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Abstract
Let F be a CM number field. We generalise existing automorphy lifting theorems for regular residually irreducible
p-adic Galois representations over F' by relaxing the big image assumption on the residual representation.
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1. Introduction

This paper closely builds on [ACC"18], which proves modularity lifting theorems for regular n-
dimensional Galois representations over a CM number field ' without any self-duality condition. In this
paper, we generalise the main results of [ACC* 18] to relax the big image assumption on the residual rep-
resentation from ‘enormous image’ to ‘adequate image’. Following [Tho12], we define ‘adequate image’:

Definition 1.1. Let k£ be a finite field of characteristic p, such that p 4 n, and let G ¢ GL, (k) be a
subgroup which acts absolutely irreducibly on V = k". We suppose that k is large enough to contain all
eigenvalues of all elements of G. If g € G and « € k is an eigenvalue g, we write eg o : V — V for the
g-equivariant projection to the generalised a-eigenspace. We say that G is adequate if the following
conditions are satisfied:

1. H%(G,ad" V) = 0.
2. HY(G,k) =0.
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2 K. Miagkov and J. A. Thorne

3. H'(G,ad" V) = 0.
4. For every irreducible k[G]-submodule W c ad’ V, there exists an element g € G with an eigenvalue
a, such that tr e W # 0.

Our main theorems are as follows:

Theorem 1.2. Let F be an imaginary CM or totally real field, let ¢ € Aut(F) be complex conjugation
and let p be a prime. Suppose given a continuous representation p : G — GL,(Q,,) satisfying the
following conditions:

p is unramified almost everywhere.
For each place v | p of F, the representation p|c.., is crystalline. The prime p is unramified in F.

p is absolutely irreducible and decomposed generic. The image of plG,. ) 1S adequate.

There exists o € Gr — GF(g,), such that p(c) is a scalar. We have p > n’.

There exists a cuspidal automorphic representation n of GL,(Afg) satisfying the following
conditions:
(a) = is regular algebraic of weight A, this weight satisfying

R e

/l‘r,l + A‘rc,l - /lT,n - /l‘rc,n <p- 2n

forall T. B
(b) There exists an isomorphism ¢ : Q,, — C, such that p = r,(r), and the Hodge-Tate weights of

p satisfy the formula for each v : F — Q,,:
HT (p) ={Ayrn+n—-1,Az20+n—=2,...,zn}.

(c) Ifv | pisaplace of F, then m, is unramified.
Then p is automorphic: there exists a cuspidal automorphic representation Il of GL,, (Ar) of weight A,
such that p = r,(IT). Moreover, if v is a finite place of F and either v | p or both p and n are unramified
at v, then I1,, is unramified.

Theorem 1.3. Let F be an imaginary CM or totally real field, let ¢ € Aut(F) be complex conjugation
and let p be a prime. Suppose given a continuous representation p : Gr — GL,(Q,,) satisfying the
following conditions:

1. p is unramified almost everywhere.
2. LetZ = {(A1,...,4y) €Z" | A1 2 ... 2 A,}. For each place v | p of F, the representation p|c,
is potentially semistable, ordinary with regular Hodge-Tate weights. In other words, there exists a

weight A € (Z)Hom(F -Q0), such that for each place v | p, there is an isomorphism

l/’v,l * * *
0 Yy % *
plGFV ~ . . >
: ok
0 ... 0 ¥y,
—X
where for each i =1, ..., n the character y, ; : Gr, — Q,, agrees with the character

oelp, - l_[ 7(Arty! (o))~ Armen =D
TEHom(FV,ap)

on an open subgroup of the inertia group I, .
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3. p is absolutely irreducible and decomposed generic. The image of Pl ) is adequate.
4. There exists o € Gg — Gp({p), such that p(o) is a scalar. We have p > n.

5. There exists a cuspidal automorphic representation w of GL,, (Ar) and an isomorphism ¢ : 61, - C,

such that r is t-ordinary and p = r, (7).

Then p is ordinarily automorphic of weight (A: there exists a t-ordinary cuspidal automorphic repre-
sentation I1 of GL,,(AF) of weight 1A, such that p = r,(I1). Moreover, if v 1 p is a finite place of F and
both p and m are unramified at v, then 11, is unramified.

The theorems above are very similar to [ACC* 18, Theorem 6.1.1] and [ACC" 18, Theorem 6.1.2],
respectively. The only difference is replacing the enormous condition on image of Pl ) with
adequate. This is a useful improvement, particularly in light of [GHTT12], which proves that when
p > 2(n + 1), adequacy is equivalent to absolute irreducibility. This makes it a condition easy to
work with in the context of automorphy of compatible systems, which we hope would help generalise
[BLGGT14] to the context of [ACC* 18] and this paper. We now give a brief overview of the argument.
The main change in comparison to [ACC* 18] is the usage of parahoric-level subgroups at Taylor-Wiles
primes instead of Iwahori-level, the idea first introduced to relax the big image assumption in the
setting of automorphy lifting theorems to ‘adequate’ in [Thol2]. To make the argument work in the
parahoric setting, we need to analyse the representations of GL,, (F, ) with fixed vectors under various
parahoric subgroups and their interactions with the local Langlands correspondence. A notable difficulty
in comparison to [Tho12] is that we can no longer restrict to working with generic local representations,
since they arise as components of cuspidal automorphic representations of unitary groups instead of
GL,,. The local computations allow us to prove the necessary local-global compatibility results for
Galois representations landing in Hecke algebras acting on cohomology of locally symmetric spaces
with parahoric level. Another novel component is a proof of a ‘growth of the space of cusp forms’-
type result when adding Taylor-Wiles primes with parahoric level, which requires an investigation of
representations of GL,, (F, ) over fields of finite characteristic.

1.1. Notation

We write GL,, for the usual general linear group (viewed as a reductive group scheme over Z) and
T, ¢ B, c GL, for its subgroups of diagonal and of upper triangular matrices, respectively. We
identify X*(T") with Z" in the usual way and write Z7] c Z" for the subset of B,-dominant weights. If R
is a local ring, we write mg for the maximal ideal of R. If I" is a profinite groupand p : I' = G L, ( 6[,)

is a continuous homomorphism, then we will let p : I’ — GL,,(F,,) denote the semisimplification
of its reduction, which is well defined up to conjugacy (by the Brauer-Nesbitt theorem). If M is
a topological abelian group with a continuous action of T', then by H'(I", M), we shall mean the
continuous cohomology. If G is a locally profinite group, U C G is an open compact subgroup and R
is a commutative ring, then we write Hg (G, U) for the algebra of compactly supported, U-biinvariant
functions f : G — R, with multiplication given by convolution with respect to the Haar measure on
G which gives U volume 1. If X ¢ G is a compact U-biinvariant subset, then we write [X] for the
characteristic function of X, an element of Hz (G, U). When R is omitted from the notation, we take
R = Z. We write 13, for the anti-involution given by 13 (f)(g) = f(g™").

If F is a perfect field, we let F denote an algebraic closure of F and G the absolute Galois group
Gal( F/F). We will use £, to denote a primitive n-th root of unity when it exists. Let ¢ denote the /-adic
cyclotomic character. We will let reck be the local Langlands correspondence of [HT01], so that if 7 is
an irreducible complex admissible representation of G L,,(K), then reck () is a Frobenius semisimple
Weil-Deligne representation of the Weil group Wk . If K is a finite extension of Q,, for some p, we write
K™ for its maximal unramified extension, Ik for the inertia subgroup of Gk, Frobx € G /Ik for the
geometric Frobenius and W for the Weil group. We will write Artg : KX — W,a<b for the Artin map
normalised to send uniformisers to geometric Frobenius elements.
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4 K. Miagkov and J. A. Thorne

We will write rec for reck when the choice of K is clear. We write recﬁ for the normalisation of
the local Langlands correspondence as defined in, for example [CT14, Section 2.1]; it is defined on
irreducible admissible representations of G L, (K) defined over any field which is abstractly isomorphic
to C(e.g. Q). If (r, N) is a Weil-Deligne representation of Wi , we will write (r, N)F=53 forits Frobenius
semisimplification. If p is a continuous representation of Gx over Q; with [ # p, then we will write
WD(p) for the corresponding Weil-Deligne representation of Wx. By a Steinberg representation of
GL, (K), we will mean a representation Sp, () (in the notation of Section 1.3 of [HT01]), where y is
an unramified character of K*.

If G is a reductive group over K and P is a parabolic subgroup with unipotent radical N and Levi
component L, and if 7 is a smooth representation of L(K), then we define Indg (? 7 to be the set of locally
constant functions f : G(K) — x, such that f(hg) = n(hN(K))f(g) forall h € P(K) and g € G(K).
It is a smooth representation of G(K), where (g1f)(g2) = f(g2g1). This is sometimes referred to as
‘un-normalised’ induction. We let § p denote the determinant of the action of L on Lie . Then we define

the ‘normalised’ induction indg((llg)) 7 to be Indg((g)) (r®16p| ;(/ 2). We also define a parabolic restriction
P(K)

G(K) from G (K)-representations to L(K)-representations to be the composition of restriction to
P(K) and taking N (K)-coinvariants. If F is a CM number field and 7 is an automorphic representation of
GL, (AF), we say that 7 is regular algebraic if 7, has the same infinitesimal character as an irreducible
algebraic representation W of (Resy/q GL,)c. If W has highest weight 1 € (Z7)Hom(F.©) 'then we say
7 has weight A.
If P(X) € A[X] is a polynomial of degree n over any ring A, such that P(0) € A*, we write P¥(X)
for P(0)"'X"P(X~"). For two polynomials P, Q € A[X], we write Res(P, Q) to denote their resultant.
Given a Galois representation p : G s — GL,(A), we will write p* := p¥ ® €'7%", and given a
G _s-group determinant D, we will denote by D+ the corresponding dual.

functor r

2. Representation theory of GL, (F) ) in characteristic p

Let p be a rational prime and k = F,,. Let F/Q be a finite extension, and let x be a prime in F
with residue field k, of order ¢ satisfying ¢ = 1 (mod p) and the corresponding ring of integers
Oy = OF,. Set G, = Gal(Fy/Fy). Also set G = GL,, with p > n, and let T ¢ B C G be the
maximal torus and the corresponding Borel and U G be the unipotent subgroup. Let K! (x) ¢ G(Oy)
be the full congruence subgroup. We also let Iw,Iw; Cc G(Oy) be the Iwahori and the Iwahori-1,
respectively, and let Iw; C IwP C Iw be the subgroup, such that [Iw” : Iw;] has order prime to p and
[Tw : IwP] has p-power order. Let p(x) be a two-block parahoric subgroup of G(O,) with blocks of
sizes n| + ny = n and P the corresponding parabolic. Let W = S, be the Weyl group for GL,,, and for
a given parabolic subgroup Q C G, let Wp C W be the Weyl group of its Levi factor. Set Ty := T(Oy)
and T = ker(Ty — T(O,/w)). Fix p : Gy — GL,(k)—a continuous unramified semisimple
representation. We say that an irreducible admissible representation 7 of G over £ is associated to p if &
is a subquotient of Indg X19®...Q )y, where y; are unramified characters, such that { y; (@), . . ., xn (@)}
is the set of eigenvalues of p(Frob, ). We write I(y) for Indg X19®...8 xy. The following lemma shows
that if we do not fix the ordering of y;, then we can always consider 7 to be a subrepresentation of /().

