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Abstract

Let F be a CM number field. We generalise existing automorphy lifting theorems for regular residually irreducible

p-adic Galois representations over F by relaxing the big image assumption on the residual representation.
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1. Introduction

This paper closely builds on [ACC+18], which proves modularity lifting theorems for regular n-

dimensional Galois representations over a CM number field F without any self-duality condition. In this

paper, we generalise the main results of [ACC+18] to relax the big image assumption on the residual rep-

resentation from ‘enormous image’ to ‘adequate image’. Following [Tho12], we define ‘adequate image’:

Definition 1.1. Let k be a finite field of characteristic p, such that 𝑝 � 𝑛, and let 𝐺 ⊂ GL𝑛 (𝑘) be a

subgroup which acts absolutely irreducibly on 𝑉 = 𝑘𝑛. We suppose that k is large enough to contain all

eigenvalues of all elements of G. If 𝑔 ∈ 𝐺 and 𝛼 ∈ 𝑘 is an eigenvalue g, we write 𝑒𝑔,𝛼 : 𝑉 → 𝑉 for the

g-equivariant projection to the generalised 𝛼-eigenspace. We say that G is adequate if the following

conditions are satisfied:

1. 𝐻0(𝐺, ad0𝑉) = 0.

2. 𝐻1(𝐺, 𝑘) = 0.
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3. 𝐻1 (𝐺, ad0𝑉) = 0.

4. For every irreducible 𝑘 [𝐺]-submodule𝑊 ⊂ ad0𝑉 , there exists an element 𝑔 ∈ 𝐺 with an eigenvalue

𝛼, such that tr 𝑒𝑔,𝛼𝑊 ≠ 0.

Our main theorems are as follows:

Theorem 1.2. Let F be an imaginary 𝐶𝑀 or totally real field, let 𝑐 ∈ Aut(𝐹) be complex conjugation
and let p be a prime. Suppose given a continuous representation 𝜌 : 𝐺𝐹 → GL𝑛 ( Q𝑝) satisfying the
following conditions:

1. 𝜌 is unramified almost everywhere.
2. For each place 𝑣 | 𝑝 of F, the representation 𝜌 |𝐺𝐹𝑣

is crystalline. The prime p is unramified in F.
3. 𝜌 is absolutely irreducible and decomposed generic. The image of 𝜌 |𝐺𝐹 (𝜁𝑝 )

is adequate.

4. There exists 𝜎 ∈ 𝐺𝐹 − 𝐺𝐹 (𝜁𝑝) , such that 𝜌(𝜎) is a scalar. We have 𝑝 > 𝑛2.
5. There exists a cuspidal automorphic representation 𝜋 of GL𝑛 (A𝐹 ) satisfying the following

conditions:
(a) 𝜋 is regular algebraic of weight 𝜆, this weight satisfying

𝜆𝜏,1 + 𝜆𝜏𝑐,1 − 𝜆𝜏,𝑛 − 𝜆𝜏𝑐,𝑛 < 𝑝 − 2𝑛

for all 𝜏.
(b) There exists an isomorphism 𝜄 : Q𝑝 → C, such that 𝜌 � 𝑟 𝜄 (𝜋), and the Hodge-Tate weights of

𝜌 satisfy the formula for each 𝜏 : 𝐹 ↩−→ Q𝑝:

𝐻𝑇𝜏 (𝜌) = {𝜆 𝜄𝜏,1 + 𝑛 − 1, 𝜆 𝜄𝜏,2 + 𝑛 − 2, . . . , 𝜆 𝜄𝜏,𝑛}.

(c) If 𝑣 | 𝑝 is a place of F, then 𝜋𝑣 is unramified.
Then 𝜌 is automorphic: there exists a cuspidal automorphic representation Π of GL𝑛 (A𝐹 ) of weight 𝜆,
such that 𝜌 � 𝑟 𝜄 (Π). Moreover, if v is a finite place of F and either 𝑣 | 𝑝 or both 𝜌 and 𝜋 are unramified
at v, then Π𝑣 is unramified.

Theorem 1.3. Let F be an imaginary 𝐶𝑀 or totally real field, let 𝑐 ∈ Aut(𝐹) be complex conjugation
and let p be a prime. Suppose given a continuous representation 𝜌 : 𝐺𝐹 → GL𝑛 ( Q𝑝) satisfying the
following conditions:

1. 𝜌 is unramified almost everywhere.
2. Let Z𝑛

+ = {(𝜆1, . . . , 𝜆𝑛) ∈ Z𝑛 | 𝜆1 ≥ . . . ≥ 𝜆𝑛}. For each place 𝑣 | 𝑝 of F, the representation 𝜌 |𝐺𝐹𝑣

is potentially semistable, ordinary with regular Hodge-Tate weights. In other words, there exists a

weight 𝜆 ∈ (Z𝑛
+)

Hom(𝐹, Q𝑝) , such that for each place 𝑣 | 𝑝, there is an isomorphism

𝜌 |𝐺𝐹𝑣
∼

������

𝜓𝑣,1 ∗ ∗ ∗

0 𝜓𝑣,2 ∗ ∗
...

. . .
. . . ∗

0 . . . 0 𝜓𝑣,𝑛

������
,

where for each 𝑖 = 1, . . . , 𝑛 the character 𝜓𝑣,𝑖 : 𝐺𝐹𝑣
→ Q

×

𝑝 agrees with the character

𝜎 ∈ 𝐼𝐹𝑣
↦→

∏
𝜏∈Hom(𝐹𝑣 , Q𝑝)

𝜏(Art−1
𝐹𝑣
(𝜎))−(𝜆𝜏,𝑛−𝑖+1+𝑖−1)

on an open subgroup of the inertia group 𝐼𝐹𝑣
.
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3. 𝜌 is absolutely irreducible and decomposed generic. The image of 𝜌 |𝐺𝐹 (𝜁𝑝 )
is adequate.

4. There exists 𝜎 ∈ 𝐺𝐹 − 𝐺𝐹 (𝜁𝑝), such that 𝜌(𝜎) is a scalar. We have 𝑝 > 𝑛.

5. There exists a cuspidal automorphic representation 𝜋 of GL𝑛 (A𝐹 ) and an isomorphism 𝜄 : Q𝑝 → C,

such that 𝜋 is 𝜄-ordinary and 𝜌 � 𝑟 𝜄 (𝜋).

Then 𝜌 is ordinarily automorphic of weight 𝜄𝜆: there exists a 𝜄-ordinary cuspidal automorphic repre-
sentation Π of GL𝑛 (A𝐹 ) of weight 𝜄𝜆, such that 𝜌 � 𝑟 𝜄 (Π). Moreover, if 𝑣 � 𝑝 is a finite place of F and
both 𝜌 and 𝜋 are unramified at v, then Π𝑣 is unramified.

The theorems above are very similar to [ACC+18, Theorem 6.1.1] and [ACC+18, Theorem 6.1.2],

respectively. The only difference is replacing the enormous condition on image of 𝜌 |𝐺𝐹 (𝜁𝑝 )
with

adequate. This is a useful improvement, particularly in light of [GHTT12], which proves that when

𝑝 > 2(𝑛 + 1), adequacy is equivalent to absolute irreducibility. This makes it a condition easy to

work with in the context of automorphy of compatible systems, which we hope would help generalise

[BLGGT14] to the context of [ACC+18] and this paper. We now give a brief overview of the argument.

The main change in comparison to [ACC+18] is the usage of parahoric-level subgroups at Taylor-Wiles

primes instead of Iwahori-level, the idea first introduced to relax the big image assumption in the

setting of automorphy lifting theorems to ‘adequate’ in [Tho12]. To make the argument work in the

parahoric setting, we need to analyse the representations of GL𝑛 (𝐹𝑣 ) with fixed vectors under various

parahoric subgroups and their interactions with the local Langlands correspondence. A notable difficulty

in comparison to [Tho12] is that we can no longer restrict to working with generic local representations,

since they arise as components of cuspidal automorphic representations of unitary groups instead of

GL𝑛. The local computations allow us to prove the necessary local-global compatibility results for

Galois representations landing in Hecke algebras acting on cohomology of locally symmetric spaces

with parahoric level. Another novel component is a proof of a ‘growth of the space of cusp forms’-

type result when adding Taylor-Wiles primes with parahoric level, which requires an investigation of

representations of GL𝑛 (𝐹𝑣 ) over fields of finite characteristic.

1.1. Notation

We write 𝐺𝐿𝑛 for the usual general linear group (viewed as a reductive group scheme over Z) and

𝑇𝑛 ⊂ 𝐵𝑛 ⊂ 𝐺𝐿𝑛 for its subgroups of diagonal and of upper triangular matrices, respectively. We

identify 𝑋∗ (𝑇) with Z𝑛 in the usual way and write Z𝑛
+ ⊂ Z𝑛 for the subset of 𝐵𝑛-dominant weights. If R

is a local ring, we write 𝔪𝑅 for the maximal ideal of R. If Γ is a profinite group and 𝜌 : Γ → 𝐺𝐿𝑛 ( Q𝑝)

is a continuous homomorphism, then we will let 𝜌 : Γ → 𝐺𝐿𝑛 ( F𝑝) denote the semisimplification
of its reduction, which is well defined up to conjugacy (by the Brauer-Nesbitt theorem). If M is

a topological abelian group with a continuous action of Γ, then by 𝐻𝑖 (Γ, 𝑀), we shall mean the

continuous cohomology. If G is a locally profinite group, 𝑈 ⊂ 𝐺 is an open compact subgroup and R
is a commutative ring, then we write H𝑅 (𝐺,𝑈) for the algebra of compactly supported, U-biinvariant

functions 𝑓 : 𝐺 → 𝑅, with multiplication given by convolution with respect to the Haar measure on

G which gives U volume 1. If 𝑋 ⊂ 𝐺 is a compact U-biinvariant subset, then we write [𝑋] for the

characteristic function of X, an element of H𝑅 (𝐺,𝑈). When R is omitted from the notation, we take

𝑅 = Z. We write 𝜄H for the anti-involution given by 𝜄H ( 𝑓 ) (𝑔) = 𝑓 (𝑔−1).

If F is a perfect field, we let 𝐹 denote an algebraic closure of F and 𝐺𝐹 the absolute Galois group

Gal( 𝐹/𝐹). We will use 𝜁𝑛 to denote a primitive n-th root of unity when it exists. Let 𝜖𝑙 denote the l-adic

cyclotomic character. We will let rec𝐾 be the local Langlands correspondence of [HT01], so that if 𝜋 is

an irreducible complex admissible representation of 𝐺𝐿𝑛 (𝐾), then rec𝐾 (𝜋) is a Frobenius semisimple

Weil-Deligne representation of the Weil group𝑊𝐾 . If K is a finite extension of Q𝑝 for some p, we write

𝐾𝑛𝑟 for its maximal unramified extension, 𝐼𝐾 for the inertia subgroup of 𝐺𝐾 , Frob𝐾 ∈ 𝐺𝐾 /𝐼𝐾 for the

geometric Frobenius and 𝑊𝐾 for the Weil group. We will write Art𝐾 : 𝐾× ∼
−→ 𝑊ab

𝐾
for the Artin map

normalised to send uniformisers to geometric Frobenius elements.
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We will write rec for rec𝐾 when the choice of K is clear. We write rec𝑇
𝐾

for the normalisation of

the local Langlands correspondence as defined in, for example [CT14, Section 2.1]; it is defined on

irreducible admissible representations of 𝐺𝐿𝑛 (𝐾) defined over any field which is abstractly isomorphic

to C (e.g. Q𝑙). If (𝑟, 𝑁) is a Weil-Deligne representation of𝑊𝐾 , we will write (𝑟, 𝑁)𝐹−𝑠𝑠 for its Frobenius

semisimplification. If 𝜌 is a continuous representation of 𝐺𝐾 over Q𝑙 with 𝑙 ≠ 𝑝, then we will write

𝑊𝐷 (𝜌) for the corresponding Weil-Deligne representation of 𝑊𝐾 . By a Steinberg representation of

𝐺𝐿𝑛 (𝐾), we will mean a representation 𝑆𝑝𝑛 (𝜓) (in the notation of Section 1.3 of [HT01]), where 𝜓 is

an unramified character of 𝐾×.

If G is a reductive group over K and P is a parabolic subgroup with unipotent radical N and Levi

component L, and if 𝜋 is a smooth representation of 𝐿(𝐾), then we define Ind
𝐺 (𝐾 )

𝑃 (𝐾 )
𝜋 to be the set of locally

constant functions 𝑓 : 𝐺 (𝐾) → 𝜋, such that 𝑓 (ℎ𝑔) = 𝜋(ℎ𝑁 (𝐾)) 𝑓 (𝑔) for all ℎ ∈ 𝑃(𝐾) and 𝑔 ∈ 𝐺 (𝐾).

It is a smooth representation of 𝐺 (𝐾), where (𝑔1 𝑓 ) (𝑔2) = 𝑓 (𝑔2𝑔1). This is sometimes referred to as

‘un-normalised’ induction. We let 𝛿𝑃 denote the determinant of the action of L on 𝐿𝑖𝑒𝑁 . Then we define

the ‘normalised’ induction ind
𝐺 (𝐾 )

𝑃 (𝐾 )
𝜋 to be Ind

𝐺 (𝐾 )

𝑃 (𝐾 )
(𝜋 ⊗ |𝛿𝑃 |

1/2

𝐾
). We also define a parabolic restriction

functor 𝑟
𝑃 (𝐾 )

𝐺 (𝐾 )
from𝐺 (𝐾)-representations to 𝐿(𝐾)-representations to be the composition of restriction to

𝑃(𝐾) and taking 𝑁 (𝐾)-coinvariants. If F is a CM number field and 𝜋 is an automorphic representation of

GL𝑛 (A𝐹 ), we say that 𝜋 is regular algebraic if 𝜋∞ has the same infinitesimal character as an irreducible

algebraic representation W of (Res𝐹/Q GL𝑛)C. If𝑊∨ has highest weight 𝜆 ∈ (Z𝑛
+)

Hom(𝐹,C) , then we say

𝜋 has weight 𝜆.

If 𝑃(𝑋) ∈ 𝐴[𝑋] is a polynomial of degree n over any ring A, such that 𝑃(0) ∈ 𝐴×, we write 𝑃∨(𝑋)

for 𝑃(0)−1𝑋𝑛𝑃(𝑋−1). For two polynomials 𝑃,𝑄 ∈ 𝐴[𝑋], we write Res(𝑃,𝑄) to denote their resultant.

Given a Galois representation 𝜌 : 𝐺𝐹,𝑆 → GL𝑛 (𝐴), we will write 𝜌⊥ � 𝜌𝑐,∨ ⊗ 𝜖1−2𝑛, and given a

𝐺𝐹,𝑆-group determinant D, we will denote by 𝐷⊥ the corresponding dual.

2. Representation theory of GL𝑛 (𝐹𝑣 ) in characteristic p

Let p be a rational prime and 𝑘 = F𝑝 . Let 𝐹/Q be a finite extension, and let x be a prime in F
with residue field 𝑘𝑥 of order q satisfying 𝑞 ≡ 1 (mod 𝑝) and the corresponding ring of integers

O𝑥 = O𝐹𝑥
. Set 𝐺𝑥 = 𝐺𝑎𝑙 ( 𝐹𝑥/𝐹𝑥). Also set 𝐺 = 𝐺𝐿𝑛 with 𝑝 > 𝑛, and let 𝑇 ⊂ 𝐵 ⊂ 𝐺 be the

maximal torus and the corresponding Borel and𝑈 ⊂ 𝐺 be the unipotent subgroup. Let 𝐾1(𝑥) ⊂ 𝐺 (O𝑥)

be the full congruence subgroup. We also let Iw, Iw1 ⊂ 𝐺 (O𝑥) be the Iwahori and the Iwahori-1,

respectively, and let Iw1 ⊂ Iw𝑝 ⊂ Iw be the subgroup, such that [Iw𝑝 : Iw1] has order prime to p and

[Iw : Iw𝑝] has p-power order. Let 𝔭(𝑥) be a two-block parahoric subgroup of 𝐺 (O𝑥) with blocks of

sizes 𝑛1 + 𝑛2 = 𝑛 and P the corresponding parabolic. Let 𝑊 � 𝑆𝑛 be the Weyl group for GL𝑛, and for

a given parabolic subgroup 𝑄 ⊂ 𝐺, let 𝑊𝑄 ⊂ 𝑊 be the Weyl group of its Levi factor. Set 𝑇0 � 𝑇 (O𝑥)

and 𝑇1 � ker(𝑇0 → 𝑇 (O𝑥/𝜛)). Fix 𝜌 : 𝐺𝑥 → GL𝑛 (𝑘)—a continuous unramified semisimple

representation. We say that an irreducible admissible representation 𝜋 of G over k is associated to 𝜌 if 𝜋

is a subquotient of Ind𝐺
𝐵 𝜒1⊗ . . .⊗𝜒𝑛, where 𝜒𝑖 are unramified characters, such that {𝜒1 (𝜛), . . . , 𝜒𝑛 (𝜛)}

is the set of eigenvalues of 𝜌(Frob𝑥). We write 𝐼 (𝜒) for Ind𝐺
𝐵 𝜒1 ⊗ . . .⊗ 𝜒𝑛. The following lemma shows

that if we do not fix the ordering of 𝜒𝑖 , then we can always consider 𝜋 to be a subrepresentation of 𝐼 (𝜒).

Proposition 2.1. Let 𝜋 be an irreducible admissible 𝑘 [𝐺]-module associated to 𝜌. Then there exists an
ordering of 𝜒1, . . . , 𝜒𝑛, such that 𝜋 is a subrepresentation of 𝐼 (𝜒).

Proof. We use the adjunction between Ind𝐺
𝐵 and the parabolic restriction 𝑟𝐺

𝐵
to get an isomorphism

Hom(𝜋, 𝐼 (𝜒)) � Hom(𝑟𝐵
𝐺 (𝜋), 𝜒).

Since 𝜋 is associated to 𝜌, we know that 𝑟𝐵
𝐺
(𝜋) ≠ 0. Since 𝑟𝐵

𝐺
(𝜋) is a representation of the torus, there

exists a 1-dimensional quotient given by some character 𝜒 : 𝑇 → 𝑘×. Then we get that Hom(𝜋, 𝐼 (𝜒)) ≠

0, and since 𝜋 is irreducible, this implies that 𝜋 is a subrepresentation of 𝐼 (𝜒). Then 𝜒 forms the
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supercuspidal support of 𝜋 and in fact has to be a permutation of the original 𝜒1, . . . , 𝜒𝑛. For the notion

of supercuspidal support in positive characteristic, see [Vig96, II.2.6]. We would also like to remark,

here, that in the case 𝑞 ≡ 1 (mod 𝑝), 𝑝 > 𝑛, the notions of cuspidal and supercuspidal representations

coincide (see [Vig96, II.3.9]). �

We now describe the Bernstein presentation of Iwahori-Hecke algebra H𝑘 (𝐺, Iw), following [Vig96,

I.3.14]. Let

𝑡 𝑗 = diag(𝜛, . . . 𝜛︸����︷︷����︸
𝑗

, 1 . . . , 1),

and set 𝑇𝑗 = [Iw 𝑡 𝑗 Iw] and 𝑋 𝑗 = 𝑇𝑗 (𝑇𝑗−1)
−1. We also let 𝑠 𝑗 be the permutation matrix corresponding to

the transposition ( 𝑗 , 𝑗 + 1) and set 𝑆 𝑗 = [Iw 𝑠 𝑗 Iw]. The elements 𝑋 𝑗 for 1 ≤ 𝑗 ≤ 𝑛 generate the group

algebra 𝑘 [Z𝑛] on which 𝑆 𝑗 acts by permuting the indices. The Bernstein presentation states that

H𝑘 (𝐺, Iw) � 𝑘 [𝑆𝑛 � Z𝑛]

under the action described above.

