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Abstract. Urban air pollution disproportionately harms communities of color and low-income 22 

communities in the U.S. Intraurban nitrogen dioxide (NO2) inequalities can be observed from 23 

space using the TROPOspheric Monitoring Instrument (TROPOMI). Past research has relied on 24 

time averaged measurements, limiting our understanding of how neighborhood-level NO2 25 

inequalities co-vary with urban air quality and climate. Here, we use fine scale (250 m x 250 m) 26 

airborne NO2 remote sensing to demonstrate daily TROPOMI observations resolve a major portion 27 

of census tract-scale NO2 inequalities in the New York City–Newark urbanized area. 28 

Spatiotemporally coincident TROPOMI and airborne inequalities are well correlated (r = 0.82–29 

0.97), with slopes of 0.82–1.05 for relative and 0.76–0.96 for absolute inequalities for different 30 

groups. We calculate daily TROPOMI NO2 inequalities over May 2018–September 2021, 31 

reporting disparities of 25–38% with race, ethnicity, and/or household income. Mean daily 32 

inequalities agree with results based on TROPOMI measurements oversampled to 0.01o x 0.01o to 33 

within associated uncertainties. Individual and mean daily TROPOMI NO2 inequalities are largely 34 

insensitive to pixel size, at least when pixels are smaller than ~60 km2, but are sensitive to low 35 

observational coverage. We statistically analyze daily NO2 inequalities, presenting empirical 36 

evidence of the systematic overburdening of communities of color and low-income neighborhoods 37 
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with polluting sources, regulatory ozone co-benefits, and worsened NO2 inequalities and 38 

cumulative NO2 and urban heat burdens with climate change. 39 

Synopsis. Daily TROPOMI satellite observations resolve a majority of intraurban NO2 inequalities 40 

in New York City and New Jersey; NO2 inequalities covary with air quality and climate variables 41 

Keywords. Urban air pollution, environmental justice, nitrogen dioxide, satellite measurements, 42 

TROPOMI 43 

1 INTRODUCTION                                                                             44 

New York City, New York and Newark, New Jersey are populous U.S. cities with poor air quality, 45 

where there are documented inequalities in air pollution concentrations and health impacts 46 

affecting communities of color and low-income residents.1-7 There have been decades of 47 

community organizing and activism around environmental racism issues, including air pollution 48 

and asthma, for example, in the South Bronx, West Harlem, and Ironbound.8-10 Air quality can 49 

vary substantially between neighborhoods in the same city, and recent observational and 50 

computational advances have improved quantitative estimates of intraurban inequalities across the 51 

U.S.11-17 However, fine-scale pollutant mapping typically relies on measurements that are short 52 

timescale snapshots or long time averages, trading temporal information for enhanced spatial 53 

detail. As a result, we have less knowledge of temporal variability in neighborhood-level 54 

inequalities and relationships between inequalities, urban air quality issues such as ozone, and 55 

climate change. 56 

Nitrogen dioxide (NO2) is a criteria pollutant and surface ozone (O3) precursor. NO2 is a 57 

chemically reactive primary pollutant, and, therefore, NO2 concentrations are variable in space and 58 
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time, with characteristic NO2 distance decay gradients away from sources equaling hundreds of 59 

meters to 2 km.18-20 NO2 is emitted as NOx (≡ NO + NO2), with sources dominated by fossil fuel 60 

combustion in cities, especially traffic exhaust.21-23 NO2 exposure is associated with numerous 61 

adverse health effects,24-29 and roadway residential proximity has been linked to asthma-related 62 

urgent medical visits, pediatric asthma, cardiac and pulmonary mortality, and preeclampsia and 63 

preterm birth.30-35 NO2 concentrations and NOx sources are unequally distributed with race, 64 

ethnicity, and income in U.S. cities,1, 2, 4-6, 12-14, 17, 36 with urban NO2 inequalities being large enough 65 

to cause health disparities.11, 24 66 

To date, air pollution inequality analyses focusing on primary pollutants like NO2 have typically 67 

prioritized spatial rather than temporal information, as observations and models must resolve 68 

length scales of atmospheric dispersion to fully describe disparities. Satellite NO2 tropospheric 69 

vertical column densities (TVCDs) have been incorporated into regression models and other 70 

measurement-model hybrid surface NO2 products relevant for health and environmental justice 71 

applications, with spatial resolutions ranging 100 m to 0.01o (~1 km).11, 12, 24 The TROPOspheric 72 

Monitoring Instrument (TROPOMI) currently provides the highest spatial resolution global 73 

satellite NO2 TVCDs, with TROPOMI describing NO2 inequalities at census tract scales directly 74 

after TVCDs are oversampled to 0.01o x 0.01o, time averaging at least multiple months of 75 

measurements.13, 14, 17 For reference, the average area of census tracts in New York City and 76 

Newark is 2.1 km2. Oversampled TVCDs have been shown to observe NO2 inequalities 77 

equivalently to high spatial resolution (250 m x 500 m) airborne remote sensing to within 78 

associated uncertainties, independently of patterns in the structure and heterogeneity of urban 79 

racial segregation, and similarly as measured at the surface.13, 17 TROPOMI has an order of 80 

magnitude improved spatial resolution than its predecessor OMI, enabling analyses of NO2 spatial 81 
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distributions with less time averaging,37, 38 potentially revealing new insight into the sources and 82 

controls over intraurban NO2 inequalities. However, with current TROPOMI nadir pixel areas of 83 

~20 km2, the need for oversampling is assumed. As a consequence of the loss in temporal 84 

resolution, distributive NO2 inequalities are not easily situated within our broader understanding 85 

of urban air quality and climate, and vice versa.  86 

In this manuscript, we evaluate the use of daily TROPOMI observations to describe census tract-87 

scale NO2 inequalities with race, ethnicity, and income in the New York City–Newark urbanized 88 

area (UA). First, we report NO2 inequalities using airborne remote sensing capable of resolving 89 

NO2 distance decay gradients, with pixel dimensions of 250 m x 250 m, collected during the 2018 90 

