfying
€ < n n
(1.30) sup [ 65 ) g 0 < IV

where || - || pm refers to the total variation norm of Borel measures. Relations (7.29)
and (7.30) remain valid if V € B2+7.
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Proof. By Lemma 4.4, T, =T7, ®T(5n o
imply (7.28) by induction.

From Lemma 4.7, using the contraction formalism from above, and identifying
the operator W7, with its kernel one has

. Corollary 7.4 and Lemma 7.5

Wiy = (=1)"p Ty, = (=1)"1ps (T, 1), ® T4

(7.31) _— ; . ;
= —((=D)" " Lpa TGy ) Tr = = Wi, Thy

The notation in the second line contraction of a kernel in Y by an element of X ; this
follows again by induction starting from W§, = Ips via (7.18). Strictly speaking,
we have so far considered contractions only against Schwartz functions. But Lps is
the limit in the space V! B of smooth bump functions x(-/R) as R — o (where
X is smooth compactly supported and x = 1 on the unit ball). By the boundedness
of T)7, in Y it follows that the right-hand side of (7.31) is well defined in Y. Thus,
by the first equality sign in (7.31),

732)  sup||W [ < sl sup 1T fly < CMIVITLL,
We denote the kernel of W§, by XY, where V' is the potential. Thus,

(7.33) Xy (x,y) = —/}R3 Tt (zo,2,y) dzo = — (LpsT1, ) (z,y) € X.

By the final equality sign in (7.31),

W (x,y) = / W1y (@ )T (2 2,y — o) da' dy
(7.34)

= /IRS %?g/v(%y —y)dy'.
Here we wrote f5(2') = Wi
fg,(a:’ ) is Schwartz in 2’ to make this calculation rigorous. Later this assumption
by approximation.

We now invoke the representation from Corollary 5.4. Specifically, by (5.15)
there exists g 7 (z,dy,w) so that for every ¢ € S one has

) . (2,y') and we used (6.16). We also assumed that

where for fixed z € R?, w € S the expression g5 7, (x,-,w) is a measure satisfying
y

sup [ 1675 (9] g 1.0 < CUIV 3 < OV e

= CHW(En71)+(xlvyl)HV*‘BI/'

(7.36)
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Thus, with ¢y (-) = (- —y/),
Weo)@) = [ W ()ote—n)dy
=/ X v @,y —y )z —y) dydy
]R6 Yy
:/ Xy (v,y)p(x —y — o) dy dy’
R6 ‘Y
:/ (%?s/v(by')(m)dy/
R3 Yy
=/ / / 95 se (2, dy,w)d(Swr —y' —y) dwdy'
]R3 SZ ]R3 Y
:// [/ gi se (x,d(y —y'),w) dy' | p(Swr —y) dw.
s2? JR3 R3 Yy

The expressions in brackets is the kernel we seek, i.e.,

(7.37)

(7.38) g5 (x,dy,w) == /3 gif;, (a;,d(y — y’),w) dy'.
R

This object is a measure in the y-coordinate and we have the representation

(7.39) (We.6) () = /S [ il )o(Sa - ) de

as well as the size control uniformly in € > 0

[ Nz ),
= [ oy sl s
(7.40) _ /S 2 /R 19F g5 s |, . /e

<O [ W@,

<ClWe .l <V,

by (7.32) as desired. Recall that we assumed that f,(2') is a Schwartz function.
To remove this assumption, we can make [[W7, ), (¢,y") — F5 (@) || x arbitrarily

small with a Schwartz function f?j,(m/) in R®. Then the previous calculation shows
that

[ i) 5ot
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can be made as small as we wish where g (x,dy,w) is the function generated by
fye,(m/ ). Passing to the limit concludes the proof.

To remove the assumption that V' be a Schwartz function, we approximate
V e Bito by Schwartz functions in the norm || - || Lo We achieve convergence of
of the functions g,, by means of (7.30) and of the kernels W, themselves by means
of (7.32). To be specific, denoting by VIN/n‘€ ., and g, the quantities corresponding to
the potential V/, taking differences yields

5 =W+ [ i ods) =) o
<OV =Ty (VI + 1717 )

uniformly in € > 0. O

If the potential is small, then we can sum the geometric series which arises in
the previous proposition and therefore obtain the structure theorem with explicit
bounds in that case. For large potentials we now introduce the Wiener formalism.

