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Abstract

We develop a novel method to remove injected backdoors
in deep learning models. It works by cloning the benign
behaviors of a trojaned model to a new model of the same
structure. It trains the clone model from scratch on a very
small subset of samples and aims to minimize a cloning loss
that denotes the differences between the activations of im-
portant neurons across the two models. The set of important
neurons varies for each input, depending on their magni-
tude of activations and their impact on the classification
result. We theoretically show our method can better recover
benign functions of the backdoor model. Meanwhile, we
prove our method can be more effective in removing back-
doors compared with fine-tuning. Our experiments show that
our technique can effectively remove nine different types of
backdoors with minor benign accuracy degradation, outper-
forming the state-of-the-art backdoor removal techniques
that are based on fine-tuning, knowledge distillation, and
neuron pruning.1

1. Introduction

Backdoor attack is a prominent threat to applications
of Deep Learning models. Misbehaviors, e.g., model mis-
classification, can be induced by an input stamped with a
backdoor trigger, such as a patch with a solid color or a
pattern [14, 29]. A large number of various backdoor attacks
have been proposed, targeting different modalities and fea-
turing different attack methods [2, 22, 37, 44, 49, 55]. An
important defense method is hence to remove backdoors
from pre-trained models. For instance, Fine-prune proposed
to remove backdoor by fine-tuning a pre-trained model on
clean inputs [27]. Distillation [23] removes neurons that
are not critical for benign functionalities. Model connectiv-
ity repair (MCR) [56] interpolates weight parameters of a
poisoned model and its finetuned version. ANP [50] adver-

1Code is available at https://github.com/qiulingxu/
MEDIC

sarially perturbs neuron weights of a poisoned model and
prunes those neurons that are sensitive to perturbations (and
hence considered compromised). While these techniques are
very effective in their targeted scenarios, they may fall short
in some other attacks. For example, if a trojaned model is
substantially robust, fine-tuning may not be able to remove
the backdoor without lengthy retraining. Distillation may be-
come less effective if a neuron is important for both normal
functionalities and backdoor behaviors. And pruning neu-
rons may degrade model benign accuracy. More discussions
of related work can be found in Section 2.

In this paper, we propose a novel backdoor removal tech-
nique MEDIC 2 as illustrated in Figure 1 (A). It works by
cloning the benign functionalities of a pre-trained model to a
new sanitized model of the same structure. Given a trojaned
model and a small set of clean samples , MEDIC trains the
clone model from scratch. The training is not only driven
by the cross-entropy loss as in normal model training, but
also by forcing the clone model to generate the same internal
activation values as the original model at the correspond-
ing internal neurons, i.e., steps 1⃝, 2⃝, and 4⃝ in Figure 1
(A). Intuitively, one can consider it essentially derives the
weight parameters in the clone model by resolving the acti-
vation equivalence constraints. There are a large number of
such constraints even with just a small set of clean samples.
However, such faithful cloning likely copies the backdoor
behaviors as well as it tends to generate the same set of
weight values. Therefore, our cloning is further guided by
importance (step 3⃝). Specifically, for each sample x, we
only force the important neurons to have the same activation
values. A neuron is considered important if (1) it tends to be
substantially activated by the sample, when compared to its
activation statistics over the entire population (the activation
criterion in red in Figure 1 (A)), and (2) the large activation
value has substantial impact on the classification result (the
impact criterion) . The latter can be determined by analyz-
ing the output gradient regarding the neuron activation. By
constraining only the important neurons and relaxing the

2MEDIC stands for “Remove ModEl Backdoors via Importance DrIven
Cloning”.



others, the model focuses on cloning the behaviors related
to the clean inputs and precludes the backdoor. The set of
weight values derived by such cloning are largely different
from those in the original model. Intuitively, it is like solving
the same set of variables with only a subset of equivalence
constraints. The solution tends to differ substantially from
that by solving the full set of constraints.
Example. Figure 2 shows an example by visualizing the in-
ternal activations and importance values for a trojaned model
on a public benchmark [35]. Image (a) shows a right-turn
traffic sign stamped with a polygon trigger in yellow, which
induces the classification result of stop sign. Image (c) visu-
alizes the activation values for the trojaned image whereas
(d) shows those for its clean version. The differences be-
tween the two, visualized in (e), show that the neurons fall
into the red box are critical to the backdoor behaviors. A
faithful cloning method would copy the behaviors for these
neurons (and hence the backdoor). In contrast, our method
modulates the cloning process using importance values and
hence precludes the backdoor. The last image shows the
importance values with the bright points denoting important
neurons and the dark ones unimportant. Observe that it pre-
vents copying the behaviors of the compromised neurons
for this example as they are unimportant. One may notice
that the unimportant compromised neurons for this example
may become important for another example. Our method
naturally handles this using per-sample importance values.
□

Our technique is different from fine-tuning as it trains
from scratch. It is also different from knowledge distilla-
tion [25] shown in Figure 1 (B), which aims to copy be-
haviors across different model structures and constrains log-
its equivalence (and sometimes internal activation equiva-
lence [53] as well). In contrast, by using the same model
structure, we have a one-to-one mapping for individual neu-
rons in the two models such that we can enforce strong
constraints on internal equivalence. This allows us to copy
behaviors with only a small set of clean samples.

We evaluate our technique on nine different kinds of
backdoor attacks. We compare with five latest backdoor
removal methods (details in related work). The results show
our method can reduce the attack success rate to 8.5% on
average with only 2% benign accuracy degradation. It con-
sistently outperforms the other baselines by 25%. It usually
takes 15 mins to sanitize a model. We have also conducted
an adaptive attack in which the trigger is composed of ex-
isting benign features in clean samples. It denotes the most
adversary context for MEDIC . Our ablation study shows
all the design choices are critical. For example, without
using importance values, it can only reduce ASR to 36% on
average.

In summary, our main contributions include the follow-
ing.

• We propose a novel importance driven cloning method
to remove backdoors. It only requires a small set of
clean samples.

• We theoretically analyze the advantages of the cloning
method.

• We empirically show that MEDIC outperforms the state-
of-the-art methods.

2. Related Work
There are a large body backdoor attacks [1,7,8,15,33,34,

38–40, 57, 58]. We focus on a number of representative ones
with different natures and used in our experiments. Readers
interested in other attacks are referred to a survey [12, 24].
Badnet [14] proposes to inject backdoors with a fixed poly-
gon. Clean Label attack [46] first adds adversarial perturba-
tions to target-class samples and makes them misclassified.
It then adds a square patch on those inputs without chang-
ing their ground-truth label. During inference, the square
patch can induce misclassification on non-target class sam-
ples. SIG [3] uses a wave-like pattern as trigger. Reflection
attack [30] adds the reflection of some external image on the
input. Polygon attack [35] injects a polygon-like trigger on
the input at specific locations. Filter attack [28] utilizes In-
stagram filters to transform inputs and labels the transformed
inputs to the target class. Warp [32] uses image warping
as a trigger pattern. The trigger perturbations hence vary
for different inputs. We also consider an adaptive attack
which uses benign features from two existing classes as the
trigger [26].

Researchers have proposed various defense techniques, in-
cluding backdoor inputs detection that aims to detect and re-
ject input samples with triggers [9,13,45,47]; backdoor scan-
ning that determines whether a given model has backdoor
using a small set of clean inputs [20,28,42,48]; backdoor cer-
tification that certifies the predictions of individual samples
with trigger [19, 31, 51, 52]; model hardening that adversar-
ially trains models using triggers inverted from the subject
(clean) model [43]; backdoor removal that erases injected
backdoors using a small set of clean samples [23, 27, 50].
Our work falls in the last category. Fineprune [27] itera-
tively prunes neurons with small activation values on clean
samples and then finetunes the pruned model. Note that the
pruned model has different structure from the original one.
In our experience, having the same structure is critical as it
provides the optimal neuron alignment. Model connectivity
repair (MCR) [56] interpolates parameters of a poisoned
model and its finetuned version. NAD [23] first finetunes a
poisoned model and then performs transfer learning, treating
the finetuned model as the teacher and the poisoned model
as the student. Its effectiveness hinges on the quality of the
first finetuning step. ANP [50] adversarially perturbs neuron
weights of the poisoned model and prunes neurons sensitive
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Figure 1. Workflow of MEDIC and comparison with knowledge distillation [17]
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Figure 2. Example, with (a) and (b) the clean and trojaned inputs, (c)-(f) the internal activations of the trojaned input and the clean input,
their differences, and the importance values in eq.(4) for the clean input, respectively. We resize and rescale the internal activation for better
visualization.

to perturbations. We compare MEDIC with the aforemen-
tioned approaches in Section 5 and demonstrate that ours
outperforms.