NASA Long Island Sound Tropospheric Ozone Study (LISTOS). The airborne observations serve 91 

as a reference for evaluating tract-scale NO2 inequalities determined using spatially and temporally 92 

coincident daily TROPOMI NO2 TVCDs. We show that the airborne and TROPOMI inequalities 93 

are strongly correlated and the daily TROPOMI TVCDs resolve a major portion of tract-scale NO2 94 

inequalities. We calculate daily TROPOMI NO2 inequalities from May 2018–September 2021 and 95 

analyze biases in individual and mean daily TROPOMI results as a function of measurement pixel 96 

area, which range 20 to 91 km2, and UA sampling coverage. Finally, we interpret empirical 97 

relationships between daily TROPOMI NO2 inequalities and overall NO2 pollution, O3 air quality, 98 

and climate-relevant atmospheric conditions. 99 

2 MEASUREMENTS AND METHODS 100 

GCAS and GeoTASO. The Geostationary Coastal and Air Pollution Events (GEO-CAPE) 101 

Airborne Simulator (GCAS)39 and Geostationary Trace gas and Aerosol Sensor Optimization 102 

(GeoTASO)40 instruments are push broom spectrometers that function as satellite analogs for 103 
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NASA airborne missions. GeoTASO makes hyperspectral nadir-looking measurements of 104 

backscattered solar radiation in the ultraviolet (290–390 nm) and visible (415–695 nm). GCAS 105 

makes similar observations at 300–490 nm (optimized for air quality) and 480–900 nm (optimized 106 

for ocean color). Each of the two channels in both instruments use two-dimensional charge-107 

coupled device (CCD) array detectors, where one CCD dimension provides the spectral coverage, 108 

one provides the cross-track coverage across a 45o field of view, and the movement of host aircraft 109 

generates the along-track coverage. The GCAS and GeoTASO datasets used here have identical 110 

NO2 retrieval algorithms, which are similar to those of major satellite instruments, including 111 

TROPOMI, and eventually TEMPO.41-43 Briefly, NO2 differential slant columns are produced by 112 

fitting the 425–460 nm spectral window using QDOAS and a measured reference spectrum 113 

collected over a nearby area away from NO2 sources. Differential slant columns are converted to 114 

vertical column densities using an air mass factor (AMF), which is a function of viewing and solar 115 

geometries, surface reflectance, and meteorological and trace-gas vertical profile shapes, among 116 

other variables (see Judd et al.43 and Judd et al.44 for details). NO2 vertical profiles are calculated 117 

using bias-corrected PRATMO stratospheric NO2 climatologies41, 45, 46 and hourly output from the 118 

North American Model-Community Multiscale Air Quality (NAMCMAQ) model (12 km x 12 119 

km) from a developmental analysis from the National Air Quality Forecasting Capability.47 The 120 

resulting GCAS and GeoTASO TVCDs have a spatial resolution of 250 m x 250 m. 121 

During the Long Island Sound Tropospheric Ozone Study (LISTOS), GeoTASO flew on the 122 

NASA LaRC HU-25 Falcon in June 2018 and GCAS flew onboard the NASA LaRC B200 from 123 

July–September 2018. On days when elevated regional air pollution was predicted (Table S1), a 124 

large raster flight pattern spanning nearly the full New York City–Newark UA (Figures 1a and 125 

S1a) was mapped in the morning (9–11 am local time, LT) and afternoon (1:30–4:10 pm LT). On 126 
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other days, aircraft followed a smaller raster flight pattern (Figure S1b), sub-sampling the UA in 127 

the early morning (8:15–9:50 am LT), late morning (9:50–11:30 am LT), early afternoon (1:15–128 

3:00 pm LT), and late afternoon (3:00–4:45 pm LT). During LISTOS, Judd et al.44 reported GCAS 129 

and GeoTASO TVCDs agreed with coincident ground-based Pandora NO2 column measurements 130 

to within ±25% with no apparent overall bias. Here, we focus on cloud-free observations from 37 131 

large and small NO2 TVCD flight rasters collected on 13 days having sampled at least 60% of 132 

census tracts in the New York City-Newark UA. On average, GCAS and GeoTASO sampled 79 133 

± 7% of UA census tracts. Compared to the full New York City-Newark UA, Black and African 134 

Americans, Hispanics and Latinos, and Asians were overrepresented by 16–25% in census tracts 135 

sampled during the large and especially small raster pattern (Table S2). 136 

TROPOMI. The TROPospheric Ozone Monitoring Instrument (TROPOMI) is a hyperspectral 137 

spectrometer onboard the sun-synchronous Copernicus Sentinel-5 Precursor (S-5P) satellite.48, 49 138 

S-5P has an equatorial crossing time of 1:30 pm LT, with observations collected over the New 139 

York–Newark UA (Figure 1b) between 1–3 pm LT once or twice daily. NO2 is retrieved by fitting 140 

the 405–465 nm spectral band based on an updated OMI DOMINO algorithm and work from the 141 

QA4ECV project.50-54 NO2 TVCDs have a documented low-bias over polluted scenes, with 142 

uncertainties driven by spatially and temporally coarse inputs to the AMF,55 including the surface 143 

albedo (monthly 0.5° × 0.5° OMI climatology)56 and NO2 profile shape (daily 1° × 1° TM5-MP 144 

output).57 We use Level 2 NO2 TVCDs reprocessed on the S5P-PAL system (qa value > 0.75). 145 

From 1 May 2018 to 6 August 2019, encompassing the LISTOS period, the nadir spatial resolution 146 

of TROPOMI NO2 TVCDs was 3.5 km x 7 km, with typical individual pixel areas of 27–63 km2 147 

(mean ± 1σ). Subsequently, the spatial resolution improved to 3.5 km x 5.5 km at nadir,58 giving 148 

pixel areas of 21–49 km2 (mean ± 1σ) over the New York City–Newark UA. We focus on the 149 
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individual daily TVCDs (an example is shown in Figure 1b) and observations over May 2018–150 

September 2021 oversampled to 0.01o x 0.01o using a physics-based algorithm (Figure 1c).59 151 

 152 

Figure 1. Example airborne NO2 TVCDs (molecules cm–2) collected on 30 June 2018 at 1–4 pm 153 
during a large raster flight pattern (250 m x 250 m) (a), TROPOMI measurements on the same 154 
day, which have a mean pixel area of 43 km2 (b), and TROPOMI observations oversampled to 155 
0.01o x 0.01o over 1 May 2018–30 September 2021 averaged to underlying census tracts. The black 156 
outline describes the New York City–Newark UA. Background map data: Landsat 8 composite 157 
January 2017–June 2020. 158 

