

Batch Normalization Preconditioning for Stochastic Gradient Langevin Dynamics

Susanna Lange ^{*} ¹, Wei Deng [†] ², Qiang Ye [‡] ³, and Guang Lin [§] ⁴

¹Data Science Institute, University of Chicago, Chicago, IL 60615

²Machine Learning Research, Morgan Stanley, New York City, NY 10036

³Department of Mathematics, University of Kentucky, Lexington, KY 40506

⁴Departments of Mathematics, & School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract. Stochastic gradient Langevin dynamics (SGLD) is a standard sampling technique for uncertainty estimation in Bayesian neural networks. Past methods have shown improved convergence by including a preconditioning of SGLD based on RMSprop. This preconditioning serves to adapt to the local geometry of the parameter space and improve the performance of deep neural networks. In this paper, we develop another preconditioning technique to accelerate training and improve convergence by incorporating a recently developed Batch Normalization Preconditioning (BNP), into our methods. BNP uses mini-batch statistics to improve the conditioning of the Hessian of the loss function in traditional neural networks and thus improve convergence. We will show that applying BNP to SGLD will improve the conditioning of the Fisher Information matrix, which improves the convergence. We present the results of this method on three experiments including a simulation example, a contextual bandit example, and a residual network which show the improved initial convergence provided by BNP, in addition to an improved condition number from this method.

Keywords:

Bayesian Neural Networks
Preconditioning
Batch Normalization
Stochastic Gradient Langevin Dynamics

Article Info.:

Volume: x
Number: x
Pages: xx- xx
Date: XX/YYYY
doi.org/xx.xxxx/x.xxx.xxxx.xxxx

Article History:

Received: 99/99/9999
Accepted: 99/99/9999

1 Introduction

Markov Chain Monte Carlo (MCMC) provides a principled framework for simulating the distribution of interest. During the simulation, the entire dataset is often used to compute the energy or the gradient, which, however, is not scalable enough in big data problems. To tackle this issue, stochastic gradient Langevin dynamics (SGLD) [Welling and Teh, 2011] proposes to inject additional Gaussian noise to stochastic gradient descent and smoothly transitions into an MCMC sampler as the step size goes to zero. The explorative feature of the sampler not only captures uncertainty for reliable decision-making but also facilitates non-convex optimization to alleviate over-fitting [Raginsky et al., 2017, Zhang et al., 2017]. Since then, many interesting stochastic gradient Markov Chain Monte Carlo (SG-MCMC) methods are proposed to accelerate the convergence [Chen et al., 2014, Deng

^{*}susannalange@uchicago.edu

[†]weideng056@gmail.com

[‡]qiang.ye@uky.edu.

[§]Corresponding author. guanglin@purdue.edu.

21 et al., 2020a,b, Ma et al., 2015]. However, these sampling algorithms still suffer from a slow
22 convergence given morbid curvature information. To handle this issue, Girolami et al.
23 [2011] and Patterson and Teh [2013] propose to adjust the Langevin algorithm on the Rie-
24 mann manifold. Despite the correctness of the simulations, it is challenging to conduct the
25 transformation in high-dimensional problems. Motivated by the adaptive preconditioner
26 as in Root Mean Squared Propagation (RMSprop), the preconditioned SGLD algorithm
27 (pSGLD) proposes to accelerate SGLD through a diagonal approximation of the Fisher in-
28 formation to resolve the scalability issue [Li et al., 2016]. This uses gradient information
29 to construct a preconditioner that can be interpreted to have an adaptive step size, with a
30 smaller step size for curved directions and a larger step size for flat directions. This com-
31 bates the slow training related to saddle points in neural networks. Other preconditioning
32 methods have been investigated, including dense approximations of the inverse Hessian,
33 as in Ahn et al. [2012], Şimşekli et al. [2016]. There have also been approaches to use
34 non-linear averaging methods to accelerate network convergence. He et al. [2022] uses a
35 Truncated Generalized Conjugate Residual method that uses symmetry of the Hessian to
36 improve convergence, and He et al. [2021] combines gradient descent ascent with Ander-
37 son Mixing in generative adversarial networks, which was shown to improve adversarial
38 training.

39 Another approach to accelerate convergence is to incorporate Batch Normalization
40 (BN) layers into the network architecture [Ioffe and Szegedy, 2015]. BN uses mini-batch
41 statistics to normalize hidden variables of a network and has been shown to decrease
42 training times and improve network regularization. BN and its connection to Bayesian
43 neural networks have been studied in Teye et al. [2018], in particular, a network with BN
44 can be interpreted as an approximate Bayesian model. Batch Normalization has also been
45 successfully applied to Bayesian models as studied in Mukhoti et al. [2020] which shows
46 that including BN layers does not affect the probabilistic inference of variational methods.
47 Batch Normalization Preconditioning (BNP) is a technique that also uses mini-batch statis-
48 tics but does so by transforming a network's trainable parameters using a preconditioner
49 [Lange et al., 2022]. This is done by applying a preconditioning transformation on the
50 parameter gradients during training. This transformation has been shown to improve the
51 conditioning of the Hessian of the loss function which corresponds to a major advantage
52 of the BNP transformation, that is, improvement in the convergence of the method. More
53 importantly, BNP is a general framework that is applicable to different neural network
54 architectures and in different settings, such as Bayesian models.

55 In this paper, we develop BNP for Bayesian neural networks to be used as a sampling
56 method and examine its effects. We show that we can develop a similar preconditioning
57 technique for SGLD that further improves initial convergence by improving the condition
58 number of the Fisher Information matrix. Additionally, we provide experimental results
59 on three different methods, each showing improvement in convergence over our com-
60 parative baselines. We also compute the condition number of the approximate empirical
61 Fisher information, which demonstrates the improvement in the condition number in our
62 method.

63 The paper is organized as follows. In Section 2 we provide background informa-
64 tion on Stochastic gradient Langevin Dynamics as well as a preconditioned version of

65 SGLD. Section 2.2 introduces the basics of a Batch Normalization architecture. In Section
 66 3 we expand upon a preconditioning method, Batch Normalization Preconditioning, to
 67 a Bayesian setting that improves the conditioning of the Fisher Information matrix and
 68 Section 4 showcases the benefits of BNP applied to SLGD in three different experiments.

69 2 Background

70 In this section, we provide preliminaries on the Stochastic gradient Langevin Dynamics
 71 method and preconditioned-SGLD. We also describe the Batch Normalization network
 72 architecture.

73 2.1 SGLD and pSGLD

74 Suppose we have a parameter θ with a prior distribution $p(\theta)$. We can then compute the
 75 posterior distribution $p(\theta|X)$ over N data points $\mathcal{X} = \{x_1, \dots, x_N\}$ as

$$76 \quad p(\theta|X) \propto p(\theta) \prod_{i=1}^N p(x_i|\theta),$$

77 where the prior serves as a regularization term, and we aim to optimize the likelihood by
 78 finding the maximum a posteriori (MAP), that is $\text{argmax} \log p(\theta|X)$. Stochastic gradient
 79 Langevin dynamics (SGLD) combines stochastic optimization with Markov chain Monte
 80 Carlo (MCMC) by incorporating uncertainty into predictive estimates by way of adding
 81 a noise component to the parameter updates. The update for SGLD is given at each time
 82 step t for a subset of n data points $X = \{x_{t1}, \dots, x_{tn}\}$ as

$$83 \quad \nabla \theta_t = \frac{\epsilon_t}{2} \left(\nabla \log p(\theta_t) + \frac{N}{n} \sum_{i=1}^n \nabla \log p(x_{ti}|\theta_t) \right) + \eta_t, \quad (2.1)$$

84 where $\eta \sim N(0, \epsilon_t)$. As t increases, it has been shown for SGLD that θ_t will converge in
 85 distribution to the posterior distribution [Welling and Teh, 2011] with the assumption that

86 1. The sequence of step sizes $\{\epsilon_t\}$ are decreasing with $\sum_{t=1}^{\infty} \epsilon_t = \infty$
 87 2. $\sum_{t=1}^{\infty} \epsilon_t^2 < \infty$.