3. Method

Problem Statement. Given a multi-class backdoor classifier
f∗ : X → Y , where X ⊂ Rd and Y ⊂ RC , d the input
dimension and C the number of classes. Samples (X,Y ) are
drawn from the joint distribution S = (X ,Y). The classifier
f∗ is originally trained on a large dataset D ∼ (X ,Y)n and
additional backdoor samples Da ∼ (Xa,Ya). We aim to
remove the backdoor behaviors in f∗ and retain the benign
behaviors. To do so, we leverage a small additional dataset
Ds ∼ (X ,Y)q where |Ds| ≪ |D|. It is used to facilitate
the cloning process. Function f c denotes the cloned and
sanitized model using our method.

Our first goal is to clone the (benign) functionalities of
the model instead of its parameters. Specifically, f c is sup-
posed to produce similar outputs as the original model (with
backdoor) on clean inputs. This is stated as the functionality
goal as follows.

  \tag {Functionality} \E _{x\sim \gX }\big (\|f^c(x) - f^*(x)\|_2\big ) \approx 0 \label {eq:similarity} 

 


  (Functionality)

In addition, f c shall not have the backdoor behavior on
samples from the backdoor distribution (Xa,Ya), with a
high probability 1− δ. It is stated as the sanity goal.

  \tag {Sanity} \E _{(x, y)\sim (\gX _a, \gY _a)}\mathbbm {1}\big [f^c(x) \neq y] \geq 1-\delta \label {eq:nobadfunction} 

       (Sanity)

It is worth noting that similar functionalities do not imply
a similar set of parameters. In fact, our importance driven
cloning derives a set of parameters different from those in
the original model to meet the two stated goals.

Cloning. To achieve the first goal of copying normal
functionalities using only a small set of benign samples,
we propose to train a clone model from scratch that has
the same structure, by forcing the clone model to have the
same activation values for all the corresponding neurons and
also the output logits as the original model. Such cloning
is different from transfer learning, in which teacher and
student models may be of different structures as it is not that
meaningful to copy functionalities to a model with the same
structure in transfer learning’s application scenarios.

While inputs often have a fixed bound, internal activa-
tion values have dynamic ranges. If we directly use activa-
tion value differences in the clone training loss, such range
variations cause difficulties in convergence. Therefore, we
normalize activation values before using them in the loss
function. Formally speaking, given m internal neurons of
a backdoored model, denoted by functions f∗i : Rd → R
with i ∈ [1,m]3 and the corresponding ones in the clone
model f ci , we aim to enforce the corresponding neuron func-
tions to produce the same values. Let µi and σi be the mean
and standard deviation of the random variable f∗i (X ) and
wi(x) an importance weight. We use

−−→
f(x),

−−→
w(x) , σ⃗ and µ⃗

to represent their concatenated vectors over the m neurons,

3We consider each element in a CNN feature map a separate neuron.



respectively. We can derive the following loss function.

  \gL _{\text {clone}} = \E _{x \sim \gX } \left [ \sum _i w_i(x) \left (\frac {f^*_i(x) - f^c_i(x)}{\sigma _i}\right )^2 \right ] \label {eq:goal} \\ \text {where }w_i(x)\geq 0 \nonumber 







   








  

Intuitively, we minimize the differences between the out-
puts of the corresponding neurons. For the moment, one
can assume wi(x) = 1/m, meaning that we enforce such
constraints equally on all neurons. We will explain how we
change wi(x) to preclude backdoor behaviors later in the
section.

Our results in Figure 3 show that we can faithfully clone
the normal functionalities with only 2% samples. We also
formally analyze the essence of cloning in Section 4.
Pruning Backdoor by Importance Driven Cloning. To
preclude backdoor while cloning, we leverage the impor-
tance value wi(x) computed for each sample and each neu-
ron. A neuron is important for an sample, if and only if the
neuron is substantially activated (compared to its activation
statistics over the entire population) and has a large impact
on the final output.

To determine if a neuron is substantially activated, we
calculate the absolute difference between its activation and
the expected activation as the indicator in Eq.(2). While
ideally we would just select the neuron with the largest
magnitude, to ensure the loss function is differentiable, we
use softmax as an alternative to the max operation. Here τ
is the temperature used in the softmax function, which can
be used to control the strictness of the operation, namely, a
high temperature resembles the strict max operation (that
has a one-hot output), whereas a lower temperature suggests
smoother results.

  w^{\text {activate}}(x) = \text {SoftMax}( \frac {\tau |\lvec {f(x)} - \vec {\mu }|}{\vec {\sigma }}) \label {eq:w_activate}  





 (2)

It is worth noting that this formula essentially corresponds
to the intrinsic normalization in many models (e.g., those
with batch normalization [18]), where the statistics are read-
ily accessible. When the subject model does not have any
normalization layer, one can collect the statistics from the
available samples. Details can be found in Appendix D.1.

To evaluate the impact of activations on classification
results, we use the magnitude of gradients as an indicator.
However, the gradients are not directly comparable at many
layers, especially those that do not have normalization, be-
cause the varying magnitude of the activation values at those
layers affects the gradients and makes direct comparison
inaccurate. To tackle the problem, we introduce variables to
denote normalized activations at all layers, called proxy vari-
ables, and derive gradients regarding those variables. The
resulted gradients are hence comparable. Consider a proxy
variable h∗i (x), where the neuron f∗i (x) = h∗i (x) · σi. Let

l be the loss function for classification based on f∗i (x), we
can thus calculate the gradient of proxy variable as follows.

  g^*_i(x) = \frac {\partial l(f^*_i(x), ...)}{\partial h^*_i(x)} = \sigma _i \frac {\partial l(f^*_i(x), ...)}{\partial f^*_i(x)} \, .  
 




 




We then select the neuron with the largest gradient, leverag-
ing the aforementioned soft version of max operation. Let
−−→
g(x) be the concatenated vector of g∗i (x).

  \label {eq:w_impact} w^{\text {impact}}(x)=\text {SoftMax}(\tau \lvec {g(x)})  

 (3)

The next step is to identify the neurons satisfying both
Eq.(2) and (3). In a discrete world, we could perform a set in-
tersection. However, our softmax operations do not select the
largest weight values. Instead, they produce vectors denoting
the importance of all neurons. Hence, we perform a soft ver-
sion of set intersection, which is differentiable and hence us-
able during training. Assumewactivate

i (x), wimpact
i (x) ∈ [0, 1]

denote the importance values for a neuron i, computed by the
two respective softmax operations in Eq.(2) and (3), with 1
indicating “Important” and 0 “Unimportant”. We can derive
the neuron’s overall importance as follows.

  w_i(x)=w_i^{\text {activate}}(x) \wedge w_i^{\text {impact}}(x) = \sqrt {w_i^{\text {activate}}(x) \cdot w_i^{\text {impact}}(x)} \, \label {eq:calc_w}  


 




  


(4)
The operation ∧ is essentially a soft version of “boolean

conjunction”. For example, when a = 1 and b = 1, a∧b = 1.
The square root ensures the output is in the same magnitude
as the inputs.

Given the cloning loss, we combine it with the classifica-
tion loss and train the model. The two losses are balanced
through an additional parameter λ. Details and an ablation
study on λ can be found in Appendix E.3. A step-by-step
algorithm can be found in Appendix D.1.
Difference from Neuron Pruning based Methods. There
are existing works [27, 50] that determine a subset of neu-
rons compromised by poisoning and simply remove those
neurons. However, they usually lead to non-trivial benign
accuracy degradation (see Section 5). The reason is that a
neuron in a compromised model may be important for the
classifications of both benign and poisoned inputs. In con-
trast, our method does not statically decide if a neuron is
compromised. If a neuron is important for both benign and
poisoned samples, we (only) copy its behaviors for benign
inputs.