Census Tract NO2 Inequalities. We average NO2 TVCDs within 2018 census tract polygons for 159 

the New York City–Newark UA. Individual airborne and TROPOMI TVCDs are spatially 160 

continuous but discretized to 0.001° x 0.001° at the pixel level prior to tract averaging without 161 

regridding or oversampling. NO2 tract-averaged TVCDs are weighted by tract-scale populations 162 

of non-Hispanic/Latino Black and African Americans, non-Hispanic/Latino Asians, all races 163 

identifying as Hispanic or Latino, and non-Hispanic/Latino whites (Eq. S1). Poverty status is 164 

defined according to the U.S. Census Bureau family Ratio of Income to Poverty. Poverty 165 

thresholds vary by family size and family member age but not geographically. The U.S. Census 166 

intends for poverty thresholds to be a “statistical yardstick” rather than a complete representation 167 

of families’ needs. Below-poverty tracts are those with greater than 20% of households having an 168 
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income-to-poverty ratio <1. Tracts above the poverty line are defined as those with household 169 

income-to-poverty ratios of >1. Tract-scale NO2 TVCDs within both categories are population 170 

weighted by residents at the given poverty status. We combine race-ethnicity and income metrics, 171 

categorizing census tracts as low-income and non-white (LIN), i.e., people of color in low-income 172 

tracts, or high-income and white (HIW). In LIN tracts, NO2 TVCDs are weighted by the population 173 

of Black and African Americans, Hispanics and Latinos, Asians, and/or American Indians and 174 

Alaska Natives in the lowest income quintile tracts (household incomes <$49,544.50). Because 175 

American Indians and Alaska Natives comprise less than 0.2% of the New York City–Newark UA 176 

population, we do not report results for this group separately. In HIW tracts, TVCDs are weighted 177 

by the population of non-Hispanic/Latino whites in the highest income quintile tracts (household 178 

incomes >$117,664). When we compute results in New York City and Newark separately, dividing 179 

the UA along state lines, lowest income quintile tracts are those with tract-averaged median 180 

household incomes <$48,911 and <$51,250, respectively; highest income quintile tracts are those 181 

with tract-averaged median household incomes >$112,940 and >$125,367, respectively. We 182 

discuss NO2 disparities in terms of relative and absolute inequalities computed as percent (%) and 183 

absolute differences (molecules cm–2) in population-weighted census tract-averaged TVCDs. 184 

Race-ethnicity inequalities are in reference to population-weighted NO2 TVCDs for non-185 

Hispanic/Latino whites and poverty status inequalities are in reference to NO2 TVCDs in census 186 

tracts above the poverty line. While there are numerous dimensions of air pollution inequity, our 187 

focus is on the evaluation and application of daily satellite measurements; therefore, we limit the 188 

number of demographic characteristics considered in the analysis. Census data are from the 2019 189 

American Community Survey (ACS): 5-Year dataset. Fractional census tract populations for the 190 

four largest race-ethnicity groups and median household incomes are mapped in Figure 2 and 191 
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census tract population densities are shown in Figure S2. The ACS is a higher time resolution 192 

alternative to the longform decennial census. The ACS accounts for variations in census tract 193 

sampling rates and differential group response rates through a complex weighting process. Sample 194 

weights prioritize accuracy over precision, with individual tract estimates being more imprecise in 195 

tracts with heterogeneous populations.60, 61 We manage this imprecision through aggregation by 196 

population weighting. We focus on the UA, defined as densely populated and commercial areas 197 

within cities, to describe intraurban inequalities rather than urban-suburban differences. 198 

 199 

Figure 2. Fractional census tract populations for Black and African Americans (a), Hispanics and 200 
Latinos of all races (b), Asians (c), non-Hispanic/Latino whites (d), and median household incomes 201 
(e) in the New York City–Newark UA (black line). Background map data: Landsat 8 composite 202 
January 2017–June 2020. 203 

Measurements of Surface NO2*, O3, and Meteorology. We use NO2* surface observations 204 

collected at 11 stations across the New York City–Newark UA (Figure S3a). These measurements 205 

are made by decomposing NO2 to NO over a heated molybdenum catalyst, followed by the 206 

detection of NO using the chemiluminescence technique. The resulting NO2 data have a known 207 

positive interference from higher-order nitrogen oxides and ammonia, which also decompose at 208 

non-unity efficiency in the presence of the catalyst.62-64 We use the term NO2* in 209 

acknowledgement of this interference, opting not to apply a correction factor as we are interested 210 



 11 

in the distance dependence of the correlations between surface NO2* and overhead TVCDs, rather 211 

than the surface NO2 mixing ratios themselves. We use O3 measurements from 17 monitoring 212 

stations within the UA (Figure S3b) converted to the policy-relevant metric of the daily maximum 213 

8-hour average (MDA8) O3 mixing ratio. Temperature and wind speed measurements are collected 214 

at 14 stations throughout the New York City–Newark UA as part of the Automated Surface 215 

Observing System and Automated Weather Observing System (Figure S3c), accessible through 216 

the Iowa State University Iowa Environmental Mesonet download service. Because of station-217 

level variability in the data collection interval, we average individual station meteorological 218 

measurements from 12–3 pm local time (LT) prior to computing the UA-wide mean.  219 

NOx Emissions Inventories: FIVE and NEI. The Fuel-based Inventory of Vehicle Emissions 220 

(FIVE) tabulates monthly on-road and off-road gasoline and diesel mobile source emissions at 4 221 

km x 4 km U.S. wide. The FIVE is based on publicly available datasets of taxable fuel sales and 222 

road‐level traffic and time‐resolved weigh‐in‐motion traffic counts.22, 65, 66 We use emissions from 223 

the 2018, 2019, 2020 COVID-19, and 2020 business-as-usual (BAU) FIVE for 2018, 2019, 2020, 224 

and 2021, respectively. The 2020 COVID-19 inventory was developed using monthly scaling 225 

factors from U.S. Energy Information Administration fuel sales reports.22 In the 2020 BAU FIVE, 226 

fuel use is assumed unchanged from 2019.22 See McDonald et al.65 and Harkins et al.22 for a 227 

detailed discussion of the uncertainties, which are ±24% for both gasoline and diesel vehicles. 228 

Annual NOx stationary source emissions are taken from the 2017 National Emissions Inventory 229 

(NEI17), including industrial and commercial facilities, power plants, and airports. Uncertainties 230 

in power plant emissions are ±25% and uncertainties for industrial facilities and other stationary 231 

sources are ±50%.67, 68  232 

3 RESULTS AND DISCUSSION 233 
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GCAS and GeoTASO Census Tract-Level NO2 Inequalities during LISTOS. We report 234 

population-weighted census tract-scale NO2 inequalities measured during each of the 37 LISTOS 235 

flights within the New York City–Newark UA in Figure 3 and Table S3. Population-weighted NO2 236 

