© N o v &

11

12

13

14

15

Journal of Machine Learning ISSN: 2790-2048(e), 2790-203X(p)

Batch Normalization Preconditioning for Stochastic Gra-
dient Langevin Dynamics

Susanna Lange * !, Wei Deng ™2, Qiang Ye* 3, and Guang Lin § 4

IData Science Institute, University of Chicago, Chicago, IL 60615

2Machine Learning Research, Morgan Stanley, New York City, NY 10036

3Department of Mathematics, University of Kentucky, Lexington, KY 40506

4Depar’cments of Mathematics, & School of Mechanical Engineering, Purdue University, West Lafayette, IN
47907

Abstract. Stochastic gradient Langevin dynamics (SGLD) is a standard sampling technique for uncertainty
estimation in Bayesian neural networks. Past methods have shown improved convergence by including a
preconditioning of SGLD based on RMSprop. This preconditioning serves to adapt to the local geometry of
the parameter space and improve the performance of deep neural networks. In this paper, we develop an-
other preconditioning technique to accelerate training and improve convergence by incorporating a recently
developed Batch Normalization Preconditioning (BNP), into our methods. BNP uses mini-batch statistics to
improve the conditioning of the Hessian of the loss function in traditional neural networks and thus improve
convergence. We will show that applying BNP to SGLD will improve the conditioning of the Fisher Infor-
mation matrix, which improves the convergence. We present the results of this method on three experiments
including a simulation example, a contextual bandit example, and a residual network which show the im-
proved initial convergence provided by BNP, in addition to an improved condition number from this method.

Keywords: Article Info.: Article History:
Bayesian Neural Networks Volume: x Received: 99/99/9999
Preconditioning Number: x Accepted: 99/99/9999
Batch Normalization Pages: xx- xx

Stochastic Gradient Langevin Dynamics Date: XX/YYYY
doi.org/Xx.XXXX / X.XXX.XXXX.XXXX

1 Introduction

Markov Chain Monte Carlo (MCMC) provides a principled framework for simulating the
distribution of interest. During the simulation, the entire dataset is often used to com-
pute the energy or the gradient, which, however, is not scalable enough in big data prob-
lems. To tackle this issue, stochastic gradient Langevin dynamics (SGLD) [Welling and
Teh, 2011] proposes to inject additional Gaussian noise to stochastic gradient descent and
smoothly transitions into an MCMC sampler as the step size goes to zero. The explorative
feature of the sampler not only captures uncertainty for reliable decision-making but also
facilitates non-convex optimization to alleviate over-fitting [Raginsky et al., 2017, Zhang
et al., 2017]. Since then, many interesting stochastic gradient Markov Chain Monte Carlo
(SG-MCMC) methods are proposed to accelerate the convergence [Chen et al., 2014, Deng

*susannalange@uchicago.edu
tweideng056@gmail . com

1qiang .yeQuky.edu.

SCorresponding author. guanglin@purdue . edu.

https:/ /www.global-sci.com/jml Global Science Press

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

J. Mach. Learn., x(x):xx-xx 2

etal., 2020a,b, Ma et al., 2015]. However, these sampling algorithms still suffer from a slow
convergence given morbid curvature information. To handle this issue, Girolami et al.
[2011] and Patterson and Teh [2013] propose to adjust the Langevin algorithm on the Rie-
mann manifold. Despite the correctness of the simulations, it is challenging to conduct the
transformation in high-dimensional problems. Motivated by the adaptive preconditioner
as in Root Mean Squared Propagation (RMSprop), the preconditioned SGLD algorithm
(pSGLD) proposes to accelerate SGLD through a diagonal approximation of the Fisher in-
formation to resolve the scalability issue [Li et al., 2016]. This uses gradient information
to construct a preconditioner that can be interpreted to have an adaptive step size, with a
smaller step size for curved directions and a larger step size for flat directions. This com-
bats the slow training related to saddle points in neural networks. Other preconditioning
methods have been investigated, including dense approximations of the inverse Hessian,
as in Ahn et al. [2012], Simsekli et al. [2016]. There have also been approaches to use
non-linear averaging methods to accelerate network convergence. He et al. [2022] uses a
Truncated Generalized Conjugate Residual method that uses symmetry of the Hessian to
improve convergence, and He et al. [2021] combines gradient descent ascent with Ander-
son Mixing in generative adversarial networks, which was shown to improve adversarial
training.

Another approach to accelerate convergence is to incorporate Batch Normalization
(BN) layers into the network architecture [Ioffe and Szegedy, 2015]. BN uses mini-batch
statistics to normalize hidden variables of a network and has been shown to decrease
training times and improve network regularization. BN and its connection to Bayesian
neural networks have been studied in Teye et al. [2018], in particular, a network with BN
can be interpreted as an approximate Bayesian model. Batch Normalization has also been
successfully applied to Bayesian models as studied in Mukhoti et al. [2020] which shows
that including BN layers does not affect the probabilistic inference of variational methods.
Batch Normalization Preconditioning (BNP) is a technique that also uses mini-batch statis-
tics but does so by transforming a network’s trainable parameters using a preconditioner
[Lange et al., 2022]. This is done by applying a preconditioning transformation on the
parameter gradients during training. This transformation has been shown to improve the
conditioning of the Hessian of the loss function which corresponds to a major advantage
of the BNP transformation, that is, improvement in the convergence of the method. More
importantly, BNP is a general framework that is applicable to different neural network
architectures and in different settings, such as Bayesian models.

