Falcon: Fair and Efficient Online File Transfer
Optimization
Md Arifuzzaman, Brian Bockelman, James Basney, and Engin Arslan

Abstract—Research networks provide high-speed wide-area network connectivity between research and education institutions to
facilitate large-scale data transfers. However, scalability issues of legacy transfer applications such as scp and FTP hinder the effective
utilization of these networks. Although researchers extended the legacy transfer applications to increase their performance by
exploiting 1/0 and network parallelism, these solutions necessitate users to fine-tune parallelism level, a task that is challenging even
for experienced users due to the dynamic nature of networks. In this paper, we propose an online optimization algorithm, Falcon, to
tune the degree of parallelism for file transfers to maximize transfer throughput while keeping system overhead at a minimum. As
research networks are shared infrastructures, we introduce a game theory-inspired novel utility function to evaluate the performance of
various parallelism levels such that competing transfers are guaranteed to converge to a fair and stable solution. We assessed the
performance of Falcon in isolated and production high-speed networks and found that it can discover optimal transfer parallelism in as
little as 20 seconds and outperform the state-of-the-art solutions by more than 2x. Moreover, Falcon is guaranteed to converge to
Nash Equilibrium when multiple transfers compete for the same resources with the help of its game theory-inspired utility function.
Finally, we demonstrate that Falcon can also be used as a central transfer scheduler to speed up convergence time, increase stability,
and enforce system/user-level resource limitations in shared networks.

Index Terms—Online transfer optimization; throughput optimization in research networks; file transfer tuning; high-speed networks.

+

1 INTRODUCTION

The rapid evolution of instrument technologies along with
growing storage and compute capacities have led to an
unprecedented increase in the amount of data generated
by scientific applications. For example, advancements in
high-throughput genome sequencing technology increased
output size per single run from around 5 MB in 2006 to
more than 5 GB in 2018, a three-order magnitude increase
in 12 years. This increase in data sizes when combined
with the fact that science projects are increasingly distributed
and collaborative paved the way for the formation of high
speed research networks such as Internet-2 and ESnet. These
networks provide dedicated network connectivity between
research and education institutions to ensure that science
workflows have sufficient bandwidth to move large-scale
data in a timely manner.

Researchers also proposed the ScienceDMZ architecture
to separate research and internet traffic at the campus level
to minimize the friction for science workflows [1]. Despite
these efforts, most transfers in research networks fall short
of reaching beyond a few gigabit-per-second throughputs
mainly due to a lack of scalable data transfer applications.
Legacy file transfer applications (e.g., FTP, scp) are de-
signed for low-speed internet transfers (i.e., in the order of
megabytes per second), thus, they fail to perform well at

o Md Arifuzzaman and Engin Arslan are with the University of Nevada,
Reno
E-mail: marifuzzaman@unr.edu, earslan@unr.edu

e Brian Bockelman is with Morridge Institute for Research
E-mail: bbockelman@morgridge.org

e Jim Basney is with National Center for Supercomputing Applications
E-mail: jbasney@ncsa.illinois.edu

100

’(;)\ ——————————
g 8o ST e
o !
= 60 /—HPCLab
2 / -~ ESnet
5 40 ',’ - - XSEDE (Stampede2-Expanse)
= R Rt
o 1 —==
2 20 / JE—
= -

0 -~

0 10 20 30 40 50

Concurrency

Fig. 1. Although transferring multiple files concurrently helps to improve
transfer throughput significantly, the optimal value of concurrency de-
pends on many static and dynamic factors.

high speeds. Specifically, they create a single transfer thread
and network connection to transfer one file at-a-time. This
in turn leads to suboptimal performance as parallelism is
essential to reach full utilization in today’s HPC clusters and
research networks. For example, while research networks
offer up to 100 Gbps in network bandwidth, a single TCP
connection is typically limited to 30 Gbps due to memory
and CPU limitations. Similarly, the throughput of individual
storage servers in parallel file systems is less than 30 Gbps
even with disk striping. Therefore, it is necessary to transfer
multiple files simultaneously to improve resource utilization
and achieve high transfer throughput.

To demonstrate the impact of parallelism on file transfer
performance, we transferred 500 x 1 GiB files in one local
area (HPCLab) and two wide-area (XSEDE and ESnet) net-
works with different levels of concurrency and measured
the transfer throughput. HPCLab nodes have a RAID stor-
age system (using 4 NVMe SSDs) and are connected with a
40 Gbps local area network. ESnet nodes also have a RAID
storage system (using 8 NVMe SSDs) and are connected

with a 100 Gbps wide-are area network with 89ms round
trip time. Finally, Stampede?2 [2] and Expanse [3] supercom-
puters use a Lustre parallel file system to store files and
are connected with a 40 Gbps network and 46ms round
trip time. Figure |1| shows that transferring one file at-a-
time (i.e., concurrency = 1) approach obtains around 8§
Gbps, 18 Gbps, and 2 Gbps throughput in HPCLab, ESnet,
and XSEDE networks, respectively, mainly due to read or
write I/0O limitations. However, transferring multiple files
simultaneously increases the throughput to around 30 Gbps
in HPCLab and XSEDE networks and to more than 80 Gbps
in ESnet, corresponding to a 3 — 15z increase compared
to the baseline configuration. Despite its significant impact,
finding the optimal concurrency level is challenging due to
large search space and the prohibitive cost of exhaustive
profiling. Deriving accurate analytical models for produc-
tion systems is also nearly impossible due to administrative
and operational challenges associated with collecting real-
time performance metrics from all components of end-to-
end transfers across multiple clusters and network domains.
Specifically, HPC clusters and research network providers
typically do not share real-time performance metrics for
system resources such as utilization of storage nodes and
network packet loss rates.

Although using a predefined large concurrency value
such as 30 may mostly solve performance issues, it will
unnecessarily overwhelm I/O and network resources in ad-
dition to causing fairness issues between competing trans-
fers [4]. As a result, while concurrency is essential to increase
resource utilization to achieve high performance for file transfers,
it is challenging to find its optimal level due to depending on many
static (e.g., network and file systems settings) and dynamic (e.g.,
network congestion) factors that are hard to capture. Previous
work proposed heuristic [5], [6], supervised learning [7], [8],
and real-time optimization [9]], [10] models to find a solution
to this problem. Despite yielding higher throughput than
the baseline configuration (i.e., one file at a time), heuristic
models fail to offer robust performance in all networks
as they cannot incorporate dynamic transfer conditions,
such as background traffic into their prediction models.
Supervised learning models when combined with real-time
probing can make precise predictions; however, deriving an
accurate model requires a large amount of historical data
to be collected in a wide range of transfer conditions (e.g.,
dataset, background traffic, etc.), which could take weeks or
months. Real-time optimization algorithms can discover the
optimal settings in the runtime; however, existing solutions
in this area suffer from long convergence times and fail to
provide fairness and stability guarantees in shared environ-
ments.

In this paper, we introduce Falcon which combines
a game theory-inspired utility function with state-of-the-
art online search algorithms to swiftly discover the opti-
mal concurrency level. As opposed to previous solutions
which solely focus on increasing the throughput of trans-
fers, Falcon innovates a novel utility function to discover
“just-enough” concurrency that can obtain near-optimal
transfer performance while lowering system overhead and
improving fairness. Our extensive evaluations in various
network settings with up to 100 Gbps bandwidth show that
Falcon achieves 2 — 6x higher throughput compared to

2

state-of-the-art solutions. Furthermore, Falcon is the first file
transfer optimization algorithm that guarantees fairness among
competing transfers by incorporating regret into its utility func-
tion. Finally, Falcon lends itself to being used as a web-
hosted central transfer scheduler in shared networks to facil-
itate the adoption of Falcon by novice users, allow resource
usage policies to be imposed, and improve the converge
time and stability of competing transfers. In summary, our
major contributions are as follows:

1) We innovate a game theory-inspired utility function
to evaluate the performance of different concur-
rency levels. The proposed utility function rewards
high throughput and penalizes increased system
overhead to strike a balance between performance
and cost.

2) We implement Online Gradient Descent (OGD) al-
gorithm to scan the solution space for optimal con-
currency level swiftly. OGD allows adjusting step
size based on the gradient of previous search steps
to identify the optimal solution quickly.

3) Weshow that when Falcon is deployed as a central
transfer scheduler to manage transfer tasks, it offers
(i) a convenient way to use Falcon, (ii) improved
stability in the presence of multiple competing
transfers, and (iii) an ability to define and enforce
resource usage policies.

4) We evaluate the performance of Falcon (both for
decentralized and centralized versions) in multiple
isolated and production high speed networks with
up to 100 Gbps bandwidth and show that it is
able to discover optimal transfer settings in as little
as 20 seconds thereby attaining close-to-maximum
transfer throughput in all network settings. We also
show that incorporating a penalty term in the utility
function of Falcon ensures that competing trans-
fers converge to a fair and stable state.

Compared to our previous work [11], this paper ex-
plores a new and important direction that involves using
Falcon as a central scheduler (i.e., contribution #3). We
demonstrate that Falcon central scheduler performs as
efficiently as its decentralized counterpart in addition to
offering several key benefits that would not be possible
with the decentralized approach. As an example, the central
scheduler improves the stability of data transfers when mul-
tiple transfers share the same bottleneck resource. Moreover,
the central scheduler lets system administrators prioritize
some transfers over others so that time-sensitive streaming
flows can run along with batch transfers without worrying
about degrading the quality of service metrics.