TVCDs for Black and African Americans, Hispanics and Latinos, and Asians are 14 ± 3%, 14 ± 237 

5%, and 15 ± 4% higher than for non-Hispanic/Latino whites, respectively. NO2 TVCDs are on 238 

average 17 ± 4% greater in tracts below the poverty line compared to those above. When race-239 

ethnicity and income metrics are combined, NO2 TVCDs are 24 ± 4% higher in LIN than HIW 240 

census tracts. Errors are defined as 95% confidence intervals for mean inequalities, derived from 241 

bootstrapped distributions sampled with replacement 104 times.  242 

NO2 inequalities are more variable between days than by time of daytime during LISTOS. While 243 

population-weighted and/or income-sorted NO2 TVCDs for all groups are on average 14–28% 244 

higher during morning (8–11:30 am LT) than afternoon flights (1–5 pm LT), corresponding 245 

median relative and absolute NO2 inequalities are not significantly different for any group (Mann-246 

Whitney test, p < 0.050). Mean relative and absolute inequalities are also similar during morning 247 

and afternoon flights, with exceptions of relative inequalities for Hispanics and Latinos and 248 

absolute inequalities for Asians and in LIN tracts. This suggests observations collected in the early 249 

afternoon by TROPOMI capture daytime patterns in tract-scale population-weighted NO2 TVCD 250 

(not surface mixing ratio) differences generally, at least during LISTOS. The small number of 251 

flights limits our ability to statistically infer relationships between NO2 disparities and 252 

environmental factors; however, we observe moderate, negative correlations between absolute 253 

inequalities and mean surface wind speeds and moderate, positive correlations with UA-mean 254 

NO2* and NO2 TVCDs for some groups (p < 0.050) (Table S4). This is consistent with slower 255 
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surface winds reducing the mixing of NO2 pollution away from NOx sources and higher NO2 256 

pollution worsening absolute inequalities.  257 

 258 

Figure 3. Airborne NO2 inequalities for each of the 37 LISTOS flights for Black and African 259 
Americans (a), Hispanics and Latinos (b), and Asians (c) compared to non-Hispanic/Latino whites, 260 
below poverty versus above poverty tracts (d), and LIN compared to HIW tracts (e). Morning (8–261 
11:30 am LT) (tan) and afternoon (1–5 pm LT) (brown) flights are shown separately. LISTOS 262 
mean inequalities with 95% confidence intervals are reported in each panel, for all flights (black) 263 
and separately in the morning (tan) and afternoon (brown). 264 

Evaluating Daily TROPOMI Observations. To determine the extent to which daily TROPOMI 265 

measurements resolve census tract-level disparities, we compare NO2 inequalities for spatially and 266 

temporally coincident tract-averaged GCAS, GeoTASO, and TROPOMI observations within the 267 

New York City–Newark UA. We consider measurements to be coincidental if the minimum and 268 

maximum overfly times of airborne columns within a given census tract occur within ±30 minutes 269 

of the TROPOMI overpass. Daily relationships between airborne and TROPOMI inequalities are 270 

fit using an unweighted bivariate linear regression model (Figure 4).69 We infer the portion of NO2 271 
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inequalities captured by TROPOMI from the slope of this line and assess agreement between the 272 

airborne and TROPOMI-derived results using Pearson correlation coefficients. 273 

Daily TROPOMI observations capture most tract-scale NO2 differences and are well correlated 274 

with inequalities measured by GCAS and GeoTASO. Correlation slopes are 0.82 ± 0.10–1.05 ± 275 

0.07 for relative inequalities and 0.76 ± 0.09–0.96 ± 0.06 for absolute inequalities, implying 276 

TROPOMI detects at least 82% of relative and 76% of absolute inequalities, with slopes for many 277 

population groups being even higher. For the comparison, the mean pixel area of coincident 278 

TROPOMI TVCDs is 44 ± 18 km2 (±1σ), which is much larger than typical atmospheric NO2 279 

distance decay gradients of a few hundred meters.18-20 While some precision is lost, our results 280 

suggest measurements on the scale of these gradients, for example GCAS and GeoTASO, are not 281 

required to constrain the majority of city-wide census tract-scale NO2 inequalities. Airborne and 282 

TROPOMI inequalities are strongly correlated, with Pearson correlation coefficients ranging 0.82–283 

0.97 for relative and 0.88–0.96 for absolute inequalities. Slopes and Pearson correlation 284 

coefficients do not improve significantly when inequalities are weighted by the number of 285 

coincident census tracts, mean TROPOMI pixel areas, UA-mean surface wind speeds, or mean 286 

TROPOMI NO2 TVCDs, suggesting these variables do not have a strong influence over the 287 

agreement, at least in the New York City–Newark UA during LISTOS. 288 
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 289 

Figure 4. Daily relative (%) (blue circles) and absolute (molecules cm–2) (green diamonds) 290 
inequalities measured by GCAS and GeoTASO versus TROPOMI during LISTOS for Black and 291 
African Americans (a), Hispanics and Latinos (b), and Asians (c) compared to non-292 
Hispanic/Latino whites, below-poverty versus above poverty tracts (d), and LIN compared to HIW 293 
tracts (e). Fits are derived from an unweighted bivariate linear regression model. Slopes (m) and 294 
Pearson correlation coefficients (r) for each fit are reported for both relative (blue) and absolute 295 
(green) inequalities. One data point in panel d is out of frame (–119.5, –136.4).  296 
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Table 1. Influence of TROPOMI pixel area and sampling coverage on both mean and individual 297 
daily relative inequalities (May 2018–September 2021), as well as comparison between mean daily 298 
and oversampled relative inequalities for Black and African Americans, Hispanics and Latinos, 299 
and Asians compared to non-Hispanic/Latino whites, for below poverty versus above poverty 300 
tracts, and for LIN compared to HIW tracts. The pixel area analysis only includes days with >30% 301 
UA coverage. Observations are grouped such that each category contains at least 80 observation 302 
days. Inequalities are binned by days with low (<30%), moderate (30–60%), and high (>60%) UA 303 
coverage. Daily inequalities are assessed using the coefficient of variation. Errors are 95% 304 
confidence intervals based on bootstrapped distributions sampled with replacement 104 times. The 305 
oversampled TROPOMI TVCDs are oversampled to 0.01o x 0.01o prior to census tract averaging 306 
for all days, on days with >30% coverage, and on days with >60% coverage, with uncertainties as 307 
standard mean errors. 308 