8. Wiener’s theorem and the proof of the structure formula. To set the
stage for the technique of this section, we first recall the following classical result
by Norbert Wiener. It concerns the invertibility problem of dyg + f in the algebra
L'(R%) with unit (we formally adjoin & to L' (R)). Here the dimension d > 1 is
arbitrary. Throughout this section, we let x be a Schwartz function with X(§) =1 on
€] < 1and {(¢) =0o0n [¢] >2. Then [x = {(0) = 1. Further, xz(z) = R%x(Rx),
so that Y = X(R~'¢). We can further assume that  is radial.

PROPOSITION 8.1. Let f € L'(R%). Then there exists g € L'(R?) so that
(8.1) A+/H+5 =1 onR?
if and only if 1 + f # 0 everywhere. Equivalently, there exists g € L' (R?) so that
(8.2) (d0+f) = (d0+9g) = o
if and only if 1+ f # 0 everywhere on R%. The function g is unique.

Proof. The idea is to find local solutions of (8.1) and then patch them together
using a partition of unity to obtain a single function ¢ € L'. First, we will find
go € L' so that (8.1) holds for all |£| > R, R large. We select R > 1 so large that

1
(83) 1 =xrx £l = [ (G0 = xr) « £l < 5-
In particular, ||(1 — Xz) ]« < 3. Set fo := (6 — xr) * f and note that

(504-]‘10)71 =00 — fo+ fox fo— fox fox fo+ -
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as a norm convergent series in L', by (8.3). This means that (5o + fo) ™! = do + Fo,
Fy € L'. Define

90:=— (00— xr) * f* (8o + Fo) € L'

which implies that

or equivalently

which means that

(8.4) (1+F©)(1+g0©)) =1 V¢l =2R.

By construction, gy € L' is therefore a solution of (8.1) on |¢| > 2R.
As a second step, we need to find g; € L' so that

(8.5) (1+F£©))(1+gi1(&) =1 V¢ <3R.

This will then easily finish the proof. Indeed, let ¥y,%; be Schwartz functions
with the property that ¢, (£) = 1if || < 2R and ¢ (§) = 0 if || > 3R. Then set

Yo = 1 —1y, and let g = 1o, ¢1 = 1. Then
g:=doxgo+di1*gi €L
solves the full equation (8.1). Indeed, (8.4) and (8.5) imply that

1=10(&) +1(6)
8.6) = (1+/(©))(1+7(9))vo(&) + (1+f(€))(+§())¢1()
= (1+£(©) (1 +%0(©)q (&) +¥1(9)di (&) = (1+ f(£)) (1+3(9))

for all £ € R?.

To find g; which satisfies (8.5), we solve (8.1) near any &, € R¢ with || < 3R.
As before, we then patch up these local solutions by means of a partition of unity.
Define, for any 1 > ¢ > 0,

We g () = eiz{osdx(sm)
or

wE,So(g) (71(5 50))
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We first claim that
(8.7) sup || f*#weg, — f(&o)weg||, — 0 ase — 0.
&eER

In fact, one has
Frwe ey (@) = f(0)weg ()

8.8 ,
(©5 = /Rd Fy)e 0l [y (e(z —y)) — x(ex)] dy

whence

1 * e (@) = F(€0)weo(@)| 1
(8.9) Z/Rd\f(y)\HEd[X(E(m—y)) = x(ex)]|| , dy
= [ £t =Xl do

The right-hand side here tends to 0 as € — O by the Lebesgue dominated conver-
gence theorem, and so (8.7) holds. Therefore, we may take £ small enough such
that

(14 (%)) 0+ f*we gy — F(€0)we g
= (14 £(%0)) [0+ (14 (80)) " (f g0 — F(G0)wr)]

is invertible for all £, € R? (in fact, we only need || < 3R). This follows from

(8.10)

m:= inf |1+ f >0
i [14 F()
and so the second term in the bracket of (8.10) satisfies

(8.11) sup ||(1+f(&)) " (f xweg — F(S0)wen) |, < %

&ER
for € > 0 small enough. Fix such an & > 0. Then for all & € R,
B12) [(1+F(60))00+ f ey = F(€0) ] = (14 F(6)) ™ (G + Hey)

where He, € L', [[Hg,||1 < 1. Let € ¢, be defined as

Ooe(©) = X257 (€ - &)).

By construction, €2, ¢ * w, ¢, = (¢ ¢, Define

(8.13) ge = —(1+ F(€0)) ™ f# Qg (d0+ Hg,) € L.
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Then
g
O T (%) + (F- T () oms,
(8.14) e — fleg
14 f(&0)wzg, + (f = f (%)) @ze,
SOy
1+ farg,

The fraction in the last line is well defined since on the support of the numerator the
cut-off function in the denominator satisfies w. ¢, = 1. In particular, if Q. ¢ (§) =1,
then

(8.15) (1+£(9) (14+35() = 1.