4. Formal Interpretation of Cloning
The effectiveness of MEDIC hinges on cloning. In this

section, we study a critical property of cloning, which states
that cloning can copy the functionalities of original model
using only a small set of clean samples. We also formally
show that cloning is superior to training from scratch using



the small set, and to knowledge distillation. That is, cloning
tends to have a smaller loss value. Backdoor removal using
importance values is merely an application of the property as
we essentially leverage importance analysis to select a subset
of functionalities only relevant to clean sample classifica-
tions for cloning. Figure 3 shows empirical evidence using
an example. Observe that knowledge distillation has a larger
improvement over training from scratch given more samples.
Also observe that training from scratch and knowledge dis-
tillation cause non-trivial benign accuracy degradation. In
contrast, cloning causes negligible degradation of original
backdoor model using even just 2% of data.

We mainly utilize the decomposition, Rademacher com-
plexity [5] and Covering number to derive an upper bound
for the testing loss of a classifier with a high probability. We
hence show that cloning has a smaller upper bound (of loss)
compared to distillation and training from scratch using a
small set of samples.

Based on the aforementioned analysis, we additionally
prove the computation complexity of cloning in Appendix B.
We show cloning can be orders of magnitude faster in re-
covering benign accuracy. Furthermore, in Appendix C, we
theoretically show cloning can be more effective than fine-
tuning in removing backdoors. This is done by analyzing a
general backdoor scenario. We hence prove that cloning can
guarantee the backdoor removal for this type of backdoor
while fine-tuning can not. And we show the importance
weight correctly identify the compromised neurons.

In the following, we first introduce the notations, terms,
and a set of lemmas. We then formally show that cloning is
better than training from scratch on a small set and distilla-
tion.

Figure 3. Benign accuracy of models after backdoor removal versus
the data used (for a CIFAR-10 model poisoned with CleanLabel
backdoor).

4.1. Notations and Backgrounds

We consider the original model f∗, model fs trained from
scratch using Ds (i.e., the small dataset), clone model f c

by our method and model fk by knowledge distillation [17].
They belong to the function families F∗, Fs, Fc, and Fk,
respectively. These families are determined by the specific
optimization and learning algorithms. Since each algorithm
has its learning bias and will likely generate a different set
of parameters.

Neural Net. To facilitate the formal analysis, we leverage
a simple network. Let ψ be the ReLU activation function,
lγ the loss function with the Lipschitz constant 2γ. Without
loss of generality, we assume a two-layer network, where
the two layers are abstracted to two respective matrices,
G ∈ G ⊂ Rd×p and H ∈ H ⊂ Rp×C , with p the number of
hidden units. Let s be the softmax function. The network
is represented as f(x) = s ◦ o(x), o(x) = Hg(x) and
g(x) = ψ(Gx). Putting them together, f(x) = s(Hψ(Gx)).
Intuitively, f(x) outputs the probability, o(x) is the logits
value and g(x) is the hidden layer. It is worth noting that our
analysis can naturally extend to complex network since the
proof structure stays the same.

Loss. As a common practice in multi-class analysis, we
use the margin loss [4] as lγ(f(x), y). Its definition can be
found in Appendix eq.( 9). A smaller loss value indicates
better performance.

Rademacher Complexity. Let F be a family
of functions , D a set of samples, and σ uni-
formly sampled from {−1,+1}|D|. The empirical
Rademacher complexity is defined as follows. R̂(F|D) =
Eσ[supf∈F

1
|D|

∑
xi∈D σif(xi)]. Observe that if F contains

only a fixed function, the value is 0 suggesting no complexity
(and hence trivial to learn).

Covering Number Bound. It is difficult to directly com-
pute Rademacher complexity in our context. We hence de-
rive its upper-bound using covering number. Let ∥ · ∥p,D
be a pseudo-norm on function family F with respect to
a vector norm ∥ · ∥p and data D (definition in Appendix
eq. (20)), we define the covering number N (F , ∥ · ∥p,D, ϵ)
as the size of minimal-ϵ cover of F under this pseudo-norm.
Intuitively, this number means how many functions are rep-
resentative such that they can cover all the learning out-
comes with the ϵ bound. The covering number of a function
family is dependent on the learning method. For example,
when we include the loss to minimize the difference between
f c ∈ Fc and f∗ ∈ F∗ (during cloning), we essentially re-
duce the covering number of the function difference family
N ({f c − f∗}, ∥ · ∥p,D, ϵ).
Lemmas. In the following, we introduce three lemmas that
are needed in later analysis. Their proofs can be found in the
Appendix. In Lemma 1, we derive the Lipschitz constant of
the loss function. In Lemma 2, we bound the Lipschitz of
softmax function. In Lemma 3, we bound the Rademacher
complexity by a function over the covering number.

Lemma 1. For any logits o1, o2 ∈ Rc and y ∈ Y , we have
|lγ(o1, y)− lγ(o2, y)| ≤ 2γ||o1 − o2||∞.



Lemma 2. For any logits o1, o2 ∈ Rc, we have ||s(o1) −
s(o2)||∞ ≤ 1

2 ||o1 − o2||∞.

Lemma 3 ( [36]). Given function family F , data D and
number of samples n = |D|, we define the function:

 B(\gF |D)=\inf _{\epsilon \in [0, \epsilon _c/2]} \Big \{\epsilon + \frac {\sqrt {2}\epsilon _c}{\sqrt {n}}\sqrt {\log \gN \left (\gF , \|\cdot \|_{1,D},\epsilon \right )}\Big \}\,,\\ \text {where} \, \epsilon _c = \sup _{f \in \gF } \|f\|_{2,D} \,. \text {We then have} \hat {R}(\gF |D) \leq B(\gF |D) 










     




  


     

4.2. Analysis

To formally compare cloning, distillation, and training
from scratch on a small set, we first study the advantage of
cloning and distillation compared with training from scratch.
The advantage comprises two parts, i.e., a gap and a regret.
The gap is the training loss difference between training on the
whole dataset and on a small part of the same dataset. The
regret is the difference of (test) classification loss between
the current model and the optimal model (f∗). Since the
gap is not specific to our algorithm, we hence study the
upper bound of the regret. A smaller regret indicates better
classification performance. We finally show the upper bound
of our regret is smaller than baselines.

Here we use distillation as an example. The analysis
applies similarly to cloning as well. The advantage of distil-
lation (fk) over training from scratch on a small set (fs) is
denoted by their expected loss difference as follows.

  \E _{(x,y)\sim \gS }[l_\gamma (f^s(x),y) - l_\gamma (f^k(x),y)] = \underbrace {\Delta }_{\text {Loss Gap}} - \nonumber \\ \underbrace {\E _{\gS }[ (l_\gamma (f^k(x),y)-l_\gamma (f^*(x),y))]}_{\text {Regret of the Distilled Model}} \label {eq:advantage_distill}
 

  





 

  
   

(5)

where ∆ = E(x,y)∼S [lγ(f
s(x), y) − lγ(f

∗(x), y)]. Note
that as |Ds| ≪ |D|, the loss gap ∆ between f∗ (training
on a large dataset D) and fs (training on the small dataset
Ds) tends to be large. A large gap will make distillation and
cloning favorable.

Next we analyze the upper-bound of the regret, since the
loss gap is only dependent on the sample size difference.
According to Equation 5 and the standard Rademacher com-
plexity bound argument [5], we have the following regret
upper bound between the distilled model and the original
model with a high probability 1− δ.

  \begin {split} & E_{(x,y)\sim \gS }[l_\gamma (f^k(x),y)-l_\gamma (f^*(x),y)] \\ \leq & \underbrace {\frac {1}{|D_s|}\sum _{(x,y)\in D_s}[l_\gamma (f^k(x),y)-l_\gamma (f^*(x),y)]}_{\text {Training Error}} +\\ & \underbrace {2\hat {R}(\gL ^k|D_s)}_{\text {Function Complexity}} + \underbrace {3 \sqrt {\frac {log(2/\delta )}{2|D_s|}}}_\text {Uncertainty} \end {split} \label {eq:decomposition} 
 











 



 




  







 


(6)

Here, Lk is the function family of the regret between the
distilled model and the original model, with Lk = {h :
X×Y → R | h(x, y) = lγ(f

k(x), y)− lγ(f∗(x), y)}. The
regret upper bound between the clone model and the origi-
nal model can be similarly derived. Observe that the bound
consists of three terms: training error, function complexity
and uncertainty. The first and the third terms have a similar
effect for both the distilled model fk and the clone model
f c. Specifically, the training error is computed on training
data. Since we only have limited samples and the model
is prone to overfit on the training data. This term is close
to zero empirically for both models. The uncertainty only
depends on the data size |Ds| and the probability δ. There-
fore, the difference between the two models mainly lies in
their function family complexities. In the following, we will
analyze the the upper-bounds of the two function families.
We use Ok

i = {h : Rd → R | h(x) = ok(x)i − o∗(x)i}
to denote the family of differences regarding the i-th logits.
The proof can be found in Appendix A.