Now we introduce some useful Hecke operators. For any ring R, 1 ≤ 𝑖 ≤ 𝑛1 and 1 ≤ 𝑗 ≤ 𝑛2 let

𝑉 𝑗 ,2 ∈ H𝑅 (𝐺,𝔭(𝑥)) be the Hecke operator associated to the double coset

[𝔭(𝑥) diag(1, . . . , 1︸���︷︷���︸
𝑛1

, 𝜛, . . . , 𝜛︸�����︷︷�����︸
𝑗

, 1, . . . , 1︸���︷︷���︸
𝑛2− 𝑗

)𝔭(𝑥)]

and let 𝑉 𝑖,1 be associated to

[𝔭(𝑥) diag(𝜛, . . . , 𝜛︸�����︷︷�����︸
𝑖

, 1 . . . , 1)𝔭(𝑥)] .

The following is part of [CHT08, Theorem B.1]:

Proposition 2.2. Let V be an irreducible admissible 𝑘 [𝐺]-module, which is generated by its Iwahori-
invariant vectors. Then 𝑉 Iw = 𝑉 Iw1 .

Under the conditions of 2.2, we thus get an isomorphism

𝐻1 (Iw, 𝑉) � 𝐻1(𝐵(𝑘), 𝑉𝐾 1 (𝑥) ) � 𝐻1 (𝑇 (𝑘), 𝑉 Iw1)

� 𝐻1(𝑇 (𝑘), 𝑉 Iw) � Hom(𝑇 (𝑘), 𝑉 Iw).
(2.3)

Both sides of 2.3 can be endowed with the action of H𝑘 (𝐺, Iw). On 𝐻1(Iw, 𝑉), we take the derived

H𝑘 (𝐺, Iw)-action, and on Hom(𝑇 (𝑘), 𝑉 Iw), we consider the natural action on the target.

Proposition 2.4. The isomorphism 2.3 is equivariant with respect to 𝑋 𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.

Proof. The action of 𝑋 𝑖 on [ 𝑓 ] ∈ 𝐻1 (Iw, 𝑉) can be described as follows. Write

Iw 𝑡𝑖 Iw =
⊔
𝑗

𝑔𝑖, 𝑗 Iw .

We now give an explicit description for 𝑔𝑖, 𝑗 . Fix a set of representatives 𝑆 ⊂ O𝐹 for k. For each

𝑚 ∈ 𝑀𝑖×(𝑛−𝑖) (𝑆), let 𝑔𝑖,𝑚 be the matrix, such that 𝑔𝑖,𝑚(𝑘, 𝑘) = 𝜛 for 𝑘 ≤ 𝑖, 𝑔𝑖,𝑚(𝑘, 𝑘) = 1 for 𝑘 > 𝑖

and 𝑔𝑖,𝑚(𝑘, ℓ) = 𝑚(𝑘, ℓ − 𝑖) for 𝑘 ≤ 𝑖, ℓ > 𝑖. The rest of the entries are set to 0. Let us show that this is
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a full set of representatives. First we show that 𝑔𝑖,𝑚 represent distinct cosets, that is that 𝑔−1
𝑖,𝑚𝑔𝑖,𝑚′ ∉ Iw

for 𝑚 ≠ 𝑚′. Suppose 𝑚(𝑘, ℓ) ≠ 𝑚′(𝑘, ℓ). Then

(𝑔−1
𝑖,𝑚𝑔𝑖,𝑚′) (𝑘, ℓ + 𝑖) = 𝜛−1 (𝑚′(𝑘, ℓ) − 𝑚(𝑘, ℓ))

which is not in O𝐹 . Now we just need to verify that the number of cosets is 𝑞𝑖 (𝑛−𝑖) . Indeed,

[Iw 𝑡𝑖 Iw : Iw] = [Iw : Iw∩𝑡𝑖 Iw 𝑡−1
𝑖 ] = 𝑞𝑖 (𝑛−𝑖)

since Iw∩𝑡𝑖 Iw 𝑡−1
𝑖 are just the elements of the Iwahori whose (𝑘, ℓ)-coordinates for 𝑘 ≤ 𝑖, ℓ > 𝑖 vanish

mod 𝜛.

Then

(𝑋 𝑖 [ 𝑓 ]) (𝑥) =
∑

𝑗

𝑔𝑖,𝜎 ( 𝑗) 𝑓 (𝑔
−1
𝑖,𝜎 ( 𝑗)𝑥𝑔𝑖, 𝑗 ),

where 𝜎 is the unique permutation, such that

𝑔−1
𝑖,𝜎 ( 𝑗)𝑥𝑔𝑖, 𝑗 ∈ Iw

for all j. Denote by : Iw → 𝑇 (𝑘) the reduction map. Let s be the inverse of 2.3. For [𝜏] ∈

Hom(𝑇 (𝑘), 𝑉 Iw), we get

(𝑋 𝑖 [𝑠(𝜏)]) (𝑥) =
∑

𝑗

𝑔𝑖,𝜎 ( 𝑗) 𝑠(𝜏) ( 𝑔
−1
𝑖,𝜎 ( 𝑗)

𝑥𝑔𝑖, 𝑗 )

=
∑

𝑗

𝑔𝑖,𝜎 ( 𝑗) 𝑠(𝜏) ( 𝑥) = 𝑠(𝑋 𝑖 [𝜏]) (𝑥).

The second equality is due to all the 𝑔𝑖, 𝑗 being in the Borel and having the same diagonal. �

Definition 2.5. A G-modules V over k is locally admissible if it is smooth, and for every 𝑣 ∈ 𝑉 the

subrepresentation generated by v is admissible. Let C denote the abelian category of locally admissible

G-modules V over k, such that every irreducible subquotient of V is associated to 𝜌.

The following is analogous to [CG18, Lemma 9.14]:

Proposition 2.6. The category C has enough injectives, and the inclusion functor from C to locally
admissible G-modules is exact.

Proof. Inside the category of G-modules, the category C is fully contained inside the unipotent block (the

block containing the trivial representation). By part 4) of [CHT08, Theorem B.1], the unipotent block

is equivalent to the category of H𝑘 (𝐺, Iw
𝑝)-modules. Via the Bernstein embedding1, such modules

can naturally be viewed as H𝑘 (𝐺,𝐺 (O𝑥))-modules, where H𝑘 (𝐺,𝐺 (O𝑥)) can be explicitly described

via the Satake isomorphism as 𝑘 [𝑋±1
1
, . . . , 𝑋±1

𝑛 ]𝑊 . Here, we use the Satake isomorphism twisted by

|det| (1−𝑛)/2, which is defined over Z[𝑞−1]. If V is any locally admissible element of the unipotent block,

the associated Hecke module 𝑉 Iw𝑝

is locally finite-dimensional over k, and thus we can write

𝑉 Iw𝑝

=
⊕
𝔪

𝑉 Iw𝑝

𝔪 ,

where the sum is taken over all maximal ideals of H𝑘 (𝐺,𝐺 (O𝑥)). Let D denote the category of locally

admissible representations in the unipotent block. Then we can write D =
⊕

𝔪 D𝔪, where D𝔪 consists

1For the details on the Bernstein embedding 𝑘 [Z𝑛 ] → H𝑘 (𝐺, 𝐼 ) in the case of an arbitrary open compact subgroup 𝐼 ⊂ Iw,
such that Iw1 ⊂ 𝐼 , see [ACC+18, Section 2.2.4]. We note that there the authors are working over some p-adic ring O, but the
results are valid over k as well since 𝑞 ≡ 1 (mod 𝑝) .
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of representations whose associated H𝑘 (𝐺,𝐺 (O𝑥))-module is supported only at 𝔪. The maximal

ideals of H𝑘 (𝐺,𝐺 (O𝑥)) have the form (𝑡1 − 𝛼1, . . . , 𝑡𝑛 − 𝛼𝑛), where 𝛼𝑖 ∈ 𝑘 and 𝑡𝑖 = 𝑒𝑖 (𝑋1, . . . , 𝑋𝑛)

is the i-th elementary symmetric polynomial of 𝑋1, . . . , 𝑋𝑛. If we now let 𝔫 be the ideal defined by

𝛼𝑖 = 𝑒𝑖 (𝜒1 (𝜛), . . . , 𝜒𝑛 (𝜛)), then it is clear that C = D𝔫 . The exactness is now clear, and to show

that C has enough injectives, it is enough to check that the category Modl.adm.
𝐺

(𝑘) of locally admissible

G-modules has enough injectives. The full category Mod𝐺 (𝑘) certainly has enough injectives, and the

functor L : Mod𝐺 (𝑘) → Modl.adm.
𝐺

(𝑘) taking a module to its smooth locally admissible vectors is right

adjoint to the natural embedding Modl.adm.
𝐺

(𝑘) → Mod𝐺 (𝑘). This proves the claim. �

From now on, fix 𝛼 = 𝜒𝑖 (𝜛) for some 1 ≤ 𝑖 ≤ 𝑛. Let

𝑃(𝑋) =

𝑛∏
𝑖=1

(𝑋 − 𝜒𝑖 (𝜛)).

For 1 ≤ 𝑗 ≤ 𝑛2, let 𝑃 𝑗 be a polynomial whose roots with multiplicities are precisely∑
𝐽 ⊂𝑆
#𝐽= 𝑗

∏
𝑎∈𝐽

𝜒𝑎 (𝜛).

Factor 𝑃 𝑗 = 𝑄 𝑗𝑅 𝑗 , where

𝑅 𝑗 (𝑋) =

(
𝑋 −

(
𝑛2

𝑗

)
𝛼 𝑗

) 𝑘 𝑗

and 𝑄 𝑗 , 𝑅 𝑗 are coprime. Set

𝑒𝛼 � lim
𝑚→∞

(
𝑛2∏
𝑖=1

𝑄 𝑗 (𝑉
𝑗 ,2)

)𝑚!

.

Here, we consider 𝑒𝛼 as an operator acting on𝑉𝔭 (𝑥) for𝑉 ∈ C. Since objects in C are locally admissible,

the limit makes sense.

We now define two functors 𝐹, 𝐺 : C → 𝑘−Vect. On objects, we set

𝐹 (𝑉) � 𝑉𝐺 (O𝑥 ) , 𝐺 (𝑉) � 𝑒𝛼𝑉
𝔭 (𝑥) .

Note that 𝐹, 𝐺 are both left-exact and 𝑒𝛼 is exact. Then we can form derived functors 𝑅𝑘𝐹, 𝑅𝑘𝐺 and

identify

𝑅𝑘𝐹 (𝑉) = 𝐻𝑘 (𝐺 (O𝑥), 𝑉), 𝑅𝑘𝐺 (𝑉) = 𝑒𝛼𝐻
𝑘 (𝔭(𝑥), 𝑉).

We have a natural transformation 𝜄 : 𝐹 → 𝐺 given by composing the inclusion 𝑉𝐺 (O𝑥 ) ↩−→ 𝑉𝔭 (𝑥) with

𝑒𝛼. We will make use of the following simple algebraic fact.

Lemma 2.7. Let G be a profinite group and 𝐻 � 𝐺 be a normal subgroup. Let A be a p-torsion G-
module for some positive integer p, and let H have pro-q order for a prime q satisfying 𝑞 ≡ 1 (mod 𝑝).
Then the inflation map

inf : 𝐻1(𝐺/𝐻, 𝐴𝐻 ) → 𝐻1 (𝐺, 𝐴)

is an isomorphism whose inverse sends a cocycle [ 𝑓 ] ∈ 𝐻1(𝐺, 𝐴) to

𝑔 ↦→ 𝑓 (𝑔) + (1 − 𝑔)𝑎 𝑓

for some 𝑎 𝑓 ∈ 𝐴.
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Proof. The condition 𝑞 ≡ 1 (mod 𝑝) ensures that 𝐻1 (𝐻, 𝐴) vanishes. Then it is enough to take

(𝑔 − 1)𝑎 𝑓 to be the coboundary trivialising the restriction of [ 𝑓 ] to H. �

Proposition 2.8. Let 𝜋 be an irreducible admissible 𝑘 [𝐺]-module associated to 𝜌. Then the map

𝑓 : 𝐻1(𝐺 (𝑘), 𝜋𝐾 1 (𝑥) ) → 𝑒𝛼𝐻
1(𝑃(𝑘), 𝜋𝐾 1 (𝑥) )

is injective.

Proof. Both cohomology groups in question inject into 𝐻1(𝐵(𝑘), 𝜋𝐾 1 (𝑥) ) since

[𝐺 (𝑘) : 𝐵(𝑘)] ≡ 𝑛! � 0 (mod 𝑝)

when 𝑝 > 𝑛, so let us analyse that group. Since 𝑞 ≡ 1 (mod 𝑝), by inflation-restriction, we get

𝐻1(𝐵(𝑘), 𝜋𝐾 1 (𝑥) ) � 𝐻1 (𝑇 (𝑘), 𝜋Iw1).

As a special case of 2.3, we have

𝐻1 (Iw, 𝜋) � 𝐻1(𝐵(𝑘), 𝜋𝐾 1 (𝑥) ) � Hom(𝑇 (𝑘), 𝜋Iw) � (𝜋Iw)⊕𝑛. (2.9)

The isomorphism above is equivariant with respect to the natural actions of {𝑋 𝑖} on both sides arising

from the actions of H𝑘 (𝐺, Iw) by Proposition 2.4. The space 𝜋Iw injects into 𝐼 (𝜒)Iw, which has a basis

{𝜑𝑤 } for 𝑤 ∈ 𝑊 , where 𝜑𝑤 is supported on 𝐵𝑤 Iw and satisfies 𝜑𝑤 (𝑤) = 1. It follows from the proof

of [Tho12, Lemma 5.10], that on each component of (𝐼 (𝜒)Iw)⊕𝑛, the operator 𝑒𝛼 acts as a projection

onto the space spanned by {𝜑𝑤′ | 𝑤′ ∈ 𝑊 ′}, where 𝑊 ′ is the subset of W consisting of permutations

which send {𝑛1 + 1, . . . , 𝑛} to the positions of 𝛼-s in the sequence 𝜒1 (𝜔), . . . , 𝜒𝑛 (𝜔). On the level of

cocycles, the isomorphism 2.9 sends [𝑠] ∈ 𝐻1(𝐵(𝑘), 𝜋𝐾 1 (𝑥) ) to the map

𝑔 ↦→ 𝑠(𝑔) + (1 − 𝑔)𝜓

for some 𝜓 ∈ 𝐼 (𝜒) (Lemma 2.7). Thus, a cocycle [𝑠] ∈ 𝐻1(𝐺 (𝑘), 𝐼 (𝜒)𝐾
1 (𝑥) ) being in the kernel of f

means that for all 𝑡 ∈ 𝑇 (𝑘) and 𝑤0 ∈ 𝑊 ′, we have

(𝑠(𝑡) + (1 − 𝑡)𝜓) (𝑤0) = 0. (2.10)

For any 𝑤 ∈ 𝑊 , we have

(𝑡𝜓) (𝑤) = 𝜓(𝑤𝑡) = 𝜓(𝑤(𝑡)𝑤) = 𝜓(𝑤).

Here, 𝑡 is a lift of t to 𝑇0 and w acts on the torus in a natural way. Note that here, we used that 𝜒 is

unramified. Thus

((1 − 𝑡)𝜓) (𝑤) = 0. (2.11)

Combining 2.10 and 2.11 applied to 𝑤0, we get

𝑠(𝑡) (𝑤0) = 0.

Now let us conjugate t by an arbitrary 𝑤 ∈ 𝑊 . Since the result is again in T, we use the cocycle condition

and the transformation law of 𝐼 (𝜒) with respect to the Borel to write

0 = 𝑠(𝑤𝑡𝑤−1) (𝑤0) = (𝑠(𝑤) + 𝑤(𝑠(𝑡) + 𝑡𝑠(𝑤−1))) (𝑤0) (2.12)

(𝑤𝑡𝑠(𝑤−1)) (𝑤0) = 𝑤𝑠(𝑤
−1) (𝑤0) = −𝑠(𝑤) (𝑤0). (2.13)
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Combining 2.12 and 2.13, we get

0 = (𝑤𝑠(𝑡)) (𝑤0) = 𝑠(𝑡) (𝑤0𝑤).

In other words, we now have 𝑠(𝑡) (𝑤) = 0 for all 𝑡 ∈ 𝑇 (𝑘) and for all 𝑤 ∈ 𝑊 . By 2.11, this implies that

[𝑠] = 0 since {𝜑𝑤 } make a basis for 𝐼 (𝜒)Iw. �

Theorem 2.14. The natural transformation 𝜄 : 𝐹 → 𝐺 given by 𝑉𝐺 (O𝑥 ) ↦→ 𝑒𝛼𝑉
𝔭 (𝑥) on objects is an

isomorphism of functors. In particular, we get functorial isomorphisms

𝜄∗ : 𝐻𝑘 (𝐺 (O𝑥), 𝑉)
∼
−→ 𝑒𝛼𝐻

𝑘 (𝔭(𝑥), 𝑉)

for all 𝑘 ≥ 0.

Proof. In the proof of Proposition 2.6, we have identified C with a subcategory of H𝑘 (𝐺, Iw
𝑝)-Mod.

Thus, every element of C is a direct limit of finite length elements of C, and it is, therefore, enough to

establish the isomorphism for finite length V. The first step will be to show that 𝜄(𝑉) is an isomorphism

for all 𝑉 ∈ C. For an irreducible subrepresentation 𝜋 ⊂ 𝑉 , consider the diagram

0 𝐹 (𝜋) 𝐹 (𝑉) 𝐹 (𝑉/𝜋) 𝑅1𝐹 (𝜋)

0 𝐺 (𝜋) 𝐺 (𝑉) 𝐺 (𝑉/𝜋) 𝑅1𝐺 (𝜋).

𝜄 (𝜋) 𝜄 (𝑉 ) 𝜄 (𝑉 /𝜋) 𝑓 (2.15)

To show that 𝜄(𝑉) is injective, we can use the four lemmas and induct on the length of V. Thus, we only

need to show that 𝜄(𝜋) is injective for irreducible 𝜋. This is done in [Tho12, Lemma 5.10].

Now we would like to show that 𝜄(𝜋) is an isomorphism. Consider the injection 𝜋 ⊂ 𝐼 (𝜒) and the

associated diagram

0 𝐹 (𝜋) 𝐹 (𝐼 (𝜒)) 𝐹 (𝐼 (𝜒)/𝜋)

0 𝐺 (𝜋) 𝐺 (𝐼 (𝜒)) 𝐺 (𝐼 (𝜒)/𝜋).

𝜄 (𝜋) 𝜄 (𝐼 (𝜒)) 𝜄 (𝐼 (𝜒)/𝜋) (2.16)

We already know that 𝜄(𝐼 (𝜒)/𝜋) is injective. Then to show that 𝜄(𝜋) is surjective by the four lemmas, we

need to know that 𝜄(𝐼 (𝜒)) is surjective. This follows once again from the proof of [Tho12, Lemma 5.10].