In other words, we have solved (8.1) locally near £,. Covering the ball |{| < 3R by
finitely many balls of radius €/2 and summing up these local solutions by means of
a subordinate partition of unity as in (8.6) concludes the proof. To be specific, let
{0; }éV: | be Schwartz functions so that Zjvzl (;/S\J(f ) = 1for all || <3R. Moreover,

if(;?j(f) # 0, then @(f) = 1 for some ¢; with |£;| < 3R. Now set

N
(8.16) g1i= Y hj*ge,

By construction,

(8.17)

if |¢| < 3R, and so g; € L' is a solution of (8.5). O

The main goal in this section is to formulate and apply a version of Proposition
8.1 to the algebra Y from Definition 7.2. We noted just below Lemma 7.2 that Y’
does not have the structure of and L}J convolution algebra taking values in the
bounded operators on some Banach space. This prevents us from simply citing the
abstract Wiener theorems from [Bec, BeGo]. Assuming that O energy is regular, we
have equation (7.6), viz.,

(1475 @ (1-T5) = (I-T5) ® (I+75,) = 1

This holds in the algebra Z, uniformly in € > 0, see Lemma 7.1. This guarantees
that (I +75,)""' =I—T¢ in Z. We now wish to show that this relation also holds
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in Y and this requires a Wiener theorem. For this it is natural that we begin by
taking the Fourier transform relative to the variable y of (7.6). T, with e =0
refers to the limit ¢ — O+.

LEMMA 8.2. Let V € B? and assume that 0 energy is regular of H = —A+V.
Then for any n € R3, the operator I +T¢ () is invertible in B(L™) (the bounded
operators on L) and

(8.18) sup sup || (1+T¢, (n)) " 5z <=
>0 peRr?

Moreover, in B(L*) one has the identity
(8.19) (I+T5 () '=1-T5(n) VneR’.
The second term on the right-hand side satisfies

(8.20) sup sup ITEOD | v, <

where V' B is defined with any o > % In fact, with My as in (3.17),

8.21) sup sup || 75 ()| < V]| 5o Mo.
e>0neR3

IfV e B, % < o < 1, then uniformly in € > 0, the map n Jﬁ(n) is uniformly
Holder continuous as a map R3 — B(V~'B,L>), and therefore also as a map
R? — FY = B(L*)NB(V ' B). Quantitatively speaking, one has

(8.22) IT5e () =T, @ 2y < =11V 157
whereO<p:a—%.
Proof. By equation (3.3)
Ry(2) = (I+ Ro(2)V) 'Ro(z) ¥Imz>0.
By Lemma 3.2,

sup sup H (I+Ro(\7]|2iz’€)V) < oo,

-1
e>0 ek’ HB(L“’)
Since Ro(|n|* +ie): L3 L uniformly in 7, and B? < L' this implies that

2, .
s up [ () 1) <=
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Let (M, f)(z) = e " f(x). Then by Lemma 4.5,
(8.23) T¢ (n) =M, 'Ro(In|> —ie)VM,, T5(n) =M, Ry (|n|*—ic)VM,.
Passing to the Fourier transform of (7.6) therefore yields
(I+Ti () o(I-T(n) =1
= ~1 _ .
(I+T5, () =1-M;"Ry(In*—ic)VM,

as equations in B(L), and so (8.19), (8.20) hold.
For the uniform continuity compute

|[Ro(Inl* —ie)V = Ro(|7i]* — ig) V] (0, 21)
min (1, |77—77||:E0 —:EID
fro—a

< I —1l°|zo —xl\prW(l‘Oﬂ

(8.24) < |V (o)

where we take p = o — § € (0,1). By Lemma 2.2, B? — L%’l, and |z|~1*7 €
Lo = (LﬁJ)*, we conclude by means of (2.4) that

[Ro(Inl* =€)V = Ro(1* — ie) V| gy -1 g gy S I =717
The second line in (8.24) follows from, with a > 0, and uniformly in € > 0,

. 7 . ——
‘efza\/ [n)>—ie _ et/ RES

(8.25) < min (2761 \/Inlz—z’s— \/|77|2—i5‘)
| Inf? = 1] | ~
<2 1, Sz 17 _ .
< m1n< a|\/\7]|2—i€+\/|77\2—i5| min (1, aln — 7j|)

Here Im \/|n|? —ie < 0, Im/|7j|> —ie < 0.