 309 

We calculate daily census tract-scale NO2 inequalities over May 2018–September 2021 and 310 

investigate the sensitivity of mean and individual daily results to UA-mean TROPOMI pixel area 311 

and UA coverage percentage (Table 1). First, UA-mean daily TROPOMI pixel areas range ~20–312 

90 km2 (Figure S4), providing an empirical test of the resolution dependence of NO2 inequalities. 313 

We remove days from the analysis when TROPOMI observations cover less than 30% of census 314 

tracts across the New York City–Newark UA (justification below; see Table S5 for an analysis of 315 

 Mean of Daily Inequalities Daily Inequalities 
 Relative Inequalities (%) Coefficient of Variation 

Pixel Area 
(km2) 

Black and 
African 

Americans 

Hispanics 
and 

Latinos 
Asians 

Below 
Poverty 
Tracts 

LINs 
Black and 
African 

Americans 

Hispanics 
and 

Latinos 
Asians 

Below 
Poverty 
Tracts 

LINs 

20–25 31 ± 2 30 ± 2 28 ± 2 28 ± 2 40 ± 3 0.44 0.52 0.43 0.45 0.40 

25–30 32 ± 3 30 ± 3 28 ± 2 26 ± 3 39 ± 3 0.45 0.53 0.42 0.52 0.41 

30–35 31 ± 3 29 ± 3 30 ± 2 26 ± 2 38 ± 3 0.42 0.42 0.32 0.43 0.37 

35–45 31 ± 2 26 ± 3 28 ± 2 25 ± 3 38 ± 3 0.37 0.62 0.34 0.53 0.41 

45–60 30 ± 3 27 ± 3 28 ± 3 25 ± 2 38 ± 4 0.54 0.60 0.51 0.53 0.53 

>60 26 ± 3 25 ± 3 23 ± 2 22 ± 2 31 ± 3 0.47 0.60 0.49 0.50 0.43 

UA Coverage (%)          

<30 12 ± 2 11 ± 2 10 ± 2 11 ± 4 18 ± 4 1.99 2.00 2.05 2.47 1.81 

30–60 30 ± 3 29 ± 3 26 ± 3 25 ± 3 37 ± 4 0.64 0.62 0.65 0.66 0.65 

>60 30 ± 1 28 ± 1 28 ± 1 26 ± 1 38 ± 1 0.40 0.53 0.36 0.45 0.36 

 Mean of Daily Inequalities Oversampled Inequalities 

All days 24 ± 1 22 ± 1 21 ± 1 21 ± 1 32 ± 1 28 ± 1 27 ± 1 28 ± 1 25 ± 1 36 ± 2 

>30% 30 ± 1 28 ± 1 28 ± 1 25 ± 1 38 ± 1 28 ± 1 27 ± 1 28 ± 1 25 ± 1 35 ± 2 

>60% 30 ± 1 28 ± 1 28 ± 1 26 ± 1 38 ± 1 28 ± 1 26 ± 1 28 ± 1 25 ± 1 36 ± 2 
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all days). We find relative inequalities are mostly insensitive to TROPOMI UA-mean pixel area, 316 

with significant differences in medians emerging when pixels are larger than ~60 km2, defined as 317 

p < 0.050 (Kruskal-Wallis test). Additionally, there is no clear influence of increasing UA-mean 318 

pixel area on the coefficient of variation of the individual daily inequalities. Substantial day-to-319 

day variability limits our ability to identify an exact pixel area-sensitivity threshold, and, because 320 

observation days with UA-mean pixel areas >60 km2 comprise less than 15% of the full dataset, 321 

their inclusion does not significantly affect our results. Relationships between inequalities and UA-322 

mean pixel areas suggest key spatial scales for describing NO2 inequalities are larger than those of 323 

atmospheric NO2 dispersion gradients, which is consistent with recent work by Chambliss et al.16 324 

and Demetillo et al.13, because NOx emissions sources are ubiquitous and distributed and tracts 325 

with similar population characteristics spatially aggregate.70 326 

Second, we investigate the sensitivity of daily inequalities to TROPOMI observation UA coverage 327 

extent (Table 1). Reduced sampling coverage is largely caused by clouds, but snow accumulation 328 

can be important in the winter. In the New York City–Newark UA, snow cover accounted for 29% 329 

of missing pixels in winter months, with snow present on 43% of observations days in December–330 

February and 12% of total observation days across May 2018–September 2021. Distributions of 331 

daily relative and absolute NO2 inequalities for each group are shown in Figure 5 on all days, on 332 

days with at least 30% UA coverage, and on days with at least 60% UA coverage. Inclusion of 333 

days with sparse coverage (<30%) decreases mean relative NO2 inequalities by 4–6 percentage 334 

points. Individual daily inequalities are more affected by missing data than means, with increasing 335 

coefficients of variation at UA coverage levels of <60% in comparison to days with >90% 336 

coverage. Effects of incomplete UA coverage are largely explained by insufficient sampling of 337 

key race-ethnicity, poverty, and income groups, with greater coverage capturing more 338 
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representative UA demographics and observations on lower coverage days more likely to sample 339 

population groups in the majority (Figure S5): non-Hispanic/Latino whites (44%) and tracts above 340 

the poverty line (73%). As a result, we remove days with <30% UA coverage from our discussion 341 

of mean NO2 inequalities (323 days or 33% of the full dataset) and days with <60% coverage from 342 

our analysis of daily inequalities (457 days or 47% of the full dataset). Results are skewed toward 343 

clear sky conditions, corresponding to daytime (12–3 pm LT) mean surface NO2* mixing ratios of 344 

8.1 ± 4.4 ppb (days with >30% UA coverage) compared to daytime mean NO2* of 11.9 ± 6.6 ppb 345 

(days with <30% coverage), likely biasing daily absolute NO2 inequalities low (discussion below).  346 

Mean daily population-weighted NO2 TVCDs over May 2018–September 2021 are 30 ± 1%, 28 ± 347 

1%, and 28 ± 1% higher for Black and African Americans, Hispanics and Latinos, and Asians, 348 

respectively, compared to non-Hispanic/Latino whites (Figure 5 and Table 1). NO2 TVCDs are 25 349 

± 1% greater in tracts below the poverty line than above and 38 ± 1% higher in LIN compared to 350 

HIW census tracts. We report results separately in New York City and Newark, where mean daily 351 