Finally, we are ready to see that 𝜄(𝑉) is an isomorphism for all 𝑉 ∈ C. We induct on the length of V
using Eq. 2.15. Since f is injective by Proposition 2.8, the result follows. �

3. Representation theory of GL𝑛 (𝐹𝑣 ) in characteristic 0

Fix a finite extension 𝐸/Q𝑝 in Q𝑝 which contains the images of all embeddings 𝐹 → Q𝑝 . We write O

for the ring of integers of E and 𝜛 ∈ O for a choice of uniformiser. If v is a finite place of F prime to p,

we write Ξ𝑣 � Z𝑛 and Ξ𝑣,1 � 〈𝜏𝑣〉 × Z𝑛, where 𝜏𝑣 is the generator of 𝑘×𝑣 (𝑝)—the maximal p-power

order quotient of 𝑘×𝑣 . We have a natural homomorphismO×
𝐹𝑣

→ Z[Ξ𝑣,1] induced by the homomorphism

O×
𝐹𝑣

→ 𝑘×𝑣 → 𝑘×𝑣 (𝑝), which we denote by 〈 · 〉. Consider a standard parabolic subgroup 𝑃 ⊂ GL𝑛 (𝐹𝑣 )

corresponding to a partition 𝑛 = 𝑛1 + . . . + 𝑛𝑚 which we will denote as 𝜇. Given a partition of n, we will

always let 𝑠𝜇,𝑖 = 𝑛1 + . . . + 𝑛𝑖 , with 𝑠𝜇,0 = 0. Let 𝑃 = 𝑀𝑁 and 𝑃 = 𝑀 𝑁 be the Levi decompositions

of P and its opposite parabolic. Let 𝔪 be the hyperspecial maximal compact subgroup of M. Define the

subgroup of the symmetric group 𝑆𝜇 = 𝑆𝑛1
× . . . × 𝑆𝑛𝑚

. For any positive integer k, let

S𝑘 : H
Z[𝑞

1/2
𝑣 ]

(GL𝑘 (𝐹𝑣 ),GL𝑘 (O𝐹𝑣
)) → Z[𝑞

1/2
𝑣 ] [𝑋±1

1 , . . . , 𝑋±1
𝑘 ]𝑆𝑘
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denote the (normalised) Satake isomorphism. We use those isomorphisms to identify

S𝜇 = S𝑛1
⊗ . . . ⊗ S𝑛𝑘

: H
Z[𝑞

1/2
𝑣 ]

(𝑀,𝔪)
∼
−→ Z[𝑞

1/2
𝑣 ] [Ξ𝑣 ]

𝑆𝜇 .

Consider any open compact subgroup 𝔮 of GL𝑛 (𝐹𝑣 ), and set

𝔮𝑀 = 𝔮 ∩ 𝑀, 𝔮+ = 𝔮 ∩ 𝑁, 𝔮− = 𝔮 ∩ 𝑁.

From now on, assume that 𝔮 has an Iwahori decomposition with respect to P, which means that

𝔮 = 𝔮−𝔮𝑀𝔮+. We define a submonoid 𝑀+ ⊂ 𝑀 of positive elements to consist of elements 𝑚 ∈ 𝑀 , such

that

𝑚𝔮+𝑚−1 ⊂ 𝔮+, 𝑚−1𝔮−𝑚 ⊂ 𝔮−.

Inside 𝑀+, we have a further submonoid 𝑀++ of strictly positive elements consisting of 𝑚 ∈ 𝑀+

satisfying the following conditions:

◦ For any compact open subgroups 𝔫1, 𝔫2 of N, there exists a positive integer 𝑥 ≥ 0, such that

𝑚𝑥𝔫1𝑚
−𝑥 ⊂ 𝔫2.

◦ For any compact open subgroups 𝔫1, 𝔫2 of 𝑁 , there exists a positive integer 𝑥 ≥ 0, such that

𝑚−𝑥 𝔫1𝑚
𝑥 ⊂ 𝔫2.

We denote by HO (𝑀,𝔮𝑀 )+ the elements of HO (𝑀,𝔮𝑀 ) whose support is contained in 𝑀+. From now

on, we also assume that 𝑞𝑣 has a square root in O and fix such square root.

Proposition 3.1.

1. The map 𝑡+𝜇 : HO (𝑀,𝔮𝑀 )+ → HO (𝐺,𝔮) given by

[𝔮𝑀𝑚𝔮𝑀 ] ↦→ 𝛿
1/2

𝑃
(𝑚) [𝔮𝑚𝔮]

is an algebra homomorphism.
2. The map 𝑡+𝜇 extends to a homomorphism 𝑡𝜇 : HO (𝑀,𝔮𝑀 ) → HO (𝐺,𝔮) if and only if there exists a

strictly positive element 𝑎 ∈ 𝑍 (𝑀), such that [𝔮𝑎𝔮] is invertible in HO (𝐺,𝔮).
3. Assuming the existence of the extension in (2), for any smooth C[GL𝑛 (𝐹𝑣 )]-module 𝜋, the canonical

map 𝜋𝔮 → 𝜋
𝔮𝑀
𝑁

is a homomorphism of HO (𝑀,𝔮𝑀 )-modules, where HO (𝑀,𝔮𝑀 ) acts on 𝜋𝔮 via the
map 𝑡𝜇.

Proof. For the first two claims, see [Vig98, II.6]. For the third, see [Vig98, II.10.1]. �

Now we record some results about smooth admissible representations of GL𝑛 (𝐹𝑣 ) in characteristic

0. Let 𝔭 be a parahoric corresponding to the partition 𝑛 = 𝑛1 + . . . + 𝑛𝑘 which we call 𝜇, and let P be

the underlying parabolic with the Levi decomposition 𝑃 = 𝑀𝑁 . Let 𝔪 = 𝑀 (O𝐹𝑣
). We also let 𝔭1,𝔪1

denote the kernels of the homomorphisms

𝔭 → 𝑃(𝑘𝑣 ) → GL𝑛𝑘
(𝐹𝑣 )

det
−−→ 𝑘×𝑣 → 𝑘×𝑣 (𝑝)

𝔪 → 𝑀 (𝑘𝑣 ) → GL𝑛𝑘
(𝐹𝑣 )

det
−−→ 𝑘×𝑣 → 𝑘×𝑣 (𝑝).

Finally, let Iw′ = 𝔭1 ∩ Iw.

Lemma 3.2. The condition in part (2) of Proposition 3.1 is satisfied for 𝔮 = 𝔭,𝔭1.

Proof. This is a special case of [Whi22, Proposition 5.7]. �
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Fix a uniformiser 𝜛𝑐 of 𝐹𝑣 . For any 1 ≤ 𝑗 ≤ 𝑘 and 1 ≤ 𝑖 ≤ 𝑛 𝑗 , consider the operators in HO (𝐺,𝔭)

given by

𝑉 𝑖, 𝑗 = 𝑡𝜇 (S
−1
𝜇 (𝑒𝑖 (𝑋𝑠𝜇, 𝑗−1+1, . . . , 𝑋𝑠𝜇, 𝑗 ))).

We will also consider operators in HO (𝐺,𝔭1), such that their actions on 𝜋𝔭 ⊂ 𝜋𝔭1 agree with the action

of 𝑉 𝑖, 𝑗 for any smooth representation 𝜋. They can be constructed in the same way as 𝑉 𝑖, 𝑗 above by

replacing 𝑆𝜇 with the Satake isomorphism for 𝔪1 from [Whi22, Theorem 5.1]. These operators will

also be denoted 𝑉 𝑖, 𝑗 . We also define operators 𝑇 𝑖, 𝑗 representing the images of the same elements under

S−1
𝜇 in HO (𝑀,𝔪) and the corresponding operators on HO (𝑀,𝔪1).

The following lemmas are straightforward generalisations of the lemmas in [Tho12, Section 5]. Given

a parabolic subgroup Q of GL𝑛 (𝐹𝑣 ), we write 𝑊𝑄 ⊂ 𝑊 for the Weyl group of its Levi factor. Recall

from [Cas] that the space 𝑊𝑄\𝑊/𝑊𝑃 has a canonical set of representatives [𝑊𝑄\𝑊/𝑊𝑃], consisting

of minimal length elements from each double coset.

Lemma 3.3. Let Q be a parabolic corresponding to the partition 𝑛 = 𝑚1 + . . .+𝑚𝑟 . Then [𝑊𝑄\𝑊/𝑊𝑃]

is isomorphic to the set of partitions

𝑚𝑖 = 𝑛
𝑖
1 + . . . + 𝑛

𝑖
𝑘 , 1 ≤ 𝑖 ≤ 𝑟,

such that ∑
𝑖

𝑛𝑖
𝑗 = 𝑛 𝑗 for all 1 ≤ 𝑗 ≤ 𝑘.

With Q as in the last lemma, let 𝐿𝑖 denote the i-th component of the corresponding Levi subgroup.

For 𝑤 ∈ [𝑊𝑄\𝑊/𝑊𝑃] corresponding to the partition 𝑛𝑖
1
+ . . .+𝑛𝑖

𝑘
, let𝔭𝑤

𝑖
denote the parahoric subgroup

of 𝐿𝑖 corresponding to this partition, and let 𝔭𝑤
𝑖,1

be the kernel of

𝔭𝑤
𝑖 → GL𝑛𝑖

𝑘
(𝐹𝑣 )

det
−−→ 𝑘×𝑣 → 𝑘×𝑣 (𝑝).

Let 𝔮 be the parahoric corresponding to the partition {𝑛1
1
, . . . , 𝑛1

𝑘
, 𝑛2

1
, . . . , 𝑛𝑟

𝑘
}, and let 𝔫 be the hyperspe-

cial maximal compact of the corresponding Levi subgroup. We define 𝔭1,𝑤 as a subgroup of 𝔮 defined

by the conditions im(det 𝑁
𝑗

𝑘
→ 𝑘×𝑣 (𝑝)) = 1 for all j, where 𝑁

𝑗

𝑘
is the block corresponding to 𝑛

𝑗

𝑘
.

Lemma 3.4. For each 1 ≤ 𝑖 ≤ 𝑟 , let 𝜋𝑖 be a smooth representation of 𝐿𝑖 . Then

1. For any 𝑤 ∈ [𝑊𝑄\𝑊/𝑊𝑃], we have 𝐿𝑖 ∩ 𝑤𝔭𝑤−1 = 𝔭𝑤
𝑖

.
2. For any 𝑤 ∈ [𝑊𝑄\𝑊/𝑊𝑃], we have 𝑄 ∩ 𝑤𝔭1𝑤

−1 ⊃ 𝔭1,𝑤 .
3.

(ind𝐺
𝑄 𝜋1 ⊗ . . . ⊗ 𝜋𝑟 )

𝔭
�

⊕
𝑤 ∈[𝑊𝑄\𝑊 /𝑊𝑃 ]

𝜋
𝔭𝑤

1

1
⊗ . . . ⊗ 𝜋

𝔭𝑤
𝑟

𝑟 .

4.

(ind𝐺
𝑄 𝜋1 ⊗ . . . ⊗ 𝜋𝑟 )

𝔭1 ⊂
⊕

𝑤 ∈[𝑊𝑄\𝑊 /𝑊𝑃 ]

𝜋
𝔭𝑤

1,1

1
⊗ . . . ⊗ 𝜋

𝔭𝑤
𝑟,1

𝑟 .

Let 𝜋 be an irreducible admissible representation of G, such that 𝜋𝔭1 ≠ 0. Since Iw′ ⊂ 𝔭1, super-

cuspidal support of 𝜋 consists of tamely ramified characters. We will now use the Bernstein-Zelevinsky

classification [BZ77], following the conventions of [Rod82], as they are best suited for applications to

local Langlands correspondence. We can write 𝜋 as a quotient of

ind𝐺
𝑄 Sp𝑘1

(𝜒1) ⊗ . . . ⊗ Sp𝑘𝑟
(𝜒𝑟 ),
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where Sp𝑛 (𝜒) for a tamely ramified character 𝜒 : 𝐹×
𝑣 → C× is the unique irreducible quotient of

ind
GL𝑛

𝐵
𝜒 ⊗ 𝜒 | · | ⊗ . . . ⊗ 𝜒 | · |𝑛−1. The twisted Steinberg factors Sp𝑘𝑖

(𝜒𝑖) correspond to Zelevinsky

segments Δ 𝑖 = (𝜒, 𝜒(1), . . . , 𝜒(𝑘𝑖 − 1)).

Let A index the partitions of 𝑠𝑐(𝜋) into k labeled subsets 𝑆1, . . . , 𝑆𝑘 satisfying the following

conditions:

◦ |𝑆𝑖 | = 𝑛𝑖 for all i.
◦ characters from the same Zelevinsky segment always belong to different subsets.

◦ if 𝜒 ∈ 𝑆𝑖 , 𝜒
′ ∈ 𝑆 𝑗 share a segment and 𝜒′ = 𝜒(𝑎) for 𝑎 > 0, then 𝑖 < 𝑗 .

For each partition 𝛼 ∈ A, let 𝑟 (𝛼) be the representation of 𝑇 (𝐹) given by tensoring the characters of

𝑠𝑐(𝜋) in the following order: characters in 𝑆𝑖 precede characters in 𝑆 𝑗 when 𝑖 < 𝑗 , and the ordering of

characters within each 𝑆𝑖 is induced by the ordering of Zelevinsky segments.

Lemma 3.5. For each 1 ≤ 𝑖 ≤ 𝑟 , let 𝜋𝑖 be a smooth representation of 𝐿𝑖 . Then

(ind𝐺
𝑄 𝜋1 ⊗ . . . ⊗ 𝜋𝑟 )

𝑠𝑠
𝑁 =

⊕
𝑤 ∈[𝑊𝑄\𝑊 /𝑊𝑃 ]

ind𝑀
𝑤−1𝑄𝑤∩𝑀

𝑤−1 (𝜋1 ⊗ . . . ⊗ 𝜋𝑟 )𝐿∩𝑤𝑁 𝑤−1 .

Lemma 3.6. Let 𝜋 be an irreducible admissible 𝐺𝐿𝑛 (𝐹𝑣 )-module, such that 𝜋𝔭1 ≠ 0. Consider 𝜋𝔭1 as
a Z[Ξ𝑣 ]

𝑆𝜇 -module via the map 𝑡𝜇 ◦ S−1
𝜇 . Then (𝜋𝔭1 )𝑠𝑠 is a direct sum of 1-dimensional submodules

indexed by a subset ofA. For a finite set S of characters and positive integer 𝑘 ≤ |𝑆 |, let 𝑒𝑘 (𝑆(𝜛)) denote
the k-th symmetric polynomial of elements of S evaluated at 𝜛. Then on the component associated to
(𝑆1, . . . , 𝑆𝑘 ) ∈ A, the action of 𝑉 𝑖, 𝑗 is given by 𝑒𝑖 (𝑆 𝑗 ) for all 1 ≤ 𝑖 ≤ 𝑛 𝑗 .

Proof. We have a surjection

ind𝐺
𝑄 Sp𝑘1

(𝜒1) ⊗ . . . ⊗ Sp𝑘𝑟
(𝜒𝑟 ) � 𝜋,

and the induced map

(ind𝐺
𝑄 Sp𝑘1

(𝜒1) ⊗ . . . ⊗ Sp𝑘𝑟
(𝜒𝑟 ))

𝔭1 → 𝜋𝔭1

is also surjective. By Lemma 3.5, we can write

(ind𝐺
𝑄 Sp𝑘1

(𝜒1) ⊗ . . . ⊗ Sp𝑘𝑟
(𝜒𝑟 ))

𝑠𝑠
𝑁 =

𝜎 ⊕
⊕

(𝑆1 ,...,𝑆𝑘 ) ∈A

ind𝑀
𝐵∩𝑀

���
⊗
𝜓1∈𝑆1

𝜓1 ⊗ . . . ⊗
⊗
𝜓𝑘 ∈𝑆𝑘

𝜓𝑘
���
.

Here, the summands indexed by A correspond to 𝑤 ∈ [𝑊𝑄\𝑊/𝑊𝑃] represented by partitions {𝑛𝑖
𝑗
}

satisfying 𝑛𝑖
𝑗
≤ 1 for all 𝑖, 𝑗 (cf. Lemma 3.3) and 𝜎 represents all other summands. We will now show

that 𝜎 does not have 𝔪1-invariants. Let 𝔪𝑤
𝑖,1

⊂ 𝔭𝑤
𝑖,1

be the subgroups of the Levi subgroup of 𝐿𝑖 defined

analogously to 𝔭𝑤
𝑖,1

.

Suppose𝜎𝔪1 is nonzero. Let 𝜃 be a representation of𝐺𝐿𝑛𝑖
𝑗
(𝐹𝑣 ) which is a tensor factor of (Sp𝑘1

(𝜒1)⊗

. . . ⊗ Sp𝑘𝑟
(𝜒𝑟 ))𝐿∩𝑤𝑁 𝑤−1 for some 𝑤 ∈ [𝑊𝑄\𝑊/𝑊𝑃] contributing to 𝜎. Then 𝜃 has to be spherical if

𝑗 < 𝑘 and has to have a fixed vector by ker(𝐺𝐿𝑛𝑖
𝑗
(O𝐹𝑣

) → 𝐺𝐿𝑛𝑖
𝑗
(𝑘𝑣 )

det
−−→ 𝑘×𝑣 → 𝑘×𝑣 (𝑝)) if 𝑗 = 𝑘 . This

would imply that Sp𝑘𝑖
(𝜒𝑖)

𝔭𝑤
𝑖,1 ≠ 0 for all 1 ≤ 𝑖 ≤ 𝑟 and all w representing partitions 𝑚𝑖 = 𝑛

𝑖
1
+ . . . + 𝑛𝑖

𝑘
,

such that there exists at least one 1 ≤ 𝑖 ≤ 𝑟 for which 𝑘𝑖 > 1 and 𝑛𝑖
𝑗
> 1 for some 1 ≤ 𝑗 ≤ 𝑘 . To get a

contradiction, it is therefore enough to show that Sp𝑘𝑖
(𝜒𝑖)

𝔭𝑤
𝑖,1 = 0.

Define the subgroup Iw′
𝑖 ⊂ 𝔭𝑤

𝑖,1
to be a subgroup of the 𝐿𝑖-Iwahori with 1’s mod 𝜛 on the diagonal

at indices 𝑛𝑖
𝑘−1

+ 1 through 𝑛𝑖
𝑘
. There are two possibilities: either 𝔭𝑤

𝑖,1
= GL𝑚𝑖

(O𝐹𝑣
), or Iw′

𝑖 has at least
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one ∗ mod 𝜛 on the diagonal. In the former case, we are done since Sp𝑘𝑖
(𝜒𝑖) is never spherical. In the

latter case, let 𝔱′ be the diagonal component of Iw′
𝑖 . Then

Sp𝑘𝑖
(𝜒𝑖)

Iw′
𝑖 = Sp𝑘𝑖

(𝜒𝑖)
𝔱′

𝑈 = (𝜒𝑖 ⊗ . . . ⊗ 𝜒𝑖 | · |
𝑘𝑖−1)𝔱

′

,

where U is the unipotent radical of the Borel. Since 𝔱′ has at least one O×
𝐹𝑣

factor, if this is nonzero, 𝜒𝑖

must be unramified. But in this case, any 𝔭𝑤
𝑖,1

-fixed vector would be automatically fixed by the parahoric

𝔭𝑤
𝑖

, which properly contains the Iwahori, and hence, does not fix any vector in Sp𝑘𝑖
(𝜒𝑖). �

For a partition 𝑛 = 𝑛1 + . . . + 𝑛𝑘 which we call 𝜇, define elements

𝑃𝜇,𝑖 =

𝑠𝜇,𝑖∏
𝑗=𝑠𝜇,𝑖−1+1

(𝑇 − 𝑋 𝑗 )

Res𝜇 =
∏
𝑖< 𝑗

Res(𝑃𝜇,𝑖 , 𝑃𝜇, 𝑗 ) ∈ Z[Ξ𝑣 ]
𝑆𝜇

Res𝑞𝑣 ,𝜇 =
∏
𝑖< 𝑗

Res(𝑃𝜇,𝑖 (𝑞𝑣𝑇), 𝑃𝜇, 𝑗 ) ∈ Z[Ξ𝑣 ]
𝑆𝜇 .