In view of (8.23), we next need to bound the differences involving the terms
M, as n changes. Thus,

(826)  |(M,f—M;f)(x)| <min(2,[n—7llz|)|f(z)] < 2ln—al°|z|?| f(z)].

We absorb the |z9|” factor into [V (xp)|. For the exterior operator M, I acting in
the variable x, we write |z1|? < |xo|? + |x1 — xo|°. The first term is passed onto
V', whereas the second is absorbed as in (8.24).

To summarize,

IT5, (0 f =T, (D f] - < Cln=aP I flv-15

which establishes uniform continuity. U
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We now state the Wiener theorem in the algebra Y. The conditions (8.27),
(8.28) in the following proposition are precisely the two properties of L' functions
that made the proof of the scalar Wiener’s theorem above work (here S” denotes
N-fold composition of S with itself using ®, and x is the function from above).
Indeed, (8.3) corresponds to (8.27) with € = R, and (8.28) will allow us to obtain
an analogue of (8.7). This is natural, as (8.28) localizes in y and therefore regular-
izes in 7 which makes the essential discretization property in 7 possible, cf. (8.16).
Throughout, the standard convolution symbol * means convolution relative to the
y-variable. Finally, the pointwise invertibility condition of the Fourier transform is
modeled after Lemma 8.2.

PROPOSITION 8.3. Let V € B where % < o < 1, and define the algebra'Y
with this value of 0. Suppose that S € Y satisfies, for some N > 1

(8.27) lim [|ex(/2) + SY = 8V}, =0
(828) lim [[(1-(y/L)) S )]y =0.

Assume that I+ 5(n) has an inverse in B(L*) of the form (I+8(n)) "' =1+U(n),
with U(n) € FY for all n € R3, and uniformly so, i.e.,

(8.29) sup HU(n)HFY < oo,
neRr3

Finally, assume that 1 — S(n) is uniformly continuous as a map R> — B(L>).
Then it follows that I + S is invertible in Y under ®.

Proof. We need to construct £ € Y with the property that
(8.30) (I+L(m)o(I+8m) =1 vneR.
For |n| > 2R this is the same as

(I+L(m) o (I+5(n) ~xEemSm) =1
with e = R~!. Taking R so large that
(8.31) e x(-/e)x SN — SN, <27V
by (8.27), we can write with pi. := —&y +e3x(-/¢),

N-1
(I—pexS) = (T—pY+sM) e <z+ Zug*56>
=1

) N—1
= <I+ZNSN*S”N> ® (I—I—Zyg*Sz)
n=1

(=1

(8.32)
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and the infinite series converges in Y since ||z ||y <2 and
- 1
02« 5%y < el e+ 8% < 2% 128 = 1

Then

N—1
(8.33) £ —<[+ZN”N*5"N>®<I+Z;¢£*SZ)—IEY
/=1

has the property that (8.30) holds for |n| > 2R. Note that the scalar convolution
does act commutatively relative to &, which itself is not commutative (due to the
non-commutativity of operator composition).

Using the same patching method as in the scalar Wiener theorem above, it
suffices to construct a local solution of (8.30) on |n| < 3R. As in the proof of the
scalar Wiener theorem, for any 1 > ¢ > 0, 19 € R,

We,mo (‘T) = eiy~770€3x(€y)7 L‘)/E;o (77) = 5(\(571 (77 - 770)) .
We claim that

(8.34) sup || xwem, — S (m0)we e |ly — 0 ase—0.
n€ER?

By Lemma 7.3, property (ii),
18 % wem|ly < ISl lwemll, S STy

uniformly in € > 0, 9 € R3. By properties (iv) and (v) of the same lemma,

5 (10)weimlly S 115 (o) | 7y el < 1Sy

To prove the claim, we may therefore assume that S(y) = 0 if |y| > L for some L,
using (8.28). With this in mind, we compute

S*We no)(y)(x()?xl) S(’I’}()) (:L‘O’xl)wevm(y)

(8.35)
/S (20,21 )™M [y (e(y —w)) — x(ey)] du.