Proposition 2.1. Let w be an irreducible admissible k| G|-module associated to p. Then there exists an
ordering of x1, - .., Xn» Such that nt is a subrepresentation of I(y).

Proof. We use the adjunction between Indg and the parabolic restriction rg to get an isomorphism
~ B
Hom(z, I(x)) = Hom(rg (7). x).
Since 7 is associated to p, we know that rg(ﬂ) # 0. Since rg () is a representation of the torus, there

exists a 1-dimensional quotient given by some character y : T — k*. Then we get that Hom(r, I(y)) #
0, and since r is irreducible, this implies that 7 is a subrepresentation of I(y). Then y forms the
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supercuspidal support of r and in fact has to be a permutation of the original y1, . .., x,. For the notion
of supercuspidal support in positive characteristic, see [Vig96, 11.2.6]. We would also like to remark,
here, that in the case ¢ = 1 (mod p), p > n, the notions of cuspidal and supercuspidal representations
coincide (see [Vig96, 11.3.9]). m]

We now describe the Bernstein presentation of Iwahori-Hecke algebra H;. (G, Iw), following [Vig96,
1.3.14]. Let

tj =diag(w,...w,1...,1),
J

andset7T; = [Iw¢; Iw] and X J= Ti(Tj-1 )~1. We also let s j be the permutation matrix corresponding to
the transposition (j, j + 1) and set S/ = [Iw s; Iw]. The elements X/ for 1 < j < n generate the group
algebra k[Z"] on which S; acts by permuting the indices. The Bernstein presentation states that

Hi(G,Iw) = k[S, < Z"]

under the action described above.
Now we introduce some useful Hecke operators. For any ring R, 1 <i < njand 1 < j < np let
V72 € Hr(G, p(x)) be the Hecke operator associated to the double coset

[p(x) diag(1,...,1,@,...,@,1,...,)p(x)]
—— —— e’ ——
nj J np—j
and let V¥! be associated to

[p(x) diag(w,...,@,1...,)px)].
HI/—/

The following is part of [CHTOS8, Theorem B.1]:

Proposition 2.2. Let V be an irreducible admissible k[G]-module, which is generated by its Iwahori-
invariant vectors. Then V™% = V™1,

Under the conditions of 2.2, we thus get an isomorphism

H'(Iw, V) = H' (B(k), VK'Y = g(T(k), VI*1)

=~ H'(T(k),V™) = Hom(T (k), V™¥). @3

Both sides of 2.3 can be endowed with the action of H; (G,Iw). On H'(Iw, V), we take the derived
Hi (G, Iw)-action, and on Hom(7'(k), VIV), we consider the natural action on the target.

Proposition 2.4. The isomorphism 2.3 is equivariant with respect to X' forall 1 <i < n.

Proof. The action of X’ on [f] € H'(Iw, V) can be described as follows. Write

IWI[IWZI_Ig[,jIW.
J

We now give an explicit description for g; ;. Fix a set of representatives S € Op for k. For each
m € Mixn-iy(S), let g; ,, be the matrix, such that g; ,,(k, k) = w for k < i, g; m(k,k) = 1for k > i
and g; ,,, (k,€) = m(k,€ —i) for k < i,€ > i. The rest of the entries are set to 0. Let us show that this is
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6 K. Miagkov and J. A. Thorne

a full set of representatives. First we show that g; ,, represent distinct cosets, that is that gi_in i EIw
for m # m’. Suppose m(k, ) # m’(k,¢). Then

(85m8im) (k. C+1) = @™ (m’(k, £) = m(k, ()
which is not in OF. Now we just need to verify that the number of cosets is ¢'"~"). Indeed,
[(Iwt; Iw : Iw] = [Iw : Iw N; Iw t;l] = g'(n=)

since Iw Nt; Iw tt.‘l are just the elements of the Iwahori whose (k, £)-coordinates for k < i, > i vanish
mod .
Then

XL = D 810 (815815
J

where o is the unique permutation, such that
-1
8i o (j)*8i.j € Iw

for all j. Denote by ~ : Iw — T(k) the reduction map. Let s be the inverse of 2.3. For [r] €
Hom(T (k), V%), we get

X' TN = Y gio(ns(D(g7])x80)
J
= 8i0(s (D)D) = s(X[7]) ().
J

The second equality is due to all the g; ; being in the Borel and having the same diagonal. O

Definition 2.5. A G-modules V over k is locally admissible if it is smooth, and for every v € V the
subrepresentation generated by v is admissible. Let C denote the abelian category of locally admissible
G-modules V over k, such that every irreducible subquotient of V is associated to p.

The following is analogous to [CG 18, Lemma 9.14]:

Proposition 2.6. The category C has enough injectives, and the inclusion functor from C to locally
admissible G-modules is exact.

Proof. Inside the category of G-modules, the category C is fully contained inside the unipotent block (the
block containing the trivial representation). By part 4) of [CHTO0S, Theorem B.1], the unipotent block
is equivalent to the category of (G, Iw”)-modules. Via the Bernstein embedding', such modules
can naturally be viewed as H (G, G (O,))-modules, where H (G, G(Oy)) can be explicitly described
via the Satake isomorphism as k[X]il, e, X,fl]W. Here, we use the Satake isomorphism twisted by
|det|'="/2_ which is defined over Z[g~']. If V is any locally admissible element of the unipotent block,
the associated Hecke module V% is locally finite-dimensional over &, and thus we can write

VIWP = VTanp ,
P
where the sum is taken over all maximal ideals of H; (G, G(Oy)). Let D denote the category of locally

admissible representations in the unipotent block. Then we can write D = (B, Dy, where Dy, consists

1For the details on the Bernstein embedding k [Z"] — H (G, I) in the case of an arbitrary open compact subgroup I C Iw,
such that Iw; c I, see [ACC* 18, Section 2.2.4]. We note that there the authors are working over some p-adic ring O, but the
results are valid over k as well since ¢ = 1 (mod p).
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of representations whose associated Hi (G, G(Ox))-module is supported only at m. The maximal
ideals of Hy (G, G(Oy)) have the form (¢; — a1,...,t, — @), where @; € k and t; = ¢;(Xy,..., X,)
is the i-th elementary symmetric polynomial of Xi, ..., X,. If we now let n be the ideal defined by
a; = e;(x1(@), ..., xn(w@)), then it is clear that C = D,. The exactness is now clear, and to show
that C has enough injectives, it is enough to check that the category Modlc'?dm'(k) of locally admissible
G-modules has enough injectives. The full category Modg (k) certainly has enough injectives, and the
functor £ : Modg (k) — Modl'G‘“‘dm‘(k) taking a module to its smooth locally admissible vectors is right
adjoint to the natural embedding Modlé‘dm' (k) — Modg (k). This proves the claim. o

From now on, fix @ = y;(w) forsome 1 <i < n. Let
n
PX) = [ |(X - xi(@)).
i=1

For 1 < j < ny, let P; be a polynomial whose roots with multiplicities are precisely

2. | [xat@.

JcS aelJ
#J=j

Factor P; = Q;R;, where
n A\ ki
Rj(X) = (X—( ?)oﬂ)
J

and Q;, R; are coprime. Set

" m!
eq = lim (1—[ Qj(Vj’Z)) .
i=1

Here, we consider e, as an operator acting on V?(*) for V € C. Since objects in C are locally admissible,
the limit makes sense.
We now define two functors F, G : C — k—Vect. On objects, we set

F(V) = VGO0, G(V) = eqVPW,

Note that F, G are both left-exact and e, is exact. Then we can form derived functors R¥F, R*G and
identify

R¥F(V) = HY(G(0),V),  R¥G(V) = e H (p(x), V).
We have a natural transformation ¢ : F — G given by composing the inclusion VG (Ox) < V?(¥) with

eo. We will make use of the following simple algebraic fact.

Lemma 2.7. Let G be a profinite group and H < G be a normal subgroup. Let A be a p-torsion G-
module for some positive integer p, and let H have pro-q order for a prime g satisfying g = 1 (mod p).
Then the inflation map

inf : H'(G/H,A") —» H'(G, A)
is an isomorphism whose inverse sends a cocycle | f] € H'(G, A) to
g f(e)+(1-gay

for some ay € A.
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8 K. Miagkov and J. A. Thorne
Proof. The condition ¢ = 1 (mod p) ensures that H'(H, A) vanishes. Then it is enough to take
(g — 1)ay to be the coboundary trivialising the restriction of [ f] to H. O
Proposition 2.8. Let 7 be an irreducible admissible k| G|-module associated to p. Then the map
[ H (G), 78 ) S e H' (P(K), 7K' ™)
is injective.
Proof. Both cohomology groups in question inject into H' (B(k), 7K 1 (*)) since
[G(k):B(k)]=n!'#0 (mod p)
when p > n, so let us analyse that group. Since ¢ = 1 (mod p), by inflation-restriction, we get
H'(B(k), 7K' @) = (T (k), 7).

As a special case of 2.3, we have

H'(Iw, 1) = H' (B(k), 75" ™) = Hom(T (k), 7™) = (a™)®". (2.9)

The isomorphism above is equivariant with respect to the natural actions of {X*} on both sides arising
from the actions of Hy (G, Iw) by Proposition 2.4. The space 7™ injects into 7(y)'V, which has a basis
{¢w} for w € W, where ¢,, is supported on Bw Iw and satisfies ¢,, (w) = 1. It follows from the proof
of [Tho12, Lemma 5.10], that on each component of (1(y)™)®", the operator e, acts as a projection
onto the space spanned by {¢,,, | w’ € W'}, where W’ is the subset of W consisting of permutations
which send {n; + 1, ..., n} to the positions of @-s in the sequence y(w), ..., ¥n(w). On the level of
cocycles, the isomorphism 2.9 sends [s] € H'(B(k), 7K' ) to the map

g s(g)+(1-gy

for some ¢ € I(y) (Lemma 2.7). Thus, a cocycle [s] € H' (G (k), I(X)K](")) being in the kernel of f
means that for all r € T'(k) and wg € W’, we have

(s(t) + (1 = 1)) (wo) = 0. (2.10)
For any w € W, we have
() (w) =y (wi) =y (w(Hw) =y (w).