Theorem 1. For distilled model fk and class number C, we
have

  \hat {R}(\gL ^k| D_s) \leq \tilde {O}(\gamma \sqrt {C}) \max _i B(\gO _i^k|D_s) 






  (7)

Let ∥H∥1,∞ = maxi
∑

j |Hi,j | be the entry-wise matrix
norm, Ic

i = {h : Rd → R | h(x) = gc(x)i − g∗(x)i} the
family of differences on an intermediate neuron i (between
the clone and original models), and J ∗

i = {h : Rd → R |
h(x) = g∗(x)i} the function family of intermediate neuron
i of the original model. We have the following theorem.

Theorem 2. For cloned model f c, let ωc =
supHc∈Hc ∥Hc∥1,∞, βc = supHc∈Hc,H∗∈H∗ ∥Hc −
H∗∥1,∞ and class number C. We have

  \begin {split} \hat {R}(\gL ^c| D_s) \leq \tilde {O}(\gamma \sqrt {C}) \min \big [ \underbrace {\max _i B(\gO _i^c|D_s)}_{\text {Constrained on Logits}} , \\ \underbrace {\max _j \omega _c B(\gI ^c_j|D_s) + \beta _c B(\gJ ^*_j|D_s)}_{\text {Constrained on Intermediate Layers}} \big ] \end {split}  









  
 







   
  

  

 (8)

From the theorem 1, decreasing covering numbers on
logits difference family Ok

i can reduce the regret and im-
prove the performance. Since knowledge distillation directly
controls the covering number by applying L2 constraints on
logits, these constraints improve the performance according
to the theorem. From the theorem 2, we can further under-
stand the benefits of Cloning. By comparing two theorems,
we find that the upper-bound for cloned model is always
smaller than that of the distilled model given Ok

i = Oc
i (i.e.,

both models have their logits similar to the original model’s).
Intuitively, the advantage of cloning originates from the ad-
ditional intermediate constraints, which reduce the covering



Figure 4. Effectiveness of importance. The shaded area represents standard deviation.

number of Ic
i , i.e. N (Ic

i , ∥ · ∥1,D, ϵ) in B(Ic
i |Ds) and the

upper-bound on the regret. Also note that the other family
J ∗
i is unrelated to cloning.

5. Experiment

Setting. We conduct experiments on nine representative
backdoor attacks. Specifically, we use Wide ResNet [54]
and CIFAR-10 [21] for the common benchmark attacks and
the adaptive attacks including Badnet [14], Clean Label [46],
SIG [3], Reflection [30], Warp [32] and two Adaptive At-
tacks [26]. 5% data is used for removing backdoor behaviors
on CIFAR-10. We further experiment on large-scale datasets
Kitti-City [11] and Kitti-Road [11], and public backdoor
benchmarks Polygon and Filter, based on ResNet [54]. We
compare with five latest backdoor removal methods includ-
ing Finetune, Fineprune [27], NAD [23], MCR [56], and
ANP [50]. More details of these attacks and removal meth-
ods can be found in Section 2 and Appendix D.

Comparison with Baselines. In Table 1, we show the
results in comparison with other backdoor removal methods.
The fourth column shows the accuracy and attack success
rate (ASR) of the original (trojaned) model. The following
columns show the results after applying various backdoor
removal methods. All the methods use the same set of data
augmentations. We also adjust the temperature of MEDIC so
that the test accuracies of our repaired models are compa-
rable to others. From the results, we find the advantage
of our algorithm outperforming other baselines lies in the
cases of hard-to-remove backdoors. We retrain the model
whereas others do not. This different design ensures some
deep-rooted backdoors can be removed. Observe that other
baselines are less effective in removing Clean Label, SIG,
Polygon, and Filter backdoors as the ASRs are still high after
the removal. In contrast, MEDIC can substantially reduce the
ASRs of these attacks. On the other hand, when the back-
door attack is not robust (e.g. simpler attacks like Badnet
and Reflection where Finetune can already remove them),
the optimal results will favor methods which cause fewer

changes to the model, since few changes suffice to remove
the backdoor. From the security perspective, a resilient back-
door will be used by attackers more often, which suggests
those hard-case backdoor attacks are more important. Note
that even in those easier cases, MEDIC is still competitive. In
the last row of Table 1, we show the average ASR reduction
and accuracy degradation. Observe that MEDIC achieves
25% more ASR reduction compared to others with minor
accuracy degradation.

Adaptive Attacks. We evaluate two adaptive attacks. In
adaptive attack 1, the trigger pattern can exist on benign sam-
ples [26]. It utilizes multiple natural objects from different
classes as the backdoor. In adaptive attack 2, we adversar-
ially optimize the trigger to maximize the clone loss. The
trigger will have a high activation value on the important
neurons and may survive after cloning. Note that these rep-
resent the most adversarial contexts against MEDIC as the
backdoor is essentially benign features or benign neurons
that cloning would likely copy. Observe that MEDIC is still
quite effective against Adaptive1 and Adaptive2 attacks as
shown in Table 1. For the variant 1, while benign features are
used to compose the backdoor, these features are not impor-
tant for the target class. As such, their behaviors are hence
not copied for the target class. For the variant 2, despite the
substantial backdoor activations on important neurons, the
cloning will only connect the benign functions to the output
due to the absence of the trigger pattern in the clean data.

Effectiveness of Using Importance Values. In Figure 4,
we show the effects of cloning using different temperatures.
A temperature τ = 0 means we do not use the importance
and treat all neurons as equal. Observe that a larger tem-
perature prunes more backdoor-related behaviors. The ASR
is reduced by at most 70% with at most 4% accuracy drop
(with a temperature of 5).This shows our importance values
capture the characteristics of benign functionalities.

Stronger Backdoor Baselines. Different from the results
reported in recent works [23,50,56], our results are evaluated
on stronger backdoor baselines. We found training backdoor



Table 1. Comparing with other methods. ± represents the standard deviation over 5 repeated runs.

Scenario Attack Metric Original (%)
Method (in percentage %)

Finetune Fineprune NAD MCR ANP MEDIC

Common
Benchmark

Attacks

Clean Label
ASR 100.0 89.2± 20.2 99.6± 0.2 95.9± 7.2 90.3± 19.4 69.9± 17.6 16.8± 4.6
Acc. 88.5 85.2± 0.5 85.5± 0.3 85.3± 0.5 85.2± 0.4 80.6± 1.4 85.3± 0.2

SIG
ASR 94.5 68.3± 8.3 41.9± 23.9 55.8± 12.2 56.3± 9.0 73.9± 8.9 1.5± 0.7
Acc. 86.9 85.0± 0.2 85.0± 0.5 85.2± 0.2 84.6± 0.2 82.5± 0.8 84.4± 0.3

Badnet
ASR 100.0 3.2± 0.4 5.1± 1.6 3.0± 1.2 2.7± 0.4 2.3± 1.4 3.6± 0.6
Acc. 88.9 83.1± 0.3 84.3± 1.2 83.5± 0.7 83.6± 0.4 83.0± 1.5 84.2± 0.2

Reflection
ASR 34.2 7.6± 1.9 5.7± 0.9 8.7± 2.2 4.6± 0.4 5.0± 4.2 6.2± 0.5
Acc. 84.3 84.5± 0.3 84.4± 0.2 84.1± 0.6 84.4± 0.3 80.3± 0.9 83.5± 0.2

Warp
ASR 96.5 13.2±4.4 4.7±0.6 6.1±1.8 4.4±0.4 5.6±1.2 3.7±0.5
ACC 86.2 84.5±0.2 84.6±0.2 84.7±0.1 84.2±0.2 83.3±0.9 85.2±0.1