We begin estimating the ||D|| term in the Y -norm. Thus,

[Pz = sup |7y P (wo,1.m) | 2 1
(8.36) e A _
= sup [[(S(n) = S (n0)) (w0, 21) @z o ()] 3 -

By assumption of uniform continuity of S(7) as a map from R to B(L) this tends
to O uniformly in 79 as € — 0.
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Next, assume that || f||y,—1 5 < 1. With fD referring to the contraction of D by
f in the x(-variable,

D5, %5 [ 1S (1)1, (et =) = (o) dyd

(8.37) < ELsup/]Rs H(fS)(u) (azl) HV*IBI.] du < EL”fSHXII,y
z
<eLSlsw 15, x. ) SLIS]y-

This concludes the proof of our claim (8.34).
Fix some 79 € R?, and define H,, € Y via the relation

(8.38) [[+D+U(no)oD] ' =1+ H,

where U (o) is as in the statement of the proposition. Note that by Lemma 7.3,
property (vi), the composition U(ng) oD € Y. By (8.29) and (8.34) there exists
€ > 0 so that irrespective of the choice of 1y we have

1
(8.39) HD—I—U(nO)oDHY< 3

which guarantees that H,, € Y is well defined from (8.38) via a Neumann series.
Moreover, || H,,||y < 1. The significance of H,, lies with the following property:
if Wz () = 1, then

(8.40) (I+8(n) o (I+Hym)=I+8(n) inB(L).

In fact, (8.38) is equivalent with the equation in ¥

(8.41) [I+D+U(n)oD]|® (I+Hy,) =1.

Taking the Fourier transform in y yields

(8.42) (I+D+U(n)oD)o(I+H,) =1 inB(L").

By assumption that (I +S(no))~" = I +U (o) in B(L™), (8.42) is the same as
(8.43) (I+8(m0) +D(m) o (I+Hy) =1+S(no) inB(L”).

If wz () = 1, then (8.35) implies that (8.43) is the same as

—

(I+8(m) o (I+Hyy () =1+ 5 (no)
which is (8.40). Next, define

(8.44) Ly :=U (no)weny + Hyy+ Hyyo U (o) €Y.
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Then w, ,, (1) = 1 implies that

Ly (n) = U (o) + Hyy(n) + Hyy (1) 0 U (n0)
= (I+Hyy(n) o (I+U(n0)) —1
= (I+Hy(m) o (I+8(m)) ' —1

which further gives
(I Lyo(m) o (I+8(m)) =1+ Hiy (1)
for all n near ny. Using (8.40) we infer that
(I+Ly)o(I+8)=1

which solves (8.30) near 7)9. Note that the size of the neighborhood is uniform in
no. Using a partition of unity as we did towards the end of the proof of the scalar
Wiener theorem, we can patch up these local solutions to a solution on the ball
In| <3R.

Thus, we have constructed a left inverse, i.e., £ € Y with

(I+L)®(+S5)=1.

In the same fashion we can construct a right inverse, L €Y with

I+S)®(I+L)=1.
But then
I+L=(I+L)e(I+S)@(I+L)=I+L
whence £ = L. So I + S is invertible in Y, as claimed. O

The proof of this Wiener theorem implies the following quantitative version,
by means of which we can control the norm of the inverse.

COROLLARY 8.4. Under the same hypotheses as in Proposition 8.3, we let

(8.45) M, := 1+ sup ||U(n)|| 7
neRr3

Let 0 < eg < 1, and Lo > 1 satisfy

(8.46) Hz—:a3x(-/z—:o)*SN—SNHY<2’N
(8.47) [(1=%(y/L0))S(w)|y < ey
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where c is a suitable small absolute constant. Furthermore, let 1 > 1 > 0 be such
that

(8.48) sup  ||S(n) —S(no)HB(Lm) <eM; .

[n—mno|<ei

Then the inverse of I + S in'Y exists and satisfies
(8.49) I(T+8)"Mly S0’ (e + LaMPY SIS ) M.

Proof. Condition (8.31) is precisely (8.46) with e =¢¢. Thenon || > R=¢, !
we obtain a solution £ of norm || L[|y < 1, see (8.33). In view of (8.36) we have
Dz < M; " by (8.48). Setting € = 5 := c(M; Lo||S||y)~" in (8.37) with L = L
we obtain

IDllsv 15, %, S e2LollSlly < My

if we choose ¢ small. Hence, ¢ = min(ey,e;) =: €3 guarantees that ||D||y < M,
uniformly in 79 € R3. This further insures that (8.39) holds, which defines H,, via
(8.38) with || H,, ||y < 1. The local inverse L, given by (8.44) satisfies || L, ||y <
M;.

Patching together these local solutions requires < R3€§ 3 choices of 7 over
which we sum up this M) bound on L. Together with the solution exterior to the
R-ball, the cumulative bound on the global inverse amounts to
550, L] S 14+ RPe5° My Sep (67 +65°) My
| Seo (e + LMYISIY) M,

as claimed. OJ

9. The proof of Theorems 1.1 and 1.2. We first verify the conditions
(8.27), (8.28) for Tt . It is precisely at this point that we need to define the al-
gebra Y using V!B with o > % All spaces B without superscript refer to B°.

