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Abstract. Urban air pollution disproportionately harms communities of color and low-income
communities in the U.S. Intraurban nitrogen dioxide (NO2) inequalities can be observed from
space using the TROPOspheric Monitoring Instrument (TROPOMI). Past research has relied on
time averaged measurements, limiting our understanding of how neighborhood-level NO:
inequalities co-vary with urban air quality and climate. Here, we use fine scale (250 m x 250 m)
airborne NO:2 remote sensing to demonstrate daily TROPOMI observations resolve a major portion
of census tract-scale NO:2 inequalities in the New York City—Newark urbanized area.
Spatiotemporally coincident TROPOMI and airborne inequalities are well correlated (r = 0.82—
0.97), with slopes of 0.82—1.05 for relative and 0.76—0.96 for absolute inequalities for different
groups. We calculate daily TROPOMI NO: inequalities over May 2018—September 2021,
reporting disparities of 25-38% with race, ethnicity, and/or household income. Mean daily
inequalities agree with results based on TROPOMI measurements oversampled to 0.01° x 0.01° to
within associated uncertainties. Individual and mean daily TROPOMI NO: inequalities are largely
insensitive to pixel size, at least when pixels are smaller than ~60 km?, but are sensitive to low
observational coverage. We statistically analyze daily NO2 inequalities, presenting empirical

evidence of the systematic overburdening of communities of color and low-income neighborhoods
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with polluting sources, regulatory ozone co-benefits, and worsened NO2 inequalities and

cumulative NO2 and urban heat burdens with climate change.

Synopsis. Daily TROPOMI satellite observations resolve a majority of intraurban NO2 inequalities

in New York City and New Jersey; NO2 inequalities covary with air quality and climate variables

Keywords. Urban air pollution, environmental justice, nitrogen dioxide, satellite measurements,

TROPOMI

1 INTRODUCTION

New York City, New York and Newark, New Jersey are populous U.S. cities with poor air quality,
where there are documented inequalities in air pollution concentrations and health impacts
affecting communities of color and low-income residents.!”” There have been decades of
community organizing and activism around environmental racism issues, including air pollution
and asthma, for example, in the South Bronx, West Harlem, and Ironbound.®'* Air quality can
vary substantially between neighborhoods in the same city, and recent observational and
computational advances have improved quantitative estimates of intraurban inequalities across the
U.S.'""!7 However, fine-scale pollutant mapping typically relies on measurements that are short
timescale snapshots or long time averages, trading temporal information for enhanced spatial
detail. As a result, we have less knowledge of temporal variability in neighborhood-level
inequalities and relationships between inequalities, urban air quality issues such as ozone, and

climate change.

Nitrogen dioxide (NO2) is a criteria pollutant and surface ozone (Os) precursor. NO2 is a

chemically reactive primary pollutant, and, therefore, NO2 concentrations are variable in space and
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time, with characteristic NO2 distance decay gradients away from sources equaling hundreds of
meters to 2 km.'#2° NO; is emitted as NOx (= NO + NO2), with sources dominated by fossil fuel
combustion in cities, especially traffic exhaust.?!?> NO2 exposure is associated with numerous
adverse health effects,>*?” and roadway residential proximity has been linked to asthma-related
urgent medical visits, pediatric asthma, cardiac and pulmonary mortality, and preeclampsia and
preterm birth.’%3> NO2 concentrations and NOx sources are unequally distributed with race,
ethnicity, and income in U.S. cities, !>+ 12-14.17.36 with urban NOz inequalities being large enough

to cause health disparities.'!- 24

To date, air pollution inequality analyses focusing on primary pollutants like NO2 have typically
prioritized spatial rather than temporal information, as observations and models must resolve
length scales of atmospheric dispersion to fully describe disparities. Satellite NO2 tropospheric
vertical column densities (TVCDs) have been incorporated into regression models and other
measurement-model hybrid surface NO2 products relevant for health and environmental justice
applications, with spatial resolutions ranging 100 m to 0.01° (~1 km).!!- 1224 The TROPOspheric
Monitoring Instrument (TROPOMI) currently provides the highest spatial resolution global
satellite NO2 TVCDs, with TROPOMI describing NO: inequalities at census tract scales directly
after TVCDs are oversampled to 0.01° x 0.01°, time averaging at least multiple months of
measurements.!> %17 For reference, the average area of census tracts in New York City and
Newark is 2.1 km?. Oversampled TVCDs have been shown to observe NO: inequalities
equivalently to high spatial resolution (250 m x 500 m) airborne remote sensing to within
associated uncertainties, independently of patterns in the structure and heterogeneity of urban
racial segregation, and similarly as measured at the surface.'> 7 TROPOMI has an order of

magnitude improved spatial resolution than its predecessor OMI, enabling analyses of NO:2 spatial
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distributions with less time averaging,” 3% potentially revealing new insight into the sources and
controls over intraurban NO:2 inequalities. However, with current TROPOMI nadir pixel areas of
~20 km?, the need for oversampling is assumed. As a consequence of the loss in temporal
resolution, distributive NO:z inequalities are not easily situated within our broader understanding

of urban air quality and climate, and vice versa.

In this manuscript, we evaluate the use of daily TROPOMI observations to describe census tract-
scale NO2 inequalities with race, ethnicity, and income in the New York City—Newark urbanized
area (UA). First, we report NO2 inequalities using airborne remote sensing capable of resolving
NO: distance decay gradients, with pixel dimensions of 250 m x 250 m, collected during the 2018
NASA Long Island Sound Tropospheric Ozone Study (LISTOS). The airborne observations serve
as a reference for evaluating tract-scale NO2 inequalities determined using spatially and temporally
coincident daily TROPOMI NO2 TVCDs. We show that the airborne and TROPOMI inequalities
are strongly correlated and the daily TROPOMI TVCDs resolve a major portion of tract-scale NO2
inequalities. We calculate daily TROPOMI NO: inequalities from May 2018—September 2021 and
analyze biases in individual and mean daily TROPOMI results as a function of measurement pixel
area, which range 20 to 91 km?, and UA sampling coverage. Finally, we interpret empirical
relationships between daily TROPOMI NO2 inequalities and overall NOz2 pollution, O3 air quality,

and climate-relevant atmospheric conditions.