Here, 7 is a lift of 7 to Ty and w acts on the torus in a natural way. Note that here, we used that y is
unramified. Thus

(1 =0)y)(w) =0. (2.11)
Combining 2.10 and 2.11 applied to wg, we get
s(1)(wo) = 0.

Now let us conjugate ¢ by an arbitrary w € W. Since the result is again in 7, we use the cocycle condition
and the transformation law of 7(y) with respect to the Borel to write

0= s(wtw™ ) (wo) = (s(w) +w(s(t) + 1s(w™1))) (wo) (2.12)
(wes(w™")) (wo) = ws(w™") (wo) = =s(w) (wo). (2.13)
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Combining 2.12 and 2.13, we get

0 = (ws(1))(wo) = (1) (wow).

In other words, we now have s(z)(w) = 0 for all t € T'(k) and for all w € W. By 2.11, this implies that
[s] = 0 since {¢,, } make a basis for I(y)™. O

Theorem 2.14. The natural transformation « : F — G given by VO(©x) s ¢ ,V?™) on objects is an
isomorphism of functors. In particular, we get functorial isomorphisms

L HY(G(Ox),V) = e H (p(x), V)

forall k > 0.

Proof. In the proof of Proposition 2.6, we have identified C with a subcategory of H; (G, Iw?)-Mod.
Thus, every element of C is a direct limit of finite length elements of C, and it is, therefore, enough to
establish the isomorphism for finite length V. The first step will be to show that ¢(V) is an isomorphism
for all V € C. For an irreducible subrepresentation 7 C V, consider the diagram

0 > F(m) > F(V) — F(V/nr) — R'F(n)

\Lt(ﬂ) L(V) \Lt(V/ﬂ') lf (2.15)

0 s G(n) > G(V) —— G(V/r) — R'G(n).

To show that ¢(V) is injective, we can use the four lemmas and induct on the length of V. Thus, we only
need to show that ¢(7r) is injective for irreducible z. This is done in [Thol2, Lemma 5.10].

Now we would like to show that ¢(7r) is an isomorphism. Consider the injection 7 C I(x) and the
associated diagram

0 —— F(nr) —— F(I(x)) —— FU(x)/n)

l‘(”) ln(lm) lt(l(x)/ﬂ) (2.16)

0 — G(nr) — GU(x)) — GU(x)/7n).

We already know that ¢(1(y)/n) is injective. Then to show that ¢(r) is surjective by the four lemmas, we
need to know that ¢(()y)) is surjective. This follows once again from the proof of [Tho12, Lemma 5.10].

Finally, we are ready to see that ¢(V) is an isomorphism for all V € C. We induct on the length of V
using Eq. 2.15. Since f is injective by Proposition 2.8, the result follows. O

3. Representation theory of GL, (F,) in characteristic 0

Fix a finite extension E/Q,, in 617 which contains the images of all embeddings F' — Gp. We write O
for the ring of integers of E and @ € O for a choice of uniformiser. If v is a finite place of F prime to p,
we write 2, = Z" and B, | = (7,) X Z", where 7, is the generator of k(p)—the maximal p-power
order quotient of k};. We have a natural homomorphism OIX% — Z[E, 1] induced by the homomorphism
O;v — k% — k3 (p), which we denote by (- ). Consider a standard parabolic subgroup P c GL,,(F,)
corresponding to a partition n = n| +. . . +n,, which we will denote as u. Given a partition of n, we will
always let s, ; = ny +...+n;, with s, 0 = 0. Let P = MN and P = M N be the Levi decompositions
of P and its opposite parabolic. Let m be the hyperspecial maximal compact subgroup of M. Define the
subgroup of the symmetric group S, = S, X ... X Sy, . For any positive integer &, let

Sk : Hyp 12 (GLi (Fy), GLk (OF,)) — ZIg X XS
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10 K. Miagkov and J. A. Thorne

denote the (normalised) Satake isomorphism. We use those isomorphisms to identify

Su=Su ®... @Sy Hy 1 (M,m) S Z[g)*1[E,]5%.

Z1q)?
Consider any open compact subgroup g of GL,, (F, ), and set
aw=aNM, g"*=qnN, q =qnN.

From now on, assume that g has an Iwahori decomposition with respect to P, which means that
q=q qmaqt. We define a submonoid M* c M of positive elements to consist of elements m € M, such
that

mqtm™' c q*, m'qgmcq.

Inside M*, we have a further submonoid M** of strictly positive elements consisting of m € M*
satisfying the following conditions:

o For any compact open subgroups 1y, 112 of N, there exists a positive integer x > 0, such that

m*nym™ C ny.

o For any compact open subgroups T, T of N, there exists a positive integer x > 0, such that
m *nm* C n,.

We denote by Ho (M, qpr)™ the elements of Ho (M, qpr) whose support is contained in M*. From now
on, we also assume that ¢,, has a square root in O and fix such square root.
Proposition 3.1.

1. The map t;, : Ho(M,am)" — Ho(G, q) given by

[apeman] = 637 (m) [ama]

is an algebra homomorphism.

2. The map t;, extends to a homomorphism t, : Ho(M,qm) — Ho(G,q) if and only if there exists a
strictly positive element a € Z(M), such that [qaq] is invertible in Ho (G, q).

3. Assuming the existence of the extension in (2), for any smooth C[GL,,(F,)]-module r, the canonical

map % — n?\’,” is a homomorphism of Ho (M, qpr)-modules, where Ho (M, qpg) acts on w9 via the
map t,.
Proof. For the first two claims, see [Vig98, 11.6]. For the third, see [Vig98, I11.10.1]. m]

Now we record some results about smooth admissible representations of GL,,(F,) in characteristic
0. Let p be a parahoric corresponding to the partition n = n; + ... + nx which we call u, and let P be
the underlying parabolic with the Levi decomposition P = MN. Let m = M(OF, ). We also let p;, m
denote the kernels of the homomorphisms

p — P(ky) — GLy (Fy) <5 kX = KX(p)

m — M(ky) > GLy, (F) <5 k5 — KX(p).

Finally, let Iw’ = p; N Iw.
Lemma 3.2. The condition in part (2) of Proposition 3.1 is satisfied for q = p, p;.
Proof. This is a special case of [Whi22, Proposition 5.7]. O
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Fix a uniformiser @w. of F,.Forany 1 < j < kand 1 <i < nj, consider the operators in Ho (G, p)
given by

VA = 1,8, (e Xy, s -2 X, )

We will also consider operators in Ho (G, p1), such that their actions on 7P C 7P! agree with the action
of ViJ for any smooth representation 7. They can be constructed in the same way as Vi*/ above by
replacing S, with the Satake isomorphism for m; from [Whi22, Theorem 5.1]. These operators will
also be denoted V?*/. We also define operators T?*/ representing the images of the same elements under
S;] in Ho (M, m) and the corresponding operators on Ho (M, my).

The following lemmas are straightforward generalisations of the lemmas in [Tho12, Section 5]. Given
a parabolic subgroup Q of GL, (F,), we write Wo C W for the Weyl group of its Levi factor. Recall
from [Cas] that the space Wo\W/Wp has a canonical set of representatives [Wo\W /Wp], consisting
of minimal length elements from each double coset.

Lemma 3.3. Let Q be a parabolic corresponding to the partition n = my +. ..+ m,. Then [Wo\W /Wp]
is isomorphic to the set of partitions

mi:n’i+...+n};,l§i§r,
such that

an.:njforalll <j<k.

L

With Q as in the last lemma, let L; denote the i-th component of the corresponding Levi subgroup.
For w € [Wo\W/Wp] corresponding to the partition n’l +...+ nﬁ(, let p¥ denote the parahoric subgroup
of L; corresponding to this partition, and let p)*; be the kernel of

det
P = GLy (F,) = K5 = k3(p).

Let q be the parahoric corresponding to the partition {ni e n}( n%, ..., N}, and let n be the hyperspe-
cial maximal compact of the corresponding Levi subgroup. We define py,,, as a subgroup of q defined

by the conditions im(det N]i — k3 (p)) = 1 for all j, where NIJ( is the block corresponding to ni
Lemma 3.4. For each 1 <i <, let n; be a smooth representation of L;. Then

1. Foranyw € [Wo\W/Wp], we have L; N wpw™! = p.
2. Foranyw € [Wo\W/Wp], we have Q N wpiw™!l D P

3.
(indgﬂ1®...®ﬂr)”5 @ ﬂ?lw®...®ﬂ',?;v.
we[Wo\W /W]
4.
(indgm ®...0m )" C @ JT?]V‘VI ®...®ﬂfxl

WG[WQ\W/WP]

Let 7 be an irreducible admissible representation of G, such that 7" # 0. Since Iw’ C p;, super-
cuspidal support of 7 consists of tamely ramified characters. We will now use the Bernstein-Zelevinsky
classification [BZ77], following the conventions of [Rod82], as they are best suited for applications to
local Langlands correspondence. We can write 7 as a quotient of

ind Spy, (x1) ® ... ® Spy (xr),
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where Sp,,(y) for a tamely ramified character y : F)' — C* is the unique irreducible quotient of
indgL" Y®x|l-1®...® x|-|"". The twisted Steinberg factors Spy, (xi) correspond to Zelevinsky

segments A; = (y, x(1), ..., x(k; — 1)).
Let A index the partitions of sc(x) into k labeled subsets Si,...,Sy satisfying the following
conditions:

o |S;| = n; for all i.
o characters from the same Zelevinsky segment always belong to different subsets.
o if y € 8;, ¥’ € §; share a segment and y’ = y(a) fora > 0, theni < j.

For each partition @ € A, let r(«) be the representation of T'(F) given by tensoring the characters of
sc(r) in the following order: characters in S; precede characters in S; when i < j, and the ordering of
characters within each §; is induced by the ordering of Zelevinsky segments.

Lemma 3.5. For each 1 < i <r, let n; be a smooth representation of L;. Then

(indg T ®...0m)N = @ ind™ w (M ® ... ® 7 ) Nt -

wlownM
WE[WQ\W/WP]

Lemma 3.6. Let 7 be an irreducible admissible G L, (F,)-module, such that 7' # 0. Consider 7' as
a Z|Z,]3*-module via the map ty o S;l. Then ()% is a direct sum of 1-dimensional submodules
indexed by a subset of A. For a finite set S of characters and positive integer k < |S|, let e; (S(w)) denote
the k-th symmetric polynomial of elements of S evaluated at w. Then on the component associated to
(S1,...,Sk) € A, the action of V'*/ is given by e;(S;) forall 1 <i < n;.

