

1 Daily Satellite Observations of Nitrogen Dioxide Air
2 Pollution Inequality in New York City, New York
3 and Newark, New Jersey: Evaluation and Application

4 *AUTHOR NAMES:* Isabella M. Dressel¹, Mary Angelique G. Demetillo¹, Laura M. Judd², Scott J.
5 Janz³, Kimberly P. Fields⁴, Kang Sun^{5,6}, Arlene M. Fiore⁷, Brian C. McDonald⁸, and Sally E.
6 Pusede^{1*}

7 *AUTHOR ADDRESSES:*

8 ¹Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA

9 ²NASA Langley Research Center, Hampton, VA 23681, USA

10 ³NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

11 ⁴Carter G. Woodson Institute for African American and African Studies, University of Virginia,
12 Charlottesville, VA 22904, USA

13 ⁵Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo,
14 NY 14260, USA

15 ⁶Research and Education in eNergy, Environment and Water (RENEW) Institute, University at
16 Buffalo, Buffalo, NY 14260, USA

17 ⁷Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of
18 Technology, Cambridge, MA 02139, USA

19 ⁸Chemical Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, CO 80305,
20 USA

21 *Corresponding author: sepusede@virginia.edu

22 **Abstract.** Urban air pollution disproportionately harms communities of color and low-income
23 communities in the U.S. Intraurban nitrogen dioxide (NO₂) inequalities can be observed from
24 space using the TROPOspheric Monitoring Instrument (TROPOMI). Past research has relied on
25 time averaged measurements, limiting our understanding of how neighborhood-level NO₂
26 inequalities co-vary with urban air quality and climate. Here, we use fine scale (250 m x 250 m)
27 airborne NO₂ remote sensing to demonstrate daily TROPOMI observations resolve a major portion
28 of census tract-scale NO₂ inequalities in the New York City–Newark urbanized area.
29 Spatiotemporally coincident TROPOMI and airborne inequalities are well correlated ($r = 0.82$ –
30 0.97), with slopes of 0.82–1.05 for relative and 0.76–0.96 for absolute inequalities for different
31 groups. We calculate daily TROPOMI NO₂ inequalities over May 2018–September 2021,
32 reporting disparities of 25–38% with race, ethnicity, and/or household income. Mean daily
33 inequalities agree with results based on TROPOMI measurements oversampled to 0.01° x 0.01° to
34 within associated uncertainties. Individual and mean daily TROPOMI NO₂ inequalities are largely
35 insensitive to pixel size, at least when pixels are smaller than ~60 km², but are sensitive to low
36 observational coverage. We statistically analyze daily NO₂ inequalities, presenting empirical
37 evidence of the systematic overburdening of communities of color and low-income neighborhoods

38 with polluting sources, regulatory ozone co-benefits, and worsened NO₂ inequalities and
39 cumulative NO₂ and urban heat burdens with climate change.

40 **Synopsis.** Daily TROPOMI satellite observations resolve a majority of intraurban NO₂ inequalities
41 in New York City and New Jersey; NO₂ inequalities covary with air quality and climate variables

42 **Keywords.** Urban air pollution, environmental justice, nitrogen dioxide, satellite measurements,
43 TROPOMI

44 **1 INTRODUCTION**

45 New York City, New York and Newark, New Jersey are populous U.S. cities with poor air quality,
46 where there are documented inequalities in air pollution concentrations and health impacts
47 affecting communities of color and low-income residents.¹⁻⁷ There have been decades of
48 community organizing and activism around environmental racism issues, including air pollution
49 and asthma, for example, in the South Bronx, West Harlem, and Ironbound.⁸⁻¹⁰ Air quality can
50 vary substantially between neighborhoods in the same city, and recent observational and
51 computational advances have improved quantitative estimates of intraurban inequalities across the
52 U.S.¹¹⁻¹⁷ However, fine-scale pollutant mapping typically relies on measurements that are short
53 timescale snapshots or long time averages, trading temporal information for enhanced spatial
54 detail. As a result, we have less knowledge of temporal variability in neighborhood-level
55 inequalities and relationships between inequalities, urban air quality issues such as ozone, and
56 climate change.

57 Nitrogen dioxide (NO₂) is a criteria pollutant and surface ozone (O₃) precursor. NO₂ is a
58 chemically reactive primary pollutant, and, therefore, NO₂ concentrations are variable in space and

59 time, with characteristic NO₂ distance decay gradients away from sources equaling hundreds of
60 meters to 2 km.¹⁸⁻²⁰ NO_x is emitted as NO_x (\equiv NO + NO₂), with sources dominated by fossil fuel
61 combustion in cities, especially traffic exhaust.²¹⁻²³ NO₂ exposure is associated with numerous
62 adverse health effects,²⁴⁻²⁹ and roadway residential proximity has been linked to asthma-related
63 urgent medical visits, pediatric asthma, cardiac and pulmonary mortality, and preeclampsia and
64 preterm birth.³⁰⁻³⁵ NO₂ concentrations and NO_x sources are unequally distributed with race,
65 ethnicity, and income in U.S. cities,^{1, 2, 4-6, 12-14, 17, 36} with urban NO₂ inequalities being large enough
66 to cause health disparities.^{11, 24}

67 To date, air pollution inequality analyses focusing on primary pollutants like NO₂ have typically
68 prioritized spatial rather than temporal information, as observations and models must resolve
69 length scales of atmospheric dispersion to fully describe disparities. Satellite NO₂ tropospheric
70 vertical column densities (TVCDs) have been incorporated into regression models and other
71 measurement-model hybrid surface NO₂ products relevant for health and environmental justice
72 applications, with spatial resolutions ranging 100 m to 0.01° (~1 km).^{11, 12, 24} The TROPOspheric
73 Monitoring Instrument (TROPOMI) currently provides the highest spatial resolution global
74 satellite NO₂ TVCDs, with TROPOMI describing NO₂ inequalities at census tract scales directly
75 after TVCDs are oversampled to 0.01° x 0.01°, time averaging at least multiple months of
76 measurements.^{13, 14, 17} For reference, the average area of census tracts in New York City and
77 Newark is 2.1 km². Oversampled TVCDs have been shown to observe NO₂ inequalities
78 equivalently to high spatial resolution (250 m x 500 m) airborne remote sensing to within
79 associated uncertainties, independently of patterns in the structure and heterogeneity of urban
80 racial segregation, and similarly as measured at the surface.^{13, 17} TROPOMI has an order of
81 magnitude improved spatial resolution than its predecessor OMI, enabling analyses of NO₂ spatial

82 distributions with less time averaging,^{37, 38} potentially revealing new insight into the sources and
83 controls over intraurban NO₂ inequalities. However, with current TROPOMI nadir pixel areas of
84 ~20 km², the need for oversampling is assumed. As a consequence of the loss in temporal
85 resolution, distributive NO₂ inequalities are not easily situated within our broader understanding
86 of urban air quality and climate, and vice versa.

87 In this manuscript, we evaluate the use of daily TROPOMI observations to describe census tract-
88 scale NO₂ inequalities with race, ethnicity, and income in the New York City–Newark urbanized
89 area (UA). First, we report NO₂ inequalities using airborne remote sensing capable of resolving
90 NO₂ distance decay gradients, with pixel dimensions of 250 m x 250 m, collected during the 2018
91 NASA Long Island Sound Tropospheric Ozone Study (LISTOS). The airborne observations serve
92 as a reference for evaluating tract-scale NO₂ inequalities determined using spatially and temporally
93 coincident daily TROPOMI NO₂ TVCDs. We show that the airborne and TROPOMI inequalities
94 are strongly correlated and the daily TROPOMI TVCDs resolve a major portion of tract-scale NO₂
95 inequalities. We calculate daily TROPOMI NO₂ inequalities from May 2018–September 2021 and
96 analyze biases in individual and mean daily TROPOMI results as a function of measurement pixel
97 area, which range 20 to 91 km², and UA sampling coverage. Finally, we interpret empirical
98 relationships between daily TROPOMI NO₂ inequalities and overall NO₂ pollution, O₃ air quality,
99 and climate-relevant atmospheric conditions.

100 **2 MEASUREMENTS AND METHODS**

101 ***GCAS and GeoTASO.*** The Geostationary Coastal and Air Pollution Events (GEO-CAPE)
102 Airborne Simulator (GCAS)³⁹ and Geostationary Trace gas and Aerosol Sensor Optimization
103 (GeoTASO)⁴⁰ instruments are push broom spectrometers that function as satellite analogs for

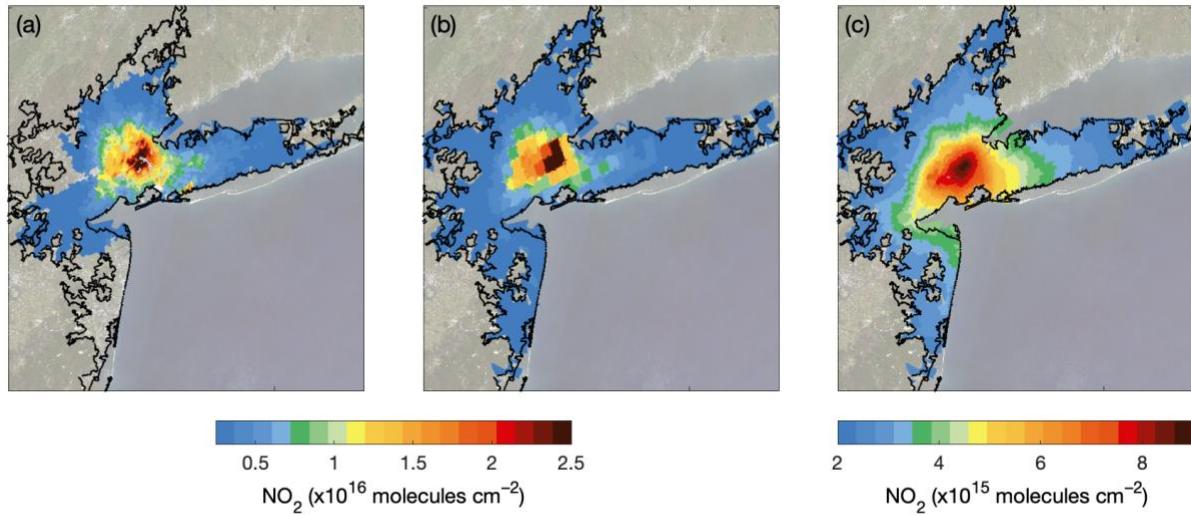
104 NASA airborne missions. GeoTASO makes hyperspectral nadir-looking measurements of
105 backscattered solar radiation in the ultraviolet (290–390 nm) and visible (415–695 nm). GCAS
106 makes similar observations at 300–490 nm (optimized for air quality) and 480–900 nm (optimized
107 for ocean color). Each of the two channels in both instruments use two-dimensional charge-
108 coupled device (CCD) array detectors, where one CCD dimension provides the spectral coverage,
109 one provides the cross-track coverage across a 45° field of view, and the movement of host aircraft
110 generates the along-track coverage. The GCAS and GeoTASO datasets used here have identical
111 NO₂ retrieval algorithms, which are similar to those of major satellite instruments, including
112 TROPOMI, and eventually TEMPO.⁴¹⁻⁴³ Briefly, NO₂ differential slant columns are produced by
113 fitting the 425–460 nm spectral window using QDOAS and a measured reference spectrum
114 collected over a nearby area away from NO₂ sources. Differential slant columns are converted to
115 vertical column densities using an air mass factor (AMF), which is a function of viewing and solar
116 geometries, surface reflectance, and meteorological and trace-gas vertical profile shapes, among
117 other variables (see Judd et al.⁴³ and Judd et al.⁴⁴ for details). NO₂ vertical profiles are calculated
118 using bias-corrected PRATMO stratospheric NO₂ climatologies^{41, 45, 46} and hourly output from the
119 North American Model-Community Multiscale Air Quality (NAMCMAQ) model (12 km x 12
120 km) from a developmental analysis from the National Air Quality Forecasting Capability.⁴⁷ The
121 resulting GCAS and GeoTASO TVCDs have a spatial resolution of 250 m x 250 m.