2 MEASUREMENTS AND METHODS

GCAS and GeoTASO. The Geostationary Coastal and Air Pollution Events (GEO-CAPE)
Airborne Simulator (GCAS)* and Geostationary Trace gas and Aerosol Sensor Optimization

(GeoTASO)* instruments are push broom spectrometers that function as satellite analogs for
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NASA airborne missions. GeoTASO makes hyperspectral nadir-looking measurements of
backscattered solar radiation in the ultraviolet (290-390 nm) and visible (415-695 nm). GCAS
makes similar observations at 300—490 nm (optimized for air quality) and 480—900 nm (optimized
for ocean color). Each of the two channels in both instruments use two-dimensional charge-
coupled device (CCD) array detectors, where one CCD dimension provides the spectral coverage,
one provides the cross-track coverage across a 45° field of view, and the movement of host aircraft
generates the along-track coverage. The GCAS and GeoTASO datasets used here have identical
NO:z retrieval algorithms, which are similar to those of major satellite instruments, including
TROPOMI, and eventually TEMPO.*-43 Briefly, NOz differential slant columns are produced by
fitting the 425-460 nm spectral window using QDOAS and a measured reference spectrum
collected over a nearby area away from NOz2 sources. Differential slant columns are converted to
vertical column densities using an air mass factor (AMF), which is a function of viewing and solar
geometries, surface reflectance, and meteorological and trace-gas vertical profile shapes, among
other variables (see Judd et al.*} and Judd et al.** for details). NO2 vertical profiles are calculated
using bias-corrected PRATMO stratospheric NO: climatologies*!: 46 and hourly output from the
North American Model-Community Multiscale Air Quality (NAMCMAQ) model (12 km x 12
km) from a developmental analysis from the National Air Quality Forecasting Capability.*’ The

resulting GCAS and GeoTASO TVCDs have a spatial resolution of 250 m x 250 m.

During the Long Island Sound Tropospheric Ozone Study (LISTOS), GeoTASO flew on the
NASA LaRC HU-25 Falcon in June 2018 and GCAS flew onboard the NASA LaRC B200 from
July—September 2018. On days when elevated regional air pollution was predicted (Table S1), a
large raster flight pattern spanning nearly the full New York City—Newark UA (Figures la and

S1a) was mapped in the morning (9—11 am local time, LT) and afternoon (1:30—4:10 pm LT). On
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other days, aircraft followed a smaller raster flight pattern (Figure S1b), sub-sampling the UA in
the early morning (8:15-9:50 am LT), late morning (9:50—-11:30 am LT), early afternoon (1:15—
3:00 pm LT), and late afternoon (3:00-4:45 pm LT). During LISTOS, Judd et al.* reported GCAS
and GeoTASO TVCDs agreed with coincident ground-based Pandora NO2 column measurements
to within £25% with no apparent overall bias. Here, we focus on cloud-free observations from 37
large and small NO2 TVCD flight rasters collected on 13 days having sampled at least 60% of
census tracts in the New York City-Newark UA. On average, GCAS and GeoTASO sampled 79
+ 7% of UA census tracts. Compared to the full New York City-Newark UA, Black and African
Americans, Hispanics and Latinos, and Asians were overrepresented by 16-25% in census tracts

sampled during the large and especially small raster pattern (Table S2).

TROPOMI. The TROPospheric Ozone Monitoring Instrument (TROPOMI) is a hyperspectral
spectrometer onboard the sun-synchronous Copernicus Sentinel-5 Precursor (S-5P) satellite.*® 4
S-5P has an equatorial crossing time of 1:30 pm LT, with observations collected over the New
York—Newark UA (Figure 1b) between 1-3 pm LT once or twice daily. NOz is retrieved by fitting
the 405—465 nm spectral band based on an updated OMI DOMINO algorithm and work from the
QA4ECV project.’*>* NO2 TVCDs have a documented low-bias over polluted scenes, with
uncertainties driven by spatially and temporally coarse inputs to the AMF,* including the surface
albedo (monthly 0.5° x 0.5° OMI climatology)>® and NO2 profile shape (daily 1° x 1° TM5-MP
output).’” We use Level 2 NO2 TVCDs reprocessed on the SS5P-PAL system (qa value > 0.75).
From 1 May 2018 to 6 August 2019, encompassing the LISTOS period, the nadir spatial resolution
of TROPOMI NO2 TVCDs was 3.5 km x 7 km, with typical individual pixel areas of 27-63 km?

(mean + 10). Subsequently, the spatial resolution improved to 3.5 km x 5.5 km at nadir,’® giving

pixel areas of 21-49 km? (mean + 10) over the New York City-Newark UA. We focus on the
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individual daily TVCDs (an example is shown in Figure 1b) and observations over May 2018—

September 2021 oversampled to 0.01° x 0.01° using a physics-based algorithm (Figure 1¢).%°

0.5 1 1.5 2 25 2 4 6 8
N02 ()(1(}16 molecules cm'z) NO2 ()(1015 molecules cm'z)

Figure 1. Example airborne NO2 TVCDs (molecules cm™) collected on 30 June 2018 at 1-4 pm
during a large raster flight pattern (250 m x 250 m) (a), TROPOMI measurements on the same
day, which have a mean pixel area of 43 km? (b), and TROPOMI observations oversampled to
0.01°x0.01° over 1 May 2018-30 September 2021 averaged to underlying census tracts. The black
outline describes the New York City—Newark UA. Background map data: Landsat 8 composite
January 2017—June 2020.