2 RELATED WORK

As the trend toward more data-intensive applications con-
tinues, developers and users must invest significant effort
into efficiently moving large datasets between distributed
sites. For example, it is estimated that cosmology simula-
tions will create 50 PiB data monthly, part of which needs to
be moved between collaborating institutions for processing
and archival purposes, which requires roughly 1TiB/hour
transfer rates [12]. Even though high-speed networks with

hundred-gigabit-per-second bandwidth are available, many
users still experience difficulty in reaching high speeds in
these networks mainly due to failure to utilize available
end systems and network resources efficiently. Most of the
existing work on transfer optimization has been at the
transport layer, including designing new transport proto-
cols [13]], [14], [15]. For example, Google released BBR [15] to
address performance problems in the TCP congestion con-
trol algorithm. However, since file transfers in high-speed
networks often face I/O performance limitations, improving
the performance of congestion control algorithms is itself
not sufficient to overcome the performance issues in today’s
high performance networks.

A common way to address performance problems for
file transfers is tuning application-layer transfer settings
such as pipelining [16], parallelism [17], concurrency [10],
buffer size [9], and striping [18]. These parameters when
tuned carefully can significantly improve the end-to-end
data transfer performance by addressing the most com-
monly faced performance bottlenecks such as lack of I/O
parallelism, TCP buffer size limitations, and lots of small
files problem. Among them, pipelining, parallelism, and
concurrency are the most effective in addressing the major-
ity of underlying performance issues [5], [10]. There have
been several attempts to tune some of these application-
layer parameters to maximize transfer throughput using
heuristic models [6], historical data-based models [8], [7],
and stochastic approximation [9]. However, they either fail
to achieve good performance or require significant up-front
work in order to perform well.

Globus [19] is a widely-adopted data transfer service
used by many HPC clusters to schedule large data trans-
fers in high-speed networks, with an OAuth-based security
model similar to our security model for the Falcon cen-
tral scheduler. Globus uses fixed settings to application-
layer transfer parameters such as pipelining, parallelism,
and concurrency. To avoid overwhelming end system and
network resources, it sets the concurrency for each transfer
to a small value (between 2 and 8 in most cases), thus failing
to achieve high performance in most networks as presented
in our evaluations. Moreover, it does not change the transfer
settings once they are set, so it is also not responsive to
changes in network conditions. Yun et al. proposed Prob-
Data [9] to tune the number of parallel streams and buffer
size for memory-to-memory TCP transfers using stochastic
approximation. ProbData is able to explore the near-optimal
configurations, but it takes several hours to find a solution,
which makes it impractical to use as most transfers in high-
speed networks only run for a few minutes [20]. Yildirim et
al. proposed PCP [10] to tune the values of application layer
parameters in the runtime. It uses a simple hill-climbing
method to scan a subset of search space; thus, it is neither
fast nor precise. In previous work, we proposed a heuris-
tic [6] and a historical data-based [8] models to determine
the transfer settings for file transfers that can maximize the
throughput. As detailed in our evaluations, HARP requires
large-scale, up-to-date historical data collected under vari-
ous background loads, datasets, and transfer settings to de-
rive predictive models that can guarantee high performance.
However, collecting such large-scale data from production
networks is infeasible.

,&)\35 I — S —— _Globus ?20 ... Transfer1

828 --HARP g - - Transfer2
—-Maximum p

o Q15 Ll e

=21 pug ol “‘}"-","n" n ’g"fj.,nl‘g '

3 ERE i OV iy YR A

-5) 14 ,//‘\N,-\,,/« e \l/\.,—\’/\\/\ -g’ 10 ‘l wi

=} 1 3 - 1

S 7 v < :

c HEN . c |

o - F o d

0 50 100 150 200 0 200 400 600 800 1000
Time (S) Time (S)

(a) Single Transfer Performance (b) Competing Transfers (HARP)

Fig. 2. State-of-the-art transfer optimization solutions, Globus [5] and
HARP [8] are unable to achieve high performance due to lack of adaptive
parallelism (a). They also fail to guarantee fairness between competing
transfers (b).

3 MOTIVATION

Although file transfer optimization has been studied exten-
sively in the past, we identify two major issues with existing
solutions as failure to guarantee high performance and unfair
resource sharing in the presence of competing transfers. We
argue that these two issues cannot be addressed through
simple extensions of existing solutions due to potential side-
effects; increased overhead on system resources in particular.

Poor Transfer Performance: Despite the availability of
high-speed networks and high-capacity parallel file sys-
tems, existing file transfer applications and services fail to
take full benefit of these resources due to a lack of adaptive
resource parallelism. Figure shows the performance of
two state-of-the-art file transfer solutions when transferring
1024 x 1 GiB dataset between Stampede2 and Expanse
supercomputers. Globus [19] uses fixed and mostly subop-
timal transfer settings, hence achieving less than 6 Gbps
throughput. On the other hand, despite attaining higher
throughput than Globus, HARP [8] also underperforms by
yielding less than 50% of maximum throughput. This is
mainly because HARP lacks historical data in this network,
so it makes predictions based on transfer logs gathered in
other networks with different characteristics. While collect-
ing new data to re-train HARP for this specific environment
will improve its performance, it can take weeks to months
to collect a sufficient amount of training data, which is not
a feasible option for most production networks.

Unfair Resource Sharing: In the presence of multiple
independent file transfers competing for limited available
resources, convergence to a fair and stable state is de-
sired. This well-known concept in game theory requires
competing agents to either use the same fixed strategy or
periodically update their strategy using a symmetric, strictly
concave utility function [21]. Thus, transfer optimization
algorithms that employ fixed strategies (e.g., Globus) guar-
antee that transfers will converge to a stable state; however,
they fail to adapt to changing conditions since the optimal
strategy is heavily dependent on current network conditions
such as the number of competing transfers. On the other
hand, solutions that tune the transfer settings only once at
the beginning of the transfer (e.g., HARP) fail to provide fair
resource sharing between the competing transfers as “late-
comers” will have an unfair advantage by choosing a transfer
setting that favors them. Yet, extending existing transfer
solutions to run the optimization process periodically to
adapt to dynamic conditions will not work either since their
throughput-oriented utility functions (i.e., higher transfer

100 2o 40 i i 0 _ 25 .
2 Ml ——— W -

£ Mo g & a” To B 10 [,
1 v Q |

275 AT g g i — i] e 5L

< x T 2 5 5% "

= o » 5 o [o] =] \ o Network Process

a 50- ot -6 @ & 20 i -40 g o . = Write Process

-g) 7 — [=2) P 3 ® 2 0 Te— ™

= N — =] i 3 So

o 25 - 1 -3 g o 10*,!’ -20 D o 1 So

< /) — Throughput [$) < o . Throughput o |—E .

= 0 s — _ Packet Loss Rate 0 X = 0 " = CPU Utilization 0 o -y
0 6 12 18 24 30 0 10 20 30 40 50 0 10 20 30 40 50

Concurrency Concurrency Network Concurrency

(a) Packet Loss

(b) High CPU Utilization

(c) Write Performance degradation

Fig. 3. While concurrency is needed to increase transfer throughput, choosing an arbitrarily high value increases network congestion (a) and end
host CPU utilization (b). It also adversely affects other processes running on the same end hosts due to increasing I/O contention (c).

throughput means higher utility) do not meet the strict
concavity requirement of convergence to fair state. As an
example, the utility, u, of a transfer task that creates n
concurrent transfers (i.e., concurrency = 4) each obtaining
t throughputﬂ can be calculated by

n

u(n,t)=> t=nxt 1)

=1

when the utility function is set to be linearly proportional
to transfer throughput. Since fair resource sharing requires
the second derivation of the utility function to be negative,
u cannot guarantee fairness between competing transfers
since its second derivative is 0. Figure illustrates this
behavior for HARP which utilizes historical analysis to find
a transfer setting that maximizes transfer throughput [8].
It is clear that when the second HARP transfer starts, it
chooses a setting that favors itself and yields nearly 50%
higher throughput than the first HARP transfer.
Overburdened Network and End Hosts: A naive so-
lution to maximize transfer throughput in high-speed net-
works while ensuring fairness can be implemented by using
a fixed transfer setting that involves high values for the
concurrency parameter, such as 30. However, high levels
of concurrency can overwhelm end system and network
resources by creating too many processes and network con-
nections. To demonstrate this, we evaluate the performance
of a file transfer when concurrency is set to values between 1
and 32 in a simple network where sender and receiver nodes
are connected via two switches. While sender and receiver
nodes are connected to switches with 1Gbps links, the two
switches are connected with a 100 Mbps link, thus end-to-
end network bandwidth is limited to 100 Mbps. We throttle
disk read throughput to 10 Mbps per process to emulate the
behavior of parallel file systems in which concurrent 1/O
access (using multiple threads) is necessary to achieve high
I/0 performance. Since the network bandwidth is limited
to 100 Mbps, ten concurrent transfers are needed to achieve
100 Mbps aggregate 1/O throughput, thereby reaching to
maximum possible transfer speed. Although creating more
than ten concurrent transfers does not degrade the transfer
throughput considerably, it results in a significant increase

1. Since each transfer thread uses the same congestion control al-
gorithm to transfer similar size files between the same end points,
they will attain similar throughput as most commonly used TCP
variants (e.g., Reno, Cubic, HTCP, and BBR) guarantee fairness among
competing flows as long as they all have the same round trip time [22],
[15]

in packet loss due to network congestion at the bottleneck
link as presented in Figure Packet loss is below 2%
when concurrency is smaller than 10, but it increases drasti-
cally and reaches 10% for a concurrency value of 32.