In this paper, we develop BNP for Bayesian neural networks to be used as a sampling
method and examine its effects. We show that we can develop a similar preconditioning
technique for SGLD that further improves initial convergence by improving the condition
number of the Fisher Information matrix. Additionally, we provide experimental results
on three different methods, each showing improvement in convergence over our com-
parative baselines. We also compute the condition number of the approximate empirical
Fisher information, which demonstrates the improvement in the condition number in our
method.

The paper is organized as follows. In Section 2 we provide background informa-
tion on Stochastic gradient Langevin Dynamics as well as a preconditioned version of

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95
96

J. Mach. Learn., x(x):xx-xx 3

SGLD. Section 2.2 introduces the basics of a Batch Normalization architecture. In Section
3 we expand upon a preconditioning method, Batch Normalization Preconditioning, to
a Bayesian setting that improves the conditioning of the Fisher Information matrix and
Section 4 showcases the benefits of BNP applied to SLGD in three different experiments.

2 Background

In this section, we provide preliminaries on the Stochastic gradient Langevin Dynamics
method and preconditioned-SGLD. We also describe the Batch Normalization network
architecture.

2.1 SGLD and pSGLD

Suppose we have a parameter 6 with a prior distribution p(6). We can then compute the
posterior distribution p(0|X) over N data points X = {x1,...,.xnN} as

p(0]X) « p(6 Hp (x;]0),

where the prior serves as a regularization term, and we aim to optimize the likelihood by
finding the maximum a posteriori (MAP), that is argmax log p(0|X). Stochastic gradient
Langevin dynamics (SGLD) combines stochastic optimization with Markov chain Monte
Carlo (MCMC) by incorporating uncertainty into predictive estimates by way of adding
a noise component to the parameter updates. The update for SGLD is given at each time
step t for a subset of n data points X = {xy1, ..., Xt } as

€t N &
Vo, = E(Vlogp(et) + ZVIOgP(Xtth)) + 1t (2.1)
i—1

where 7 ~ N(0, €;). As t increases, it has been shown for SGLD that 6; will converge in
distribution to the posterior distribution [Welling and Teh, 2011] with the assumption that

1. The sequence of step sizes {€; } are decreasing with) ;2 ; ey = o0

2. Y% €2 < co.
Note that this standard SGLD algorithm updates all parameters with the same step size.
However, when the different components of the parameter vector have different curva-
tures or different scales, it is more beneficial to use a preconditioning matrix G(6) in SGLD
to help adjust step size locally. The general framework of stochastic gradient Riemannian

Langevin dynamics (SGRLD) was suggested in Patterson and Teh [2013], which gives the
update step:

Vo, = Z[G(Ot)<V910gp(0t+ ZVglogp(xnIGt)>
i=1

+ r(et)] + G2 (0,)N(0,e.1), 2.2)

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

J. Mach. Learn., x(x):xx-xx 4

where

JORbE &
]

provides information on how the preconditioner G changes with respect to 6;. For the con-
venience of implementations, G(6;) is replaced by the identity matrix in SGLD, in which
case I';(0;) = 0. Particularly of interest is the preconditioner used in Li et al. [2016] which
is the same as in RMSprop and serves to transform the rate of curvature to be equal in
all directions. This preconditioning method is referred to as pSGLD. The preconditioning
matrix estimates a diagonal matrix and the update at each step is given by

G(641) = diag(l (Al + 4/ V(9t+1)>, (2.3)

V(Biy1) = aV(0) + (1 —a)g(0 X ©g(0; X1, (2.4)

where

and ;
_ 1
g6 X" = . Y Volog p(x46:)
i

is the mean of the gradient over the mini-batch X? and « € [0, 1]. Computations in Equa-
tions (2.3) and (2.4) are using element-wise multiplication ® and division ©. A benefit of
using this RMSprop preconditioner is that it adapts to the local geometry and curvature,
in particular, the step sizes can be considered as adaptive, where large steps are taken in
flat directions and small steps are taken in curved directions.

2.2 Batch Normalization

Batch Normalization (BN) is a technique that incorporates normalization layers into a neu-
ral network architecture. It was originally developed to remedy Internal Covariate Shift,
which refers to the shifting of distributions between layers during training that can di-
minish the effectiveness of gradient descent [Ioffe and Szegedy, 2015]. Such distribution
changes slow down training since parameters must adapt to the changed distribution of
the different network layers. Reducing this shift causes improvement in the speed of train-
ing, network regularization, and performance.

The BN transformation normalizes the hidden variables by subtracting by the mini-
batch mean and dividing by the mini-batch standard deviation while introducing train-
able re-centering and re-scaling parameters. To understand the BN architecture, we con-
sider a fully connected neural network and follow the terminology in Lange et al. [2022] to
introduce a BN network. Let the /-th hidden layer of a fully connected network be defined
as

WO = g(WORED 10y e R™, (2.5)

which takes input #(‘~1) from the previous layer, a chosen activation function g, and

weight and bias elements W and b9, to construct the current hidden variable h(%).
Note the input to the network is given by h(0). Let {hgo),hgo), e /hz(\?)} be a mini-batch

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

J. Mach. Learn., x(x):xx-xx 5

input to the training network with N examples and A = {hgg_l),hg_l), . .,h%_l)} the
hidden variables of layer ¢ — 1. The update in Equation (2.5) describes the standard fully
connected iteration. Applying BN to this network replaces the iteration update in (2.5) by

WO — o (W(Z>Bm(h(f—1)) n b(é))) (2.6)
where (-1)
h - _
(-1 _ B T HA
o (4°9) =12 1 @

and o4 and p4 are the standard deviation and mean vectors of the hidden variables in
layer / — 1 and v, B are the trainable re-scaling and re-centering parameter vectors. The
BN operator is denoted Bg , (-) in Equations (2.6) and (2.7).