Public
Benchmarks

on Large
Datasets

Polygon
ASR 99.9 60.4± 14.6 47.9± 19.0 19.4± 10.3 39.4± 21.0 47.3± 8.1 13.2± 2.3
Acc. 99.7 99.0± 0.2 98.7± 0.6 95.7± 1.6 98.5± 0.5 98.2± 0.8 98.9± 0.1

Filter
ASR 100.0 62.0± 14.9 56.6± 9.8 47.9± 10.3 72.2± 5.5 19.5± 4.0 17.8± 3.0
Acc. 99.7 99.3± 0.3 99.1± 0.2 99.0± 0.3 99.4± 0.2 98.3± 0.4 98.6± 0.2

Adaptive
Attacks

Variant 1
ASR 79.3 37.1± 2.6 36.4± 0.8 38.0± 3.1 9.4± 1.1 33.4± 11.3 7.1± 1.7
Acc. 83.0 80.2± 0.2 79.5± 0.5 79.8± 0.3 79.4± 0.2 76.7± 0.7 79.7± 0.1

Variant 2
ASR 98.5 94.9±2.7 77.7±5.2 58.5±22.0 86.7±7.6 24.4±6.3 4.3±0.5
Acc 85.9 82.9±0.7 83.2±0.3 83.1±0.2 82.4±0.3 81.4±0.6 84.2±0.1

Avg. Drop
ASR - 35.5% 41.9% 47.4% 43.1% 53.8% 79.5%
Acc. - 2.2% 2.1% 2.6% 2.4% 4.5% 2.3%

Figure 5. Removal methods on backdoor models trained with and
without data augmentation during attack. The black lines denote
the standard deviations. The results are from Clean Label attack.

models with data augmentation can make it much harder
to remove. Figure 5 shows the effectiveness of different
removal methods on backdoor attacks trained with and with-
out data augmentations. The model is trojaned by a clean
label attack on CIFAR-10. The red bars denote the ASRs
after removal when augmentations are used during attack
and the blue bars the ASRs when augmentations are not used.
Observe that with augmentations, the baselines can hardly
remove the backdoor. In contrast, MEDIC can effectively
remove the backdoor with and without augmentations. Note
that the same data augmentation is also used when applying
defense methods.

Other Experiments. In Appendix E.1, we include an-
other adaptive attack. In Appendix E.2, we conduct the
ablation study given the distribution shift of training data.
The results show our method can perform well under the
distribution shift. In Appendix E.4, we conduct an ablation
study on the amount of available data. We show that the
trigger removal performance is positively correlated with
the data amount. In Appendix E.6, we conduct the ablation
study on the necessity of importance criterions and show
that our design is crucial. In Appendix E.7, we conduct the
ablation study on the backdoor model architectures and show
that our method can generalize to different types of models.

6. Conclusion
We propose a novel backdoor removal method by impor-

tance driven cloning. We empirically and theoretically show
that our method is superior to state-of-the-art baselines on a
large set of evaluated attacks.
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A. Proof
Here we define the margin loss.

  \begin {split} l_\gamma (f(x), y) = \phi _{\gamma }(f(x)_y - \max _{i \neq y} f(x)_i), \quad \text {where}\, \phi _{\gamma }(t) = \begin {cases} 1, & t<0 \\ 1 - \gamma t, & 0\leq t \leq 1/\gamma \\ 0, & t> 1/\gamma \end {cases} \end {split} \label {eq:margin_loss}    


 


  

     

  

(9)

Lemma 1. Let lγ(x, y) : Rc × Y → R and ϕγ(x) : R → R where

  \begin {split} l_\gamma (x,y) = \phi _{\gamma }[f(x)_y - \max _{i \neq y} f(x)_i] , \\ \text {where}\, \phi _{\gamma }(x) = \begin {cases} 1, & x<0 \\ 1 - \gamma x, & 0\leq x \leq 1/\gamma \\ 0, & x> 1/\gamma \end {cases} . \end {split}     







  

     

  


(10)

For any x1, x2 ∈ Rc and y ∈ Y , we have

  |l_\gamma (x_1, y) - l_\gamma (x_2, y)| \leq 2\gamma ||x_1-x_2||_\infty         (11)

Proof. It is apparent that ϕγ(x) : R → R is γ Lipschitz. And we have

  \begin {split} & |l_\gamma (x_1, y) - l_\gamma (x_2, y)| \\ = & \bigg |\phi _\gamma \Big [(f(x_1)_y - f(x_2)_y) - (\max _{i \neq y} f(x_1)_i - \max _{j \neq y} f(x_2)_j)\Big ]\bigg | \\ \leq & \gamma \big | (f(x_1)_y - f(x_2)_y) - (\max _{i \neq y} f(x_1)_i - \max _{j \neq y} f(x_2)_j) \big | \\ \leq & \gamma \big | (f(x_1)_y - f(x_2)_y) \big | + \gamma \big |\max _{i\neq y} f(x_1)_i - \max _{j\neq y} f(x_2)_j \big | \\ \leq & 2 \gamma ||f(x_1) - f(x_2)||_\infty \end {split}   



  









  










 













(12)

Lemma 2. Assume the softmax function s : Rc → Rc is defined as follows.

  s(x)_i = \frac {\exp (x_i)}{\sum _i \exp (x_i)} 



(13)

Then we have

  ||s(x)-s(y)||_\infty \leq \\ \frac {1}{2} ||x-y||_\infty \, .   


   (14)

Moreover we have   \begin {split} & \big \|(s(x)-s(y)) - (s(x') - s(y'))\big \|_\infty \leq \\ & \frac {1}{2} (\|x-x'\|_\infty + \|y-y'\|_\infty ) \end {split}   






    

(15)

In other words, s(x) and its residual form s(x)− s(y) are both 1/2-Lipschitz with respect to L∞-norm.

Proof. From the definition of Lipschitz continualty, we have |s(x) − s(y)|∞ ≤ L|x − y|∞. Note that |s(x) − s(y)|∞ ≤
supi |s(x)i − s(y)i|.

The gradient is hence the following.

  \frac {ds(x)_i}{dx_j}= \begin {cases} s(x)_i(1-s(x)_i), & \,\text {i = j} \\ -s(x)_is(x)_j, & \,\text {i} \neq \text {j} \end {cases} 





   
   

(16)



Note that ||∇is(x)||1 = 2s(x))i(1− s(x))i) ≤ 1/2. Let ⪯ represents the generalized inequality of the nonnegative orthant.
By the mean value theorem, for some δ, s.t. x ⪯ δ ⪯ y, we have

  s(x)_i - s(y)_i \leq \nabla _i s(\delta )^T (x-y) \, .    
    (17)

By Holder’s inequality,

  \nabla _i s(\delta )^T (x-y) \leq ||\nabla _i s(\delta )||_1 ||x-y||_\infty \leq \frac {1}{2} ||x-y||_\infty 
      


  (18)

To prove the second goal, we can find that

  \begin {split} & ||(s(x)-s(y)) - (s(x') - s(y'))||_\infty \\ = & ||(s(x) - s(x')) - (s(y) - s(y'))||_\infty \\ \leq & ||(s(x) - s(x'))||_\infty + (s(y) - s(y')||_\infty \\ \leq & \frac {1}{2} (||x-x'|_\infty + ||y-y'||_\infty ) \end {split}   
  
   




    

(19)

Lemma 3 ( [36]). We add the proof of this lemma here for completeness. Let f : R → R ∈ F be a class of real-value
functions, D be a set of samples. We define a pseudo-metric ∥ · ∥p,D on functions F with respect to vector norm ∥ · ∥p and n
samples |D| = n, where

  \begin {split} & \|f\|_{p,D} = \Big [\frac {1}{n} \sum _{x \in D} |f(x)|^p\Big ]^{\frac {1}{p}} . \\ \end {split} \label {eq:pseudo_norm} 











 (20)

We define the Covering number N (F , ∥ · ∥p,D, ϵ) as the size of the minimal ϵ-cover of F with respect to pseudo-norm ∥ · ∥p,D.
Given