In addition to increased packet loss, high concurrency
values also overburden end hosts and storage systems due
to creating too many processes and threads [4]. Figure
shows the relationship between transfer throughput and
sender host CPU utilization. When the concurrency is set to
the optimal value of 10, the transfer yields 32 Gbps through-
put, and CPU utilization of transfer threads is around 60%.
On the other hand, setting the concurrency to larger values
not only decreases throughput but also increases CPU uti-
lization. As an example, a concurrency value of 30 returns
26 Gbps throughput in exchange for 70% CPU utilization.
Finally, we tested the impact of using an unnecessarily high
concurrency value on the performance of other applications
on the same node. To do so, we run a process on the transfer
receiver host that writes 100GiB to a file while the trans-
fer application is running. We then measure the transfer
throughput and the execution time of the write process.
Figure shows that the transfer throughput reaches the
maximum at the concurrency level of 10 at which point the
write process attains 2.4Gbps throughput. While increasing
concurrency does not increase the throughput of the trans-
fer, it significantly degrades the performance of the write
process due to increasing I/O contention. Specifically, the
throughput of the write process drops down to less than
1Gbps when concurrency is set to 30 and 0.5 Gbps when the
concurrency of the transfer is set to 50. Consequently, there is
a need for a high-speed file transfer optimization solution that can
tune the level of transfer parallelism in real-time to provide high-
performance and fair resource sharing with minimal system
overhead. We, therefore, introduce Falcon that combines
a game-theory-inspired utility function with state-of-the-art
online optimization algorithms to address these limitations.

4 Farcon: ONLINE HIGH-SPEED FILE TRANSFER
OPTIMIZATION ALGORITHM

Falcon implements online learning to find the optimal
transfer settings in the runtime as illustrated in Figure [4
It adopts a black-box approach and uses sample transfers to
evaluate different transfer settings. The benefit of this black-
box approach is its generality and applicability to a diverse
set of network systems without making any assumption
about the underlying infrastructure. Such abstraction makes

Compute Npew

YAON

Source

Transfer(n)
Online
Optimizer @
Thr,L
n,Thr,L @ Utility: U

Utility Func. Destination

U, Thr,L)

Fig. 4. Falcon uses online optimization to discover optimal transfer
settings quickly. The utility function rewards high throughput while pe-
nalizing increased system overhead to ensure convergence to a fair and
optimal solution.

it possible to develop an intuitive understanding of the
system conditions through simple performance metrics such
as throughput and packet loss rate. Falcon first selects a
transfer setting, 1, and runs a sample transfer to evaluate
its performance. Once the sample transfer is executed for a
sufficient amount of time, we capture performance metrics
and use a utility function, U, to find a scalar value that
quantifies the efficacy of 7. Finally, the utility value is
used by an online optimization algorithm to predict a new
transfer setting 7,,¢,, that is closer to the optimal. Compared
to the existing optimization algorithms for high-speed file
transfers, Falcon makes two novel contributions. First, it
innovates a game-theory inspired utility function that incorpo-
rates a regret (i.e., penalty) term for increased packet loss
and concurrent transfer count to keep system overhead at a
minimum and ensure fairness among competing transfers.
Second, it implements the state-of-the-art online optimization
algorithms (e.g., Gradient Descent and Bayesian Optimiza-
tion) to quickly scan the search space and converge to the
optimal solution.

We first apply Falcon to tune the number of concurrent
transfers (i.e., n = {concurrency}) as it is shown to be the
most effective parameter in the optimization of large-scale
file transfers [8], [10], [5]. In § 5.4 we demonstrate that the
utility function of Falcon can be modified to incorporate
more parameters to configure multiple transfer settings
simultaneously. Moreover, although we implemented a cus-
tom transfer application in Python, the online optimization
module of Falcon can easily be integrated into other
transfer applications such as FIP, GridFTP, and bbcp. In
fact, the multiparameter optimization (§ is evaluated
using the GridFTP protocol which allows users to configure
other transfer parameters such as network parallelism and
command pipelining.

Falcon can be utilized in two modes as decentralized and
centralized modes. In the decentralized mode, Falcon trans-
fers act independently, so each transfer executes its own
online search to discover the optimal. In the centralized
mode, the online optimization module is offloaded to a
central scheduler to control multiple Falcon transfers. The
global optimizer still employs the same utility function as
described in Equation [4] to search for optimal concurrency
for all transfers as illustrated in Figure |5 It then decides
on how to allocate the concurrency among the managed
transfers based on defined policies. As an example, if the

-1
/" Authentication,

N ,'/ Task Submission
Falcon Web
Server/Online
Optimizer

site 1 / Pub/Sub \ . site2

Message
Falcon 8 Falcon

Dat Agent Broker Agent
ata
Falcon Falcon| Data
Transfer
Node

Agent Agent Transfe:
Falcon Falcon Node
Agent Agent

Fig. 5. Falcon can be used both as a decentralized and centralized
transfer optimizer. In the centralized mode, multiple transfers can share
a single online optimizer to find an optimal concurrency level for all
transfers.

scheduler wants to evaluate the concurrency value of 20
when controlling four Falcon transfers with equal priority,
it requests each transfer to test the concurrency value of
5. Once all four transfers finish testing the specified con-
currency value, the scheduler aggregates the reports (i.e.,
throughput and packet loss values) from all transfers to feed
them into the online search algorithm to estimate a new
concurrency value.

While the decentralized mode provides several advan-
tages such as increased resilience to single point-of-failures,
improved user privacy, and better scalability; the centralized
mode can be preferable due to offering higher stability,
ease-of-use, ability to implement resources restrictions as
follows: First, the centralized mode can significantly im-
prove system stability compared to the decentralized mode
by reducing convergence time and minimizing search at-
tempts by individual transfers. Second, in the decentralized
approach, users must log in to both the source and destina-
tion endpoints to schedule transfers, which is inconvenient
and time-consuming. In contrast, the centralized scheduler
simplifies this process by offering a single interface for
users to initiate and monitor their transfers. Third, system
administrators at individual sites may wish to define re-
source constraints for some users, such as maximum al-
lowed concurrency and throughput. The central scheduler
allows the implementation of such policies by adjusting its
concurrency allocation decisions accordingly. In Section [5.7]
we present evaluation results to demonstrate these benefits.

4.1 Utility Function

Utility functions need to involve a regret term to converge to
a fair and optimal solution [21], [23], [24], thus Falcon in-
corporates packet loss into its utility function as

u(nivtia Lz) = n;t; — nltsz x B (2)

where n; is the number of concurrent files to transfer, ¢; is
an average throughput of each file transfer, and L; is an
aggregate packet loss rate for all concurrent transfersﬂ Bis
a constant coefficient that is used to determine the severity

2. Please note that concurrent transfers here refer to simultaneous
transfers of the same transfer task. As an example, a transfer operation
will have five concurrent file transfers when concurrency level is set to
5.

700 — Nonlinear Regret 60 100 | . — - Transfer1
....Linear Regret (C=0.01) 1 1 — Transfer2
560 —. Linear Regret (C=0.02) 5. 48 > 801
RN O% e e 1
> 420 ! o 36 o 60 !
£ ! = = 1
= ' =] P DL PR IS NPT DAL =] 1
5 280 i g2 [g 40 |
' 8 8
I I
140 '\‘: 12 —— Nonlinear Regret 20
0 I\ o — - Linear Regret (C=0.02) o
0 20 40 60 80 100 0 25 50 75 100 125 150
Concurrency Time (S)

(a) Linear vs nonlinear regret for concurrency (b) Suboptimal performance of linear regret (c) Suboptimal convergence for linear regret

2%

1%

Fig. 6. Comparison of linear (Eq[3) and nonlinear (Eq[d) forms of regret for concurrency in the utility function. Linear form of regret either fails to
yield high performance for single transfer (C' = 0.02 in (a) and (b)) or causes suboptimal convergence when multiple agents compete (c). Thus,
Falcon incorporates concurrency penalty into its utility function in a nonlinear form.

of punishment for packet loss penalty. While the value of
B can be customized for specific application scenarios, we
find that B = 10 works well with most commonly used TCP
variants (i.e., TCP Cubic and Reno, and HSTCP) by keeping
packet loss rate below 1 — 2% while achieving over 95%
network utilization. As a result, the utility function in the
form of Equation2|can be used to prevent high packet losses
caused by suboptimal concurrency settings. However, it is
not sufficient to avoid I/O and end host overheads. As high-
performance networks with up to 40/100 Gbps capacity
are being built, transfer bottlenecks are shifting toward end
hosts. For example, the network service provider of most re-
search and education institutions in the U.S., Internet2, sup-
ports 100 Gbps connectivity to most sites and is upgrading
its backbone capacity to 400 Gbps [25]. On the other hand,
it is challenging, if not impossible, to attain 100 Gbps 1/0
throughput in production clusters due to inevitable resource
interference. Moreover, most HPC clusters use data transfer
nodes with 10/40 Gbps Network Interface Cards (NICs),
limiting maximum possible transfer rate to smaller values
compared to network bandwidth. Consequently, little to no
packet loss is observed in many production systems, neces-
sitating an additional penalty term to limit the excessive use
of concurrency. We therefore propose a cost function that
penalizes the use of high concurrency by incorporating the
value of concurrency into the utility function as