LEMMA 9.1. Let V € B where % < o < 1 is arbitrary but fixed. Then S =
Ty, €Y satisfies, for sufficiently large N > 1

©.1) lim [[67%x(-/8) xSV = V||, =0
©.2) lim [|(1 = %(y/L)) SW)|,, =0
uniformly in € > 0.

Proof. We begin with (9.2). By definition of the Z space

©3)  |[(1-%/D)Sw)|, = sup 180 = L3 (L)) * T5, 1) 5
neR?
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By Lemma 8.2, J/’i() is uniformly continuous as a map R — B(L*), which pre-
cisely means that (9.3) vanishes in the limit L — o,
Next, (6.17) and with o = 1 44 > 1,

04 [ W IV@KT @)l dr S IV Ve

Consequently, since 1 42y = 20,

Slipo/ Lyy>n||V (@) (fT5) (2,9) || go dy S L f VB V] p2e

which is equivalent with

SupHﬂ\pr](fTH) T,y HX S LNl sV go
and thus also with, for all L > 1,
9.5) iipo I lHy|2L]T1€+($7y)HB(V*'B,XI,y) S LV g

with an absolute implicit constant. In conjunction with (9.3) this proves (9.2).
To prove (9.1) we may therefore assume that 7'(y) = 0 for |y| > L, with some
large L. Using Lemma 7.2 we estimate

H]l[\yISL] (573X('/5)*SN_SN)HY
S Lpyi<i (67°x(-/9) * 5N — SN) HL;/B(V”BZO,L;’I)
S0 x(/8) xSV = SN[ g
S L3[(1=%(6m) F, SN (n

(9.6)
V*'B,O,L;l)
)HLlnB “1Byy,L3,)

zQ

By (4.23),
Ty (T1€+)N($0’$1777) = ¢™"(Ro(|n|* — i) V)N(:Eo,ﬂcl)e*”'”.
We claim that if NV is large enough, then uniformly in € > 0,

9.7) | F,5™ (n) <Cln|~*.

HB(V”BZO,L;I)
We do not claim optimality here, but ||~ is sufficient. If so, then (9.6) vanishes
in the limit 6 — 0, and (9.1) holds. Recall the Stein-Tomas type bound for the free
resolvent, see [KeRuSo],

HRO 1+Z€ fHL4 R3) < CHfHL3 (R3)
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uniformly in € > 0. By scaling, this implies

2 . _1
(9.8) zggHRo(A “E)HL%(R%M(RS) <Cx 'z

for all A > 0, and therefore

©9) sup | (Ro (4 #2) V)" 1z sy < OA
e>0

where we used that V € L?(R?). Recall Ry(A\?> +i<)V : V!B — L* uniformly in
A&, see Lemma 7.1. Next, V € LS NL* — L%, see Lemma 2.2. Therefore,

©9.10 supl|(Bo (X +32)V)” -1y, ey < N
e>

for all A > 1. Since V € LI72’1(]R3), see (2.11), we have My : L* — LS by (2.3)
where My, is the multiplication operator by V. Furthermore, by (2.6), one has
Ry: LS8! = 61 and My : Lo — L3 since V € L2 Finally, Ry : L3 5 L”. To
summarize,

©.11) sup || (Ro (X2 +i2) V) " | iy gy < CA™
e>0
and (9.7) holds with N = 11. O

We are ready to prove the structure theorem on the wave operators for poten-
tials V € B%, o > %

Proof of Theorem 1.1. All assumptions of our abstract Wiener theorem, Propo-
sition 8.3, hold for 77, . And they do so uniformly in & > 0. Thus we can invert
I'+T7, inY. By uniqueness of the inverse in the ambient algebra Z, see (7.6), this
inverse is given by

9.12) (I+T5) ' =1-T5, My:=sup|T5]|, <=
e>0

Hence

TS =T—(1+T5) ' =(1+T7) ' @Tr,

(9.13) 5 5 E 5
=([-T7) Ty, =Ti, @ (I -T%).