Since BN has the mini-batch statistics embedded in the architecture, a theoretical disad-
vantage is that the training network depends on the mini-batch inputs, and in particular,
the inference network is different from the training network.

3 Batch Normalization Preconditioning

We extend a preconditioning method of Batch Normalization Preconditioning (BNP) orig-
inally derived for neural networks to SGLD. BNP is also a technique to accelerate the
convergence of a neural network using mini-batch statistics. Instead of changing the net-
work architecture, as is done in BN, BNP uses a preconditioning matrix on the parameter
gradients during training. This transformation improves the conditioning of the Hessian
of the loss function and has been shown in Lange et al. [2022] to outperform BN in small
mini-batch settings and online learning.

We develop BNP for SGLD by considering the gradient descent for parameters in one
layer. We consider the Fisher Information matrix in terms of the Hessian of the log-
likelihood and represent the Fisher Information matrix in terms of the mini-batch acti-
vations.

Consider a Bayesian feedforward neural network with L layers as defined in Equation

(2.5). We denote hlw =g (alw) as the ith entry of h(*) where alw = wfg)Th(ffl) + bl-(g) € R.

Here wl@T € R and bl@ are the respective ith row and entry of W(*) and b(*), and m is
the dimension of 1(/~1). Let

@T _ [bi(é),wl@)T] c 1R1><(m+1), (3'1)
h= [Wll)] e R D1 and o) = @7, (3.2)

Note that the Fisher matrix can be described as —E(V3(log pg(x))), for expected value
E with Hessian operator V3. We call

1Y,
I(9> = —N Vg log pg(x]‘),
j=1

164

165

166

167

168

169

170

171

172

173

174

175

176

J. Mach. Learn., x(x):xx-xx 6

an empirical Fisher matrix, which serves as an approximation of the Fisher matrix based
on the training data and training distribution. For a fully-connected neural network, we
can write the empirical Fisher Matrix in terms of the mini-batch activations, as shown in
the theorem below. The importance of this form is that applying the BNP preconditioner
serves to improve the conditioning of this matrix.

Theorem 3.1. Let —log p((x,y)|w) be the negative log-likelihood loss function defined from the
output of a fully-connected multi-layer neural network (2.5) with parameter w for a single network

(0)
input x. Consider the weight and bias parameters wl@ , bl@) at the (-th layer and let W = [bi(6)]

w;

and h = |:h(£11):|. Write the likelihood p((x,y)|@) as a function of @ through the activation

a¥) .= @Th, that is p((x,y)|@) = f(al)for some function f. When training over a mini-
batch of N inputs {x1,x,...,xN}, let {h (() D i 1)} be the associated h'‘=1) and

~ 1
let hj = [_1)] € R™*L. Then the empirical Fisher Information matrix with respect to @,

n!

]
(D) := — Z ¥ V2 log p((xj,yj)|@), can be written as

T(@) = —HTSH,
where
h?’”
H=e, H|, H= : ,

AV

Using this expression of the empirical Fisher Information matrix, we can improve its
Cond1t10n1]g by using a preconditioning transformation. Constructing a preconditioner
, we use the update step in (2.2) with P:=UD, and

-1
1 =l 1 0
U:= [0 17 P [o diag(aA)] ' (3.3)
where N
1 1 (£-1)
pao=—He=—=) h= 7/, (3.4)
N N];]
and N
1 _
A= 5 0 =) (35)

=

177

178

179

180

181

182
183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

J. Mach. Learn., x(x):xx-xx 7

are the (vector) mean and variance of {h]@_l)} respectively. Note the inverse notation in

Equation (3.3) refers to the element-wise inverse and e notation refers to a vector of ones.

As mentioned in Lange et al. [2022], to ensure the Hessian blocks from different layers
have comparable norms, we scale the preconditioner PPT by 1/4*> where
q2 = max{m/N,1}. Thus, the BNP transformation on the gradients is outlined in Al-
gorithm 1.

