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Abstract. This paper presents an optimization based framework to
automate system repair against omega-regular properties. In the pro-
posed formalization of optimal repair, the systems are represented as
Kripke structures, the properties as ω-regular languages, and the repair
space as repair machines—weighted omega-regular transducers equipped
with Büchi conditions—that rewrite strings and associate a cost sequence
to these rewritings. To translate the resulting cost-sequences to eas-
ily interpretable payoffs, we consider several aggregator functions to
map cost sequences to numbers—including limit superior, supremum,
discounted-sum, and average-sum—to define quantitative cost seman-
tics. The problem of optimal repair, then, is to determine whether traces
from a given system can be rewritten to satisfy an ω-regular property
when the allowed cost is bounded by a given threshold. We also consider
the dual challenge of impair verification that assumes that the rewritings
are resolved adversarially under some given cost restriction, and asks to
decide if all traces of the system satisfy the specification irrespective of
the rewritings. With a negative result to the impair verification prob-
lem, we study the problem of designing a minimal mask of the Kripke
structure such that the resulting traces satisfy the specifications despite
the threshold-bounded impairment. We dub this problem as the mask
synthesis problem. This paper presents automata-theoretic solutions to
repair synthesis, impair verification, and mask synthesis problem for limit
superior, supremum, discounted-sum, and average-sum cost semantics.

1 Introduction

Given a Kripke structure and an ω-regular specification, the model checking
problem is to decide whether all traces of the system satisfy the specification.
Vardi and Wolper [17] initiated the automata-theoretic approach to model-
checking by reducing the ω-regular model checking problem to the language
inclusion problem. If the system violates the specification, this approach returns
a simple lasso-shaped counterexample demonstrating the violation. While these
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counterexamples often aid the designer in manually repairing the system, this
repair process can be exhausting and error-prone. Moreover, different repair
policies may incur different costs rendering the repair problem a non-trivial opti-
mization problem. This paper investigates a range of problems in synthesizing
optimal repair policies against ω-regular specification.

As a concrete motivation for various repair problems, we consider secu-
rity issues (confidentiality and availability) in manufacturing. It is well docu-
mented [7] that acoustic side-channels leak valuable intellectual property infor-
mation during the manufacturing process. Consider a 3D printer which can print
either squares or triangles. Since the movement of the stepper motors of the
printer vary based on the design, this difference in movement leads to the printer
producing different sounds. Thus, an intruder may be able to discern the shape
being printed by observing the audio output of the system as it acts as an acous-
tic side-channel. One can model such a system as a Kripke structure: a mockup
of such systems is represented in Fig. 1a where the label corresponds to the state
being idle (⊥), printing squares (!), or printing triangles (").

Suppose that the system designer wishes to protect the information that a
given printer prints only a fixed number of objects of one shape, or the sequence
in which these shapes appear, from an eavesdropper. This specification, and a
rich class of similar specifications on the observations, can be captured using ω-
regular languages (see the Büchi automaton of Fig. 1b which requires that both
shapes are printed infinitely often), and one can verify if the system satisfies
such a specification using classical model checking. It is easy to see that our
system does not satisfy this property for all traces. To repair this situation,
we may wish to add spurious motor rotations to mimic the other shape, but
adding such rotations comes with a cost (say energy or time overheads). The
choices and cost available for repair can intuitively be expressed as a repair
machine (a weighted nondeterministic transducer) given in Fig. 1c. For example,
the label !|!", 3 represents the situation where the repair machine modifies the
observation corresponding to a square shape by appending a spurious rotation
mimicking a triangle shape with an extra cost of 3 units.

Fig. 1. (a) Krikpe structure representing the 3D printer system, (b) Büchi automaton
B specifying the property, and (c) Repair machine
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A key synthesis problem, then, is to compute a minimum cost repair strategy
to add these spurious rotations such that the system after repair satisfies the
specification. The cost of an ω-sequence can be aggregated using discounted-sum,
average-sum, liminf, limsup, inf, or sup. We call this problem the repair synthesis
where the goal is given an aggregator and cost threshold, design a strategy on the
nondeterministic transducer such that every trace of the system can be written
to satisfy the specification with cost bounded by the given threshold.

Example 1. Consider the repair machine T from Fig. 1c with the average-sum
cost semantics and a threshold of 2. For every spurious motor rotation, T incurs
a cost of 3 units of power. Note that a strategy of replacing every " with "!,
maps ⊥"ω to ⊥("!)ω which is accepted by B. The mean cost of this rewrite
is 3 and is above threshold. However, there exists a strategy that rewrites ⊥"ω

to ⊥("""!)ω that is accepted by B, with a mean cost equal to 1.

A related problem is that of impair verification that is connected to availabil-
ity vulnerabilities. Consider an attack model in the aforementioned 3D manufac-
turing setting where an attacker with bounded capabilities controls the rewriting
process (by introducing subtle undetectable changes in the manufacturing pro-
cess) and intends to rewrite the traces in such a way that the resulting trace
satisfy some undesirable behavior (to make the acoustic profile violate some
regulatory norms) with a cost bounded below a threshold. Such undesirable
rewritings may impair the capabilities of the system and render it unavailable
for normal use. The impair verification problem is to verify whether the system
is safe from such adversarial rewritings.