Census Tract NO: Inequalities. We average NO2 TVCDs within 2018 census tract polygons for
the New York City—Newark UA. Individual airborne and TROPOMI TVCDs are spatially
continuous but discretized to 0.001° x 0.001° at the pixel level prior to tract averaging without
regridding or oversampling. NO: tract-averaged TVCDs are weighted by tract-scale populations
of non-Hispanic/Latino Black and African Americans, non-Hispanic/Latino Asians, all races
identifying as Hispanic or Latino, and non-Hispanic/Latino whites (Eq. S1). Poverty status is
defined according to the U.S. Census Bureau family Ratio of Income to Poverty. Poverty
thresholds vary by family size and family member age but not geographically. The U.S. Census
intends for poverty thresholds to be a “statistical yardstick™ rather than a complete representation

of families’ needs. Below-poverty tracts are those with greater than 20% of households having an
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income-to-poverty ratio <l. Tracts above the poverty line are defined as those with household
income-to-poverty ratios of >1. Tract-scale NO2 TVCDs within both categories are population
weighted by residents at the given poverty status. We combine race-ethnicity and income metrics,
categorizing census tracts as low-income and non-white (LIN), i.e., people of color in low-income
tracts, or high-income and white (HIW). In LIN tracts, NO2 TVCDs are weighted by the population
of Black and African Americans, Hispanics and Latinos, Asians, and/or American Indians and
Alaska Natives in the lowest income quintile tracts (household incomes <$49,544.50). Because
American Indians and Alaska Natives comprise less than 0.2% of the New York City—Newark UA
population, we do not report results for this group separately. In HIW tracts, TVCDs are weighted
by the population of non-Hispanic/Latino whites in the highest income quintile tracts (household
incomes >$117,664). When we compute results in New York City and Newark separately, dividing
the UA along state lines, lowest income quintile tracts are those with tract-averaged median
household incomes <§48,911 and <$51,250, respectively; highest income quintile tracts are those
with tract-averaged median household incomes >$112,940 and >$125,367, respectively. We
discuss NO2 disparities in terms of relative and absolute inequalities computed as percent (%) and
absolute differences (molecules cm™?) in population-weighted census tract-averaged TVCDs.
Race-ethnicity inequalities are in reference to population-weighted NO2> TVCDs for non-
Hispanic/Latino whites and poverty status inequalities are in reference to NO2 TVCDs in census
tracts above the poverty line. While there are numerous dimensions of air pollution inequity, our
focus is on the evaluation and application of daily satellite measurements; therefore, we limit the
number of demographic characteristics considered in the analysis. Census data are from the 2019
American Community Survey (ACS): 5-Year dataset. Fractional census tract populations for the

four largest race-ethnicity groups and median household incomes are mapped in Figure 2 and
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census tract population densities are shown in Figure S2. The ACS is a higher time resolution
alternative to the longform decennial census. The ACS accounts for variations in census tract
sampling rates and differential group response rates through a complex weighting process. Sample
weights prioritize accuracy over precision, with individual tract estimates being more imprecise in
tracts with heterogeneous populations.®® ¢! We manage this imprecision through aggregation by
population weighting. We focus on the UA, defined as densely populated and commercial areas

within cities, to describe intraurban inequalities rather than urban-suburban differences.

N N Il I I N | a0
0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.5 1 15 2
Fractional Population (x10° USD)

Figure 2. Fractional census tract populations for Black and African Americans (a), Hispanics and
Latinos of all races (b), Asians (c), non-Hispanic/Latino whites (d), and median household incomes
(e) in the New York City—Newark UA (black line). Background map data: Landsat 8§ composite
January 2017—June 2020.

Measurements of Surface NO:*, 03, and Meteorology. We use NO2* surface observations
collected at 11 stations across the New York City—Newark UA (Figure S3a). These measurements
are made by decomposing NO2 to NO over a heated molybdenum catalyst, followed by the
detection of NO using the chemiluminescence technique. The resulting NO2 data have a known
positive interference from higher-order nitrogen oxides and ammonia, which also decompose at
non-unity efficiency in the presence of the catalyst.5%* We use the term NO2* in

acknowledgement of this interference, opting not to apply a correction factor as we are interested

10
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in the distance dependence of the correlations between surface NO2* and overhead TVCDs, rather
than the surface NO2 mixing ratios themselves. We use O3 measurements from 17 monitoring
stations within the UA (Figure S3b) converted to the policy-relevant metric of the daily maximum
8-hour average (MDAZS) O3 mixing ratio. Temperature and wind speed measurements are collected
at 14 stations throughout the New York City—Newark UA as part of the Automated Surface
Observing System and Automated Weather Observing System (Figure S3c), accessible through
the lowa State University lowa Environmental Mesonet download service. Because of station-
level variability in the data collection interval, we average individual station meteorological

measurements from 12—3 pm local time (LT) prior to computing the UA-wide mean.

NOx Emissions Inventories: FIVE and NEI. The Fuel-based Inventory of Vehicle Emissions
(FIVE) tabulates monthly on-road and off-road gasoline and diesel mobile source emissions at 4
km x 4 km U.S. wide. The FIVE is based on publicly available datasets of taxable fuel sales and
road-level traffic and time-resolved weigh-in-motion traffic counts.?? %% We use emissions from
the 2018, 2019, 2020 COVID-19, and 2020 business-as-usual (BAU) FIVE for 2018, 2019, 2020,
and 2021, respectively. The 2020 COVID-19 inventory was developed using monthly scaling
factors from U.S. Energy Information Administration fuel sales reports.?? In the 2020 BAU FIVE,
fuel use is assumed unchanged from 2019.22 See McDonald et al.®> and Harkins et al.??> for a
detailed discussion of the uncertainties, which are +24% for both gasoline and diesel vehicles.
Annual NOx stationary source emissions are taken from the 2017 National Emissions Inventory
(NEI17), including industrial and commercial facilities, power plants, and airports. Uncertainties
in power plant emissions are +25% and uncertainties for industrial facilities and other stationary

sources are +£50%.67- 68

3 RESULTS AND DISCUSSION

11
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GCAS and GeoTASO Census Tract-Level NO: Inequalities during LISTOS. We report
population-weighted census tract-scale NO2 inequalities measured during each of the 37 LISTOS
flights within the New York City—Newark UA in Figure 3 and Table S3. Population-weighted NO2
TVCDs for Black and African Americans, Hispanics and Latinos, and Asians are 14 + 3%, 14 +
5%, and 15 £ 4% higher than for non-Hispanic/Latino whites, respectively. NO2 TVCDs are on
average 17 £ 4% greater in tracts below the poverty line compared to those above. When race-
ethnicity and income metrics are combined, NO2 TVCDs are 24 + 4% higher in LIN than HIW
census tracts. Errors are defined as 95% confidence intervals for mean inequalities, derived from

bootstrapped distributions sampled with replacement 10* times.

