q

Check for
updates

The Octatope Abstract Domain
for Verification of Neural Networks

Stanley Bak!'@®, Taylor Dohmen?, K. Subramani®, Ashutosh Trivedi?(®9)
Alvaro Velasquez?, and Piotr Wojciechowski®

1 Stony Brook University, Stony Brook, NY, USA
2 University of Colorado, Boulder, CO, USA
ashutosh.trivedi@colorado.edu
3 West Virginia University, Morgantown, WV, USA

Abstract. Efficient verification algorithms for neural networks often
depend on various abstract domains such as intervals, zonotopes, and
linear star sets. The choice of the abstract domain presents an expres-
siveness vs. scalability trade-off: simpler domains are less precise but yield
faster algorithms. This paper investigates the octatope abstract domain
in the context of neural net verification. Octatopes are affine transforma-
tions of n-dimensional octagons—sets of unit-two-variable-per-inequality
(uTvPI) constraints. Octatopes generalize the idea of zonotopes which
can be viewed as an affine transformation of a box. On the other hand,
octatopes can be considered as a restriction of linear star set, which are
affine transformations of arbitrary H-Polytopes. This distinction places
octatopes firmly between zonotopes and star sets in their expressive
power, but what about the efficiency of decision procedures?

An important analysis problem for neural networks is the exact range
computation problem that asks to compute the exact set of possible
outputs given a set of possible inputs. For this, three computational pro-
cedures are needed: 1) optimization of a linear cost function; 2) affine
mapping; and 3) over-approximating the intersection with a half-space.
While zonotopes allow an efficient solution for these approaches, star
sets solves these procedures via linear programming. We show that these
operations are faster for octatopes than the more expressive linear star
sets. For octatopes, we reduce these problems to min-cost flow problems,
which can be solved in strongly polynomial time using the Out-of-Kilter
algorithm. Evaluating exact range computation on several ACAS Xu
neural network benchmarks, we find that octatopes show promise as a
practical abstract domain for neural network verification.

1 Introduction

The success of deep feed-forward neural networks (DNN) in computer vision and
speech recognition has prompted applications in critical infrastructure. These
applications range from using pre-trained perception and speech-recognition
modules in safety-critical logic (self-driving cars and medical decision making)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 454-472, 2023.
https://doi.org/10.1007/978-3-031-27481-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_26&domain=pdf
http://orcid.org/0000-0003-4947-9553
http://orcid.org/0000-0001-9346-0126
https://doi.org/10.1007/978-3-031-27481-7_26

The Octatope Abstract Domain for Verification of Neural Networks 455

to learning controllers from reinforcement signals [31] to learning succinct repre-
sentations of formally verified controllers (ACAS Xu). The increasing prevalence
of DNNs in safety-, privacy-, and social-critical systems motivates the focus of
the formal methods community [3,5,7,34] in developing verification technology
to meet the challenge of improving trust in DNNs.

Abstract interpretation [4,11] is a well-established framework for program
verification that formalizes the exploration of the program semantics at the gran-
ularity provided by the underlying domain. For example, intervals [11] form an
abstract domain facilitating analysis in which sets of states are represented as
hyperrectangles. Other abstract domains such as difference constraints, octagons
(unit-two-variables-per-inequality or UTVPI), and polyhedral (linear constraints)
have been successfully deployed for the verification of DNNs. However, the multi-
layer architecture of DNNs, when combined with linear function composition
followed by a non-linear activation function at each layer, results in the repeated
intersection of abstract spaces with linear inequalities. For this reason, abstract
domains that do not permit an efficient affine mapping suffer in exploring the
layered state space of the DNNs.