122 During the Long Island Sound Tropospheric Ozone Study (LISTOS), GeoTASO flew on the
123 NASA LaRC HU-25 Falcon in June 2018 and GCAS flew onboard the NASA LaRC B200 from
124 July–September 2018. On days when elevated regional air pollution was predicted (Table S1), a
125 large raster flight pattern spanning nearly the full New York City–Newark UA (Figures 1a and
126 S1a) was mapped in the morning (9–11 am local time, LT) and afternoon (1:30–4:10 pm LT). On

127 other days, aircraft followed a smaller raster flight pattern (Figure S1b), sub-sampling the UA in
128 the early morning (8:15–9:50 am LT), late morning (9:50–11:30 am LT), early afternoon (1:15–
129 3:00 pm LT), and late afternoon (3:00–4:45 pm LT). During LISTOS, Judd et al.⁴⁴ reported GCAS
130 and GeoTASO TVCDs agreed with coincident ground-based Pandora NO₂ column measurements
131 to within $\pm 25\%$ with no apparent overall bias. Here, we focus on cloud-free observations from 37
132 large and small NO₂ TVCD flight rasters collected on 13 days having sampled at least 60% of
133 census tracts in the New York City-Newark UA. On average, GCAS and GeoTASO sampled 79
134 $\pm 7\%$ of UA census tracts. Compared to the full New York City-Newark UA, Black and African
135 Americans, Hispanics and Latinos, and Asians were overrepresented by 16–25% in census tracts
136 sampled during the large and especially small raster pattern (Table S2).

137 **TROPOMI.** The TROPospheric Ozone Monitoring Instrument (TROPOMI) is a hyperspectral
138 spectrometer onboard the sun-synchronous Copernicus Sentinel-5 Precursor (S-5P) satellite.^{48, 49}
139 S-5P has an equatorial crossing time of 1:30 pm LT, with observations collected over the New
140 York–Newark UA (Figure 1b) between 1–3 pm LT once or twice daily. NO₂ is retrieved by fitting
141 the 405–465 nm spectral band based on an updated OMI DOMINO algorithm and work from the
142 QA4ECV project.^{50–54} NO₂ TVCDs have a documented low-bias over polluted scenes, with
143 uncertainties driven by spatially and temporally coarse inputs to the AMF,⁵⁵ including the surface
144 albedo (monthly $0.5^\circ \times 0.5^\circ$ OMI climatology)⁵⁶ and NO₂ profile shape (daily $1^\circ \times 1^\circ$ TM5-MP
145 output).⁵⁷ We use Level 2 NO₂ TVCDs reprocessed on the S5P-PAL system (qa value > 0.75).
146 From 1 May 2018 to 6 August 2019, encompassing the LISTOS period, the nadir spatial resolution
147 of TROPOMI NO₂ TVCDs was $3.5 \text{ km} \times 7 \text{ km}$, with typical individual pixel areas of $27\text{--}63 \text{ km}^2$
148 (mean $\pm 1\sigma$). Subsequently, the spatial resolution improved to $3.5 \text{ km} \times 5.5 \text{ km}$ at nadir,⁵⁸ giving
149 pixel areas of $21\text{--}49 \text{ km}^2$ (mean $\pm 1\sigma$) over the New York City–Newark UA. We focus on the

150 individual daily TVCDs (an example is shown in Figure 1b) and observations over May 2018–
151 September 2021 oversampled to $0.01^\circ \times 0.01^\circ$ using a physics-based algorithm (Figure 1c).⁵⁹

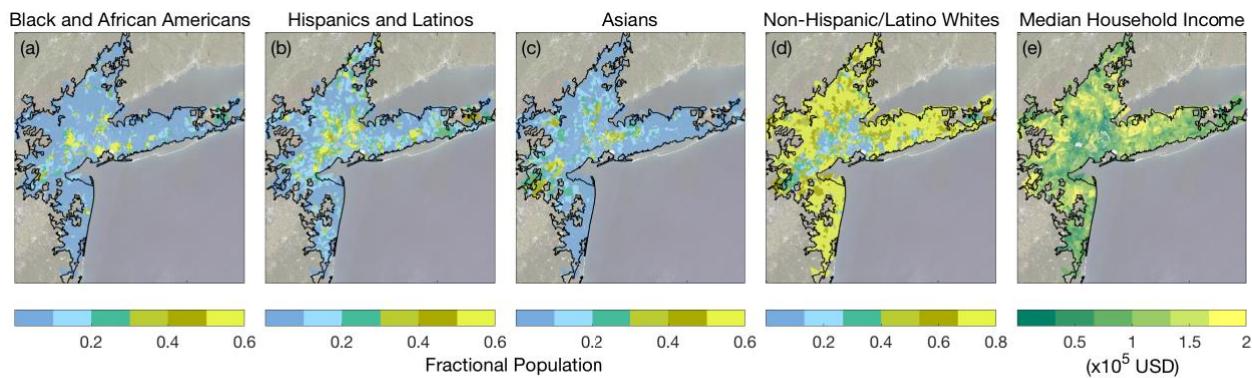


153 **Figure 1.** Example airborne NO₂ TVCDs (molecules cm⁻²) collected on 30 June 2018 at 1–4 pm
154 during a large raster flight pattern (250 m x 250 m) (a), TROPOMI measurements on the same
155 day, which have a mean pixel area of 43 km² (b), and TROPOMI observations oversampled to
156 0.01° x 0.01° over 1 May 2018–30 September 2021 averaged to underlying census tracts. The black
157 outline describes the New York City–Newark UA. Background map data: Landsat 8 composite
158 January 2017–June 2020.

159 **Census Tract NO₂ Inequalities.** We average NO₂ TVCDs within 2018 census tract polygons for
160 the New York City–Newark UA. Individual airborne and TROPOMI TVCDs are spatially
161 continuous but discretized to $0.001^\circ \times 0.001^\circ$ at the pixel level prior to tract averaging without
162 regridding or oversampling. NO₂ tract-averaged TVCDs are weighted by tract-scale populations
163 of non-Hispanic/Latino Black and African Americans, non-Hispanic/Latino Asians, all races
164 identifying as Hispanic or Latino, and non-Hispanic/Latino whites (Eq. S1). Poverty status is
165 defined according to the U.S. Census Bureau family Ratio of Income to Poverty. Poverty
166 thresholds vary by family size and family member age but not geographically. The U.S. Census
167 intends for poverty thresholds to be a “statistical yardstick” rather than a complete representation
168 of families’ needs. Below-poverty tracts are those with greater than 20% of households having an

169 income-to-poverty ratio <1. Tracts above the poverty line are defined as those with household
170 income-to-poverty ratios of >1. Tract-scale NO₂ TVCDs within both categories are population
171 weighted by residents at the given poverty status. We combine race-ethnicity and income metrics,
172 categorizing census tracts as low-income and non-white (LIN), i.e., people of color in low-income
173 tracts, or high-income and white (HIW). In LIN tracts, NO₂ TVCDs are weighted by the population
174 of Black and African Americans, Hispanics and Latinos, Asians, and/or American Indians and
175 Alaska Natives in the lowest income quintile tracts (household incomes <\$49,544.50). Because
176 American Indians and Alaska Natives comprise less than 0.2% of the New York City–Newark UA
177 population, we do not report results for this group separately. In HIW tracts, TVCDs are weighted
178 by the population of non-Hispanic/Latino whites in the highest income quintile tracts (household
179 incomes >\$117,664). When we compute results in New York City and Newark separately, dividing
180 the UA along state lines, lowest income quintile tracts are those with tract-averaged median
181 household incomes <\$48,911 and <\$51,250, respectively; highest income quintile tracts are those
182 with tract-averaged median household incomes >\$112,940 and >\$125,367, respectively. We
183 discuss NO₂ disparities in terms of relative and absolute inequalities computed as percent (%) and
184 absolute differences (molecules cm⁻²) in population-weighted census tract-averaged TVCDs.
185 Race-ethnicity inequalities are in reference to population-weighted NO₂ TVCDs for non-
186 Hispanic/Latino whites and poverty status inequalities are in reference to NO₂ TVCDs in census
187 tracts above the poverty line. While there are numerous dimensions of air pollution inequity, our
188 focus is on the evaluation and application of daily satellite measurements; therefore, we limit the
189 number of demographic characteristics considered in the analysis. Census data are from the 2019
190 American Community Survey (ACS): 5-Year dataset. Fractional census tract populations for the
191 four largest race-ethnicity groups and median household incomes are mapped in Figure 2 and

192 census tract population densities are shown in Figure S2. The ACS is a higher time resolution
 193 alternative to the longform decennial census. The ACS accounts for variations in census tract
 194 sampling rates and differential group response rates through a complex weighting process. Sample
 195 weights prioritize accuracy over precision, with individual tract estimates being more imprecise in
 196 tracts with heterogeneous populations.^{60, 61} We manage this imprecision through aggregation by
 197 population weighting. We focus on the UA, defined as densely populated and commercial areas
 198 within cities, to describe intraurban inequalities rather than urban-suburban differences.



199
 200 **Figure 2.** Fractional census tract populations for Black and African Americans (a), Hispanics and
 201 Latinos of all races (b), Asians (c), non-Hispanic/Latino whites (d), and median household incomes
 202 (e) in the New York City–Newark UA (black line). Background map data: Landsat 8 composite
 203 January 2017–June 2020.

204 **Measurements of Surface NO₂*, O₃, and Meteorology.** We use NO₂* surface observations
 205 collected at 11 stations across the New York City–Newark UA (Figure S3a). These measurements
 206 are made by decomposing NO₂ to NO over a heated molybdenum catalyst, followed by the
 207 detection of NO using the chemiluminescence technique. The resulting NO₂ data have a known
 208 positive interference from higher-order nitrogen oxides and ammonia, which also decompose at
 209 non-unity efficiency in the presence of the catalyst.^{62–64} We use the term NO₂* in
 210 acknowledgement of this interference, opting not to apply a correction factor as we are interested

211 in the distance dependence of the correlations between surface NO₂* and overhead TVCDs, rather
212 than the surface NO₂ mixing ratios themselves. We use O₃ measurements from 17 monitoring
213 stations within the UA (Figure S3b) converted to the policy-relevant metric of the daily maximum
214 8-hour average (MDA8) O₃ mixing ratio. Temperature and wind speed measurements are collected
215 at 14 stations throughout the New York City–Newark UA as part of the Automated Surface
216 Observing System and Automated Weather Observing System (Figure S3c), accessible through
217 the Iowa State University Iowa Environmental Mesonet download service. Because of station-
218 level variability in the data collection interval, we average individual station meteorological
219 measurements from 12–3 pm local time (LT) prior to computing the UA-wide mean.

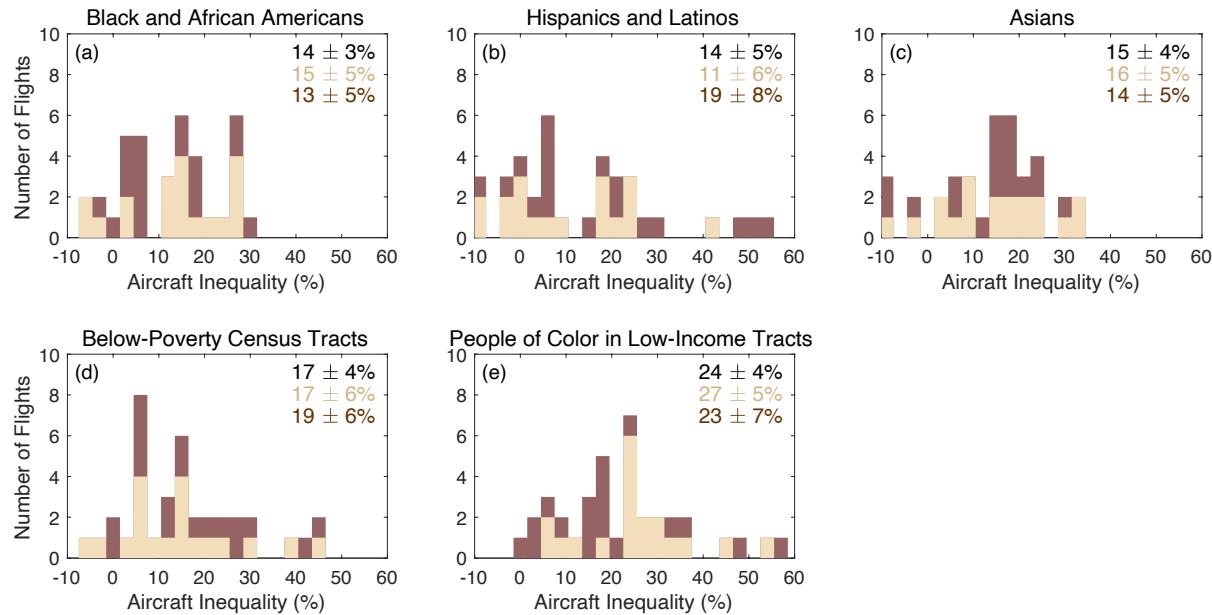
220 **NO_x Emissions Inventories: FIVE and NEI.** The Fuel-based Inventory of Vehicle Emissions
221 (FIVE) tabulates monthly on-road and off-road gasoline and diesel mobile source emissions at 4
222 km x 4 km U.S. wide. The FIVE is based on publicly available datasets of taxable fuel sales and
223 road-level traffic and time-resolved weigh-in-motion traffic counts.^{22, 65, 66} We use emissions from
224 the 2018, 2019, 2020 COVID-19, and 2020 business-as-usual (BAU) FIVE for 2018, 2019, 2020,
225 and 2021, respectively. The 2020 COVID-19 inventory was developed using monthly scaling
226 factors from U.S. Energy Information Administration fuel sales reports.²² In the 2020 BAU FIVE,
227 fuel use is assumed unchanged from 2019.²² See McDonald et al.⁶⁵ and Harkins et al.²² for a
228 detailed discussion of the uncertainties, which are $\pm 24\%$ for both gasoline and diesel vehicles.
229 Annual NO_x stationary source emissions are taken from the 2017 National Emissions Inventory
230 (NEI17), including industrial and commercial facilities, power plants, and airports. Uncertainties
231 in power plant emissions are $\pm 25\%$ and uncertainties for industrial facilities and other stationary
232 sources are $\pm 50\%$.^{67, 68}