  \sup _{f \in F} \|f\|_{2,D} \leq s_D \, , 


    (21)

we have

  \hat {R}(\gF |D) \leq \inf _{\epsilon \in [0, s_D/2]} \left \{\epsilon + \frac {\sqrt {2}s_D}{\sqrt {n}}\sqrt {\log \gN (\gF , \|\cdot \|_{1,D},\epsilon )}\right \}  










     


(22)

Proof. For any ϵ and D, let C be the minimal-ϵ cover of F , which means for each function f , there exists fϵ ∈ C such that
∥f − fϵ∥1,D ≤ ϵ

  \begin {split} & \hat {R}(\gF |D) \\ = & E_\sigma \left [\frac {1}{n} \sup _{f\in \gF } \sum _i \sigma _i f(x_i) \right ] \\ \leq & E_\sigma \left [\frac {1}{n} \sup _{f\in \gF } \sum _i \sigma _i \left (f(x_i) - f_\epsilon (x_i) \right ) \right ] + \\ & E_\sigma \left [\frac {1}{n} \sup _{f_\epsilon \in \gC } \sum _i \sigma _i f_\epsilon (x_i) \right ] \\ \leq & \epsilon + E_\sigma \left [\frac {1}{n} \sup _{f_\epsilon \in \gC } \sum _i \sigma _i f_\epsilon (x_i) \right ] \\ \leq & \epsilon + \sup _{f\in \gF } \sqrt {\sum _{x_i \in D} f(x_i)^2} \frac {\sqrt {2\log |\gC |}}{n} \mbox {(Massart's Lemma)}\\ \leq & \epsilon + \frac {\sqrt {2}s_D}{\sqrt {n}}\sqrt {\log \gN (\gF ,\|\cdot \|_{1,D}, \epsilon )} \end {split}





























 













































 










     



Since this bound stands for any ϵ, Thus we have

  \hat {R}(\gF |D) \leq \inf _{\epsilon \in [0, s_D/2]} \left \{\epsilon + \frac {\sqrt {2}s_D}{\sqrt {n}}\sqrt {\log \gN \left (\gF , \|\cdot \|_{1,D},\epsilon \right )}\right \}  










     


(23)

Theorem 1. For distilled model fk and class number C, we have

  & \hat {R}(\gL ^k| D_s) \nonumber \\\leq & \tilde {O}(\gamma \sqrt {C}) \max _i \hat {R}(\gO _i^k| D_s) \label {eq:distillstep0}\\ \leq & \tilde {O}(\gamma \sqrt {C}) \max _i B(\gO _i^k|D_s) \label {eq:distillstep1}








 








  (25)

Proof. From Lemma 1 and Lemma 2, we know the Lipschitz constant of lγ ◦ s is γ. Using the L∞-contraction property of
Rademacher complexity [10], we can expand the complexity of loss function to the complexity of logits values in Eq. (24).
Eq. (25) is from Lemma 3.

Theorem 2. For cloned model f c, let ωc = supHc∈Hc ∥Hc∥1,∞, βc = supHc∈Hc,H∗∈H∗ ∥Hc −H∗∥1,∞ and class number
C. We have

  \begin {split} & \hat {R}(\gL ^c| D_s) \leq \tilde {O}(\gamma \sqrt {C}) \min \big [ \\ & \qquad \max _i B(\gO _i^c|D_s) , \max _j \omega _c B(\gI ^c_j|D_s) + \beta _c B(\gJ ^*_j|D_s) \big ] \end {split}  













   



  & \hat {R}(\gL ^c| D_s) & \nonumber \\ \leq & \tilde {O}(\gamma \sqrt {C}) \max _i \hat {R}(\gO ^c_i|D_s) & \label {eq:clonestep0} \\ \leq & \tilde {O}(\gamma \sqrt {C}) \max _i \hat {R}\big (\big \{[H^c (g^c(x) - g^*(x)) & \nonumber \\ & \qquad \qquad + (H^c - H^*) g^*(x)]_i \big \}\big ) & \label {eq:clonestep1}\\ \leq & \tilde {O}(\gamma \sqrt {C}) \{ \sup _{H^c} \|H^c\|_{1,\infty } \max _i \hat {R}(\gI ^c_i|D_s \big ) & \nonumber \\ & \qquad + \sup _{H^c,H^*}\| H^c - H^*\|_{1,\infty } \max _i \hat {R}(\gJ ^*_i|D_s) \} \label {eq:clonestep2}\\ \leq & \tilde {O}(\gamma \sqrt {C}) \left [ \omega _c \max _i B(\gI ^c_i|D_s) + \beta _c \max _i B(\gJ ^*_i|D_s) \right ] \label {eq:clonestep3}










 












 




















 




 











   






(29)

Eq. (26) is similar to that in Eq. (24). Eq. 27 is by expanding the functions in Oc
i . Eq. (28) is the property of

Rademacher complexity under linear transformation. Eq. (29) is from Lemma 3. Similar to Theorem 1, we have
R̂(Lc|Ds) ≤ Õ(γ

√
C)maxiB(Oc

i |Ds). Together with Eq. (29), we finish the proof.

B. Analysis over Computational Efficiency
In this section, we further prove that MEDIC is more efficient compared with training from scratch and distillation from

logits under certain assumptions. The key idea is that our algorithm has a smaller sample complexity. Thus MEDIC requires
optimization over a smaller set of examples. And this smaller set of training samples can guarantee faster convergence speed
and less computation power.

We first prove our method has a smaller sample complexity.
For simplicity, we assume the optimal hypothesis exists in our hypothesis family. From equation 6, we further derive the

upper bound of sample complexity of our method. The sample complexity represents how many samples are required to learn
a model with a good performance. Note that because we assume the optimal hypothesis existes in our hypothesis family, the
training regret in equation 1 will be zero for the best hypothesis.



Lemma 4. Specifically, with probability 1− δ, we only need as many as |Ds| samples to achieve a loss regret β, where

  |D_s| \leq \frac {9\log (2/\delta )}{(\beta - 2\hat {R}(\gL |D_s))^2} 


  
(30)

and
  \beta = E_{(x,y)\sim \gS }[l_\gamma (f^c(x),y)-l_\gamma (f^*(x),y)]  

 
  (31)

.

Proof. The proof of this lemma is fairly straightforward, which only requires some transformations from equation 6.

From theorem 2, we also know cloned model has a smaller Rademacher Complexity R̂(L|Ds). Combined with Lemma 4,
this indicates cloned model has a smaller sample complexity.

Next, we show a small sample complexity indicates faster convergence. Formally, consider Gradient Descent algorithm
(GD) [6], assume a convex loss function ℓ(w) = 1

|Ds|
∑

(x,y)∈Ds
lγ(f

c(x;w), y) and the gradient ∇wℓ(w) from different
baselines are Lipschitz continuous with constant L. We choose a learning rate s such that s ≤ 1/L.

Given the optimal weight w∗ on the training data, the error bound at optimization step k can be written as [6]

  \ell (w_k) - \ell (w_*) \leq \frac {||w_*-w_0||_2^2}{ks}  
 


(32)

and requires a computation power dependent on the sample complexity

  O(|D_s|k) \leq O(\frac {klog(\delta )}{(\beta - 2\hat {R}(\gL |D_s))^2})  


  
 (33)

Note that error bound has the same convergence rate 1
ks for different methods. However, the computation cost is different

for different baselines due to different R̂(L|Ds). The result shows MEDIC will cost less computation power as R̂(L|Ds) is
smaller.

In practice, we can observe from Figure 3 that the sample complexity of MEDIC is at most 1/10 compared with training
from scratch on CIFAR-10. This suggests MEDIC can be 10 times faster than training from scratch.

C. Analysis of Why MEDIC Works
In this section, we further analyze why cloning can be more effective against backdoor attacks compared with fine-tuning

based approach. To do so, we first define a binary classification problem. We later consider a family of backdoors for this binary
classification problem. Through analyzing the classification problem and backdoors, we show that cloning can guarantee the
removal of backdoor while fine-tuning may not. Furthermore, we show our importance can better pinpoint the compromised
neurons. In the following, we first mathematically define the scenario.

Consider a neural network with two neurons in the penultimate layer. Specifically, the activations of the penultimate layer of
neuron networks are written as z ∈ ℜ2. The last layer consists of the fully-connected layer. The binary classification problem
is thus represented as y = sgn(w · z) where w ∈ ℜ2 is a part of learn-able parameters.