Then there exist unique polynomials 𝑄𝜇,𝑖 ∈ Z[Ξ𝑣 ]
𝑆𝜇 [𝑇], such that deg𝑄𝜇,𝑖 < 𝑛𝑖 and

𝑛∑
𝑖=1

𝑄𝜇,𝑖

∏
𝑗≠𝑖

𝑃𝜇, 𝑗 = Res𝜇 .

Define

𝐸𝜇,𝑖 = 𝑄𝜇,𝑖

∏
𝑗≠𝑖

𝑃𝜇, 𝑗 .

The following statement is elementary.

Lemma 3.7. Take any 𝐴 ∈ 𝑀𝑛 (C) with a factorisation

det(𝑇 − 𝐴) =

𝑘∏
𝑖=1

𝑝𝜇,𝑖 (𝑇),

where 𝑝𝜇,𝑖 ∈ C[𝑇] are pairwise coprime and deg 𝑝𝜇,𝑖 = 𝑛𝑖 . Consider the homomorphism 𝜑 :

Z[Ξ𝑣 ]
𝑆𝜇 → C defined by the polynomials 𝑝𝜇,𝑖 . By this, we mean the homomorphism sending

𝑒 𝑗 (𝑋𝑠𝜇,𝑖−1+1, . . . , 𝑋𝑠𝜇,𝑖 ) to (−1) 𝑗 times the coefficient of 𝑇 𝑗 in 𝑝𝜇,𝑖 . This homomorphism can be extended

to 𝜑 : Z[Ξ𝑣 ]
𝑆𝜇 [𝑇,Res−1

𝜇 ] → C[𝑇]. Then 𝜑(𝐸𝜇,𝑖/Res𝜇) (𝐴) projects C𝑛 onto the sum of generalised
eigenspaces of A corresponding to the roots of 𝑝𝜇,𝑖 .

Proposition 3.8. Let 𝜋 be an irreducible admissible 𝐺𝐿𝑛 (𝐹𝑣 )-module. Then either Res𝑛!
𝑞𝑣 ,𝜇 𝜋

𝔭1 = 0, or

rec𝐹𝑣
(𝜋) = (𝜒1 ⊕ . . . ⊕ 𝜒𝑛, 0),

where 𝜒1, . . . , 𝜒𝑛1+...+𝑛𝑘−1
are unramified and the rest are tamely ramified with equal restriction to

inertia.

Proof. Using the notation from the discussion preceding Lemma 3.5, if there exists some 𝑘𝑖 > 1, then

Res𝑛!
𝑞𝑣 ,𝜇 𝜋

𝔭1 = 0 follows from Lemma 3.6. Otherwise, we can apply the proof of [CHT08, Lemma 3.1.6]

for the second conclusion. �
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Proposition 3.9. Let 𝜋 be an irreducible admissible 𝐺𝐿𝑛 (𝐹𝑣 )-module. Let (𝑟, 𝑁) = rec𝐹𝑣
(𝜋). Then

either (𝑆𝜇 ◦ 𝑡−1
𝜇 ◦ 𝜄H ◦ 𝑡𝜇 ◦ 𝑆−1

𝜇 ) (Res𝑛!
𝑞𝑣 ,𝜇)𝜋

𝔭1 = 0 or 𝑁 = 0 and

𝑟∨ = 𝜒1 ⊕ . . . ⊕ 𝜒𝑛,

where 𝜒1, . . . , 𝜒𝑛1+...+𝑛𝑘−1
are unramified and the rest are tamely ramified with equal restriction to

inertia.

Proof. Let 𝜋∨ be the contragradient of 𝜋. Then rec𝐹𝑣
(𝜋∨) = (𝑟∨,−𝑡𝑁). We have a perfect pairing

(𝜋∨)𝔭1 ×𝜋𝔭1 → C which is antisymmetric with respect to action ofO[Ξ𝑣,1]
𝑆𝜇 and 𝑆𝜇 ◦𝑡

−1
𝜇 ◦ 𝜄H◦𝑡𝜇 ◦𝑆

−1
𝜇 .

Therefore, (𝑆𝜇 ◦ 𝑡−1
𝜇 ◦ 𝜄H ◦ 𝑡𝜇 ◦ 𝑆−1

𝜇 ) (Res𝑛!
𝑞𝑣 ,𝜇)𝜋

𝔭1 = 0 if and only if Res𝑛!
𝑞𝑣 ,𝜇 (𝜋

∨)𝔭1 = 0. Thus, we can

assume both of these are nonzero, in which case, by Proposition 3.8, we get the desired result. �

Let 𝜑𝑣 ∈ 𝐺𝐹𝑣
be any lift of Frobenius.

Proposition 3.10. Let 𝜋 be an irreducible admissible 𝐺𝐿𝑛 (𝐹𝑣 )-module. Let (𝑟, 𝑁) = rec𝐹𝑣
(𝜋). Let R

be the image of O[Ξ𝑣,1]
𝑆𝜇 in EndO (𝜋𝔭1 ) under the map 𝑡𝜇 ◦ 𝑆−1

𝜇 . Then either Res𝑛!
𝑞𝑣 ,𝜇 𝜋

𝔭1 = 0 or the
following relation holds over R : for all 𝜏 ∈ 𝐼𝐹𝑣

Res𝑛!
𝜇

(
𝑘−1∑
𝑖=1

𝐸𝜇,𝑖 (𝑟 (𝜑𝑣 )) + 〈Art−1
𝐹𝑣
(𝜏)〉𝐸𝜇,𝑘 (𝑟 (𝜑𝑣 )) − Res𝜇 𝑟 (𝜏)

)
= 0.

Proof. Assume Res𝑛!
𝑞𝑣 ,𝜇 𝜋

𝔭1 ≠ 0. It is enough to check our relation for each localisation of R at a maximal

ideal 𝔪. If Res𝜇 ∈ 𝔪, then Res𝑛!
𝜇 = 0 in 𝑅𝔪. Otherwise, 𝑅𝔪 = C by [Sta18, Tag 00UA] and the image

of O[Ξ𝑣,1]
𝑆𝜇 in 𝑅/𝔪 corresponds to the polynomials

𝑠𝜇,𝑖∏
𝑗=𝑠𝜇,𝑖−1+1

(𝑇 − 𝜒 𝑗 (𝜑𝑣 )) for 𝑖 = 1, . . . , 𝑘 . Then the

image of

Res𝜇
−1

(
𝑘−1∑
𝑖=1

𝐸𝜇,𝑖 (𝑟 (𝜑𝑣 )) + 〈Art−1
𝐹𝑣
(𝜏)〉𝐸𝜇,𝑘 (𝑟 (𝜑𝑣 ))

)

in 𝑀𝑛 (𝑅𝔪) is a diagonal matrix with 𝑛 − 𝑛𝑘 first entries equal to 1 and the rest equal to 𝜒𝑛 (𝜏). This

concludes the proof. �

Proposition 3.11. Let 𝜋 be an irreducible admissible𝐺𝐿𝑛 (𝐹𝑣 )-module. Let (𝑟, 𝑁) = rec𝐹𝑣
(𝜋). Let 𝑅′ be

the image ofO[Ξ𝑣,1]
𝑆𝜇 in EndO (𝜋𝔭1 ) via the map 𝜄H◦𝑡𝜇◦𝑆

−1
𝜇 . Then either (𝜄H◦𝑡𝜇◦𝑆

−1
𝜇 ) (Res𝑛!

𝑞𝑣 ,𝜇)𝜋
𝔭1 = 0

or the following relation holds over 𝑅′ : for all 𝜏 ∈ 𝐼𝐹𝑣

(𝜄H ◦ 𝑡𝜇 ◦ 𝑆−1
𝜇 )

(
Res𝑛!

𝜇

(
𝑘−1∑
𝑖=1

𝐸𝜇,𝑖 (𝑟
∨(𝜑𝑣 )) + 〈Art−1

𝐹𝑣
(𝜏)〉𝐸𝜇,𝑘 (𝑟

∨(𝜑𝑣 )) − Res𝜇 𝑟
∨(𝜏)

))
= 0.

Proof. This follows from Proposition 3.9 in the same way as Proposition 3.10 follows from Proposition

3.8. �

In what follows, we will use a twisted version of the propositions above. Define a map Σ𝑇 :

O[Ξ𝑣,1]
𝑆𝜇 → HO (𝐺𝐿𝑛 (𝐹𝑣 ),𝔭𝑣,1) given by

Σ𝑇 ( 𝑓 ) (𝑔) = 𝑡𝜇 (𝑆
−1
𝜇 ( 𝑓 )) (𝑔) |det(𝑔) | (1−𝑛)/2.

Let us show that this map is in fact defined over Z[𝑞−1
𝑣 ] and thus does not depend on the choice of

square root of 𝑞−1
𝑣 . Note that 𝑡𝜇 is defined over Z[𝑞−1

𝑣 ] up to 𝛿
1/2

𝑃𝜇
and 𝑆𝜇 is defined over Z[𝑞−1

𝑣 ] up to
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∏𝑘
𝑖=1 det(𝑚𝑖)

(1−𝑛𝑖)/2, where (𝑚𝑖) ∈ 𝑀𝜇 (𝐹𝑣 ) with 𝑚𝑖 ∈ GL𝑛𝑖 (𝐹𝑣 ). Thus, the desired rationality over

Z[𝑞−1
𝑣 ] follows from the fact that

𝑘∏
𝑖=1

|det(𝑚𝑖) |
(1−𝑛)/2

𝑘∏
𝑖=1

|det(𝑚𝑖) |
(1−𝑛𝑖)/2

∏
1≤𝑖< 𝑗≤𝑘

|det(𝑚𝑖) |
𝑛 𝑗/2 |det(𝑚 𝑗 ) |

−𝑛𝑖/2

lies in Z[𝑞−1
𝑣 ]. Now let us restate Proposition 3.10 and Proposition 3.11.

Proposition 3.12. Let 𝜋 be an irreducible admissible𝐺𝐿𝑛 (𝐹𝑣 )-module. Let (𝑟, 𝑁) = rec𝑇
𝐹𝑣

(𝜋). Let R be

the image of O[Ξ𝑣,1]
𝑆𝜇 in EndO (𝜋𝔭1) under the map Σ𝑇 . Then either Res𝑛!

𝑞𝑣 ,𝜇 𝜋
𝔭1 = 0 or the following

relation holds over R : for all 𝜏 ∈ 𝐼𝐹𝑣

Res𝑛!
𝜇

(
𝑘−1∑
𝑖=1

𝐸𝜇,𝑖 (𝑟 (𝜑𝑣 )) + 〈Art−1
𝐹𝑣
(𝜏)〉𝐸𝜇,𝑘 (𝑟 (𝜑𝑣 )) − Res𝜇 𝑟 (𝜏)

)
= 0.

Proposition 3.13. Let 𝜋 be an irreducible admissible 𝐺𝐿𝑛 (𝐹𝑣 )-module. Let (𝑟, 𝑁) = rec𝑇
𝐹𝑣
(𝜋). Let 𝑅′

be the image of O[Ξ𝑣,1]
𝑆𝜇 in EndO (𝜋𝔭1 ) via the map 𝜄H ◦ Σ𝑇 . Then either (𝜄H ◦ Σ𝑇 ) (Res𝑛!

𝑞𝑣 ,𝜇)𝜋
𝔭1 = 0

or the following relation holds over 𝑅′ : for all 𝜏 ∈ 𝐼𝐹𝑣

(𝜄H ◦ Σ𝑇 )

(
Res𝑛!

𝜇

(
𝑘−1∑
𝑖=1

𝐸𝜇,𝑖 (𝑟
∨(𝜑𝑣 )) + 〈Art−1

𝐹𝑣
(𝜏)〉𝐸𝜇,𝑘 (𝑟

∨(𝜑𝑣 )) − Res𝜇 𝑟
∨(𝜏)

))
= 0.

4. Setup

Let 𝐹/𝐹+ be an imaginary CM-field with ring of integers O. Let Ψ𝑛 be the matrix with 1-s on the

antidiagonal and 0-s elsewhere, and let

𝐽𝑛 =

(
0 Ψ𝑛

−Ψ𝑛 0

)
.

Define 𝐺 to be the group scheme over O𝐹+ defined by the functor of points

𝐺 (𝑅) = {𝑔 ∈ GL2𝑛 (𝑅 ⊗O𝐹+ O𝐹 ) |
𝑡𝑔𝐽𝑛𝑔

𝑐 = 𝐽𝑛}.

Then 𝐺 is a quasisplit reductive group over 𝐹+. It is a form of GL2𝑛 which becomes split after the

quadratic base change 𝐹/𝐹+. If v is a place of F lying above a place 𝑣 of 𝐹+ which splits in F, then we

have a canonical isomorphism 𝜄𝑣 : 𝐺 (𝐹+
𝑣
) � GL2𝑛 (𝐹𝑣 ). There is an isomorphism 𝐹+

𝑣
⊗𝐹+ 𝐹 � 𝐹𝑣 ×𝐹𝑣𝑐

and 𝜄𝑣 is given by composition

𝐺 (𝐹 𝑣+ ) ↩−→ GL2𝑛 (𝐹𝑣 ) × GL2𝑛 (𝐹𝑣𝑐 ) → GL2𝑛 (𝐹𝑣 ),

where the second map is the projection on the first factor. We write 𝑇 ⊂ 𝐵 ⊂ 𝐺 for the subgroups

consisting, respectively, of the diagonal and upper-triangular matrices in 𝐺. Similarly, we write 𝐺 ⊂

𝑃 ⊂ 𝐺 for the Levi and parabolic subgroups consisting, respectively, of the block upper diagonal and

block upper-triangular matrices with blocks of size 𝑛 × 𝑛. Then 𝑃 = 𝑈 � 𝐺, where U is the unipotent

radical of P, and we can identify G with ResO𝐹/O𝐹+ GL𝑛 via the map

(
𝐴 0

0 𝐷

)
↦→ 𝐷 ∈ GL𝑛 (𝑅 ⊗O𝐹+ O𝐹 ).
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An element (𝑔𝑣 )𝑣 ∈ 𝐺 (A∞
𝐹+ ) = 𝐺𝐿𝑛 (A

∞
𝐹
) is called neat if the intersection ∩𝑣Γ𝑣 is trivial, where

Γ𝑣 ⊂ Q
×

is the torsion subgroup of the subgroup of 𝐹𝑣
×

generated by the eigenvalues of 𝑔𝑣 acting

via some faithful representation of G. We call a neat open compact subgroup 𝐾 ⊂ 𝐺 (A∞
𝐹+ ) good if it

has the form 𝐾 =
∏

𝑣 𝐾𝑣 , where the product is running over the finite places of F. We make similar

definitions with 𝐺 in place of G.

After extending scalars to 𝐹+, T and B form a maximal torus and a Borel subgroup, respectively, of

𝐺 and G is the unique Levi subgroup of the parabolic subgroup P of 𝐺 which contains T. We call an

open compact subgroup 𝐾 of 𝐺 (A∞
𝐹+ ) decomposed with respect to the Levi decomposition 𝑃 = 𝐺𝑈 if

𝐾 = 𝐾𝐺 � 𝐾𝑈 , where 𝐾𝐺 is the image of 𝐾 in G and 𝐾𝑈 = 𝐾 ∩𝑈 (A∞
𝐹+ ).

If K is a good subgroup of G, we let 𝑋𝐾 be the corresponding locally symmetric space. Similarly, if

𝐾 is a good open compact subgroup of𝐺, then 𝑋
𝐾

denotes the locally symmetric space. More generally,

if H is a connected algebraic group over a number field L and 𝐾𝐻 ⊂ 𝐻 (A∞
𝑀
) is a good subgroup, then

we write 𝑋𝐻
𝐾𝐻

for the locally symmetric space of H of level 𝐾𝐻 .

Fix a rational prime p and a finite extension 𝐸/Q𝑝 which contains the images of all embeddings

𝐹 ↩−→ Q𝑝 . We write O for the ring of integers of E and 𝜛 ∈ O for a choice of uniformiser. For

𝜆 ∈ (Z𝑛
+)

Hom(𝐹, 𝐸), we define an O[
∏

𝑣 |𝑝 GL𝑛 (O𝐹𝑣
)]-module V𝜆 as in [ACC+18, Section 2.2.1].

Similarly for 𝜆 ∈ (Z2𝑛
+ )Hom(𝐹+, 𝐸), we have an O[

∏
𝑣 |𝑝 𝐺 (O𝐹+

𝑣
)]-module V

𝜆
. Both V𝜆 and V

𝜆
are

finite free O-modules.

Let S be a set of places of F, such that 𝑆 = 𝑆𝑐 and, such that S contains all places above p and all

places of F which are ramified over 𝐹+. Let 𝑆 be the set of places of 𝐹+ lying below a place in S. Let

𝐾 ⊂ 𝐺 (A∞
𝐹+ ) be a good subgroup, such that 𝐾 𝑣 = 𝐺 (O𝐹+

𝑣
) for 𝑣 ∉ 𝑆, and similarly, let 𝐾 ⊂ 𝐺 (A∞

𝐹+ )

be a good subgroup, such that 𝐾𝑣 = 𝐺 (O𝐹+
𝑣
) for 𝑣 ∉ 𝑆. Additionally, we define Ξ̃ 𝑣 � Ξ𝑣 × Ξ𝑣𝑐 and

Ξ̃ 𝑣,1 � Ξ𝑣,1 × Ξ𝑣𝑐 .

Define the Hecke algebras

H
𝑆 = HO (𝐺 (A∞, 𝑆

𝐹+ ), 𝐾 𝑆)

H̃
𝑆 = HO (𝐺 (A∞, 𝑆

𝐹+ ), 𝐾 𝑆)

T𝑆
�

′⊗
𝑣∉𝑆

O[Ξ𝑣 ]
𝑆𝑛

T̃𝑆
�

′⊗
𝑣∉𝑆

O[Ξ̃ 𝑣 ]
𝑆2𝑛 .

Using the isomorphism

𝐺 (O𝐹+
𝑣
) � GL𝑛 (O𝐹𝑣

)

together with the Satake isomorphisms, as well as the homomorphism

O[Ξ̃ 𝑣 ]
𝑆2𝑛 → HO (𝐺 (𝐹+

𝑣
), 𝐺 (O𝐹+

𝑣
))

given by the polynomial 𝑃𝑣 (𝑋) defined in [ACC+18, Equation 2.2.6], we get homomorphisms T𝑆 → H𝑆

and T̃𝑆 → H̃𝑆 . We also have homomorphisms

T𝑆 → EndD(O) (𝑅Γ(𝑋𝐾 ,V𝜆))

T̃𝑆 → EndD(O) (𝑅Γ(𝑋𝐾
,V

𝜆
))
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defined in [ACC+18, Section 2.1.2], and we can denote by T𝑆 (𝐾, 𝜆), T̃𝑆 (𝐾, 𝜆), respectively, the images

of those homomorphisms. The functor 𝐻∗ induces O-algebra homomorphisms

T𝑆 (𝐾, 𝜆) → EndO (𝐻∗(𝑋𝐾 ,V𝜆))

T̃𝑆 (𝐾, 𝜆) → EndO (𝐻∗(𝑋
𝐾
,V

𝜆
)).