88 Note that this standard SGLD algorithm updates all parameters with the same step size.
 89 However, when the different components of the parameter vector have different curva-
 90 tures or different scales, it is more beneficial to use a preconditioning matrix $G(\theta)$ in SGLD
 91 to help adjust step size locally. The general framework of stochastic gradient Riemannian
 92 Langevin dynamics (SGLD) was suggested in Patterson and Teh [2013], which gives the
 93 update step:

$$94 \quad \nabla \theta_t = \frac{\epsilon_t}{2} \left[G(\theta_t) \left(\nabla_{\theta} \log p(\theta_t) + \frac{N}{n} \sum_{i=1}^n \nabla_{\theta} \log p(x_{ti}|\theta_t) \right) \right. \\ \left. + \Gamma(\theta_t) \right] + G^{\frac{1}{2}}(\theta_t) \mathcal{N}(0, \epsilon_t I), \quad (2.2)$$

97 where

98

$$\Gamma_i(\theta) = \sum_j \frac{\partial G_{i,j}(\theta)}{\partial \theta_j}$$

99 provides information on how the preconditioner G changes with respect to θ_t . For the convenience of implementations, $G(\theta_t)$ is replaced by the identity matrix in SGLD, in which 100 case $\Gamma_i(\theta_t) = 0$. Particularly of interest is the preconditioner used in Li et al. [2016] which 101 is the same as in RMSprop and serves to transform the rate of curvature to be equal in 102 all directions. This preconditioning method is referred to as pSGLD. The preconditioning 103 matrix estimates a diagonal matrix and the update at each step is given by 104

105

$$G(\theta_{t+1}) = \text{diag}\left(1 \oslash (\lambda 1 + \sqrt{V(\theta_{t+1})})\right), \quad (2.3)$$

106 where

107

$$V(\theta_{t+1}) = \alpha V(\theta_t) + (1 - \alpha) \bar{g}(\theta_t; \mathcal{X}^t) \odot \bar{g}(\theta_t; \mathcal{X}^t), \quad (2.4)$$

108 and

$$\bar{g}(\theta_t; \mathcal{X}^t) = \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} \log p(x_{ti} | \theta_t)$$

109 is the mean of the gradient over the mini-batch \mathcal{X}^t and $\alpha \in [0, 1]$. Computations in Equations 110 (2.3) and (2.4) are using element-wise multiplication \odot and division \oslash . A benefit of 111 using this RMSprop preconditioner is that it adapts to the local geometry and curvature, 112 in particular, the step sizes can be considered as adaptive, where large steps are taken in 113 flat directions and small steps are taken in curved directions.

113 2.2 Batch Normalization

114 Batch Normalization (BN) is a technique that incorporates normalization layers into a neural 115 network architecture. It was originally developed to remedy Internal Covariate Shift, 116 which refers to the shifting of distributions between layers during training that can 117 diminish the effectiveness of gradient descent [Ioffe and Szegedy, 2015]. Such distribution 118 changes slow down training since parameters must adapt to the changed distribution of 119 the different network layers. Reducing this shift causes improvement in the speed of training, 120 network regularization, and performance.

121 The BN transformation normalizes the hidden variables by subtracting by the mini- 122 batch mean and dividing by the mini-batch standard deviation while introducing train- 123 able re-centering and re-scaling parameters. To understand the BN architecture, we con- 124 sider a fully connected neural network and follow the terminology in Lange et al. [2022] to 125 introduce a BN network. Let the ℓ -th hidden layer of a fully connected network be defined 126 as

127

$$h^{(\ell)} = g(W^{(\ell)} h^{(\ell-1)} + b^{(\ell)}) \in \mathbb{R}^{n_{\ell}}, \quad (2.5)$$

128 which takes input $h^{(\ell-1)}$ from the previous layer, a chosen activation function g , and 129 weight and bias elements $W^{(\ell)}$ and $b^{(\ell)}$, to construct the current hidden variable $h^{(\ell)}$. 130 Note the input to the network is given by $h^{(0)}$. Let $\{h_1^{(0)}, h_2^{(0)}, \dots, h_N^{(0)}\}$ be a mini-batch

131 input to the training network with N examples and $A = \{h_1^{(\ell-1)}, h_2^{(\ell-1)}, \dots, h_N^{(\ell-1)}\}$ the
 132 hidden variables of layer $\ell - 1$. The update in Equation (2.5) describes the standard fully
 133 connected iteration. Applying BN to this network replaces the iteration update in (2.5) by

$$134 \quad h^{(\ell)} = g \left(W^{(\ell)} \mathcal{B}_{\beta, \gamma}(h^{(\ell-1)}) + b^{(\ell)} \right), \quad (2.6)$$

135 where

$$135 \quad \mathcal{B}_{\beta, \gamma}(h^{(\ell-1)}) = \gamma \frac{h^{(\ell-1)} - \mu_A}{\sigma_A} + \beta, \quad (2.7)$$

136 and σ_A and μ_A are the standard deviation and mean vectors of the hidden variables in
 137 layer $\ell - 1$ and γ, β are the trainable re-scaling and re-centering parameter vectors. The
 138 BN operator is denoted $\mathcal{B}_{\beta, \gamma}(\cdot)$ in Equations (2.6) and (2.7).

139 Since BN has the mini-batch statistics embedded in the architecture, a theoretical disad-
 140 vantage is that the training network depends on the mini-batch inputs, and in particular,
 141 the inference network is different from the training network.

142 3 Batch Normalization Preconditioning

143 We extend a preconditioning method of Batch Normalization Preconditioning (BNP) orig-
 144 inally derived for neural networks to SGLD. BNP is also a technique to accelerate the
 145 convergence of a neural network using mini-batch statistics. Instead of changing the net-
 146 work architecture, as is done in BN, BNP uses a preconditioning matrix on the parameter
 147 gradients during training. This transformation improves the conditioning of the Hessian
 148 of the loss function and has been shown in Lange et al. [2022] to outperform BN in small
 149 mini-batch settings and online learning.

150 We develop BNP for SGLD by considering the gradient descent for parameters in one
 151 layer. We consider the Fisher Information matrix in terms of the Hessian of the log-
 152 likelihood and represent the Fisher Information matrix in terms of the mini-batch acti-
 153 vations.