Proof. We have a surjection

indg Spi, (x1) ® ... ® Spy, (xr) > 7,

and the induced map

(indg Spy, (x1) ® ... ® Spy, ()" — 7

is also surjective. By Lemma 3.5, we can write

(indg Spg, (x1) ® ... @ Spy, (xr)N =

co P indfy|Quie...e X) vl

(St1,....Sk) €A Y1€S) Vi €Sk

Here, the summands indexed by A correspond to w € [Wo\W /Wp] represented by partitions {ni,.}
satisfying n; < 1forall i, (cf. Lemma 3.3) and o represents all other summands. We will now show
that o~ does not have m;-invariants. Let le’Vl C pl.vfl be the subgroups of the Levi subgroup of L; defined
analogously to plY’Vl.

Suppose o™ is nonzero. Let 8 be a representation of GLn; (Fy) which is a tensor factor of (Spy, (x1)®

- ®Spy. (Xr))Lawnw-t for some w € [Wo\W/Wp] contributing to . Then @ has to be spherical if

J < k and has to have a fixed vector by ker(GL,: (Of,) — GL,: (k) gt k¥ — kX (p))if j = k. This
J J

would imply that Spy ( Xi)pm # 0forall 1 <i < rand all w representing partitions m; = n’l +...4+ n’k

such that there exists at least one 1 < i < r for which k; > 1 and n‘l > 1forsomel < j < k.To geta

contradiction, it is therefore enough to show that Sp;. ( Xl_)p;f‘ 1=0.
Define the subgroup Iw; C p!*| to be a subgroup of the L;-Iwahori with 1’s mod @ on the diagonal

at indices n}'(_ | + 1 through n?{ There are two possibilities: either p!*; = GL,,, (OF, ), or Iw] has at least
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one * mod @ on the diagonal. In the former case, we are done since Sp;_ (x;) is never spherical. In the
latter case, let t’ be the diagonal component of Iw;. Then

Spe, (xi)™ = Spy, (xi)t = (i ® ... @ xil - [F7HY,

where U is the unipotent radical of the Borel. Since t’ has at least one (’)X factor, if this is nonzero, y;
must be unramified. But in this case, any pw -fixed vector would be autornatlcally fixed by the parahoric
p;", which properly contains the Iwahori, and hence, does not fix any vector in Spy, (x:)- O

For a partition n = ny + ... + n; which we call y, define elements

Sp,i
pu= 1 a-x)
J=Sp,i-1+1
Res, = 1_[ Res(P,i, Py,j) € Z[EV]S”
i<j
Resg, = | | Res(Pyi(quT), Py j) € ZIE, |5
i<j

Then there exist unique polynomials Q,, ; € Z[Z,]5[T], such that degQ,, ; < n; and
ZQWHP,” = Res .
J#

Define

Epi = Qi 1_[ Pyuj.

Jj#i
The following statement is elementary.

Lemma 3.7. Take any A € M,,(C) with a factorisation

k
det(T = A) = [ | pua(D),
i=1

where p,; € C[T] are pairwise coprime and degp,; = n;. Consider the homomorphism ¢ :
Z[E,]5* — C deﬁned by the polynomials p, ;. By this, we mean the homomorphism sending
€j (X415 s X5, ) 10 (= 1)/ times the coefficient of T/ in p ;. This homomorphism can be extended

to ¢ : Z[E, ] [T, Res# ] — CIT]. Then ¢(E, ;/Res,)(A) projects C" onto the sum of generalised
eigenspaces of A corresponding to the roots of p ;.

Proposition 3.8. Let 7 be an irreducible admissible G L, (F, )-module. Then either RCSZ!V,,; a1 =0, or

recr, (1) = (x1 @ ... ® xn,0),

where x1,..., Xn+...4+n_, are unramified and the rest are tamely ramified with equal restriction to
inertia.

Proof. Using the notation from the discussion preceding Lemma 3.5, if there exists some k; > 1, then
Resg' u ™" = 0 follows from Lemma 3.6. Otherwise, we can apply the proof of [CHTO8, Lemma 3.1.6]
for the second conclusion. O
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14 K. Miagkov and J. A. Thorne

Proposition 3.9. Let  be an irreducible admissible G L, (F,)-module. Let (r,N) = recp, (n). Then
either (S, o t;l oLy Oty O S;l)(ResZi’M)ﬂp‘ =0o0rN=0and

rv=X1€9...®/\{n,

where X1,..., Xn+..+n,, are unramified and the rest are tamely ramified with equal restriction to
inertia.

Proof. Let nV be the contragradient of 7. Then recp, (V) = (r",—'N). We have a perfect pairing
(7V)P' x7® — C which is antisymmetric with respect to action of O[E,,1]%« and S,,07;,' 013,01, 08,1
Therefore, (S, o 1" 0 3y 0 1, 0 S;")(Respt! ) = 0 if and only if Res]} ,(7")P' = 0. Thus, we can
assume both of these are nonzero, in which case, by Proposition 3.8, we get the desired result. O

Let ¢, € GF, be any lift of Frobenius.

Proposition 3.10. Let 7 be an irreducible admissible GL,, (F,)-module. Let (r,N) = rec, (7). Let R
be the image of O[E, 115 in Endp (") under the map tu o S;l. Then either RGSZ!V u T =0 or the
following relation holds over R : for all T € IF,

k=1
Resz’ Z ELi(r(ey)) + (Art;i (T)E ik (r(¢v)) —Res, r(‘r)) =0.
i=1

Proof. Assume Resg!v ™" # 0. Itis enough to check our relation for each localisation of R at a maximal

ideal m. If Res, € m, then Resl’j! = 0in Ry,. Otherwise, Ry, = C by [Stal8, Tag 00UA] and the image
Spi
of O[Z,,1]%* in R/m corresponds to the polynomials ﬁ (T — xj(py)) fori=1,..., k. Then the
jzsu.ifl"'l
image of

-1
Res,,

k—1
3. Epi(r(pn) +(Artg! <r>>Eu,k<r<¢v>>)

i=1

in M,,(Ry,) is a diagonal matrix with n — ny first entries equal to 1 and the rest equal to y, (7). This
concludes the proof. O

Proposition 3.11. Let w be an irreducible admissible G L, (F\, )-module. Let (r, N) = recr, (r). Let R’ be
the image of O[E, 115 inEndo (7™ via the map 13,01, oS;l. Then either (1301, 05;1)(Resg!v =0
or the following relation holds over R’ : for all T € I,

k-1

Z Ep,i(rv(Sov)) + <Art1_r«“i (T)>E,u,k(rv(90v)) - Res,u rV(T))) =0.

i=1

(tpotyo S;l) Resl';!

Proof. This follows from Proposition 3.9 in the same way as Proposition 3.10 follows from Proposition
3.8. O

In what follows, we will use a twisted version of the propositions above. Define a map X7 :
O[EV,I]S" - HO(GLn(Fv)’ pv,l) given by

ST (£)(2) = 1 (S, (£))(9)ldet()| 1.

Let us show that this map is in fact defined over Z[g;'] and thus does not depend on the choice of
square root of g;!. Note that t,, is defined over Z[q;'] up to 6}[,/2 and S, is defined over Z[g;') up to
J7
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Hl]le det(m;)(1=")/2 where (m;) € M, (F,) with m; € GL,,(F,). Thus, the desired rationality over
Z[q;'] follows from the fact that

k k

l_[|det(mi)|(]7n)/21—[|det(mi)|(17"")/2 1_[ |det(ml.)|nj/2|det(mj)|*ni/2

i=1 i=1 I<i<j<k

lies in Z[g']. Now let us restate Proposition 3.10 and Proposition 3.11.

Proposition 3.12. Let i be an irreducible admissible G L, (F,)-module. Let (r, N) = recITEv (7). Let R be

the image of O[E, 115+ in Endp (7™') under the map X7 . Then either Resglv’lJ P = 0 or the following
relation holds over R : for all T € IF,

n!
Resﬂ

k-1
Z Eui(r(@y) + (Artg! (1) Eic(r(@y)) — Res, r(T)) =0.
i=1

Proposition 3.13. Let w be an irreducible admissible G L, (F\)-module. Let (r,N) = reclTp (7). Let R’
be the image of O[E, 1] in Endp (7" via the map 13 o X1 . Then either (13, o ZT)(ResZ!V =0
or the following relation holds over R’ : for all T € I,

(ty 0 ZT)(ResZ!

k-1
D Eui(r (90)) + (Arty! (1)) Eic (' (94) - Res, er)) =0.

i=1

4. Setup

Let F/F* be an imaginary CM-field with ring of integers O. Let ¥,, be the matrix with 1-s on the
antidiagonal and 0-s elsewhere, and let
[ 0 Y,
(5, %).

Define G to be the group scheme over O+ defined by the functor of points
G(R) = {g € GLau(R ®0,.. OF) | 'gJng" = Ju}.

Then G is a quasisplit reductive group over F*. It is a form of GL,, which becomes split after the
quadratic base change F/F*.If v is a place of F lying above a place v of F** which splits in F, then we
have a canonical isomorphism ¢,, : G(F;) = GL,,(Fy). There is an isomorphism F; ®p+F =2 F,xFc
and ¢, is given by composition

éi(Fv*) i GLZn(Fv) X GL2n(Fv") - GLZn(Fv)7

where the second map is the projection on the first factor. We write T C B C G for the subgroups
consisting, respectively, of the diagonal and upper-triangular matrices in G. Similarly, we write G C
P c G for the Levi and parabolic subgroups consisting, respectively, of the block upper diagonal and
block upper-triangular matrices with blocks of size n X n. Then P = U >~ G, where U is the unipotent
radical of P, and we can identify G with Resp,0,.. GL, via the map

A0
(0 D) > D € GL,(R ®0,. OF).
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An element (g,), € G(ARZ,) = GL,(AY) is called neat if the intersection N, I, is trivial, where

I, c ax is the torsion subgroup of the subgroup of F_V>< generated by the eigenvalues of g, acting
via some faithful representation of G. We call a neat open compact subgroup K ¢ G(A%,) good if it
has the form K = [], K, where the product is running over the finite places of F. We make similar
definitions with G in place of G.

After extending scalars to F*, T and B form a maximal torus and a Borel subgroup, respectively, of
G and G is the unique Levi subgroup of the parabolic subgroup P of G which contains 7. We call an
open compact subgroup K of G(A°°+) decomposed with respect to the Levi decomposition P = GU if
K = K = Ky, where KG is the image of K in G and KU Kn U(AR).