NO2 inequalities are 19–30% and 24–43%, respectively (Table 2). Means and 95% confidence 352 

intervals are derived from bootstrapped daily NO2 inequality distributions resampled 104 times. 353 

We repeat NO2 inequality calculations by first oversampling the same subset of days to a resolution 354 

of 0.01o x 0.01o using a physics-based algorithm59 prior to census tract averaging and find 355 

oversampled and mean daily results are equal to within associated uncertainties for days with at 356 

least 30% UA coverage (Table 1). Finally, our analysis is based on recently reprocessed S5P-PAL 357 

TROPOMI TVCDs, which include improvements resolving some of the low biases occurring over 358 

polluted northern midlatitude scenes and in the wintertime.71 Mean daily inequalities computed 359 

with the S5P-PAL TVCDs are 3–6 percentage points higher compared to the RPRO and OFFL 360 

operational products (Table 2), indicating TROPOMI NO2 inequality estimates using previously 361 
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available NO2 products are biased low, as suggested by Demetillo et al.17 in their detailed 362 

evaluation of oversampled NO2 TVCDs and census tract-scale inequalities in Houston, Texas.  363 

While inequalities based on spatially and temporally coincident airborne and TROPOMI TVCDs 364 

are in good agreement (Figure 4), mean daily TROPOMI NO2 inequalities are significantly higher 365 

than those measured by GCAS and GeoTASO during LISTOS (Table 1). This is true both over 366 

the full May 2018–September 2021 period and on LISTOS flight days when all TROPOMI 367 

TVCDs, not just those coincident with airborne observations, are considered. Absolute inequalities 368 

are higher in the winter than summer; however, relative NO2 inequalities exhibit little seasonal 369 

variation. While LISTOS inequalities are within the distribution of daily TROPOMI inequalities, 370 

differences in mean disparities are explained by changes in UA observational coverage and 371 

corresponding demographic composition. Mean daily TROPOMI inequalities within a typical 372 

LISTOS large (30 June 2018) and small (15 August 2018) flight raster are 3–9 and 11–20 373 

percentage points lower than across the full New York City–Newark UA (Table 2). However, there 374 

are similarities, for example, mean inequalities for Black and African Americans, Hispanics and 375 

Latinos, and Asians are comparable to within associated uncertainties, as also observed by GCAS 376 

and GeoTASO during LISTOS, and inequality distributions for Hispanics and Latinos exhibit a 377 

heavy tail using both daily TROPOMI and aircraft TVCDs.  378 
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 379 

Figure 5. Daily TROPOMI NO2 inequalities over May 2018–September 2021 for Black and 380 
African Americans (a), Hispanics and Latinos (b), and Asians (c) compared to non-381 
Hispanic/Latino whites, below-poverty versus above poverty tracts (d), and LIN compared to HIW 382 
tracts (e). Top panels depict relative inequalities (%) on all days (light blue), on days with at least 383 
30% UA coverage (gray blue), and on days with at least 60% UA coverage (bright blue). Bottom 384 
panels depict absolute inequalities (molecules cm–2) on all days (light green), days with at least 385 
30% UA coverage (yellow green), and on days with at least 60% UA coverage (dark green). Mean 386 
relative inequalities and 95% confidence interval are included in each panel for each coverage 387 
threshold: on all days (light blue), on days with at least 30% UA coverage (gray blue), and on days 388 
with at least 60% UA coverage (bright blue). 389 

Table 2. Mean daily TROPOMI inequalities (May 2018–September 2021) on days with >30% 390 
coverage across the New York City–Newark UA based on the S5P-PAL NO2 product, as used 391 
throughout the analysis, on days with >30% coverage based on the RPRO and OFFL operational 392 
products, separately in New York City and Newark, and within the large (30 June) and small (15 393 
August) LISTOS flight rasters. Errors are 95% confidence intervals based on bootstrapped 394 
distributions sampled with replacement 104 times.  395 
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New York City–

Newark UA 
(S5P-PAL) 

New York City–
Newark UA 

(Operational Product) 

New York 
City, NY 

Newark, 
NJ 

Large LISTOS 
Raster Flight 

Pattern 

Small LISTOS 
Raster Flight 

Pattern 
Black and African 
Americans 30 ± 1 26 ± 1 22 ± 1 33 ± 2 22 ± 1 10 ± 1 

Hispanics and Latinos 28 ± 1 23 ± 1 19 ± 1 43 ± 2 20 ± 1 11 ± 1 
Asians 28 ± 1 25 ± 1 25 ± 1 26 ± 2 19 ± 1 10 ± 1 
Below Poverty Tracts 25 ± 1 22 ± 1 20 ± 1 24 ± 1 22 ± 1 14 ± 1 
LINs 38 ± 1 32 ± 1 30 ± 1 43 ± 1 32 ± 1 20 ± 1 

 396 

Finally, TROPOMI measures NO2 atmospheric columns rather than surface mixing ratios. For 397 

satellite remote sensing to inform environmental justice decision-making, spatial and temporal 398 

patterns in TVCDs must reflect NO2 distributions at the surface.13, 17 To investigate NO2 column-399 

surface relationships, we calculate Pearson correlation coefficients between daily TROPOMI 400 

TVCDs (without averaging to underlying census tracts) and mean daytime (12–3 pm LT) NO2* 401 

mixing ratios as a function of the distance between observations.13, 17, 72 We find the strongest mean 402 

correlations (r = 0.61 ± 0.03; error is the 95% confidence interval) between NO2* and directly 403 

overhead TVCDs, defined as TVCDs within 1 km of a monitor based on pixel center points. Mean 404 

daily column-surface correlations subsequently weaken with increasing distance, falling to 0.56 ± 405 

0.03 at 1–2 km, 0.49 ± 0.02 for 2–5 km, and 0.43 ± 0.02 at 5–10 km. The distance dependance of 406 

mean Pearson correlation coefficients reflects typical NO2 distance decay gradients,18-20 indicating 407 

coarser resolution daily observations resolve finer-scale NO2 gradients, at least to some extent in 408 

the average. Column-surface correlations covary with wind speeds and overall NO2 pollution 409 

levels in physically meaningfully ways. Daily r values are significantly, although weakly, 410 

negatively associated with UA-mean surface wind speeds and positively associated with UA-mean 411 