233 **3 RESULTS AND DISCUSSION**

234 ***GCAS and GeoTASO Census Tract-Level NO₂ Inequalities during LISTOS.*** We report
235 population-weighted census tract-scale NO₂ inequalities measured during each of the 37 LISTOS
236 flights within the New York City–Newark UA in Figure 3 and Table S3. Population-weighted NO₂
237 TVCDs for Black and African Americans, Hispanics and Latinos, and Asians are $14 \pm 3\%$, $14 \pm$
238 5% , and $15 \pm 4\%$ higher than for non-Hispanic/Latino whites, respectively. NO₂ TVCDs are on
239 average $17 \pm 4\%$ greater in tracts below the poverty line compared to those above. When race-
240 ethnicity and income metrics are combined, NO₂ TVCDs are $24 \pm 4\%$ higher in LIN than HIW
241 census tracts. Errors are defined as 95% confidence intervals for mean inequalities, derived from
242 bootstrapped distributions sampled with replacement 10^4 times.

243 NO₂ inequalities are more variable between days than by time of daytime during LISTOS. While
244 population-weighted and/or income-sorted NO₂ TVCDs for all groups are on average 14–28%
245 higher during morning (8–11:30 am LT) than afternoon flights (1–5 pm LT), corresponding
246 median relative and absolute NO₂ inequalities are not significantly different for any group (Mann-
247 Whitney test, $p < 0.050$). Mean relative and absolute inequalities are also similar during morning
248 and afternoon flights, with exceptions of relative inequalities for Hispanics and Latinos and
249 absolute inequalities for Asians and in LIN tracts. This suggests observations collected in the early
250 afternoon by TROPOMI capture daytime patterns in tract-scale population-weighted NO₂ TVCD
251 (not surface mixing ratio) differences generally, at least during LISTOS. The small number of
252 flights limits our ability to statistically infer relationships between NO₂ disparities and
253 environmental factors; however, we observe moderate, negative correlations between absolute
254 inequalities and mean surface wind speeds and moderate, positive correlations with UA-mean
255 NO₂* and NO₂ TVCDs for some groups ($p < 0.050$) (Table S4). This is consistent with slower

256 surface winds reducing the mixing of NO₂ pollution away from NO_x sources and higher NO₂
 257 pollution worsening absolute inequalities.



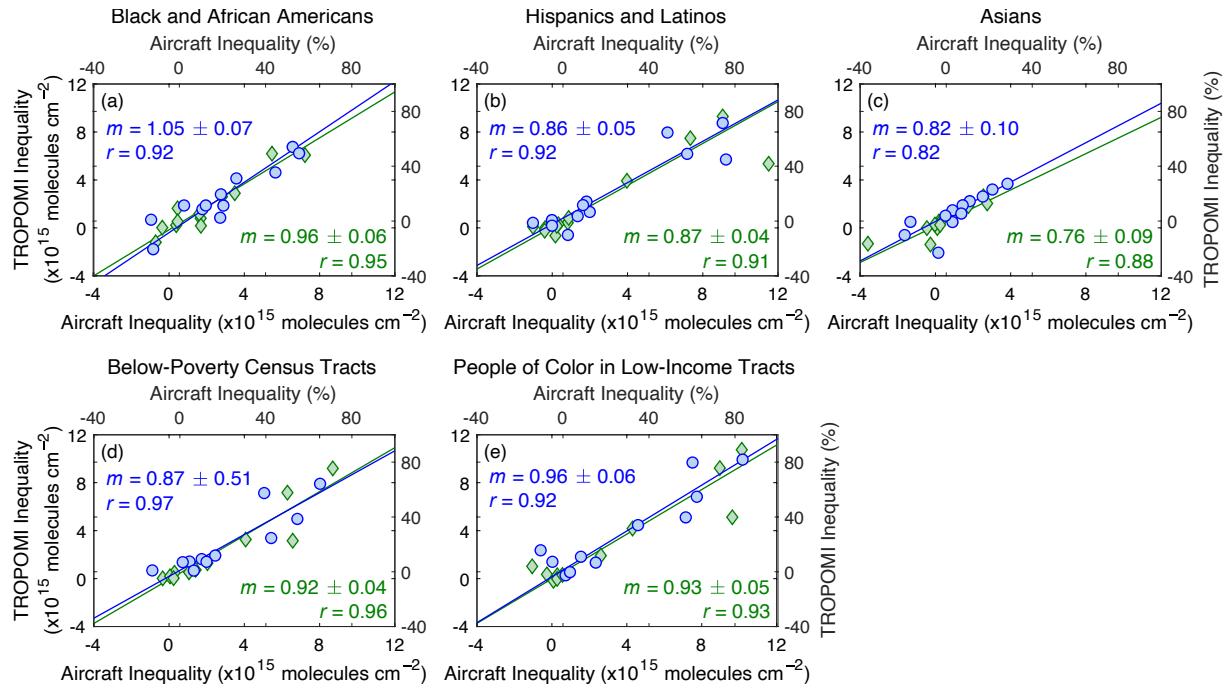
258

259 **Figure 3.** Airborne NO₂ inequalities for each of the 37 LISTOS flights for Black and African
 260 Americans (a), Hispanics and Latinos (b), and Asians (c) compared to non-Hispanic/Latino whites,
 261 below poverty versus above poverty tracts (d), and LIN compared to HIW tracts (e). Morning (8–
 262 11:30 am LT) (tan) and afternoon (1–5 pm LT) (brown) flights are shown separately. LISTOS
 263 mean inequalities with 95% confidence intervals are reported in each panel, for all flights (black)
 264 and separately in the morning (tan) and afternoon (brown).

265 **Evaluating Daily TROPOMI Observations.** To determine the extent to which daily TROPOMI
 266 measurements resolve census tract-level disparities, we compare NO₂ inequalities for spatially and
 267 temporally coincident tract-averaged GCAS, GeoTASO, and TROPOMI observations within the
 268 New York City–Newark UA. We consider measurements to be coincidental if the minimum and
 269 maximum overfly times of airborne columns within a given census tract occur within ±30 minutes
 270 of the TROPOMI overpass. Daily relationships between airborne and TROPOMI inequalities are
 271 fit using an unweighted bivariate linear regression model (Figure 4).⁶⁹ We infer the portion of NO₂

272 inequalities captured by TROPOMI from the slope of this line and assess agreement between the
273 airborne and TROPOMI-derived results using Pearson correlation coefficients.

274 Daily TROPOMI observations capture most tract-scale NO₂ differences and are well correlated
275 with inequalities measured by GCAS and GeoTASO. Correlation slopes are 0.82 ± 0.10 – $1.05 \pm$
276 0.07 for relative inequalities and 0.76 ± 0.09 – 0.96 ± 0.06 for absolute inequalities, implying
277 TROPOMI detects at least 82% of relative and 76% of absolute inequalities, with slopes for many
278 population groups being even higher. For the comparison, the mean pixel area of coincident
279 TROPOMI TVCDs is 44 ± 18 km² ($\pm 1\sigma$), which is much larger than typical atmospheric NO₂
280 distance decay gradients of a few hundred meters.^{18–20} While some precision is lost, our results
281 suggest measurements on the scale of these gradients, for example GCAS and GeoTASO, are not
282 required to constrain the majority of city-wide census tract-scale NO₂ inequalities. Airborne and
283 TROPOMI inequalities are strongly correlated, with Pearson correlation coefficients ranging 0.82–
284 0.97 for relative and 0.88–0.96 for absolute inequalities. Slopes and Pearson correlation
285 coefficients do not improve significantly when inequalities are weighted by the number of
286 coincident census tracts, mean TROPOMI pixel areas, UA-mean surface wind speeds, or mean
287 TROPOMI NO₂ TVCDs, suggesting these variables do not have a strong influence over the
288 agreement, at least in the New York City–Newark UA during LISTOS.



289

290 **Figure 4.** Daily relative (%) (blue circles) and absolute (molecules cm^{-2}) (green diamonds)
291 inequalities measured by GCAS and GeoTASO versus TROPOMI during LISTOS for Black and
292 African Americans (a), Hispanics and Latinos (b), and Asians (c) compared to non-
293 Hispanic/Latino whites, below-poverty versus above poverty tracts (d), and LIN compared to HIW
294 tracts (e). Fits are derived from an unweighted bivariate linear regression model. Slopes (m) and
295 Pearson correlation coefficients (r) for each fit are reported for both relative (blue) and absolute
296 (green) inequalities. One data point in panel d is out of frame (-119.5, -136.4).

297 **Table 1.** Influence of TROPOMI pixel area and sampling coverage on both mean and individual
 298 daily relative inequalities (May 2018–September 2021), as well as comparison between mean daily
 299 and oversampled relative inequalities for Black and African Americans, Hispanics and Latinos,
 300 and Asians compared to non-Hispanic/Latino whites, for below poverty versus above poverty
 301 tracts, and for LIN compared to HIW tracts. The pixel area analysis only includes days with >30%
 302 UA coverage. Observations are grouped such that each category contains at least 80 observation
 303 days. Inequalities are binned by days with low (<30%), moderate (30–60%), and high (>60%) UA
 304 coverage. Daily inequalities are assessed using the coefficient of variation. Errors are 95%
 305 confidence intervals based on bootstrapped distributions sampled with replacement 10^4 times. The
 306 oversampled TROPOMI TVCDs are oversampled to $0.01^\circ \times 0.01^\circ$ prior to census tract averaging
 307 for all days, on days with >30% coverage, and on days with >60% coverage, with uncertainties as
 308 standard mean errors.