If K is a good subgroup of G, we let Xk be the corresponding locally symmetric space. Similarly, if
Kisa good open compact subgroup of G, then X % denotes the locally symmetric space. More generally,
if H is a connected algebraic group over a number field L and Ky € H(AY;) is a good subgroup, then
we write X }?H for the locally symmetric space of H of level Kg;.

Fix a rational prime p and a finite extension E/Q, which contains the images of all embeddings
F — 61). We write O for the ring of integers of E and @ € O for a choice of uniformiser. For
A € (ZMHHM(F,E), we define an O[I1,p GL.(OF,)]-module V, as in [ACC"18, Section 2.2.1].
Similarly for e (Z>mHom(F* E), we have an Olllsp ‘GV(OF%)]-module V1. Both V,; and V5 are
finite free O-modules.

Let S be a set of places of F, such that § = S¢ and, such that S contains all places above p and all
places of F which are ramified over F™*. Let S be the set of places of F* lying below a place in S. Let
K c G(A%.) be a good subgroup, such that K5 = G(OF+) for v ¢ S, and similarly, let K C G(A )

be a good subgroup, such that K, = G(OF+) for v ¢ S. Additionally, we define By = 8, X E,c and

[m

v,1 = —'v,l X Bye.

Define the Hecke algebras
HS = Ho(G(AT:S), K5)
HS =Ho(G(A3:"),K5)

S ®0[Ev]sn

ves

= ® O[E7]5.

veS

Using the isomorphism
G(Of:) = GL,(OF,)
together with the Satake isomorphisms, as well as the homomorphism

O[Es]%" — Ho(G(F%),G(OF:))

given by the polynomial P, (X) defined in [ACC* 18, Equation 2.2.6], we get homomorphisms TS — #5
and TS — H5. We also have homomorphisms

T® — Endp (o) (RT'(Xk. V2))

T - Endp () (RF(XVE, VI))
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defined in [ACC" 18, Section 2.1.2], and we can denote by TS (K, 1), TS (E , Z), respectively, the images
of those homomorphisms. The functor H* induces O-algebra homomorphisms

T (K, 2) - Endo (H*(Xk, Va))

TS (K, 1) — Endo (H* (Xg, V7).

5. Boundary cohomology

LetK c G (A%.) be aneat compact open subgroup decomposed with respect to the Levi decomposition
P = GU. We also assume that K, = G(Op+) for v ¢ S. Define K as the image of K in G(A}.),
Kp = KN P(A%,) and Ky = K N U(A%,). Both K and Kp are neat. We recall from [NT16, Section

3.1.2] that the boundary X 7= X g of the Borel-Serre compactification has a G (Ay.)-equivariant
stratification indexed by the standard parabolic subgroups of G. For each standard parabolic subgroup

0, label the corresponding stratum XE. We can write
ng = Q(FH\(X2 x G(AL,)/K).

From now on, we will focus on the stratum X ]I?’ corresponding to the Siegel parabolic. Let us establish
some useful maps between the manifolds introduced above. The stratum X IIE) can be described as a union
of connected components indexed by the set P(F NG (AR.)/ K. The locally symmetric space X If; is a

union of the same components indexed by the set P(F*)\P(A%,)/ Kp. Thus, we have a natural open

immersion i : XII; — )?llg such that i* : H*()?;, 0) — H*(X;, O) is a split epimorphism. We also

have a proper map j : X; — Xk which has a section by [NT16, Section 3.1.1]. Thus, we get a split
P

monomorphism j* : H*(Xg,0) — H*(X Ig, O). We also recall the ‘restriction to P’ and ‘integration
along N’ homomorphisms:

rp: Ho(G(AS:®), K5) = Ho(P(AT:®), K3)

ro - Ho(P(ASS),KS) = Ho(G(AT:S), K S)

defined in [NT 16, Section 2.2]. We record the following proposition, which follows from the discussion
above:

Proposition 5.1.

1. Forallt € TS and h € H*()?;;, 0), we have i*(th) = rp(t)i*(h).
2. Forallt e H@(ﬁ(A‘;";E), K3) and h € H*(Xk, O), we have j*(r(1)h) = tj* ().

Consider the composite
_ . SARSY TS 00, S S
S_rGOrP -HO(G(AF+ )’K )HHO(G(AF% )7K )

By [NT16, Proposition-Definition 5.3], this map coincides with the tensor product of maps O [E 715 —
O[E,]3" determined by the polynomial S, (P, (X)q'vl(zn_])P‘\)’c (g7 X)).
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Let m c TS be a non-Eisenstein maximal ideal of Galois type with residue field k. We have an asso-
ciated continuous semisimple representation p,, : Gr,s — GL, (k), such that det(X — p,,(Frob,)) =
P, (X) mod m. Fix a tuple (Q, (ay)vep), where

oQcSandQNQ°=a.

o Each place v € Q is split over F*. Moreover, for each place v € Q, there exists an imaginary
quadratic subfield F C F, such that g, splits in Fp.

o For each place v € Q, p,, is unramified at v and v¢ and «, is a root of det(X — p,,(Frob,))).

For each v € Q, let d,, be multiplicity of @, as a root of det(X — p,,(Frob, )). Fix the partitions
Wy :2n=d,+(n-d,)+n
vy :n=dy,+((n-d,).
Let

Av= || puimppu, 1] € GLu(F).
mEM;V
nonumber

Now we recall the theory of Hecke algebras of a monoid from [ACC*18, Section 2.1.9]. Specifically,
we consider the restriction from G to P

rp MG (A, 6 (P 1)) = H(P(FE), P(FE) 05 (D, 1))
and integration along fibres
r : H(P(F), P(F) 0 i (B,.1) = H(G(FY). G(F3) N 5! (B, 1))
combined with the isomorphism
H(G(F3).G(F3) N5 (9y,1)) = H(GLu(Fy) X GLy(Fye), Py, 1 X GLi (Op,0)),
we get a map
St H(G (B0), 5 (B.1)) = H(GLa(Fy) X GLy (Fye ). Py, 1 X GLa(OF0)).

Write Py, , = My Ly, for the parabolic subgroup of G Ly, (F, ) corresponding to the partition 2n = n+n,
together with its Levi decomposition. For a given m € M**, from [ACC* 18, Section 2.1.9], we know that

S Py 1mPuy 1)) = 16 (m) G (LW 1 O My m Py 1 0 My )]).

By the same argument as in the proof of Lemma 3.2, we see that there exists m € M**, such that the
right-hand side is invertible in % (GL,,(F,) X GL,,(Fy<), Py, .1 X GL,,(OF,.)). Thus, we can extend the
homomorphism to

Syt H(G (A, G 0y )L ([, 1mPpy 1 1))
— H(GL,(Fy) X GL,(Fye), Py, 1 X GLn(OFVc ).
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This homomorphism fits into a commutative diagram

O[E511% ——— H( (A, 5" Py, ) L ([P 1mP, 11D) 7]

lsf lsv

O[Ev,l]svv ®0 O[Evc]sn — H(GLn(Fv) X GLn(Fv“)v pvv,l X GLn(OFvc ))’

where Svf is the unique homomorphism which corresponds the polynomial Hf:l (T - X;) to the tuple

of polynomials Hf’:l (T = X0), Tt g, 41 (T = Xi), Sn(q’v’(zn_l)PXC (¢}72"X)) and maps 75 to T,,.
We can define global Hecke algebras associated to our Taylor-Wiles data:

Y =1 @ ®H(L;1(Av),L;‘(pyv,l))[(t;'([vpv,lmnyv,ll))_']

veQ

T3, = T @7 (X) O[Ev.1]%
veQ

H = HE @7 () H(CLu(Fy) X GLy(Fye), Py, 1 X CLn(OF,.)

veQ

TS, = T @7 (R) OIE, 115 @0 O[E, 1.
veQ

The following proposition follows from the discussion above:

Proposition 5.2. There exist homomorphisms Sé : T“Z) - Tz and Sg : 7:22) - Hz fitting into a
commutative diagram

TS 5 1/S
TQ HQ

ke

T% HHS,

where S, coincides with S{ at places v € Q and with the Satake isomorphism from [NT16, Proposition-
Definition 5.3] at places v ¢ S.

Let K be a good subgroup of G(A%,), such that KS = G ((5;) and K is decomposed with respect
to P. We can define subgroups K;(Q) c Ko(Q) C K as follows:

o If v ¢ Q, then K1 (Q)v = Ko(Q)v = K5. _
o If ve Q,then Ki1(Q)5 = ;' (pp,,1) and Ko(Q)5 = ;' (s,.)-

LetK1(Q), Ko(Q), K be the images in G (A, ) of the intersections of K1(0), Ko(Q), K with P(A%.).
From the definition, we can see that all the subgroups from the previous sentence are decomposed with
respect to P.

Proposition 5.3. Fori =0, 1, we have

1. The ope}i;mmersioni : XI%(%) — )?;i(Q) vields a split epimorphism
*CHY (XL 0 H (XL ,0).
" (X 09 O) = H (Xg )0 ©)
2. The proper map | : XI_? ) — Xk, (o) yields a split monomorphism
i P
" H*(Xk,(0), 0) = H*(XE ., 0).
J (Xk;(0), O) = H*( %09
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3. Forallt € Ho(;'(A,), L;l(p#v’l)) and h € H*()?;%(Q), O), we have
i*(th) = rp(t)i*(h). B
4. Forallt € Ho(ﬁ(A;";E), E,-(Q),f) and h € H*(Xk,(g)» O), we have
J*(rg(0)h) =1 (h).
Proof. This follows from the discussion above Proposition 5.1 and [ACC*18, Lemma 2.1.14]. O
Now letmg C Té be the maximal ideal generated by m and the kernels of the maps O [E a5 — k
associated to the polynomials (x — @, )%, det(X — p,, (Frob,))/(x — a,)%,det(X — p,, (Frob,c)) for
v € Q. Also, let mg = Sé_l(mg).

Proposition 5.4. Fori =0, 1, the map Sé : Tz — TSQ descends to homomorphisms

T, (H (X ) O)) = TH(H (Xk,(0). 0)
T3, (H (0Xg, (o) O)) = To(H (X, (0)» Ohm)-
Proof. To prove the first statement, we need to show that for t € Anngs (H*()? 11?3 Q) 0)), we have
Q i

Sol(t) € AnnTz (H*(Xk;(0), O)). Let a be the right inverse of i* and 8 be the left inverse of j*. Take
any h € H*(Xk,(p), O). Then we can write

So(Oh=rg(rp()h =B (rc(rp(1))h)) = B(rp(1)j"(h))
= B(rp()i*(a(j"(h)))) = B (ta(j"(h)))) = B(i"(0)) = 0.
To prove the second statement, it is enough to note that H* ()?II?)»(Q)’ Oz = H* (60X I?,-(Q)’O)ﬂ? by
[ACC* 18, Theorem 2.4.2]. ' O

6. Galois deformation theory

Let E C 61, be a finite extension of Q,,, with valuation ring O, uniformiser @ and residue field k.
Given a complete Noetherian local O-algebra A with residue field &, we let CNLA denote the category
of complete Noetherian local A-algebras with residue field k. We refer to an object in CNL, as a
CNL,-algebra. We fix a number field F and let S, be the set of places of F above p. We assume that
E contains the images of all embeddings of F in Q,. We also fix a continuous absolutely irreducible
homomorphism p : G — GL,, (k). We assume throughout that p 1 2n.