If the system is found to be vulnerable to impair and the system designer
has no control over the rewriting process, a viable mitigation approach is to
minimally restrict the behavior of the system to harden it against the adversarial
rewriting. We formalize this problem as the mask synthesis problem.

Contributions. We consider repair machines to be specified as weighted ω-
transducers and study various optimal repair problems for different aggregator
functions. As we deal with reactive systems, we consider cost semantics that
aggregate infinite sequence of costs to a scalar via aggregator functions dis-
counted sum, average sum, limit superior, and supremum. We formalize and
study the following problems related to optimal repair:

– Repair Synthesis. Given a system, an ω-regular specification, a repair
machine, and a cost semantics, decide whether there exists a strategy to rewrite
traces of the system to satisfy the specification within a given threshold.

– Impair Verification. Given a system, an ω-regular property capturing the
undesirable behaviors, a repair machine, a cost semantics, decide whether
there exist a trace of the system that satisfy the undesirable behavior under
adversarial rewritings within a given threshold.

– Mask Synthesis. Given a system, an ω-regular property (undesirable behav-
iors), a repair machine, a cost semantics, find a minimal restriction of the
system such that no remaining trace of the system satisfy the undesirable
behavior under any adversarial rewritings within the threshold.
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Our work is inspired by the idea of weighted transducers studied in [10] for finite
strings. The notions of robust verification and kernel synthesis studied in [10]
are templates for the impair verification and mask synthesis problems studied
here, but the present setting requires extension of those results to the setting of
ω-words: this is one of the secondary contributions of this paper.

Our results imply that the results presented in [10] carry over to the setting of
ω-words for the discounted-sum and mean cost-semantics, the robust verification
problem for both of these can be decided in P (cf. Theorems 5 and 6), while
the robust kernel for discounted-sum cost-semantics is ω-regular if the language
of the Kripke structure is a cut-point language (cf. Theorem 8). Furthermore,
the notion of repair synthesis, to the best of our knowledge, is yet unexplored.
We characterize the complexity of repair synthesis (Theorems 2–4) and impair
verification problems (Theorems 5–7), and for the mask synthesis problem we
discuss which aggregators allow ω-regular mask (Theorems 8–9).

Proofs of the theorems can be found in the technical report [9].

2 Preliminaries

Let Σ denote a finite alphabet. We write Σω and Σ∗ for the set of infinite and
finite words over Σ. We denote an empty string by ε.

Kripke Structures. A Kripke structure is a tuple K = (S, ↪→, S0, AP,L) where
S denotes a set of states, ↪→⊆ S × S is the transition relation, S0 ⊆ S is the
set of initial states, AP is the set of atomic propositions, and L : S → 2AP

denotes the labeling function. An infinite sequence of states π = s0s1 . . . ∈ Sω

is said to be a path of the Kripke structure if (si, si+1) ∈↪→ for all i ∈ N. Let
Σ = 2AP . The labeling function applied to a path π = s0s1 . . . ∈ Sω defines
traces L(π) = a0a1 . . . ∈ Σω of K where for each i ≥ 0 we have that ai = L(si).
We use TK to indicate the set of all traces of K.

Omega-Regular Specifications. A non-deterministic Büchi automaton
(NBA) over Σ is a tuple A = (Q,Σ, Q0, Qf , δ), where Q is a finite set of states,
Q0 ⊆ Q is the set of initial states, Qf ⊆ Q is the set of final states, Σ is the
finite input alphabet, and δ ⊆ Q × Σ × Q denotes the transition relation. We
define the extended transition relation δ̂ ⊆ Q×Σ∗×Q in the standard fashion,
i.e. (q, ε, q) ∈ δ̂ for q ∈ Q and ax ∈ ΣΣ∗ we have (q, ax, q′) ∈ δ̂ if there exists
q′′ ∈ Q such that (q, a, q′′) ∈ δ and (q′′, x, q′) ∈ δ̂.

A run ρ over a word w = w0w1 . . . ∈ Σω is an infinite sequence of states
q0, q1 . . . such that (qi, wi, qi+1) ∈ δ. A run ρ is accepting iff some final state
from Qf occurs infinitely often in ρ. The language defined by the automaton
A, denoted as L(A), is the set of words w over Σω such that there exists an
accepting run of w by A.

Cost Aggregation Semantics. An aggregator function ⊕ : Nω → Q≥0 maps
infinite sequences of numbers to a scalar. Let τ = τ1τ2 · · · ∈ Nω with each τi ∈ N.
We consider the following aggregators:
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– DSumλ
def= τ )→ limn→∞

∑n
i=1 λi−1τi, with discount factor 0 ≤ λ < 1,

– Mean
def= τ )→ lim supn→∞(1/n) ·

∑n
i=1 τi,

– Sup
def= τ )→ sup{τi | i ∈ N}, and

– LimSup
def= τ )→ lim sup{τi | i ∈ N}.