By Lemma 4.7, eq. (4.26), for any Schwartz function f,

W) @) = 1(0)= [ (1275 @) =)y,
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cf. (7.31). Set X% (x,y) := —(L1gs T ) (x,y) which satisfies, by (9.12) and with X =
L\vV-'B
Y xZs

O14)  sup |25 [ < sup||TE ]y [Lgally-1 5 S MV 2o < o=
By (7.33) we have
Xy (z,y) = = (LpsTry ) (2,9) € X
10y v 15 = 1301 SNyl ool 5 S 1V e
and (9.13) implies that
(9.15) XS =X - X°T%,

where we used the contraction notation (7.18) in the final term. The first term in
(9.15) has the desired form by Corollary 5.4. For the second term, in analogy with
(7.34), we have

©O16) (ST wo) = [ X =), fla) =X ),
This kernel operates on Schwartz functions by contraction, i.e.,
=)= /Ra X (2 y)o(a" —y) dy'.

Formulas (7.35), (7.36) apply here. Viz., from Corollary 5.4, eq. (5.15), there exists
97 4=, (z,dy,w) so that for every ¢ € S one has
I y/

9.17) (.’ffsvcb /82/ 97 N (z,dy,w )cb(Swa:—y)dw

where for fixed # € R?, w € S? the expression g se,(z,+,w) is a measure satisfying
My

(918) ) Hgif;,(x7dy7w)HMyLw dw < OHfEVH l < OHfz-: VHBO’

=Cll2 @)y,

The exact same calculations that we carried out in eq. (7.37)—(7.40) now yield

(9.19) he (z,dy,w) := /R% gif;/ (:E,d(y — y’),w) dy’
and

(%iTﬂqb) (x) = /SZ . hg(a:,dy,w)qb(wa - y) dw
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where h° satisfies

Lyl iz <€ [y, 8
=C||x5 || < CM|V | 2o

uniformly in € > 0. Setting g° := g7 — h®, where g is from (5.15), we arrive at the
structure formula

(Wif / / (x,dy,w) (Swm - y) dw

(9.20)
sup/ ng(ac,dy,w)HM oW < (1 —I—M2)||V||Bzg.

e>0J§? v

Finally, we pass to the limit ¢ — 0 by Lemma 4.3.

The claim concerning the general Banach space X (with a different meaning
than then one appearing in Y') and (1.3) in Theorem 1.1 follows from Corollary 5.4,
eq. (5.18), and (9.19). Indeed, (5.18) shows that g; has this half-space structure,
and the global structure functions is an average of such operators. To be specific,
let H(w,y) :={x € R3: (y+2x)-w > 0}. Then by (5.18)

e iss ]

(9.21) S/SZ R3H]lH(w7y)f(Swa:—y)||X|Lv(y-w,w)‘7-[éw(dy)dw

<Alflls [ [ [Evw)drdo S AWV 15l < ACV)I L
Passing to the limit € — 0 in A® we have
h(z,dy,w) = /RS Lt (wy—y) (@) L v (y =) -w,w) Hy (dly— o)) dyf

whence in analogy with (9.21)

L [csmrtseonal]
<alflx [ [ [t drdody

SAIfx [ 2y, ' S DRIV e Al

The claim concerning the variable x,,, and the associated bound (1.4), follow in the
same way. O

In order to obtain quantitative estimates on the structure function g(z,y,w),
we verify the conditions of Corollary 8.4.
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LEMMA 9.2. Let V € B where % +y=0,with)<~vy< % Then the condi-
tions in Corollary 8.4 hold with

K:: 1+”V”B2Cf

1

Lo=c "(KM;)”
(9.22) M, =1+ KM,
—10-3
gg=cK Bl

g1 =cK *M;?

where My is as in (3.17), and c is a small absolute constant. Thus, there is a bound

e 374105 4+3
(9.23) sup | TS|y, S Ma:= K" (14 Mp)™ 7.

e>0
Therefore, in combination with (9.20) we obtain
E 38410 443
(9.24) sup/ Hg (m,dy,w)HM [edw S KT (l—i-Mo) v,
e>0J$? v

Proof. The choice of M, is dictated by (8.21) and (8.45). The Holder bound
(8.22) holds with p = 1:

(9.25) ITE, () = T5, ()] S In— 12|V || e << M

by our choice of 1. In view of (9.3) we need to take Lo > fsfl for the Z-part of the
Y -norm. For the other part we use (9.4) and (9.5) to conclude that in total

1
Lo=¢;'+ (M K)"
suffices. But for v < % this gives the choice above. For (8.46), we bound

leg™x(- 20) 5™ — 5%,
026 <[l x(-Je0) 5V =5V, 28 5,

SISIN" g3 x (- /20) * S = 8|+ N (I1Slly +11S]y) |

1S = Slly

where S = ]l[ly\z L]]S , Where L; needs to be determined (and the truncation is a
smooth one). Note that we saw above that N = 11 suffices, and that

IS —3lly < LK.
Hence, (9.26) yields

()57 =V S oK KL

~
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The first term on the right-hand side follows from (9.6)—(9.11). The optimal choice
is gy = KL;AY%, and L; must then satisty

KL "<« 1
which leads to gy above. ]

Proof of Theorem 1.2. The quantitative estimate (1.6) is a restatement of
(9.24).