Let us consider a learning scenario where the internal activations z = (z1, z2) follows distribution conditioned on the labels.
Specifically, feature z1 contains a strong feature that determines the results. While the other feature z2 is a weaker signal but
can decide the label as well. We further assume z1 is independent of the second feature z2.

Formally, in order to simulate this aforementioned case, we define

  z_1 \sim \begin {cases} \gU (0.1,1), & y = 1\\ \gU (-1,-0.1), & y = -1 \end {cases} \, ,\, z_2 \sim \begin {cases} \gU (0,0.1), & y = 1\\ \gU (-0.1,0), & y = -1 \end {cases} \, . 


   

  
 


   

   
 (34)

The U represents the uniform distribution. This definition aligns with our description. Note that z1 is a stronger deciding
feature because the margin of z1 between the positive and negative classes are larger than z2. Meanwhile z1 has a larger
magnitude than z2 and thus model are easier to pick up the signal coming from the feature z1.

Based on this learning scenario, we next introduce a family of backdoor attacks where positive samples are classified into
the negative label. Specifically, the backdoor attack can set either feature z1 or z2 of the penultimate layer to a constant k > 0.



The reason we choose a positive constant k is because of the underlying assumption of backdoors. We assume backdoor
patterns are sufficiently different to normal samples. Otherwise, the backdoor attack is nothing but a intended behavior of the
neural networks. In this case, The feature of negative samples should be sufficiently different from the feature of the backdoor
that results in the negative label. This implies that we instead need a positive k for the backdoor attack. This modeling, where
backdoor attack can change either z1 or z2 to a constant value, is motivated by the widely-used patch attack which replaces a
part of the image with a patch pattern. This introduced family of attacks corresponds to this type of attacks on a linear model.

In the following, we show that the backdoor attack has to modify the less important feature z2 to launch the backdoor attack.
From the fact that the model will correctly predict the benign data, we have

  (w_1 z_1 + w_2 z_2) y \geq 0    

By including constraints of z1 ≥ 0.1, z2 ≥ 0 and y = 1, we can infer w1 ≥ 0. And thus the backdoor attack must change
z2 = k to launch backdoor attack. Otherwise, w1z1 > 0 can not change the label into the negative one.

Since backdoor attack is successful and will predict the backdoor samples as the negative label, we also have

  (w_1 z_1 + w_2 k) y \leq 0\, .     

By including the constraints again, similarly, we will have

  w_2 \leq - \frac {w_1 z_1}{k} \leq - \frac {0.1 w_1}{k}  






From this result, we can see that w2 should have a large negative number for a successful backdoor attack.
Meanwhile, to maintain the correctness of negative samples, we shall have these constraints for negative samples

  \begin {split} & (w_1 z_1 + w_2 z_2) y \geq 0,\, \\ & w_2 \leq 0\,\\ & y =-1\, \\ & z_1 \leq -0.1 \\ & z_2 \geq -0.1 \, . \end {split}    

 

 

 

  

Combining these inequalities and equations, we have

  w_2 \geq -\frac {w_1 z_1}{z_2} \geq -w_1, .  


 

This suggests the weight of w2 should not be too large to mislead normal classification. In order to satisfy these constraints,
we shall set the constant of trigger pattern to be large enough

  k>0.1 \, .  

Based on this result, we show that cloning can instead guarantee the removal of the backdoor. And we further show that
fine-tuning might not remove the backdoor.

Theorem 3. Now consider the hinge loss function l(w) = (1 − ywT z)+ as the classification loss, and the cloning
loss lclone(w) = λ(w′T z − wT z)2, where w′ is the weight from backdoor model. For any cloning λ that satisfy

λ ≤ E
[
1[1−ywT z>0]yz

(zT z)w′
2

]
, we guarantee the removal of backdoors.

Proof. The gradient of the classification loss on w is thus negative ∇wl(w) ≤ −yz. Meanwhile the gradient of cloning
loss is therefore ∇wlclone(w) = −2λ(w′ − w)z2. Combined the cloning loss and classification loss, we know that when
λ ≤ E

[
1[1−ywT z>0]yz
(zT z)(w′

2−w2)

]
, we will have a negative gradient on w. Through mathematical induction, we can further relax the

nominator as stated in the theorem, for w2 will be positive. Next we show the negative gradient will guarantee the removal
of backdoors. For simplicity, let us assume that we initialize w = 0 during cloning. Now we show that during optimization,
the cloned model will not have backdoor behaviors. This newly initialized model won’t contain backdoor behaviors in this
scenario. During cloning, gradient based optimization on this classification loss will always make a positive w1 and w2. This
means we can guarantee the removal of the backdoor through the unique recipe of training from scratch. However, in the case
of fine-tuning, the initialized value of w1 from backdoor will be a large negative number. In this case, the effectiveness of
fine-tuning based methods will unfortunately hinge on how much change is made to w2 and therefore backdoor removal is not
guaranteed.



Furthermore, let us consider the importance weight from cloning. We calculate the equation as defined in equation 4. We
find that activation importance weight is similar for both w1 and w2 because of the normalization. Meanwhile, the impact
importance weight of w1 is larger than w2. By combining these two importance weight together, the importance of w1 is
thus larger than w2. Given a large enough temperature, the importance for w1 will be close to 1 while importance of w2 will
be close to 0. This shows that our importance weight correctly identifies compromised neuron w2 but instead simulates the
correct neuron w1. , cloning will only leverage the activation from important feature w1.

D. Experiment Details
In this section, we describe the details of our experiments. We use the original code from Badnet [14], Clean Label

attack [46], SIG [3], Reflection attack [30], Polygon attack [35], Filter attack [28], and Adaptive attack [26] to construct
backdoored models. For backdoor removal methods, we leverage the code from Model Connectivity Repair (MCR) [56],
NAD [23], ANP [50], and Fineprune [27]. During the model training and testing, we use the exact same data augmentations,
including resizing and cropping. Wide ResNet16 [54] structure and CIFAR-10 [21] dataset are used for Clean Label, SIG,
Badnet, Composite, and Reflection attacks. For polygon attack, we use ResNet34 [16] and Kitti-City [11] dataset. For filter
attack, we use ResNet34 and Kitti-Road [11] dataset. We utilize 5% of CIFAR-10 training data and 0.5% of Kitti-City and
Kitti-Road training data for the experiments. Note that we use a smaller number of data for large-scale datasets, because there
are much more training samples in the large-scale datasets.

During cloning, we clone the outputs from all the convolution, normalization, and fully-connected layers in the network
structure. These layers have learnable parameters where we aim to copy the functionalities from. We estimate the mean and
standard deviation of internal activations using benign data. We use parameter λ to balance the cloning loss Lclone in Eq.(1)
and the classification loss Lclassification (i.e., cross-entropy loss) as follows. We set λ = 10 in this paper. We also conduct an
ablation study on λ in Appendix E.3.

  \gL (x,y) = \gL _{\text {classification}}(x,y) + \lambda \gL _{\text {clone}}(x,y)       

In the experiment, we train the model for 60 epochs over the small set of clean data. We use Adam optimizer with a initial
learning rate 1e−2 and apply weight decay of 1e−4. We align the temperature τ in our method so that the clean accuracy of
our model is comparable to others. We conduct the experiments on four GTX 2080 GPUs.

During backdoor removal, we assume we have no knowledge of the type of backdoors injected in the model. We directly
report the performance of the model at the last optimization step. Our reported results are slightly worse than those reporting
the best model during training.

D.1. Algorithm

In Algorithm 1, we show the complete procedures. Specifically, we first select the neurons of interest, which comprises of
the output from convolution, normalization, and dense layers. We then use the available samples to estimate the mean and
variance of corresponding neurons. As the available samples come from the same distribution as the original training data, the
estimation of mean and variance converges exponentially. The fast convergence means the number of samples can be quite
small for an accurate estimation. We compute the weight based on the equations in line 5. In line 6, we incorporate the weight
to cloning loss function. In lines 7-9, we use standard optimization with the loss function.

E. Additional Experiments
E.1. Additional Adaptive Attack

Table 2. The evaluation on an additional adaptive attack.