Pixel Area (km ²)	Mean of Daily Inequalities					Daily Inequalities				
	Relative Inequalities (%)					Coefficient of Variation				
	Black and African Americans	Hispanics and Latinos	Asians	Below Poverty Tracts	LINs	Black and African Americans	Hispanics and Latinos	Asians	Below Poverty Tracts	LINs
20–25	31 ± 2	30 ± 2	28 ± 2	28 ± 2	40 ± 3	0.44	0.52	0.43	0.45	0.40
25–30	32 ± 3	30 ± 3	28 ± 2	26 ± 3	39 ± 3	0.45	0.53	0.42	0.52	0.41
30–35	31 ± 3	29 ± 3	30 ± 2	26 ± 2	38 ± 3	0.42	0.42	0.32	0.43	0.37
35–45	31 ± 2	26 ± 3	28 ± 2	25 ± 3	38 ± 3	0.37	0.62	0.34	0.53	0.41
45–60	30 ± 3	27 ± 3	28 ± 3	25 ± 2	38 ± 4	0.54	0.60	0.51	0.53	0.53
>60	26 ± 3	25 ± 3	23 ± 2	22 ± 2	31 ± 3	0.47	0.60	0.49	0.50	0.43
UA Coverage (%)										
<30	12 ± 2	11 ± 2	10 ± 2	11 ± 4	18 ± 4	1.99	2.00	2.05	2.47	1.81
30–60	30 ± 3	29 ± 3	26 ± 3	25 ± 3	37 ± 4	0.64	0.62	0.65	0.66	0.65
>60	30 ± 1	28 ± 1	28 ± 1	26 ± 1	38 ± 1	0.40	0.53	0.36	0.45	0.36
Mean of Daily Inequalities						Oversampled Inequalities				
All days	24 ± 1	22 ± 1	21 ± 1	21 ± 1	32 ± 1	28 ± 1	27 ± 1	28 ± 1	25 ± 1	36 ± 2
>30%	30 ± 1	28 ± 1	28 ± 1	25 ± 1	38 ± 1	28 ± 1	27 ± 1	28 ± 1	25 ± 1	35 ± 2
>60%	30 ± 1	28 ± 1	28 ± 1	26 ± 1	38 ± 1	28 ± 1	26 ± 1	28 ± 1	25 ± 1	36 ± 2

309
 310 We calculate daily census tract-scale NO₂ inequalities over May 2018–September 2021 and
 311 investigate the sensitivity of mean and individual daily results to UA-mean TROPOMI pixel area
 312 and UA coverage percentage (Table 1). First, UA-mean daily TROPOMI pixel areas range ~20–
 313 90 km² (Figure S4), providing an empirical test of the resolution dependence of NO₂ inequalities.
 314 We remove days from the analysis when TROPOMI observations cover less than 30% of census
 315 tracts across the New York City–Newark UA (justification below; see Table S5 for an analysis of

316 all days). We find relative inequalities are mostly insensitive to TROPOMI UA-mean pixel area,
317 with significant differences in medians emerging when pixels are larger than $\sim 60 \text{ km}^2$, defined as
318 $p < 0.050$ (Kruskal-Wallis test). Additionally, there is no clear influence of increasing UA-mean
319 pixel area on the coefficient of variation of the individual daily inequalities. Substantial day-to-
320 day variability limits our ability to identify an exact pixel area-sensitivity threshold, and, because
321 observation days with UA-mean pixel areas $> 60 \text{ km}^2$ comprise less than 15% of the full dataset,
322 their inclusion does not significantly affect our results. Relationships between inequalities and UA-
323 mean pixel areas suggest key spatial scales for describing NO_2 inequalities are larger than those of
324 atmospheric NO_2 dispersion gradients, which is consistent with recent work by Chambliss et al.¹⁶
325 and Demetillo et al.¹³, because NO_x emissions sources are ubiquitous and distributed and tracts
326 with similar population characteristics spatially aggregate.⁷⁰

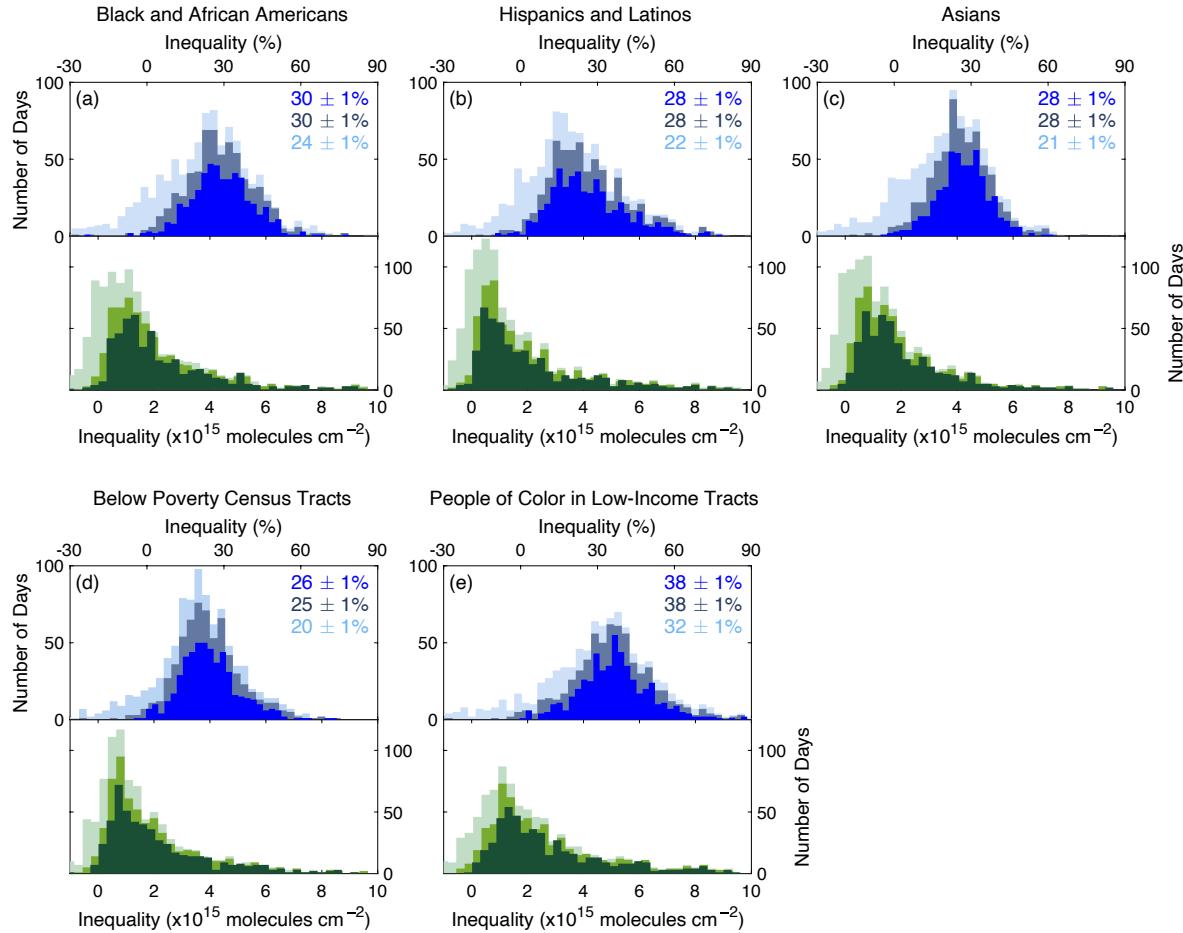
327 Second, we investigate the sensitivity of daily inequalities to TROPOMI observation UA coverage
328 extent (Table 1). Reduced sampling coverage is largely caused by clouds, but snow accumulation
329 can be important in the winter. In the New York City–Newark UA, snow cover accounted for 29%
330 of missing pixels in winter months, with snow present on 43% of observations days in December–
331 February and 12% of total observation days across May 2018–September 2021. Distributions of
332 daily relative and absolute NO_2 inequalities for each group are shown in Figure 5 on all days, on
333 days with at least 30% UA coverage, and on days with at least 60% UA coverage. Inclusion of
334 days with sparse coverage (<30%) decreases mean relative NO_2 inequalities by 4–6 percentage
335 points. Individual daily inequalities are more affected by missing data than means, with increasing
336 coefficients of variation at UA coverage levels of <60% in comparison to days with >90%
337 coverage. Effects of incomplete UA coverage are largely explained by insufficient sampling of
338 key race-ethnicity, poverty, and income groups, with greater coverage capturing more

339 representative UA demographics and observations on lower coverage days more likely to sample
340 population groups in the majority (Figure S5): non-Hispanic/Latino whites (44%) and tracts above
341 the poverty line (73%). As a result, we remove days with <30% UA coverage from our discussion
342 of mean NO₂ inequalities (323 days or 33% of the full dataset) and days with <60% coverage from
343 our analysis of daily inequalities (457 days or 47% of the full dataset). Results are skewed toward
344 clear sky conditions, corresponding to daytime (12–3 pm LT) mean surface NO₂* mixing ratios of
345 8.1 ± 4.4 ppb (days with >30% UA coverage) compared to daytime mean NO₂* of 11.9 ± 6.6 ppb
346 (days with <30% coverage), likely biasing daily absolute NO₂ inequalities low (discussion below).

347 Mean daily population-weighted NO₂ TVCDs over May 2018–September 2021 are 30 ± 1%, 28 ±
348 1%, and 28 ± 1% higher for Black and African Americans, Hispanics and Latinos, and Asians,
349 respectively, compared to non-Hispanic/Latino whites (Figure 5 and Table 1). NO₂ TVCDs are 25
350 ± 1% greater in tracts below the poverty line than above and 38 ± 1% higher in LIN compared to
351 HIW census tracts. We report results separately in New York City and Newark, where mean daily
352 NO₂ inequalities are 19–30% and 24–43%, respectively (Table 2). Means and 95% confidence
353 intervals are derived from bootstrapped daily NO₂ inequality distributions resampled 10⁴ times.
354 We repeat NO₂ inequality calculations by first oversampling the same subset of days to a resolution
355 of 0.01° x 0.01° using a physics-based algorithm⁵⁹ prior to census tract averaging and find
356 oversampled and mean daily results are equal to within associated uncertainties for days with at
357 least 30% UA coverage (Table 1). Finally, our analysis is based on recently reprocessed S5P-PAL
358 TROPOMI TVCDs, which include improvements resolving some of the low biases occurring over
359 polluted northern midlatitude scenes and in the wintertime.⁷¹ Mean daily inequalities computed
360 with the S5P-PAL TVCDs are 3–6 percentage points higher compared to the RPRO and OFFL
361 operational products (Table 2), indicating TROPOMI NO₂ inequality estimates using previously

362 available NO₂ products are biased low, as suggested by Demetillo et al.¹⁷ in their detailed
363 evaluation of oversampled NO₂ TVCDs and census tract-scale inequalities in Houston, Texas.

364 While inequalities based on spatially and temporally coincident airborne and TROPOMI TVCDs
365 are in good agreement (Figure 4), mean daily TROPOMI NO₂ inequalities are significantly higher
366 than those measured by GCAS and GeoTASO during LISTOS (Table 1). This is true both over
367 the full May 2018–September 2021 period and on LISTOS flight days when all TROPOMI
368 TVCDs, not just those coincident with airborne observations, are considered. Absolute inequalities
369 are higher in the winter than summer; however, relative NO₂ inequalities exhibit little seasonal
370 variation. While LISTOS inequalities are within the distribution of daily TROPOMI inequalities,
371 differences in mean disparities are explained by changes in UA observational coverage and
372 corresponding demographic composition. Mean daily TROPOMI inequalities within a typical
373 LISTOS large (30 June 2018) and small (15 August 2018) flight raster are 3–9 and 11–20
374 percentage points lower than across the full New York City–Newark UA (Table 2). However, there
375 are similarities, for example, mean inequalities for Black and African Americans, Hispanics and
376 Latinos, and Asians are comparable to within associated uncertainties, as also observed by GCAS
377 and GeoTASO during LISTOS, and inequality distributions for Hispanics and Latinos exhibit a
378 heavy tail using both daily TROPOMI and aircraft TVCDs.



379

380 **Figure 5.** Daily TROPOMI NO₂ inequalities over May 2018–September 2021 for Black and
 381 African Americans (a), Hispanics and Latinos (b), and Asians (c) compared to non-
 382 Hispanic/Latino whites, below-poverty versus above poverty tracts (d), and LIN compared to HIW
 383 tracts (e). Top panels depict relative inequalities (%) on all days (light blue), on days with at least
 384 30% UA coverage (gray blue), and on days with at least 60% UA coverage (bright blue). Bottom
 385 panels depict absolute inequalities (molecules cm⁻²) on all days (light green), days with at least
 386 30% UA coverage (yellow green), and on days with at least 60% UA coverage (dark green). Mean
 387 relative inequalities and 95% confidence interval are included in each panel for each coverage
 388 threshold: on all days (light blue), on days with at least 30% UA coverage (gray blue), and on days
 389 with at least 60% UA coverage (bright blue).