Quantitative Games. A game arena G = (G,VMin, VMax) consists of a graph
G = (V,E,w) where V is a finite set of vertices, E ⊆ V × V is the set of
edges, w : E → N is the weight function. The sets VMax and VMin characterize
a partition of the vertex set V such that player Min controls the edges from
vertices in VMin, while Max controls the vertices in VMax.

A play of the game G is an infinite sequence of vertices π = 〈v0, v1, . . .〉
such that (vi, vi+1) ∈ E for all i ∈ N. A finite play is a finite such sequence,
that is, a sequence in V ∗. We denote by last(π) the final vertex in the finite
play π. We write PlayG and FPlayG for the set of infinite and finite plays of the
game arena G, respectively. A strategy of player Min in G is a partial function
σ : FPlay → V defined over all plays π ∈ FPlay with last(π) ∈ Vmin, such that
we have (last(π),σ(π)) ∈ E. A strategy χ of player Max is defined analogously.
We say that a strategy σ is positional if last(π) = last(π′) implies σ(π) = σ(π′).
Strategies that are not positional are called history dependent. Let ΣMin and
ΣMax be the sets of all strategies of player Min and player Max, respectively.
We write ΠMin and ΠMax for the set of positional strategies of player Min and
player Max, respectively. For a game arena G, vertex v of G and strategy pair
(σ,χ) ∈ ΣMin×ΣMax, let Playσ,χ(v) be the infinite play starting from v in which
player Min and Max play according to σ and χ, respectively.

The weight function w : E → N can be naturally extended from edges to
plays as w : PlayG → Nω as π )→ c0c1 . . . where ci = w(vi, vi+1) for all i ∈ N.
Given an aggregator function ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, we define the
payoff of player Min to player Max for a play π as ⊕(w(π)). Depending on the
choice of the aggregator function ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, we refer to
the game as ⊕-game. In a ⊕-game, the goal of player Min is to choose her actions
in such a way so as to minimize the payoff, while the goal of player Max is to
maximize the payoff. For every vertex v ∈ V , define the upper value Val⊕(G, v) as
the minimum payoff player Min can ensure irrespective of player Max’s strategy.
Symmetrically, the lower value Val⊕(G, v) of a vertex v ∈ V is the maximum
payoff player Max can ensure irrespective of player Min’s strategy.

Val⊕(G, v)= inf
σ∈ΣMin

sup
χ∈ΣMax

⊕(w(Playσ,χ(v)))

Val⊕(G, v)= sup
χ∈ΣMax

inf
σ∈ΣMin

⊕(w(Playσ,χ(v))).

The inequality Val⊕(G, v) ≤ Val⊕(G, v) holds for all two-player zero-sum games.
A game is determined when, for every vertex v ∈ V , the lower value and upper
value are equal. In this case, we say that the value of the game Val⊕ exists with
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Val⊕(G, v) = Val⊕(G, v) = Val⊕(G, v) for every v ∈ V . For strategies σ ∈ ΣMin

and χ ∈ ΣMax of players Min and Max, we define their values Valσ and Valχ as

Valσ⊕ : v )→ sup
χ∈ΣMax

⊕(w(Playσ,χ(v))) and

Valχ⊕ : v )→ inf
σ∈ΣMin

⊕(w(Playσ,χ(v))).

A strategy σ∗ of player Min is called optimal if Valσ∗
⊕ = Val⊕. Likewise, a strategy

χ∗ of player Max is optimal if Valχ∗
⊕ = Val⊕. We say that a game is positionally

determined if both players have positional optimal strategies.

Theorem 1 [4,19]. For ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, ⊕-games are deter-
mined in positional strategies. The complexity of solving is in NP ∩ co-NP for
DSumλ-games and Mean-games, and, is in P for Sup-games and LimSup-games.

The goal of the player Min in a Büchi game [6] over a game arena G and a
set F ⊆ V is to choose her actions in such a way that some vertex vf ∈ F occurs
infinitely often in the play, while the goal of the Max player is to prevent this.
We note from [4] that LimSup-games generalize Büchi games. For Theorem 1 it
follows that the winning region, i.e. the set of vertices where the player Min has
a strategy to win can be computed in P.

3 Problem Definition

Just as weighted transducers extend finite state automata with outputs and
costs on transitions, NBAs can be extended to weighted non-deterministic Büchi
transducers by adding an output word and costs to transitions. We define a repair
machine as a weighted non-deterministic Büchi transducer equipped with a cost
aggregation. We introduce repair machines and their computational problems.

Definition 1. A repair machine (RM) T is a tuple (Q,Σ, Q0, Qf ,Γ, δ,⊕) where
Q is a finite set of states, Q0 ⊆ Q is the set of initial states, Qf ⊆ Q is the set
of final states, Γ is the output alphabet, δ ⊆ Q×Σ ×Q×Γ ∗ ×N is the transition
relation, and ⊕ is the cost aggregator function.

For a given aggregator function ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, we refer to a
repair machine as DSum-RM, Mean-RM, Sup-RM, LimSup-RM.

A transition (q, a, q′, w, c) ∈ δ indicates that, the transducer on reading the
letter a ∈ Σ in state q, transitions to state q′, and outputs a word w ∈ Γ ∗,
incurring a cost c for rewriting a to w. We write q

a/w−−→c q′ if (q, a, q′, w, c) ∈ δ. A
run ρ of T on u = a1a2 · · · ∈ Σω is a sequence 〈q0, (a0, w0, c0), q1, (a1, w1, c1), . . .〉
where for every i ≥ 0 we have that q0 ∈ Q0 and qi

ai/wi−−−−→ci qi+1. Let Runs(T, u)
be the set of runs of T on u. We write O(ρ) and C(ρ) for the projection on the
outputs and cost sequences, i.e. O(ρ) = w0w1 . . . and C(ρ) = c0c1 . . ., of a run ρ
of T . We say that a run of T is accepting if states from Qf are visited infinitely
often. We write dom(T ) for the set of all words which have an accepting run.
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We define three different semantics for T . The function [[T ]](u) returns the
set of all pairs of outputs and cost sequences over the word u ∈ Σω; the function
[[T ]]⊕∗ (u, v) returns the optimal rewriting cost w.r.t the aggregator function ⊕
over T for a rewriting of u to v; and [[T ]]⊕τ (u) returns the set of all rewritings of
a word u with cost bounded by a threshold τ ∈ R.

[[T ]](u) = {(O(ρ), C(ρ)) : u ∈ dom(T ) and ρ ∈ Runs(T, u)} ,
[[T ]]⊕∗ (u, v) = inf {⊕(C(ρ)) : ρ ∈ Runs(T, u) and O(ρ) = v} ,
[[T ]]⊕τ (u) =

{
O(ρ) : ρ ∈ Runs(T, u) and [[T ]]⊕∗ (u,O(ρ)) ≤ τ)

}
.

Problems of Optimal Repair. Given the Kripke structure K representing the
system, the ω-regular specification specified by the language L ⊆ Γω, a RM T , a
cost semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, and a threshold τ ∈ Q≥0, the
repair synthesis problem asks if there exists a strategy of rewriting every trace
t ∈ TK to some word w ∈ L using T such that cost is at most τ .

We restrict the repair policies where Player Min is restricted to rewrite a
letter of the trace based on history and not to rely on a lookahead. We give a
game semantics to the repair synthesis problem as a turn-based two player game
between players Min and Max that proceeds as follows. The game begins with
player Max selecting the initial state s0 ∈ S0 of the Kripke structure and ends
her turn. Player Min, starts from the initial state q0 of the RM and then selects a
valid rewriting wi of L(s0) such that (q0,L(s0), q′

i, wi, c) ∈ δ is a valid transition
for some c ∈ N and changes the state of the RM to q′

i, she then ends her turn.
The game continues in this fashion, where player Max selects the next state s′

i

of the Kripke structure and Player Min selects a valid rewriting and thus the
next state of the repair machine. This turn based game proceeds indefinitely and
results in Player Max selecting a trace t ∈ TK and player Min selecting a word
w ∈ Nω. Player Min wins the game if w ∈ [[T ]]⊕τ (t), and w ∈ L, otherwise player
Max wins the game. The existence of a winning strategy for Player Min implies
the existence of a repair strategy.

Definition 2 (Repair Synthesis). Given a Kripke structure K representing
the system, an ω-regular specification L, a repair machine T , a cost semantics
⊕ ∈ {DSumλ,Mean,Sup, LimSup}, and a threshold τ decide whether there exists
a strategy to rewrite every trace t ∈ TK to some word w ∈ L with a cost of at
most τ , and if so synthesise this strategy.

We also consider the dual challenge of impair verification where the system
is subjected to adversarial rewritings. This setting has applications in, among
others, availability vulnerability detection. We consider an attack model where
the rewritings given by the repair machine are resolved adversarially but are
restricted to be within a given cost. The verification problem is to decide if
there exists traces of the system that satisfy an ω-regular property capturing
the undesirable behaviors for some such rewritings. The game semantics for the
impair verification problem are similar to that of repair synthesis, however in
the case of impair verification the player Max not only controls the selection of
the next state s′

i, but also decides the rewriting by selecting the word w′
i as well.
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Definition 3 (Impair Verification). Given a structure K representing the
system, an ω-regular language L capturing the undesirable behavior given as an
NBA A, repair machine T , a cost semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup},
and a threshold τ ∈ Q≥0, the impair verification problem fails if there exists a
trace t ∈ TK that can be rewritten to some word w ∈ L with a cost of at most τ
under an adversarial strategy.

When one may not be able to pass the impair verification problem, it may
be desirable to design a way to minimally mask the Kripke structure such that
the resulting system satisfies the specifications despite the threshold-bounded
impairment. In such a case, we wish to find the maximal subset N ′ of traces
which, even under adversarial rewrites, satisfy the ω-regular specification L.

Definition 4 (Mask Synthesis). Given a Kripke structure K representing the
system, an ω-regular language L capturing the undesirable behavior given as an
NBA A, repair machine T , a cost semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup},
and τ ∈ Q≥0, the problem of mask synthesis is to find a maximal subset N ′ ⊆ TK
such that all traces t ∈ N ′ pass the impair verification.

The next three sections present our results on these three problems.

4 Repair Synthesis

To solve the problem of repair synthesis, we reduce it to a related problem
of threshold synthesis. Threshold synthesis asks for a partition of the rational
numbers Q≥0 into sets G (good) and B (bad) sets such that the repair synthesis
problem can be solved for all good thresholds τ ∈ G. Given a system K, the
specification L ⊆ Γω represented by an NBA B, a repair machine T , and a cost
semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, we focus on the threshold synthesis
problem: find a partition of Q≥0 into two sets G and B such that the policy
synthesis can be solved for all τ ∈ G. We note that in the case of policy synthesis,
the sets G and B are upward and downward closed respectively. If player Min
has a winning strategy for some τ ∈ Q≥0 then she may use the same strategy for
all τ ′ ≥ τ . Let the infimum value τ for which player Min wins be denoted as τ∗,
then G = [τ∗,∞) and B = [0, τ∗). We call this value τ∗ the optimal threshold.

4.1 Solving the Büchi Games

Our approach to compute the optimal threshold is to first restrict the choice of
player Min to those where she has a strategy to win with respect to the Büchi
objective, irrespective of the choices of Player Max on the Kripke structure. If
Player Min has no valid strategy to rewrite a trace of the system to satisfy the
Büchi objective, then the optimal threshold τ∗ = ∞. We thus consider the case
when τ∗ 0= ∞ by playing a Büchi game on a game arena and then pruning it.

To construct the game arena, we first construct the synchronized product
K×T×B of K, T , and B. Intuitively, K×T×B accepts those traces of the sys-
tem, which have some rewriting that is in L.
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Definition 5. The synchronized product K×T×B of the Kripke Structure K =
(S, ↪→, S0,L), the repair machine T = (Q,Σ, Q0, Qf ,Γ,∆, C) and the NBA B =
(P,Γ, P0, Pf , δ) is a weighted (directed) graph G× = (V,E,W, VI , VF ), where:

– V = S×Q×P ×{1, 2} is the set of vertices consisting of states of the system
K, repair machine T , and NBA B, and a counter that tracks the visitation
of accepting states of T and B (like the degeneralization construction for the
generalized Büchi automata)

– E ⊆ V × V is such that ((s, q, p, i), (s′, q′, p′, i′)) ∈ E if (s, s′) ∈↪→ is a
transition in K, for some w ∈ Γ ∗ and c ∈ N transition (q,L(s), q′, w, c) ∈ ∆

is in T , and (p, w, p′) ∈ δ̂ is a transition in B, and one of the following holds:
• i = i′ = 1 and q′ /∈ Qf

• i = i′ = 2 and p /∈ Pf

• i = 1 and i′ = 2 and q′ ∈ Qf

• i = 2 and i′ = 1 and p ∈ Pf

– W : E → N is the weight function such that

W ((q, s, p, i), (q′, s′, p′, i′)) = min {c : (q,L(s), q′, w, c) ∈ ∆} ;

– VI ⊆ V = Q0 × S0 × P0 × {1} is the set of initial vertices; and
– VF ⊆ V = Q × S × Pf × {2} is the set of final vertices.

To distinguish the choice of player Max and Min, we define a game structure
G× on the product graph G× by introducing intermediate states by appending
another layer to the track counter. The formal construction is shown next.

The game graph G× = ((V ,E,W, VI , VF ), V Min, V Max) for product G× =
(V,E,W, VI , VF ) is such that:

– V = S × Q × P × {1, 2, 3};
– E is such that for e = ((s, q, p, i)(s′, q′, p′, i′)) ∈ E we have two edges to
separate the choice of the RM and the NBA from the Kripke structure:
• e1 = ((s, q, p, i), (s, q′, p′, 3)) ∈ E and
• e2 = ((s, q′, p′, 3)(s′, q′, p′, i′)) ∈ E;

with the weights W (e1) = W (e) and W (e2) = 0;
– V Min = S × Q × P × {1, 2}; and
– V Max = S × Q × P × {3}.

Note that the first choice is made by player Max in choosing the starting state of
the Kripke structure, and in the subsequent transitions player Min reads those
states and makes a choice over the rewrites. For this reason, the choice of player
Max appear to be lagging by one.

We play the Büchi-game on G× with the set of accepting states as VF . We
then prune the arena to contain only those states that are in the winning region
of player Min with respect to the Büchi objective, that is, the set of states where
player Min has a strategy to enforce visiting Büchi states irrespective of the
strategy chosen by the player Max. We denote this pruned game arena as G.
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4.2 Optimal Threshold for DSum-RM

We reduce the problem of finding the optimal threshold τ∗ for a DSum-RM to
the problem of finding the value of a DSum-game on the game arena G. As such
we reduce the choices of selecting a trace by player Max and that of selecting a
rewriting by player Min in the context of repair synthesis to choices made by the
players in a DSum-game over an arena G. In particular, we have the following.

Theorem 2. The optimal threshold τ∗ for the DSum-RM can be computed in
NP ∩ co-NP via solving a DSum-game on G.

Proof (Sketch). We solve the DSumγ game on G with γ =
√

λ, the value of this
game corresponds to the optimal threshold τ∗, as each edge of the synchronized
product is captured by a pair of edges in G. For any ε > 0, Player Min has a
strategy of following this DSum strategy, and then following the strategy of the
Büchi-game such that the cost of this rewriting is τ∗ + ε.

4.3 Optimal Threshold for Mean-RM

Similar to the case of the DSum-RM, in the case of the Mean-RM, we reduce the
problem of finding the optimal threshold τ∗ to the problem of finding the value
of a Mean-game on a game arena G. However we note that unlike the case of
the DSum-RMs we also need to ensure that the mean cost cycle is co-accessible
from the accepting vertices. In particular we have the following result.

Theorem 3. The optimal threshold τ∗ for the Mean-RM can be computed in
NP ∩ co-NP via solving a Mean game on G.

Proof (Sketch). The proof of this theorem is similar to that of Theorem 2. Here,
we first find a least cost mean cycle that is co-accessible by Player Min from
the winning strategy of the Büchi-game on G (either a cycle following some
Mean-game or the Büchi cycle itself). To do so we determine vertex that is co-
accessible along the Mean-game over G as well as the Büchi-game. Player Min
then alternates between two strategies in rounds, the first, where she follows
the strategy of the Mean-game and the second to where she follows the strategy
of the Büchi-game. At any round i, she follows the strategy of the Mean-game
until she cycles on the co-accessible vertex 2i many times and then follows the
strategy of the Büchi-game once to return to this vertex. As the least cost-cycle
has twice the number of edges of the synchronized product we divide the value
of the Mean-game by two to determine the optimal threshold. We note that
the above strategy relies on infinite memory, however Player Min can restrict
the number of rounds for any ε > 0, and so she has a finite memory policy to
guarantee repair for any threshold of τ∗ + ε.

4.4 Optimal Thresholds for Sup-RMs and LimSup-RMs

In the case of the Sup aggregator function we first order the edges of G× in the
descending order of their weights and remove them in stages from the largest to
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the smallest. If, at any stage, the removal of edge e, leads to a failure of satisfying
the Büchi condition, we infer that e is necessary to satisfy the Büchi condition
for some state in G. We claim that the weight of the edge e is τ∗.

Similar to the Sup aggregator function, we start removing edges of G× in the
descending order of their weights only if they are present in an accepting cycle
in the case of theLimSup aggregator function. Then, if at any stage, the removal
of edge e, leads to a failure of satisfying the Büchi condition, we infer that the
τ∗ = W (e) and conclude that we can safely remove edges with a higher weight.

Theorem 4. Computing optimal threshold τ∗ for Sup and LimSup-RMs is in P.

Proof (Sketch). Note that the removal of any edge e from the synchronized
product that causes the Büchi-objective to no longer be satisfied guarantees that
all the rewrite strategies for at least one trace do not satisfy the Büchi objective.
Hence the removal prevents the satisfaction of either the acceptance of RM T
or the NBA B, and in either case, leads to a trace of the Kripke structure that
cannot be rewritten to some word that is accepted by the NBA B.

5 Impair Verification

Given the Kripke structure K representing the system, the ω-regular language
L capturing undesirable behavior, represented as an NBA B, a repair machine
T , and a cost semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, we reduce the impair
verification problem to the threshold verification problem. The threshold verifi-
cation problem is to find a partition of Q≥0 into two sets G and B, such that
none of the traces to system can be rewritten to a word that is in the language
of B for all v ∈ G. Let τ∗ denote the infimum value for which a trace t ∈ TK
can be rewritten to some word w ∈ Γω such that w ∈ L. Then, the threshold
verification problem is solved for any τ < τ∗, as [[T ]]⊕τ (t) 0⊆ L for every trace
t ∈ TK . Thus the set G = (0, τ∗) and the set B = [τ∗,∞) and problem reduces
to finding the optimal threshold τ∗.

In order to find the optimal threshold τ∗, we construct the synchronised
product G× = K ×T ×B as detailed in Definition 5. We prune G× to keep only
those states from where player Max has a winning strategy against the Büchi
objective. The construction is similar to Büchi games, except that the opponent
has no choice. In the following, we refer to this pruned graph as G.

5.1 Optimal Threshold for DSum-RM

In the case of a DSum-RM, we show that the optimal threshold τ∗ is the minimum
infinite discounted cost path in G. While it may not be possible to achieve this
cost, for any ε > 0 we show the existence of a finite memory strategy of player
Max that guarantees that some rewriting with threshold of τ∗ + ε is in L.

We claim that the optimal threshold τ∗ is the minimum discounted cost
in G. To find this value, we associate a variable Vs, to each vertex v ∈ V ,
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characterizing minimum discounted cost among all paths starting from the state
s. The minimum discounted values can then be characterized as [15]:

Vv = min
(v,v′)∈E

{W (v, v′) + λ · Vv′}

This equation can be computed by solving the following LP.

max
∑

v∈V

Vv subject to: Vv ≤ W (v, v′) + λVv for all (v, v′) ∈ E.

v0 v1 v2
1 1

0 1A positional discount-optimal strategy can be com-
puted from the solutions of these equations simply by
picking a successor vertex minimizing the right side of
the optimality equations. Observe, however, that the
resulting path may not satisfy the Büchi condition. Consider the graph shown
in the inset (right). In order to satisfy the Büchi objective, a run must visit
the state v2, while to minimize the discounted cost the strategy is to cycle in
the state v1 getting a discounted sum of 1. While it is possible to achieve an ε-
optimal discounted cost and satisfy the Büchi objective by looping on v1 for an
arbitrary number of steps before moving to the state v2, no strategy satisfying
the Büchi objective can achieve a DSum cost of 1.

Theorem 5. The optimal threshold τ∗ for DSum-RMs can be computed in P.

5.2 Optimal Threshold for Mean-RM

In the case of the Mean aggregator function, we note that only those edges
that are visited infinitely often have an effect on the cost. We say that a
cycle is accepting if there exists some vertex v ∈ VF that occurs in the
cycle. We let C1 denote the least average cost cycle that can be reached and
is reachable from some accepting cycle C2. We use d1 and d2 to denote the
total cost of these cycles and n1 and n2 to be the number of edges in each
of them respectively. We then show that τ∗ is the mean value of cycle C1.

v0 v1
1

1

10
We observe that a strategy to determine this optimal threshold
requires infinite memory. However for any ε > 0, there exists
a finite memory strategy that is ε close to τ∗. Consider the
graph shown in the inset (right) and the following strategy
adopted by Player Max. Player Max cycles between v0 and v1
in rounds. At any given round i, Player Max cycles on v0 for 2i times, and then
moves and cycles once in v1 and returns to v0. Observe this strategy ensures
that the Büchi objective is satisfied while also ensuring the Mean cost to be 0
but requires infinite memory to keep track of the rounds. However, Player Max
can achieve a ε-optimal mean cost by limiting the number of rounds.

Theorem 6. The threshold τ∗ for Mean-RMs can be computed in P.
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5.3 Optimal Thresholds for Sup-RMs and LimSup-RMs

For the Sup aggregator function, let S be the set of values ci such that ci is the
supremum of the cost of some lasso that starts from some vi ∈ VI and cycles
in a loop containing some vf ∈ VF . Let k be the least element in S. We claim
τ∗ = k. Similar to the Sup aggregator function, we consider the set S to contain
the values ci such that ci is the supremum of the costs of the edges in the cycles
that visit some vf ∈ VF in the case of the LimSup aggregator function. We then
take the least of these to be the optimal threshold for the LimSup-RMs.

Theorem 7. The threshold τ∗ for Sup and LimSup-RMs can be computed in P.

6 Mask Synthesis

Given a Kripke structure K representing the system, an ω-regular language L
capturing the undesirable behavior given as an NBA B, repair machine T , a cost
semantics ⊕ ∈ {DSumλ,Mean,Sup, LimSup}, and τ ∈ Q≥0, the problem of mask
synthesis is to find a maximal subset N ′ ⊆ TK such that all traces t ∈ N ′ pass
the impair verification.

It is well known that every Kripke structure admits an ω-regular language N
such that a word u ∈ N if and only if u ∈ TK . Let the ω-regular language of K
be N . To solve the mask synthesis problem, we restrict the domain of the repair
machine T to N by constructing a repair machine T ′ using product construction
and give our results on the repair machine T ′.

6.1 Mask Synthesis for DSum-RMs

We show that the maximal subset N ′ for isolated cut-point languages [3] is ω-
regular. Given a threshold τ ∈ Q, the maximal subset N ′, is the set of all words
u ∈ dom(T ′), such that for every word w′ ∈ [[T ]]DSum

τ (u) we also have w /∈ L. A
threshold τ is ε-isolated for RM T ′, if for ε > 0 and all accepting runs r of T ′,

[[T ′]]DSum
∗ (r, w) ∈ [0, v−ε] ∪ [v+ε,∞).

It is isolated if it is isolated for some ε. To prove that N ′ is ω-regular for such
thresholds, we first note that isolated-cut point languages are ω-regular in the
context of weighted automata [11]. We follow a similar strategy to [10], and
slowly unroll our synchronous product. We note that since the repair machine
is over ω strings, there must exist some n such that

DSum(w0w1 . . .) ≤ DSum(w0 . . . wn) +Bn,

where Bn = V λn

1−λ , where V is the largest cost that is not ∞. Therefore if
DSum(w0, w1, . . .) ≤ v−ε+Bn we can conclude that DSum(w0, . . . , wn) ≤ v−ε.

Lemma 1. Let T ′ be a DSum repair machine and τ ∈ Q. If τ is ε-isolated for
some ε, then there is n∗ ∈ N such that any partial run r of length at least n∗

satisfies one of the following properties:
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1. DSum(r)≤τ−ε and DSum(rr′)≤τ−ε for every infinite continuation r′ of r.
2. DSum(r)≥τ+ ε

2 and DSum(rr′)≥τ+ε for every infinite continuation r′ of r.

Here, for finite r, DSum(r) is defined in the usual fashion except that the sum-
mation will be upto the length of r.

Theorem 8. Let T ′ be a DSum repair machine, v ∈ Q, and L an ω-regular
language given by an NBA. For all n, we can construct an NBA An such that
L(An) ⊆ L(An+1) and L(An) ⊆ N ′ ∩dom(T ′). Moreover, if τ is ε-isolated, there
exists n∗ such that L(An∗) = N ′ ∩ dom(T ′).

For the construction of An in Theorem 8, a notion of bad and dangerous runs
are defined. Intuitively, The bad runs are all those runs which are accepting with
cost ≤ τ , such that the output word is not in L. The dangerous runs are the
finite partial runs which can be extended to bad runs. The idea for construction
of An is to identify all the finite partial runs r of length n which can later be
extended to bad runs. This way we can construct a sequence of Büchi automata
that better under approximate the automata for the non-robust words in the
domain. Thanks to Lemma 1, we can assure that there exists a fixed point at n∗

such that An∗ recognizes all the non-robust words from T ′.

6.2 Mask Synthesis for Mean-RMs

The mask synthesis problem for Mean-RMs is already undecidable for finite
words [10, Theorem 17] and this result carries over to the case of ω-words.

6.3 Mask Synthesis for Sup-RMs and LimSup-RMs

For the Sup-RMs, we can construct an NBA recognizing all output words with
a cost greater than τ and show that the maximal subset N ′ is ω-regular. The
results for Sup-RMs can be extended carefully to only account the costs occurring
in accepting loops and be used for the LimSup-RMs as well.

Theorem 9. Let T ′ be a Sup-RM, τ ∈ Q and L be a ω-regular language. The
language of N ′ is ω-regular and we can effectively construct an NBA for it.

7 Related Work

Our work is closest to the idea of weighted transducers as studied in [10] for finite
strings. We extend the known results of [10] in the context of robust verification
and kernel synthesis from finite strings to infinite strings.

D’Antoni, Samanta, and Singh [8] presented Qlose, a program repair app-
roach with quantitative objectives. The Qlose approach permits rewriting syn-
tactical expressions with arbitrary expressions while keeping the control struc-
ture of the program intact. In comparison, our approach permits modification of
the control structure albeit with a finite set of expressions (encoded as a finite
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alphabet) considered for rewriting. Consequently, our setting remains decid-
able as opposed to repair with Qlose that is, in general, undecidable, and for
tractability it restricts the correctness criterion to being correct over a given set
of input-output examples. Similarly Samanta, Olivo, and Emerson [16], consid-
ered cost-aware program repair for Turing-complete programs through the use
of predicate abstraction. However, their cost function is dependent only on the
program location as opposed to more general ω-traces as proposed in our work.

Jobstmann, Griesmayer, and Bloem [13], and von Essen and Jobstman [18],
studied program repair as a two-player game with qualitative ω-regular objec-
tives. Our work, in contrast, allows quantitative notions of repair costs.

Cerny and Henzinger [2] championed for the need of partial program synthe-
sis, which can be thought of as a repair, though its aim is to complete the given
partial program, with respect to the specification. Although not directly related
to repair, the framework of model measuring [12] presents a notion of distance
between models; it studies the problem that given a model M and specifica-
tion find the maximal distance such that all models within that distance from
M satisfy the specification. Bansal, Chaudhuri, and Vardi [1] study comparator
automata that read two infinite sequences of weights and relate their aggregate
values to compare such quantitative systems. Kupferman and Tamir [14] con-
sider the problem of cheating, where they use weighted automata and a penalty
function to determine if the environment is cheating. The penalty function con-
sidered is again a map from a pair of letters to a value and so the environment is
only permitted letter-to-letter rewritings. In contrast, our models permits more
general letter-to-string rewritings constrained with ω-regular objectives.

Chatterjee et al. [5] consider the problem of solving both quantitative and
qualitative objectives and define the notion of implication games where the objec-
tive is to solve both. While we provide direct proofs, Theorems 2 and 3 can also
be recovered from results on implication games.

8 Conclusion

This paper presented a generalization of fundamental problems on weighted
transducers and robustness threshold synthesis for ω-words. We proposed and
solved the problem of minimal cost repair formulated as two player games on
weighted transducers. We note that this problem is similar to multi-objectives
optimization where the goal of the players is to satisfy an ω-regular property
while optimizing a quantitative payoff. We also considered a related problem
of impair verification that is related to availability problem where an attacker
intends to rewrite the observations of the system to make it satisfy some unde-
sirable behavior. We believe that the repair problem may find application in
designing mitigation policies against side-channel vulnerability where some con-
fidential property of the system is leaking in the output trace, and the goal is to
find a minimum-cost repair to make the system opaque.
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