Zonotopes [29] solve this problem by representing an abstract set as an affine
mapping of an interval generator set. For zonotopes, the key operations for DNN
verification, such as nonemptiness, optimization, and over-approximation, can be
performed via efficient, enumerative procedures. Linear star sets [13,35] gener-
alize zonotopes by representing the generator set using the polyhedral domains.
This generalization, while improving the expressiveness, leads to the decision
procedures depend upon solving linear programs, which tends to be the perfor-
mance bottleneck in the overall algorithm. While linear programming is known
to be solvable in polynomial time, via a number of celebrated interior-point algo-
rithms [22], there is no known strongly polynomial algorithm. Dantzig’s simplex
algorithm is a popular algorithm to solve LP and works well in practice, but for
general LPs, the time complexity of the simplex algorithm is not polynomial [23],
and subexponential lower bounds hold even for randomized pivoting rules [14].

For some subclasses of linear programming problems, more efficient solutions
exist. In particular, when the constraints are restricted to difference constraints
(x; —x; < ¢) or UTVPI constraints (+xz; = z; < ¢), then the duals of the cor-
responding LPs can be reduced to minimum cost flow (MCF) problems [2], for
which there exist strongly polynomial time algorithms [17]. The Out-of-Kilter
algorithm is one popular algorithm for solving minimum cost flow that also pro-
duces a solution to the dual [2]. It runs in time O((m? +m - n -logn) - U) on
a network with m arcs and n nodes and maximum supply/demand U. Alter-
natively, the network simplex algorithm is a specialized version of the simplex
algorithm to solve minimum cost flow problems. Unlike standard simplex, net-
work simplex runs in polynomial time [28]. Given its relative efficiency, it is
natural to ask: in neural network verification, is it possible to replace expensive
linear programming with min-cost flow calls?

This question motivates the investigation of sub-classes of star sets that are
more general than zonotopes, but enable efficient decision procedures based on

456 S. Bak et al.

MCF problems. For this purpose, we introduce octatopes: sets that can be defined
as affine maps of UTVPI constrained sets (octagons [27]). Since octatopes are a
special class of star sets, the affine transformation remains efficient. We also
study hezatopes as the images of difference constrained sets (hexagons [27] or
zones [9]). A key contribution of this paper is that the key operations required
for verification using octatopes and hexatopes can be performed efficiently using
algorithms for MCF problems.

Given that the MCF problem can be solved efficiently via Out-of-Kilter algo-
rithm and network simplex (touted [8] to be 200-300 times faster than sim-
plex), this benefit will translate to the efficiency of octatopes/hexatopes for LP-
intensive applications like reachability analysis of neural networks. While the
current state-of-the-art implementations of the algorithms for the MCF problem
are not as advanced as those for LP, we believe that this will change in light
of the proposed application. We implement the octatope and hexatope abstract
domains and show their effectiveness on several ACAS Xu networks [20], a pop-
ular benchmark for neural network verification.

Related Work. A growing body of research exists on different methods to verify
neural networks [25], including recent tool competitions [6]. Algorithms can be
categorized into search, optimization, and reachability solutions. In the space of
search procedures, the seminal Reluplex method proposes an extension of the
simplex algorithm used for linear programming to handle ReLU networks [20].
This method has been widely adopted and extended by, for example, posing
verification as a constraint satisfaction problem [21]. This can then be solved
using off-the-shelf Satisfiability Modulo Theory (SMT) solvers like z3 [12]. The
use of SMT enables reasoning over different activation functions and topologies.

Interval arithmetic is another popular approach often used to estimate the
range of output values given a range of inputs while tracking the input and
output ranges of individual activation functions [38]. This can be computed by
using linear programming to derive lower and upper bounds for a given node in
the network. The work of [18] combines this with symbolic interval propagation
and gradient descent to find counter-examples to the over-approximations estab-
lished by the linear programming solutions. More sophisticated node splitting
strategies that account for downstream effects on successor nodes can also be
used as part of the symbolic interval propagation phase [19]. Per-neuron split
constraints can also further improve efficiency [39].

Optimization solutions to the verification based on ILP have been explored.
This is a natural formulation for the verification of neural networks due to the use
of affine transformations and the fact that piecewise linear activation functions
can be encoded using a set of binary linear constraints [3]. The work in [32]
extends similar ideas by estimating the maximum disturbance that is permitted
at the input and proposing pre-solve procedures to speed up the solution.