390 **Table 2.** Mean daily TROPOMI inequalities (May 2018–September 2021) on days with >30%
 391 coverage across the New York City–Newark UA based on the S5P-PAL NO₂ product, as used
 392 throughout the analysis, on days with >30% coverage based on the RPRO and OFFL operational
 393 products, separately in New York City and Newark, and within the large (30 June) and small (15
 394 August) LISTOS flight rasters. Errors are 95% confidence intervals based on bootstrapped
 395 distributions sampled with replacement 10⁴ times.

	New York City– Newark UA (S5P-PAL)	New York City– Newark UA (Operational Product)	New York City, NY	Newark, NJ	Large LISTOS Raster Flight Pattern	Small LISTOS Raster Flight Pattern
Black and African Americans	30 ± 1	26 ± 1	22 ± 1	33 ± 2	22 ± 1	10 ± 1
Hispanics and Latinos	28 ± 1	23 ± 1	19 ± 1	43 ± 2	20 ± 1	11 ± 1
Asians	28 ± 1	25 ± 1	25 ± 1	26 ± 2	19 ± 1	10 ± 1
Below Poverty Tracts	25 ± 1	22 ± 1	20 ± 1	24 ± 1	22 ± 1	14 ± 1
LINs	38 ± 1	32 ± 1	30 ± 1	43 ± 1	32 ± 1	20 ± 1

396

397 Finally, TROPOMI measures NO₂ atmospheric columns rather than surface mixing ratios. For
 398 satellite remote sensing to inform environmental justice decision-making, spatial and temporal
 399 patterns in TVCDs must reflect NO₂ distributions at the surface.^{13, 17} To investigate NO₂ column-
 400 surface relationships, we calculate Pearson correlation coefficients between daily TROPOMI
 401 TVCDs (without averaging to underlying census tracts) and mean daytime (12–3 pm LT) NO₂*
 402 mixing ratios as a function of the distance between observations.^{13, 17, 72} We find the strongest mean
 403 correlations ($r = 0.61 \pm 0.03$; error is the 95% confidence interval) between NO₂* and directly
 404 overhead TVCDs, defined as TVCDs within 1 km of a monitor based on pixel center points. Mean
 405 daily column-surface correlations subsequently weaken with increasing distance, falling to $0.56 \pm$
 406 0.03 at 1–2 km, 0.49 ± 0.02 for 2–5 km, and 0.43 ± 0.02 at 5–10 km. The distance dependance of
 407 mean Pearson correlation coefficients reflects typical NO₂ distance decay gradients,^{18–20} indicating
 408 coarser resolution daily observations resolve finer-scale NO₂ gradients, at least to some extent in
 409 the average. Column-surface correlations covary with wind speeds and overall NO₂ pollution
 410 levels in physically meaningfully ways. Daily r values are significantly, although weakly,
 411 negatively associated with UA-mean surface wind speeds and positively associated with UA-mean
 412 NO₂* and NO₂ TVCDs. Lastly, we find no relationship between Pearson column-surface
 413 correlation coefficients and daily UA-mean pixel area (Table S6).

414 **Daily Variability in NO₂ Inequalities.** Here, we apply the daily TROPOMI NO₂ inequality
 415 observations, describing statistical relationships with overall NO₂ and O₃ pollution and climate-

416 relevant atmospheric conditions (Table 3). We discuss the implications of each in turn. We report
417 Pearson correlation coefficients between NO_2 inequalities, surface NO_2^* mixing ratios, and NO_2
418 TVCDs. We compute Spearman rank correlation coefficients (ρ) between NO_2 inequalities,
419 MDA8 O_3 , surface wind speeds, and surface daytime and daily maximum temperatures, as these
420 relationships are monotonic but nonlinear. Surface NO_2^* mixing ratios, wind speeds, and
421 temperatures are UA-wide means over 12–3 pm LT in correspondence to the TROPOMI overpass
422 time. We calculate r and ρ values on days with >60% TROPOMI UA coverage, separately in the
423 winter (December–February) and summer (June–August).

424 First, we find absolute NO_2 inequalities are strongly associated with UA-mean surface NO_2^* and
425 NO_2 TVCDs. However, relative inequalities are mostly uncorrelated in the winter and only weakly
426 or moderately associated with NO_2 pollution in the summer. Observed differences between
427 absolute and relative inequalities are evidence that NO_x sources are systematically located in
428 communities of color and low-income neighborhoods, as variability in individual terms affecting
429 the NO_2 mass balance will have a larger effect on absolute NO_2 concentrations than on relative
430 differences city wide. Therefore, while incremental NO_x controls will decrease localized NO_2
431 burdens, any emissions above zero will drive continued disparities. Results from daily TROPOMI
432 TVCDs are supported by predictions from the FIVE and NEI. We calculate inequalities in NO_x
433 source densities equivalently to those based on observations (Methods), with point source
434 emissions summed within census tracts and total NO_x emissions (FIVE + NEI) divided by tract
435 area. Inequalities in population-weighted NO_x emission source densities are $90 \pm 6\%$ for Black
436 and African Americans, $95 \pm 5\%$ for Hispanics and Latinos, $71 \pm 6\%$ for Asians, $88 \pm 5\%$ for
437 below-poverty tracts, and $113 \pm 7\%$ for LINs.

438 NO₂ is a key reactant in the chemistry of O₃ production (PO_3); therefore, neighborhood-level NO₂
439 inequalities and urban O₃ are potentially coupled. In the New York City–Newark UA, there were
440 59 exceedances of the MDA8 70 ppb National Ambient Air Quality Standard (NAAQS) over May
441 2018–September 2021. Briefly, PO_3 is a nonlinear function of NO₂. At low NO₂ levels, NO_x
442 emissions reductions decrease PO_3 (chemistry is NO_x limited). At high NO₂ levels, NO_x reductions
443 increase PO_3 (chemistry is NO_x suppressed), with decreases in gas-phase organic compounds
444 being the most effective form of O₃ control, at least until NO₂ is sufficiently reduced to transition
445 to NO_x-limited PO_3 . Here, we find absolute NO₂ inequalities are moderately, positively associated
446 with summertime UA-mean MDA8 O₃ (Table 3), with similar results over the May–September O₃
447 season (Table S7). For comparison, correlation coefficients relating UA-mean surface NO₂* and
448 column NO₂ TVCDs with MDA8 O₃ on >60% UA coverage days are 0.43 and 0.46, respectively.
449 This suggests there are regulatory O₃ co-benefits to reducing NO₂ inequalities and to strategies
450 prioritizing NO_x emissions reductions in communities of color and low-income communities,
451 consistent with recent work showing PO_3 in New York City and Newark trending toward NO_x-
452 limitation.⁷³ Because O₃ is an intermediately long-lived secondary pollutant, it is more evenly
453 distributed and not generally associated with large intraurban exposure disparities.⁷⁴ However,
454 NO₂ concentrations are highly spatially heterogeneous, and NO₂ reductions in neighborhoods
455 overburdened by NO_x sources could potentially worsen O₃ locally. To investigate this, we compare
456 population-weighted census tract-scale MDA8 O₃ NAAQS exceedance frequencies on weekdays
457 and weekends based on surface O₃ measurements (Table S8). In the New York City–Newark UA,
458 NO₂ TVCDs were on average 27% lower on weekends compared to weekdays over May 2018–
459 September 2021. Across U.S. cities, weekday-weekend O₃ differences are a well-established test
460 of the NO₂ dependence of PO_3 , as substantial NO₂ decreases occur without comparatively large

461 changes in other aspects of O₃ chemistry.⁷⁵ We find MDA8 O₃ NAAQS exceedances are more
462 frequent on weekdays than weekends for all race, ethnicity, and/or income population groups
463 (Table S8), indicating that NO_x reductions will not worsen O₃ where NO_x emissions are greatest.
464 This said, we add caution that our results may be influenced by the locations of the O₃ monitors.
465 Finally, atmospheric conditions influence intraurban NO₂ distributions in ways that inform how
466 NO₂ inequalities may scale with climate change. The Northeast U.S. is expected to experience
467 warmer surface temperatures and more frequent stagnation days in summer and winter months,
468 with slower surface winds from reduced mid-latitude cyclone activity and a northward shift of the
469 summer mid-latitude jet stream.⁷⁶⁻⁸¹ We find NO₂ inequalities exhibit moderate to strong negative
470 associations with surface wind speeds, consistent with the accumulation of NO₂ pollution near
471 NO_x sources from reduced atmospheric mixing. This indicates that more frequent atmospheric
472 stagnation events will exacerbate disparities. During summer months, NO₂ inequalities are weakly
473 but significantly positively correlated with both daytime average and maximum daily
474 temperatures. As a result, NO₂ inequalities and temperature may not scale together; however,
475 people of color and low-income residents in New York City and Newark also bear disproportionate
476 urban heat risks compared to non-Hispanic/Latino white and wealthy residents,⁸²⁻⁸⁴ suggesting
477 cumulative unequal climate-driven burdens will be greater without targeted NO_x emission
478 controls.

479 **Table 3.** Correlation coefficients between daily absolute inequalities and UA-mean NO₂* mixing
480 ratios (12–3 pm LT), NO₂ TVCDs, surface wind speeds (12–3 pm LT), surface temperatures (12–
481 3 pm LT), daily maximum temperatures, and MDA8 O₃ mixing ratios. Relationships between daily
482 NO₂ inequalities, surface NO₂*, and NO₂ TVCDs are Pearson correlation coefficients (r). All other
483 relationships are Spearman rank correlation coefficients (ρ). Correlations are separately analyzed
484 in the winter (December–February) and summer (June–August) for days with TROPOMI
485 observations with >60% UA coverage. Only statistically significant coefficients are reported, with
486 r and ρ significant to 1% ($p < 0.010$) unless indicated (\dagger), which means significant to 5%.

Correlations with Absolute Daily Inequalities							Correlations with Relative Daily Inequalities	
Summer								
	Surface Wind Speeds	Surface NO ₂ *	NO ₂ TVCDs	MDA8 O ₃	Surface Temperatures	Daily Maximum Temperature	Surface NO ₂ *	NO ₂ TVCDs
Black and African Americans	-0.31	0.56	0.61	0.41	0.19 [†]	0.19 [†]	0.25	0.17 [†]
Hispanics and Latinos	-0.24	0.62	0.67	0.55	0.28	0.33	0.46	0.39
Asians	-0.34	0.59	0.68	0.51	0.30	0.28	0.32	0.25
Below Poverty Tracts	-0.29	0.62	0.64	0.50	0.26	0.30	0.38	0.25
LINs	-0.32	0.63	0.66	0.50	0.23	0.27	0.40	0.24
Winter								
	Surface Wind Speeds	Surface NO ₂ *	NO ₂ TVCDs		Surface Temperatures		Surface NO ₂ *	NO ₂ TVCDs
Black and African Americans	-0.75	0.60	0.65		-		-	-
Hispanics and Latinos	-0.65	0.70	0.64		-		0.44	0.28
Asians	-0.77	0.69	0.75		-		-	-
Below Poverty Tracts	-0.71	0.63	0.54		-		-	-
LINs	-0.78	0.64	0.60		-		-	-

487

488 **Summary, Future Opportunities, and Implications.** We have demonstrated that individual daily
 489 TROPOMI observations capture a major portion of census-tract scale NO₂ inequalities in the New
 490 York City–Newark UA using high spatial resolution (250 m x 250 m) GCAS and GeoTASO
 491 remote sensing measurements as a standard of comparison. LISTOS airborne observations resolve
 492 length scales of dispersion, allowing for accurate representations of tract averaged NO₂ TVCDs.
 493 We show that spatially and temporally coincident TROPOMI and aircraft measurements are
 494 strongly correlated (0.82–0.97) with slopes of 0.82 ± 0.10 – 1.05 ± 0.07 and 0.76 ± 0.09 – 0.96 ± 0.06
 495 for relative and absolute inequalities, respectively. Moreover, daily TROPOMI NO₂ inequalities
 496 are generally insensitive to observation resolution for UA-mean pixel areas smaller than 60 km²—
 497 therefore, key spatial scales for measuring NO₂ inequalities are larger than those of atmospheric
 498 NO₂ gradients,¹⁶ as tracts with similar population characteristics spatially aggregate, even in New
 499 York City and Newark where the structure of racial segregation is highly heterogeneous.^{13, 70} As a
 500 result, fine-scale observations may not always be required to understand variability in intraurban

501 air pollution disparities, especially if biases can be well characterized, opening new opportunities
502 for satellite remote sensing, as well as chemical transport modeling. We limit our conclusions to
503 decision-making on city-wide NO₂ inequalities, as we have not attempted to resolve near-field
504 impacts of individual polluters in communities with air pollution-related environmental justice
505 concerns, instead focusing on accumulated NO₂ burdens from ubiquitous and overlapping urban
506 NO_x sources. Daily TROPOMI observations cannot replace hyper-localized community-driven
507 monitoring,⁸⁵ but spatially comprehensive and temporally resolved satellite measurements offer
508 complimentary information on spatiotemporal trends and in unmonitored locations.