NO: inequalities are more variable between days than by time of daytime during LISTOS. While
population-weighted and/or income-sorted NO2 TVCDs for all groups are on average 14-28%
higher during morning (8—11:30 am LT) than afternoon flights (1-5 pm LT), corresponding
median relative and absolute NO2 inequalities are not significantly different for any group (Mann-
Whitney test, p < 0.050). Mean relative and absolute inequalities are also similar during morning
and afternoon flights, with exceptions of relative inequalities for Hispanics and Latinos and
absolute inequalities for Asians and in LIN tracts. This suggests observations collected in the early
afternoon by TROPOMI capture daytime patterns in tract-scale population-weighted NO2> TVCD
(not surface mixing ratio) differences generally, at least during LISTOS. The small number of
flights limits our ability to statistically infer relationships between NO: disparities and
environmental factors; however, we observe moderate, negative correlations between absolute
inequalities and mean surface wind speeds and moderate, positive correlations with UA-mean

NO2* and NO2 TVCDs for some groups (p < 0.050) (Table S4). This is consistent with slower

12
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surface winds reducing the mixing of NO2 pollution away from NOx sources and higher NO2

pollution worsening absolute inequalities.
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Figure 3. Airborne NO: inequalities for each of the 37 LISTOS flights for Black and African
Americans (a), Hispanics and Latinos (b), and Asians (c) compared to non-Hispanic/Latino whites,
below poverty versus above poverty tracts (d), and LIN compared to HIW tracts (). Morning (8—
11:30 am LT) (tan) and afternoon (1-5 pm LT) (brown) flights are shown separately. LISTOS
mean inequalities with 95% confidence intervals are reported in each panel, for all flights (black)
and separately in the morning (tan) and afternoon (brown).

Evaluating Daily TROPOMI Observations. To determine the extent to which daily TROPOMI
measurements resolve census tract-level disparities, we compare NO2 inequalities for spatially and
temporally coincident tract-averaged GCAS, GeoTASO, and TROPOMI observations within the
New York City—Newark UA. We consider measurements to be coincidental if the minimum and
maximum overfly times of airborne columns within a given census tract occur within £30 minutes
of the TROPOMI overpass. Daily relationships between airborne and TROPOMI inequalities are

fit using an unweighted bivariate linear regression model (Figure 4).%° We infer the portion of NO2
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inequalities captured by TROPOMI from the slope of this line and assess agreement between the

airborne and TROPOMI-derived results using Pearson correlation coefficients.

Daily TROPOMI observations capture most tract-scale NO2 differences and are well correlated
with inequalities measured by GCAS and GeoTASO. Correlation slopes are 0.82 = 0.10-1.05 +
0.07 for relative inequalities and 0.76 + 0.09—0.96 + 0.06 for absolute inequalities, implying
TROPOMI detects at least 82% of relative and 76% of absolute inequalities, with slopes for many
population groups being even higher. For the comparison, the mean pixel area of coincident
TROPOMI TVCDs is 44 + 18 km? (+1o), which is much larger than typical atmospheric NO2
distance decay gradients of a few hundred meters.!3-2® While some precision is lost, our results
suggest measurements on the scale of these gradients, for example GCAS and GeoTASO, are not
required to constrain the majority of city-wide census tract-scale NO:2 inequalities. Airborne and
TROPOMI inequalities are strongly correlated, with Pearson correlation coefficients ranging 0.82—
0.97 for relative and 0.88-0.96 for absolute inequalities. Slopes and Pearson correlation
coefficients do not improve significantly when inequalities are weighted by the number of
coincident census tracts, mean TROPOMI pixel areas, UA-mean surface wind speeds, or mean
TROPOMI NO: TVCDs, suggesting these variables do not have a strong influence over the

agreement, at least in the New York City—Newark UA during LISTOS.
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Figure 4. Daily relative (%) (blue circles) and absolute (molecules cm™?) (green diamonds)
inequalities measured by GCAS and GeoTASO versus TROPOMI during LISTOS for Black and
African Americans (a), Hispanics and Latinos (b), and Asians (c¢) compared to non-
Hispanic/Latino whites, below-poverty versus above poverty tracts (d), and LIN compared to HIW
tracts (e). Fits are derived from an unweighted bivariate linear regression model. Slopes (m) and
Pearson correlation coefficients (r) for each fit are reported for both relative (blue) and absolute
(green) inequalities. One data point in panel d is out of frame (—119.5, —136.4).
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Table 1. Influence of TROPOMI pixel area and sampling coverage on both mean and individual
daily relative inequalities (May 2018—September 2021), as well as comparison between mean daily
and oversampled relative inequalities for Black and African Americans, Hispanics and Latinos,
and Asians compared to non-Hispanic/Latino whites, for below poverty versus above poverty
tracts, and for LIN compared to HIW tracts. The pixel area analysis only includes days with >30%
UA coverage. Observations are grouped such that each category contains at least 80 observation
days. Inequalities are binned by days with low (<30%), moderate (30—-60%), and high (>60%) UA
coverage. Daily inequalities are assessed using the coefficient of variation. Errors are 95%
confidence intervals based on bootstrapped distributions sampled with replacement 10* times. The
oversampled TROPOMI TVCDs are oversampled to 0.01° x 0.01° prior to census tract averaging
for all days, on days with >30% coverage, and on days with >60% coverage, with uncertainties as
standard mean errors.