Let V be as in the statement of the theorem. The resolvent identity implies that
for any z in the upper half-plane

(I+Ro(z)V) " = (I+Ro(2)V) ' = (I+Ro(z)V) (V= V)(IT+ Ro(2)V) "

whence in the operator norm on L*

1T+ Ro(2)7) || <[ (T4 Ro(2)V) [+ CMo|[V = V|| ,[|(T+Ro(2)7) ||

By (1.8)
CMV =T 3. < CMV = V| gross < 5.
then
sup |7+ Ro(2)V) ' <20,
In particular, H = —A + V satisfies the 0-energy condition and its structure func-

tion § satisfies a bound comparable to (1.6) (by (1.8)).

Note that g and § are each constructed in their own respective algebras, ¥ and
Y. The former is based on V ~! B, whereas the latter uses V! B. However, if we
set U := |V|+|V| € B"?7, then

IV fllgroay + IV £l grozr S NUfllproan.

Consequently, we can carry out the construction of g and § simultaneously, using
the algebra based on U. We will denote this new algebra by Y. Let T}, and Ts , be
the operators associated with V and V, respectively. Recall from (9.12) that

(I415) " =11, (14T5) " =11

whence

—TE = (I+Tf+)’1 - (I+Tf+)’1

9.27) = (I+T5,) @ (T5, - T, ® (1+7T5,)
- (I_TE) (T1+ —T1+) (I_Ti)

HTi —TiHY M2 |V — VHBHZ’Y
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In the last line we used that same constant M, up to an absolute factor, controls
|75y as well as || ||y, see (9.23). In view of (9.14)

<supHT€ T° MEK||V —V| g < oo.

I Hy =

(928)  sup||x] — X7
e>0
The calculations (9.14)—(9.20) yield
-7 =g -G +h -

First, by linearity
(9:29) /Szugf—gffHMyL;dws IV =Vlge.
For h® — h® we have, using the notation (9.15)—(9.18),

ha_ﬁazas_~a~€:5€~s+ — )€ .
(9.30) Gy =g, =gy T O

fy@) =20y, fy@@) =X (2"y)

and §; refers to the structure functions defined in terms of V instead of V. By
(9.18),

sup [ 11655 o) g, el S s0p 25 =5y,

e>0
931) < sup U5+ |75 — T2,
e>0
SABE|V - 7| e
by (9.28). The second term in (9.30) is bounded by
sup/ g—3)5 ¢ (z,dy,w _dwdy
sup [ [ 0= (i)
Ssup [ |[(V=V) (@)X (2,9)]| 5,
(9.32) =>0.Jr3 | s v
Ssup | (V=)0 g || [1X5 (@,9) || 15, dy
e>0JR3 *
SV =MU"Lp | MK
see (9.14). In summary, this concludes the proof of Theorem 1.2. O

For the sake of completeness, we now return to the L;"L;—norm that we could
not include in Y, see (7.26). From (9.13), we have

(9.33) TS =Tf, —Tf, ®T¢.
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From (7.26) we have
I1T5 w1522y S 1V 12

Since
|75

HB(U*'BLLU*'B) S My

we conclude that (using the contraction notation against a Schwartz function f)

|F(TF ®T) | e 1 = H/ Tty (z1,20,y =) (fT4) (21,y") daydy’
xy Yy RO L:ZLJIJ

= “ /R3 ((fT) CNTE) (22, y — o) dy'

Lz, Ly
< LGOI (@2,9) ]z 1y 3

< [T s | T )t

S ”T )HT+

vl | T s 5.2y w-1) 1 o1

So it follows that

[ ®TiHB(Ule,L°"LL) S M|Vl

which in conjunction with (9.33) implies that

(9.34) |75 ) S M|V 2o

HB(U*'BL""L{J
This shows that after the fact, this norm is also controlled. But it cannot be included
in Y to begin with, since this would render the Wiener theorem above inapplica-
ble (as the asymptotic vanishing in y were then to fail in the Y norm). Also note
that this does not improve (9.32), since factoring out ||V — V|| g= would require
finiteness of the LéL;"—norm, which is not attainable.
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