Algorithm 1 One Step of BNP Training on W), b() of the /th Dense Layer

Given: €; = 1072,¢, = 10 % and p = 0.99; learning rate a; initialization of vectors:
u=00=1

Input: Mini-batch output of prev1ous layer A = {h hy 1), . gil } C R™ and
the parameter gradients: Gy, < aw € R, Gy « f: € RIxn, and parameter noise
Nw € R™<m, 1y € R1xn

1. Compute mini-batch mean/variance: 14, (7124 ;

2. Compute running average statistics: y < pp + (1 — p)pa, 02 < po? + (1 —p)o3;

3. Set 7 = 02 + €y max{c?} + €3 and ¢*> = max{m/N,1};

4. Update Gw

Gul(i,) 5[Gu(i,j) — 1()Gy()]/%());

5. Update Gb Gy(i) = 2 Gp(i) = X Gu (i, /)1 (j);

6. Update 0t (i) 10l 1)/ (1) V)

7. Update 1y: 7y (i) = z116(i) — 5 7 (i, /) 1 (j)

Output: Preconditioned gradients and noise: Gy, Gy, 7w, p-

Note for implementation of this method as in Algorithm 1, max{c?} denotes the max-
imum entry of the vector 0> € R™. Note &7 is 0> with a small number added to prevent
division by a number smaller than e;max{c?} or €;. We use running averages for the
componentwise mean and variance computed in Step 2 of Algorithm 1. We apply the pre-
conditioner P on the noise in Steps 6 and 7, which is exactly the algorithm as in Li et al.
[2016].

This preconditioning transformation gives the corresponding preconditioned Fisher
matrix of PTHTSHP. Note that multiplying H by U makes the first column orthogonal to
the rest, as

HU = [e, H—eyﬂ ,

and
(H—eul)Te=0.

Additionally, multiplying H — eu, by D scales all columns of H — ey, to have the same
norm. Both of these results of the BNP transformation were shown in Lange et al. [2022]
to improve the condition number of the preconditioned matrix.

While Algorithm 1 focuses on a fully connected network, BNP can also be applied to
convolutional neural networks (CNNs). In particular, Section 4.3 implements a Residual

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

J. Mach. Learn., x(x):xx-xx 8

Network that has a framework of convolution layers. BNP performs well in situations
where BN performs well. So, our experiments are limited to fully-connected networks or
residual networks. Additionally, we expect BNP to perform well with capturing multi-
ple modes as our algorithm is based on an MCMC method, which performs well in this
situation. This is demonstrated in the experimental results of Section 4.1

The update step in (2.2) uses I'(6;) in the preconditioner update, we follow Li et al.
[2016] which argues that, under given conditions, I'(6;) contributes little to the update
and can be dropped during sampling to reduce computation. This can be justified in our
case by directly using Theorem 1 [Li et al., 2016] and following Corollary 2 in Li et al.
[2016]. To summarize, this states that under the convergence assumptions (1) and (2) in
Section 2.1 and a preconditioning algorithm with an update step given by Equation (2.2),
we can bound the MSE of an SG-MCMC preconditioning algorithm at a finite time. That
is, given a test function ¢ that satisfies convergence assumptions, where we denote ¢ the
true posterior expectation and ¢ the weighted sample average that approximates ¢, we
have that [E(¢ — ¢)? is bounded.

Using the BNP preconditioner, we can follow the argument of Li et al. [2016] and see
that the effect of I on the MSE is small, as it produces a controllable bias. Although we
introduce bias in this way, it is controllable and much easier to implement, hence we bal-
ance efficiency with a small sacrifice in accuracy. Thus, we remove the I' term in Equation
2.2 during computation to speed up our BNP method.

500 epochs, 1000 epochs
Ground Truth BNP Ground Truth BNP

5 15 5 15

10 10 2179 10 10 2179
1937 1937

5 5 5 5
1695 1.695

0 0 1453 0 0 1453

75 =70 =65 6.0 -5.5 -5.0 -1.5 =1.0 =65 —6.0 5.5 -5.0 1om -75 =70 —65 =60 -5.5 -5.0 -15 1.0 -65 —6.0 5.5 5.0 Lan

PSGLD PSGLD SGLD
0.968 15 0.968

SGLD
15 15 15
0.726 0.726
10 10 10 10
0.484 0.484
5 > 0.242 5 > 0.242
0 0 0.000 0 0 0.000

-1.5 =10 =65 -6.0 -55 -5.0 -7.5 -7.0 -6.5 -6.0 5.5 -5.0 -1.5 -7.0 =65 -6.0 -55 -50 -75 -7.0 -6.5 -6.0 5.5 -5.0

Figure 3.1: Predictions shown by BNP, SGLD, and pSGLD after 500 epochs (Left) and 1000 epochs (Right)
given noisy data.

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

J. Mach. Learn., x(x):xx-xx 9

4 Experiments

We present BNP as a sampler in three different experiments to evaluate uncertainty. First,
we show a multidimensional curve-fitting example. We next present a contextual bandit
problem with 4 different datasets. Additionally, we show results on a Residual neural net-
work. In all cases, we compare against other baselines, including pSGLD. All experiments
show that BNP increases the speed of convergence over comparative methods. Thus, these
results show that BNP can be successfully applied to SGLD. The improved early conver-
gence is useful in the setting where it is beneficial to get an estimation of results quickly.
Unless otherwise mentioned, the default setting for BNP is used with p = 0.99,¢1 = 1e -2,
and e, = le — 4.

4.1 Simulations of a Multimodal Distribution

We evaluate BNP in a curve-fitting example. Our data set is generated by sampling 1000
inputs (x,y) uniformly and at random from [—7.5, —5] x [—2.5,15], capturing 4 local ex-
trema of the target function. Note this choice of range is to take advantage of the BNP
algorithm, as we choose (x,y) pairs with different scales. For each input we compute the
corresponding noisy label as

x2 +y*) — cos(x) cos (M) + €,

1+ 4000(2

where €, € N(0,0.1). Note this is a noisy Griewank Function. We use a fully connected
3-layer neural network with 100 hidden units in all cases to fit this data. We compare BNP
with SGLD and pSGLD after 500 epochs on 40,000 test data generated uniformly from
[—7.5,—5] x [—2.5,15]. Our ground truth is generated by SGLD with 10,000 epochs. Note
we use SGLD as our ground truth since it is the fundamental MCMC algorithm in big data
problems and the theoretical correctness is guaranteed in the asymptotic sense Dalalyan
and Karagulyan [2018].