509 We report mean daily NO₂ inequalities of 28–30% for Black and African Americans, Hispanics
510 and Latinos, and Asians and inequalities of 25% for residents of below poverty census tracts. When
511 race-ethnicity and income metrics are combined, we find 38% greater population-weighted NO₂
512 TVCDs for people of color living in low-income tracts (LINs). These mean daily NO₂ inequalities
513 equal those based on TROPOMI NO₂ TVCDs first oversampled to 0.01° x 0.01° to within
514 associated uncertainties. Biases arise using individual observations with reduced UA coverage due
515 to inadequate sampling of key race-ethnicity and income groups, affecting mean daily NO₂
516 inequalities and the precision of individual daily results (Figure S5). The dependence of city-level
517 inequalities on sampling coverage has relevance for other measurement approaches for which it is
518 difficult to collect observations city wide, for example, mobile monitoring. Reliance on clear sky
519 measurements likely biases absolute NO₂ inequalities low, and relative inequalities to a smaller
520 extent, as UA-wide mean surface NO₂* mixing ratios are 40% higher (3.8 ppb) on low (<30%)
521 than high-coverage (>30%) days and as TROPOMI absolute inequalities are strongly, positively
522 associated with overall NO₂ pollution, at least in the New York City–Newark UA.

523 Observations of daily NO₂ inequalities offer new insight into the causes and countermeasures of
524 neighborhood-level disparities through their statistical relationships with other factors. We present
525 empirical evidence for the systematic placement of NO_x sources in communities of color and low-
526 income neighborhoods across the New York City–Newark UA. Specifically, absolute NO₂
527 inequalities are strongly correlated with overall NO₂ pollution, while relative NO₂ inequalities are
528 not. The issue of source placement has been long identified by community organizations and
529 residents, with TROPOMI providing space-based accountability of whether the promises of recent
530 legislation in both states to consider cumulative burdens during permitting are kept.^{86, 87}
531 Municipalities have several tools for addressing existing siting disparities: establishing penalties;
532 eliminating nonconforming uses; using environmental reviews, impact analyses, and
533 comprehensive planning; and tightening existing zoning codes in polluted neighborhoods with
534 marginalized and vulnerable populations. Daily TROPOMI observations enable approaches to
535 prioritize affected communities where and when NO₂ burdens are highest. We find more frequent
536 stagnation conditions in the coming decades will exacerbate neighborhood-level NO₂ inequalities,
537 and warming summer surface temperatures will increase cumulative disparities from overlapping
538 NO₂ and urban heat burdens. So informed, municipalities have opportunities for targeted
539 interventions focused on redressing harms and eliminating disparities by preventing the arrival of
540 new sources and decreasing existing NO_x emissions in overburdened communities. In addition,
541 because NO₂ inequalities are positively associated with high MDA8 O₃ in the New York City–
542 Newark UA, targeted NO_x emissions reductions in communities of color and low-income
543 neighborhoods have the potential to improve O₃ city wide.

544

545 **Acknowledgments.** This research was funded by the NASA New (Early Career) Investigator
546 Program in Earth Science (80NSSC21K0935) and an NSF CAREER Award (AGS 2047150) to
547 SEP. IMD was supported by the Virginia Space Grant Consortium, University of Virginia College
548 Science Scholars Program, and Double Hoo Research Award. MAGD was funded by a NASA
549 Future Investigator NASA Earth and Space Science and Technology (FINESST) Graduate
550 Research Fellowship (80NSSC20K1655) and the Virginia Space Grant Consortium. IMD,
551 MAGD, KPF, and SEP acknowledge support from the University of Virginia Democracy Institute
552 and the University of Virginia Repair Lab community of scholars. KS acknowledges support for
553 the oversampling code development from the NASA Atmospheric Composition: Modeling and
554 Analysis Program (80NSSC19K0988). Research Computing at UVA provided computational
555 resources and technical support contributing to the results reported herein (<https://rc.virginia.edu>).
556 All LISTOS datasets are freely accessible at: [https://www-air.larc.nasa.gov/cgi-
557 bin/ArcView/listos](https://www-air.larc.nasa.gov/cgi-bin/ArcView/listos). We acknowledge the use of the publicly available TROPOMI NO₂ Level 2
558 vertical column densities (<https://data-portal.s5p-pal.com/products/no2.html>), U.S. Census
559 database from the IPUMS National Historical Geographic Information System
560 (<https://www.nhgis.org>), and TIGER/Line shapefiles of census tract polygons from the Data.gov
561 library (<https://www.census.gov/cgi-bin/geo/shapefiles/index.php>). Hourly NO₂* and MDA8 O₃
562 mixing ratios were downloaded from the U.S. EPA file archive ([https://www.epa.gov/outdoor-air-quality-data](https://www.epa.gov/outdoor-air-
563 quality-data)) and temperature surface winds speed observations were downloaded from the Iowa
564 State University Iowa Environmental Mesonet download service
565 (<https://mesonet.agron.iastate.edu/request/download.phtml>). The FIVE is publicly available at
566 <https://csl.noaa.gov/groups/csl7/measurements/2020covid-aqs/emissions/> and the NEI17 can be

567 downloaded at [https://www.epa.gov/air-emissions-inventories/2017-national-emissions-
568 inventory-nei-data.](https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data)

569 **Supporting Information Available.** Study area maps, including example large and small LISTOS
570 rasters, UA population density, and surface monitoring station locations. Figures displaying the
571 distribution of TROPOMI pixel areas and variability in population demographics with different
572 TROPOMI coverage levels. Tables describing LISTOS flight patterns, detailed LISTOS inequality
573 results, correlations between LISTOS inequalities and various surface conditions, effect of pixel
574 area on daily TROPOMI inequalities, influence of various factors on TROPOMI column-surface
575 correlations, and relative weekday-weekend MDA8 O₃ NAAQS exceedances. The equation for
576 population weighting and relationships between daily TROPOMI inequalities and various factors
577 over O₃ season (May–September).

578

579 **References**

580 1. Maantay, J., Zoning law, health, and environmental justice: What's the connection? *Journal*
581 *of Law Medicine & Ethics* **2002**, 30 (4), 572-+.

582 2. Maroko, A. R., Using air dispersion modeling and proximity analysis to assess chronic
583 exposure to fine particulate matter and environmental justice in New York City. *Appl. Geogr.*
584 **2012**, 34, 533-547.

585 3. Maantay, J.; Maroko, A., Mapping Urban Risk: Flood Hazards, Race, & Environmental
586 Justice In New York. *Appl. Geogr.* **2009**, 29 (1), 111-124.

587 4. Kheirbek, I.; Wheeler, K.; Walters, S.; Kass, D.; Matte, T., PM2.5 and ozone health
588 impacts and disparities in New York City: sensitivity to spatial and temporal resolution. *Air Qual.*
589 *Atmos. Health* **2013**, 6 (2), 473-486.

590 5. Kheirbek, I.; Haney, J.; Douglas, S.; Ito, K.; Matte, T., The contribution of motor vehicle
591 emissions to ambient fine particulate matter public health impacts in New York City: a health
592 burden assessment. *Environ. Health* **2016**, 15 (1).

593 6. McKane, R. G.; Satcher, L. A.; Houston, S. L.; Hess, D. J., Race, class, and space: an
594 intersectional approach to environmental justice in New York City. *Environ. Sociol.* **2018**, 4 (1),
595 79-92.

596 7. Gilmore, J.; Mulgaonkar, P.; Oyewole, T. M.; Heimbinder, M. *Community Air Mapping*
597 *for Environmental Justice*; New York City Environmental Justice Alliance: New York City
598 Environmental Justice Alliance, 2021.

599 8. Sze, J., *Noxious New York : The Racial Politics of Urban Health and Environmental*
600 *Justice*. MIT Press, 2007.

601 9. Ironbound Community Corporation. Picturing Justice. <https://picturingjustice.tumblr.com>
602 (accessed January 7, 2022).

603 10. WEACT. WEACT History. <http://old.weact.org/history.html> (accessed August 14).

604 11. Clark, L. P.; Millet, D. B.; Marshall, J. D., National Patterns in Environmental Injustice
605 and Inequality: Outdoor NO₂ Air Pollution in the United States. *PLOS ONE* **2014**, 9 (4), e94431.

606 12. Clark, L. P.; Millet, D. B.; Marshall, J. D., Changes in Transportation-Related Air
607 Pollution Exposures by Race-Ethnicity and Socioeconomic Status: Outdoor Nitrogen Dioxide in
608 the United States in 2000 and 2010. *Environ. Health Perspect.* **2017**, 125 (9).

609 13. Demetillo, M. A. G.; Harkins, C.; McDonald, B. C.; Chodrow, P. S.; Sun, K.; Pusede,
610 S. E., Space-Based Observational Constraints on NO₂ Air Pollution Inequality From Diesel Traffic
611 in Major US Cities. *Geophys. Res. Lett.* **2021**, 48 (17), e2021GL094333.

612 14. Kerr, G. H.; Goldberg, D. L.; Anenberg, S. C., COVID-19 pandemic reveals persistent
613 disparities in nitrogen dioxide pollution. *Proc. Natl. Acad. Sci. U.S.A.* **2021**, *118* (30),
614 e2022409118.

615 15. Tessum, C. W.; Apte, J. S.; Goodkind, A. L.; Muller, N. Z.; Mullins, K. A.; Paoletta, D.
616 A.; Polasky, S.; Springer, N. P.; Thakrar, S. K.; Marshall, J. D.; Hill, J. D., Inequity in
617 consumption of goods and services adds to racial–ethnic disparities in air pollution exposure. *Proc.
618 Natl. Acad. Sci. U.S.A.* **2019**, *116* (13), 6001-6006.

619 16. Chambliss, S. E.; Pinon, C. P. R.; Messier, K. P.; LaFranchi, B.; Upperman, C. R.;
620 Lunden, M. M.; Robinson, A. L.; Marshall, J. D.; Apte, J. S., Local- and regional-scale racial and
621 ethnic disparities in air pollution determined by long-term mobile monitoring. *Proc. Natl. Acad.
622 Sci. U.S.A.* **2021**, *118* (37), e2109249118.

623 17. Demetillo, M. A. G.; Navarro, A.; Knowles, K. K.; Fields, K. P.; Geddes, J. A.; Nowlan,
624 C. R.; Janz, S. J.; Judd, L. M.; Al-Saadi, J.; Sun, K.; McDonald, B. C.; Diskin, G. S.; Pusede,
625 S. E., Observing Nitrogen Dioxide Air Pollution Inequality Using High-Spatial-Resolution
626 Remote Sensing Measurements in Houston, Texas. *Environ. Sci. & Technol.* **2020**, *54* (16), 9882-
627 9895

628 18. Apte, J. S.; Messier, K. P.; Gani, S.; Brauer, M.; Kirchstetter, T. W.; Lunden, M. M.;
629 Marshall, J. D.; Portier, C. J.; Vermeulen, R. C. H.; Hamburg, S. P., High-Resolution Air
630 Pollution Mapping with Google Street View Cars: Exploiting Big Data. *Environ. Sci. & Technol.*
631 **2017**, *51* (12), 6999-7008.

632 19. Choi, W.; He, M. L.; Barbesant, V.; Kozawa, K. H.; Mara, S.; Winer, A. M.; Paulson,
633 S. E., Prevalence of wide area impacts downwind of freeways under pre-sunrise stable atmospheric
634 conditions. *Atmos. Environ.* **2012**, *62*, 318-327.

635 20. Karner, A. A.; Eisinger, D. S.; Niemeier, D. A., Near-Roadway Air Quality: Synthesizing
636 the Findings from Real-World Data. *Environ. Sci. & Technol.* **2010**, *44* (14), 5334-5344.