154 Consider a Bayesian feedforward neural network with L layers as defined in Equation
 155 (2.5). We denote $h_i^{(\ell)} = g(a_i^{(\ell)})$ as the i th entry of $h^{(\ell)}$ where $a_i^{(\ell)} = w_i^{(\ell)T} h^{(\ell-1)} + b_i^{(\ell)} \in \mathbb{R}$.
 156 Here $w_i^{(\ell)T} \in \mathbb{R}^{1 \times m}$ and $b_i^{(\ell)}$ are the respective i th row and entry of $W^{(\ell)}$ and $b^{(\ell)}$, and m is
 157 the dimension of $h^{(\ell-1)}$. Let

$$158 \quad \hat{w}^T = \left[b_i^{(\ell)}, w_i^{(\ell)T} \right] \in \mathbb{R}^{1 \times (m+1)}, \quad (3.1)$$

$$160 \quad \hat{h} = \begin{bmatrix} 1 \\ h^{(\ell-1)} \end{bmatrix} \in \mathbb{R}^{(m+1) \times 1} \text{ and } a_i^{(\ell)} = \hat{w}^T \hat{h}. \quad (3.2)$$

161 Note that the Fisher matrix can be described as $-E(\nabla_\theta^2(\log p_\theta(x)))$, for expected value
 162 E with Hessian operator ∇_θ^2 . We call

$$163 \quad \mathcal{I}(\theta) = -\frac{1}{N} \sum_{j=1}^N \nabla_\theta^2 \log p_\theta(x_j),$$

164 an empirical Fisher matrix, which serves as an approximation of the Fisher matrix based
 165 on the training data and training distribution. For a fully-connected neural network, we
 166 can write the empirical Fisher Matrix in terms of the mini-batch activations, as shown in
 167 the theorem below. The importance of this form is that applying the BNP preconditioner
 168 serves to improve the conditioning of this matrix.

Theorem 3.1. *Let $-\log p((x, y)|w)$ be the negative log-likelihood loss function defined from the output of a fully-connected multi-layer neural network (2.5) with parameter w for a single network*

input x . Consider the weight and bias parameters $w_i^{(\ell)}, b_i^{(\ell)}$ at the ℓ -th layer and let $\hat{w} = \begin{bmatrix} b_i^{(\ell)} \\ w_i^{(\ell)} \end{bmatrix}$

and $\hat{h} = \begin{bmatrix} 1 \\ h^{(\ell-1)} \end{bmatrix}$. Write the likelihood $p((x, y)|\hat{w})$ as a function of \hat{w} through the activation

$a^{(\ell)} := \hat{w}^T \hat{h}$, that is $p((x, y)|\hat{w}) = f(a^{(\ell)})$ for some function f . When training over a mini-batch of N inputs $\{x_1, x_2, \dots, x_N\}$, let $\{h_1^{(\ell-1)}, h_2^{(\ell-1)}, \dots, h_N^{(\ell-1)}\}$ be the associated $h^{(\ell-1)}$ and

let $\hat{h}_j = \begin{bmatrix} 1 \\ h_j^{(\ell-1)} \end{bmatrix} \in \mathbb{R}^{m+1}$. Then the empirical Fisher Information matrix with respect to \hat{w} ,

$\mathcal{I}(\hat{w}) := -\frac{1}{N} \sum_{j=1}^N \nabla_{\hat{w}}^2 \log p((x_j, y_j)|\hat{w})$, can be written as

$$\mathcal{I}(\hat{w}) = -\hat{H}^T S \hat{H},$$

169 where

$$170 \quad \hat{H} = [e, H], \quad H = \begin{bmatrix} h_1^{(\ell-1)^T} \\ \vdots \\ h_N^{(\ell-1)^T} \end{bmatrix},$$

$$171 \quad \text{and } S = \frac{1}{N} \text{diag} \left(\frac{f'(\hat{w}^T \hat{h}_j)^2}{f(\hat{w}^T \hat{h}_j)^2} - \frac{f''(\hat{w}^T \hat{h}_j)}{f(\hat{w}^T \hat{h}_j)} \right).$$

172 Using this expression of the empirical Fisher Information matrix, we can improve its
 173 conditioning by using a preconditioning transformation. Constructing a preconditioner
 174 $G(\theta) = PP^T$, we use the update step in (2.2) with $P := UD$, and

$$U := \begin{bmatrix} 1 & -\mu_A^T \\ 0 & I \end{bmatrix}, \quad D := \begin{bmatrix} 1 & 0 \\ 0 & \text{diag}(\sigma_A) \end{bmatrix}^{-1}, \quad (3.3)$$

175 where

$$\mu_A := \frac{1}{N} H^T e = \frac{1}{N} \sum_{j=1}^N h_j^{(\ell-1)}, \quad (3.4)$$

176 and

$$\sigma_A^2 := \frac{1}{N} \sum_{j=1}^N (h_j^{(\ell-1)} - \mu_A)^2. \quad (3.5)$$

¹⁷⁷ are the (vector) mean and variance of $\{h_j^{(\ell-1)}\}$ respectively. Note the inverse notation in
¹⁷⁸ Equation (3.3) refers to the element-wise inverse and e notation refers to a vector of ones.

¹⁷⁹ As mentioned in Lange et al. [2022], to ensure the Hessian blocks from different layers
¹⁸⁰ have comparable norms, we scale the preconditioner PP^T by $1/q^2$ where
¹⁸¹ $q^2 = \max\{m/N, 1\}$. Thus, the BNP transformation on the gradients is outlined in Al-
 gorithm 1.

Algorithm 1 One Step of BNP Training on $W^{(\ell)}, b^{(\ell)}$ of the ℓ th Dense Layer

Given: $\epsilon_1 = 10^{-2}, \epsilon_2 = 10^{-4}$ and $\rho = 0.99$; learning rate α ; initialization of vectors: $\mu = 0, \sigma = 1$;

Input: Mini-batch output of previous layer $A = \{h_1^{(\ell-1)}, h_2^{(\ell-1)}, \dots, h_N^{(\ell-1)}\} \subset \mathbb{R}^m$ and the parameter gradients: $G_w \leftarrow \frac{\partial \mathcal{L}}{\partial W^{(\ell)}} \in \mathbb{R}^{n \times m}, G_b \leftarrow \frac{\partial \mathcal{L}}{\partial b^{(\ell)}} \in \mathbb{R}^{1 \times n}$, and parameter noise $\eta_w \in \mathbb{R}^{n \times m}, \eta_b \in \mathbb{R}^{1 \times n}$.

1. Compute mini-batch mean/variance: μ_A, σ_A^2 ;
2. Compute running average statistics: $\mu \leftarrow \rho\mu + (1 - \rho)\mu_A, \sigma^2 \leftarrow \rho\sigma^2 + (1 - \rho)\sigma_A^2$;
3. Set $\tilde{\sigma}^2 = \sigma^2 + \epsilon_1 \max\{\sigma^2\} + \epsilon_2$ and $q^2 = \max\{m/N, 1\}$;

4. Update G_w :

$$G_w(i, j) \leftarrow \frac{1}{q^2} [G_w(i, j) - \mu(j)G_b(i)] / \tilde{\sigma}^2(j);$$

$$5. \text{ Update } G_b: G_b(i) \leftarrow \frac{1}{q^2} G_b(i) - \sum_j G_w(i, j)\mu(j);$$

$$6. \text{ Update } \eta_w: \eta_w(i, j) \leftarrow \eta_w(i, j) / (\tilde{\sigma}(j)\sqrt{q});$$

$$7. \text{ Update } \eta_b: \eta_b(i) \leftarrow \frac{1}{\sqrt{q}} \eta_b(i) - \sum_j \eta_w(i, j)\mu(j)$$

Output: Preconditioned gradients and noise: G_w, G_b, η_w, η_b .