Although solutions based on SMT-solving and mathematical programming
are often complete, they require the entire network to be encoded within the cor-
responding constraints, thereby limiting scalability. In contrast to these search
and optimization solutions, the use of reachability analysis for verification of

The Octatope Abstract Domain for Verification of Neural Networks 457

neural networks has been shown to scale to larger instances at the cost of com-
pleteness. Examples of this include the use of zonotope and star set abstract
domains. The former can be efficiently employed to compute conservative over-
approximations of output bounds of nodes in a network [16], whereas linear pro-
gramming can be employed for the latter to find tight bounds at the cost of scal-
ability [37]. The work proposed herein seeks to advance the state of verification
methods based on reachability analysis by providing tighter over-approximations
than zonotopes and more efficient computations than star sets.

2 Preliminaries

Let R denote the set of real numbers and QQ denote the set of rational numbers.
We write R™*™ for the set of all mxn dimensional matrices of reals.

For a matrix M € R™*" we write M(i,-) € R*"™ and M(-,j) € R™*! for
the i*" row vector and j* column vector, respectively, of M, for 1 < i < m
and 1 < j < m. Similarly, we write M(i,j) for the matrix element at row i
and column j. By default, a vector is a column vector and we associate a set of
matrices R™*! with the set of vectors R™.

For a matrix M € R™*™ we write M T € R"*™ for its transpose matrix. For
a row vector v € R'*"_ we write v7 € R" for the corresponding (transposed)
vector. We write 1, for the all-ones vector of size n and I for the identity
matrix of some fixed dimension (often clear from context). For a (column) vector
v = (v,v2,...,v,) € R" we write v; for its i element. For a vector v € R™
and scalar « € R, we write - v for the vector (a-v1,...,a-v,,). For two vectors
u,v € R™, we write u - v for their dot product, i.e., u-v = 27;1 u; - v;. For
two matrices M € R™*™ and N € R"*P, their product M N € R™*? is defined
as MN(i,j) = M(i,))" - N(-, j).

We call a function f : R® — R™ linear if f(u) + f(v) = f(u + v) and
fla-v) =a- f(v) for all scalars o € R and vectors u,v € R™. A linear function
f :R™ — R™ can be represented as a matrix A € M"*" such that f is equivalent
to u — Au. A function f:R"™ — R™ is affine if it is a sum of a linear function
and a constant, i.e., f(v) = Av + b for some A € R™*™ and b € R™.

2.1 Linear, UTVPI, and Difference Constraints

Let © = {x1,29,...,2,} be a set of real-valued variables with an arbitrary
but fixed order. Abusing notation, we represent this set as a vector * =
(z1,22,...,2n). A linear constraint over x is a constraint of the form

a1x1 + asxe + - -+ + apx, < b wherea = (a1,...,a,) € R"and b € R
that represents the set {v € R™ : a-v < b}. A linear constraint system (LCS)
Ax < b where A € R™*"and b € R™

is a conjunction of linear constraints.

458 S. Bak et al.

Definition 1 (Interval Constraint Systems). An interval constraint is a
linear constraint of the form

a; < x; < b; wherea;,b; € Q.

An interval constraint system (ICS) is a conjunction of interval constraints. An
ICS is a unit hypercube if a; = —1 and b; =1 for all 1 < i < n and we denote
itas —1, <x<1,.

Definition 2 (Difference Constraint Systems). A difference constraint is
a linear constraint of the form

x; — x5 < b; whereb; € Q.
A difference constraint system (DCS) is a conjunction of difference constraints.

Definition 3 (UTVPI Constraint System). A Unit Two Variable Per
Inequality (UTVPL) constraint is a linear constraint of the form

a; - x; + aj - x5 < by where a;,a; € {—1,0,+1} and b;; € Q.
A UTVPI constraint system (UCS) is a conjunction of UTVPI constraints.