5. Boundary cohomology

Let 𝐾 ⊂ 𝐺 (A∞
𝐹+ ) be a neat compact open subgroup decomposed with respect to the Levi decomposition

𝑃 = 𝐺𝑈. We also assume that 𝐾𝑣 = 𝐺 (O𝐹+
𝑣
) for 𝑣 ∉ 𝑆. Define K as the image of 𝐾 in 𝐺 (A∞

𝐹+ ),

𝐾𝑃 = 𝐾 ∩ 𝑃(A∞
𝐹+ ) and 𝐾𝑈 = 𝐾 ∩𝑈 (A∞

𝐹+ ). Both K and 𝐾𝑃 are neat. We recall from [NT16, Section

3.1.2] that the boundary 𝜕𝑋
𝐾

= 𝑋
𝐾

of the Borel-Serre compactification has a 𝐺 (A∞
𝐹+ )-equivariant

stratification indexed by the standard parabolic subgroups of 𝐺. For each standard parabolic subgroup

Q, label the corresponding stratum 𝑋
𝑄

𝐾
. We can write

𝑋
𝑄

𝐾
= 𝑄(𝐹+)\(𝑋𝑄 × 𝐺 (A∞

𝐹+ )/𝐾).

From now on, we will focus on the stratum 𝑋𝑃

𝐾
corresponding to the Siegel parabolic. Let us establish

some useful maps between the manifolds introduced above. The stratum 𝑋𝑃

𝐾
can be described as a union

of connected components indexed by the set 𝑃(𝐹+)\𝐺 (A∞
𝐹+ )/𝐾. The locally symmetric space 𝑋𝑃

𝐾
is a

union of the same components indexed by the set 𝑃(𝐹+)\𝑃(A∞
𝐹+ )/𝐾𝑃 . Thus, we have a natural open

immersion 𝑖 : 𝑋𝑃

𝐾
→ 𝑋𝑃

𝐾
, such that 𝑖∗ : 𝐻∗(𝑋𝑃

𝐾
,O) → 𝐻∗(𝑋𝑃

𝐾
,O) is a split epimorphism. We also

have a proper map 𝑗 : 𝑋𝑃

𝐾𝑃

→ 𝑋𝐾 which has a section by [NT16, Section 3.1.1]. Thus, we get a split

monomorphism 𝑗∗ : 𝐻∗(𝑋𝐾 ,O) → 𝐻∗(𝑋𝑃

𝐾
,O). We also recall the ‘restriction to P’ and ‘integration

along N’ homomorphisms:

𝑟𝑃 : HO (𝐺 (A∞, 𝑆
𝐹+ ), 𝐾 𝑆) → HO (𝑃(A∞, 𝑆

𝐹+ ), 𝐾 𝑆
𝑃 )

𝑟𝐺 : HO (𝑃(A∞, 𝑆
𝐹+ ), 𝐾 𝑆

𝑃 ) → HO (𝐺 (A∞, 𝑆
𝐹+ ), 𝐾 𝑆)

defined in [NT16, Section 2.2]. We record the following proposition, which follows from the discussion

above:

Proposition 5.1.

1. For all 𝑡 ∈ T̃𝑆 and ℎ ∈ 𝐻∗(𝑋𝑃

𝐾
,O), we have 𝑖∗(𝑡ℎ) = 𝑟𝑃 (𝑡)𝑖∗(ℎ).

2. For all 𝑡 ∈ HO (𝑃(A∞, 𝑆

𝐹+ ), 𝐾 𝑆
𝑃
) and ℎ ∈ 𝐻∗(𝑋𝐾 ,O), we have 𝑗∗(𝑟𝐺 (𝑡)ℎ) = 𝑡 𝑗∗(ℎ).

Consider the composite

S = 𝑟𝐺 ◦ 𝑟𝑃 : HO (𝐺 (A∞, 𝑆

𝐹+ ), 𝐾 𝑆) → HO (𝐺 (A∞, 𝑆

𝐹+ ), 𝐾 𝑆).

By [NT16, Proposition-Definition 5.3], this map coincides with the tensor product of mapsO[Ξ̃ 𝑣 ]
𝑆2𝑛 →

O[Ξ𝑣 ]
𝑆𝑛 determined by the polynomial S𝑛 (𝑃𝑣 (𝑋)𝑞

𝑛(2𝑛−1)
𝑣 𝑃∨

𝑣𝑐 (𝑞
1−2𝑛
𝑣 𝑋)).
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Let 𝔪 ⊂ T𝑆 be a non-Eisenstein maximal ideal of Galois type with residue field k. We have an asso-

ciated continuous semisimple representation 𝜌𝔪 : 𝐺𝐹,𝑆 → GL𝑛 (𝑘), such that det(𝑋 − 𝜌𝔪 (Frob𝑣 )) ≡

𝑃𝑣 (𝑋) mod 𝔪. Fix a tuple (𝑄, (𝛼𝑣 )𝑣 ∈𝑄), where

◦ 𝑄 ⊂ 𝑆 and 𝑄 ∩𝑄𝑐 = ∅.

◦ Each place 𝑣 ∈ 𝑄 is split over 𝐹+. Moreover, for each place 𝑣 ∈ 𝑄, there exists an imaginary

quadratic subfield 𝐹0 ⊂ 𝐹, such that 𝑞𝑣 splits in 𝐹0.

◦ For each place 𝑣 ∈ 𝑄, 𝜌𝔪 is unramified at v and 𝑣𝑐 and 𝛼𝑣 is a root of det(𝑋 − 𝜌𝔪 (Frob𝑣 ))).

For each 𝑣 ∈ 𝑄, let 𝑑𝑣 be multiplicity of 𝛼𝑣 as a root of det(𝑋 − 𝜌𝔪 (Frob𝑣 )). Fix the partitions

𝜇𝑣 : 2𝑛 = 𝑑𝑣 + (𝑛 − 𝑑𝑣 ) + 𝑛

𝜈𝑣 : 𝑛 = 𝑑𝑣 + (𝑛 − 𝑑𝑣 ).

Let

Δ 𝑣 =
⊔

𝑚∈𝑀+
𝜇𝑣

[𝔭𝜇𝑣 ,1𝑚𝔭𝜇𝑣 ,1] ⊂ GL𝑛 (𝐹𝑣 ).

𝑛𝑜𝑛𝑢𝑚𝑏𝑒𝑟

Now we recall the theory of Hecke algebras of a monoid from [ACC+18, Section 2.1.9]. Specifically,

we consider the restriction from 𝐺 to P

𝑟𝑃 : H(𝜄−1
𝑣 (Δ 𝑣 ), 𝜄

−1
𝑣 (𝔭𝜇𝑣 ,1)) → H(𝑃(𝐹+

𝑣
), 𝑃(𝐹+

𝑣
) ∩ 𝜄−1

𝑣 (𝔭𝜇𝑣 ,1))

and integration along fibres

𝑟𝐺 : H(𝑃(𝐹+
𝑣
), 𝑃(𝐹+

𝑣
) ∩ 𝜄−1

𝑣 (𝔭𝜇𝑣 ,1) → H(𝐺 (𝐹+
𝑣
), 𝐺 (𝐹+

𝑣
) ∩ 𝜄−1

𝑣 (𝔭𝜇𝑣 ,1))

combined with the isomorphism

H(𝐺 (𝐹+
𝑣
), 𝐺 (𝐹+

𝑣
) ∩ 𝜄−1

𝑣 (𝔭𝜇𝑣 ,1)) � H(GL𝑛 (𝐹𝑣 ) × GL𝑛 (𝐹𝑣𝑐 ),𝔭𝜈𝑣 ,1 × GL𝑛 (O𝐹𝑣𝑐
)),

we get a map

S
+
𝑣 : H(𝜄−1

𝑣 (Δ 𝑣 ), 𝜄
−1
𝑣 (𝔭𝜇𝑣 ,1)) → H(GL𝑛 (𝐹𝑣 ) × GL𝑛 (𝐹𝑣𝑐 ),𝔭𝜈𝑣 ,1 × GL𝑛 (O𝐹𝑣𝑐

)).

Write𝑃𝑛,𝑛 = 𝑀𝑛,𝑛𝐿𝑛,𝑛 for the parabolic subgroup of𝐺𝐿2𝑛 (𝐹𝑣 ) corresponding to the partition 2𝑛 = 𝑛+𝑛,

together with its Levi decomposition. For a given𝑚 ∈ 𝑀++, from [ACC+18, Section 2.1.9], we know that

S
+
𝑣 (𝜄

−1
𝑣 ([𝔭𝜇𝑣 ,1𝑚𝔭𝜇𝑣 ,1])) = |𝛿𝑃 (𝑚)

−1 |𝜄−1
𝑣 ([(𝔭𝜇𝑣 ,1 ∩ 𝑀𝑛,𝑛)𝑚(𝔭𝜇𝑣 ,1 ∩ 𝑀𝑛,𝑛)]).

By the same argument as in the proof of Lemma 3.2, we see that there exists 𝑚 ∈ 𝑀++, such that the

right-hand side is invertible in H(GL𝑛 (𝐹𝑣 ) ×GL𝑛 (𝐹𝑣𝑐 ),𝔭𝜈𝑣 ,1 ×GL𝑛 (O𝐹𝑣𝑐
)). Thus, we can extend the

homomorphism to

S𝑣 : H(𝜄−1
𝑣 (Δ 𝑣 ), 𝜄

−1
𝑣 (𝔭𝜇𝑣 ,1)) [(𝜄

−1
𝑣 ([𝔭𝜇𝑣 ,1𝑚𝔭𝜇𝑣 ,1]))

−1]

→ H(GL𝑛 (𝐹𝑣 ) × GL𝑛 (𝐹𝑣𝑐 ),𝔭𝜈𝑣 ,1 × GL𝑛 (O𝐹𝑣𝑐
)).
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This homomorphism fits into a commutative diagram

O[Ξ̃ 𝑣,1]
𝑆𝜇𝑣 H(𝜄−1

𝑣 (Δ 𝑣 ), 𝜄
−1
𝑣 (𝔭𝜇𝑣 ,1)) [(𝜄

−1
𝑣 ([𝔭𝜇𝑣 ,1𝑚𝔭𝜇𝑣 ,1]))

−1]

O[Ξ𝑣,1]
𝑆𝜈𝑣 ⊗O O[Ξ𝑣𝑐 ]𝑆𝑛 H(GL𝑛 (𝐹𝑣 ) × GL𝑛 (𝐹𝑣𝑐 ),𝔭𝜈𝑣 ,1 × GL𝑛 (O𝐹𝑣𝑐

)),

S
𝑓
𝑣 S𝑣

where S
𝑓
𝑣 is the unique homomorphism which corresponds the polynomial

∏2𝑛
𝑖=1(𝑇 − 𝑋𝑖) to the tuple

of polynomials
∏𝑑𝑣

𝑖=1
(𝑇 − 𝑋𝑖),

∏𝑛
𝑖=𝑑𝑣+1(𝑇 − 𝑋𝑖),S𝑛 (𝑞

𝑛(2𝑛−1)
𝑣 𝑃∨

𝑣𝑐 (𝑞
1−2𝑛
𝑣 𝑋)) and maps 𝜏𝑣 to 𝜏𝑣 .

We can define global Hecke algebras associated to our Taylor-Wiles data:

H̃
𝑆
𝑄 = H̃

𝑆 ⊗Z

⊗
𝑣 ∈𝑄

H(𝜄−1
𝑣 (Δ 𝑣 ), 𝜄

−1
𝑣 (𝔭𝜇𝑣 ,1)) [(𝜄

−1
𝑣 ([𝔭𝜇𝑣 ,1𝑚𝔭𝜇𝑣 ,1]))

−1]

T̃𝑆
𝑄 = T̃𝑆 ⊗Z

⊗
𝑣 ∈𝑄

O[Ξ̃ 𝑣,1]
𝑆𝜇𝑣

H
𝑆
𝑄 = H

𝑆 ⊗Z

⊗
𝑣 ∈𝑄

H(GL𝑛 (𝐹𝑣 ) × GL𝑛 (𝐹𝑣𝑐 ),𝔭𝜈𝑣 ,1 × GL𝑛 (O𝐹𝑣𝑐
))

T𝑆
𝑄 = T𝑆 ⊗Z

⊗
𝑣 ∈𝑄

O[Ξ𝑣,1]
𝑆𝜈𝑣 ⊗O O[Ξ𝑣𝑐 ]𝑆𝑛 .

The following proposition follows from the discussion above:

Proposition 5.2. There exist homomorphisms S
𝑓

𝑄
: T̃𝑆

𝑄
→ T𝑆

𝑄
and S𝑄 : H̃𝑆

𝑄
→ H𝑆

𝑄
fitting into a

commutative diagram

T̃𝑆
𝑄

H̃𝑆
𝑄

T𝑆
𝑄

H𝑆
𝑄
,

S
𝑓

𝑄
S𝑄

whereS 𝑓

𝑄
coincides withS 𝑓

𝑣 at places 𝑣 ∈ 𝑄 and with the Satake isomorphism from [NT16, Proposition-
Definition 5.3] at places 𝑣 ∉ 𝑆.

Let 𝐾 be a good subgroup of 𝐺 (A∞
𝐹+ ), such that 𝐾𝑆 = 𝐺 (Ô 𝑆

𝐹+ ) and 𝐾 is decomposed with respect

to P. We can define subgroups 𝐾1(𝑄) ⊂ 𝐾0(𝑄) ⊂ 𝐾 as follows:

◦ If 𝑣 ∉ 𝑄, then 𝐾1(𝑄) 𝑣 = 𝐾0(𝑄) 𝑣 = 𝐾 𝑣 .

◦ If 𝑣 ∈ 𝑄, then 𝐾1(𝑄) 𝑣 = 𝜄−1
𝑣 (𝔭𝜇𝑣 ,1) and 𝐾0(𝑄) 𝑣 = 𝜄−1

𝑣 (𝔭𝜇𝑣
).

Let𝐾1(𝑄), 𝐾0(𝑄), 𝐾 be the images in𝐺 (A∞
𝐹+ ) of the intersections of𝐾1(𝑄), 𝐾0(𝑄), 𝐾 with 𝑃(A∞

𝐹+ ).

From the definition, we can see that all the subgroups from the previous sentence are decomposed with

respect to P.

Proposition 5.3. For 𝑖 = 0, 1, we have

1. The open immersion 𝑖 : 𝑋𝑃

𝐾𝑖 (𝑄)
→ 𝑋𝑃

𝐾𝑖 (𝑄)
yields a split epimorphism

𝑖∗ : 𝐻∗(𝑋𝑃

𝐾𝑖 (𝑄)
,O) → 𝐻∗(𝑋𝑃

𝐾𝑖 (𝑄)
,O).

2. The proper map 𝑗 : 𝑋𝑃

𝐾𝑖 (𝑄)𝑃
→ 𝑋𝐾𝑖 (𝑄) yields a split monomorphism

𝑗∗ : 𝐻∗(𝑋𝐾𝑖 (𝑄) ,O) → 𝐻∗(𝑋𝑃

𝐾𝑖 (𝑄)
,O).
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3. For all 𝑡 ∈ HO (𝜄−1
𝑣 (Δ 𝑣 ), 𝜄

−1
𝑣 (𝔭𝜇𝑣 ,1)) and ℎ ∈ 𝐻∗(𝑋𝑃

𝐾𝑖 (𝑄)
,O), we have

𝑖∗(𝑡ℎ) = 𝑟𝑃 (𝑡)𝑖
∗(ℎ).

4. For all 𝑡 ∈ HO (𝑃(A∞, 𝑆

𝐹+ ), 𝐾𝑖 (𝑄)
𝑆

𝑃) and ℎ ∈ 𝐻∗(𝑋𝐾𝑖 (𝑄) ,O), we have
𝑗∗(𝑟𝐺 (𝑡)ℎ) = 𝑡 𝑗∗(ℎ).

Proof. This follows from the discussion above Proposition 5.1 and [ACC+18, Lemma 2.1.14]. �

Now let𝔪𝑄 ⊂ T𝑆
𝑄

be the maximal ideal generated by𝔪 and the kernels of the mapsO[Ξ̃ 𝑣,1]
𝑆𝜇𝑣 → 𝑘

associated to the polynomials (𝑥 − 𝛼𝑣 )
𝑑𝑣 , det(𝑋 − 𝜌𝔪 (Frob𝑣 ))/(𝑥 − 𝛼𝑣 )

𝑑𝑣 , det(𝑋 − 𝜌𝔪 (Frob𝑣𝑐 )) for

𝑣 ∈ 𝑄. Also, let 𝔪̃𝑄 = 𝑆
𝑓

𝑄

−1
(𝔪𝑄).

Proposition 5.4. For 𝑖 = 0, 1, the map 𝑆 𝑓

𝑄
: T̃𝑆

𝑄
→ T𝑆

𝑄
descends to homomorphisms

T̃𝑆
𝑄 (𝐻∗(𝑋𝑃

𝐾𝑖 (𝑄)
,O)) → T𝑆

𝑄 (𝐻∗(𝑋𝐾𝑖 (𝑄) ,O))

T̃𝑆
𝑄 (𝐻∗(𝜕𝑋

𝐾𝑖 (𝑄) ,O)𝔪̃) → T𝑆
𝑄 (𝐻∗(𝑋𝐾𝑖 (𝑄) ,O)𝔪).

Proof. To prove the first statement, we need to show that for 𝑡 ∈ Ann
T̃𝑆
𝑄
(𝐻∗ (𝑋𝑃

𝐾𝑖 (𝑄)
,O)), we have

𝑆𝑄 (𝑡) ∈ AnnT𝑆
𝑄
(𝐻∗(𝑋𝐾𝑖 (𝑄) ,O)). Let 𝛼 be the right inverse of 𝑖∗ and 𝛽 be the left inverse of 𝑗∗. Take

any ℎ ∈ 𝐻∗(𝑋𝐾𝑖 (𝑄) ,O). Then we can write

𝑆𝑄 (𝑡)ℎ = 𝑟𝐺 (𝑟𝑃 (𝑡))ℎ = 𝛽( 𝑗∗(𝑟𝐺 (𝑟𝑃 (𝑡))ℎ)) = 𝛽(𝑟𝑃 (𝑡) 𝑗
∗(ℎ))

= 𝛽(𝑟𝑃 (𝑡)𝑖
∗(𝛼( 𝑗∗(ℎ)))) = 𝛽(𝑖∗(𝑡𝛼( 𝑗∗(ℎ)))) = 𝛽(𝑖∗ (0)) = 0.

To prove the second statement, it is enough to note that 𝐻∗(𝑋𝑃

𝐾𝑖 (𝑄)
,O)𝔪̃ � 𝐻∗(𝜕𝑋

𝐾𝑖 (𝑄) ,O)𝔪̃ by

[ACC+18, Theorem 2.4.2]. �

6. Galois deformation theory

Let 𝐸 ⊂ Q𝑝 be a finite extension of Q𝑝 , with valuation ring O, uniformiser 𝜛 and residue field k.

Given a complete Noetherian local O-algebra Λ with residue field k, we let CNLΛ denote the category

of complete Noetherian local Λ-algebras with residue field k. We refer to an object in CNLΛ as a

CNLΛ-algebra. We fix a number field F and let 𝑆𝑝 be the set of places of F above p. We assume that

E contains the images of all embeddings of F in Q𝑝 . We also fix a continuous absolutely irreducible

homomorphism 𝜌 : 𝐺𝐹 → GL𝑛 (𝑘). We assume throughout that 𝑝 � 2𝑛.