NO2* and NO2 TVCDs. Lastly, we find no relationship between Pearson column-surface 412 

correlation coefficients and daily UA-mean pixel area (Table S6). 413 

Daily Variability in NO2 Inequalities. Here, we apply the daily TROPOMI NO2 inequality 414 

observations, describing statistical relationships with overall NO2 and O3 pollution and climate-415 
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relevant atmospheric conditions (Table 3). We discuss the implications of each in turn. We report 416 

Pearson correlation coefficients between NO2 inequalities, surface NO2* mixing ratios, and NO2 417 

TVCDs. We compute Spearman rank correlation coefficients (U) between NO2 inequalities, 418 

MDA8 O3, surface wind speeds, and surface daytime and daily maximum temperatures, as these 419 

relationships are monotonic but nonlinear. Surface NO2* mixing ratios, wind speeds, and 420 

temperatures are UA-wide means over 12–3 pm LT in correspondence to the TROPOMI overpass 421 

time. We calculate r and U values on days with >60% TROPOMI UA coverage, separately in the 422 

winter (December–February) and summer (June–August).  423 

First, we find absolute NO2 inequalities are strongly associated with UA-mean surface NO2* and 424 

NO2 TVCDs. However, relative inequalities are mostly uncorrelated in the winter and only weakly 425 

or moderately associated with NO2 pollution in the summer. Observed differences between 426 

absolute and relative inequalities are evidence that NOx sources are systematically located in 427 

communities of color and low-income neighborhoods, as variability in individual terms affecting 428 

the NO2 mass balance will have a larger effect on absolute NO2 concentrations than on relative 429 

differences city wide. Therefore, while incremental NOx controls will decrease localized NO2 430 

burdens, any emissions above zero will drive continued disparities. Results from daily TROPOMI 431 

TVCDs are supported by predictions from the FIVE and NEI. We calculate inequalities in NOx 432 

source densities equivalently to those based on observations (Methods), with point source 433 

emissions summed within census tracts and total NOx emissions (FIVE + NEI) divided by tract 434 

area. Inequalities in population-weighted NOx emission source densities are 90 ± 6% for Black 435 

and African Americans, 95 ± 5% for Hispanics and Latinos, 71 ± 6% for Asians, 88 ± 5% for 436 

below-poverty tracts, and 113 ± 7% for LINs.  437 
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NO2 is a key reactant in the chemistry of O3 production (PO3); therefore, neighborhood-level NO2 438 

inequalities and urban O3 are potentially coupled. In the New York City–Newark UA, there were 439 

59 exceedances of the MDA8 70 ppb National Ambient Air Quality Standard (NAAQS) over May 440 

2018–September 2021. Briefly, PO3 is a nonlinear function of NO2. At low NO2 levels, NOx 441 

emissions reductions decrease PO3 (chemistry is NOx limited). At high NO2 levels, NOx reductions 442 

increase PO3 (chemistry is NOx suppressed), with decreases in gas-phase organic compounds 443 

being the most effective form of O3 control, at least until NO2 is sufficiently reduced to transition 444 

to NOx-limited PO3. Here, we find absolute NO2 inequalities are moderately, positively associated 445 

with summertime UA-mean MDA8 O3 (Table 3), with similar results over the May–September O3 446 

season (Table S7). For comparison, correlation coefficients relating UA-mean surface NO2* and 447 

column NO2 TVCDs with MDA8 O3 on >60% UA coverage days are 0.43 and 0.46, respectively. 448 

This suggests there are regulatory O3 co-benefits to reducing NO2 inequalities and to strategies 449 

prioritizing NOx emissions reductions in communities of color and low-income communities, 450 

consistent with recent work showing PO3 in New York City and Newark trending toward NOx-451 

limitation.73 Because O3 is an intermediately long-lived secondary pollutant, it is more evenly 452 

distributed and not generally associated with large intraurban exposure disparities.74 However, 453 

NO2 concentrations are highly spatially heterogeneous, and NO2 reductions in neighborhoods 454 

overburdened by NOx sources could potentially worsen O3 locally. To investigate this, we compare 455 

population-weighted census tract-scale MDA8 O3 NAAQS exceedance frequencies on weekdays 456 

and weekends based on surface O3 measurements (Table S8). In the New York City–Newark UA, 457 

NO2 TVCDs were on average 27% lower on weekends compared to weekdays over May 2018–458 

September 2021. Across U.S. cities, weekday-weekend O3 differences are a well-established test 459 

of the NO2 dependence of PO3, as substantial NO2 decreases occur without comparatively large 460 
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changes in other aspects of O3 chemistry.75 We find MDA8 O3 NAAQS exceedances are more 461 

frequent on weekdays than weekends for all race, ethnicity, and/or income population groups 462 

(Table S8), indicating that NOx reductions will not worsen O3 where NOx emissions are greatest. 463 

This said, we add caution that our results may be influenced by the locations of the O3 monitors.  464 

Finally, atmospheric conditions influence intraurban NO2 distributions in ways that inform how 465 

NO2 inequalities may scale with climate change. The Northeast U.S. is expected to experience 466 

warmer surface temperatures and more frequent stagnation days in summer and winter months, 467 

with slower surface winds from reduced mid-latitude cyclone activity and a northward shift of the 468 

summer mid-latitude jet stream.76-81 We find NO2 inequalities exhibit moderate to strong negative 469 

associations with surface wind speeds, consistent with the accumulation of NO2 pollution near 470 

NOx sources from reduced atmospheric mixing. This indicates that more frequent atmospheric 471 

stagnation events will exacerbate disparities. During summer months, NO2 inequalities are weakly 472 

but significantly positively correlated with both daytime average and maximum daily 473 

temperatures. As a result, NO2 inequalities and temperature may not scale together; however, 474 

people of color and low-income residents in New York City and Newark also bear disproportionate 475 

urban heat risks compared to non-Hispanic/Latino white and wealthy residents,82-84 suggesting 476 

cumulative unequal climate-driven burdens will be greater without targeted NOx emission 477 

controls. 478 

Table 3. Correlation coefficients between daily absolute inequalities and UA-mean NO2* mixing 479 
ratios (12–3 pm LT), NO2 TVCDs, surface wind speeds (12–3 pm LT), surface temperatures (12–480 
3 pm LT), daily maximum temperatures, and MDA8 O3 mixing ratios. Relationships between daily 481 
NO2 inequalities, surface NO2*, and NO2 TVCDs are Pearson correlation coefficients (r). All other 482 
relationships are Spearman rank correlation coefficients (U). Correlations are separately analyzed 483 
in the winter (December–February) and summer (June–August) for days with TROPOMI 484 
observations with >60% UA coverage. Only statistically significant coefficients are reported, with 485 
r and U significant to 1% (p < 0.010) unless indicated (†), which means significant to 5%. 486 
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 Correlations with Absolute Daily Inequalities Correlations with Relative 
Daily Inequalities 