Mean of Daily Inequalities Daily Inequalities
Relative Inequalities (%) Coefficient of Variation
Pixel Area Black and Hispanics ‘ Below Blacl'< and Hispanics ) Below
(km?) Afrlf:an ar_ld Asians Poverty LINs Afrl_can ar_ld Asians Poverty LINs
Americans Latinos Tracts Americans Latinos Tracts
20-25 31+2 30+£2 28+2 28 +2 40+3 0.44 0.52 0.43 0.45 0.40
25-30 32+3 30+3 28+£2 26+3 39+3 0.45 0.53 0.42 0.52 0.41
30-35 31+£3 29+3 30+£2 2642 38+3 0.42 0.42 0.32 0.43 0.37
35-45 31+£2 26+3 28+2 25+3 38+3 0.37 0.62 0.34 0.53 0.41
45-60 30+£3 27+3 28+3 2542 38+4 0.54 0.60 0.51 0.53 0.53
>60 26+3 25+3 23+£2 22+2 31+£3 0.47 0.60 0.49 0.50 0.43
UA Coverage (%)
<30 12+£2 11+£2 10+2 11+4 18+4 1.99 2.00 2.05 2.47 1.81
30-60 30+£3 29+3 26+3 25+3 37+4 0.64 0.62 0.65 0.66 0.65
>60 30+1 28+ 1 28+ 1 26+ 1 38+1 0.40 0.53 0.36 0.45 0.36
Mean of Daily Inequalities Oversampled Inequalities
All days 24+1 22+1 21+1 21+1 32+1 28+ 1 27+1 28+ 1 25+1 36+2
>30% 30+1 28+ 1 28+ 1 25+ 1 38+1 28+ 1 27+ 1 28+ 1 25+1 35+2
>60% 30+1 28+1 28+1 26+ 1 38+1 28+1 26+ 1 28+1 25+1 36+2

We calculate daily census tract-scale NO: inequalities over May 2018—September 2021 and
investigate the sensitivity of mean and individual daily results to UA-mean TROPOMI pixel area
and UA coverage percentage (Table 1). First, UA-mean daily TROPOMI pixel areas range ~20—
90 km? (Figure S4), providing an empirical test of the resolution dependence of NO: inequalities.
We remove days from the analysis when TROPOMI observations cover less than 30% of census

tracts across the New York City—Newark UA (justification below; see Table S5 for an analysis of
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all days). We find relative inequalities are mostly insensitive to TROPOMI UA-mean pixel area,
with significant differences in medians emerging when pixels are larger than ~60 km?, defined as
p < 0.050 (Kruskal-Wallis test). Additionally, there is no clear influence of increasing UA-mean
pixel area on the coefficient of variation of the individual daily inequalities. Substantial day-to-
day variability limits our ability to identify an exact pixel area-sensitivity threshold, and, because
observation days with UA-mean pixel areas >60 km? comprise less than 15% of the full dataset,
their inclusion does not significantly affect our results. Relationships between inequalities and UA-
mean pixel areas suggest key spatial scales for describing NOz2 inequalities are larger than those of
atmospheric NO2 dispersion gradients, which is consistent with recent work by Chambliss et al.!®
and Demetillo et al.'3, because NOx emissions sources are ubiquitous and distributed and tracts

with similar population characteristics spatially aggregate.”®

Second, we investigate the sensitivity of daily inequalities to TROPOMI observation UA coverage
extent (Table 1). Reduced sampling coverage is largely caused by clouds, but snow accumulation
can be important in the winter. In the New York City—Newark UA, snow cover accounted for 29%
of missing pixels in winter months, with snow present on 43% of observations days in December—
February and 12% of total observation days across May 2018—September 2021. Distributions of
daily relative and absolute NO2 inequalities for each group are shown in Figure 5 on all days, on
days with at least 30% UA coverage, and on days with at least 60% UA coverage. Inclusion of
days with sparse coverage (<30%) decreases mean relative NO2 inequalities by 4—6 percentage
points. Individual daily inequalities are more affected by missing data than means, with increasing
coefficients of variation at UA coverage levels of <60% in comparison to days with >90%
coverage. Effects of incomplete UA coverage are largely explained by insufficient sampling of

key race-ethnicity, poverty, and income groups, with greater coverage capturing more
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representative UA demographics and observations on lower coverage days more likely to sample
population groups in the majority (Figure S5): non-Hispanic/Latino whites (44%) and tracts above
the poverty line (73%). As a result, we remove days with <30% UA coverage from our discussion
of mean NO: inequalities (323 days or 33% of the full dataset) and days with <60% coverage from
our analysis of daily inequalities (457 days or 47% of the full dataset). Results are skewed toward
clear sky conditions, corresponding to daytime (12—3 pm LT) mean surface NO2* mixing ratios of
8.1 = 4.4 ppb (days with >30% UA coverage) compared to daytime mean NO2* of 11.9 + 6.6 ppb

(days with <30% coverage), likely biasing daily absolute NO2 inequalities low (discussion below).

Mean daily population-weighted NO2 TVCDs over May 2018—September 2021 are 30 + 1%, 28 +
1%, and 28 £+ 1% higher for Black and African Americans, Hispanics and Latinos, and Asians,
respectively, compared to non-Hispanic/Latino whites (Figure 5 and Table 1). NO2 TVCDs are 25
+ 1% greater in tracts below the poverty line than above and 38 + 1% higher in LIN compared to
HIW census tracts. We report results separately in New York City and Newark, where mean daily
NO:2 inequalities are 19-30% and 24-43%, respectively (Table 2). Means and 95% confidence
intervals are derived from bootstrapped daily NO: inequality distributions resampled 10* times.
We repeat NO2 inequality calculations by first oversampling the same subset of days to a resolution
of 0.01° x 0.01° using a physics-based algorithm®® prior to census tract averaging and find
oversampled and mean daily results are equal to within associated uncertainties for days with at
least 30% UA coverage (Table 1). Finally, our analysis is based on recently reprocessed SSP-PAL
TROPOMI TVCDs, which include improvements resolving some of the low biases occurring over
polluted northern midlatitude scenes and in the wintertime.”! Mean daily inequalities computed
with the SSP-PAL TVCDs are 3—6 percentage points higher compared to the RPRO and OFFL

operational products (Table 2), indicating TROPOMI NO:2 inequality estimates using previously
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available NO:2 products are biased low, as suggested by Demetillo et al.'” in their detailed

evaluation of oversampled NO2 TVCDs and census tract-scale inequalities in Houston, Texas.