Following [ACC+18, Definition 6.2.2], we call a global deformation problem a tuple

S = ( 𝜌, 𝑆, {Λ𝑣 }𝑣 ∈𝑆 , {D𝑣 }𝑣 ∈𝑆),

where

◦ S is a finite set of finite places of F containing 𝑆𝑝 and all the places at which 𝜌 is ramified.

◦ Λ𝑣 is an object of CNLO for each 𝑣 ∈ 𝑆.

◦ D𝑣 is a local deformation problem ([ACC+18, Section 6.2.1]) for each 𝑣 ∈ 𝑆.

Associated to this global deformation problem, we have a completed tensor product Λ = ⊗̂𝑣 ∈𝑆Λ𝑣 . A

global deformation problem determines a representable functor DS : CNLΛ → Set which takes an

object 𝐴 ∈ CNLΛ to the set of deformations 𝜌 : 𝐺𝐹 → GL𝑛 (𝐴) of type S .

Let v be a finite place of F, such that 𝑣 ∉ 𝑆 and 𝑞𝑣 ≡ 1 (mod 𝑝). We let D1
𝑣 denote the local

deformation problem consisting of all lifts which associate 𝐴 ∈ CNLΛ𝑣
to the set of lifts which are

1 + 𝑀𝑛 (𝔪𝐴)-conjugate to a lift of the form 𝑠𝑣 ⊕ 𝜓𝑣 , where 𝑠𝑣 is unramified and the image of 𝜓𝑣 under
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inertia is contained in the set of scalar matrices. This is indeed a local deformation problem, as is shown

in [Tho12, Lemma 4.2].

Lemma 6.1. Let 𝑟 : 𝐺𝐹𝑣
→ GL𝑛 (𝑘) be an unramified continuous representation and A is a complete

Noetherian local O-algebra with residue field k and a principal maximal ideal 𝔪𝐴. Suppose further
that 𝑟 may be written in the form 𝑟 = 𝑟1 ⊕ 𝑟2, where det(𝑋 − 𝑟1(Frob𝑣 )) and det(𝑋 − 𝑟2 (Frob𝑣 )) are
relatively prime. Also suppose that 𝑞𝑣 = 1 in k. Then any lift 𝑟 : 𝐺𝐹𝑣

→ GL𝑛 (𝐴) of 𝑟 is 1 + 𝑀𝑛 (𝔪𝐴)-
conjugate to one of the form 𝑟 = 𝑟1 ⊕ 𝑟2, where 𝑟1 and 𝑟2 are lifts of 𝑟1 and 𝑟2, respectively.

Proof. Let 𝑛𝑖 = dim 𝑟 𝑖 . Suppose we have a lift 𝑟𝑚 : 𝐺𝐹𝑣
→ GL𝑛 (𝐴) of 𝑟 , such that 𝑟𝑚 mod 𝔪𝑚

𝐴
can

be written in the form 𝑟1 ⊕ 𝑟2. We will show that there exists a matrix 𝑋𝑚 ∈ 1 + 𝑀𝑛 (𝔪
𝑚
𝐴
), such that

𝑟𝑚+1 � 𝑋𝑚𝑟𝑚𝑋
−1
𝑚 satisfies the same condition mod 𝔪𝑚+1

𝐴
. Write

𝑋𝑛 =

(
1 𝑌

𝑍 1

)
𝑟𝑛 =

(
𝐴 𝐵

𝐶 𝐷

)
,

where 𝑌 ∈ 𝑀𝑛1×𝑛2
(𝔪𝑚

𝐴
) and 𝑍 ∈ 𝑀𝑛2×𝑛1

(𝔪𝑚
𝐴
). Then the condition on 𝑟𝑚+1 transforms into

𝑌𝐷 − 𝐴𝑌 + 𝐵 = 0 mod 𝔪𝑚+1
𝐴 (6.2)

𝑍𝐴 − 𝐷𝑍 + 𝐶 = 0 mod 𝔪𝑚+1
𝐴 . (6.3)

We will focus on the first condition, the second is similar. We know that 𝑟𝑚 mod 𝔪𝑚
𝐴

is block-diagonal,

so we can consider 𝑏, 𝑦 to be the images of B and Y, respectively, in 𝔪𝑚
𝐴
/𝔪𝑚+1

𝐴
,

𝑏 𝑟−1
2 = 𝑟1 𝑦 𝑟

−1
2 − 𝑦 (6.4)

in 𝑀𝑛 (𝔪
𝑚
𝐴
/𝔪𝑚+1

𝐴
) = 𝑀𝑛 (𝑘) ⊗𝑘 𝔪𝑚

𝐴
/𝔪𝑚+1

𝐴
. Using the fact that r is a homomorphism, for 𝜎, 𝜏 ∈ 𝐺𝐹𝑣

,

we can write

𝐴(𝜎)𝐵(𝜏) + 𝐵(𝜎)𝐷 (𝜏) = 𝐵(𝜎𝜏).

Rewriting and reducing mod 𝔪𝑛+1
𝐴

, we get

𝑟1 (𝜎) 𝑏(𝜏) + 𝑏(𝜎) 𝑟2(𝜏) = 𝑏(𝜎𝜏)

𝑏(𝜎𝜏) 𝑟−1
2 (𝜎𝜏) = 𝑟1(𝜎) 𝑏(𝜏) 𝑟

−1
2 (𝜏) 𝑟−1

2 (𝜎) + 𝑏(𝜎) 𝑟−1
2 (𝜎). (6.5)

Give 𝑀𝑛1×𝑛2
(𝔪𝑚

𝐴
/𝔪𝑚+1

𝐴
) the structure of a 𝐺𝐹𝑣

-module via 𝑟1(−) 𝑟
−1
2 , and denote this module

ad( 𝑟1, 𝑟2). Then the last equation implies that 𝑏 𝑟−1
2 is in 𝑍1 (𝐺𝐹𝑣

, ad( 𝑟1, 𝑟2)). Since 𝑟1, 𝑟2 have

coprime characteristic polynomials, we know that 𝐻1(𝐺𝐹𝑣
, ad( 𝑟1, 𝑟2)) = 0 by local Tate duality (here,

we are using that 𝑞𝑣 = 1 in k), which means 𝑏 𝑟−1
2 ∈ 𝐵1(𝐺𝐹𝑣

, ad( 𝑟1, 𝑟2)), and thus we can find y
satisfying Eq. 6.4. �

Now we define our version of the Taylor-Wiles datum, analogous to the one appearing in [ACC+18,

Section 6.2.27].

Definition 6.6. Let

S = ( 𝜌, 𝑆, {Λ𝑣 }𝑣 ∈𝑆 , {D𝑣 }𝑣 ∈𝑆)
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be a global deformation problem. A Taylor-Wiles datum of level 𝑁 ≥ 1 for S consists of a tuple

(𝑄, 𝛼𝑣 𝑣 ∈𝑄), where

◦ A finite set Q of places of F, disjoint from S, such that 𝑞𝑣 ≡ 1 (mod 𝑝𝑁 ) for each 𝑣 ∈ 𝑄.

◦ For each 𝑣 ∈ 𝑄, 𝛼𝑣 is an eigenvalue of 𝜌(Frob𝑣 ).

Given a Taylor-Wiles datum (𝑄, (𝛼𝑣 )), we define a global deformation problem

S𝑄 = ( 𝜌, 𝑆 ∪𝑄, {Λ𝑣 }𝑣 ∈𝑆 ∪ {O𝐹𝑣
}𝑣 ∈𝑄, {D𝑣 }𝑣 ∈𝑆 ∪ {D1

𝑣 }𝑣 ∈𝑄).

Define Δ𝑄 =
∏

𝑣 ∈𝑄 Δ 𝑣 . The representing object 𝑅S𝑄
has a structure of a O[Δ𝑄]-algebra satisfying

𝑅S𝑄
⊗O [Δ𝑄 ] O = 𝑅S .

Proposition 6.7. Take 𝑇 = 𝑆, and let 𝑞 > ℎ1
S⊥ ,𝑇

(ad 𝜌(1)). Assume that 𝐹 = 𝐹+𝐹0, where 𝐹0 is an
imaginary quadratic field, that 𝜁𝑝 ∉ 𝐹 and that 𝜌(𝐺𝐹 (𝜁𝑝) ) is adequate. Then for every 𝑁 ≥ 1, there
exists a choice of Taylor-Wiles datum (𝑄𝑁 , (𝛼𝑣 )𝑣 ∈𝑄) of level N satisfying the following:

1. |𝑄𝑁 | = 𝑞.
2. For each 𝑣 ∈ 𝑄𝑁 , the rational prime below v splits in 𝐹0 and 𝑣𝑐 ∉ 𝑄𝑁 .
3. Let 𝑔 = 𝑞 − 𝑛2 [𝐹+ : Q]. Then there is a surjective morphism

𝑅
𝑇 ,𝑙𝑜𝑐
S

[[𝑋1, . . . , 𝑋𝑔]] → 𝑅𝑇
S𝑄
,

in CNLΛ.

Proof. The proof is very similar to the proof of [ACC+18, Proposition 6.2.32] (cf. [Tho12, Proposition

4.4]), we omit the details. �

7. Representations into Hecke algebras

In this section, we construct the necessary Galois representations into the Hecke algebras associated to

G. From Proposition 5.4, we know that we can create representations valued in the Hecke algebra acting

on 𝐻∗(𝑋𝐾𝑖 (𝑄) ,O)𝔪𝑄
from representations valued in the Hecke algebra acting on 𝐻∗(𝜕𝑋

𝐾𝑖 (𝑄) ,O)𝔪̃𝑄
.

The latter representations will be constructed by glueing together Galois representations associated

to cuspidal cohomological automorphic representations of 𝐺 (A∞
𝐹+ ) as in [Sch15] and using the local

computations of Section 3.

7.1. Hecke algebras for 𝐺

Theorem 7.1. Suppose that 𝐾 ⊂ 𝐺 (A∞
𝐹+ ) is a good subgroup which is decomposed with respect to P.

Then there exists a 2𝑛-dimensional T̃𝑆
𝑄
(𝐻∗

𝑐 (𝑋𝐾1 (𝑄) ,O))/𝐼-valued group determinant 𝐷𝑐,𝑄 of 𝐺𝐹,𝑆 for
some ideal I of nilpotence degree depending only on n and [𝐹 : Q], such that the following properties
hold:

1. If 𝑣 ∉ 𝑆 is a place of F, then 𝐷𝑐,𝑄 (𝑋 − Frob𝑣 ) is equal to the image of 𝑃𝑣 (𝑋) in
T̃𝑆

𝑄
(𝐻∗

𝑐 (𝑋𝐾1 (𝑄) ,O))/𝐼 [𝑋].
2. If 𝑣 ∈ 𝑄, then for any 𝜎 ∈ 𝐺𝐹,𝑆 and 𝜏 ∈ 𝐼𝐹𝑣

, we have the relation

Tr𝐷𝑐,𝑄

(
𝜎 Res

(2𝑛)!
𝑞𝑣 ,𝜇𝑣

Res
(2𝑛)!
𝜇𝑣

(
𝑘−1∑
𝑖=1

𝐸𝜇𝑣 ,𝑖 (𝜑𝑣 ) + 〈Art−1
𝐹𝑣
(𝜏)〉𝐸𝜇𝑣 ,𝑘 (𝜑𝑣 ) − Res𝜇𝑣

𝜏

))
= 0.

Proof. This follows from Proposition 3.12 by using [ACC+18, Theorem 2.3.3] and [Sch15, Corollary

5.1.11] (see proof of [ACC+18, Proposition 3.2.2]). �
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Now we prove the version of the previous proposition for noncompactly supported cohomology:

Theorem 7.2. Suppose that 𝐾 ⊂ 𝐺 (A∞
𝐹+ ) is a good subgroup which is decomposed with respect to P.

Then there exists a 2𝑛-dimensional T̃𝑆
𝑄
(𝐻∗(𝑋

𝐾1 (𝑄) ,O))/𝐼-valued group determinant 𝐷𝑄 of 𝐺𝐹,𝑆 for
some ideal I of nilpotence degree depending only on n and [𝐹 : Q], such that the following properties
hold:

1. If 𝑣 ∉ 𝑆 is a place of F, then 𝐷𝑄 (𝑋 − Frob𝑣 ) is equal to the image of 𝑃𝑣 (𝑋) in
T̃𝑆

𝑄
(𝐻∗ (𝑋

𝐾1 (𝑄) ,O))/𝐼 [𝑋].
2. If 𝑣 ∈ 𝑄, then for any 𝜎 ∈ 𝐺𝐹,𝑆 and 𝜏 ∈ 𝐼𝐹𝑣

, we have the relation

Tr𝐷𝑄

(
𝜎 Res

(2𝑛)!
𝑞𝑣 ,𝜇𝑣

Res
(2𝑛)!
𝜇𝑣

(
𝑘−1∑
𝑖=1

𝐸𝜇𝑣 ,𝑖 (𝜑𝑣 ) + 〈Art−1
𝐹𝑣
(𝜏)〉𝐸𝜇𝑣 ,𝑘 (𝜑𝑣 ) − Res𝜇𝑣

𝜏

))
= 0.

Proof. Denote by T̃𝑆
𝑄, 𝜄

(𝐻∗
𝑐 (𝑋𝐾1 (𝑄) ,O)) the image of T̃𝑆

𝑄
under the homomorphism

T̃𝑆
𝑄 → HO (𝐺 (A∞

𝐹+ ), 𝐾1(𝑄))
𝜄H
−−→ HO (𝐺 (A∞

𝐹+ ), 𝐾1(𝑄)) → EndD(O) (𝐻
∗
𝑐 (𝑋𝐾1 (𝑄) ,O)).

The same argument as in the proof of Theorem 7.1 shows that there exists a group determinant 𝐷 𝜄

valued in T̃𝑆
𝑄, 𝜄

(𝐻∗
𝑐 (𝑋𝐾1 (𝑄) ,O))/𝐼 satisfying the following properties:

1. If 𝑣 ∉ 𝑆 is a place of F, then 𝐷𝑄 (𝑋 − Frob𝑣 ) is equal to the image of 𝑃𝑣 (𝑋) in

T̃𝑆
𝑄, 𝜄

(𝐻∗
𝑐 (𝑋𝐾1 (𝑄) ,O))/𝐼 [𝑋].

2. If 𝑣 ∉ 𝑄, then for any 𝜎 ∈ 𝐺𝐹,𝑆 and 𝜏 ∈ 𝐼𝐹𝑣
, we have the relation

Tr𝐷𝜄

(
𝜎 Res

(2𝑛)!
𝑞𝑣 ,𝜇𝑣

Res
(2𝑛)!
𝜇𝑣

(
𝑘−1∑
𝑖=1

𝐸𝜇𝑣 ,𝑖 (𝜑𝑣 ) + 〈Art−1
𝐹𝑣
(𝜏)〉𝐸𝜇𝑣 ,𝑘 (𝜑𝑣 ) − Res𝜇𝑣

𝜏

))
= 0.

By [NT16, Proposition 3.7], we have a commutative diagram

HO (𝐺 (A∞
𝐹+ ), 𝐾1(𝑄)) EndD(O) (𝑅Γ(𝑋𝐾1 (𝑄) ,O))

HO (𝐺 (A∞
𝐹+ ), 𝐾1(𝑄)) EndD(O) (𝑅Γ𝑐 (𝑋𝐾1 (𝑄) ,O)),

𝜄H ∼

(7.3)

where the right vertical arrow is induced by Poincaré duality. Then we get an isomorphism

T̃𝑆
𝑄, 𝜄 (𝐻

∗
𝑐 (𝑋𝐾1 (𝑄) ,O))/𝐼1

∼
−→ T̃𝑆

𝑄 (𝐻∗(𝑋
𝐾1 (𝑄) ,O))/𝐼2

over T̃𝑆
𝑄

for some ideals 𝐼1,2 of nilpotence degrees depending only on n and [𝐹 : Q]. Moreover, we

can choose 𝐼1, such that it contains I. We can conclude by making 𝐷𝑄 the image of 𝐷 𝜄 under this

homomorphism. �

Lemma 7.4. Let k be a field, and let 𝜌1, 𝜌2 : 𝐺 → 𝐺𝐿𝑛 (𝑘) be two nonisomorphic absolutely irreducible
representations. Then the extended map 𝑘 [𝐺] → 𝑀𝑛 (𝑘) ⊕ 𝑀𝑛 (𝑘) defined by 𝜌1 ⊕ 𝜌2 is surjective.

Proof. We may pass to the algebraic closure of k (which we still denote k). Let ℓ𝑖 : 𝑘 [𝐺] → 𝑀𝑛 (𝑘) be

the linear extension of 𝜌𝑖 for 𝑖 = 1, 2. The two maps ℓ𝑖 are surjective by Burnside’s theorem. Let A be

the image of ℓ1 ⊕ ℓ2, and let 𝐼𝑖 = ker(𝐴 → 𝑀𝑛 (𝑘)), where 𝑖 = 1, 2 corresponds to projecting on the first

and second factor. Since ℓ𝑖 are surjective, 𝐼𝑖 are in fact two-sided ideals of 𝑀𝑛 (𝑘). Then 𝐼𝑖 = 𝑀𝑛 (𝑘) or

𝐼𝑖 = 0. If 𝐼𝑖 = 𝑀𝑛 (𝑘) for some i, then ℓ1 ⊕ ℓ2 is surjective. Suppose then that 𝐼1 = 𝐼2 = 0. Then we have

an automorphism f of 𝑀𝑛 (𝑘) defined by (𝑣, 𝑓 (𝑣)) ∈ 𝐴 for all 𝑣 ∈ 𝑀𝑛 (𝑘). Since all the automorphisms
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of 𝑀𝑛 (𝑘) are inner, we conclude that there exists 𝑢 ∈ GL𝑛 (𝑘), such that 𝐴 = {(𝑣, 𝑢𝑣𝑢−1) | 𝑣 ∈ 𝑀𝑛 (𝑘)}.

But this is impossible since 𝜌1 and 𝜌2 are nonisomorphic. �

Theorem 7.5. Suppose that 𝐾 ⊂ 𝐺 (A∞
𝐹+ ) is a good subgroup which is decomposed with respect to P

and that for each 𝑣 ∈ 𝑄, we have Res𝜇𝑣
∉ 𝔪̃𝑄. Then there exists a continuous representation

𝜌𝔪𝑄
: 𝐺𝐹,𝑆∪𝑄 → GL𝑛 (T

𝑆
𝑄 (𝐻∗(𝑋𝐾1 (𝑄) ,O)𝔪𝑄

)/𝐼)

satisfying the conditions below for some ideal 𝐼 ⊂ T𝑆
𝑄
(𝐻∗(𝑋𝐾1 (𝑄) ,O)𝔪𝑄

) of nilpotence degree depend-
ing only on n and [𝐹 : Q].

1. If 𝑣 ∉ 𝑆 is a place of F, the characteristic polynomial of 𝜌𝔪𝑄
(Frob𝑣 ) is equal to the image of 𝑃𝑣 (𝑋)

in T𝑆
𝑄
(𝐻∗ (𝑋𝐾1 (𝑄) ,O)𝔪)/𝐼 [𝑋].

2. If 𝑣 ∈ 𝑄, then 𝜌𝔪𝑄
|𝐺𝐹𝑣𝑐

is unramified.

3. If 𝑣 ∈ 𝑄, then 𝜌𝔪𝑄
|𝐺𝐹𝑣

= 𝑠 ⊕𝜓, where s is unramified and 𝜏 ∈ 𝐼𝐹𝑣
acts on 𝜓 as a scalar 〈Art−1

𝐹𝑣
(𝜏)〉.