U(ni7t7;, Lz) = n;t; — TLZtZLZ x B — n;t; X TLZC (3)

where C' is a constant coefficient that is used to adjust the
rate of penalty for increased concurrency. Previous studies
show that the utility functions that incorporate monoton-
ically increasing penalty terms in linear form guarantee
high performance for a single transfer and optimal and
fair convergence for competing transfers (i.e., Nash Equi-
librium) [23], [24]. However, we find that it is challenging
to achieve both high-performance and fair and optimal
convergence when penalty for concurrency is incorporated
in a linear form similar to Equation [Figure [6] presents
estimated utility value when C is set to 0.01 and 0.02
(nearly 1% and 2% punishment for each concurrency, re-
spectively) when the optimal concurrency level is 48; i.e.,
48 concurrent transfers are needed to reach full I/O and
network utilization. When C'is set to 0.02, the utility value
peaks at concurrency value 25 which in turn results in low
throughput. We experimentally validate this behavior by

throttling 1/0O throughput of each process (as described in
§ in a way that it requires 48 concurrent I/O threads
to reach maximum transfer throughput. When using Equa-
tion 3| with C' = 0.02 as a utility function, the transfer
converges to a suboptimal concurrency value of 26, hence
obtains 45% lower transfer throughput than the optimal.
Smaller C' values such as 0.01 are able to converge to
optimal configurations for single transfer scenarios both
theoretically (Figure and empirically(Figure [6(c)), but
leads to suboptimal convergence behavior when there are
multiple competing transfers due to increased sensitivity to
measurement jitters. Figure [(c)]illustrates that although the
utility function with linear penalty of 1% (i.e., C = 0.01)
converges to the optimal solution when there is only one
transfer in the system, it fails to do so when the second one
joins. Although the optimal solution requires both transfers
to create 24 concurrent transfers to yield maximum through-
put with minimal overhead, they both settle at 36 — 38
concurrent transfers and overburden system resources un-
necessarily.

To address this issue, we test a nonlinear form of regret
for concurrency as
Nl
K
where K is constant. As throughput improvement ratio is
not directly proportional to increased concurrency (i.e., the
ratio of gain starts to lower at higher concurrency values),
the value of K can be tuned to require small but non-
negligible gain (e.g., 1%) for increasing concurrency values.
By doing so, we ensure that the utility will increase as long
as non-negligible amount of throughput gain is observed
and decrease upon exceeding the optimal concurrency
value. Figure[6(a)|and [6(b)|show that the utility function that
incorporates penalty for concurrency in a nonlinear form
converges to the optimal both theoretically and empirically
for single transfer optimization. It also converges to a fair
and optimal solution when multiple transfers compete as
presented in §

When multiple Falcon transfers compete against each
other, packet loss will stay the same for increased con-
currency values. Thus, the term 1 — L; x B will follow
monotonically decreasing pattern for the increasing number
of concurrent transfers. Thus, the utility function given in
Equation 4| is guaranteed to be concave as long as 7k is
concave. It is also true when transfers are sender-limited

u(ni, ti, Li) = —nit;L; x B @)

300

200 a,j 0
100 e 0

-100
-200
-300 40

0 10 20 30 40
Concurrency

Utility Score
o

Fig. 7. Although the optimal concurrency is 15, binary search converges
to a suboptimal solution 10.

(i-e., transfer bottleneck is I/O or NIC) since packet loss rate,
L;, will be nearly zero. Therefore, if the second derivative of
;’gt; is negative (i.e., first derivative is strictly decreasing),
then the utility function in the form of Equation [is guar-
anteed to be strictly concave, a condition that needs to be
satisfied to converge to fair and optimal state.

Proof: Let’s denote %t = f(n), then second derivative

K
of f(n) becomes

f"(n)=t; K" InK(-2+n;InK))

Since, ¢;, n;, and K are all non-negative values, ¢t; KX~ In K
will return greater than zero. Thus, f”(n) can only be
negative if the term —2 4 n; In K is negative. Consequently,
Equation [4] is guaranteed to be strictly concave as long as
n; < 2. Hence, the value of K defines the upper limit for
the number of concurrent transfers, n, that can be created
before f”(n) moves out of the strictly concave region. Set-
ting K to 1.01 will expect at least 1% increase in throughput
to prefer higher concurrency values. It will also guarantee
Nash Equilibrium as long as the optimal concurrency level is
less than or equal to 200. Our experimental analysis shows
that although lower K values help to increase the upper
limit of the concave region, they cause stability issues in the
case of competing transfers due to increased sensitivity to
throughput fluctuations. We therefore set K to 1.02 (i.e., at
least 2% throughput gain required for each new concurrent
transfer) to strike a balance between transfer stability and
reduced upper limit.

4.2 Online Search Algorithm

A naive approach to find the best transfer setting can be
implemented by evaluating the performance of all possible
configurations (i.e., brute-force method), but it is not a
feasible method due to the large search space and expensive
nature of evaluating different settings. Specifically, it takes
several seconds to measure the performance of a transfer
configuration due to connection establishment cosﬂ as well
as slow convergence of TCP transfers in high-speed wide-
area networks. We tested multiple online search algorithms
with different complexity including Hill Climbing, Binary
Search, Bayesian Optimization, and Gradient Descent.

In the Hill-Climbing algorithm, the search process first
determines the search direction to follow, then evaluates

3. Concurrency requires new processes and network connections to
be created

7

potential values in that direction one by one until the
utility stops increasing at which point the search direction
is reversed to initiate the search in the other direction. In
the context of concurrency optimization, the search process
starts with a minimum concurrency value of 1 and incre-
ments it by one as long as the utility is higher than the utility
of the previous concurrency value. When the utility stops
increasing, we start to evaluate lower concurrency values by
decreasing the concurrency value by one. We observe that
Hill Climbing takes significantly longer (up to 7x compared
to Gradient Descent) to converge to the optimal. The impact
of slow convergence is exacerbated when multiple transfers
are executed in parallel. Although using a strictly concave
function for utility calculations guarantees Nash Equilib-
rium between competing Falcon transfers, convergence
time is extremely long using Hill Climbing due to its slow
search speed.

On the other hand, binary search is capable of efficiently
scanning the search space and quickly converging to the
optimal solution. However, the ability of binary search to
find the optimal solution is not guaranteed because the
search space (i.e., utility values) may not strictly increase
or decrease. An illustration of this behavior can be seen in
Figure[7] where the optimal concurrency is 15, but the binary
search settles on 10. While it is possible to modify the binary
search to continue searching until the optimal solution is
discovered, this increases execution time. Moreover, the bi-
nary search may face stability issues when the concurrency
value is drastically changed, such as in the above example
where it increases from 1 to 40 in consecutive intervals.
Since the concurrency value affects the number of transfer
processes on endpoints and the number of connections in
the network, testing extreme values could negatively impact
other transfers in the network as well as other applications
running on endpoints.

Bayesian Optimization is widely used for black-box op-
timizations especially when cost functions are expensive to
evaluate [26], [27], [28], [29]. It aims to estimate the ana-
lytical form of black-box functions by processing observed
events via surrogate models, such as Gaussian Process. It
starts with a prior probability and calculates the posterior
probability after an event is observed using Bayes’ theorem.
We show in a previous work [11] that while Bayesian
Optimization is able to find the optimal solution within 4—5
search attempts, it also faces stability issues similar to binary
search due to making drastic changes in concurrency values.
We, therefore, adopted Gradient Descent to quickly scan the
search space and find the optimal configuration.

Online Gradient Descent (OGD) is extensively used for
online convex function optimization due to its ability to
adapt its step size dynamically. Since the utility function
in Equation 4| is strictly concave when n < 100, we can
apply OGO search for the optimal concurrency value
for transfers. As OGD requires gradient (i.e., slope) calcu-
lation, we estimate it as follows: For a given concurrency
value n, we test concurrency values n + ¢ and n — € using
sample transfers and calculate their utility values, u; and
U, respectively. Then, the gradient can be approximated

4. We can convert the utility to cost function by multiplying it with
—1 to apply Gradient Descent.

1000 - -100 35000 - -40 10000 - - 60
o 800 80 £ 28000 - v 32 5. & 8000- " 48 o
Qo > 8) = RN "\/\/\ 3
= & = 21000 248 T 6000 /! AN 36 3
< 600 / o 60 o 3 / — Throughput E 3 / N =
Qo N SoSoten LS 3 — - Concurrenc I \/
< 400 LR VAN 40 2§ 14000 Y162 5 4000 i NN ©
g /// 8 8 / ,l\/\ RN NS /”\ 8 8 /II 8
] N/ AR IR AVAIRLVA] |
E 200 [/ Thioughput | 20 £ 7000 - B v 8 £ 20000 f —Throughput 12
0) - - Concurrency = 0. J/ o = 0l 4 - Concurrencyr 0
0 30 60 9 120 150 0 30 60 90 120 150 0 50 100 150

Time (S)
(a) Emulab

Time (S)
(b) HPCLab

Time (S)
(c) XSEDE

Fig. 8. Convergence analysis of Falcon in different networks when there is only one Falcon transfer in the network. It takes less than 20 — 35
seconds to discover the optimal concurrency level in each network. As it keeps searching for the optimal to detect and adapt to changing transfer

conditions, its performance fluctuates slightly after convergence.

by v = “3-*.. Note that since concurrency can only take

integer values, we use 1 for the e. For example, to calculate
the gradient at n = 40, Falcon will evaluate concurrency
values of 39 and 41 through sample transfers and calculate
«y using corresponding utility values.