¹⁸² Note for implementation of this method as in Algorithm 1, $\max\{\sigma^2\}$ denotes the max-
¹⁸³ imum entry of the vector $\sigma^2 \in \mathbb{R}^m$. Note $\tilde{\sigma}^2$ is σ^2 with a small number added to prevent
¹⁸⁴ division by a number smaller than $\epsilon_1 \max\{\sigma^2\}$ or ϵ_2 . We use running averages for the
¹⁸⁵ componentwise mean and variance computed in Step 2 of Algorithm 1. We apply the pre-
¹⁸⁶ conditioner P on the noise in Steps 6 and 7, which is exactly the algorithm as in Li et al.
¹⁸⁷ [2016].

¹⁸⁸ This preconditioning transformation gives the corresponding preconditioned Fisher
¹⁸⁹ matrix of $P^T \hat{H}^T S \hat{H} P$. Note that multiplying \hat{H} by U makes the first column orthogonal to
¹⁹⁰ the rest, as

$$\hat{H}U = \begin{bmatrix} e, H - e\mu_A^T \end{bmatrix},$$

and

$$(H - e\mu_A^T)^T e = 0.$$

¹⁹¹ Additionally, multiplying $H - e\mu_A^T$ by D scales all columns of $H - e\mu_A^T$ to have the same
¹⁹² norm. Both of these results of the BNP transformation were shown in Lange et al. [2022]
¹⁹³ to improve the condition number of the preconditioned matrix.

¹⁹⁴ While Algorithm 1 focuses on a fully connected network, BNP can also be applied to
¹⁹⁵ convolutional neural networks (CNNs). In particular, Section 4.3 implements a Residual

198 Network that has a framework of convolution layers. BNP performs well in situations
 199 where BN performs well. So, our experiments are limited to fully-connected networks or
 200 residual networks. Additionally, we expect BNP to perform well with capturing multi-
 201 ple modes as our algorithm is based on an MCMC method, which performs well in this
 202 situation. This is demonstrated in the experimental results of Section 4.1

203 The update step in (2.2) uses $\Gamma(\theta_t)$ in the preconditioner update, we follow Li et al.
 204 [2016] which argues that, under given conditions, $\Gamma(\theta_t)$ contributes little to the update
 205 and can be dropped during sampling to reduce computation. This can be justified in our
 206 case by directly using Theorem 1 [Li et al., 2016] and following Corollary 2 in Li et al.
 207 [2016]. To summarize, this states that under the convergence assumptions (1) and (2) in
 208 Section 2.1 and a preconditioning algorithm with an update step given by Equation (2.2),
 209 we can bound the MSE of an SG-MCMC preconditioning algorithm at a finite time. That
 210 is, given a test function ϕ that satisfies convergence assumptions, where we denote $\bar{\phi}$ the
 211 true posterior expectation and $\hat{\phi}$ the weighted sample average that approximates $\bar{\phi}$, we
 212 have that $\mathbb{E}(\hat{\phi} - \bar{\phi})^2$ is bounded.

213 Using the BNP preconditioner, we can follow the argument of Li et al. [2016] and see
 214 that the effect of Γ on the MSE is small, as it produces a controllable bias. Although we
 215 introduce bias in this way, it is controllable and much easier to implement, hence we bal-
 216 ance efficiency with a small sacrifice in accuracy. Thus, we remove the Γ term in Equation
 217 2.2 during computation to speed up our BNP method.

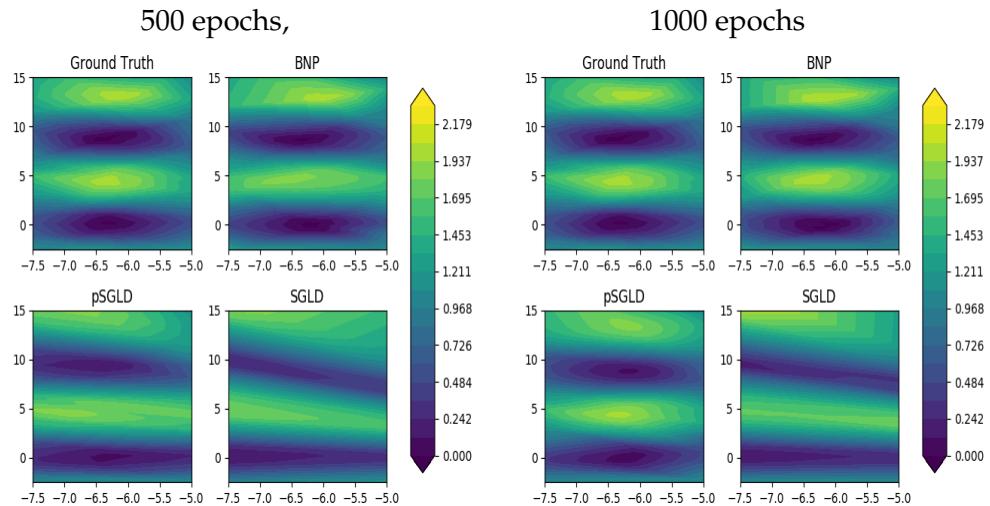


Figure 3.1: Predictions shown by BNP, SGGLD, and pSGGLD after 500 epochs (Left) and 1000 epochs (Right) given noisy data.

218 4 Experiments

219 We present BNP as a sampler in three different experiments to evaluate uncertainty. First,
 220 we show a multidimensional curve-fitting example. We next present a contextual bandit
 221 problem with 4 different datasets. Additionally, we show results on a Residual neural net-
 222 work. In all cases, we compare against other baselines, including pSGLD. All experiments
 223 show that BNP increases the speed of convergence over comparative methods. Thus, these
 224 results show that BNP can be successfully applied to SGLD. The improved early conver-
 225 gence is useful in the setting where it is beneficial to get an estimation of results quickly.
 226 Unless otherwise mentioned, the default setting for BNP is used with $\rho = 0.99$, $\epsilon_1 = 1e - 2$,
 227 and $\epsilon_2 = 1e - 4$.

228 4.1 Simulations of a Multimodal Distribution

We evaluate BNP in a curve-fitting example. Our data set is generated by sampling 1000 inputs (x, y) uniformly and at random from $[-7.5, -5] \times [-2.5, 15]$, capturing 4 local extrema of the target function. Note this choice of range is to take advantage of the BNP algorithm, as we choose (x, y) pairs with different scales. For each input we compute the corresponding noisy label as

$$1 + \frac{1}{4000}(x^2 + y^2) - \cos(x) \cos\left(\frac{y\sqrt{2}}{2}\right) + \epsilon_n,$$

229 where $\epsilon_n \in \mathcal{N}(0, 0.1)$. Note this is a noisy Griewank Function. We use a fully connected
 230 3-layer neural network with 100 hidden units in all cases to fit this data. We compare BNP
 231 with SGLD and pSGLD after 500 epochs on 40,000 test data generated uniformly from
 232 $[-7.5, -5] \times [-2.5, 15]$. Our ground truth is generated by SGLD with 10,000 epochs. Note
 233 we use SGLD as our ground truth since it is the fundamental MCMC algorithm in big data
 234 problems and the theoretical correctness is guaranteed in the asymptotic sense Dalalyan
 235 and Karagulyan [2018].