Proof. Using Theorem 7.1 and Theorem 7.2, we can construct a T̃𝑆
𝑄
(𝐻∗

𝑐 (𝑋𝐾1 (𝑄) ,O)𝔪̃𝑄
⊕

𝐻∗(𝑋
𝐾1 (𝑄) ,O)𝔪̃𝑄

)/𝐼-valued group determinant 𝐷𝑄 of 𝐺𝐹,𝑆∪𝑄. Consider the long exact sequence

. . . → 𝐻𝑖
𝑐 (𝑋𝐾1 (𝑄) ,O) → 𝐻𝑖 (𝑋

𝐾1 (𝑄) ,O) → 𝐻𝑖 (𝜕𝑋
𝐾1 (𝑄) ,O) → 𝐻𝑖+1

𝑐 (𝑋
𝐾1 (𝑄) ,O) → .

Using this sequence and Proposition 5.4, we know that 𝑆
𝑓

𝑄
descends to a homomorphism

T̃𝑆
𝑄 (𝐻∗

𝑐 (𝑋𝐾1 (𝑄) ,O)𝔪̃𝑄
⊕ 𝐻∗(𝑋

𝐾1 (𝑄) ,O)𝔪̃𝑄
) → T𝑆

𝑄 (𝐻∗(𝑋𝐾1 (𝑄) ,O)𝔪𝑄
)/𝐼0

for some ideal 𝐼0 with square 0. We can use this to construct a 2𝑛-dimensional group determinant 𝐷0
𝑄

valued in T𝑆
𝑄
(𝐻∗(𝑋𝐾1 (𝑄) ,O)𝔪𝑄

)/𝐼, such that:

1. For 𝑣 ∉ 𝑆, we have 𝐷0
𝑄
(𝑋 − Frob𝑣 ) = 𝑃𝑣 (𝑋)𝑞

𝑛(2𝑛−1)
𝑣 𝑃𝑣𝑐

∨(𝑞1−2𝑛
𝑣 𝑋).

2. For 𝑣 ∈ 𝑄, we have

Tr𝐷0
𝑄

(
𝑆

𝑓

𝑄

(
𝜎 Res

(2𝑛)!
𝑞𝑣 ,𝜇𝑣

Res
(2𝑛)!
𝜇𝑣

(
𝑘−1∑
𝑖=1

𝐸𝜇𝑣 ,𝑖 (𝜑𝑣 ) + 〈Art−1
𝐹𝑣
(𝜏)〉𝐸𝜇𝑣 ,𝑘 (𝜑𝑣 ) − Res𝜇𝑣

𝜏

)))
= 0,

and I has nilpotence degree depending only on n and [𝐹 : Q]. By [ACC+18, Theorem 2.3.7], there also

exists an n-dimensional group determinant 𝐷1
𝑄

of 𝐺𝐹,𝑆∪𝑄 valued in T𝑆
𝑄
(𝐻∗(𝑋𝐾1 (𝑄) ,O)𝔪𝑄

)/𝐼, such

that 𝐷1
𝑄
(𝑋 − Frob𝑣 ) = 𝑃𝑣 (𝑋) for 𝑣 ∉ 𝑆. Then the group determinants 𝐷1

𝑄
⊕ 𝐷1

𝑄

⊥
and 𝐷0

𝑄
are equal.

Moreover, since 𝜌𝔪 is absolutely irreducible, there exists a continuous representation

𝜌𝔪𝑄
: 𝐺𝐹,𝑆∪𝑄 → GL𝑛 (T

𝑆
𝑄 (𝐻∗(𝑋𝐾1 (𝑄) ,O)𝔪𝑄

)/𝐼),

such that the characteristic polynomial of 𝜌𝔪𝑄
is associated to 𝐷1

𝑄
. Let 𝜌′𝔪𝑄

� 𝜌𝔪𝑄
⊕ 𝜌⊥𝔪𝑄

. Writing

out the relation at places 𝑣 ∈ 𝑄, we get

Tr(𝜌′𝔪𝑄
(𝜎)𝑆

𝑓

𝑄
(Res

(2𝑛)!
𝑞𝑣 ,𝜇𝑣

Res
(2𝑛)!
𝜇𝑣

(

𝑘−1∑
𝑖=1

𝐸𝜇𝑣 ,𝑖 (𝜌
′
𝔪𝑄

(𝜑𝑣 ))

+ 〈Art−1
𝐹𝑣
(𝜏)〉𝐸𝜇𝑣 ,𝑘 (𝜌

′
𝔪𝑄

(𝜑𝑣 )) − Res𝜇𝑣
𝜌′𝔪𝑄

(𝜏)))) = 0.
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Since Res𝜇𝑣
∉ 𝔪̃𝑄, we know that 𝜌𝔪 and 𝜌⊥𝔪 are not isomorphic. Applying Nakayama’s lemma and

Lemma 7.4, we see that the extended map

T𝑆
𝑄 [𝐺𝐹,𝑆∪𝑄] → 𝑀𝑛 (T

𝑆
𝑄 (𝐻∗(𝑋𝐾1 (𝑄) ,O)𝔪𝑄

)/𝐼) ⊕ 𝑀𝑛 (T
𝑆
𝑄 (𝐻∗(𝑋𝐾1 (𝑄) ,O)𝔪𝑄

)/𝐼)

given by 𝜌𝔪𝑄
⊕ 𝜌⊥𝔪𝑄

is surjective. Considering the trace relation above with 𝜎 replaced by an arbitrary

element of T𝑆
𝑄
[𝐺𝐹,𝑆∪𝑄], we conclude that

𝑆
𝑓

𝑄
(Res

(2𝑛)!
𝑞𝑣 ,𝜇𝑣

Res
(2𝑛)!
𝜇𝑣

(

𝑘−1∑
𝑖=1

𝐸𝜇𝑣 ,𝑖 (𝜌
′
𝔪𝑄

(𝜑𝑣 ))

+ 〈Art−1
𝐹𝑣
(𝜏)〉𝐸𝜇𝑣 ,𝑘 (𝜌

′
𝔪𝑄

(𝜑𝑣 )) − Res𝜇𝑣
𝜌′𝔪𝑄

(𝜏))) = 0.

Since 𝑞𝑣 ≡ 1 mod 𝑝, we know that Res𝑞𝑣 ,𝜇𝑣
∉ 𝔪̃𝑄. Thus

𝑆
𝑓

𝑄

(
𝑘−1∑
𝑖=1

𝐸𝜇𝑣 ,𝑖 (𝜌
′
𝔪𝑄

(𝜑𝑣 )) + 〈Art−1
𝐹𝑣
(𝜏)〉𝐸𝜇𝑣 ,𝑘 (𝜌

′
𝔪𝑄

(𝜑𝑣 )) − Res𝜇𝑣
𝜌′𝔪𝑄

(𝜏)

)
= 0.

This implies that

𝜌𝔪𝑄
(𝜏) = 𝑆

𝑓

𝑄

(
𝑘−1∑
𝑖=1

Res−1
𝜇𝑣
𝐸𝜇𝑣 ,𝑖 (𝜌𝔪𝑄

(𝜑𝑣 ))

)
+ 𝑆

𝑓

𝑄
(〈Art−1

𝐹𝑣
(𝜏)〉 Res−1

𝜇𝑣
𝐸𝜇𝑣 ,𝑘 (𝜌𝔪𝑄

(𝜑𝑣 ))).

Using Proposition 5.2, we can transform the equation above into

𝜌𝔪𝑄
(𝜏) = Res−1

𝜈𝑣
𝐸𝜈𝑣 ,1 (𝜌𝔪𝑄

(𝜑𝑣 )) + 〈Art−1
𝐹𝑣
(𝜏)〉 Res−1

𝜈𝑣
𝐸𝜈𝑣 ,2(𝜌𝔪𝑄

(𝜑𝑣 )).

Let T � T𝑆
𝑄
(𝐻∗ (𝑋𝐾1 (𝑄) ,O)𝔪𝑄

)/𝐼. Consider the decomposition 𝜌𝔪 = 𝑟1 ⊕ 𝑟2, corresponding to the

Frobenius generalised eigenspaces of all eigenvalues not equal to 𝛼𝑣 and 𝛼𝑣 , respectively. Then

T𝑛 = Res−1
𝜈𝑣
𝐸𝜈𝑣 ,1(𝜌𝔪𝑄

(𝜑𝑣 ))T
𝑛 ⊕ Res−1

𝜈𝑣
𝐸𝜈𝑣 ,2 (𝜌𝔪𝑄

(𝜑𝑣 ))T
𝑛

is the unique 𝜌𝔪𝑄
(𝜑𝑣 )-invariant lift of 𝑟1 ⊕ 𝑟2, and we are done by Lemma 6.1. �

7.2. Hecke algebras for G

Let 𝜆 ∈ (Z𝑛
+)

Hom(𝐹,𝐸) . Further let S be a finite set of finite places of F containing the p-adic places and

stable under complex conjugation satisfying the following condition:

1. Let l be a rational prime, such that there exists a place above l in S or l is ramified in F. Then there

exists an imaginary quadratic subfield 𝐹0 ⊂ 𝐹, such that l splits in 𝐹0.

Let 𝐾 ⊂ GL𝑛 (A
∞
𝐹
) be a good subgroup, such that for all 𝑣 ∉ 𝑆, we have 𝐾𝑣 = GL𝑛 (O𝐹𝑣

). Let

𝔪 ⊂ T𝑆 (𝐾, 𝜆) be a non-Eisenstein maximal ideal with residue field k. By [ACC+18, Theorem 2.3.5],

there exists an associated residual representation 𝜌𝔪 : 𝐺𝐹,𝑆 → GL𝑛 (T
𝑆 (𝐾, 𝜆)/𝔪). By [ACC+18,

Theorem 2.3.7], there exists an ideal 𝐼 ⊂ T𝑆 (𝐾, 𝜆) of nilpotence degree depending only on n and [𝐹 : Q]

and a continuous lift 𝜌𝔪 : 𝐺𝐹,𝑆 → GL𝑛 (T
𝑆 (𝐾, 𝜆)𝔪/𝐼), such that for each 𝑣 ∈ 𝑆, det(𝑋 − 𝜌𝔪 (Frob𝑣 ))

is the image of 𝑃𝑣 (𝑋) in T𝑆 (𝐾, 𝜆)𝔪/𝐼 [𝑋]. We consider the following Taylor-Wiles datum: a tuple

(𝑄, (𝛼𝑣 )𝑣 ∈𝑄) consisting of

◦ A finite set Q of places of F, disjoint from 𝑄𝑐 , such that 𝑞𝑣 ≡ 1 (mod 𝑝) for each 𝑣 ∈ 𝑄.

◦ Each 𝑣 ∈ 𝑄 is split in 𝐹+, and there exists an imaginary quadratic subfield 𝐹0 ⊂ 𝐹, such that v is

split in 𝐹0. Moreover, 𝜌𝔪 is unramified at v and 𝑣𝑐 .

◦ 𝛼𝑣 is a root of det(𝑋 − 𝜌𝔪 (Frob𝑣 )).
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Consider the partition 𝜈𝑣 : 𝑛 = 𝑑𝑣 + (𝑛 − 𝑑𝑣 ), where 𝑑𝑣 is the multiplicity of 𝛼𝑣 as a root of

det(𝑋 − 𝜌𝔪 (Frob𝑣 )).

We define auxillary level subgroups 𝐾1(𝑄) ⊂ 𝐾0(𝑄) ⊂ 𝐾 . They are good subgroups of GL𝑛 (A
∞
𝐹
)

defined by the following conditions:

◦ if 𝑣 ∉ 𝑄, then 𝐾1(𝑄)𝑣 = 𝐾0(𝑄)𝑣 = 𝐾𝑣 .

◦ if 𝑣 ∈ 𝑄, then 𝐾0(𝑄)𝑣 = 𝔭𝜈𝑣 and 𝐾1(𝑄)𝑣 = 𝔭𝜈𝑣 ,1.

We have a natural isomorphism 𝐾0(𝑄)/𝐾1(𝑄) � Δ𝑄 =
∏

𝑣 ∈𝑄 Δ 𝑣 . Let 𝑆′ = 𝑆 ∪ 𝑄 ∪ 𝑄𝑐 . We define

T𝑆′

𝑄
= T𝑆∪𝑄 ⊗Z Z[Ξ𝑣,1]

𝑆𝜈𝑣 . Let T𝑆′

𝑄
(𝐾0(𝑄), 𝜆) and T𝑆′

𝑄
(𝐾0(𝑄)/𝐾1(𝑄), 𝜆) be the images of T𝑆′

𝑄
in

EndD(O) (𝑅Γ(𝑋𝐾0 (𝑄) , 𝑉𝜆)) and EndD(O [Δ𝑄 ]) (𝑅Γ(𝑋𝐾1 (𝑄) , 𝑉𝜆)), respectively. Let 𝔪𝑄 be the maximal

ideal of T𝑆′

𝑄
generated by 𝔪 and the kernels of the homomorphisms Z[Ξ𝑣,1]

𝑆𝜈𝑣 → 𝑘 given by the

coefficients of polynomials (𝑋 − 𝛼𝑣 )
𝑑𝑣 , det(𝑋 − 𝜌𝔪 (Frob𝑣 ))/(𝑋 − 𝛼𝑣 )

𝑑𝑣 .

Theorem 7.6. We have natural isomorphisms

𝑅Γ(𝑋𝐾 , 𝑉𝜆)𝔪 � 𝑅Γ(𝑋𝐾0 (𝑄) , 𝑉𝜆)𝔪𝑄

𝑅Γ(𝑋𝐾0 (𝑄) , 𝑉𝜆)𝔪𝑄
� 𝑅Γ(Δ𝑄, 𝑅Γ(𝑋𝐾1 (𝑄) , 𝑉𝜆))𝔪𝑄

in D(O).

Proof. The second isomorphism is straightforward. For the first, we can check on the level of cohomol-

ogy. It is enough to check that it is an isomorphism in D(𝑘) after applying the functor − ⊗L 𝑘 . Thus, we

need to show that the map

𝐻∗(𝑋𝐾 , 𝑉𝜆/𝜛)𝔪 → 𝐻∗(𝑋𝐾0 (𝑄) , 𝑉𝜆/𝜛)𝔪𝑄

is an isomorphism. We can do this one prime at a time, so we can assume 𝑄 = {𝑣}. For each j, let

𝑀 𝑗 � lim
𝑚→∞

𝐻 𝑗 (𝑋𝐾 (𝑣𝑚) , 𝑉𝜆/𝜛)𝔪,

where 𝐾 (𝑣𝑚)𝑤 = 𝐾𝑤 for places 𝑤 ≠ 𝑣 and 𝐾 (𝑣𝑚)𝑣 is the principal congruence subgroup of level 𝑣𝑚.

We have two Hochschild-Serre spectral sequences:

𝐻𝑖 (GL𝑛 (O𝐹𝑣
), 𝑀 𝑗 ) ⇒ 𝐻𝑖+ 𝑗 (𝑋𝐾 , 𝑉𝜆/𝜛)𝔪

𝑒𝛼𝑣
𝐻𝑖 (𝔭𝜈𝑣 , 𝑀 𝑗 ) ⇒ 𝑒𝛼𝑣

𝐻𝑖+ 𝑗 (𝑋𝐾0 (𝑄) , 𝑉𝜆/𝜛) = 𝐻𝑖+ 𝑗 (𝑋𝐾0 (𝑄) , 𝑉𝜆/𝜛)𝔪𝑄
.

There is a natural map 𝜄∗ between these spectral sequences, which arises from deriving the map

𝑀
GL𝑛 (O𝐹𝑣 )

𝑗
→ 𝑀

𝔭𝜈𝑣
𝑗

→ 𝑒𝛼𝑣
𝑀

𝔭𝜈𝑣
𝑗
.

Thus, it is enough to show that 𝜄∗ is an isomorphism. 𝑀 𝑗 is admissible, and we can use [Vig98, Theorem

III.6] to write 𝑀 𝑗 as a direct sum of GL𝑛 (𝐹𝑣 )-modules, each belonging to a single block. Let 𝑁 ⊂ 𝑀 𝑗

be a summand from a nonunipotent block. Let 𝑇𝑝 (𝑘) be the p-power part of 𝑇 (𝑘). We note that both

𝐻𝑖 (GL𝑛 (O𝐹𝑣
), 𝑁) and 𝐻𝑖 (𝔭𝜈𝑣 , 𝑁) inject into 𝐻𝑖 (Iw, 𝑁), which in turn is equal to 𝐻𝑖 (𝑇𝑝 (𝑘), 𝑁

Iw𝑝

).

Since N is a from a nonunipotent block, we know that 𝑁 Iw𝑝

= 0, and so

𝐻𝑖 (GL𝑛 (O𝐹𝑣
), 𝑁) = 𝐻𝑖 (𝔭𝜈𝑣 , 𝑁) = 0.

Thus, we can restrict to the summand 𝑀1
𝑗 ⊂ 𝑀 𝑗 from the unipotent block, and it is enough to prove that

𝜄∗ : 𝐻𝑖 (GL𝑛 (O𝐹𝑣
), 𝑀1

𝑗 ) → 𝑒𝛼𝑣
𝐻𝑖 (𝔭𝜈𝑣 , 𝑀

1
𝑗 )
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is an isomorphism. By [CHT08, Theorem B.1], the unipotent block in our case consists of representations

generated by their Iw𝑝-invariant vectors. Therefore, every irreducible subrepresentation 𝜋 ⊂ 𝑀1
𝑗 has a

Iw𝑝-invariant vector. It follows from the argument similar to the proof of Proposition 2.1 that

𝜋 ⊂ Ind
𝐺𝐿𝑛

𝐵
𝜒1 ⊗ . . . ⊗ 𝜒𝑛,

where 𝜒𝑖 are tamely ramified characters whose restriction to O𝐹𝑣
/(1 +𝜛O𝐹𝑣

) has p-power order. But

these characters are valued in 𝑘× which has order coprime to p, which means 𝜒𝑖 are in fact unramified.

We can now select the smallest number 𝑑 > 0, such that 𝜋 embeds into𝑀 𝑗 [𝔪
𝑑]. Since 𝜋 is irreducible,

it must then embed into 𝑀 𝑗 [𝔪
𝑑]/𝑀 𝑗 [𝔪

𝑑−1] and local-global compatibility for Iwahori level ([ACC+18,

Theorem 3.1.1]) then implies that {𝜒𝑖 (𝜛)}𝑖=1,...,𝑛 is the set of eigenvalues of 𝜌𝔪 (Frob𝑣 ). Thus, we

have shown that 𝑀 𝑗 ∈ C, and we are done by Theorem 2.14. �

Theorem 7.7. There exists an ideal 𝐼 ⊂ T𝑆′

𝑄
(𝐾0 (𝑄)/𝐾1(𝑄), 𝜆)𝔪𝑄

of nilpotence degree depending only
on n and [𝐹 : Q], together with a continuous homomorphism

𝜌𝔪,𝑄 : 𝐺𝐹,𝑆∪𝑄 → GL𝑛 (T
𝑆′

𝑄 (𝐾0 (𝑄)/𝐾1(𝑄), 𝜆)𝔪𝑄
/𝐼)

lifting 𝜌𝔪 and satisfying the following conditions:

1. For a finite place 𝑣 ∉ 𝑆 ∪ 𝑄 of F, det(𝑋 − 𝜌𝔪,𝑄 (Frob𝑣 )) equals to the image of 𝑃𝑣 (𝑋) in
T𝑆′

𝑄
(𝐾0 (𝑄)/𝐾1(𝑄), 𝜆)𝔪𝑄

/𝐼 [𝑋].
2. For 𝑣 ∈ 𝑄, 𝜌𝔪,𝑄 |𝐺𝐹𝑣𝑐

is unramified and 𝜌𝔪,𝑄 |𝐺𝐹𝑣
is a lifting of type D𝑣 , and the induced map

O[Δ𝑄] → T𝑆′

𝑄
(𝐾0 (𝑄)/𝐾1(𝑄), 𝜆)𝔪𝑄

/𝐼 is a homomorphism of O[Δ𝑄]-algebras.