A UTVPI constraint a; - x; + a; - x; < b is said to be an absolute constraint
if a; = 0 or a; = 0. An absolute constraint can be converted into constraints of
the form: a; - x; + a; - v; < b;j, where both a; and a; are non-zero. Note that
a UTVPI constraint a; - x; + a; - x; < by, by; € Q is a difference constraint if
a; = —a;. The constant that bounds a UTVPI constraint is called the defining
constant. For instance, the defining constant for the constraint 7 —zs < 91is 9.

2.2 Minimum Cost Network Flow Problem

When optimizing a linear function over DCS or UCS, its dual program can
be reduced to the minimum cost flow (MCF) problem [2], for which there exist
strongly polynomial time algorithms [17]. We review the Out-of-Kilter algorithm
(Algorithm 1) for MCF that also produces a solution to the dual [2].

A flow network G = (G = (V,E),c,a,d) is a directed graph G with capacity
¢: E — Rs¢ and cost a : E — R associated with every edge (arc) and demand
d:V — R associated with every vertex (node). We assume that), d(v) = 0.
The minimum cost flow (MCF) problem can be stated as follows:

Minimize Z f(u,v) - a(u,v)
(u,v)EE
subject to:

Z flu,v) — Z f(v,u) = d(v) for all v € V,

ueV ueV
0 < f(u,v) < e(u,v) for all (u,v) € E

The Octatope Abstract Domain for Verification of Neural Networks 459

Algorithm 1. OuT-OoF-KILTER(G = (G = (V, E), ¢,a,d))

1: Initialize the potential as m « 0.

2: Let f be a flow in G.

3: Construct the residual network G'y.

4: Compute the kilter number k(u,v) of each edge (u,v) in Gy.

5: while (G contains an edge with positive kilter number) do

6: Select an edge (u,v) in Gy with positive kilter number.

7 Let the weight of each edge (u,v) in Gy be max{0,c" (u,v)}.
8: For w € V'\ {u, v}, let [(w) be the weight of the least weight path from v to w.
9: Let P be a shortest path from v to w.
10: For each node w, set m(w) «— m(w) — l(w).
11: if (¢ (u,v) < 0) then
12: Q — PU{(u,v)}.
13: 0 ming, vyeq r(u,v).
14: Augment § units of flow along Q.
15: Update f and Gy.
16: return f.

Out-of-Kilter Algorithm. A pseudocode for the Out-of-Kilter algorithm is
given as Algorithm 1. It starts with a possibly infeasible flow and iteratively
modifies this flow in a way that decreases the infeasibility of the solution and
moves it closer to optimality. Each step of the algorithm consists of solving
a shortest path problem and augmenting the flow along the shortest path. It
operates on the residual network G'¢ corresponding to the current flow f. This
residual network is constructed as follows. For each edge (v;,v;) € E:

1. Feasible Edges. If f(u,v) < ¢(u,v), we add the edge (u,v) with a residual
capacity of r(u,v) = c(u,v) — f(u,v) and cost a(u,v). If f(u,v) > 0, we add
the edge (v, u) with a residual capacity of r(v,u) = f(u,v) and cost —a(u,v).

2. Lower-Infeasible Edges. If f(u,v) < 0, we add the edge (u,v) with a
residual capacity of r(u,v) = —f(u,v) and cost a(u,v).

3. Upper-Infeasible Edges. If f(u,v) > ¢(u,v), we add the edge (v,u) with
a residual capacity of r(v,u) = f(u,v) — ¢(u,v) and cost —a(u,v).

For each vertex v in the residual network, the algorithm maintains a potential
m(v) and for each edge (u,v) with cost a(u,v), it maintains the reduced cost
a™(u,v) = c(u,v) — w(u) + w(v). Additionally, for each edge in the residual
network, it maintains a kilter number k(u,v) which is 0 if ¢™(u,v) > 0 and is
the residual capacity r(u,v) if ¢™(u,v) < 0. This kilter number represents the
change in flow required so that each edge satisfies its optimality condition.