While inequalities based on spatially and temporally coincident airborne and TROPOMI TVCDs
are in good agreement (Figure 4), mean daily TROPOMI NO: inequalities are significantly higher
than those measured by GCAS and GeoTASO during LISTOS (Table 1). This is true both over
the full May 2018—September 2021 period and on LISTOS flight days when all TROPOMI
TVCDs, not just those coincident with airborne observations, are considered. Absolute inequalities
are higher in the winter than summer; however, relative NO2 inequalities exhibit little seasonal
variation. While LISTOS inequalities are within the distribution of daily TROPOMI inequalities,
differences in mean disparities are explained by changes in UA observational coverage and
corresponding demographic composition. Mean daily TROPOMI inequalities within a typical
LISTOS large (30 June 2018) and small (15 August 2018) flight raster are 3-9 and 11-20
percentage points lower than across the full New York City—Newark UA (Table 2). However, there
are similarities, for example, mean inequalities for Black and African Americans, Hispanics and
Latinos, and Asians are comparable to within associated uncertainties, as also observed by GCAS
and GeoTASO during LISTOS, and inequality distributions for Hispanics and Latinos exhibit a

heavy tail using both daily TROPOMI and aircraft TVCDs.
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Figure 5. Daily TROPOMI NO: inequalities over May 2018—September 2021 for Black and
African Americans (a), Hispanics and Latinos (b), and Asians (c) compared to non-
Hispanic/Latino whites, below-poverty versus above poverty tracts (d), and LIN compared to HIW
tracts (e). Top panels depict relative inequalities (%) on all days (light blue), on days with at least
30% UA coverage (gray blue), and on days with at least 60% UA coverage (bright blue). Bottom
panels depict absolute inequalities (molecules cm™) on all days (light green), days with at least
30% UA coverage (yellow green), and on days with at least 60% UA coverage (dark green). Mean
relative inequalities and 95% confidence interval are included in each panel for each coverage
threshold: on all days (light blue), on days with at least 30% UA coverage (gray blue), and on days
with at least 60% UA coverage (bright blue).

Table 2. Mean daily TROPOMI inequalities (May 2018—September 2021) on days with >30%
coverage across the New York City—Newark UA based on the SSP-PAL NO: product, as used
throughout the analysis, on days with >30% coverage based on the RPRO and OFFL operational
products, separately in New York City and Newark, and within the large (30 June) and small (15
August) LISTOS flight rasters. Errors are 95% confidence intervals based on bootstrapped
distributions sampled with replacement 10* times.
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New York City— New York City—
Newark UA Newark UA

Large LISTOS  Small LISTOS

New York Newark, Raster Flight Raster Flight

(S5P-PAL) (Operational Product) City, NY NJ Pattern Pattern
Black and African 30+1 26+ 1 241 33+2 2+1 10+1
Americans
Hispanics and Latinos 28+ 1 23+ 1 19+1 4342 20+ 1 11+1
Asians 281 25+ 1 25+ 1 26+2 191 101
Below Poverty Tracts 25+ 1 22+ 1 20+ 1 24+ 1 22+1 14+1
LINs 38+ 1 32+1 30+ 1 43+ 1 32+1 20+ 1

Finally, TROPOMI measures NO2 atmospheric columns rather than surface mixing ratios. For
satellite remote sensing to inform environmental justice decision-making, spatial and temporal
patterns in TVCDs must reflect NO2 distributions at the surface.!>!” To investigate NO2 column-
surface relationships, we calculate Pearson correlation coefficients between daily TROPOMI
TVCDs (without averaging to underlying census tracts) and mean daytime (12—-3 pm LT) NOx*
mixing ratios as a function of the distance between observations.!*17-72 We find the strongest mean
correlations (» = 0.61 £+ 0.03; error is the 95% confidence interval) between NO2* and directly
overhead TVCDs, defined as TVCDs within 1 km of a monitor based on pixel center points. Mean
daily column-surface correlations subsequently weaken with increasing distance, falling to 0.56 +
0.03 at 1-2 km, 0.49 £ 0.02 for 2—5 km, and 0.43 £ 0.02 at 5-10 km. The distance dependance of
mean Pearson correlation coefficients reflects typical NO2 distance decay gradients, '8 indicating
coarser resolution daily observations resolve finer-scale NOz gradients, at least to some extent in
the average. Column-surface correlations covary with wind speeds and overall NO2 pollution
levels in physically meaningfully ways. Daily r values are significantly, although weakly,
negatively associated with UA-mean surface wind speeds and positively associated with UA-mean
NO2* and NO2 TVCDs. Lastly, we find no relationship between Pearson column-surface

correlation coefficients and daily UA-mean pixel area (Table S6).

Daily Variability in NO: Inequalities. Here, we apply the daily TROPOMI NO: inequality

observations, describing statistical relationships with overall NO2 and O3 pollution and climate-
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relevant atmospheric conditions (Table 3). We discuss the implications of each in turn. We report
Pearson correlation coefficients between NO: inequalities, surface NO2* mixing ratios, and NO2
TVCDs. We compute Spearman rank correlation coefficients (p) between NO: inequalities,
MDAS O3, surface wind speeds, and surface daytime and daily maximum temperatures, as these
relationships are monotonic but nonlinear. Surface NO:2* mixing ratios, wind speeds, and
temperatures are UA-wide means over 12-3 pm LT in correspondence to the TROPOMI overpass
time. We calculate » and p values on days with >60% TROPOMI UA coverage, separately in the

winter (December—February) and summer (June—August).