637 21. Yu, K. A.; McDonald, B. C.; Harley, R. A., Evaluation of Nitrogen Oxide Emission
638 Inventories and Trends for On-Road Gasoline and Diesel Vehicles. *Environ. Sci. & Technol.* **2021**,
639 *55* (10), 6655-6664.

640 22. Harkins, C.; McDonald, B. C.; Henze, D. K.; Wiedinmyer, C., A fuel-based method for
641 updating mobile source emissions during the COVID-19 pandemic. *Environ. Res. Lett.* **2021**, *16*
642 065018.

643 23. Travis, K. R.; Jacob, D. J.; Fisher, J. A.; Kim, P. S.; Marais, E. A.; Zhu, L.; Yu, K.;
644 Miller, C. C.; Yantosca, R. M.; Sulprizio, M. P.; Thompson, A. M.; Wennberg, P. O.; Crounse,
645 J. D.; St. Clair, J. M.; Cohen, R. C.; Laughner, J. L.; Dibb, J. E.; Hall, S. R.; Ullmann, K.;
646 Wolfe, G. M.; Pollack, I. B.; Peischl, J.; Neuman, J. A.; Zhou, X., Why do models overestimate
647 surface ozone in the Southeast United States? *Atmos. Chem. Phys.* **2016**, *16* (21), 13561-13577.

648 24. Southerland, V. A.; Anenberg, S. C.; Harris, M.; Apte, J.; Hystad, P.; Donkelaar, A. v.;
649 Martin, R. V.; Beyers, M.; Roy, A., Assessing the Distribution of Air Pollution Health Risks

650 within Cities: A Neighborhood-Scale Analysis Leveraging High-Resolution Data Sets in the Bay
651 Area, California. *Environ. Health Perspec.* **2021**, *129* (3), 037006.

652 25. Brook, J. R.; Burnett, R. T.; Dann, T. F.; Cakmak, S.; Goldberg, M. S.; Fan, X. H.;
653 Wheeler, A. J., Further interpretation of the acute effect of nitrogen dioxide observed in Canadian
654 time-series studies. *J. Expo. Sci. Environ. Epidemiol.* **2007**, *17*, S36-S44.

655 26. Brunekreef, B.; Holgate, S. T., Air pollution and health. *Lancet* **2002**, *360* (9341), 1233-
656 1242.

657 27. Burnett, R. T.; Stieb, D.; Brook, J. R.; Cakmak, S.; Dales, R.; Raizenne, M.; Vincent,
658 R.; Dann, T., Associations between short-term changes in nitrogen dioxide and mortality in
659 Canadian cities. *Arch. Environ. Health* **2004**, *59* (5), 228-236.

660 28. Atkinson, R. W.; Butland, B. K.; Anderson, H. R.; Maynard, R. L., Long-term
661 Concentrations of Nitrogen Dioxide and Mortality: A Meta-analysis of Cohort Studies. *Epidemiol.*
662 **2018**, *29* (4), 460-472.

663 29. Anenberg, S. C.; Henze, D. K.; Tinney, V.; Kinney, P. L.; Raich, W.; Fann, N.; Malley,
664 C. S.; Roman, H.; Lamsal, L.; Duncan, B.; Martin, R. V.; Donkelaar, A. v.; Brauer, M.;
665 Doherty, R.; Jonson, J. E.; Davila, Y.; Sudo, K.; Kuyljenstierna, J. C. I., Estimates of the Global
666 Burden of Ambient PM_{2.5}, Ozone, and NO₂ on Asthma Incidence and Emergency Room Visits.
667 *Environ. Health Perspect.* **2018**, *126* (10), 107004.

668 30. Edwards, J.; Walters, S.; Griffiths, R. K., Hospital Admissions for Asthma in Preschool-
669 Children–Relationship to Major Roads in Birmingham, United-Kingdom. *Arch. Environ. Health*
670 **1994**, *49* (4), 223-227.

671 31. Gauderman, W. J.; Avol, E.; Lurmann, F.; Kuenzli, N.; Gilliland, F.; Peters, J.;
672 McConnell, R., Childhood asthma and exposure to traffic and nitrogen dioxide. *Epidemiol.* **2005**,
673 *16* (6), 737-743.

674 32. Adar, S. D.; Kaufman, J. D., Cardiovascular disease and air pollutants: Evaluating and
675 improving epidemiological data implicating traffic exposure. *Inhalation Toxicol.* **2007**, *19*, 135-
676 149.

677 33. Lipfert, F. W.; Wyzga, R. E., On exposure and response relationships for health effects
678 associated with exposure to vehicular traffic. *J. Expo. Sci. Environ. Epidemiol.* **2008**, *18* (6), 588-
679 599.

680 34. Wu, J.; Ren, C. Z.; Delfino, R. J.; Chung, J.; Wilhelm, M.; Ritz, B., Association between
681 Local Traffic-Generated Air Pollution and Preeclampsia and Preterm Delivery in the South Coast
682 Air Basin of California. *Environ. Health Perspect.* **2009**, *117* (11), 1773-1779.

683 35. Lin, S.; Munsie, J. P.; Hwang, S.-A.; Fitzgerald, E.; Cayo, M. R., Childhood Asthma
684 Hospitalization and Residential Exposure to State Route Traffic. *Environ. Res.* **2002**, *88* (2), 73-
685 81.

686 36. Liu, J.; Clark, L. P.; Bechle, M. J.; Hajat, A.; Kim, S.-Y.; Robinson, A. L.; Sheppard,
687 L.; Szpiro, A. A.; Marshall, J. D., Disparities in Air Pollution Exposure in the United States by
688 Race/Ethnicity and Income, 1990-2010. *Environ. Health Perspect.* **2021**, *129* (12), 127005.

689 37. Goldberg, D. L.; Lu, Z.; Streets, D. G.; de Foy, B.; Griffin, D.; McLinden, C. A.;
690 Lamsal, L. N.; Krotkov, N. A.; Eskes, H., Enhanced Capabilities of TROPOMI NO₂: Estimating
691 NO_x from North American Cities and Power Plants. *Environ. Sci. & Technol.* **2019**, *53* (21),
692 12594-12601.

693 38. Griffin, D.; Zhao, X.; McLinden, C. A.; Boersma, F.; Bourassa, A.; Dammers, E.;
694 Degenstein, D.; Eskes, H.; Fehr, L.; Fioletov, V.; Hayden, K.; Kharol, S. K.; Li, S.-M.; Makar,
695 P.; Martin, R. V.; Mihele, C.; Mittermeier, R. L.; Krotkov, N.; Sneep, M.; Lamsal, L. N.;
696 Linden, M. t.; Geffen, J. v.; Veefkind, P.; Wolde, M., High-Resolution Mapping of Nitrogen
697 Dioxide With TROPOMI: First Results and Validation Over the Canadian Oil Sands. *Geophys.*
698 *Res. Lett.* **2019**, *46* (2), 1049-1060.

699 39. Kowalewski, M. G.; Janz, S. J. In *Remote sensing capabilities of the GEO-CAPE airborne*
700 *simulator*, SPIE Optical Engineering + Applications, SPIE: 2014; p 12.

701 40. Leitch, J. W.; Delker, T.; Good, W.; Ruppert, L.; Murcray, F.; Chance, K.; Liu, X.;
702 Nowlan, C.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Kowalewski, M.; Wang, J. In *The*
703 *GeoTASO airborne spectrometer project*, SPIE Optical Engineering + Applications, SPIE: 2014;
704 p 9.

705 41. Nowlan, C. R.; Liu, X.; Leitch, J. W.; Chance, K.; González Abad, G.; Liu, C.;
706 Zoogman, P.; Cole, J.; Delker, T.; Good, W.; Murcray, F.; Ruppert, L.; Soo, D.; Follette-Cook,
707 M. B.; Janz, S. J.; Kowalewski, M. G.; Loughner, C. P.; Pickering, K. E.; Herman, J. R.; Beaver,
708 M. R.; Long, R. W.; Szykman, J. J.; Judd, L. M.; Kelley, P.; Luke, W. T.; Ren, X.; Al-Saadi,
709 J. A., Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor
710 Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during
711 DISCOVER-AQ Texas 2013. *Atmos. Meas. Tech.* **2016**, *9* (6), 2647-2668.

712 42. Nowlan, C. R.; Liu, X.; Janz, S. J.; Kowalewski, M. G.; Chance, K.; Follette-Cook, M.
713 B.; Fried, A.; González Abad, G.; Herman, J. R.; Judd, L. M.; Kwon, H. A.; Loughner, C. P.;
714 Pickering, K. E.; Richter, D.; Spinei, E.; Walega, J.; Weibring, P.; Weinheimer, A. J., Nitrogen
715 dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution
716 Events (GEO-CAPE) Airborne Simulator over Houston, Texas. *Atmos. Meas. Tech.* **2018**, *11* (11),
717 5941-5964.

718 43. Judd, L. M.; Al-Saadi, J. A.; Janz, S. J.; Kowalewski, M. G.; Pierce, R. B.; Szykman, J.
719 J.; Valin, L. C.; Swap, R.; Cede, A.; Mueller, M.; Tiefengraber, M.; Abuhassan, N.; Williams,
720 D., Evaluating the impact of spatial resolution on tropospheric NO₂ column comparisons within
721 urban areas using high-resolution airborne data. *Atmos. Meas. Tech.* **2019**, *12* (11), 6091-6111.

722 44. Judd, L. M.; Al-Saadi, J. A.; Szykman, J. J.; Valin, L. C.; Janz, S. J.; Kowalewski, M.
723 G.; Eskes, H. J.; Veefkind, J. P.; Cede, A.; Mueller, M.; Gebetsberger, M.; Swap, R.; Pierce,
724 R. B.; Nowlan, C. R.; Abad, G. G.; Nehrir, A.; Williams, D., Evaluating Sentinel-5P TROPOMI

725 tropospheric NO₂ column densities with airborne and Pandora spectrometers near New York City
726 and Long Island Sound. *Atmos. Meas. Tech.* **2020**, *13*, 6113–6140.

727 45. Prather, M., Catastrophic loss of stratospheric ozone in dense volcanic clouds. *Geophys.*
728 *Res.-Atmos* **1992**, *97*, 10187–10191.

729 46. McLinden, C. A.; Olsen, S. C.; Hannegan, B.; Wild, O.; Prather, M. J.; Sundet, J.,
730 Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux. *J. Geophys.*
731 *Res.: Atmos.* **2000**, *105* (D11), 14653–14665.

732 47. Stajner, I. D., Paula; Byun, Daewon; McQueen, Jeffery; Draxler, Roland; Dickerson, Phil;
733 Meagher, James, US National Air Quality Forecast Capability: Expanding Coverage to Include
734 Particulate Matter. In *Air Pollution Modeling and its Application*, XXI; Elsevier Science, 2011.

735 48. van Geffen, J. H. G.; Boersma, K. F.; Eskes, H. J.; Maasakkers, J. D.; Veefkind, J. P.
736 TROPOMI ATBD of the total and tropospheric NO₂ data products. <http://www.tropomi.eu>
737 (accessed 12 May).

738 49. Veefkind, J. P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.;
739 Eskes, H. J.; de Haan, J. F.; Kleipool, Q.; van Weele, M.; Hasekamp, O.; Hoogeveen, R.;
740 Landgraf, J.; Snel, R.; Tol, P.; Ingmann, P.; Voors, R.; Kruizinga, B.; Vink, R.; Visser, H.;
741 Levelt, P. F., TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global
742 observations of the atmospheric composition for climate, air quality and ozone layer applications.
743 *Remote Sens. Environ.* **2012**, *120*, 70–83.

744 50. Boersma, K. F.; Eskes, H. J.; Dirksen, R. J.; van der A, R. J.; Veefkind, J. P.; Stammes,
745 P.; Huijnen, V.; Kleipool, Q. L.; Sneep, M.; Claas, J.; Leitão, J.; Richter, A.; Zhou, Y.; Brunner,
746 D., An improved tropospheric NO₂ column retrieval algorithm for the Ozone Monitoring
747 Instrument. *Atmos. Meas. Tech.* **2011**, *4* (9), 1905–1928.