Note that the node potentials m and reduced costs ¢™ corresponding to the
optimal flow f are the optimal solution of the dual problem [1]. The Out-of-
Kilter algorithm runs in time O((m? +m - n -logn) - D) on a network with m
edges and n vertices and maximum demand D.

460 S. Bak et al.

2.3 Verification of Neural Networks

A rectified linear unit (ReLU) is a commonly used activation function o : R — R
defined as o(z) = max {z,0}. We can generalize this function from scalars to vec-
tors as o : R® — R” in a straightforward fashion by applying ReLU component-
wise. In this paper, we primarily work with feedforward neural networks (NN)
with ReLU activation units. We focus on networks with k fully-connected layers,
also called multi-layer perceptrons, where each layer i is defined with a weight
matrix W; and a bias vector b; of appropriate size and is followed by a ReLU.
Formally, a neural network can be viewed as a function f : R™ — R7",
where n; is the number of inputs and n, is the number of outputs. Given an
input yo € R™, a neural network will compute an output y; € R™ as follows:

aM = Wiyo + by, y1 = o(zM)
2@ = Wayr + bs, y2 = o ()

a™ =Wiyey + b, yr = o(z®)

We call y;—1 and y; the input and output of the i-th layer, respectively, and
2 the intermediate values at layer i. This setup is the most typical situation
considered for neural network verification tools [6], although extensions have
been made to other layer types [33,36] and activation functions [30].

Definition 4 (Exact Range Computation Problem). Given a neural net-
work implementing the function f : R™ — R™ and an input set T C R™, the
exact range computation problem is to compute the set

Range(f,Z) = {yr | y« = f(y0), yo € I}.
of possible outputs of the network.

The exact range computation problem can be used to solve the open-loop neural
network verification problem defined next.

Definition 5 (Open-Loop Neural Network Verification). Given an input
set T C R™ an unsafe set U C R™, and a neural network that computes f, the
open-loop neural network verification problem asks if Range(f,Z) N U = (.

As is typical with the state-of-practice in DNN verification, we restrict the
input and unsafe sets to ones defined with linear constraints,

I = {x | Ajx < b;,x € Rm}, and
U={x| Ayx < b,,x € R™}.

The popular ACAS Xu neural network verification benchmarks [20] match these
assumptions, and will be used in our evaluation.

The Octatope Abstract Domain for Verification of Neural Networks 461

Although abstraction and refinement methods are often more efficient for
verifying neural networks [5], the performance of the exact range computation
problem is important for the following two reasons. First, as more refinement
needs to be done, the performance of abstraction-refinement will approach that
of exact range computation. Efficient exact range computation is therefore essen-
tial for efficient abstraction-refinement analysis. Second, exact range computa-
tion methods are building blocks for other types of verification problems, such
as closed-loop verification of neural-network control systems [26], which often
arise in reinforcement learning applications. In these cases, over-approximating
the range of a network is too imprecise for analysis over many control cycles,
and such analysis loses the relationship between the inputs and the outputs of
a network, creating issues similar to the dependency problem in interval arith-
metic [34]. In future work, we plan to explore over-approximation methods as
well as abstraction-refinement approaches that use octatopes, following similar
work done for zonotopes and other abstract domains [15].

3 Abstract Domains: Octatopes and Hexatopes

Both a zonotope and a star set may be viewed as an n-dimensional image of
a polytope—which we refer to as the kernel—under affine transformation. For
zonotopes the kernel is a hypercube, while for linear star sets the kernel is a
set defined by an LCS. In this section, we introduce octatopes and hexatopes as
generalizations of zonotopes where the kernel is restricted to be a set defined by a
UCS and a DCS, respectively. This section also studies algorithms for operations
over octatopes and hexatopes required for the verification of neural networks.

3.1 Zonotopes and Linear Star Sets

An n-dimensional zonotope Z = (¢, G) is the image of a p-dimensional hypercube
under an affine transformation R? — R™. Given a center ¢ € R™ and a set of
generator vectors {g1,...,g, € R"} forming a matrix G = [g1 --- gp| € R"*P,
the semantics of Z are defined as

[Z]={Gx+c: -1, <z <1,}.

Linear star sets generalize zonotopes by letting the kernel be defined by an
LCS. Formally, an n-dimensional star set S = (¢, G, A, b) is the image of a p-
dimensional polytope Ax < b under an affine transformation R? — R"™. Given
a center ¢ € R™ and a set of generator vectors {g1,...,g, € R"} that form a
matrix G = [gl e gp] € R"*P the semantics of S are defined as

[S]={Gz +c : Ax < b}.

The following theorems [35] provide the foundational results on linear star
sets that are leveraged in neural network verification.

462 S. Bak et al.

Theorem 1 (Affine Transformations of Linear Star Sets). The linear
star sets are closed under affine transformation, i.e., given a linear star set
S = (c,G, A, b) and an affine map f(x) = Wz +d on [S], the image Syw,a) =
{f(x) : € [S]} is equal to [S] for a linear star set 8" = (c’,G', A, b) where

d=Wec+dand G' = [Wgy--- Wg,]| .

Theorem 2 (Linear Optimization Over Linear Star Sets). The optimiza-
tion of a linear function f over a linear star set S reduces to linear programming.

Theorem 3 (Intersection of Linear Star Sets and Half-Spaces). The
intersection of a star set S = (¢,G, A, b) and half space {y | Hy < h} is another
star set S = (¢, G, A',b") where A'x < b are the conjunction of constraints

Ax <b and HGx < h — He.

Next, we extend the notion of zonotopes to define octatopes and hexatopes
and develop a series of results, analogous to Theorem 1 to 3, that provide the
theoretical framework for the application of these abstract domains to the veri-
fication of neural networks.

3.2 Octatopes and Hexatopes

Definition 6 (Octatopes and Hexatopes). An octatope is an n-dimensional
star set (¢, G, A, b) where the kernel constraints Az < b form a UCS. A hexatope
is similarly defined as an n-dimensional star set (c,G, A,b) where the kernel
constraints Ax < b form a DCS.

Our first result mirrors Theorem 1 and establishes closure under affine map-
pings for octatopes and hexatopes.

Theorem 4. Octatopes and Hexatopes are closed under affine transformation.

Proof. From Theorem 1 it follows for an octatope (hexatope) S = (¢, G, A, b)
and an affine mapping f(z) = Wz +d, that Sy g = {(Wx +d : € [S]} is a
star set S = (c/,G’, A, b) where

d=Wc+dand G' = [Wgy --- Wg,|.
Since this transformation does not change the kernel, the resulting set remains
an octatope (hexatope). O
3.3 Linear Optimization Over Octatopes and Hexatopes

By Theorem 2, linear optimization over linear star sets can be done in polyno-
mial time. Our next result shows that linear optimization over octatopes and
hexatopes can be done in strongly polynomial time.

The Octatope Abstract Domain for Verification of Neural Networks 463

Theorem 5. The linear optimization problem for octatopes and hexatopes can
be solved in strongly polynomial time via a reduction to the MCF problem.

Proof. We reduce the optimization problem for octatopes to a similar problem
for hexatopes. Consider an n-dimensional octatope O = (¢, G, A, b) which is the
image of a p-dimensional UCS-defined set. Here ¢ € R™ is the center and vectors
{g91,92,...,9, € R"} are the generators. In order to optimize a linear function f
over [O], it suffices to optimize the composition of functions — Gx + ¢ and f
over the UTVPI constrained set Az < b. We describe a method to find the linear
optimum of an arbitrary linear objective function over a UCS.

Let U be a UCS and let f be an objective function we are maximizing. First
we convert [24] the UCS U into a DCS D. The first part of the conversion creates
the variables 2 and x; in D for each variable z; in U. Then, each constraint
in U is converted as follows:

1. Each constraint of the form x; + x; < b;; becomes
xj -z < b and —z; —l—xj < by
2. Each constraint of the form z; — x; < b;; becomes

z x;' < by and —z; +x; < by

e
3. Each constraint of the form —x; 4+ x; < b;; becomes

K2

z; —x; < b;; and ij' +xj' < by

4. Each constraint of the form —z; — x; < b;; becomes

z; —x;r < b;; and —x;r—i—x; < by

5. Each constraint of the form x; < b; becomes

-z <2-b;.

K2 1 —

6. Each constraint of the form —z; < b; becomes

x-_ij§2~bi.

K2

Observe that x; = %(1‘: —x;) satisfies the original UCS. Thus, we can consider
this as the problem maximizing the objective function over variables %(mj —z;)
of the DCS D. Note that the problem of maximizing a linear objective function
over a DCS is the dual of a minimum cost flow problem. Since the Out-of-Kilter
algorithm also solves the dual to the minimum cost flow problem [1], running
the Out-of-Kilter algorithm on the dual of the DCS optimization problem will
also solve the DCS optimization problem. For a UCS with m constraints, this
process takes O((n? + m - n -logm) - C) time where C' is the largest absolute
value of any coefficient in the objective function. O

464 S. Bak et al.

Algorithm 2. UTVPIBounbpiNngBox(U,)

Input: UCS U and constraint [
Output: A UTVPI bounding box U’

1: U 0
2: for all pairs of variables z;,z; in U do
3: Let uj]f = maxyu{} i — ¢; and add constraint x; — z; < uj]f to U’

Let ui_]-+ = maxyu{:} T; — i and add constraint x; — x; < ui_]-+ to U’
Let u;;*' = maxyu(y Ti + 7; and add constraint x; + x; < uj}*’ to U’

et u;” = maxyysy ¢ and add constraint z; < u;” to
Let u; w d add constraint z; < u;f to U’

4

5

6: Let u;; = maxyuf} —TLi — Tj and add —x; —x; < u;; to U’
7

8 Let u; = maxyyqy —7: and add constraint —x; < u; to U’
9:

return U’.

Emptiness Checking. We also consider the feasibility problem for octatopes.
That is, the problem of deciding whether an octatope is empty. The emptiness
of an octatope can be decided in O(n - m) time and O(n+m) space where n is
the number of generator variables and m is the number of generator constraints.
It is easy to see that an octatope (hexatope) is empty if and only if the uTvPI
constraints of its kernel are unsatisfiable as linear mappings over polytopes that
are monotone with respect to set inclusion. The complexity then follows from
results on checking the feasibility of UTVPI constraint systems [24].

3.4 Intersection of Octatopes/Hexatopes and Half-Spaces

It follows from Theorem 3 that the intersection of an octatope O = (¢, G, A, b)
and half space {y | Hy < h} is astar set O’ = (¢, G, A’, b’) where the constraints
A’z < b’ are the conjunction of UCS constraints Az < b and the hyperplane
HGxz < h— He. In the rest of this section, we show how an over-approximation
of this intersection can be represented as UCS constraints. The treatment for
hexatopes is similar, and hence omitted.

We formalize this problem as the UTVPI bounding box problem. Given a UCS
U and an arbitrary linear constraint I, a UTVPI bounding boz is a UCS U’, such
that every solution to U U {I} is a solution to U’. For a given UCS U and
constraint [, a tightest UTVPI bounding box is a bounding box of U U {l} that is
contained within every other bounding box of U U {l}. Thus, a UTVPI bounding
box of a UCS U and constraint [is a UCS that overestimates the solution space
of UU {l}. A tightest bounding box is a UCS that overestimates the solution
space the least. Each of the linear programs used to construct U’ can be solved
(with L bits of precision) in O(n®3% - L) time [10]. Since finding the UTVPI
bounding box requires solving O(n?) linear programs, the UTVPI bounding box
can be found in O(n*3% . L) time.