Note that gradient cannot be used directly to estimate the
next concurrency value as its scale is different than the scale
of concurrency. Thus, we convert «y to the rate change for
concurrency by dividing it to the utility of n—eas A = -
and use it to predict next concurrency value, 7,y = 7+ A.
To further improve the convergence speed while avoiding
taking arbitrarily large steps due to sampling errors, we use
a monotonically increasing learning factor 6 to gradually
adjust the steps size via npewy = n + OA. We initiate 0
to a relatively small value and increase it as long as the
search moves in the same direction in consecutive intervals.
Specifically, we initialize 0 to 1 and increase it by one at each
time step as long as the gradient is positive and reset to the
initial value otherwise. Falcon runs Gradient Descent (GD)
continuously even after it discovers the current optimal to
adapt dynamic conditions. It does this by checking higher
and lower values around the current optimal to find if they
yield higher utility than the current value.

The dynamic nature of background load in networks and
file systems requires the search to be repeated periodically
to adapt to the changing conditions. Thus, we configured
the OGD to keep exploring the search space throughout
the transfer. Specifically, after finding an initial solution, say
CCoptimal, it keeps evaluating ccoprimal + 1 and cCoptimar — 1
to see if any of them yield higher utility than ccoptimar- If
they do, then OGD initiate a search in that direction. Note
that Falcon uses a separate thread to gather and process
performance metrics, thus the optimization process does not
interfere with the transfer performance.

5 EVALUATION

We first assess the performance of Falcon when it is imple-
mented in a decentralized manner, meaning each transfer
agent operates independently and uses its own optimization
and scheduling modules. We run experiments in four high
speed networks as listed in Table |1, We use Bridges2 [30]
and Expanse [3] clusters for XSEDE experiments, which
are connected via a shared high-speed network. HPCLab
networks consist of two servers that are located in the

Testbed Storage Bandwidth RTT Bottleneck

Emulab SATA SSD 1G 30ms Network

XSEDE Lustre 10G 58ms Disk Read

HPCLab NVMe SSD 40G 0.1lms | Disk Write

ESnet NVMe SSD 100G 89ms Disk Write
TABLE 1

Specifications of test environments. OSG and Expanse sites are used
for XSEDE experiments.

same local-area network; thus delay between the hosts is
less than a millisecond. ESnet testbed provides 100Gbps
network bandwidth, 89ms round trip time, and around 80
Gbps 1/0 write throughput. Finally, Emulab is an emulated
network testbed. XSEDE sites and HPCLab employ one or
more RAID arrays in the storage system, so the use of
concurrency is required to achieve full 1I/O performance.
Since Emulab nodes have direct-attached single disk storage
volumes, we throttle per process disk read throughput to
necessitate concurrent I/O accesses to reach maximum per-
formance, similar to parallel file systems. We also configured
a topology in Emulab in a way that network bandwidth be-
comes the bottleneck once a sufficient number of concurrent
transfers are created. To determine transfer bottlenecks in
each testbed, we used profiling tools (e.g., iPerf [31]], bon-
nie++ [32]) that can capture the “true” capacity of resources.
We set the duration of sample transfers (i.e., evaluating the
performance of a concurrency value) to 3 seconds in local
area transfers and 5 seconds for wide-area transfers. Finally,
we used a dataset containing 1000 x 1 GB files to conduct
the transfers. § 5.4 presents results of Falcon when it’s used
for small and mixed datasets transfer optimizations.

5.1

We assess the performance of Falcon in terms of conver-
gence speed and throughput when there is only one transfer
in the network. Figure[§|presents the results for Emulab, HP-
CLab, and XSEDE (Bridges2-Expanse) networks. We limit
the I/O performance to 20 Mbps per process for Emulab
transfers and set the network bandwidth to 1 Gbps such that
45 — 50 concurrent transfers are needed to reach maximum
performance. The gradient descent-based search algorithm
starts the search with an initial concurrency value of 2 and
converges to the optimal in around 35 seconds by adjusting
its step size. Upon convergence, the concurrency value
bounces between 40 and 50 as it keeps evaluating higher

Efficiency for Single Transfer

1000 — Transfer1 ,-‘0\35000 — Transfer1 o 10000 — Transfer 1
m _ Transfer2 2 — Transfer2 a8 — Transfer 2
g 800 — Transfer3 & 28000 _ Transfer3 o 8000 — Transfer 3
S = =3
=~ 600 +— 21000 +— 6000
5 5 5
o & &

S 400 £ 14000 S 4000
3 3 3
£ 200 E 7000 = 2000
= — =

0 0 0

0 300 600 900 1200 1500 0 300 600 900 1200 1500 0 300 600 900 1200 1500
Time (S) Time (S) Time (S)
(a) Emulab (b) HPCLab (c) XSEDE

Fig. 9. Stability and fairness analysis of Falcon when multiple transfers compete for same bottleneck resources. With the help of the penalty terms
in the utility function, Falcon agents back off when new transfers join the network, leading to fair resource sharing.

and lower values to detect any changes in the network. It
converges to a solution (cc = 10) in around 20 seconds and
attains over 25 Gbps throughput for HPCLab transfer. On
the other hand, it takes around 80 seconds to converge to
the optimal in the XSEDE network, for which the optimal
concurrency is around 24. Falcon initially increases to
concurrency to almost 50 as it observes a significant increase
in the utility value in the previous round. However, once
it notices that the throughput does not increase sufficiently
when concurrency is increased from around 20 to around 50,
it lowers it and stabilizes at around 24. While concurrency
49 yields around 10 Gbps, concurrency 24 yields around 7.5
Gbps. Hence, Falcon prefers concurrency 24 as it yields
75% of maximum throughput using 50% less concurrent
transfers.

5.2 Convergence for

Falcon Transfers

Analysis Competing
We next assess the efficiency and fairness of Falcon when
multiple transfers share a bottleneck network or I/O re-
source. Note that this is different from concurrency in a
way that concurrency refers to transferring multiple files
for the same transfer task whereas competing transfers
refer to independent transfer tasks submitted by different
users. We assume that all agents (i.e., transfer tasks) use
the same utility function as in Equation [{] and employ the
same gradient descent search algorithm. While the network
is the bottleneck for competing transfers in Emulab and
XSEDE transfers, write I/0 is the bottleneck for HPCLab
transfers. In all three cases, independent (i.e., decentralized)
Falcon transfers reach maximum utilization when running
alone, but they back off when other transfers join as shown
in Figure 0] For example, while Transfer 1 in XSEDE attains
around 7.5 Gbps throughput when it is the only transfer in
the network, it yields around 2.5 — 3 Gbps throughput when
second and third transfers join. Similarly, when second and
third Falcon transfer agents join in HPCLab (Figure 0(b)),
they can quickly seize their fair share (i.e., 12 — 13 Gbps for
two transfers and 7 — 8 Gbps for three transfers). Moreover,
when one of the transfers completes, the remaining one(s)
quickly claim the available resources and sustain high re-
source utilization.

One can possibly attribute this fair resource sharing
between competing Falcon agents to the adaptive nature of
TCP congestion control algorithms, but Figure[I0]shows that
it is indeed because of Falcon dynamic concurrency adjust-
ments. It presents concurrency values for Falcon agents

60

I
o

w
[«

Concurrency
N
B

— Transfer1

— Transfer2

— Transfer3

0 180 360 540 720 900
Time (S)

N
N

o

Fig. 10. Falcon agents reduce their concurrency values when new
transfers join to ensure fairness among competing transfers.

when they compete against each other in Emulab, where
the bottleneck link capacity is 1 Gbps and the I/O limit
per process is 20 Mbps. When there is only one transfer in
the system, it quickly converges to the optimal concurrency
value of 48 to attain 1 Gbps throughput. Once the second
transfer joins, the first transfer reduces its concurrency to
the 20 — 33 range to let the second transfer claim its fair
share. Note that even if fair resource sharing can also be
achieved when both transfers use the concurrency value
of 48, it will result in higher packet loss despite obtaining
the same throughput as illustrated in Figure When
the third transfer joins, they all select concurrency values
around 10 — 23 to make sure that total concurrency is large
enough to fully utilize available resources yet not too high
to cause high overhead on the network, end hosts, and
file systems. Moreover, Falcon agents can also quickly
notice the termination of competing transfers and increase
their concurrency accordingly to claim available network
bandwidth.

5.3 Comparison to State-of-the-Art

Figure compares the single transfer performance of
Falcon against two state-of-the-art file transfer optimiza-
tion solutions and a static approach for the transfer of 1
TB dataset that consists of 1,000 x 1 GiB files. Globus [19]
is a web-based transfer service based on the GridFTP pro-
tocol [33]. It is widely used to schedule large file trans-
fers between HPC facilities. It relies on heuristic or pre-
defined settings to tune the value of concurrency along
with other transfer parameters such as parallelism and
pipelining. HARP [8], on the other hand, uses historical
data to derive regression models that can estimate transfer

30 e HARP
m = GlObUS
& — g

- Fa
:(D: 20 g’ — Falcon-32
=
g Tﬁg
P
o mNE

T
e
o
=

Network

Fig. 11. Performance comparison of Falcon against the state-of-the-
art solutions in different networks. The concurrency values on top of the
bars correspond to the concurrency values used by applications.

throughput based on the values of concurrency, parallelism,
and pipelining parameters. We observe that while Globus is
too conservative when selecting the number of concurrent
transfers to minimize system overhead, HARP can be too
aggressive to maximize throughput. Although HARP can
reconfigure the concurrency in the runtime to adapt to
changes, its performance is inherently limited to historical
observations. We also evaluated the performance of two
static solutions, Globus-32 and Falcon-32, that use a fixed
high concurrency value of 32 for the transfers. They differ in
terms of underlying transfer applications used to implement
concurrency. Globus-32 relies on GridFTP protocol whereas
Falcon-32 uses socket programming to execute file transfers.
They demonstrate the performance of a simple method of
using a predefined high concurrency value for all transfers
to maximize the throughput.