236 For parameter settings, BNP uses $\rho = 0.985$, $\epsilon_1 = \epsilon_2 = 1e - 3$. Learning rates are 1e-5,
 237 1e-5, 5e-5 for BNP, SGLD, and pSGLD respectively.

238 Figure 3.1 shows the output of each method, averaging over the last 50 epochs. BNP
 239 converges much quicker to the ground truth compared with pSGLD and SGLD. How-
 240 ever, we note that pSGLD also converges to the ground truth by increasing the number of
 241 epochs, as seen in Figure 3.1 (Right).

242 4.2 Contextual Bandits

243 We experiment with Thompson sampling for contextual bandits where an optimization
 244 metric is used to evaluate the performance of different samplers as in Deng et al. [2022],
 245 Riquelme et al. [2018]. Suppose we have an agent who is given a context $x \in X$. The agent
 246 then takes some action $a \in A$ from a collection of possible actions $\{a_1, \dots, a_n\}$. Depending
 247 on the choice, the agent receives a reward of r . The aim is to maximize the cumulative
 248 reward (or minimize regret). Since only the reward for the chosen action is revealed, there

249 is a notion of exploration versus exploitation, that is, the desire to try new, and potentially
 250 better, actions versus exploiting the known, good actions.

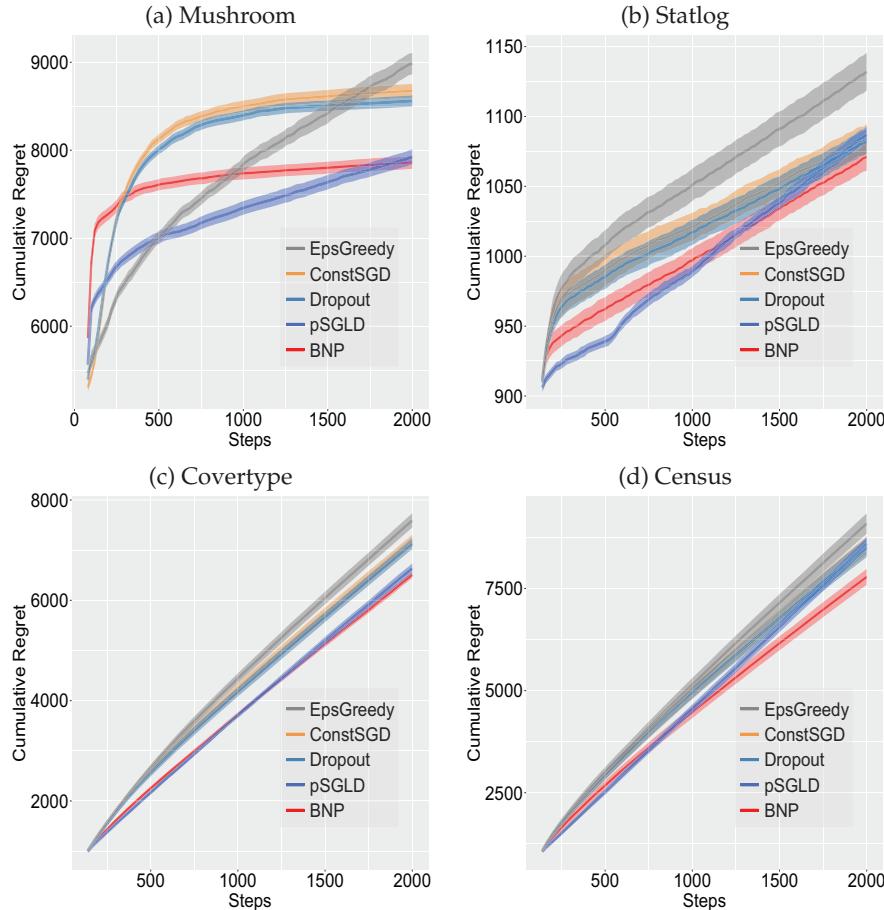


Figure 4.1: Cumulative regret on 4 datasets - Mushroom, Statlog, Covertype, Census using the methods of EpsGreedy, SGD, Dropout, pSGLD, and BNP.

251 We experiment on 4 datasets: Mushroom, Statlog, Covertype, and Census.

252

- 253 The mushroom dataset contains 8,124 mushrooms, with 22 attributes or contexts for
 254 each mushroom. Each mushroom is labeled as poisonous or edible and at each step,
 255 the agent is given the features of a particular mushroom and must decide whether
 256 to eat it. A reward of 5 is given for eating an edible mushroom, 0 for not eating a
 257 mushroom, and a reward is randomly chosen of 5 or -35 if a poisonous mushroom is
 eaten.
- 258 The statlog dataset predicts the state of the radiator subsystem of a shuttle given
 259 9 attributes of a space shuttle flight. This dataset contains information from 58,000
 260 shuttle flights, and a reward of 1 is given for a correct classification of the state and 0
 261 for an incorrect classification.

- 262 The covtype dataset classifies forest cover type into 7 categories given a list of 54
263 features. This also provides a reward of 1 for a correct classification and 0 for an
264 incorrect classification. This dataset contains 581,012 data points.
- 265 The census dataset contains information from the US Census database and given a
266 list of 94 attributes aims to classify them into one of 14 occupations. Again, a reward
267 of 1 is given for correct classification and 0 otherwise. There are 48,842 data points in
268 this dataset.

269 In our experiments, we compare our method of BNP applied to SGLD with precondi-
270 tioned SGLD (pSGLD), SGD, dropout, and an epsilon Greedy algorithm. The algorithms
271 for pSGLD, SGD, and BNP are as described above. The epsilon-greedy algorithm allows
272 for a random action to be taken a given ϵ percentage of the time and the dropout algorithm,
273 which randomly turns off a percentage of neurons in the network. Figure 4.1 shows the
274 cumulative regret on the 4 datasets described above, recall a lower regret is desired. On
275 the Mushroom dataset, BNP converges fastest. While the Greedy algorithm and pSGLD
276 have a smaller regret for the first 1000 and 1750 steps respectively, note that after 2000
277 steps they have not converged and surpass the cumulative regret of BNP.

278 For the detailed hyperparameter setups, we fix the temperature 0.03 and L_2 penalty of
279 1 for all the datasets, except the Mushroom dataset which uses a temperature of 0.3. The
280 dropout rate is set to 50%, and we randomly simulate 5 samples for the Dropout approach.
281 EpsGreedy anneals the learning rate by an annealing factor of 0.999 in each iteration and
282 has a 0.3% chance to make random actions to avoid over-exploitation; by contrast, the rest
283 of the algorithms adopt a constant learning rate, and the learning rates for Mushroom,
284 Statlog, Covertype, and Census datasets are set to 1e-6, 3e-6, 3e-6, and 1e-7, respectively.
285 pSGLD adopts a regularizer of $\lambda = 0.001$ in Equation (2.3) to control the regularity of the
286 preconditioner and the underlying smoothing factor is set to $\alpha = 0.99$ in Equation (2.4).
287 For the Mushroom dataset, $\alpha = 0.95$ performs better and is used. In particular for the
288 BNP algorithm, the pair of hyperparameters (ϵ_1, ϵ_2) is set to (1e-1, 1e-4), (1, 0.1), (3e-2,
289 3e-2), (1e-2, 1e-2) for Mushroom, Statlog, Covertype, and Census datasets, respectively.