First, we find absolute NO:2 inequalities are strongly associated with UA-mean surface NO2* and
NO:2 TVCDs. However, relative inequalities are mostly uncorrelated in the winter and only weakly
or moderately associated with NO2 pollution in the summer. Observed differences between
absolute and relative inequalities are evidence that NOx sources are systematically located in
communities of color and low-income neighborhoods, as variability in individual terms affecting
the NO2 mass balance will have a larger effect on absolute NO2 concentrations than on relative
differences city wide. Therefore, while incremental NOx controls will decrease localized NO2
burdens, any emissions above zero will drive continued disparities. Results from daily TROPOMI
TVCDs are supported by predictions from the FIVE and NEI. We calculate inequalities in NOx
source densities equivalently to those based on observations (Methods), with point source
emissions summed within census tracts and total NOx emissions (FIVE + NEI) divided by tract
area. Inequalities in population-weighted NOx emission source densities are 90 = 6% for Black
and African Americans, 95 = 5% for Hispanics and Latinos, 71 £ 6% for Asians, 88 + 5% for

below-poverty tracts, and 113 £ 7% for LINSs.
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NO:z is a key reactant in the chemistry of O3 production (PO3); therefore, neighborhood-level NO2
inequalities and urban O3 are potentially coupled. In the New York City—Newark UA, there were
59 exceedances of the MDAS 70 ppb National Ambient Air Quality Standard (NAAQS) over May
2018—September 2021. Briefly, POs is a nonlinear function of NO2. At low NO:2 levels, NOx
emissions reductions decrease PO3 (chemistry is NOx limited). At high NOz levels, NOx reductions
increase PO3 (chemistry is NOx suppressed), with decreases in gas-phase organic compounds
being the most effective form of O3 control, at least until NO2 is sufficiently reduced to transition
to NOx-limited POs. Here, we find absolute NO2 inequalities are moderately, positively associated
with summertime UA-mean MDAS O3 (Table 3), with similar results over the May—September O3
season (Table S7). For comparison, correlation coefficients relating UA-mean surface NO2* and
column NO2 TVCDs with MDAS8 O3 on >60% UA coverage days are 0.43 and 0.46, respectively.
This suggests there are regulatory O3 co-benefits to reducing NOz2 inequalities and to strategies
prioritizing NOx emissions reductions in communities of color and low-income communities,
consistent with recent work showing PO3 in New York City and Newark trending toward NOx-
limitation.”> Because O3 is an intermediately long-lived secondary pollutant, it is more evenly
distributed and not generally associated with large intraurban exposure disparities.”* However,
NO2 concentrations are highly spatially heterogeneous, and NO:2 reductions in neighborhoods
overburdened by NOx sources could potentially worsen O3 locally. To investigate this, we compare
population-weighted census tract-scale MDAS8 O3 NAAQS exceedance frequencies on weekdays
and weekends based on surface O3 measurements (Table S8). In the New York City—Newark UA,
NO2 TVCDs were on average 27% lower on weekends compared to weekdays over May 2018—
September 2021. Across U.S. cities, weekday-weekend O3 differences are a well-established test

of the NO2 dependence of POs3, as substantial NO2 decreases occur without comparatively large
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changes in other aspects of O3 chemistry.”> We find MDAS8 O3 NAAQS exceedances are more
frequent on weekdays than weekends for all race, ethnicity, and/or income population groups
(Table S8), indicating that NOx reductions will not worsen O3 where NOx emissions are greatest.

This said, we add caution that our results may be influenced by the locations of the O3 monitors.

Finally, atmospheric conditions influence intraurban NOz2 distributions in ways that inform how
NO: inequalities may scale with climate change. The Northeast U.S. is expected to experience
warmer surface temperatures and more frequent stagnation days in summer and winter months,
with slower surface winds from reduced mid-latitude cyclone activity and a northward shift of the
summer mid-latitude jet stream.’6-8! We find NO2 inequalities exhibit moderate to strong negative
associations with surface wind speeds, consistent with the accumulation of NO2 pollution near
NOx sources from reduced atmospheric mixing. This indicates that more frequent atmospheric
stagnation events will exacerbate disparities. During summer months, NOz inequalities are weakly
but significantly positively correlated with both daytime average and maximum daily
temperatures. As a result, NO2 inequalities and temperature may not scale together; however,
people of color and low-income residents in New Y ork City and Newark also bear disproportionate

82-84

urban heat risks compared to non-Hispanic/Latino white and wealthy residents, suggesting

cumulative unequal climate-driven burdens will be greater without targeted NOx emission

controls.

Table 3. Correlation coefficients between daily absolute inequalities and UA-mean NO2* mixing
ratios (12-3 pm LT), NO2 TVCDs, surface wind speeds (12—3 pm LT), surface temperatures (12—
3 pm LT), daily maximum temperatures, and MDAS8 O3 mixing ratios. Relationships between daily
NO:z2 inequalities, surface NO2*, and NO2 TVCDs are Pearson correlation coefficients (7). All other
relationships are Spearman rank correlation coefficients (p). Correlations are separately analyzed
in the winter (December—February) and summer (June—August) for days with TROPOMI
observations with >60% UA coverage. Only statistically significant coefficients are reported, with
r and p significant to 1% (p < 0.010) unless indicated (1), which means significant to 5%.
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Correlations with Absolute Daily Inequalities Correla'tlons with 'R'elatlve
Daily Inequalities
Summer
Surface Surface MDAS Surface Daily Maximum Surface
Wind Speeds NO,* NO, TVCDs 0; Temperatures Temperature NO,* NO, TVCDs
Black and African -0.31 0.56 0.61 041 0.19" 0.19 0.25 0.17"
Americans
Hispanics and -0.24 0.62 0.67 0.55 0.28 0.33 0.46 0.39
Latinos
Asians -0.34 0.59 0.68 0.51 0.30 0.28 0.32 0.25
Below Poverty ~0.29 0.62 0.64 0.50 0.26 0.30 038 0.25
Tracts
LINs -0.32 0.63 0.66 0.50 0.23 0.27 0.40 0.24
Winter
Surface Wind Speeds ~ Surface NO,* NO, TVCDs Surface Surface N0, TVCDs
2 2 Temperatures NO,* 2
Black'and African 075 0.60 0.65 B B B
Americans
Hispanics and ~0.65 0.70 0.64 - 0.44 0.28
Latinos
Asians -0.77 0.69 0.75 - - -
Below Poverty _071 0.63 0.54 B B B
Tracts
LINs -0.78 0.64 0.60 - - -

Summary, Future Opportunities, and Implications. We have demonstrated that individual daily
TROPOMI observations capture a major portion of census-tract scale NO2 inequalities in the New
York City—Newark UA using high spatial resolution (250 m x 250 m) GCAS and GeoTASO
remote sensing measurements as a standard of comparison. LISTOS airborne observations resolve
length scales of dispersion, allowing for accurate representations of tract averaged NO2 TVCDs.
We show that spatially and temporally coincident TROPOMI and aircraft measurements are
strongly correlated (0.82—0.97) with slopes of 0.82 +0.10-1.05 £ 0.07 and 0.76 + 0.09-0.96 + 0.06
for relative and absolute inequalities, respectively. Moreover, daily TROPOMI NO: inequalities
are generally insensitive to observation resolution for UA-mean pixel areas smaller than 60 km?>—
therefore, key spatial scales for measuring NO2 inequalities are larger than those of atmospheric
NO: gradients, ' as tracts with similar population characteristics spatially aggregate, even in New
York City and Newark where the structure of racial segregation is highly heterogeneous.'>7° As a

result, fine-scale observations may not always be required to understand variability in intraurban
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air pollution disparities, especially if biases can be well characterized, opening new opportunities
for satellite remote sensing, as well as chemical transport modeling. We limit our conclusions to
decision-making on city-wide NO2 inequalities, as we have not attempted to resolve near-field
impacts of individual polluters in communities with air pollution-related environmental justice
concerns, instead focusing on accumulated NO2 burdens from ubiquitous and overlapping urban
NOx sources. Daily TROPOMI observations cannot replace hyper-localized community-driven
monitoring,® but spatially comprehensive and temporally resolved satellite measurements offer

complimentary information on spatiotemporal trends and in unmonitored locations.

We report mean daily NO2 inequalities of 28-30% for Black and African Americans, Hispanics
and Latinos, and Asians and inequalities of 25% for residents of below poverty census tracts. When
race-ethnicity and income metrics are combined, we find 38% greater population-weighted NO2
TVCDs for people of color living in low-income tracts (LINs). These mean daily NO2 inequalities
equal those based on TROPOMI NO2 TVCDs first oversampled to 0.01° x 0.01° to within
associated uncertainties. Biases arise using individual observations with reduced UA coverage due
to inadequate sampling of key race-ethnicity and income groups, affecting mean daily NO2
inequalities and the precision of individual daily results (Figure S5). The dependence of city-level
inequalities on sampling coverage has relevance for other measurement approaches for which it is
difficult to collect observations city wide, for example, mobile monitoring. Reliance on clear sky
measurements likely biases absolute NO2 inequalities low, and relative inequalities to a smaller
extent, as UA-wide mean surface NO2* mixing ratios are 40% higher (3.8 ppb) on low (<30%)
than high-coverage (>30%) days and as TROPOMI absolute inequalities are strongly, positively

associated with overall NOz2 pollution, at least in the New York City—Newark UA.
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Observations of daily NO2 inequalities offer new insight into the causes and countermeasures of
neighborhood-level disparities through their statistical relationships with other factors. We present
empirical evidence for the systematic placement of NOx sources in communities of color and low-
income neighborhoods across the New York City—Newark UA. Specifically, absolute NO2
inequalities are strongly correlated with overall NO:2 pollution, while relative NO2 inequalities are
not. The issue of source placement has been long identified by community organizations and
residents, with TROPOMI providing space-based accountability of whether the promises of recent
legislation in both states to consider cumulative burdens during permitting are kept.’6 87
Municipalities have several tools for addressing existing siting disparities: establishing penalties;
eliminating nonconforming wuses; using environmental reviews, impact analyses, and
comprehensive planning; and tightening existing zoning codes in polluted neighborhoods with
marginalized and vulnerable populations. Daily TROPOMI observations enable approaches to
prioritize affected communities where and when NO2 burdens are highest. We find more frequent
stagnation conditions in the coming decades will exacerbate neighborhood-level NO2 inequalities,
and warming summer surface temperatures will increase cumulative disparities from overlapping
NO2 and urban heat burdens. So informed, municipalities have opportunities for targeted
interventions focused on redressing harms and eliminating disparities by preventing the arrival of
new sources and decreasing existing NOx emissions in overburdened communities. In addition,
because NO:2 inequalities are positively associated with high MDAS O3 in the New York City—
Newark UA, targeted NOx emissions reductions in communities of color and low-income

neighborhoods have the potential to improve O3 city wide.
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Supporting Information Available. Study area maps, including example large and small LISTOS
rasters, UA population density, and surface monitoring station locations. Figures displaying the
distribution of TROPOMI pixel areas and variability in population demographics with different
TROPOMI coverage levels. Tables describing LISTOS flight patterns, detailed LISTOS inequality
results, correlations between LISTOS inequalities and various surface conditions, effect of pixel
area on daily TROPOMI inequalities, influence of various factors on TROPOMI column-surface
correlations, and relative weekday-weekend MDAS8 O3 NAAQS exceedances. The equation for
population weighting and relationships between daily TROPOMI inequalities and various factors

over O3 season (May—September).
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