Following [ACC* 18, Definition 6.2.2], we call a global deformation problem a tuple

S= (I_)a S, {Av}veSv {DV}VES)’

where

o S is a finite set of finite places of F containing S,, and all the places at which p is ramified.
o A, is an object of CNL( for each v € S.
o D, is alocal deformation problem ([ACC* 18, Section 6.2.1]) for each v € S.

Associated to this global deformation problem, we have a completed tensor product A = ®,csA,. A
global deformation problem determines a representable functor Ds : CNL, — Set which takes an
object A € CNL to the set of deformations p : G — GL,(A) of type S.

Let v be a finite place of F, such that v ¢ S and ¢, = 1 (mod p). We let D} denote the local
deformation problem consisting of all lifts which associate A € CNL, to the set of lifts which are
1 + M,, (" 4)-conjugate to a lift of the form s, ® ¢,,, where s,, is unramified and the image of y,, under
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inertia is contained in the set of scalar matrices. This is indeed a local deformation problem, as is shown
in [Thol2, Lemma 4.2].

Lemma 6.1. Let 7 : G, — GL, (k) be an unramified continuous representation and A is a complete
Noetherian local O-algebra with residue field k and a principal maximal ideal ma. Suppose further
that ¥ may be written in the form 7 = ¥| & 7, where det(X — 7 (Frob,,)) and det(X — r,(Frob,)) are
relatively prime. Also suppose that g, = 1 in k. Then any liftr : Gg, — GL,(A) of ¥ is 1 + M, (my)-
conjugate to one of the formr = ry ® ry, where ry and ry are lifts of 71 and 7, respectively.

Proof. Let n; = dim 7;. Suppose we have a lift r,,, : G, — GL,(A) of 7, such that r,,, mod mZ’ can
be written in the form r & ro. We will show that there exists a matrix X,, € 1+ M, (m’{"), such that
Fmal = ermX,;1 satisfies the same condition mod mg’”. Write

% A B
X":(Z 1) ’":(c D)’

where Y € My, xn,(m'}') and Z € My,,x,,, (m'{'). Then the condition on 4 transforms into
YD - AY + B=0mod m7*! (6.2)

ZA-DZ+C=0mod my*. (6.3)

We will focus on the first condition, the second is similar. We know that r,,, mod mf; is block-diagonal,

m+1

. 7 = . . . m
so we can consider b, y to be the images of B and Y, respectively, in m’y /m’i*™,

b =7y -y (6.4)

in M, (m7 /mi*) = M, (k) &, m”/m’7*!. Using the fact that r is a homomorphism, for o, 7 € G, ,
we can write

A(0)B(t)+ B(o)D(t) = B(oT).

n+l

Rewriting and reducing mod m’y

, we get
ri(o) Z(‘r) + E(O’) (1) = E(O'T)

b(or) 75 (o1) = F1(0) b(0) 75 (1) 7y (o) + b(o) 7y (o). (6.5)

Give Mnlxnz(mf/m;"’”) the structure of a Gp,-module via 7(-) ?51, and denote this module
ad( 7y, ). Then the last equation implies that Z?El is in Zl(Gpv,ad(Fl, 72)). Since 7y, 7, have
coprime characteristic polynomials, we know that H! (G, ad( 71, 72)) = 0 by local Tate duality (here,
we are using that g, = 1 in k), which means ZFEI € BY(GF,,ad(7y, 72)), and thus we can find y
satisfying Eq. 6.4. O

Now we define our version of the Taylor-Wiles datum, analogous to the one appearing in [ACC"18,
Section 6.2.27].

Definition 6.6. Let

S= (E, S, {Av}vESa {DV}VGS)
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be a global deformation problem. A Taylor-Wiles datum of level N > 1 for S consists of a tuple
(Q.@yyep), where

o A finite set Q of places of F, disjoint from S, such that ¢, = 1 (mod p™) for each v € Q.
o Foreachv € Q, «, is an eigenvalue of p(Frob,,).

Given a Taylor-Wiles datum (Q, («,)), we define a global deformation problem

SQ = (E’S UQ,{A }ves U {OFV }veQa {Dy}ves U {D\I;}VGQ)-

Define Ag = [, o Av. The representing object Rs,, has a structure of a O[Ag]-algebra satisfying
Rsy, ®0iap] O = Rs.

Proposition 6.7. Take T = S, and let q > h}sl r(ad p(1)). Assume that F = F*Fy, where Fy is an
imaginary quadratic field, that {, ¢ F and that p(GFz,)) is adequate. Then for every N > 1, there
exists a choice of Taylor-Wiles datum (Qn, (av)vep) of level N satisfying the following:

L. |[On]=q.
2. For eachv € Qp, the rational prime below v splits in Fy and v¢ ¢ Qn.
3. Let g = q — n*[F* : Q. Then there is a surjective morphism

Jdoc
RLYU[X,. ... Xe]] —>R§Q,

in CNL\.

Proof. The proof is very similar to the proof of [ACC* 18, Proposition 6.2.32] (cf. [Thol2, Proposition
4.4]), we omit the details. O

7. Representations into Hecke algebras

In this section, we construct the necessary Galois representations into the Hecke algebras associated to
G. From Proposition 5.4, we know that we can create representations valued in the Hecke algebra acting
on H*(Xk;(Q)» O)m, from representations valued in the Hecke algebra acting on H “(0X %i(0) O -
The latter representations will be constructed by glueing together Galois representations associated
to cuspidal cohomological automorphic representations of G (A%.) as in [Sch15] and using the local
computations of Section 3.

7.1. Hecke algebras for G

Theorem 7.1. Suppose that KcG (AR.) is a good subgroup which is decomposed with respect to P.
Then there exists a 2n-dimensional T‘z (H} (XE1 )’ 0))/I-valued group determinant D ¢ of G s for

some ideal I of nilpotence degree depending only on n and [F : Q], such that the following properties
hold:

1.If v ¢ S is a place of F, then D.o(X — Frob,) is equal to the image of Py(X) in

T5, (H: (X, (o) ON/1X].
2. If v € Q, then for any o € G s and T € I, we have the relation

k—1
Tip, 4 (fr Resg, i, Resfi")’( Epuy i(90) + (AT (D) Ep, 1 (90) = Resy, )) = 0.
i=1

Proof. This follows from Proposition 3.12 by using [ACC" 18, Theorem 2.3.3] and [Sch15, Corollary
5.1.11] (see proof of [ACC" 18, Proposition 3.2.2]). O
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Now we prove the version of the previous proposition for noncompactly supported cohomology:

Theorem 7.2. Suppose that K cC 5(A°F°+) is a good subgroup which is decomposed with respect to P.
Then there exists a 2n-dimensional Tz (H* (X 7(0) 0))/1-valued group determinant Do of GF s for

some ideal I of nilpotence degree depending only on n and [F : Q], such that the following properties
hold:

1.If v ¢ S is a place of F, then Dp(X — Frob,) is equal to the image of P, (X) in
T%(H*(XKI(Q)’ O))/I[X]
2. Ifv € Q, then for any o € G s and T € I, we have the relation

o Res!?! Resl(lzvn)!

TrDQ qv My

k-1
Epy i(9v) + (Artz! (1) Ep, i (¢v) = Resy, T)) =0.

i=1

Proof. Denote by TS (HI(XR, (0)> O)) the image of T‘z under the homomorphism

T, — Ho(G(AR). K1(Q)) = Ho(G(AR,), Ki(Q)) — Endp (o) (H (X, () O))-

The same argument as in the proof of Theorem 7.1 shows that there exists a group determinant D,
valued in Tz (HE(XE () O))/1 satistying the following properties:
> 1
I.If v ¢ S is a place of F, then Dg(X — Frob,) is equal to the image of P,(X) in
T, (Hi(Xg (0)» ON/I[X].
2. If v ¢ Q, then for any o € GF,s and T € IF,, we have the relation

k-1
> Epn i) + (At (1) Epy i (p0) — Resy, )) = 0.

i=1

o Res!?! Resl(lzvn)!

Trp, Gy My

By [NT16, Proposition 3.7], we have a commutative diagram

Ho(G(A3.), Ki(Q)) — Endp(o)(RT(Xg, () O))

lm l (13)

Ho(G(AR,), Ki(Q)) — Endp (o) (RTe(Xg, (g)> O)),
where the right vertical arrow is induced by Poincaré duality. Then we get an isomorphism

TS, (H:(Xg 0y ON /11 = T (H* (Xg, ), O)/ 12
over TS, for some ideals / 12 of nilpotence degrees depending only on n and [F : Q]. Moreover, we
can choose /1, such that it contains /. We can conclude by making Do the image of D, under this

homomorphism. O

Lemma7.4. Letk be afield, andlet p,, p, : G — GL, (k) be two nonisomorphic absolutely irreducible
representations. Then the extended map k|G| — M, (k) & M, (k) defined by p, ® p, is surjective.

Proof. We may pass to the algebraic closure of k (which we still denote k). Let ¢; : k[G] — M, (k) be
the linear extension of p; for i = 1,2. The two maps ¢; are surjective by Burnside’s theorem. Let A be
the image of £; & {», and let I; = ker(A — M,,(k)), where i = 1, 2 corresponds to projecting on the first
and second factor. Since ¢; are surjective, I; are in fact two-sided ideals of M,,(k). Then I; = M,,(k) or
I; =0.If I; = M, (k) for some i, then £; & ¢, is surjective. Suppose then that I, = I; = 0. Then we have
an automorphism f of M,, (k) defined by (v, f(v)) € A for all v € M,, (k). Since all the automorphisms
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of M, (k) are inner, we conclude that there exists u € GL,,(k), such that A = {(v,uvu™") | v € M, (k)}.
But this is impossible since p; and p, are nonisomorphic. O

Theorem 7.5. Suppose that KcG (A,) is a good subgroup which is decomposed with respect to P
and that for each v € Q, we have Res,,, & M. Then there exists a continuous representation

pmo  GF,su0 — GLn(Tz (H*(XKl(Q)’ O)mQ)/I)

satisfying the conditions below for some ideal I C TSQ (H*(Xk,(0)» O)mg) of nilpotence degree depend-
ing only onn and [F : Q].

1. Ifv & S is a place of F, the characteristic polynomial of pw, (Frob, ) is equal to the image of P (X)
in T3 (H* (X, (@)> O)m) [1[X].

2. Ifv € Q, then pmy |G- . is unramified.

3. Ifv € Q, then pmy |G, = s ®Y, where s is unramified and T € If, acts on y as a scalar (Art;i (7).

Proof. Using Theorem 7.1 and Theorem 7.2, we can construct a TE(H; (X %i(0) O)ax 0o @
H*(Xg, Q) O)iip, ) /1-valued group determinant Do of G sug. Consider the long exact sequence

= HL(Xg, (0). O) = H'(Xg, (0). O) = H'(0Xg, (). O) = H ' (Xg, 5. 0) > .

(Q) 1(Q) Q) 1(Q)

Using this sequence and Proposition 5.4, we know that Sé descends to a homomorphism

TS % /v %/ S s
TQ(HC(XIZI(Q), O)rﬁQ ®H (XE](Q),O)E(Q) - TQ(H (XKI(Q),O)mQ)/IO

for some ideal Iy with square 0. We can use this to construct a 2n-dimensional group determinant DOQ
valued in TZ(H*(XK1 (0).0)mg) /1, such that:

1. Forv ¢ S, we have D%(X — Frob,) = P, (X)q(,’(zn_l)Pvcv(qf,_z"X).
2. Forv € Q, we have

(2n

o Res;

)" (2n)!
Hv Resﬂv

k-1
Z Euv,i(‘;ov) + <Art1_7\1, (T)>Euv,k(90v) —Res, T))) =0,

i=1

Trpp, (Sé

and 7 has nilpotence degree depending only on n and [F : Q]. By [ACC* 18, Theorem 2.3.7], there also
exists an n-dimensional group determinant D1Q of Gr sugp valued in TZ (H*(Xk,(0).0)mp) /1, such

that DIQ(X — Frob,) = P, (X) for v ¢ S. Then the group determinants DIQ ®&D IQL and D% are equal.
Moreover, since p,, is absolutely irreducible, there exists a continuous representation

Pmg - GF.sup — GLn(TZ(H*(XKl(Q)’ O)mQ)/I)’

such that the characteristic polynomial of py,, is associated to D IQ Let p;, 0 = Pmp @ o o Writing
out the relation at places v € Q, we get

k-1
’ 2n)! 2n)! ’
Tr(ppug ()8 (Resg), Resir (3" Ep, i(Phug (94)
i=1

(AT (1) Epy i (Pl (93)) = Resy, Pl (1)) = 0.
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Since Res,,, ¢ Mo, we know that p,, and P are not isomorphic. Applying Nakayama’s lemma and
Lemma 7.4, we see that the extended map

T} [Gr.su0] = Ma(TYH(H (Xk,(0).0)mp)/T) & Mu (T (H (XK, (0).0)mo) /1)

given by py, @ Om o 18 surjective. Considering the trace relation above with o~ replaced by an arbitrary
element of Tz [GF,suol, we conclude that

k-1
2n)! 2n)! ’
S (Resg) Resi (3" Ep, i(Piug (94)

i=1

+ (AT (D) Epy i (Pl (9)) = Resy, Pl (1)) = 0.

Since ¢, = 1 mod p, we know that Res, ,,, & M. Thus

k-1
> Byt i(0ing (90)) + (AT (1) By (0l (9)) = Ry, Pl (7)] = 0.

i=1

!
So

This implies that

k—1
P (7) = SQ(Z Res,! Ep, i(pmo (90)) | + S5 ((ATtE! (1)) Res! Ep, k(g (#4))).

i=1
Using Proposition 5.2, we can transform the equation above into
Pmo (T) =Res, Ey 1 (pmg (90)) + (At (1)) Res,! Ey 2 (pmp (00)).

Let T = Té (H*(Xk,(0).0)mp)/1. Consider the decomposition p,, = 71 & 72, corresponding to the
Frobenius generalised eigenspaces of all eigenvalues not equal to «,, and a,,, respectively. Then

T" = Res;,! Ey, 1 (Pmg (00)T" @ Res;,! Ey, 2 (pmg (00)T"

is the unique pm,, (¢y)-invariant lift of 7| & 72, and we are done by Lemma 6.1. m}

7.2. Hecke algebras for G

Let A € (Z7)Hom(F-E) ‘Fuyrther let S be a finite set of finite places of F containing the p-adic places and
stable under complex conjugation satisfying the following condition:

1. Let [/ be a rational prime, such that there exists a place above [ in S or [ is ramified in F. Then there
exists an imaginary quadratic subfield Fy C F, such that / splits in Fj.

Let K c GL,(A%}) be a good subgroup, such that for all v ¢ S, we have K, = GL,(OF,). Let
mcTS (K, 1) be a non-Eisenstein maximal ideal with residue field k. By [ACC" 18, Theorem 2.3.5],
there exists an associated residual representation p,, : Gr.s — GL,(TS(K,1)/m). By [ACC*18,
Theorem 2.3.7], there exists an ideal I ¢ TS (K, 1) of nilpotence degree depending only onz and [F : Q]
and a continuous lift py, : Gr s — GL, (TS (K, A)n/I), such that for each v € S, det(X — pm (Frob,))
is the image of P, (X) in T5(K, 1), /I[X]. We consider the following Taylor-Wiles datum: a tuple
(0, (ay)vep) consisting of

o A finite set Q of places of F, disjoint from Q¢, such that ¢,, = 1 (mod p) for each v € Q.

o Eachv € Q is splitin F*, and there exists an imaginary quadratic subfield Fy C F, such that v is
split in Fy. Moreover, p,, is unramified at v and v°.

o @y is aroot of det(X — p,, (Frob,)).
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Consider the partition v, : n = d, + (n — d,), where d, is the multiplicity of a, as a root of
det(X — p,, (Frob,)).

We define auxillary level subgroups K1(Q) € Ko(Q) € K. They are good subgroups of GL,,(Ay)
defined by the following conditions:

o ifv ¢ Q, then K1(Q), = Ko(Q)y = K.
o if v € O, then Ko(Q), = py, and K1(Q)y = Py, .1-

We have a natural isomorphism Ko(Q)/K1(Q) = Ag = [],coAv. Let " = SUQ U Q€. We define
Tg = TSVC ®7 Z[ZE, 1]5v. Let TSQ' (Ko(Q), 1) and Tg (Ko(Q)/K1(Q), A) be the images of Tg in
Endp o) (RT'(Xk, (@), V2)) and Endp(o[a,)) (RT'(Xk, (@), Va)), respectively. Let mgo be the maximal
ideal of Tg generated by m and the kernels of the homomorphisms Z[Z, 115 — k given by the
coefficients of polynomials (X — a, )%, det(X — p,, (Frob,))/(X — a,)%.

Theorem 7.6. We have natural isomorphisms

RF(XK, V/l)m =~ RF(XKO(Q)s V/l)mQ

RF(XKO(Q), V/l)mQ ~ RF(AQ, RF(XKl (Q)» V/l))mQ
inD(O).

Proof. The second isomorphism is straightforward. For the first, we can check on the level of cohomol-
ogy. It is enough to check that it is an isomorphism in D(k) after applying the functor — ®" k. Thus, we
need to show that the map

H*(Xg,Va|©)m — H (Xky(0)> Va/ @Imy
is an isomorphism. We can do this one prime at a time, so we can assume Q = {v}. For each j, let
M; = lim HY (X (ym).Va/ @),

where K(v™),, = K,, for places w # v and K (v™), is the principal congruence subgroup of level v".
‘We have two Hochschild-Serre spectral sequences:

H'(GL,(OF,),M;) = H™" (Xk,Vi/@)m

ea, H' (py,, Mj) = eq, H (Xk,(0). Va/®@) = H™ (Xky(0)» Vi) @ g -
There is a natural map ¢* between these spectral sequences, which arises from deriving the map

M(.;Ln (OFV )

Py Py
> MY > eqo MV
J J a

Thus, it is enough to show that ¢* is an isomorphism. M is admissible, and we can use [Vig98, Theorem
I11.6] to write M as a direct sum of GL,,(F,)-modules, each belonging to a single block. Let N ¢ M
be a summand from a nonunipotent block. Let T}, (k) be the p-power part of T'(k). We note that both
H!(GL,(OF,),N) and H!(p,,, N) inject into H'(Iw, N), which in turn is equal to H' (T, (k), N™").
Since N is a from a nonunipotent block, we know that N™’ =0, and so

H'(GLy(OF,),N) = H' (py,,N) = 0.
Thus, we can restrict to the summand M Jl C M from the unipotent block, and it is enough to prove that

¢t H(GLy(OF,), M}) — ea,H' (py,, M)
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is an isomorphism. By [CHTO08, Theorem B.1], the unipotent block in our case consists of representations
generated by their Iw”-invariant vectors. Therefore, every irreducible subrepresentation 7 C Mjl. has a
IwP-invariant vector. It follows from the argument similar to the proof of Proposition 2.1 that

n cIndgL"/\q ®...8 Xn»

where y; are tamely ramified characters whose restriction to OF, /(1 + @Op, ) has p-power order. But
these characters are valued in k™ which has order coprime to p, which means y; are in fact unramified.

We can now select the smallest number ¢ > 0, such that 7 embeds into M ; [m9]. Since 7 is irreducible,
it must then embed into M ; [m?]/M f] [m9~1] and local-global compatibility for Iwahori level ([ACC* 18,
Theorem 3.1.1]) then implies that {y;(@)}i=1,..., is the set of eigenvalues of p,, (Frob, ). Thus, we
have shown that M; € C, and we are done by Theorem 2.14. O

Theorem 7.7. There exists an ideal I C Tg (Ko(Q)/K1(Q), Vmy, of nilpotence degree depending only
onnand [F : Q], together with a continuous homomorphism

pm.0 : Gr.sug = GLn (T (Ko(Q)/K1(Q), Dmy /1)
lifting py, and satisfying the following conditions:

1. For a finite place v ¢ S U Q of F, det(X — pm,o(Frob,)) equals to the image of P,(X) in

2. Forv € Q, pm.olGy . is unramified and pw glGy, is a lifting of type D, and the induced map
OlAp] — Tg(KO(Q)/Kl (Q), Dmy /1 is a homomorphism of O[Ag]-algebras.