Globus underperforms significantly in all three networks
as it attains 2.3x, 1.16x, and 2.16x less throughput than
Falcon in HPCLab, Campus Cluster, and XSEDE transfers,
respectively. This is mainly because Globus uses a prede-
fined, suboptimal solution concurrency which falls short
of maximizing I/O and network throughput. On the other
hand, HARP yields similar throughput as with Falcon in
Campus Cluster transfers while obtaining almost half of it
in HPCLab and XSEDE transfers. Globus-32 outperforms
Globus in HPCLab and XSEDE networks as high con-
currency values result in higher I/O throughput despite
worsening I/O contention. On the other hand, since the
optimal concurrency is small in Campus Cluster, setting
concurrency to a very high value increases I/O contention
significantly thereby lowering effective 1/O throughput.
Falcon-32 yields 5% higher throughput than Falcon in
XSEDE since the optimal concurrency (around 24) is very
close to the concurrency value used by Falcon-32. However,
its throughput is 18% and 47% lower than Falcon despite
using a high concurrency value. This is mainly because of
I/0O performance degradation as a result of increased I/0
contention. That is, effective I/O throughput degrades sig-
nificantly as the number of competing processes increases.
As a result, using a predefined high-concurrency value for
file transfers increases system overhead (Figure[3) and leads
to degraded throughput in some networks due to causing
I/0O contention.

5.4 Multiparameter Optimization

Although concurrency is the most effective parameter in
increasing transfer throughput due to offering both I/O and

10

— 32000 e Globus

3 ——HARP %

Qo —— Fal

S 24000 T lon e gk‘ %‘i‘i

3 16000 /:3:3 /3:31

5 Vi W

g & 7 N9

g gl NZE N7

£ N N7 N
o ENNZ TNZ BN

Small Large Mix
(1KB-10MB) (100MB-10GB) (1KB-10GB)

Dataset

Fig. 12. Performance evaluation of Falcon for multiparameter optimiza-
tion.

— 15000 _ GlobusHARP __Falcon
2
s
< 10000
>
Q.
<
2 5000
3 pr— —r—
e
'_
0
0 60 120 180 240 300

Time (S)

Fig. 13. Behaviour of Falcon when competing against non-
Falcon transfers. It grabs its fair share plus unused capacity of the
network to increase utilization without being too aggressive.

network parallelism, additional transfer parameters such as
network parallelism and command pipelining can be tuned to
further improve transfer performance, especially for long-
running transfers. Parallelism determines the number of
concurrent network connections to transfer a file, which can
be helpful to improve the performance in case the transfer
dataset consists of very few large files. Pipelining, on the
other hand, sends multiple file transfer commands to source
and destination servers back-to-back so that the transfer of
the next file can start immediately after the previous one
is completed. Pipelining is mainly helpful when transferring
many small files by eliminating the pauses between con-
secutive transfers. In terms of system overhead, parallelism
can overburden network resources by creating too many
concurrent flows. On the contrary, pipelining has negligible
impact on system resources since it merely caches the name
of the next file(s) to transfer. Therefore, we modified the
cost function in Equation [to incorporate a penalty term for
parallelism as

(i X pi)t;
K i Xpi

where p; refers to the level of parallelism. Note that parallelism
can be used together with concurrency, so n; x p; is used to
calculate the total number of network connections created
for a given transfer. As an example, if parallelism is set to
4 while concurrency is set to 5, then Falcon will transfer
5 files simultaneously and use 4 network connections for
each file. We utilized conjugate gradient descent to optimize
the search process as it provides an efficient solution for
multiparameter optimization problems [34].

Figure |12| demonstrates the performance of different al-
gorithms for multiparameter optimization to optimize trans-
fers between Stampede2 to Expanse clusters. We evaluate
the performance for the transfer of three different datasets

u(ng, ti, L;) = —n;t;L; x B (6)

as small that contains files whose size range between 1
KiB to 10 MiB for a total of 120 GiB, large which contains
files whose size range between 100 MiB to 10 GiB with a
total of 1 TiB, and mixed that includes all files in small and
large datasets with a total size of 1.2 TiB. We observe that
Falcon yields up to 30% higher throughput when used
to tune (concurrency, parallelism, and pipelining altogether
(Falcon_MP) compared to its performance when tuning
only concurrency (Falcon) for small and mixed datasets. This
can be attributed to the importance of command pipelining
when the dataset contains very small files. On the other
hand, it results in 18% decrease in overall throughput for
the large dataset which can be attributed to two reasons.
First, the utility function for multiparameter optimization
(Equation@ is not strictly a concave function; thus, there is
no guarantee that it will converge to the optimal solution.
Second, multiparameter optimization takes a significantly
longer time (up to 3x longer) to converge to a solution
compared to single parameter optimization, causing more
time to be spent in the search phase during which the
transfer throughput is typically lower than the convergence
throughput.

5.5 Friendliness Towards Non-Falcon Transfers

To evaluate the Falcon’s friendliness to Globus and HARP,
we run Falcon along with the others for the transfer of a
1.1TiB dataset (consisting of files whose size are between
100MiB and 10GiB) between Stampede2 and Expanse clus-
ters. When the Globus transfer is started, is selects the
concurrency value of 2 and obtains 4.9 Gbps throughput.
Then, we initiate the HARP transfer which creates 11 con-
current transfers and attains 10.5 Gbps, which does not
affect the performance of the Globus transfer as end-to-end
transfer capacity is more than their cumulative throughput.
Finally, we start the Falcon transfer at around 120s. The
Falcon transfer increases its concurrency gradually and
converges to 16 —18, which returns 12— 13 Gbps throughput
as shown in Figure (13| Although it evaluates higher concur-
rency values and observes an increase in throughput, the im-
provement rate does not meet the desired level (i.e., nearly
2% for every concurrency value) once aggregate utilization
is close to the capacity. As a result, it affects the performance
of Globus and HARP transfers only marginally (around
15 — 20%). Therefore, it is fair to say that Falcon “plays
well” in the presence of non-Falcon transfers by utiliz-
ing the spare capacity and avoiding aggressive behaviour
against the competing flows.

5.6 Comparison Against a Static Solution

One may argue that using a fixed setting (e.g., a fixed con-
currency value of 4) for a transfer may result in better overall
throughput, especially for short transfers, due to Falcon’s
suboptimal performance during the search phase. In other
words, the cost of searching for the optimal may outweigh
the gain if a transfer does not last long enough. Figure
illustrates this by comparing the throughput of online search
and a static solution (aka fixed concurrency). We pick the
value of concurrency for the static solution somewhere be-
tween the optimal and Falcon’s initial value such that the
static solution will yield a better throughput than Falcon in

11

0 t4 t.

>

(t,n) (tan) Faicon
T‘| —————————— T T
1 1
— 1 1
=] | 1 Static Solution
e B I 1
o 1 1
I 1 1
=3 1 |
- 1 1
~ \ | |Break-even
1 1 Time
1 1
1 : /
2

Time

Fig. 14. Falcon requires transfers to run long enough to attain higher
overall throughput than using a fixed, suboptimal concurrency value.

HEADER PAYLOAD | |SIGNATURE
/ j \
T
RSASHA256(

("scope":
oy 0 D "concurrency:/arif/8
..zp..j ,.‘évggsé,, bw_bps:/arif/5000000000
) HE direct_jo:/arif/0
read:/data/arif/",)

<header>,
<payload>,
<secret key>

Fig. 15. Sample JSON Web Token structure. We extended the payload
with transfer-specific scope attributes.

the search phase but worse than Falcon after it discovers
the optimal. We believe this is a fair assumption since the
optimal concurrency value is dependent on many factors
that cannot be estimated ahead of time; thus we assume
that the user will set a value such as 4 that is expected to
return a reasonable performance in most scenarios while not
imposing too much overhead to the system. On the other
hand, Falcon starts with a small concurrency value (i.e.,
1) and converges to the optimal using OGD. Hence, the
average throughput of Falcon will be lower than the static
setting until it finds the optimal and makes up the differ-
ence. Apparently, “the break-even time” depends on several
factors, including the throughput of fixed concurrency, the
throughput of Falcon at the beginning as well as upon
converge, and the duration of the search phase. Equation
presents a condition that must satisfy to reach the break-
even point. The break-eve time, ¢35, can be calculated as

ty = (n—a)xt %

2x(n—=p)

where a and 7 are Falcon’s initial and convergence
throughput, 3 is the throughput of the static solution, and
t; is the OGD’s convergence time.