For parameter settings, BNP uses p = 0.985, €; = €3 = le — 3. Learning rates are 1e-5,
1le-5, 5e-5 for BNP, SGLD, and pSGLD respectively.

Figure 3.1 shows the output of each method, averaging over the last 50 epochs. BNP
converges much quicker to the ground truth compared with pSGLD and SGLD. How-
ever, we note that pSGLD also converges to the ground truth by increasing the number of
epochs, as seen in Figure 3.1 (Right).

4.2 Contextual Bandits

We experiment with Thompson sampling for contextual bandits where an optimization
metric is used to evaluate the performance of different samplers as in Deng et al. [2022],
Riquelme et al. [2018]. Suppose we have an agent who is given a context x € X. The agent
then takes some action a € A from a collection of possible actions {a, ...a,}. Depending
on the choice, the agent receives a reward of r. The aim is to maximize the cumulative
reward (or minimize regret). Since only the reward for the chosen action is revealed, there

249

250

251

252

253

254

255

256

257

258

259

260

261

J. Mach. Learn., x(x):xx-xx 10

is a notion of exploration versus exploitation, that is, the desire to try new, and potentially
better, actions versus exploiting the known, good actions.

(a) Mushroom (b) Statlog
9000 1150~
7
éé S
—_— 1100 =
%8000 B
g 31050'
o o
2 2
g 7000y — EpsGreedy 3 1000. — EpsGreedy
g ConstSGD £ ConstSGD
© — Dropout © — Dropout
6000- / — pSGLD 950- — pSGLD
;/ — BNP — BNP
| | | | | 900- | | ‘ l
0 500 1000 1500 2000 500 1000 1500 2000
Steps Steps
(c) Covertype (d) Census
8000-
/ /
. 6000- 7500
[[
(o)) o
Q (0]
2 2
2 2 5000
g 4000- — EpsGreedy 2 — EpsGreedy
£ ConstSGD £ ConstSGD
© — Dropout © — Dropout
— pSGLD 2500- — pSGLD
2000 —BNP —BNP
500 1000 1500 2000 500 1000 1500 2000
Steps Steps

Figure 4.1: Cumulative regret on 4 datasets - Mushroom, Statlog, Covertype, Census using the methods of
EpsGreedy, SGD, Dropout, pSGLD, and BNP.

We experiment on 4 datasets: Mushroom, Statlog, Covertype, and Census.

¢ The mushroom dataset contains 8,124 mushrooms, with 22 attributes or contexts for
each mushroom. Each mushroom is labeled as poisonous or edible and at each step,
the agent is given the features of a particular mushroom and must decide whether
to eat it. A reward of 5 is given for eating an edible mushroom, 0 for not eating a
mushroom, and a reward is randomly chosen of 5 or -35 if a poisonous mushroom is
eaten.

¢ The statlog dataset predicts the state of the radiator subsystem of a shuttle given
9 attributes of a space shuttle flight. This dataset contains information from 58,000
shuttle flights, and a reward of 1 is given for a correct classification of the state and 0
for an incorrect classification.

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

203

294

295

296

297

298

299

300

301

302

J. Mach. Learn., x(x):xx-xx 11

* The covertype dataset classifies forest cover type into 7 categories given a list of 54
features. This also provides a reward of 1 for a correct classification and 0 for an
incorrect classification. This dataset contains 581,012 data points.

* The census dataset contains information from the US Census database and given a
list of 94 attributes aims to classify them into one of 14 occupations. Again, a reward
of 1 is given for correct classification and 0 otherwise. There are 48,842 data points in
this dataset.

In our experiments, we compare our method of BNP applied to SGLD with precondi-
tioned SGLD (pSGLD), SGD, dropout, and an epsilon Greedy algorithm. The algorithms
for pSGLD, SGD, and BNP are as described above. The epsilon-greedy algorithm allows
for a random action to be taken a given € percentage of the time and the dropout algorithm,
which randomly turns off a percentage of neurons in the network. Figure 4.1 shows the
cumulative regret on the 4 datasets described above, recall a lower regret is desired. On
the Mushroom dataset, BNP converges fastest. While the Greedy algorithm and pSGLD
have a smaller regret for the first 1000 and 1750 steps respectively, note that after 2000
steps they have not converged and surpass the cumulative regret of BNP.