Baseline FinePrune NAD MCR ANP MEDIC

ASR 97.3 81.6 74.0 93.8 68.9 2.7
Acc. 86.9 85.4 85.6 84.7 82.0 84.7

In this section, we introduce another type of adaptive attack that may constitutes a good baseline. We show that MEDIC
outperforms others by a large margin. [41] shows that reducing the difference between benign samples and backdoor ones may
make backdoor attack stronger. In this experiment, we implement the attack from [41] that minimizes the internal l2 distance
between benign and malicious samples for all layers, and set the fine-tuned penalty for l2 distance to 1e-4. Experiments are



Algorithm 1 MEDIC Cloning Procedure
Input :Dataset with a small number of clean samples Ds, training epochs T , number of batches at each epoch L, neurons from the teacher

model for cloning f∗
i and the corresponding student neurons fc

i .
Output :Sanitized Model fc

1 fc ← RandomInit()
2 Estimate σi, µi of activation f∗

i (x) on input data x ∈ Ds

3 for b← 1 to T · L do
4 Draw a batch of data from B ∈ Ds

5 Calculate w based on Equations 2, 3 and 4

6 Lclone =
∑

(x,y)∈B

[∑
i wi(x, y)

(
f∗
i (x)−fc

i (x)

σi

)2
]

7 Ltotal = Lclassification + λLclone

8 Update fc with∇fcLtotal

9 Adjust the learning rate based on the scheduler

conducted on the same CIFAR-10 setting as in our paper. The results can be found in Table 2. It shows MEDIC is quite
effective, having 65% lower ASR than baselines. This is due to our unique design including the importance criteria and
training from scratch as explained in

E.2. Evaluation on Backdoor Attacks under Distribution Shift

In this section, we further stress test our method by evaluating in a more challenging scenario. In this setting, data augmen-
tations are not used during backdoor attacks. They however are applied during backdoor removal. As data augmentations shift
the distribution of training data, it violates the assumption of MEDIC that available training data during backdoor removal are
sampled from the same distribution. We use the same setup as in Appendix D and conduct the experiments on CIFAR-10 and
Wide ResNet. We evaluate on backdoor attacks SIG, BadNet, and CleanLabel. We do not include Reflection and Warp attacks
as data augmentations are essential for the success of these attacks.

The results are shown in Table 3. Observe that the ASRs are much lower than those in Table 1. This is because these
attacks are less robust if no data augmentation is leveraged during the attack. We can see MEDIC has the best performance
on hard-to-remove backdoors (e.g, CleanLabel attack that uses adversarial training), which is consistent with the results of
using data augmentations during the attack. For other attacks, the results of MEDIC are comparable to those of baselines.
Compared to the results obtained under the same distribution (during attack and removal), we find MEDIC has slightly worse
performance under different distributions. The attack success rates of SIG and BadNet are higher. MEDIC has a better result
on CleanLabel attack compared to Table 1 as the attack is less robust.

Table 3. Comparison with baselines without data augmentation. ± represents the standard deviation over 5 repeated runs.

Attack Metric Original (%)
Method (in percentage %)

Finetune Fineprune NAD MCR ANP MEDIC

CleanLabel
ASR 100 11.6±1.7 11.2±1.5 8.2±1.6 5.9±0.2 7.8±4.4 5.1±0.7
ACC 83.2 81.1±0.1 81.3±0.3 80.9±0.3 80.6±0.1 75.2±1.9 80.7±0.2

SIG
ASR 97.8 3.5±1.6 4.0±1.7 4.7±1.1 0.5±0.2 3.9±2.6 5.1±1.0
ACC 83.5 81.8±0.2 82.1±0.1 82.0±0.1 80.9±0.3 77.7±0.9 79.5±0.1

BadNet
ASR 99.8 3.2±0.3 3.6±0.5 4.1±0.4 2.9±0.1 6.2±2.6 3.6±0.5
ACC 81.9 77.5±0.1 79.6±0.4 75.3±1.1 78.3±0.2 73.4±0.7 79.9±0.2

E.3. Ablation Study on λ

In algorithm 1, we introduce a variable named λ to combine the cross entropy loss and the cloning loss. Specifically, we
have

  \gL _{\text {total}} = \gL _{\text {classification}} + \lambda \gL _{\text {clone}}    



Figure 6. Effect of λ. The experiment is conducted on CIFAR-10 and CleanLabel attack.

In this section, we conduct an ablation study of how λ will impact the performance of cloning. We use the CleanLabel attack
on CIFAR10. In figure 6, we show the result of cloning with different choices of λ. The x-axis indicates the temperature. The
y-axis indicates the ASR (in the left figure) and the clean accuracy (in the right figure).

A large λ means more focus on the cloning loss and less focus on the classification loss. According to our study, enlarging
λ can increase the clean accuracy of the cloned model as shown in the right figure. At the same time, the attack success rate
also increases (see the left figure). To reduce the ASR, we need to simultaneously increase the temperature. By increasing
both λ and the temperature, we can achieve better clean accuracy as well as ASR.

Clean Label SIG BadNet Adaptive Reflection

5% Data ASR 16.8±4.6 1.5±0.7 3.6±0.6 7.1±1.7 6.2±0.5
5% Data Acc. 85.3±0.2 84.4±0.3 84.2±0.2 79.7±0.1 83.5±0.2

10% Data ASR 6.9±1.2 0.5±0.5 3.2±0.5 5.6±0.8 4.0±0.4
10% Data Acc. 85.4±0.3 84.6±0.2 86.8±0.1 80.9±0.2 84.0±0.3

Table 4. an Ablation Study on the Amount of Data

E.4. Ablation Study on Amount of Available Data

In table 4, we conduct an ablation study on the amount of available data during our backdoor removal. We adopt CIFAR-10
for the experiments and test on 5% and 10% available data. The results show that the performance of trigger removal is
positively correlated with the amount of available data.

E.5. Empirical Complexity

The computation cost is approximately proportional to the training epochs. We compare the training epochs of different
methods on CIFAR-10. The results show that MEDIC is within the same order of magnitude as the baselines.

Finetune Fine-prune NAD MCR ANP MEDIC

Training (Epochs) 30 31 40 240 100 60

E.6. Ablation Study on Importance Criterion

In this section, we conduct the ablation study on different importance criteria. We show the combination of both impact
(in eq.(3) and activation (in eq.(2) criteria is beneficial to the backdoor removal. We conduct the study on CIFAR-10 and
Clean Label attack. We repeat the experiments under different criteria and different τ from 1 to 7. For each criterion or their



Figure 7. Effect of Combinations of criteria. The experiment is conducted on CIFAR-10 and CleanLabel attack.

Figure 8. Effect of Model Architecture. The experiment is conducted on CIFAR-10 and BadNet attack.

combination, we draw the trade-off curve between attack success rate and clean accuracy. We repeat 5 times for each point and
use the average value for the report. Figure 7 shows the results. X-axis represents the clean accuracy and y axis represents the
attack success rate. A curve close to the lower-right corner indicates a better performance.

From Figure 7, we can observe the orange curve concentrates on the upper-right corner. It means that with only impact
criterion, the clean label attack can not be completely removed. The reason is that clean label attack involves adversarial
training which makes the backdoor attack quite robust. Therefore benign features and backdoor features are somewhat
activated simultaneously. They won’t be separated by this single criterion. However by adding additional impact criterion,
those backdoor features will be excluded during cloning. Observe that the green curve has much better attack success rate than
the orange one. Furthermore, we can observe that by including both criteria , we have the blue curve. It has the best trade-off
between accuracy and success rate.

E.7. Ablation Study on Model Architecture

In this section, we further study the impact of model architecture. We train the same backdoor attack on three different
types of model architectures, including VGG-11, MobileNet-V1 and ResNet-16. The experiment is conducted on CIFAR-10
and BadNet. Specifically, model VGG contains dropout layers. We found including dropout layers during cloning will make
optimization harder to converge. We therefore remove the additional dropout layers since in theory the expected output
will be similar. we use a learning rate 1e-3 for this experiment to make sure optimization convergence on different models
architectures. .



Figure 8 shows the results. The y-axis represents attack success rate and clean accuracy respectively. The x-axis represents
different temperatures. Observe that cloning is effective in both three very different model architectures. Specifically, we can
reduce the attack success rate of all three models below 5%. Moreover, we find the temperature actually has different impact
over different architectures. Specifically, the MobileNet has the faster reduction in clean accuracy as τ grows.