Please note that although Falcon converges to the op-
timal (i.e., n) almost at an exponential rate (as can be seen
in Figure [8) with the help of gradient descent algorithm,
we simplify the problem by assuming that it converges
at a linear rate. Also, the break-even time can be reached
before Falcon converges the optimal (ie, to < tp) if
difference % is less than 2; i.e., the difference between
Falcon’s convergence throughput and the throughput of
the static solution (n — f) is larger than the difference
between the throughput of the static solution and Falcons
initial throughput (8 — «). We validated the accuracy of this
estimation in HPCLab where ¢; = 20s, o = 7.9Gbps, n =

27.5Gbps, and 5 = 20.5Gbps for a fixed concurrency value
of 4. Based on these values, Equation [Z returns t, = 28s.
Our experimental results show that Falcon attains similar
throughput as the fixed concurrency of 4 in 25 — 30 seconds.
Similarly in ESnet, ¢; is around 15 seconds, a = 16.5Gbps,
1 = 84Gbps, 8 = 48.5Gbps when using concurrency value
of 4 for the static solution. Equation[/Jreturns ¢, = 14s while
experimental results obtain {9 = 14—15s. Hence, Equation
provides a fairly close estimation of minimum necessary du-
ration for Falcon to outperform a static solution. One can
translate the break-even time to dataset size by multiplying
it with the throughput of the fixed concurrency method,
B. In HPCLab and ESnet, minimum data sizes correspond
to approximately 27GiB and 84GiB, respectively, which are
relatively small numbers compared to the bandwidth of
these networks.

5.7 Falcon as a Central Scheduler

As mentioned in Section [} the centralized mode allows
user to submit their transfers using a cloud-hosted web
server. As authentication/authorization is an important
component for such a web-based transfer scheduler, we
implemented the widely adopted authorization delegation
protocol OAuth 2.0 [35]-based authentication using JSON
Web Tokens JWT). OAuth lets resource servers issue bearer
tokens (e.g., JWTs) with minimal privileges to perform spe-
cific tasks such as retrieving user information or reading a
file from the file system. Doing so minimizes attack surfaces
for bad actors and resource consumption malpractices by
authorized users. Upon receiving a JWT token (either di-
rectly from the end point or through an identity federation
service such as CILogon), Falcon Web Server passes the
token to Falcon agent running on the data transfer node
using a pub/sub message channel. The agent can verify
the authenticity of the token itself as token issuers sign
JWT tokens with their private keys. It then can decode the
token to access metadata and payload to check for resource
limits. The unique benefit of JWT is the ability to define
high-granularity user access privileges using attributes. In
other words, JWTs let system administrators define complex
policies to control user privileges at the time of token
issuance such that user access can be controlled with great
flexibility. For instance, a system administrator may define
two different limits for the same user depending on the time
of the transfer in a way that transfers that are scheduled
for off-peak hours (e.g., night times, weekends, etc.) can be
rewarded with higher throughput.

We implemented two transfer-specific attributes as maxi-
mum throughput and maximum concurrency that can be em-
bedded in JWTs to control the throughput of transfers.
Figure [15| presents a sample token issued with bandwidth
limitation to throttle transfer throughput. We implemented
an application-level approach to apply throughput limits,
which periodically checks the transfer throughput and puts
transfer threads into short sleeps (in the order of 100s of mil-
liseconds) if their throughput is higher than the permitted
rate.

5.7.1 Performance Analysis

Figure [L6|demonstrates performance comparison for decen-
tralized and centralized versions of Falcon when there is

—_
N

100 geen 409 __ 100 ree 40 »
2 | VR e e e 2 ® [e 2
8 751 LAY ‘\.,0‘ "\‘,.0 VT 30 % (% 75- I | %4 00,0% %0 S 0 30 %
= 50 I « Throughput 20 C 5 50 4 » Throughput 20 =
_g- I = Concurrent Transfers % _g— / = Concurrent Transfers iq:)
=] E O =
g s m £ g 4 =
o 25 / ,'l ."\ e my ,-’."- -y m 10 3 o 25- d -'..‘- ,-’."- —y ,-.-" 103
S © = Tl Tl s < VAR L e L 5
Pl 00 T g 0O
0 10 20 30 0 10 20 30

Sample Transfers Number Sample Transfers Number

(a) Decentralized (b) Centralized

Fig. 16. Performance comparison of centralized and decentralized
Falcon implementations when managing a single transfer. They both
reach maximum network utilization using as minimum concurrency as
possible.

a single transfer in the system. We run transfers in ESnet
testbed with 100Gbps bandwidth, 89ms RTT, and 80 Gbps
I/0O write throughput. We can observe that both centralized
and distributed approaches are able to converge to the opti-
mal in around 10 seconds. We observed similar behavior in
other testbeds in terms of converging to the optimal solution
as quickly as decentralized Falcon transfers. Thus, we
can say that the centralized approach does not suffer from
increased convergence times because of separating transfer
executor (i.e., Falcon agent) and online optimizer compo-
nents. Figure [17] shows the throughput of three competing
flows when they are scheduled using decentralized and
centralized Falcon implementations. Clearly, the central-
ized implementation does not only reduce convergence time
but also minimizes throughput fluctuations. The primary
reason behind this is the inverse relationship between the
speed of convergence and the number of participants in
non-cooperative multiplayer games [36]]. In other words, al-
though both decentralized and centralized implementations
are guaranteed to converge to a fair and optimal solution,
convergence speed is slower when agents are independent
(i.e., decentralized). Therefore, scheduling and controlling
transfers using a central server offers improved convergence
speed and stability over a decentralized implementation.

We also assessed the impact of running centrally
managed Falcon transfers along with decentralized
Falcon transfers in Figure In the example, Transfer 1
is running a decentralized implementation while Transfer 2
and Transfer 3 are controlled by a central Falcon scheduler.
A key observation we make here is that the decentralized
Falcon agent (Transfer 1) grabs half of the total bandwidth
even though there are three transfers running simultane-
ously. This is due to using a single optimizer for all centrally
managed Falcon transfers, which effectively acts as a sin-
gle decentralized Falcon transfer. Although it’s possible
to modify the utility function of the central Falcon server
to incorporate the number of managed transfers to attain
higher throughput, we defer it as a potential area for future
investigation.

5.7.2 Policy Enforcement

We next demonstrate the policy enforcement capability of
the central Falcon scheduler. Figure[I8|shows the through-
put of three transfers when bandwidth limitation is de-
fined in the token of one of the transfers. The token for
Transfer 1 task specified bandwidth limitation of 5Gbps, so
the Falcon agent running at the source site throttles the

13

__ 100 § — Transfer 1 100 q — Transfer 1 100 — Transfer 1 (Distributed)
2 !b .. Transfer 2 ' 2 f .. Transfer 2 4 :{ .. Transfer 2 (Central 1)
| bt - ' — [t
8 75 | “{ Transfer 3 ml‘ 8 75 Mf\' Transfer 3 ﬁ 8 75 :.,1. '} Tranfer 3 (Central 2) [‘J'
= 1 : = 1 ~ .
5 1 i 5 1l A4 5 ! |
g5 1\ |2 s |¥| ! Il; 32 50 | U —]
5 | R VLI S T VT i ¥
o 25 ! 2 25 I g d’“”"ﬂﬂf"_f‘ e sy)L ! i 9 'lj
= 1 =] [} I =] H
[= [= [= /]
0 0 0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Time (S) Time (S) Time (S)

(a) Decentralized Competition

(b) Centralized Competition

(c) Decentralized and Centralized Competition

Fig. 17. Convergence analysis for (a) decentralized and (b) centralized Falcon implementations when managing multiple transfers. Centrally
managed Falcon transfers converge to a fair and optimal solution quickly and experience fewer level of throughput fluctuations compared to
the decentralized Falcon transfers. Additionally, centrally-managed transfers share resources fairly when competing against the decentralized

Falcon transfer (c).

.80 ;... — Iransfer 1 (Bandwidth Limited)
3 -t L. Transfer 2
a ’ :— Transfer 3
o 60 . -
§_ 40 E) i
Do PR BB L LY
3 .
£ l !
= LD E N F Ll
0 100 200 300
Time (S)

Fig. 18. Falcon agents can enforce throughput limitations defined in
authorization tokens.

throughput accordingly even if the fair share of the transfer
is higher. On the other hand, tokens of Transfer 2 and Transfer
3 do not include any limitations, so they share the available
resources equally. We also implemented the concurrency
attribute in tokens to limit how many concurrent transfer
threads can be created for a transfer task. Different from
throughput limitations, the concurrency limitation provides
an opportunity to manage available compute capacity on
transfer nodes. While it is possible to extend the decentral-
ized Falcon implementation to realize and enforce resource
limitations, the centralized version lends itself to this mis-
sion much better as it is designed to only work with tokens
to run a transfer.

6 CONCLUSION AND FUTURE WORK

File transfers in high-speed networks require end-to-end
parallelism to efficiently utilize available resources. How-
ever, determining the optimal level of parallelism is a chal-
lenging task as suboptimal solutions can lead to underuti-
lization or overwhelmed network and file systems. Previous
work in this area implemented heuristic and supervised
learning solutions both of which fail to satisfy high re-
source utilization while inducing low overhead to end sys-
tems and networks. To address this problem, we introduce
Falcon that combines a novel utility function with state-
of-the-art online optimization techniques to guarantee high
performance, fair resource sharing, and minimal overhead.
Specifically, Falcon innovates a novel utility function that
rewards high throughput while penalizing for increased
packet loss and the number of active concurrent processes.
It also utilizes an online gradient descent algorithm to scan
search space efficiently. The experimental results show that
Falcon yields up to 6x higher throughput compared to

state-of-the-art solutions while keeping its overhead at a
minimum. More importantly, Falcon converges to a fair
and stable state in the presence of multiple independent
transfers. We also demonstrate that Falcon can be used as
a central transfer scheduler to increase the convergence time
and stability of competing transfers in addition to enforcing
access policies defined by system administrators.