748 51. Boersma, K. F.; Eskes, H. J.; Richter, A.; De Smedt, I.; Lorente, A.; Beirle, S.; van
749 Geffen, J. H. G. M.; Zara, M.; Peters, E.; Van Roozendael, M.; Wagner, T.; Maasakkers, J. D.;
750 van der A, R. J.; Nightingale, J.; De Rudder, A.; Irie, H.; Pinardi, G.; Lambert, J. C.;
751 Compernolle, S. C., Improving algorithms and uncertainty estimates for satellite NO₂ retrievals:
752 results from the quality assurance for the essential climate variables (QA4ECV) project. *Atmos.*
753 *Meas. Tech.* **2018**, *11* (12), 6651–6678.

754 52. Lorente, A.; Folkert Boersma, K.; Yu, H.; Dörner, S.; Hilboll, A.; Richter, A.; Liu, M.;
755 Lamsal, L. N.; Barkley, M.; De Smedt, I.; Van Roozendael, M.; Wang, Y.; Wagner, T.; Beirle,
756 S.; Lin, J. T.; Krotkov, N.; Stammes, P.; Wang, P.; Eskes, H. J.; Krol, M., Structural uncertainty
757 in air mass factor calculation for NO₂ and HCHO satellite retrievals. *Atmos. Meas. Tech.* **2017**, *10*
758 (3), 759–782.

759 53. van Geffen, J. H. G. M.; Boersma, K. F.; Van Roozendael, M.; Hendrick, F.; Mahieu,
760 E.; De Smedt, I.; Sneep, M.; Veefkind, J. P., Improved spectral fitting of nitrogen dioxide from
761 OMI in the 405–465 nm window. *Atmos. Meas. Tech.* **2015**, *8* (4), 1685–1699.

762 54. Zara, M.; Boersma, K. F.; De Smedt, I.; Richter, A.; Peters, E.; van Geffen, J. H. G. M.;
763 Beirle, S.; Wagner, T.; Van Roozendael, M.; Marchenko, S.; Lamsal, L. N.; Eskes, H. J.,
764 Improved slant column density retrieval of nitrogen dioxide and formaldehyde for OMI and
765 GOME-2A from QA4ECV: intercomparison, uncertainty characterisation, and trends. *Atmos.*
766 *Meas. Tech.* **2018**, *11* (7), 4033-4058.

767 55. Boersma, K. F.; Eskes, H. J.; Brinksma, E. J., Error analysis for tropospheric NO₂ retrieval
768 from space. *J. Geophys. Res.: Atmos.* **2004**, *109* (D4).

769 56. Kleipool, Q. L.; Dobber, M. R.; de Haan, J. F.; Levelt, P. F., Earth surface reflectance
770 climatology from 3 years of OMI data. *J. Geophys. Res.-Atmos.* **2008**, *113* (D18).

771 57. Williams, J. E.; Boersma, K. F.; Le Sager, P.; Verstraeten, W. W., The high-resolution
772 version of TM5-MP for optimized satellite retrievals: description and validation. *Geosci. Model*
773 *Dev.* **2017**, *10* (2), 721-750.

774 58. Ludewig, A.; Kleipool, Q.; Bartstra, R.; Landzaat, R.; Leloux, J.; Loots, E.; Meijering,
775 P.; van der Plas, E.; Rozemeijer, N.; Vonk, F.; Veefkind, P., In-flight calibration results of the
776 TROPOMI payload on board the Sentinel-5 Precursor satellite. *Atmos. Meas. Tech.* **2020**, *13* (7),
777 3561-3580.

778 59. Sun, K.; Zhu, L.; Cady-Pereira, K.; Chan Miller, C.; Chance, K.; Clarisse, L.; Coheur,
779 P. F.; González Abad, G.; Huang, G.; Liu, X.; Van Damme, M.; Yang, K.; Zondlo, M., A
780 physics-based approach to oversample multi-satellite, multispecies observations to a common grid.
781 *Atmos. Meas. Tech.* **2018**, *11* (12), 6679-6701.

782 60. Spielman, S. E.; Folch, D.; Nagle, N., Patterns and causes of uncertainty in the American
783 Community Survey. *Appl. Geogr.* **2014**, *46*, 147-157.

784 61. U.S. Census Bureau, *Understanding and Using American Community Survey Data: What*
785 *All Data Users Need to Know*; Washington, DC, 2020.

786 62. Winer, A. M.; Peters, J. W.; Smith, J. P.; Pitts, J. N., Response of commercial
787 chemiluminescent nitric oxide-nitrogen dioxide analyzers to other nitrogen-containing
788 compounds. *Environ. Sci. & Technol.* **1974**, *8* (13), 1118-1121.

789 63. Dunlea, E. J.; Herndon, S. C.; Nelson, D. D.; Volkamer, R. M.; San Martini, F.; Sheehy,
790 P. M.; Zahniser, M. S.; Shorter, J. H.; Wormhoudt, J. C.; Lamb, B. K.; Allwine, E. J.; Gaffney,
791 J. S.; Marley, N. A.; Grutter, M.; Marquez, C.; Blanco, S.; Cardenas, B.; Retama, A.; Ramos
792 Villegas, C. R.; Kolb, C. E.; Molina, L. T.; Molina, M. J., Evaluation of nitrogen dioxide
793 chemiluminescence monitors in a polluted urban environment. *Atmos. Chem. Phys.* **2007**, *7* (10),
794 2691-2704.

795 64. Steinbacher, M.; Zellweger, C.; Schwarzenbach, B.; Bugmann, S.; Buchmann, B.;
796 Ordóñez, C.; Prevot, A. S. H.; Hueglin, C., Nitrogen oxide measurements at rural sites in
797 Switzerland: Bias of conventional measurement techniques. *J. Geophys. Res.-Atmos.* **2007**, *112*
798 (D11).

799 65. McDonald, B. C.; Dallmann, T. R.; Martin, E. W.; Harley, R. A., Long-term trends in
800 nitrogen oxide emissions from motor vehicles at national, state, and air basin scales. *J. Geophys.*
801 *Res.-Atmos.* **2012**, 117 (D21).

802 66. McDonald, B. C.; McKeen, S. A.; Cui, Y. Y.; Ahmadov, R.; Kim, S.-W.; Frost, G. J.;
803 Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Graus, M.; Warneke, C.; Gilman, J.
804 B.; de Gouw, J. A.; Kaiser, J.; Keutsch, F. N.; Hanisco, T. F.; Wolfe, G. M.; Trainer, M.,
805 Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory.
806 *Environ. Sci. & Technol.* **2018**, 52 (13), 7360-7370.

807 67. Frost, G. J.; McKeen, S. A.; Trainer, M.; Ryerson, T. B.; Neuman, J. A.; Roberts, J. M.;
808 Swanson, A.; Holloway, J. S.; Sueper, D. T.; Fortin, T.; Parrish, D. D.; Fehsenfeld, F. C.;
809 Flocke, F.; Peckham, S. E.; Grell, G. A.; Kowal, D.; Cartwright, J.; Auerbach, N.; Habermann,
810 T., Effects of changing power plant NO_x emissions on ozone in the eastern United States: Proof of
811 concept. *J. Geophys. Res.-Atmos.* **2006**, 111 (D12).

812 68. Jiang, Z.; McDonald, B. C.; Worden, H.; Worden, J. R.; Miyazaki, K.; Qu, Z.; Henze,
813 D. K.; Jones, D. B. A.; Arellano, A. F.; Fischer, E. V.; Zhu, L.; Boersma, K. F., Unexpected
814 slowdown of US pollutant emission reduction in the past decade. *Proc. Natl. Acad. Sci. U.S.A.*
815 **2018**, 115 (20), 5099-5104.

816 69. York, D.; Evensen, N. M.; Martínez, M. L.; Delgado, J. D. B., Unified equations for the
817 slope, intercept, and standard errors of the best straight line. *Amer. J. Phys.* **2004**, 72 (3), 367-375.

818 70. Chodrow, P. S., Structure and information in spatial segregation. *Proc. Natl. Acad. Sci.*
819 *U.S.A.* **2017**, 114 (44), 11591-11596.

820 71. Eskes, H. J., van Geffen, J., Sneep, M., Veefkind, J. P., Niemeier, S., Zehner, C., S5P
821 Nitrogen Dioxide v02.03.01 intermediate reprocessing on the S5P-PAL system: Readme file.
822 2021.

823 72. Bechle, M. J.; Millet, D. B.; Marshall, J. D., Remote sensing of exposure to NO₂: Satellite
824 versus ground-based measurement in a large urban area. *Atmos. Environ.* **2013**, 69, 345-353.

825 73. Jin, X.; Fiore, A.; Boersma, K. F.; Smedt, I. D.; Valin, L., Inferring Changes in
826 Summertime Surface Ozone–NO_x–VOC Chemistry over U.S. Urban Areas from Two Decades of
827 Satellite and Ground-Based Observations. *Environ. Sci. & Technol.* **2020**, 54 (11), 6518-6529.

828 74. Liu, J.; Clark, L. P.; Bechle, M. J.; Hajat, A.; Kim, S. Y.; Robinson, A. L.; Sheppard,
829 L.; Szpiro, A. A.; Marshall, J. D., Disparities in Air Pollution Exposure in the United States by
830 Race/Ethnicity and Income, 1990-2010. *Environ. Health Perspect.* **2021**, 129 (12), 127005.

831 75. Pusede, S. E.; Cohen, R. C., On the observed response of ozone to NO_x and VOC reactivity
832 reductions in San Joaquin Valley California 1995-present. *Atmos. Chem. Phys.* **2012**, 12 (18),
833 8323-8339.

834 76. Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J., Sensitivity of US air quality to mid-
835 latitude cyclone frequency and implications of 1980–2006 climate change. *Atmos. Chem. Phys.*
836 **2008**, 8 (23), 7075-7086.

837 77. Mickley, L. J.; Jacob, D. J.; Field, B. D.; Rind, D., Climate response to the increase in
838 tropospheric ozone since preindustrial times: A comparison between ozone and equivalent CO₂
839 forcings. *J. Geophys. Res.-Atmos.* **2004**, 109 (D5).

840 78. Reidmiller, D. R.; Avery, C. W.; Easterling, D. R.; Kunkel, K. E.; Lewis, K. L. M.;
841 Maycock, T. K.; Stewart, B. C., Impacts, Risks, and Adaptation in the United States: Fourth
842 National Climate Assessment, Volume II., 2017.

843 79. Harvey, B. J.; Cook, P.; Shaffrey, L. C.; Schiemann, R., The Response of the Northern
844 Hemisphere Storm Tracks and Jet Streams to Climate Change in the CMIP3, CMIP5, and CMIP6
845 Climate Models. *J. Geophys. Res.-Atmos.* **2020**, 125 (23), e2020JD032701.

846 80. Horton, D. E.; Skinner, C. B.; Singh, D.; Diffenbaugh, N. S., Occurrence and persistence
847 of future atmospheric stagnation events. *Nat. Clim. Chang.* **2014**, 4 (8), 698-703.

848 81. Turner, A. J.; Fiore, A. M.; Horowitz, L. W.; Bauer, M., Summertime cyclones over the
849 Great Lakes Storm Track from 1860–2100: variability, trends, and association with ozone
850 pollution. *Atmos. Chem. Phys.* **2013**, 13 (2), 565-578.

851 82. Klein Rosenthal, J.; Kinney, P. L.; Metzger, K. B., Intra-urban vulnerability to heat-related
852 mortality in New York City, 1997–2006. *Health & Place* **2014**, 30, 45-60.

853 83. Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G., Disproportionately higher exposure to
854 urban heat in lower-income neighborhoods: a multi-city perspective. *Environ. Res. Lett.* **2019**, 14
855 (10), 105003.

856 84. Mitchell, B. C.; Chakraborty, J., Landscapes of thermal inequity: disproportionate
857 exposure to urban heat in the three largest US cities. *Environ. Res. Lett.* **2015**, 10 (11), 115005.

858 85. Gilmore, J.; Mulgaonkar, P.; Oyewole, T. M.; Heimbinder, M. CAMP-EJ: Community
859 Mapping Project for Environmental Justice: Findings & Recommendations Report; February
860 2021.

861 86. Stewart-Cousins, A.; Addabbo Jr, J. P.; Biaggi, A.; Bailey, J. T.; Brouk, S. G., An act to
862 amend the environmental conservation law, in relation to the location of environmental facilities.
863 2021.

864 87. New Jersey's Environmental Justice Law. In *13*, State and General Assembly of the State
865 of New Jersey: 2020.

866

For Table of Contents Only:

