
Journal of Machine Learning ISSN: 2790-2048(e), 2790-203X(p)

Batch Normalization Preconditioning for Stochastic Gra-1

dient Langevin Dynamics2

Susanna Lange * 1, Wei Deng † 2, Qiang Ye ‡ 3, and Guang Lin § 4
3

1Data Science Institute, University of Chicago, Chicago, IL 606154

2Machine Learning Research, Morgan Stanley, New York City, NY 100365

3Department of Mathematics, University of Kentucky, Lexington, KY 405066

4Departments of Mathematics, & School of Mechanical Engineering, Purdue University, West Lafayette, IN7

479078

Abstract. Stochastic gradient Langevin dynamics (SGLD) is a standard sampling technique for uncertainty
estimation in Bayesian neural networks. Past methods have shown improved convergence by including a
preconditioning of SGLD based on RMSprop. This preconditioning serves to adapt to the local geometry of
the parameter space and improve the performance of deep neural networks. In this paper, we develop an-
other preconditioning technique to accelerate training and improve convergence by incorporating a recently
developed Batch Normalization Preconditioning (BNP), into our methods. BNP uses mini-batch statistics to
improve the conditioning of the Hessian of the loss function in traditional neural networks and thus improve
convergence. We will show that applying BNP to SGLD will improve the conditioning of the Fisher Infor-
mation matrix, which improves the convergence. We present the results of this method on three experiments
including a simulation example, a contextual bandit example, and a residual network which show the im-
proved initial convergence provided by BNP, in addition to an improved condition number from this method.

Keywords:
Bayesian Neural Networks
Preconditioning
Batch Normalization
Stochastic Gradient Langevin Dynamics

Article Info.:
Volume: x
Number: x
Pages: xx- xx
Date: XX/YYYY
doi.org/xx.xxxx/x.xxx.xxxx.xxxx

Article History:
Received: 99/99/9999
Accepted: 99/99/9999

9

1 Introduction10

Markov Chain Monte Carlo (MCMC) provides a principled framework for simulating the11

distribution of interest. During the simulation, the entire dataset is often used to com-12

pute the energy or the gradient, which, however, is not scalable enough in big data prob-13

lems. To tackle this issue, stochastic gradient Langevin dynamics (SGLD) [Welling and14

Teh, 2011] proposes to inject additional Gaussian noise to stochastic gradient descent and15

smoothly transitions into an MCMC sampler as the step size goes to zero. The explorative16

feature of the sampler not only captures uncertainty for reliable decision-making but also17

facilitates non-convex optimization to alleviate over-fitting [Raginsky et al., 2017, Zhang18

et al., 2017]. Since then, many interesting stochastic gradient Markov Chain Monte Carlo19

(SG-MCMC) methods are proposed to accelerate the convergence [Chen et al., 2014, Deng20

*susannalange@uchicago.edu
†weideng056@gmail.com
‡qiang.ye@uky.edu.
§Corresponding author. guanglin@purdue.edu.

https://www.global-sci.com/jml Global Science Press

J. Mach. Learn., x(x):xx-xx 2

et al., 2020a,b, Ma et al., 2015]. However, these sampling algorithms still suffer from a slow21

convergence given morbid curvature information. To handle this issue, Girolami et al.22

[2011] and Patterson and Teh [2013] propose to adjust the Langevin algorithm on the Rie-23

mann manifold. Despite the correctness of the simulations, it is challenging to conduct the24

transformation in high-dimensional problems. Motivated by the adaptive preconditioner25

as in Root Mean Squared Propagation (RMSprop), the preconditioned SGLD algorithm26

(pSGLD) proposes to accelerate SGLD through a diagonal approximation of the Fisher in-27

formation to resolve the scalability issue [Li et al., 2016]. This uses gradient information28

to construct a preconditioner that can be interpreted to have an adaptive step size, with a29

smaller step size for curved directions and a larger step size for flat directions. This com-30

bats the slow training related to saddle points in neural networks. Other preconditioning31

methods have been investigated, including dense approximations of the inverse Hessian,32

as in Ahn et al. [2012], Şimşekli et al. [2016]. There have also been approaches to use33

non-linear averaging methods to accelerate network convergence. He et al. [2022] uses a34

Truncated Generalized Conjugate Residual method that uses symmetry of the Hessian to35

improve convergence, and He et al. [2021] combines gradient descent ascent with Ander-36

son Mixing in generative adversarial networks, which was shown to improve adversarial37

training.38

Another approach to accelerate convergence is to incorporate Batch Normalization39

(BN) layers into the network architecture [Ioffe and Szegedy, 2015]. BN uses mini-batch40

statistics to normalize hidden variables of a network and has been shown to decrease41

training times and improve network regularization. BN and its connection to Bayesian42

neural networks have been studied in Teye et al. [2018], in particular, a network with BN43

can be interpreted as an approximate Bayesian model. Batch Normalization has also been44

successfully applied to Bayesian models as studied in Mukhoti et al. [2020] which shows45

that including BN layers does not affect the probabilistic inference of variational methods.46

Batch Normalization Preconditioning (BNP) is a technique that also uses mini-batch statis-47

tics but does so by transforming a network’s trainable parameters using a preconditioner48

[Lange et al., 2022]. This is done by applying a preconditioning transformation on the49

parameter gradients during training. This transformation has been shown to improve the50

conditioning of the Hessian of the loss function which corresponds to a major advantage51

of the BNP transformation, that is, improvement in the convergence of the method. More52

importantly, BNP is a general framework that is applicable to different neural network53

architectures and in different settings, such as Bayesian models.54

In this paper, we develop BNP for Bayesian neural networks to be used as a sampling55

method and examine its effects. We show that we can develop a similar preconditioning56

technique for SGLD that further improves initial convergence by improving the condition57

number of the Fisher Information matrix. Additionally, we provide experimental results58

on three different methods, each showing improvement in convergence over our com-59

parative baselines. We also compute the condition number of the approximate empirical60

Fisher information, which demonstrates the improvement in the condition number in our61

method.62

The paper is organized as follows. In Section 2 we provide background informa-63

tion on Stochastic gradient Langevin Dynamics as well as a preconditioned version of64

J. Mach. Learn., x(x):xx-xx 3

SGLD. Section 2.2 introduces the basics of a Batch Normalization architecture. In Section65

3 we expand upon a preconditioning method, Batch Normalization Preconditioning, to66

a Bayesian setting that improves the conditioning of the Fisher Information matrix and67

Section 4 showcases the benefits of BNP applied to SLGD in three different experiments.68

2 Background69

In this section, we provide preliminaries on the Stochastic gradient Langevin Dynamics70

method and preconditioned-SGLD. We also describe the Batch Normalization network71

architecture.72

2.1 SGLD and pSGLD73

Suppose we have a parameter θ with a prior distribution p(θ). We can then compute the74

posterior distribution p(θ|X) over N data points X = {x1, ..., xN} as75

p(θ|X) ∝ p(θ)
N

∏
i=1

p(xi|θ),76

where the prior serves as a regularization term, and we aim to optimize the likelihood by77

finding the maximum a posteriori (MAP), that is argmax log p(θ|X). Stochastic gradient78

Langevin dynamics (SGLD) combines stochastic optimization with Markov chain Monte79

Carlo (MCMC) by incorporating uncertainty into predictive estimates by way of adding80

a noise component to the parameter updates. The update for SGLD is given at each time81

step t for a subset of n data points X = {xt1, ..., xtn} as82

∇θt =
ϵt

2

(
∇ log p(θt) +

N
n

n

∑
i=1
∇ log p(xti|θt)

)
+ ηt, (2.1)83

where η ∼ N(0, ϵt). As t increases, it has been shown for SGLD that θt will converge in84

distribution to the posterior distribution [Welling and Teh, 2011] with the assumption that85

1. The sequence of step sizes {ϵt} are decreasing with ∑∞
t=1 ϵt = ∞86

2. ∑∞
t=1 ϵ2

t < ∞.87

Note that this standard SGLD algorithm updates all parameters with the same step size.88

However, when the different components of the parameter vector have different curva-89

tures or different scales, it is more beneficial to use a preconditioning matrix G(θ) in SGLD90

to help adjust step size locally. The general framework of stochastic gradient Riemannian91

Langevin dynamics (SGRLD) was suggested in Patterson and Teh [2013], which gives the92

update step:93

∇θt =
ϵt

2

[
G(θt)

(
∇θ log p(θt) +

N
n

n

∑
i=1
∇θ log p(xti|θt)

)
94

+ Γ(θt)
]
+ G

1
2 (θt)N (0, ϵt I), (2.2)95

96

J. Mach. Learn., x(x):xx-xx 4

where97

Γi(θ) = ∑
j

∂Gi,j(θ)

∂θj
98

provides information on how the preconditioner G changes with respect to θt. For the con-99

venience of implementations, G(θt) is replaced by the identity matrix in SGLD, in which100

case Γi(θt) = 0. Particularly of interest is the preconditioner used in Li et al. [2016] which101

is the same as in RMSprop and serves to transform the rate of curvature to be equal in102

all directions. This preconditioning method is referred to as pSGLD. The preconditioning103

matrix estimates a diagonal matrix and the update at each step is given by104

G(θt+1) = diag
(

1⊘ (λ1 +
√

V(θt+1)
)

, (2.3)105

where106

V(θt+1) = αV(θt) + (1− α)g(θt;X t)⊙ g(θt;X t), (2.4)107

and

g(θt;X t) =
1
n

n

∑
i=1
∇θ log p(xti|θt)

is the mean of the gradient over the mini-batch X t and α ∈ [0, 1]. Computations in Equa-108

tions (2.3) and (2.4) are using element-wise multiplication ⊙ and division ⊘. A benefit of109

using this RMSprop preconditioner is that it adapts to the local geometry and curvature,110

in particular, the step sizes can be considered as adaptive, where large steps are taken in111

flat directions and small steps are taken in curved directions.112

2.2 Batch Normalization113

Batch Normalization (BN) is a technique that incorporates normalization layers into a neu-114

ral network architecture. It was originally developed to remedy Internal Covariate Shift,115

which refers to the shifting of distributions between layers during training that can di-116

minish the effectiveness of gradient descent [Ioffe and Szegedy, 2015]. Such distribution117

changes slow down training since parameters must adapt to the changed distribution of118

the different network layers. Reducing this shift causes improvement in the speed of train-119

ing, network regularization, and performance.120

The BN transformation normalizes the hidden variables by subtracting by the mini-121

batch mean and dividing by the mini-batch standard deviation while introducing train-122

able re-centering and re-scaling parameters. To understand the BN architecture, we con-123

sider a fully connected neural network and follow the terminology in Lange et al. [2022] to124

introduce a BN network. Let the ℓ-th hidden layer of a fully connected network be defined125

as126

h(ℓ) = g(W(ℓ)h(ℓ−1) + b(ℓ)) ∈ Rnℓ , (2.5)127

which takes input h(ℓ−1) from the previous layer, a chosen activation function g, and128

weight and bias elements W(ℓ) and b(ℓ), to construct the current hidden variable h(ℓ).129

Note the input to the network is given by h(0). Let {h(0)1 , h(0)2 , . . . , h(0)N } be a mini-batch130

J. Mach. Learn., x(x):xx-xx 5

input to the training network with N examples and A = {h(ℓ−1)
1 , h(ℓ−1)

2 , . . . , h(ℓ−1)
N } the131

hidden variables of layer ℓ− 1. The update in Equation (2.5) describes the standard fully132

connected iteration. Applying BN to this network replaces the iteration update in (2.5) by133

h(ℓ) = g
(

W(ℓ)Bβ,γ(h(ℓ−1)) + b(ℓ)
)

, (2.6)134

where135

Bβ,γ

(
h(ℓ−1)

)
= γ

h(ℓ−1) − µA
σA

+ β, (2.7)

and σA and µA are the standard deviation and mean vectors of the hidden variables in136

layer ℓ − 1 and γ, β are the trainable re-scaling and re-centering parameter vectors. The137

BN operator is denoted Bβ,γ (·) in Equations (2.6) and (2.7).138

Since BN has the mini-batch statistics embedded in the architecture, a theoretical disad-139

vantage is that the training network depends on the mini-batch inputs, and in particular,140

the inference network is different from the training network.141

3 Batch Normalization Preconditioning142

We extend a preconditioning method of Batch Normalization Preconditioning (BNP) orig-143

inally derived for neural networks to SGLD. BNP is also a technique to accelerate the144

convergence of a neural network using mini-batch statistics. Instead of changing the net-145

work architecture, as is done in BN, BNP uses a preconditioning matrix on the parameter146

gradients during training. This transformation improves the conditioning of the Hessian147

of the loss function and has been shown in Lange et al. [2022] to outperform BN in small148

mini-batch settings and online learning.149

We develop BNP for SGLD by considering the gradient descent for parameters in one150

layer. We consider the Fisher Information matrix in terms of the Hessian of the log-151

likelihood and represent the Fisher Information matrix in terms of the mini-batch acti-152

vations.153

Consider a Bayesian feedforward neural network with L layers as defined in Equation154

(2.5). We denote h(ℓ)i = g
(

a(ℓ)i

)
as the ith entry of h(ℓ) where a(ℓ)i = w(ℓ)T

i h(ℓ−1) + b(ℓ)i ∈ R.155

Here w(ℓ)T

i ∈ R1×m and b(ℓ)i are the respective ith row and entry of W(ℓ) and b(ℓ), and m is156

the dimension of h(ℓ−1). Let157

ŵT =
[
b(ℓ)i , w(ℓ)T

i

]
∈ R1×(m+1), (3.1)158

159

ĥ =

[
1

h(ℓ−1)

]
∈ R(m+1)×1 and a(ℓ)i = ŵT ĥ. (3.2)160

Note that the Fisher matrix can be described as −E(∇2
θ(log pθ(x))), for expected value161

E with Hessian operator ∇2
θ . We call162

I(θ) = − 1
N

N

∑
j=1
∇2

θ log pθ(xj),163

J. Mach. Learn., x(x):xx-xx 6

an empirical Fisher matrix, which serves as an approximation of the Fisher matrix based164

on the training data and training distribution. For a fully-connected neural network, we165

can write the empirical Fisher Matrix in terms of the mini-batch activations, as shown in166

the theorem below. The importance of this form is that applying the BNP preconditioner167

serves to improve the conditioning of this matrix.168

Theorem 3.1. Let − log p((x, y)|w) be the negative log-likelihood loss function defined from the
output of a fully-connected multi-layer neural network (2.5) with parameter w for a single network

input x. Consider the weight and bias parameters w(ℓ)
i , b(ℓ)i at the ℓ-th layer and let ŵ =

[
b(ℓ)i
w(ℓ)

i

]
and ĥ =

[
1

h(ℓ−1)

]
. Write the likelihood p((x, y)|ŵ) as a function of ŵ through the activation

a(ℓ) := ŵT ĥ, that is p((x, y)|ŵ) = f (a(ℓ)) for some function f . When training over a mini-
batch of N inputs {x1, x2, . . . , xN}, let {h(ℓ−1)

1 , h(ℓ−1)
2 , . . . , h(ℓ−1)

N } be the associated h(ℓ−1) and

let ĥj =

[
1

h(ℓ−1)
j

]
∈ Rm+1. Then the empirical Fisher Information matrix with respect to ŵ,

I(ŵ) := − 1
N ∑N

j=1∇2
ŵ log p((xj, yj)|ŵ), can be written as

I(ŵ) = −ĤTSĤ,

where169

Ĥ = [e, H], H =

h(ℓ−1)T

1
...

h(ℓ−1)T

N

 ,170

and S =
1
N

diag

(
f ′(ŵT ĥj)

2

f (ŵT ĥj)2
−

f ′′(ŵT ĥj)

f (ŵT ĥj)

)
.171

Using this expression of the empirical Fisher Information matrix, we can improve its172

conditioning by using a preconditioning transformation. Constructing a preconditioner173

G(θ) = PPT, we use the update step in (2.2) with P:=UD, and174

U :=
[

1 −µT
A

0 I

]
, D :=

[
1 0
0 diag (σA)

]−1
, (3.3)

where175

µA :=
1
N

HTe =
1
N

N

∑
j=1

h(ℓ−1)
j , (3.4)

and176

σ2
A :=

1
N

N

∑
j=1

(h(ℓ−1)
j − µA)

2. (3.5)

J. Mach. Learn., x(x):xx-xx 7

are the (vector) mean and variance of {h(ℓ−1)
j } respectively. Note the inverse notation in177

Equation (3.3) refers to the element-wise inverse and e notation refers to a vector of ones.178

As mentioned in Lange et al. [2022], to ensure the Hessian blocks from different layers179

have comparable norms, we scale the preconditioner PPT by 1/q2 where180

q2 = max{m/N, 1}. Thus, the BNP transformation on the gradients is outlined in Al-181

gorithm 1.

Algorithm 1 One Step of BNP Training on W(ℓ), b(ℓ) of the ℓth Dense Layer

Given: ϵ1 = 10−2, ϵ2 = 10−4 and ρ = 0.99; learning rate α; initialization of vectors:
µ = 0, σ = 1;
Input: Mini-batch output of previous layer A = {h(ℓ−1)

1 , h(ℓ−1)
2 , . . . , h(ℓ−1)

N } ⊂ Rm and
the parameter gradients: Gw ← ∂L

∂W(ℓ) ∈ Rn×m, Gb ← ∂L
∂b(ℓ)
∈ R1×n, and parameter noise

ηw ∈ Rn×m, ηb ∈ R1×n.
1. Compute mini-batch mean/variance: µA, σ2

A;
2. Compute running average statistics: µ← ρµ + (1− ρ)µA, σ2 ← ρσ2 + (1− ρ)σ2

A;
3. Set σ̃2 = σ2 + ϵ1 max{σ2}+ ϵ2 and q2 = max{m/N, 1};
4. Update Gw:
Gw(i, j)← 1

q2 [Gw(i, j)− µ(j)Gb(i)]/σ̃2(j);

5. Update Gb: Gb(i)← 1
q2 Gb(i)−∑j Gw(i, j)µ(j);

6. Update ηw: ηw(i, j)← ηw(i, j)/(σ̃(j)
√

q);
7. Update ηb: ηb(i)← 1√

q ηb(i)−∑j ηw(i, j)µ(j)
Output: Preconditioned gradients and noise: Gw, Gb, ηw, ηb.

182

Note for implementation of this method as in Algorithm 1, max{σ2} denotes the max-183

imum entry of the vector σ2 ∈ Rm. Note σ̃2 is σ2 with a small number added to prevent184

division by a number smaller than ϵ1max{σ2} or ϵ2. We use running averages for the185

componentwise mean and variance computed in Step 2 of Algorithm 1. We apply the pre-186

conditioner P on the noise in Steps 6 and 7, which is exactly the algorithm as in Li et al.187

[2016].188

This preconditioning transformation gives the corresponding preconditioned Fisher189

matrix of PT ĤTSĤP. Note that multiplying Ĥ by U makes the first column orthogonal to190

the rest, as191

ĤU =
[
e, H − eµT

A

]
,192

and
(H − eµT

A)
Te = 0.

Additionally, multiplying H − eµT
A by D scales all columns of H − eµT

A to have the same193

norm. Both of these results of the BNP transformation were shown in Lange et al. [2022]194

to improve the condition number of the preconditioned matrix.195

While Algorithm 1 focuses on a fully connected network, BNP can also be applied to196

convolutional neural networks (CNNs). In particular, Section 4.3 implements a Residual197

J. Mach. Learn., x(x):xx-xx 8

Network that has a framework of convolution layers. BNP performs well in situations198

where BN performs well. So, our experiments are limited to fully-connected networks or199

residual networks. Additionally, we expect BNP to perform well with capturing multi-200

ple modes as our algorithm is based on an MCMC method, which performs well in this201

situation. This is demonstrated in the experimental results of Section 4.1202

The update step in (2.2) uses Γ(θt) in the preconditioner update, we follow Li et al.203

[2016] which argues that, under given conditions, Γ(θt) contributes little to the update204

and can be dropped during sampling to reduce computation. This can be justified in our205

case by directly using Theorem 1 [Li et al., 2016] and following Corollary 2 in Li et al.206

[2016]. To summarize, this states that under the convergence assumptions (1) and (2) in207

Section 2.1 and a preconditioning algorithm with an update step given by Equation (2.2),208

we can bound the MSE of an SG-MCMC preconditioning algorithm at a finite time. That209

is, given a test function ϕ that satisfies convergence assumptions, where we denote ϕ the210

true posterior expectation and ϕ̂ the weighted sample average that approximates ϕ, we211

have that E(ϕ̂− ϕ)2 is bounded.212

Using the BNP preconditioner, we can follow the argument of Li et al. [2016] and see213

that the effect of Γ on the MSE is small, as it produces a controllable bias. Although we214

introduce bias in this way, it is controllable and much easier to implement, hence we bal-215

ance efficiency with a small sacrifice in accuracy. Thus, we remove the Γ term in Equation216

2.2 during computation to speed up our BNP method.217

500 epochs, 1000 epochs

Figure 3.1: Predictions shown by BNP, SGLD, and pSGLD after 500 epochs (Left) and 1000 epochs (Right)
given noisy data.

J. Mach. Learn., x(x):xx-xx 9

4 Experiments218

We present BNP as a sampler in three different experiments to evaluate uncertainty. First,219

we show a multidimensional curve-fitting example. We next present a contextual bandit220

problem with 4 different datasets. Additionally, we show results on a Residual neural net-221

work. In all cases, we compare against other baselines, including pSGLD. All experiments222

show that BNP increases the speed of convergence over comparative methods. Thus, these223

results show that BNP can be successfully applied to SGLD. The improved early conver-224

gence is useful in the setting where it is beneficial to get an estimation of results quickly.225

Unless otherwise mentioned, the default setting for BNP is used with ρ = 0.99, ϵ1 = 1e− 2,226

and ϵ2 = 1e− 4.227

4.1 Simulations of a Multimodal Distribution228

We evaluate BNP in a curve-fitting example. Our data set is generated by sampling 1000
inputs (x, y) uniformly and at random from [−7.5,−5]× [−2.5, 15], capturing 4 local ex-
trema of the target function. Note this choice of range is to take advantage of the BNP
algorithm, as we choose (x, y) pairs with different scales. For each input we compute the
corresponding noisy label as

1 +
1

4000
(x2 + y2)− cos(x) cos

(y
√

2
2

)
+ ϵn,

where ϵn ∈ N (0, 0.1). Note this is a noisy Griewank Function. We use a fully connected229

3-layer neural network with 100 hidden units in all cases to fit this data. We compare BNP230

with SGLD and pSGLD after 500 epochs on 40,000 test data generated uniformly from231

[−7.5,−5]× [−2.5, 15]. Our ground truth is generated by SGLD with 10,000 epochs. Note232

we use SGLD as our ground truth since it is the fundamental MCMC algorithm in big data233

problems and the theoretical correctness is guaranteed in the asymptotic sense Dalalyan234

and Karagulyan [2018].235

For parameter settings, BNP uses ρ = 0.985, ϵ1 = ϵ2 = 1e− 3. Learning rates are 1e-5,236

1e-5, 5e-5 for BNP, SGLD, and pSGLD respectively.237

Figure 3.1 shows the output of each method, averaging over the last 50 epochs. BNP238

converges much quicker to the ground truth compared with pSGLD and SGLD. How-239

ever, we note that pSGLD also converges to the ground truth by increasing the number of240

epochs, as seen in Figure 3.1 (Right).241

4.2 Contextual Bandits242

We experiment with Thompson sampling for contextual bandits where an optimization243

metric is used to evaluate the performance of different samplers as in Deng et al. [2022],244

Riquelme et al. [2018]. Suppose we have an agent who is given a context x ∈ X. The agent245

then takes some action a ∈ A from a collection of possible actions {a1, ...an}. Depending246

on the choice, the agent receives a reward of r. The aim is to maximize the cumulative247

reward (or minimize regret). Since only the reward for the chosen action is revealed, there248

J. Mach. Learn., x(x):xx-xx 10

is a notion of exploration versus exploitation, that is, the desire to try new, and potentially249

better, actions versus exploiting the known, good actions.250

(a) Mushroom (b) Statlog

(c) Covertype (d) Census

Figure 4.1: Cumulative regret on 4 datasets - Mushroom, Statlog, Covertype, Census using the methods of
EpsGreedy, SGD, Dropout, pSGLD, and BNP.

We experiment on 4 datasets: Mushroom, Statlog, Covertype, and Census.251

• The mushroom dataset contains 8,124 mushrooms, with 22 attributes or contexts for252

each mushroom. Each mushroom is labeled as poisonous or edible and at each step,253

the agent is given the features of a particular mushroom and must decide whether254

to eat it. A reward of 5 is given for eating an edible mushroom, 0 for not eating a255

mushroom, and a reward is randomly chosen of 5 or -35 if a poisonous mushroom is256

eaten.257

• The statlog dataset predicts the state of the radiator subsystem of a shuttle given258

9 attributes of a space shuttle flight. This dataset contains information from 58,000259

shuttle flights, and a reward of 1 is given for a correct classification of the state and 0260

for an incorrect classification.261

J. Mach. Learn., x(x):xx-xx 11

• The covertype dataset classifies forest cover type into 7 categories given a list of 54262

features. This also provides a reward of 1 for a correct classification and 0 for an263

incorrect classification. This dataset contains 581,012 data points.264

• The census dataset contains information from the US Census database and given a265

list of 94 attributes aims to classify them into one of 14 occupations. Again, a reward266

of 1 is given for correct classification and 0 otherwise. There are 48,842 data points in267

this dataset.268

In our experiments, we compare our method of BNP applied to SGLD with precondi-269

tioned SGLD (pSGLD), SGD, dropout, and an epsilon Greedy algorithm. The algorithms270

for pSGLD, SGD, and BNP are as described above. The epsilon-greedy algorithm allows271

for a random action to be taken a given ϵ percentage of the time and the dropout algorithm,272

which randomly turns off a percentage of neurons in the network. Figure 4.1 shows the273

cumulative regret on the 4 datasets described above, recall a lower regret is desired. On274

the Mushroom dataset, BNP converges fastest. While the Greedy algorithm and pSGLD275

have a smaller regret for the first 1000 and 1750 steps respectively, note that after 2000276

steps they have not converged and surpass the cumulative regret of BNP.277

For the detailed hyperparameter setups, we fix the temperature 0.03 and L2 penalty of278

1 for all the datasets, except the Mushroom dataset which uses a temperature of 0.3. The279

dropout rate is set to 50%, and we randomly simulate 5 samples for the Dropout approach.280

EpsGreedy anneals the learning rate by an annealing factor of 0.999 in each iteration and281

has a 0.3% chance to make random actions to avoid over-exploitation; by contrast, the rest282

of the algorithms adopt a constant learning rate, and the learning rates for Mushroom,283

Statlog, Covertype, and Census datasets are set to 1e-6, 3e-6, 3e-6, and 1e-7, respectively.284

pSGLD adopts a regularizer of λ = 0.001 in Equation (2.3) to control the regularity of the285

preconditioner and the underlying smoothing factor is set to α = 0.99 in Equation (2.4).286

For the Mushroom dataset, α = 0.95 performs better and is used. In particular for the287

BNP algorithm, the pair of hyperparameters (ϵ1, ϵ2) is set to (1e-1, 1e-4), (1, 0.1), (3e-2,288

3e-2), (1e-2, 1e-2) for Mushroom, Statlog, Covertype, and Census datasets, respectively.289

For the remaining 3 datasets - Statlog, Covertype, and Census, we find that BNP achieves290

lower cumulative regret at the end of 2000 steps, while convergence is not achieved with291

any of the algorithms. The Greedy Algorithm has the highest cumulative regret after 2000292

steps in each dataset. Notice that pSGLD is the most comparable with BNP, especially293

with the Covertype data, with BNP performing only slightly better at 2000 steps. Oth-294

erwise, we see better performance (smaller cumulative regret) earlier with pSGLD, but295

faster convergence with BNP.296

4.3 Residual Network and Empirical Fisher Condition Number297

We experiment with a residual network of depth 20 (ResNet-20) on the CIFAR100 dataset298

using a Bayesian neural network. The CIFAR100 dataset consists of 60,000 color images299

of 32 by 32 pixels with 50,000 training images and 10,000 testing images. There are 100300

classes of images in this dataset. With this network, we show the faster convergence of301

BNP in addition to computations of the empirical Fisher condition number.302

J. Mach. Learn., x(x):xx-xx 12

We use the SG-MCMC method of stochastic gradient Langevin dynamics (SGLD) and303

compare it with BNP and pSGLD. All networks are trained using the momentum op-304

timizer with mini-batch size 256. The learning rate is multiplied by 0.1 at epoch 250 fol-305

lowed by a linear decay of 0.985. Learning rates used are 1e-6, 1e-6, 1e-6, and 5e-6 for BNP,306

SGLD, and the different versions of pSGLD presented, respectively. Results are shown in307

Figure 4.2. We see that our method of BNP achieves faster convergence and comparable308

final test accuracy to SGLD. Different tuning parameters lead to versions of pSGLD that309

either achieve faster convergence than SGLD but do not perform well with the learning310

rate decay, or achieve comparable final accuracy with no increased initial convergence.311

Figure 4.2: ResNet 20 on the CIFAR 100 dataset. BNP, SGLD, and 2 versions of pSGLD are shown for comparison.

We also record the Bayesian model averaging (BMA) of the accuracy and present the312

best results in Table 4.1. We find that BNP achieves a slightly better average by 0.04 with a313

BMA of 69.68, SGLD has a BMA of 69.64, and pSGLD BMA 69.59. Hence, this shows that314

our method of BNP achieves comparable results to SGLD and pSGLD, with a considerable315

improvement in initial convergence.316

Table 4.1: Table of Bayesian model averaging (BMA) for ResNet 20, which shows the average accuracy of each
model.

Method BMA

BNP 69.68
SGLD 69.64
pSGLD 69.59

In addition to accuracy measure, we also include experiments that support our theory317

that BNP improves the Fisher Information Matrix. We calculate the condition number318

J. Mach. Learn., x(x):xx-xx 13

of Î1,t, computed as in Ahn et al. [2012] as an online average of an approximation of the319

empirical Fisher: Î1,t = (1 − κt) Î1,t−1 − κtV(θt, Xt
n), where κ = 1

t and t corresponds to the320

iteration. We use V(θt, Xt
n) = ḡ(θt, Xt

n)� ḡ(θt, Xt
n) which serves as our approximation of321

the empirical Fisher Information matrix for a mini-batch, where ḡ(θt, Xt
n) is the sample322

mean of the gradient using mini-batch Xt
n and � represents element-wise multiplication.323

Note this is similar to the computation to approximate the Fisher as in Li et al. [2016],324

where we are interested in the approximation for a mini-batch. Note, since we compute325

this for convolutional layers, we use a fixed weight output channel and the corresponding326

bias term. That is, we compute the empirical Fisher information for θt = [bt, wt] where327

wt ∈ Rck2
, where k × k corresponds to the convolution kernel and c is the input channel328

dimension. We compute the condition number of Î1,t at each of the 19 convolutional layers329

of ResNet 20 for θt. In our experiments, we find the BNP has an improved condition330

number over the baseline of SGLD in all 19 convolutional layers. We present layers 1, 10,331

and 19 in Figure 4.3332

Figure 4.3: We compute the condition number of an approximation of the empirical Fisher Information matrix in
ResNet 20. In all layers, we found an improvement in the condition number of BNP versus SGLD.

We also include a metric to measure the calibration of the model. Calibration is the
idea that a model’s confidence will match its predictions. We measure the calibration by
computing the expected calibration error (ECE) as described in Naeini et al. [2015]. This
metric is defined as the expected absolute difference between the model’s confidence and
its accuracy. The computation of ECE in practice is through an approximation. First, the
interval [0, 1] is partitioned into a specified number of M equally spaced bins. Let Bi be
the set of samples with confidences contained in bin i. Then the accuracy and confidence
of the ith bin are computed as

acci =
1
|Bi| ∑

j∈Bi

ŷi=yi

and
con fi =

1
|Bi| ∑

j∈Bi

p̂j,

respectively. Here ŷi=yi is the indicator function for the predicted, ŷi, and actual, yi,

J. Mach. Learn., x(x):xx-xx 14

label. The ECE is approximated by taking the weighted average of the absolute difference
between the accuracy and confidence of each bin as

ECE =
M

∑
i=1

|Bi|
N
|acci − con fi|.

The maximum calibration error (MCE), see Naeini et al. [2015], can be computed similarly
as

MCE = max
i∈{1,2,...,M}

|acci − con fi|,

which measures the absolute maximum difference between the accuracy and confidence333

of each bin. Note the lower the ECE and MCE, the better the model is calibrated. For334

our experiments, we choose M = 10 bins and compute both ECE and MCE, as seen in335

Figure 4.4. We also show the corresponding reliability diagrams in Figure 4.4, which show336

accuracy as a function of confidence. Note that a perfectly calibrated model will plot the337

identity.338

(a) BNP (b) pSGLD (c) SGLD

Figure 4.4: Reliability diagrams and corresponding ECE and MCE scores for BNP (Left), pSGLD (Center), and
SGLD (Right) on ResNet. The blue bars correspond to the accuracy of each bin, while the red shows the gap
between a perfectly calibrated model and the given model.

We see in Figure 4.4 that all models are overconfident in their predictions, as each accu-339

racy bar lies under the identity plot. Comparing the ECE and MCE scores, we see that BNP340

has lower scores than both SGLD and pSGLD, with a lower score measuring a more cali-341

brated model (hence a lower score is better). In Figure 4.4 we see the accuracy of each bin342

in blue and the gap between a perfectly calibrated model in red. BNP has an ECE score of343

8.58%, pSGLD an ECE score of 10.67% and BN a score of 10.44%. Therefore, our method of344

BNP achieves faster initial convergence and is more calibrated than comparative models345

on the Residual network.346

There are methods to improve the calibration of neural networks and relevant work347

contributing to these techniques includes temperature scaling [Guo et al., 2017], an ex-348

tension of histogram binning to multi-class models [Zadrozny and Elkan, 2002], isotonic349

regression [Zadrozny and Elkan, 2002], and SWA-Gaussian [Maddox et al., 2019], which350

J. Mach. Learn., x(x):xx-xx 15

builds on Stochastic Weight Averaging (SWA). However, we focus on computing ECE and351

MCE scores on these models as an additional metric of comparison without applying any352

calibration improvement techniques.353

4.3.1 Computation Time354

We expect the implementation of BNP over SGLD to be more expensive to compute. For355

a more thorough comparison, we test the computation time of BNP as in Algorithm 1 on356

ResNet 20 along with the baseline algorithms pSGLD and SGLD. These results are com-357

puted on GeForce GTX 1080 Ti. Results are summarized in Table 4.2. These computation358

times are gathered by averaging the training time over the first 20 epochs, hence results359

show the average time to train for one epoch. Both BNP and pSGLD add to the training360

time of the network, with BNP adding about 3.7 seconds per epoch and pSGLD adding361

about 1 second per epoch.362

Table 4.2: Summarization of computation time comparison for ResNet 20, which shows the average time (in
seconds) to run one epoch of each model.

Method Computation Time

BNP 21.83
SGLD 18.10

pSGLD 19.04

5 Conclusion363

We have introduced a batch normalization preconditioning algorithm for stochastic gradi-364

ent Langevin dynamics that increases the convergence rate of training over SGLD and pS-365

GLD. This is done by using the mini-batch statistics to construct a preconditioning matrix366

used to precondition the gradients during training. We apply the algorithm to a variety of367

Bayesian neural networks, showing faster convergence in the Residual network and sim-368

ulation example, as well as a more calibrated model in the ResNet, while also achieving369

improved results for Thompson sampling.370

Acknowledgments371

QY gratefully acknowledges the research support by NSF under the grant DMS-1821144.372

GL gratefully acknowledges the support of the National Science Foundation (DMS-1555072,373

DMS-2053746, and DMS-2134209), Brookhaven National Laboratory Subcontract 382247,374

and U.S. Department of Energy (DOE) Office of Science Advanced Scientific Computing375

Research program DE-SC0021142 and DE-SC0023161.376

J. Mach. Learn., x(x):xx-xx 16

References377

Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian Posterior Sampling via378

Stochastic Gradient Fisher Scoring. In ICML, 2012.379

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic Gradient Hamiltonian Monte380

Carlo. In ICML, 2014.381

Arnak S. Dalalyan and Avetik G. Karagulyan. User-friendly Guarantees for the Langevin382

Monte Carlo with Inaccurate Gradient. Stochastic Processes and their Applications, 129:12:383

5278–5311, 2018.384

Wei Deng, Qi Feng, Liyao Gao, Faming Liang, and Guang Lin. Non-Convex Learning via385

Replica Exchange Stochastic Gradient MCMC. In ICML, 2020a.386

Wei Deng, Guang Lin, and Faming Liang. A Contour Stochastic Gradient Langevin Dy-387

namics Algorithm for Simulations of Multi-modal Distributions. In NeurIPS, 2020b.388

Wei Deng, Siqi Liang, Botao Hao, Guang Lin, and Faming Liang. Interacting Contour389

Stochastic Gradient Langevin Dynamics. In ICLR, 2022.390

Mark Girolami, Ben Calderhead, and Siu A. Chin. Riemann Manifold Langevin and391

Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society. Series B, 2011.392

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern393

Neural Networks. In ICML, 2017.394

Huan He, Shifan Zhao, Yuanzhe Xi, Joyce C Ho, and Yousef Saad. GDA-AM: On the395

Effectiveness of Solving Minimax Optimization via Anderson Acceleration, 2021. URL396

https://arxiv.org/abs/2110.02457.397

Huan He, Shifan Zhao, Ziyuan Tang, Joyce Ho, Yousef Saad, and Yuanzhe Xi. An Efficient398

Nonlinear Acceleration method that Exploits Symmetry of the Hessian. 10 2022. doi:399

10.48550/arXiv.2210.12573.400

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network401

Training by Reducing Internal Covariate Shift. CoRR, abs/1502.03167, 2015. URL http:402

//arxiv.org/abs/1502.03167.403

Susanna Lange, Kyle Helfrich, and Qiang Ye. Batch Normalization Preconditioning for404

Neural Network Training. Journal of Machine Learning Research, 23(72):1–41, 2022. URL405

http://jmlr.org/papers/v23/20-1135.html.406

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned407

Stochastic Gradient Langevin Dynamics for Deep Neural Networks. In AAAI, 2016.408

Yi-An Ma, Tianqi Chen, and Emily B. Fox. A Complete Recipe for Stochastic Gradient409

MCMC. In NeurIPS, 2015.410

Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry P. Vetrov, and Andrew Gordon411

Wilson. A Simple Baseline for Bayesian Uncertainty in Deep Learning. In NeurIPS, 2019.412

J. Mach. Learn., x(x):xx-xx 17

Jishnu Mukhoti, Puneet K. Dokania, Philip H. S. Torr, and Yarin Gal. On Batch Normalisa-413

tion for Approximate Bayesian Inference. In 3rd Symposium on Advances in Approximate414

Bayesian Inference, 2020.415

Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. Obtaining Well Cal-416

ibrated Probabilities Using Bayesian Binning. In AAAI, 2015.417

Sam Patterson and Yee Whye Teh. Stochastic Gradient Riemannian Langevin Dynamics418

on the Probability Simplex. In NIPS, 2013.419

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex Learning via420

Stochastic Gradient Langevin Dynamics: a Nonasymptotic Analysis. In Annual Confer-421

ence on Learning Theory (COLT), June 2017.422

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep Bayesian Bandits Showdown:423

An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling. In424

ICLR, 2018.425

Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian Uncertainty Estimation for426

Batch Normalized Deep Networks. In ICML, 2018.427

M. Welling and Y. Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In428

ICML, 2011.429

Bianca Zadrozny and Charles Elkan. Transforming Classifier Scores into Accurate Multi-430

class Probability Estimates. In KDD, 2002.431

Yuchen Zhang, Percy Liang, and Moses Charikar. A Hitting Time Analysis of Stochastic432

Gradient Langevin Dynamics. In Annual Conference on Learning Theory (COLT), 2017.433

Umut Şimşekli, Roland Badeau, A. Taylan Cemgil, and Gaël Richard. Stochastic Quasi-434

Newton Langevin Monte Carlo. In ICML, 2016.435

6 Supplemental Material:436

We restate Theorem 3.1 and provide a proof. Note this result follows the proof idea given437

in Lange et al. [2022].438

Theorem 3.1 Let − log p((x, y)|w) be the negative log-likelihood loss function defined from the
output of a fully-connected multi-layer neural network (2.5) with parameter w for a single network

input x. Consider the weight and bias parameters w(ℓ)
i , b(ℓ)i at the ℓ-th layer and let ŵ =

[
b(ℓ)i
w(ℓ)

i

]
and ĥ =

[
1

h(ℓ−1)

]
. Write the likelihood p((x, y)|ŵ) as a function of ŵ through the activation

a(ℓ) := ŵT ĥ, that is p((x, y)|ŵ) = f (a(ℓ)) for some function f . When training over a mini-
batch of N inputs {x1, x2, . . . , xN}, let {h(ℓ−1)

1 , h(ℓ−1)
2 , . . . , h(ℓ−1)

N } be the associated h(ℓ−1) and

J. Mach. Learn., x(x):xx-xx 18

let ĥj =

[
1

h(ℓ−1)
j

]
∈ Rm+1. Then the empirical Fisher Information matrix with respect to ŵ,

I(ŵ) := − 1
N ∑N

j=1∇2
ŵ log p((xj, yj)|ŵ), can be written as

I(ŵ) = −ĤTSĤ,

where439

Ĥ = [e, H], H =

h(ℓ−1)T

1
...

h(ℓ−1)T

N

 ,440

and S =
1
N

diag

(
f ′(ŵT ĥj)

2

f (ŵT ĥj)2
−

f ′′(ŵT ĥj)

f (ŵT ĥj)

)
.441

Proof. With − log(p((xj, yj)|ŵ)) = − log(f (ŵT ĥj)), we have the gradient with respect to

ŵ is given by −
f ′(ŵT ĥj)

f (ŵT ĥj)
ĥj. Computing the Hessian of the negative log-likelihood gives

(f ′(ŵT ĥj)
2

f (ŵT ĥj)2
ĥj −

f ′′(ŵT ĥj)

f (ŵT ĥj)
ĥj

)
ĥj

T
. So, the empirical Fisher Information matrix can be writ-

ten as

I(ŵ) =
1
N

N

∑
j=1

(f ′(ŵT ĥj)
2

f (ŵT ĥj)2
−

f ′′(ŵT ĥj)

f (ŵT ĥj)

)
ĥjĥj

T
.

Noting that ĤT = [ĥ1, ĥ2, ..., ˆhN], we write

I(ŵ) = −ĤTSĤ,

where S =
1
N

diag

(
f ′(ŵT ĥj)

2

f (ŵT ĥj)2
−

f ′′(ŵT ĥj)

f (ŵT ĥj)

)
.442