290 For the remaining 3 datasets - Statlog, Covertype, and Census, we find that BNP achieves
291 lower cumulative regret at the end of 2000 steps, while convergence is not achieved with
292 any of the algorithms. The Greedy Algorithm has the highest cumulative regret after 2000
293 steps in each dataset. Notice that pSGLD is the most comparable with BNP, especially
294 with the Covertype data, with BNP performing only slightly better at 2000 steps. Oth-
295 erwise, we see better performance (smaller cumulative regret) earlier with pSGLD, but
296 faster convergence with BNP.

297 4.3 Residual Network and Empirical Fisher Condition Number

298 We experiment with a residual network of depth 20 (ResNet-20) on the CIFAR100 dataset
299 using a Bayesian neural network. The CIFAR100 dataset consists of 60,000 color images
300 of 32 by 32 pixels with 50,000 training images and 10,000 testing images. There are 100
301 classes of images in this dataset. With this network, we show the faster convergence of
302 BNP in addition to computations of the empirical Fisher condition number.

303 We use the SG-MCMC method of stochastic gradient Langevin dynamics (SGLD) and
 304 compare it with BNP and pSGLD. All networks are trained using the momentum op-
 305 timizer with mini-batch size 256. The learning rate is multiplied by 0.1 at epoch 250 fol-
 306 lowed by a linear decay of 0.985. Learning rates used are 1e-6, 1e-6, 1e-6, and 5e-6 for BNP,
 307 SGLD, and the different versions of pSGLD presented, respectively. Results are shown in
 308 Figure 4.2. We see that our method of BNP achieves faster convergence and comparable
 309 final test accuracy to SGLD. Different tuning parameters lead to versions of pSGLD that
 310 either achieve faster convergence than SGLD but do not perform well with the learning
 311 rate decay, or achieve comparable final accuracy with no increased initial convergence.

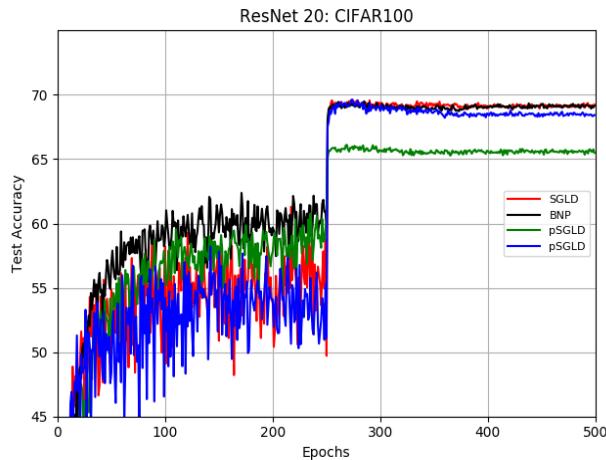


Figure 4.2: ResNet 20 on the CIFAR 100 dataset. BNP, SGLD, and 2 versions of pSGLD are shown for comparison.

312 We also record the Bayesian model averaging (BMA) of the accuracy and present the
 313 best results in Table 4.1. We find that BNP achieves a slightly better average by 0.04 with a
 314 BMA of 69.68, SGLD has a BMA of 69.64, and pSGLD BMA 69.59. Hence, this shows that
 315 our method of BNP achieves comparable results to SGLD and pSGLD, with a considerable
 316 improvement in initial convergence.

Table 4.1: Table of Bayesian model averaging (BMA) for ResNet 20, which shows the average accuracy of each model.

Method	BMA
BNP	69.68
SGLD	69.64
pSGLD	69.59

317 In addition to accuracy measure, we also include experiments that support our theory
 318 that BNP improves the Fisher Information Matrix. We calculate the condition number

319 of $\hat{I}_{1,t}$, computed as in Ahn et al. [2012] as an online average of an approximation of the
 320 empirical Fisher: $\hat{I}_{1,t} = (1 - \kappa_t)\hat{I}_{1,t-1} - \kappa_t V(\theta_t, X_n^t)$, where $\kappa = \frac{1}{t}$ and t corresponds to the
 321 iteration. We use $V(\theta_t, X_n^t) = \bar{g}(\theta_t, X_n^t) \odot \bar{g}(\theta_t, X_n^t)$ which serves as our approximation of
 322 the empirical Fisher Information matrix for a mini-batch, where $\bar{g}(\theta_t, X_n^t)$ is the sample
 323 mean of the gradient using mini-batch X_n^t and \odot represents element-wise multiplication.
 324 Note this is similar to the computation to approximate the Fisher as in Li et al. [2016],
 325 where we are interested in the approximation for a mini-batch. Note, since we compute
 326 this for convolutional layers, we use a fixed weight output channel and the corresponding
 327 bias term. That is, we compute the empirical Fisher information for $\theta_t = [b_t, w_t]$ where
 328 $w_t \in \mathbb{R}^{ck^2}$, where $k \times k$ corresponds to the convolution kernel and c is the input channel
 329 dimension. We compute the condition number of $\hat{I}_{1,t}$ at each of the 19 convolutional layers
 330 of ResNet 20 for θ_t . In our experiments, we find the BNP has an improved condition
 331 number over the baseline of SGLD in all 19 convolutional layers. We present layers 1, 10,
 332 and 19 in Figure 4.3

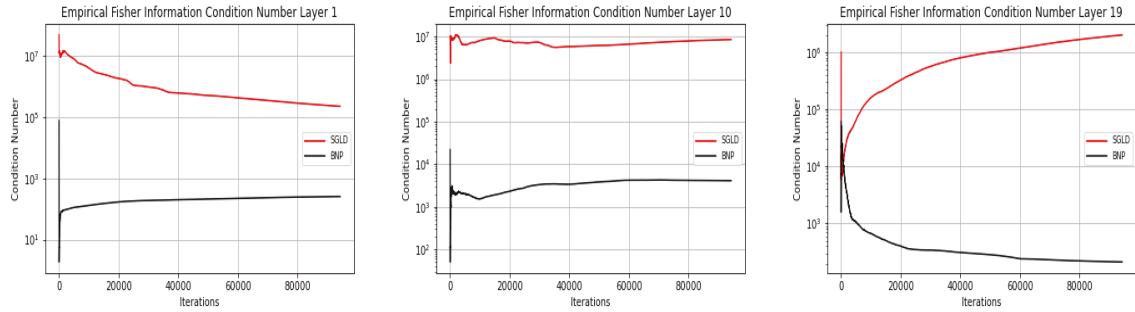


Figure 4.3: We compute the condition number of an approximation of the empirical Fisher Information matrix in ResNet 20. In all layers, we found an improvement in the condition number of BNP versus SGLD.