In the future, we plan to evaluate the performance of
Falcon for emerging congestion control algorithms such
as BBR [15] to check the feasibility of developing a con-
gestion control algorithm-agnostic solution. Moreover, we
aim to explore cross-layer optimization solutions to tune
application- (e.g., the number of concurrent transfers) and
transport- (e.g., loss and delay tolerance) layer parameters
together to remove redundancies and increase the system
stability.

ACKNOWLEDGEMENT

The work in this study was supported in part by the NSF
grants 2145742, 2007789, and 2209955.

REFERENCES

[1] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The
science dmz: A network design pattern for data-intensive science,”
Scientific Programming, vol. 22, no. 2, pp. 173-185, 2014.
“Stampede2,” https:/ /www.tacc.utexas.edu/systems/stampede2,
2023.
“Expanse,”
2023.

I. Alan, E. Arslan, and T. Kosar, “Energy-aware data transfer
algorithms,” in SC’15: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2015, pp. 1-12.

B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy,
R. Kettimuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and
S. Tuecke, “Software as a service for data scientists,” Communi-
cations of the ACM, vol. 55:2, pp. 81-88, 2012.

E. Arslan, B. Ross, and T. Kosar, “Dynamic protocol tuning algo-
rithms for high performance data transfers,” in European Conference
on Parallel Processing. Springer, 2013, pp. 725-736.

M. S. Z. Nine and T. Kosar, “A two-phase dynamic throughput
optimization model for big data transfers,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 2, pp. 269-280, 2020.

E. Arslan, K. Guner, and T. Kosar, “Harp: predictive transfer
optimization based on historical analysis and real-time probing,”
in High Performance Computing, Networking, Storage and Analysis,
SC16: International Conference for. IEEE, 2016, pp. 288-299.

D. Yun, C. Q. Wu, N. S. V. Rao, Q. Liu, R. Kettimuthu, and E. Jung,
“Data transfer advisor with transport profiling optimization,” in
2017 IEEE 42nd Conference on Local Computer Networks (LCN), 2017,
pp. 269-277.

(2]
(3]
(4]

https:/ /www.sdsc.edu/services/hpc/expanse/,

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
(31]
[32]
[33]

[34]

[35]

[36]

E. Yildirim, E. Arslan, J. Kim, and T. Kosar, “Application-level
optimization of big data transfers through pipelining, parallelism
and concurrency,” IEEE Transactions on Cloud Computing, vol. 4,
no. 1, pp. 63-75, 2015.

M. Arifuzzaman and E. Arslan, “Online optimization of file trans-
fers in high-speed networks,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1-13.

J. Borrill, E. Dart, B. Gore, S. Habib, S. T. Myers, P. Nugent, D. Pe-
travick, and R. Thomas, “Improving data mobility & management
for international cosmology: Summary report of the crossconnects
2015 workshop,” 2015.

D. Leith and R. Shorten, “H-tcp: Tcp for high-speed and long-
distance networks,” in Proceedings of PFLDnet, vol. 2004, 2004.

M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira, “{PCC} vivace: Online-learning congestion control,”
in 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18), 2018, pp. 343-356.

N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, no. 5,
p- 50, 2016.

N. Freed, “SMTP service extension for command pipelining,”
http:/ /tools.ietf.org /html/rfc2920.

T.]. Hacker, B. D. Noble, and B. D. Atley, “Adaptive data block
scheduling for parallel streams,” in Proceedings of HPDC ’'05.
ACM/IEEE, July 2005, pp. 265-275.

W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, and I. Foster, “The globus striped gridftp framework
and server,” in Proceedings of the 2005 ACM/IEEE conference on
Supercomputing. 1EEE Computer Society, 2005, p. 54.

“Globus,” https:/ /www.globus.org, 2021.

Z. Liu, R. Kettimuthu, I. Foster, and N. S. Rao, “Cross-geography
scientific data transferring trends and behavior,” in Proceedings of
the 27th International Symposium on High-Performance Parallel and
Distributed Computing. ACM, 2018, pp. 267-278.

P. Thaker, M. Zaharia, and T. Hashimoto, “Learning and utility in
multi-agent congestion control,” optimization, vol. 24, no. 10, pp.
11-18.

Y.-T. Li, D. Leith, and R. N. Shorten, “Experimental evaluation of
tep protocols for high-speed networks,” IEEE/ACM Transactions on
networking, vol. 15, no. 5, pp. 1109-1122, 2007.

E. Hazan, “Introduction to online convex optimization,” Founda-
tions and Trends® in Optimization, vol. 2, no. 3-4, pp. 157-325, 2016.
M. Zinkevich, “Online convex programming and generalized in-
finitesimal gradient ascent,” in Proceedings of the 20th International
Conference on Machine Learning (ICML-03), 2003, pp. 928-936.
“Internet2 Next Generation Infrastructure Update,”
https:/ /internet2.edu/internet2-next-generation-infrastructure-
update-29-packet-nodes-connected-by-40-400g-links-gdt-install-
completes-on-schedule/, 2021.

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of Global
optimization, vol. 13, no. 4, pp. 455492, 1998.

A. Zilinskas and J. Zilinskas, “Global optimization based on a
statistical model and simplicial partitioning,” Computers & Mathe-
matics with Applications, vol. 44, no. 7, pp. 957-967, 2002.

A. Zhigljavsky and A. Zilinskas, Stochastic global optimization.
Springer Science & Business Media, 2007, vol. 9.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Fre-
itas, “Taking the human out of the loop: A review of bayesian
optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175,
2015.

“Bridges-2,” https:/ /www.psc.edu/resources/bridges-2/, 2023.
“iPerf3,” https:/ /github.com/esnet/iperf, 2023.

“Bonnie++,” https:/ /linux.die.net/man/8/bonnie++, 2021.

W. Allcock, “Gridftp: Protocol extensions to ftp for the grid,”
Internet Draft, Mar. 2001, 2001.

Y.-H. Dai and Y. Yuan, “A nonlinear conjugate gradient method
with a strong global convergence property,” SIAM Journal on
optimization, vol. 10, no. 1, pp. 177-182, 1999.

“The oauth 2.0 authorization framework,” https://www.rfc-
editor.org/rfc/rfc6749, 2022.

S. C. Wiese and T. Heinrich, “The frequency of convergent games
under best-response dynamics,” Dynamic Games and Applications,
vol. 12, no. 2, pp. 689-700, Jun 2022.

14

Md Arifuzzaman is Ph.D. candidate in Com-
puter Science and Engineering at University of
Nevada, Reno. He received his BS in Computer
Science from the Bangladesh University of En-
gineering and Technology in 2016 and his MS in
Applied Statistics from East West University in
2019. His research focus is modeling, optimiza-
tion, and anomaly detection for high-speed data
transfers.

Brian Bockelman is currently an Associate Sci-
entist at the Morgridge Institute for Research,
University of Wisconsin—Madison. His research
interests are in research computing and dis-
tributed high-throughput computing (DHTC). For
over a decade, he has worked with the Open
Science Grid on issues in distributed high-
throughput computing. He now serves as the
Technology Area Coordinator, leading the evolu-
tion of the technologies used by the OSG. Within
Nebraska, he served as a Key Staff Member of
the Holland Computing Center from 2008 to 2019 and as an Asso-
ciate Research Professor with the Computer Science and Engineering
Department and worked on the CMS Project, which hosts significant
computing resources at the Holland Computing Center

James Basney is a senior research scientist in
the cybersecurity group at the National Center
for Supercomputing Applications at the Univer-
sity of lllinois at Urbana-Champaign. Jim’s area
of expertise is identity management for scien-
tific collaborations. He is the Pl of the ClLogon
project and co-Pl of the Center for Trustworthy
Scientific Cyberinfrastructure and the Software
Assurance Marketplace. Jim also contributes to
the LIGO, LSST, and XSEDE projects. Jim re-
ceived his Ph.D. in computer sciences from the
University of Wisconsin-Madison.

Engin Arslan is an Assistant Professor at the
Department of Computer Science and Engineer-
ing at the University of Nevada, Reno (UNR).
He received Ph.D. from University at Buffalo in
2016 and worked at National Science for Su-
percomputing Applications (NCSA) as a post-
doctoral research associate before joining UNR.
His research interests include high-performance
computing and networking, edge/cloud comput-
ing, and quantum networking. His work in these
areas has been funded by the National Science
Foundation, the Department of Energy, Amazon Web Services, and
UNR. Most notably, he was the recipient of the prestigious NSF CA-
REER in 2022. He serves on several committees including the review
board of IEEE TPDS and the UNR Cyberinfrastructure Committee.

	Introduction
	Related Work
	Motivation
	Falcon: Online High-Speed File Transfer Optimization Algorithm
	Utility Function
	Online Search Algorithm

	Evaluation
	Efficiency for Single Transfer
	Convergence Analysis for Competing Falcon Transfers
	Comparison to State-of-the-Art
	Multiparameter Optimization
	Friendliness Towards Non-Falcon Transfers
	Comparison Against a Static Solution
	Falcon as a Central Scheduler
	Performance Analysis
	Policy Enforcement

	Conclusion And Future Work
	References
	Biographies
	Md Arifuzzaman
	Brian Bockelman
	James Basney
	Engin Arslan