Proof. We first make a few reductions. Let us show that we can reduce to the situation where det(𝑋 −

𝜌𝔪 (Frob𝑣 )) and det(𝑋 − 𝜌𝔪 (Frob𝑣𝑐 )) are coprime for each 𝑣 ∈ 𝑄. To achieve this, we will use

twisting. Pick an odd prime 𝑙 ≠ 𝑝 and consider a character 𝜓 : 𝐺𝐹 → O× of order ℓ, such that

det(𝑋−( 𝜌𝔪⊗ 𝜓) (Frob𝑣 )) and det(𝑋−( 𝜌𝔪⊗ 𝜓) (Frob𝑣𝑐 )) are coprime. Let 𝑆𝜓 denote the places of F at

which 𝜓 is ramified. We will further require that 𝑆𝜓 is disjoint from 𝑆′. Define a good subgroup 𝐾𝜓 ⊂ 𝐾

given by 𝐾
𝜓
𝑣 = 𝐾𝑣 at places v at which 𝜓 is unramified and 𝐾

𝜓
𝑣 = ker(GL𝑛 (O𝐹𝑣

) → 𝑘 (𝑣)×/(𝑘 (𝑣)×)𝑙)

at places v, where 𝜓 is ramified. Following the discussion above [ACC+18, Proposition 2.2.22], we have

a homomorphism 𝑓𝜓 : T𝑆′∪𝑆𝜓 (𝐾𝜓, 𝜆) → T𝑆′∪𝑆𝜓 (𝐾𝜓, 𝜆) given by

𝑓𝜓 ([𝐾
𝜓𝑆′∪𝑆𝜓

𝑔𝐾𝜓𝑆′∪𝑆𝜓
]) = 𝜓−1 (Art(det(𝑔))) [𝐾𝜓𝑆′∪𝑆𝜓

𝑔𝐾𝜓𝑆′∪𝑆𝜓
] . (7.8)

We have a maximal ideal 𝔪𝜓 = 𝑓𝜓 (𝔪) of T𝑆′∪𝑆𝜓 (𝐾𝜓 , 𝜆). [ACC+18, Proposition 2.2.22] implies an

isomorphism 𝜌𝔪 ⊗ 𝜓 � 𝜌𝔪𝜓
. Similarly to Eq. 7.8, we have an isomorphism

T
𝑆′∪𝑆𝜓

𝑄
(𝐾

𝜓

0
(𝑄)/𝐾

𝜓

1
(𝑄), 𝜆)𝔪𝜓𝑄

� T
𝑆′∪𝑆𝜓

𝑄
(𝐾

𝜓

0
(𝑄)/𝐾

𝜓

1
(𝑄), 𝜆)𝔪𝑄

,

where 𝔪𝜓𝑄
is the maximal ideal of T

𝑆′∪𝑆𝜓

𝑄
generated by 𝔪𝜓 and the kernels of the homomor-

phisms Z[Ξ𝑣,1]
𝑆𝜈𝑣 → 𝑘 given by the coefficients of polynomials (𝑋 − 𝜓(Frob𝑣 )𝛼𝑣 )

𝑑𝑣 , det(𝑋 −

𝜌𝔪𝜓
(Frob𝑣 ))/(𝑋 − 𝜓(Frob𝑣 )𝛼𝑣 )

𝑑𝑣 . We have a surjective map of T𝑆′∪𝑆𝜓 -algebras

T
𝑆′∪𝑆𝜓

𝑄
(𝐾

𝜓

0
(𝑄)/𝐾

𝜓

1
(𝑄), 𝜆)𝔪𝑄

→ T
𝑆′∪𝑆𝜓

𝑄
(𝐾0 (𝑄)/𝐾1(𝑄), 𝜆)𝔪𝑄

.

Thus, if the theorem holds for representations into T
𝑆′∪𝑆𝜓

𝑄
(𝐾

𝜓

0
(𝑄)/𝐾

𝜓

1
(𝑄), 𝜆)𝔪𝑄

, it will hold for repre-

sentations into T
𝑆′∪𝑆𝜓

𝑄
(𝐾0(𝑄)/𝐾1(𝑄), 𝜆)𝔪𝑄

. Since there are infinitely many 𝜓 satisfying the conditions

we require, we can vary them to conclude that the theorem holds for T𝑆′

𝑄
(𝐾0(𝑄)/𝐾1(𝑄), 𝜆)𝔪𝑄

, which

is our target Hecke algebra.
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Let 𝐾 ⊂ 𝐺 (A∞
𝐹+ ) be a good subgroup satisfying the following conditions:

1. 𝐾 is decomposed with respect to P.

2. 𝐾 ∩ 𝐺 (A∞
𝐹+ ) ⊂ 𝐾 .

3. if 𝑣 is a finite place of 𝐹+, such that 𝑣 ∉ 𝑆, then 𝐾 𝑣 = 𝐺 (O𝐹+
𝑣
).

We can use the Hochschild-Serre spectral sequence to reduce to the case where 𝐾 = 𝐾 ∩ 𝐺 (A∞
𝐹+ ). We

can further reduce our theorem to the case 𝜆 = 0, by a standard use of the Hochschild-Serre spectral

sequence to trivialise the weight modulo some power m at the expense of shrinking the level at p. Now

the theorem follows from Theorem 7.5. �

8. Proof of Theorem 1.2 and Theorem 1.3

Let us recall the proof structure of [ACC+18, Theorem 6.1.1]. The theorem is reduced in [ACC+18] to

[ACC+18, Corollary 6.5.5], which is proved using [ACC+18, Theorem 6.5.4]. The reduction does not

use the ‘enormous’ assumption on the image of 𝜌. Thus, it will be sufficient for us to prove an analog

of [ACC+18, Theorem 6.5.4], replacing ‘enormous’ by ‘adequate’ in the hypotheses.

Let F be an imaginary CM number field, and fix the following data:

1. An integer 𝑛 ≥ 2 and a prime 𝑝 > 𝑛2.

2. A finite set S of finite places of F, including the places above p.

3. A (possibly empty) subset 𝑅 ⊂ 𝑆 of places which are prime to p.

4. A cuspidal automorphic representation 𝜋 of GL𝑛 (A𝐹 ), which is regular algebraic of some weight 𝜆.

5. A choice of isomorphism 𝜄 : Q𝑝 � C.

We assume that the following conditions are satisfied:

6. If l is a prime lying below an element of S, or which is ramified in F, then F contains an imaginary

quadratic field in which l splits. In particular, each place of S is split over 𝐹+ and the extension

𝐹/𝐹+ is everywhere unramified.

7. The prime p is unramified in F.

8. For each embedding 𝜏 : 𝐹 ↩−→ C, we have

𝜆𝜏,1 + 𝜆𝜏𝑐,1 − 𝜆𝜏,𝑛 − 𝜆𝜏𝑐,𝑛 < 𝑝 − 2𝑛.

9. For each 𝑣 ∈ 𝑆𝑝 , let 𝑣 denote the place of 𝐹+ lying below v. Then there exists a place 𝑣′ ≠ 𝑣 of

𝐹+, such that 𝑣′ | 𝑝 and

∑
𝑣′′≠ 𝑣, 𝑣′

[𝐹+
𝑣′′ : Q𝑝] >

1

2
[𝐹+ : Q] .

10. The residual representation 𝑟 𝜄 (𝜋) is absolutely irreducible.

11. If v is a place of F lying above p, then 𝜋𝑣 is unramified.

12. If 𝑣 ∈ 𝑅, then 𝜋
Iw𝑣
𝑣 ≠ 0.

13. If 𝑣 ∈ 𝑆 − (𝑅 ∪ 𝑆𝑝), then 𝜋𝑣 is unramified and 𝐻2(𝐹𝑣 , ad 𝑟 𝜄 (𝜋)) = 0.

Moreover, v is absolutely unramified and of residue characteristic 𝑞 > 2.

14. 𝑆 − (𝑅 ∪ 𝑆𝑝) contains at least two places with distinct residue characteristics.

15. If 𝑣 ∉ 𝑆 is a finite place of F, then 𝜋𝑣 is unramified.

16. If 𝑣 ∈ 𝑅, then 𝑞𝑣 ≡ 1 (mod 𝑝) and 𝑟 𝜄 (𝜋) |𝐺𝐹𝑣
is trivial.

17. The representation 𝑟 𝜄 (𝜋) is decomposed generic in the sense of [ACC+18, Definition 4.3.1] and the

image of 𝑟 𝜄 (𝜋) |𝐺𝐹 (𝜁𝑝 )
is adequate.

We define an open compact subgroup 𝐾 =
∏

𝑣 𝐾𝑣 of GL𝑛 (Ô𝐹 ) as follows:
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◦ If 𝑣 ∉ 𝑆, or 𝑣 ∈ 𝑆𝑝 , then 𝐾𝑣 = GL𝑛 (O𝐹𝑣
).

◦ If 𝑣 ∈ 𝑅, then 𝐾𝑣 = Iw𝑣 .

◦ If 𝑣 ∈ 𝑆 − (𝑅 ∪ 𝑆𝑝), then 𝐾𝑣 = Iw𝑣,1.

By [ACC+18, Theorem 2.4.10], we can find a coefficient field 𝐸 ⊂ Q𝑝 and a maximal ideal

𝔪 ⊂ T𝑆 (𝐾,V𝜆), such that 𝜌𝔪 � 𝑟 𝜄 (𝜋). After possibly enlarging E, we can and do assume that the

residue field of 𝔪 is equal to k. For each tuple (𝜒𝑣,𝑖)𝑣 ∈𝑅,𝑖=1,...,𝑛 of characters 𝜒𝑣,𝑖 : 𝑘 (𝑣)× → O× which

are trivial modulo 𝜛, we define a global deformation problem by the formula

𝑆𝜒 = ( 𝜌𝔪, 𝑆, {O}𝑣 ∈𝑆 , {D
FL
𝑣 }𝑣 ∈𝑆𝑝

∪ {D
𝜒
𝑣 }𝑣 ∈𝑅) ∪ {D�𝑣 }𝑣 ∈𝑆−(𝑅∪𝑆𝑝) ).

We fix representatives 𝜌𝑆𝜒
of the universal deformations which are identified modulo 𝜛 via the identi-

fications 𝑅𝑆𝜒
/𝜛 � 𝑅𝑆1

/𝜛. We define an O[𝐾𝑆]-module V𝜆 (𝜒
−1) = V𝜆 ⊗O O(𝜒−1), where 𝐾𝑆 acts on

𝑉𝜆 by projection to 𝐾𝑝 and on O(𝜒−1) by the projection 𝐾𝑆 → 𝐾𝑅 =
∏

𝑣 ∈𝑅 Iw𝑣 →
∏

𝑣 ∈𝑅 (𝑘 (𝑣)
×)𝑛.

Theorem 8.1. Under assumptions (1)–(17) above, 𝐻∗(𝑋𝐾 ,V𝜆 (1))𝔪 is a nearly faithful 𝑅𝑆1
-module. In

other words, Ann𝑅𝑆1
(𝐻∗(𝑋𝐾 ,V𝜆 (1))𝔪) is nilpotent.

The rest of the paper is devoted to the proof of Theorem 8.1.

Consider the Taylor-Wiles datum (𝑄, {𝛼𝑣 }𝑣 ∈𝑄) satisfying the following conditions:

◦ For each place 𝑣 ∈ 𝑄 of residue characteristic l, there exists an imaginary quadratic subfield 𝐹0 ⊂ 𝐹,

such that l splits in 𝐹0.

◦ Q and 𝑄𝑐 are disjoint.

We have the following result, combining [ACC+18, Proposition 6.5.3] and Theorem 7.7:

Proposition 8.2. There exists an integer 𝛿 ≥ 1 depending only on n and [𝐹 : Q], an ideal 𝐽 ⊂

T𝑆′

𝑄
(𝑅Γ(𝑋𝐾1 (𝑄) , 𝑉𝜆 (𝜒

−1))𝔪𝑄
), such that 𝐽 𝛿 = 0 and a continuous surjection of O[Δ𝑄]-algebras

𝑓𝑆𝜒,𝑄
: 𝑅𝜒,𝑄 → T𝑆′

𝑄
(𝑅Γ(𝑋𝐾1 (𝑄) , 𝑉𝜆(𝜒

−1))𝔪𝑄
)/𝐽, such that for each finite place 𝑣 ∉ 𝑆 ∪ 𝑄, the

characteristic polynomial of 𝑓𝑆𝜒,𝑄
◦ 𝜌𝑆𝜒,𝑄

equals the image of 𝑃𝑣 (𝑋).

Let

𝑞 = ℎ1 (𝐹𝑆/𝐹, ad 𝜌𝔪 (1)) and 𝑔 = 𝑞 − 𝑛2 [𝐹+ : Q],

and set Δ∞ = Z
𝑞
𝑝 . Let T be a power series ring over O in 𝑛2 |𝑆 | −1 variables, and let 𝑆∞ = T [[Δ∞]]. Let

𝔞∞ be the augmentation ideal of 𝑆∞ viewed as an augmented O-algebra. Since 𝑝 > 𝑛, for each 𝑣 ∈ 𝑅,

we can choose a tuple of pairwise distinct characters 𝜒𝑣 = (𝜒𝑣,1, . . . , 𝜒𝑣,𝑛), with 𝜒𝑣,𝑖 : O×
𝐹𝑣

→ O×

trivial modulo𝜛. We write 𝜒 for the tuple (𝜒𝑣 )𝑣 ∈𝑅 as well as for the induced character
∏

𝑣 ∈𝑅 𝐼𝑣 → O×.

Fix an imaginary quadratic subfield 𝐹0 ⊂ 𝐹. Then for each 𝑁 ≥ 1, we fix a choice of Taylor-Wiles

datum (𝑄, {𝛼𝑣 }𝑣 ∈𝑄) for S1 of level N using Proposition 6.7. For 𝑁 = 0, we set 𝑄0 = ∅. For each

𝑁 ≥ 1, we set Δ𝑁 = Δ𝑄𝑁
and fix a surjection Δ∞ → Δ𝑁 . We let Δ0 be the trivial group, viewed as

a quotient of Δ∞. For each 𝑁 ≥ 0, we set 𝑅𝑁 = 𝑅S1 ,𝑄𝑁
and 𝑅′

𝑁
= 𝑅S𝜒 ,𝑄𝑁

. Let 𝑅𝑙𝑜𝑐 = 𝑅
𝑆,𝑙𝑜𝑐
S1

and

𝑅′𝑙𝑜𝑐 = 𝑅′𝑆,𝑙𝑜𝑐
S𝜒

denote the local deformation rings. We let 𝑅∞ and 𝑅′
∞ be formal power series rings in g

variables over 𝑅𝑙𝑜𝑐 and 𝑅′𝑙𝑜𝑐 , respectively. We also have canonical isomorphisms 𝑅𝑁 /𝜛 � 𝑅′
𝑁
/𝜛 and

𝑅𝑙𝑜𝑐/𝜛 � 𝑅′𝑙𝑜𝑐/𝜛. Using [ACC+18, Proposition 6.2.24] and [ACC+18, Proposition 6.2.31], we have

local O-algebra surjections 𝑅∞ → 𝑅𝑁 and 𝑅′
∞ → 𝑅′

𝑁
for 𝑁 ≥ 0. We can and do assume that these are

compatible with the fixed identifications modulo 𝜛 and with the isomorphisms 𝑅𝑁 ⊗O [Δ𝑄 ] O = 𝑅0

and 𝑅′
𝑁
⊗O [Δ𝑄 ] O = 𝑅′

0
.

Define C0 = 𝑅HomO (𝑅Γ(𝑋𝐾 , 𝑉𝜆(1))𝔪,O) [−𝑑] ∈ D(O) and 𝑇0 = T𝑆 (C0). Similarly, we define

C ′
0
= 𝑅HomO (𝑅Γ(𝑋𝐾 , 𝑉𝜆 (𝜒

−1))𝔪 and 𝑇 ′
0
= T𝑆 (C ′

0
). For any 𝑁 ≥ 1, we let

C𝑁 = 𝑅HomO (𝑅Γ(𝑋𝐾1 (𝑄) , 𝑉𝜆(1))𝔪𝑄𝑁
,O) [−𝑑],
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and

𝑇𝑁 = T𝑆′

𝑄 (C𝑁 ).

Similarly, we let

C
′
𝑁 = 𝑅HomO (𝑅Γ(𝑋𝐾1 (𝑄) , 𝑉𝜆(𝜒

−1))𝔪𝑄𝑁
,O) [−𝑑]

and

𝑇 ′
𝑁 = T𝑆′

𝑄 (C ′
𝑁 ).

For any 𝑁 ≥ 0, there are canonical isomorphisms

C𝑁 ⊗L
O [Δ𝑁 ] 𝑘 [Δ𝑁 ] � C

′
𝑁 ⊗L

O [Δ𝑁 ] 𝑘 [Δ𝑁 ]

in D(𝑘 [Δ𝑁 ]). These yield the identification

EndD(O) (C𝑁 ⊗L
O
𝑘) � EndD(O) (C

′
𝑁 ⊗L

O
𝑘).

Thus, we can write 𝑇𝑁 for the image of both 𝑇𝑁 and 𝑇 ′
𝑁

in the identified endomorphism algebras. By

Theorem 7.6, there are canonical isomorphisms C𝑁 ⊗L
O [Δ𝑁 ]

O � C0 and C ′
𝑁
⊗L
O [Δ𝑁 ]

O � C ′
0

in D(O),

which are compatible with the reductions modulo 𝜛. By Proposition 8.2, we can find an integer 𝛿 ≥ 1

and for each 𝑁 ≥ 0 ideals 𝐼𝑁 of 𝑇𝑁 and 𝐼 ′
𝑁

of 𝑇 ′
𝑁

of nilpotence degree ≤ 𝛿, such that there exist local

O[Δ𝑁 ]-algebra surjections 𝑅𝑁 → 𝑇𝑁 /𝐼𝑁 and 𝑅′
𝑁
→ 𝑇 ′

𝑁
/𝐼 ′

𝑁
. Denoting by 𝐼𝑁 and 𝐼

′

𝑁 the images of

𝐼𝑁 and 𝐼 ′
𝑁

, respectively, in 𝑇𝑁 , we get maps 𝑅𝑁 /𝜛 → 𝑇𝑁 /( 𝐼𝑁 + 𝐼
′

𝑁 ) and 𝑅′
𝑁
/𝜛 → 𝑇𝑁 /( 𝐼𝑁 + 𝐼

′

𝑁 )

which are compatible with the identification 𝑅𝑁 /𝜛 � 𝑅′
𝑁
/𝜛. The objects constructed above satisfy

the setup described in [ACC+18, Section 6.4.1]. Thus, we can apply the results of [ACC+18, Section

6.4.2] as in the second part of the proof of [ACC+18, Theorem 6.4.4] to conclude that 𝐻∗(𝐶0) is a nearly

faithful 𝑅S1
-module, which implies Theorem 8.1.
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