For the detailed hyperparameter setups, we fix the temperature 0.03 and L, penalty of
1 for all the datasets, except the Mushroom dataset which uses a temperature of 0.3. The
dropout rate is set to 50%, and we randomly simulate 5 samples for the Dropout approach.
EpsGreedy anneals the learning rate by an annealing factor of 0.999 in each iteration and
has a 0.3% chance to make random actions to avoid over-exploitation; by contrast, the rest
of the algorithms adopt a constant learning rate, and the learning rates for Mushroom,
Statlog, Covertype, and Census datasets are set to 1e-6, 3e-6, 3e-6, and le-7, respectively.
pSGLD adopts a regularizer of A = 0.001 in Equation (2.3) to control the regularity of the
preconditioner and the underlying smoothing factor is set to & = 0.99 in Equation (2.4).
For the Mushroom dataset, « = 0.95 performs better and is used. In particular for the
BNP algorithm, the pair of hyperparameters (€1, €;) is set to (le-1, 1le-4), (1, 0.1), (3e-2,
3e-2), (le-2, 1e-2) for Mushroom, Statlog, Covertype, and Census datasets, respectively.

For the remaining 3 datasets - Statlog, Covertype, and Census, we find that BNP achieves
lower cumulative regret at the end of 2000 steps, while convergence is not achieved with
any of the algorithms. The Greedy Algorithm has the highest cumulative regret after 2000
steps in each dataset. Notice that pSGLD is the most comparable with BND, especially
with the Covertype data, with BNP performing only slightly better at 2000 steps. Oth-
erwise, we see better performance (smaller cumulative regret) earlier with pSGLD, but
faster convergence with BNP.

4.3 Residual Network and Empirical Fisher Condition Number

We experiment with a residual network of depth 20 (ResNet-20) on the CIFAR100 dataset
using a Bayesian neural network. The CIFAR100 dataset consists of 60,000 color images
of 32 by 32 pixels with 50,000 training images and 10,000 testing images. There are 100
classes of images in this dataset. With this network, we show the faster convergence of
BNP in addition to computations of the empirical Fisher condition number.

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

J. Mach. Learn., x(x):xx-xx 12

We use the SG-MCMC method of stochastic gradient Langevin dynamics (SGLD) and
compare it with BNP and pSGLD. All networks are trained using the momentum op-
timizer with mini-batch size 256. The learning rate is multiplied by 0.1 at epoch 250 fol-
lowed by a linear decay of 0.985. Learning rates used are 1le-6, le-6, le-6, and 5e-6 for BNP,
SGLD, and the different versions of pPSGLD presented, respectively. Results are shown in
Figure 4.2. We see that our method of BNP achieves faster convergence and comparable
final test accuracy to SGLD. Different tuning parameters lead to versions of pSGLD that
either achieve faster convergence than SGLD but do not perform well with the learning
rate decay, or achieve comparable final accuracy with no increased initial convergence.

ResNet 20: CIFAR100

701

Test Accuracy
o o
o w

w
o

50 4

45 +

Epochs

Figure 4.2: ResNet 20 on the CIFAR 100 dataset. BNP, SGLD, and 2 versions of pSGLD are shown for comparison.

We also record the Bayesian model averaging (BMA) of the accuracy and present the
best results in Table 4.1. We find that BNP achieves a slightly better average by 0.04 with a
BMA of 69.68, SGLD has a BMA of 69.64, and pSGLD BMA 69.59. Hence, this shows that
our method of BNP achieves comparable results to SGLD and pSGLD, with a considerable
improvement in initial convergence.

Table 4.1: Table of Bayesian model averaging (BMA) for ResNet 20, which shows the average accuracy of each
model.

Method BMA

BNP 69.68
SGLD 69.64
pSGLD 69.59

In addition to accuracy measure, we also include experiments that support our theory
that BNP improves the Fisher Information Matrix. We calculate the condition number

319

320

321

322

323

324

325

326

327

328

329

330

331

332

J. Mach. Learn., x(x):xx-xx 13

of [;, computed as in Ahn et al. [2012] as an online average of an approximation of the
empirical Fisher: [y ; = (1 —x¢)[1 ;1 — x:V (6, X!,), where x = % and t corresponds to the
iteration. We use V(0;, X%,) = g(6t, X!,) ® g(6:, X!,) which serves as our approximation of
the empirical Fisher Information matrix for a mini-batch, where g(6;, X!,) is the sample
mean of the gradient using mini-batch X/, and ® represents element-wise multiplication.
Note this is similar to the computation to approximate the Fisher as in Li et al. [2016],
where we are interested in the approximation for a mini-batch. Note, since we compute
this for convolutional layers, we use a fixed weight output channel and the corresponding
bias term. That is, we compute the empirical Fisher information for 6; = [bt, w¢] where
wy €]RCkZ, where k X k corresponds to the convolution kernel and c is the input channel
dimension. We compute the condition number of [; ; at each of the 19 convolutional layers
of ResNet 20 for 6;. In our experiments, we find the BNP has an improved condition
number over the baseline of SGLD in all 19 convolutional layers. We present layers 1, 10,
and 19 in Figure 4.3

Empirical Fisher Information Condition Number Layer 1 Empirical Fisher Information Condition Number Layer 10 Empirical Fisher Information Condition Number Layer 19

1w
N r\/_\/—— v
e

— Sl
— P

=

— Sl
— P

— Sl
—Ep

s

Condition Number

Condition Numbe
Condition Numbe

=

0

0 20000 40000 60000 80000 0 20000 40000 60000 80000 0 20000 40000 60000 80000
lterations Iterations Iterations

Figure 4.3: We compute the condition number of an approximation of the empirical Fisher Information matrix in
ResNet 20. In all layers, we found an improvement in the condition number of BNP versus SGLD.

We also include a metric to measure the calibration of the model. Calibration is the
idea that a model’s confidence will match its predictions. We measure the calibration by
computing the expected calibration error (ECE) as described in Naeini et al. [2015]. This
metric is defined as the expected absolute difference between the model’s confidence and
its accuracy. The computation of ECE in practice is through an approximation. First, the
interval [0, 1] is partitioned into a specified number of M equally spaced bins. Let B; be
the set of samples with confidences contained in bin i. Then the accuracy and confidence
of the i* bin are computed as

1
ace; = 7), L=y,
| Z| jeBi
and
1 -
conf; = 1B) Pis

1 jeB;

respectively. Here 1y,—,, is the indicator function for the predicted, §;, and actual, y;,

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

J. Mach. Learn., x(x):xx-xx 14

label. The ECE is approximated by taking the weighted average of the absolute difference
between the accuracy and confidence of each bin as
o~ |Bil
ECE=) W\acci — confil.
i=1

The maximum calibration error (MCE), see Naeini et al. [2015], can be computed similarly
as
MCE = max |acc; — confi,
i€{1,2,..,M}

which measures the absolute maximum difference between the accuracy and confidence
of each bin. Note the lower the ECE and MCE, the better the model is calibrated. For
our experiments, we choose M = 10 bins and compute both ECE and MCE, as seen in
Figure 4.4. We also show the corresponding reliability diagrams in Figure 4.4, which show
accuracy as a function of confidence. Note that a perfectly calibrated model will plot the
identity.

(a) BNP (b) pSGLD

ECE = 8.58% ECE = 10.67%

(c) SGLD

ECE = 10.44%

MCE = 15.47% < MCE = 19.16% e MCE = 20.16%

Figure 4.4: Reliability diagrams and corresponding ECE and MCE scores for BNP (Left), pSGLD (Center), and
SGLD (Right) on ResNet. The blue bars correspond to the accuracy of each bin, while the red shows the gap
between a perfectly calibrated model and the given model.

We see in Figure 4.4 that all models are overconfident in their predictions, as each accu-
racy bar lies under the identity plot. Comparing the ECE and MCE scores, we see that BNP
has lower scores than both SGLD and pSGLD, with a lower score measuring a more cali-
brated model (hence a lower score is better). In Figure 4.4 we see the accuracy of each bin
in blue and the gap between a perfectly calibrated model in red. BNP has an ECE score of
8.58%, pSGLD an ECE score of 10.67% and BN a score of 10.44%. Therefore, our method of
BNP achieves faster initial convergence and is more calibrated than comparative models
on the Residual network.

There are methods to improve the calibration of neural networks and relevant work
contributing to these techniques includes temperature scaling [Guo et al., 2017], an ex-
tension of histogram binning to multi-class models [Zadrozny and Elkan, 2002], isotonic
regression [Zadrozny and Elkan, 2002], and SWA-Gaussian [Maddox et al., 2019], which

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

J. Mach. Learn., x(x):xx-xx 15

builds on Stochastic Weight Averaging (SWA). However, we focus on computing ECE and
MCE scores on these models as an additional metric of comparison without applying any
calibration improvement techniques.

4.3.1 Computation Time

We expect the implementation of BNP over SGLD to be more expensive to compute. For
a more thorough comparison, we test the computation time of BNP as in Algorithm 1 on
ResNet 20 along with the baseline algorithms pSGLD and SGLD. These results are com-
puted on GeForce GTX 1080 Ti. Results are summarized in Table 4.2. These computation
times are gathered by averaging the training time over the first 20 epochs, hence results
show the average time to train for one epoch. Both BNP and pSGLD add to the training
time of the network, with BNP adding about 3.7 seconds per epoch and pSGLD adding
about 1 second per epoch.

Table 4.2: Summarization of computation time comparison for ResNet 20, which shows the average time (in
seconds) to run one epoch of each model.

Method Computation Time

BNP 21.83
SGLD 18.10
pSGLD 19.04

5 Conclusion

We have introduced a batch normalization preconditioning algorithm for stochastic gradi-
ent Langevin dynamics that increases the convergence rate of training over SGLD and pS-
GLD. This is done by using the mini-batch statistics to construct a preconditioning matrix
used to precondition the gradients during training. We apply the algorithm to a variety of
Bayesian neural networks, showing faster convergence in the Residual network and sim-
ulation example, as well as a more calibrated model in the ResNet, while also achieving
improved results for Thompson sampling.

Acknowledgments

QY gratefully acknowledges the research support by NSF under the grant DMS-1821144.
GL gratefully acknowledges the support of the National Science Foundation (DMS-1555072,
DMS-2053746, and DMS-2134209), Brookhaven National Laboratory Subcontract 382247,
and U.S. Department of Energy (DOE) Office of Science Advanced Scientific Computing
Research program DE-5C0021142 and DE-SC0023161.

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

412

J. Mach. Learn., x(x):xx-xx 16

References

Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian Posterior Sampling via
Stochastic Gradient Fisher Scoring. In ICML, 2012.

Tiangi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic Gradient Hamiltonian Monte
Carlo. In ICML, 2014.

Arnak S. Dalalyan and Avetik G. Karagulyan. User-friendly Guarantees for the Langevin
Monte Carlo with Inaccurate Gradient. Stochastic Processes and their Applications, 129:12:
5278-5311, 2018.

Wei Deng, Qi Feng, Liyao Gao, Faming Liang, and Guang Lin. Non-Convex Learning via
Replica Exchange Stochastic Gradient MCMC. In ICML, 2020a.

Wei Deng, Guang Lin, and Faming Liang. A Contour Stochastic Gradient Langevin Dy-
namics Algorithm for Simulations of Multi-modal Distributions. In NeurIPS, 2020b.

Wei Deng, Siqi Liang, Botao Hao, Guang Lin, and Faming Liang. Interacting Contour
Stochastic Gradient Langevin Dynamics. In ICLR, 2022.

Mark Girolami, Ben Calderhead, and Siu A. Chin. Riemann Manifold Langevin and
Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society. Series B, 2011.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern
Neural Networks. In ICML, 2017.

Huan He, Shifan Zhao, Yuanzhe Xi, Joyce C Ho, and Yousef Saad. GDA-AM: On the
Effectiveness of Solving Minimax Optimization via Anderson Acceleration, 2021. URL
https://arxiv.org/abs/2110.02457.

Huan He, Shifan Zhao, Ziyuan Tang, Joyce Ho, Yousef Saad, and Yuanzhe Xi. An Efficient
Nonlinear Acceleration method that Exploits Symmetry of the Hessian. 10 2022. doi:
10.48550/arXiv.2210.12573.

Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. CoRR, abs/1502.03167, 2015. URL http:
//arxiv.org/abs/1502.03167.

Susanna Lange, Kyle Helfrich, and Qiang Ye. Batch Normalization Preconditioning for
Neural Network Training. Journal of Machine Learning Research, 23(72):1-41, 2022. URL
http://jmlr.org/papers/v23/20-1135.html.

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned
Stochastic Gradient Langevin Dynamics for Deep Neural Networks. In AAAI 2016.

Yi-An Ma, Tiangi Chen, and Emily B. Fox. A Complete Recipe for Stochastic Gradient
MCMC. In NeurIPS, 2015.

Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry P. Vetrov, and Andrew Gordon
Wilson. A Simple Baseline for Bayesian Uncertainty in Deep Learning. In NeurIPS, 2019.

428

429

430

431

432

433

434

435

437

438

J. Mach. Learn., x(x):xx-xx 17

Jishnu Mukhoti, Puneet K. Dokania, Philip H. S. Torr, and Yarin Gal. On Batch Normalisa-
tion for Approximate Bayesian Inference. In 3rd Symposium on Advances in Approximate
Bayesian Inference, 2020.

Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. Obtaining Well Cal-
ibrated Probabilities Using Bayesian Binning. In AAAI, 2015.

Sam Patterson and Yee Whye Teh. Stochastic Gradient Riemannian Langevin Dynamics
on the Probability Simplex. In NIPS, 2013.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex Learning via
Stochastic Gradient Langevin Dynamics: a Nonasymptotic Analysis. In Annual Confer-
ence on Learning Theory (COLT), June 2017.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep Bayesian Bandits Showdown:
An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling. In
ICLR, 2018.

Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian Uncertainty Estimation for
Batch Normalized Deep Networks. In ICML, 2018.

M. Welling and Y. Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In
ICML, 2011.

Bianca Zadrozny and Charles Elkan. Transforming Classifier Scores into Accurate Multi-
class Probability Estimates. In KDD, 2002.

Yuchen Zhang, Percy Liang, and Moses Charikar. A Hitting Time Analysis of Stochastic
Gradient Langevin Dynamics. In Annual Conference on Learning Theory (COLT), 2017.

Umut Simsekli, Roland Badeau, A. Taylan Cemgil, and Gaél Richard. Stochastic Quasi-
Newton Langevin Monte Carlo. In ICML, 2016.

6 Supplemental Material:

We restate Theorem 3.1 and provide a proof. Note this result follows the proof idea given
in Lange et al. [2022].

Theorem 3.1 Let —log p((x,y)|w) be the negative log-likelihood loss function defined from the
output of a fully-connected multi-layer neural network (2.5) with parameter w for a single network

(0)
input x. Consider the weight and bias parameters wl@, bi(f) at the (-th layer and let W = [i(Z)]
w;

and h = |:h(g]-_1):|. Write the likelihood p((x,y)|@w) as a function of W through the activation

al) .= @Th, that is p((x,y)|@) = f(a'¥)) for some function f. When training over a mini-

batch of N inputs {x1,xp,...,xN}, let {hgﬂfl),hy*l), ... ,h%il)} be the associated h'*=Y) and

439

440

J. Mach. Learn., x(x):xx-xx 18

~ 1
let hj = [h(g_l)] € R™*L. Then the empirical Fisher Information matrix with respect to @,
j
(D) := — Z Y1 VZlog p((x),yj)|@), can be written as
(@) = —HTSH,

where

1. (f
and S = Ndzag(f

Proof. With — log(p((x],y])m)) = — log(f(abTﬁj)), we have the gradient with respect to

/ /\Th

w is given by];<))h Computing the Hessian of the negative log-likelihood gives

F@RE @) -
(oy [ivrers h;)h . So, the empirical Fisher Information matrix can be writ-

f(@Thy)? = f(@Thy)
ten as N 1 ~T1 \2 1" ~T1,

1@) = & 3 (Lot L
=1 f(@Thy) f(@"hy)

Noting that AT = [hl, o, ..., hAN], we write