We also include a metric to measure the calibration of the model. Calibration is the idea that a model's confidence will match its predictions. We measure the calibration by computing the expected calibration error (ECE) as described in Naeini et al. [2015]. This metric is defined as the expected absolute difference between the model's confidence and its accuracy. The computation of ECE in practice is through an approximation. First, the interval $[0, 1]$ is partitioned into a specified number of M equally spaced bins. Let B_i be the set of samples with confidences contained in bin i . Then the accuracy and confidence of the i^{th} bin are computed as

$$acc_i = \frac{1}{|B_i|} \sum_{j \in B_i} \mathbb{1}_{\hat{y}_i = y_i}$$

and

$$conf_i = \frac{1}{|B_i|} \sum_{j \in B_i} \hat{p}_j,$$

respectively. Here $\mathbb{1}_{\hat{y}_i = y_i}$ is the indicator function for the predicted, \hat{y}_i , and actual, y_i ,

label. The ECE is approximated by taking the weighted average of the absolute difference between the accuracy and confidence of each bin as

$$ECE = \sum_{i=1}^M \frac{|B_i|}{N} |acc_i - conf_i|.$$

The maximum calibration error (MCE), see Naeini et al. [2015], can be computed similarly as

$$MCE = \max_{i \in \{1, 2, \dots, M\}} |acc_i - conf_i|,$$

333 which measures the absolute maximum difference between the accuracy and confidence
 334 of each bin. Note the lower the ECE and MCE, the better the model is calibrated. For
 335 our experiments, we choose $M = 10$ bins and compute both ECE and MCE, as seen in
 336 Figure 4.4. We also show the corresponding reliability diagrams in Figure 4.4, which show
 337 accuracy as a function of confidence. Note that a perfectly calibrated model will plot the
 338 identity.

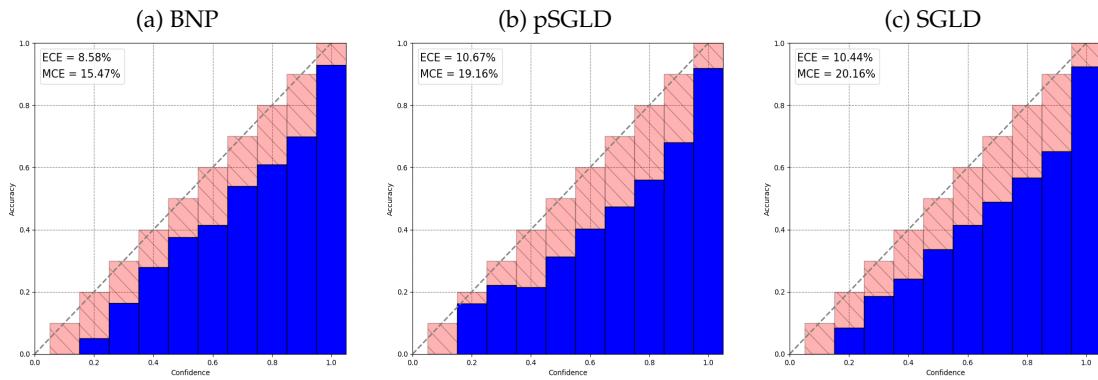


Figure 4.4: Reliability diagrams and corresponding ECE and MCE scores for BNP (Left), pSGLD (Center), and SGLD (Right) on ResNet. The blue bars correspond to the accuracy of each bin, while the red shows the gap between a perfectly calibrated model and the given model.

339 We see in Figure 4.4 that all models are overconfident in their predictions, as each accu-
 340 racy bar lies under the identity plot. Comparing the ECE and MCE scores, we see that BNP
 341 has lower scores than both SGLD and pSGLD, with a lower score measuring a more cali-
 342 brated model (hence a lower score is better). In Figure 4.4 we see the accuracy of each bin
 343 in blue and the gap between a perfectly calibrated model in red. BNP has an ECE score of
 344 8.58%, pSGLD an ECE score of 10.67% and BN a score of 10.44%. Therefore, our method of
 345 BNP achieves faster initial convergence and is more calibrated than comparative models
 346 on the Residual network.

347 There are methods to improve the calibration of neural networks and relevant work
 348 contributing to these techniques includes temperature scaling [Guo et al., 2017], an ex-
 349 tension of histogram binning to multi-class models [Zadrozny and Elkan, 2002], isotonic
 350 regression [Zadrozny and Elkan, 2002], and SWA-Gaussian [Maddox et al., 2019], which

351 builds on Stochastic Weight Averaging (SWA). However, we focus on computing ECE and
 352 MCE scores on these models as an additional metric of comparison without applying any
 353 calibration improvement techniques.

354 **4.3.1 Computation Time**

355 We expect the implementation of BNP over SGLD to be more expensive to compute. For
 356 a more thorough comparison, we test the computation time of BNP as in Algorithm 1 on
 357 ResNet 20 along with the baseline algorithms pSGLD and SGLD. These results are com-
 358 puted on GeForce GTX 1080 Ti. Results are summarized in Table 4.2. These computation
 359 times are gathered by averaging the training time over the first 20 epochs, hence results
 360 show the average time to train for one epoch. Both BNP and pSGLD add to the training
 361 time of the network, with BNP adding about 3.7 seconds per epoch and pSGLD adding
 362 about 1 second per epoch.

Table 4.2: Summarization of computation time comparison for ResNet 20, which shows the average time (in seconds) to run one epoch of each model.

Method	Computation Time
BNP	21.83
SGLD	18.10
pSGLD	19.04

363 **5 Conclusion**

364 We have introduced a batch normalization preconditioning algorithm for stochastic gradi-
 365 ent Langevin dynamics that increases the convergence rate of training over SGLD and pS-
 366 GLD. This is done by using the mini-batch statistics to construct a preconditioning matrix
 367 used to precondition the gradients during training. We apply the algorithm to a variety of
 368 Bayesian neural networks, showing faster convergence in the Residual network and sim-
 369 ulation example, as well as a more calibrated model in the ResNet, while also achieving
 370 improved results for Thompson sampling.

371 **Acknowledgments**

372 QY gratefully acknowledges the research support by NSF under the grant DMS-1821144.
 373 GL gratefully acknowledges the support of the National Science Foundation (DMS-1555072,
 374 DMS-2053746, and DMS-2134209), Brookhaven National Laboratory Subcontract 382247,
 375 and U.S. Department of Energy (DOE) Office of Science Advanced Scientific Computing
 376 Research program DE-SC0021142 and DE-SC0023161.

377 **References**

378 Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian Posterior Sampling via
379 Stochastic Gradient Fisher Scoring. In *ICML*, 2012.

380 Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic Gradient Hamiltonian Monte
381 Carlo. In *ICML*, 2014.

382 Arnak S. Dalalyan and Avetik G. Karagulyan. User-friendly Guarantees for the Langevin
383 Monte Carlo with Inaccurate Gradient. *Stochastic Processes and their Applications*, 129:12:
384 5278–5311, 2018.

385 Wei Deng, Qi Feng, Liyao Gao, Faming Liang, and Guang Lin. Non-Convex Learning via
386 Replica Exchange Stochastic Gradient MCMC. In *ICML*, 2020a.

387 Wei Deng, Guang Lin, and Faming Liang. A Contour Stochastic Gradient Langevin Dy-
388 namics Algorithm for Simulations of Multi-modal Distributions. In *NeurIPS*, 2020b.

389 Wei Deng, Siqi Liang, Botao Hao, Guang Lin, and Faming Liang. Interacting Contour
390 Stochastic Gradient Langevin Dynamics. In *ICLR*, 2022.