Summer 

 Surface 
Wind Speeds 

Surface 
NO2* 

NO2 TVCDs MDA8 
O3 

Surface 
Temperatures 

Daily Maximum 
Temperature 

Surface 
NO2* NO2 TVCDs 

Black and African 
Americans –0.31 0.56 0.61 0.41 0.19† 0.19† 0.25 0.17† 

Hispanics and 
Latinos –0.24 0.62 0.67 0.55 0.28 0.33 0.46 0.39 

Asians –0.34 0.59 0.68 0.51 0.30 0.28 0.32 0.25 

Below Poverty 
Tracts –0.29 0.62 0.64 0.50 0.26 0.30 0.38 0.25 

LINs –0.32 0.63 0.66 0.50 0.23 0.27 0.40 0.24 

Winter 

 Surface Wind Speeds Surface NO2* NO2 TVCDs Surface 
Temperatures 

Surface 
NO2* NO2 TVCDs 

Black and African 
Americans –0.75 0.60 0.65 – – – 

Hispanics and 
Latinos –0.65 0.70 0.64 – 0.44 0.28 

Asians –0.77 0.69 0.75 – – – 

Below Poverty 
Tracts –0.71 0.63 0.54 – – – 

LINs –0.78 0.64 0.60 – – – 

 487 

Summary, Future Opportunities, and Implications. We have demonstrated that individual daily 488 

TROPOMI observations capture a major portion of census-tract scale NO2 inequalities in the New 489 

York City–Newark UA using high spatial resolution (250 m x 250 m) GCAS and GeoTASO 490 

remote sensing measurements as a standard of comparison. LISTOS airborne observations resolve 491 

length scales of dispersion, allowing for accurate representations of tract averaged NO2 TVCDs. 492 

We show that spatially and temporally coincident TROPOMI and aircraft measurements are 493 

strongly correlated (0.82–0.97) with slopes of 0.82 ± 0.10–1.05 ± 0.07 and 0.76 ± 0.09–0.96 ± 0.06 494 

for relative and absolute inequalities, respectively. Moreover, daily TROPOMI NO2 inequalities 495 

are generally insensitive to observation resolution for UA-mean pixel areas smaller than 60 km2—496 

therefore, key spatial scales for measuring NO2 inequalities are larger than those of atmospheric 497 

NO2 gradients,16 as tracts with similar population characteristics spatially aggregate, even in New 498 

York City and Newark where the structure of racial segregation is highly heterogeneous.13, 70 As a 499 

result, fine-scale observations may not always be required to understand variability in intraurban 500 
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air pollution disparities, especially if biases can be well characterized, opening new opportunities 501 

for satellite remote sensing, as well as chemical transport modeling. We limit our conclusions to 502 

decision-making on city-wide NO2 inequalities, as we have not attempted to resolve near-field 503 

impacts of individual polluters in communities with air pollution-related environmental justice 504 

concerns, instead focusing on accumulated NO2 burdens from ubiquitous and overlapping urban 505 

NOx sources. Daily TROPOMI observations cannot replace hyper-localized community-driven 506 

monitoring,85 but spatially comprehensive and temporally resolved satellite measurements offer 507 

complimentary information on spatiotemporal trends and in unmonitored locations.  508 

We report mean daily NO2 inequalities of 28–30% for Black and African Americans, Hispanics 509 

and Latinos, and Asians and inequalities of 25% for residents of below poverty census tracts. When 510 

race-ethnicity and income metrics are combined, we find 38% greater population-weighted NO2 511 

TVCDs for people of color living in low-income tracts (LINs). These mean daily NO2 inequalities 512 

equal those based on TROPOMI NO2 TVCDs first oversampled to 0.01o x 0.01o to within 513 

associated uncertainties. Biases arise using individual observations with reduced UA coverage due 514 

to inadequate sampling of key race-ethnicity and income groups, affecting mean daily NO2 515 

inequalities and the precision of individual daily results (Figure S5). The dependence of city-level 516 

inequalities on sampling coverage has relevance for other measurement approaches for which it is 517 

difficult to collect observations city wide, for example, mobile monitoring. Reliance on clear sky 518 

measurements likely biases absolute NO2 inequalities low, and relative inequalities to a smaller 519 

extent, as UA-wide mean surface NO2* mixing ratios are 40% higher (3.8 ppb) on low (<30%) 520 

than high-coverage (>30%) days and as TROPOMI absolute inequalities are strongly, positively 521 

associated with overall NO2 pollution, at least in the New York City–Newark UA.  522 
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Observations of daily NO2 inequalities offer new insight into the causes and countermeasures of 523 

neighborhood-level disparities through their statistical relationships with other factors. We present 524 

empirical evidence for the systematic placement of NOx sources in communities of color and low-525 

income neighborhoods across the New York City–Newark UA. Specifically, absolute NO2 526 

inequalities are strongly correlated with overall NO2 pollution, while relative NO2 inequalities are 527 

not. The issue of source placement has been long identified by community organizations and 528 

residents, with TROPOMI providing space-based accountability of whether the promises of recent 529 

legislation in both states to consider cumulative burdens during permitting are kept.86, 87 530 

Municipalities have several tools for addressing existing siting disparities: establishing penalties; 531 

eliminating nonconforming uses; using environmental reviews, impact analyses, and 532 

comprehensive planning; and tightening existing zoning codes in polluted neighborhoods with 533 

marginalized and vulnerable populations. Daily TROPOMI observations enable approaches to 534 

prioritize affected communities where and when NO2 burdens are highest. We find more frequent 535 

stagnation conditions in the coming decades will exacerbate neighborhood-level NO2 inequalities, 536 

and warming summer surface temperatures will increase cumulative disparities from overlapping 537 

NO2 and urban heat burdens. So informed, municipalities have opportunities for targeted 538 

interventions focused on redressing harms and eliminating disparities by preventing the arrival of 539 

new sources and decreasing existing NOx emissions in overburdened communities. In addition, 540 

because NO2 inequalities are positively associated with high MDA8 O3 in the New York City–541 

Newark UA, targeted NOx emissions reductions in communities of color and low-income 542 

neighborhoods have the potential to improve O3 city wide. 543 

 544 
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