Proof. We first make a few reductions. Let us show that we can reduce to the situation where det(X —

P (Frob,)) and det(X — p,,(Frob,c)) are coprime for each v € Q. To achieve this, we will use

twisting. Pick an odd prime / # p and consider a character ¢ : G — O* of order ¢, such that

det(X—(p,,® ¥)(Frob,)) and det(X —( p,,® &) (Frob,)) are coprime. Let S w denote the places of F at
which y is ramified. We will further require that Sy, is disjoint from S’. Define a good subgroup K¥ ¢ K
given by Kf' = K, at places v at which ¢ is unramified and Kg’ =ker(GL,(OF,) — k(v)*/(k(v))")
at places v, where  is ramified. Following the discussion above [ACC" 18, Proposition 2.2.22], we have
a homomorphism f,, : TS'VS¢ (K¥, 1) — TS'VSs(K¥, 2) given by

S'US S'US _ S'US S'US
Fo(IK?™ 70 gKY™ 20 ]) = 7 (Art(det(g) [K Y7 K Y™ 1. (7.8)
We have a maximal ideal my = f,(m) of TS'VSy (K¥, 1). [ACC* 18, Proposition 2.2.22] implies an
isomorphism p,, ® U= ﬁmw' Similarly to Eq. 7.8, we have an isomorphism

To > (KY @KV (0 Dy = T ™ (K (Q)/KY (©), Do

where my , is the maximal ideal of Tgus'” generated by m, and the kernels of the homomor-

phisms Z[Z, ]S — k given by the coefficients of polynomials (X — ¢ (Frob,)a, )% ,det(X —
P, (Froby))/ (X — ¢ (Frob, )a, )*". We have a surjective map of TS"VSv _algebras

T (K (@)K (0), Vg = Tg ™™ (Ko(@)/K1(0), g

Thus, if the theorem holds for representations into Tgusw (KS” (Q)/K f’ (Q), Vmy . it will hold for repre-

sentations into T;’us,,, (Ko(Q)/K1(Q), Vmy, - Since there are infinitely many ¢ satisfying the conditions

we require, we can vary them to conclude that the theorem holds for Tg (Ko(Q)/K1(Q), Vg, which
is our target Hecke algebra.
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LetK ¢ G (A%.) be a good subgroup satisfying the following conditions:

1. g is decomposed with respect to P.
2. KNG(AR,) CK.
3. if Vv is a finite place of F*, such that v ¢ S, then Ky = G(Opi).

We can use the Hochschild-Serre spectral sequence to reduce to the case where K = Kn G(AR.). We
can further reduce our theorem to the case 4 = 0, by a standard use of the Hochschild-Serre spectral
sequence to trivialise the weight modulo some power m at the expense of shrinking the level at p. Now
the theorem follows from Theorem 7.5. O

8. Proof of Theorem 1.2 and Theorem 1.3

Let us recall the proof structure of [ACC* 18, Theorem 6.1.1]. The theorem is reduced in [ACC* 18] to
[ACC*18, Corollary 6.5.5], which is proved using [ACC* 18, Theorem 6.5.4]. The reduction does not
use the ‘enormous’ assumption on the image of p. Thus, it will be sufficient for us to prove an analog
of [ACC*18, Theorem 6.5.4], replacing ‘enormous’ by ‘adequate’ in the hypotheses.

Let F be an imaginary CM number field, and fix the following data:

. Aninteger n > 2 and a prime p > n>.

. A finite set S of finite places of F, including the places above p.

. A (possibly empty) subset R C S of places which are prime to p.

. A cuspidal automorphic representation 7 of GL,, (A ), which is regular algebraic of some weight A.

. A choice of isomorphism ¢ : 61, = C.

We assume that the following conditions are satisfied:

6. If /is a prime lying below an element of S, or which is ramified in F, then F contains an imaginary
quadratic field in which [ splits. In particular, each place of S is split over F* and the extension
F/F* is everywhere unramified.

7. The prime p is unramified in F.

8. For each embedding 7 : F — C, we have

AW =

Az 1+ Are,t = Aoy — Adren < p —2n.

9. For each v € S, let v denote the place of F* lying below v. Then there exists a place v’ # v of
F*, such that v’ | p and

> IFL Q) > %[F+ :QJ.

—1 = =
V'EV,V

10. The residual representation m is absolutely irreducible.

11. If vis a place of F lying above p, then r,, is unramified.

12. If v € R, then 7)™ # 0. L

13. Ifve S - (RUS,), then m, is unramified and H*(F,,ad r,(7)) = 0.
Moreover, v is absolutely unramified and of residue characteristic g > 2.

14. S — (RUS),) contains at least two places with distinct residue characteristics.

15. If v ¢ S is a finite place of F, then &, is unramified.

16. If v € R, then g, = 1 (mod p) and r,(7)|G, is trivial.

17. The representation r, () is decomposed generic in the sense of [ACC* 18, Definition 4.3.1] and the
image of rt(n)lgF({p) is adequate.

We define an open compact subgroup K =[], K, of GLn(@p) as follows:
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olIfvegsS, orveS,, thenK, =GL,(OF,).
o Ifv € R, then K, =1Iw,,.
oIfveS—-(RUS,), thenK, =1Iw, ;.

By [ACC*18, Theorem 2.4.10], we can find a coefficient field E C 6[, and a maximal ideal

m c TS5(K, V), such that p,, = r,(x). After possibly enlarging E, we can and do assume that the
residue field of m is equal to k. For each tuple (xy ;)ver.i=1.....n Of characters y, ; : k(v)* — O* which
are trivial modulo @, we define a global deformation problem by the formula

Sy = (Pms S: {0}hves. {D} hves, U {DY hver) U {DT}ves—(rus,))-

We fix representatives ps, of the universal deformations which are identified modulo @ via the identi-
fications Rs, /@ = Rg, /w. We define an O[Kg]-module V;(x ") = Vi ®o O(x '), where K acts on
V by projection to K, and on O(x ") by the projection Ks — Kg = [1,cg Wy = [1,cr(k(v))™.
Theorem 8.1. Under assumptions (1)—(17) above, H* (X, Va(1))m is a nearly faithful Rs, -module. In
other words, Anngy, (H*(Xg, Va(1))m) is nilpotent.

The rest of the paper is devoted to the proof of Theorem 8.1.
Consider the Taylor-Wiles datum (Q, {a, } ) satisfying the following conditions:

o For each place v € Q of residue characteristic /, there exists an imaginary quadratic subfield Fyp C F,
such that / splits in Fj.
o Q and Q€ are disjoint.

We have the following result, combining [ACC* 18, Proposition 6.5.3] and Theorem 7.7:

Proposition 8.2. There exists an integer § > 1 depending only on n and [F : Q], an ideal J C
Tg (RT' (Xk, (0)> Va (X‘l))mQ), such that J° = 0 and a continuous surjection of O[Ag]-algebras
fspo @ Ryo — Tg(RF(XKI(Q),V,[()(_l))mQ)/J, such that for each finite place v ¢ S U Q, the
characteristic polynomial of fs, , © ps, o equals the image of P, (X).

Let
g=h"(Fs/F,ad p,,(1)) and g=gq-n’*[F*":Q],

and set A, = Z?). Let 7 be a power series ring over O in n?|S| — 1 variables, and let So, = 7 [[Aw]]. Let
@ be the augmentation ideal of S, viewed as an augmented O-algebra. Since p > n, for each v € R,
we can choose a tuple of pairwise distinct characters x, = (xv.1,-- ., Xv.n), With xy ;i : (’);v - O*
trivial modulo @. We write y for the tuple (y, )y cr as well as for the induced character [, cg I, — O*.
Fix an imaginary quadratic subfield Fy c F. Then for each N > 1, we fix a choice of Taylor-Wiles
datum (Q, {ay }yep) for S; of level N using Proposition 6.7. For N = 0, we set Qo = 0. For each
N > 1, weset Ay = Ag,, and fix a surjection A, — Ax. We let Ag be the trivial group, viewed as

a quotient of A, For each N > 0, we set Ry = Rs,,0y and Ry, = Rs, gy Let RI°¢ = Rg;loc and

R'loc = R’g’loc denote the local deformation rings. We let R, and R/, be formal power series rings in g
X

variables over R'°¢ and R’ respectively. We also have canonical isomorphisms Ry /@ = R}, /@ and
R¢ | = R"°¢|w. Using [ACC* 18, Proposition 6.2.24] and [ACC* 18, Proposition 6.2.31], we have
local O-algebra surjections Ro, — Ry and R, — R}, for N > 0. We can and do assume that these are
compatible with the fixed identifications modulo @ and with the isomorphisms Ry ®o(a ol O =Ry
and R}, ®o[a,] O = Ry).

Define Cy = RHomo (RT'(Xk, Vy(1)m, O)[—=d] € D(O) and Ty = TS(Cp). Similarly, we define
C, = RHomo (RT(Xk, Va(x™"))m and Tj = T5(C}). For any N > 1, we let

Cn = RHomo (RI'(Xk, (0), Va(1)me,, » O)[—d],

https://doi.org/10.1017/fms.2023.3 Published online by Cambridge University Press



30 K. Miagkov and J. A. Thorne

and
—_75
In =T, (Cn).
Similarly, we let
v = RHomo (RT(Xk, (), Valx ™ Nimg,, » O) [=d]
and
’ NPl
v =Ty (Cy)-
For any N > 0, there are canonical isomorphisms
CN ®G a1 KIAN] = Ch @541 k[AN]
Olan] N Q0[an]
in D(k[An]). These yield the identification
Endp (o) (Cn ®I(5 k) = Endp (0 (C;V ®é k).

Thus, we can write Ty for the image of both Ty and T}, in the identified endomorphism algebras. By

Theorem 7.6, there are canonical isomorphisms Cpy ®I(5[AN] O = (Cpand Cy, ®I(5[AN] O = Cé in D(O),

which are compatible with the reductions modulo @. By Proposition 8.2, we can find an integer 6 > 1
and for each N > 0 ideals Iy of Ty and I}, of T}, of nilpotence degree < ¢, such that there exist local
O[A y]-algebra surjections Ry — Ty /Iy and R}, — Ty, /I},. Denoting by Iy and 7;\, the images of
In and I, respectively, in T, we get maps Ry /@ — Tn/(In+ 7;\,) and R}, /@ — Tn/(In+ 7;\,)
which are compatible with the identification Ry /@ = R}, /@. The objects constructed above satisfy
the setup described in [ACC" 18, Section 6.4.1]. Thus, we can apply the results of [ACC* 18, Section
6.4.2] as in the second part of the proof of [ACC" 18, Theorem 6.4.4] to conclude that H*(Cy) is a nearly
faithful Rs,-module, which implies Theorem 8.1.
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