391 Mark Girolami, Ben Calderhead, and Siu A. Chin. Riemann Manifold Langevin and
392 Hamiltonian Monte Carlo methods. *Journal of the Royal Statistical Society. Series B*, 2011.

393 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern
394 Neural Networks. In *ICML*, 2017.

395 Huan He, Shifan Zhao, Yuanzhe Xi, Joyce C Ho, and Yousef Saad. GDA-AM: On the
396 Effectiveness of Solving Minimax Optimization via Anderson Acceleration, 2021. URL
397 <https://arxiv.org/abs/2110.02457>.

398 Huan He, Shifan Zhao, Ziyuan Tang, Joyce Ho, Yousef Saad, and Yuanzhe Xi. An Efficient
399 Nonlinear Acceleration method that Exploits Symmetry of the Hessian. 10 2022. doi:
400 10.48550/arXiv.2210.12573.

401 Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
402 Training by Reducing Internal Covariate Shift. *CoRR*, abs/1502.03167, 2015. URL <http://arxiv.org/abs/1502.03167>.

404 Susanna Lange, Kyle Helfrich, and Qiang Ye. Batch Normalization Preconditioning for
405 Neural Network Training. *Journal of Machine Learning Research*, 23(72):1–41, 2022. URL
406 <http://jmlr.org/papers/v23/20-1135.html>.

407 Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned
408 Stochastic Gradient Langevin Dynamics for Deep Neural Networks. In *AAAI*, 2016.

409 Yi-An Ma, Tianqi Chen, and Emily B. Fox. A Complete Recipe for Stochastic Gradient
410 MCMC. In *NeurIPS*, 2015.

411 Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry P. Vetrov, and Andrew Gordon
412 Wilson. A Simple Baseline for Bayesian Uncertainty in Deep Learning. In *NeurIPS*, 2019.

⁴¹³ Jishnu Mukhoti, Puneet K. Dokania, Philip H. S. Torr, and Yarin Gal. On Batch Normalisation for Approximate Bayesian Inference. In *3rd Symposium on Advances in Approximate Bayesian Inference*, 2020.

⁴¹⁶ Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. Obtaining Well Calibrated Probabilities Using Bayesian Binning. In *AAAI*, 2015.

⁴¹⁸ Sam Patterson and Yee Whye Teh. Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex. In *NIPS*, 2013.

⁴²⁰ Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex Learning via Stochastic Gradient Langevin Dynamics: a Nonasymptotic Analysis. In *Annual Conference on Learning Theory (COLT)*, June 2017.

⁴²³ Carlos Riquelme, George Tucker, and Jasper Snoek. Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling. In *ICLR*, 2018.

⁴²⁶ Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian Uncertainty Estimation for Batch Normalized Deep Networks. In *ICML*, 2018.

⁴²⁸ M. Welling and Y. Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In *ICML*, 2011.

⁴³⁰ Bianca Zadrozny and Charles Elkan. Transforming Classifier Scores into Accurate Multi-class Probability Estimates. In *KDD*, 2002.

⁴³² Yuchen Zhang, Percy Liang, and Moses Charikar. A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics. In *Annual Conference on Learning Theory (COLT)*, 2017.

⁴³⁴ Umut Şimşekli, Roland Badeau, A. Taylan Cemgil, and Gaël Richard. Stochastic Quasi-Newton Langevin Monte Carlo. In *ICML*, 2016.

⁴³⁶ 6 Supplemental Material:

⁴³⁷ We restate Theorem 3.1 and provide a proof. Note this result follows the proof idea given in Lange et al. [2022].

Theorem 3.1 *Let $-\log p((x, y)|w)$ be the negative log-likelihood loss function defined from the output of a fully-connected multi-layer neural network (2.5) with parameter w for a single network*

input x . Consider the weight and bias parameters $w_i^{(\ell)}, b_i^{(\ell)}$ at the ℓ -th layer and let $\hat{w} = \begin{bmatrix} b_i^{(\ell)} \\ w_i^{(\ell)} \end{bmatrix}$

and $\hat{h} = \begin{bmatrix} 1 \\ h^{(\ell-1)} \end{bmatrix}$. Write the likelihood $p((x, y)|\hat{w})$ as a function of \hat{w} through the activation $a^{(\ell)} := \hat{w}^T \hat{h}$, that is $p((x, y)|\hat{w}) = f(a^{(\ell)})$ for some function f . When training over a mini-batch of N inputs $\{x_1, x_2, \dots, x_N\}$, let $\{h_1^{(\ell-1)}, h_2^{(\ell-1)}, \dots, h_N^{(\ell-1)}\}$ be the associated $h^{(\ell-1)}$ and

let $\hat{h}_j = \begin{bmatrix} 1 \\ h_j^{(\ell-1)} \end{bmatrix} \in \mathbb{R}^{m+1}$. Then the empirical Fisher Information matrix with respect to \hat{w} , $\mathcal{I}(\hat{w}) := -\frac{1}{N} \sum_{j=1}^N \nabla_{\hat{w}}^2 \log p((x_j, y_j) | \hat{w})$, can be written as

$$\mathcal{I}(\hat{w}) = -\hat{H}^T S \hat{H},$$

439 where

440 $\hat{H} = [e, H], H = \begin{bmatrix} h_1^{(\ell-1)^T} \\ \vdots \\ h_N^{(\ell-1)^T} \end{bmatrix},$

441 and $S = \frac{1}{N} \text{diag} \left(\frac{f'(\hat{w}^T \hat{h}_j)^2}{f(\hat{w}^T \hat{h}_j)^2} - \frac{f''(\hat{w}^T \hat{h}_j)}{f(\hat{w}^T \hat{h}_j)} \right).$

Proof. With $-\log(p((x_j, y_j) | \hat{w})) = -\log(f(\hat{w}^T \hat{h}_j))$, we have the gradient with respect to \hat{w} is given by $-\frac{f'(\hat{w}^T \hat{h}_j)}{f(\hat{w}^T \hat{h}_j)} \hat{h}_j$. Computing the Hessian of the negative log-likelihood gives $\left(\frac{f'(\hat{w}^T \hat{h}_j)^2}{f(\hat{w}^T \hat{h}_j)^2} \hat{h}_j - \frac{f''(\hat{w}^T \hat{h}_j)}{f(\hat{w}^T \hat{h}_j)} \hat{h}_j \right) \hat{h}_j^T$. So, the empirical Fisher Information matrix can be written as

$$\mathcal{I}(\hat{w}) = \frac{1}{N} \sum_{j=1}^N \left(\frac{f'(\hat{w}^T \hat{h}_j)^2}{f(\hat{w}^T \hat{h}_j)^2} - \frac{f''(\hat{w}^T \hat{h}_j)}{f(\hat{w}^T \hat{h}_j)} \right) \hat{h}_j \hat{h}_j^T.$$

Noting that $\hat{H}^T = [\hat{h}_1, \hat{h}_2, \dots, \hat{h}_N]$, we write

$$\mathcal{I}(\hat{w}) = -\hat{H}^T S \hat{H},$$

442 where $S = \frac{1}{N} \text{diag} \left(\frac{f'(\hat{w}^T \hat{h}_j)^2}{f(\hat{w}^T \hat{h}_j)^2} - \frac{f''(\hat{w}^T \hat{h}_j)}{f(\hat{w}^T \hat{h}_j)} \right).$ □