Theorem 6. Let U be a UCS and let | be an arbitrary linear constraint. The
UCS U’, constructed by Algorithm 2, is a UTVPI bounding box of U U {l}.

The Octatope Abstract Domain for Verification of Neural Networks 465

Proof. Let x* be a solution to UU{l}. Let a; - x; + a; - ©; < u;; be an arbitrary
constraint in U’. By construction of U’, we have u;; = maxyuy a; - 2 +a; - ;.

Since x* is a solution of U U {l}, a; - } + a; - z7 < u;j. This means that
x* satisfies the constraint a; - x; + a; - ; < u;;. Since the constraint a; - z; +
aj - rj < u;; was chosen arbitrarily, x* is a solution to U’. Note that x* was an
arbitrary solution to UU{l}. Thus, every solution to UU {[} is a solution to U’.
Consequently, U’ is a UTVPI bounding box of U U {I}. O

We now show that U’ is a tightest UTVPI bounding box of UU{l}. Note that
U U {l} must have a tightest bounding box. Consider two bounding boxes U;
and Uy of UU {l}. Let U*, be the UCS formed by combining the constraints
in U; and U,. Note that U* is also a bounding box of U U {l}. Additionally,
every solution to U* is a solution to both Uy and U,. Thus, if U U {l} has two
incomparable bounding boxes, then a new bounding box can be constructed that
is tighter than both.

Theorem 7. Let U be a UCS and let | be a linear constraint. The UCS U’,
produced by Algorithm 2, is a tightest UTVPI bounding box of U U {l}.

Proof. Assume for the sake of contradiction, that U’ is not a tightest UTVPI
bounding box of U U {i}. Thus, there exist a UTVPI bounding box U” and a
point x* such that x* is a solution to U’, but not a solution to U”. This means
that there is a UTVPI constraint a; - z; + a; - ; < b in U” that is violated by x*.

Let u;; = maxyugy @i - 3 + a; - ;. Since U” is a UTVPI bounding box of
U U {i}, every solution to U U {i} is a solution to U”. Thus, every solution to
U U {i} satisfies the constraint a; - x; + a; - £; < b. This means that

max a; - T + a;j-T;
vof{yy
is bounded from above by b. Thus, u;; exists and u;; < b.
By the construction of U’, the constraint a; - x; + a; - x; < wy;is in UL
However, x* is a solution to U’ such that a; - x} + aj m;‘ > b > u;;. This is a
contradiction. Thus, U’ must be a tightest UTVPI bounding box of UU {i}. O

4 Range Computation for Neural Nets with Prefilters

The exact range computation problem from Definition 4 can be solved using
linear star sets (see Algorithms 1 and 2 in earlier work for a full review [7]).
The neural network function f as defined in Sect. 2.3 is a piece-wise affine
function of the inputs. The range computation proceeds using geometric set
operations. The initial set of states is represented as a linear star set and prop-
agated through each layer of the network. To go from the output of one layer
to the vector of intermediate values at the next layer, an affine transformation
operation is performed on the set. The effect of the ReLU activation in a layer
is handled iteratively for each neuron. The set of states is potentially split along
the neuron input constraint y; = 0, into a negative region and a positive region,

466 S. Bak et al.

using a half-space intersection operation. The negative region is then projected
to zero to match the semantics of a ReLU. The two sets are then considered
independently for the remaining neurons in the layer, as well as the rest of the
layers in the network. For a given input set, not all neurons require splitting the
set in two, since the input constraints may restrict inputs to be strictly positive
or negative. To check this, before splitting we first optimize over the set in the
direction of the intermediate value xgl) corresponding to a specific neuron j in
layer 7. If splitting occurs, the two sets are treated independently and propagated
through the remaining neurons in the layer, possibly requiring further splitting
in the remaining parts of the network.

After applying a number of optimizations, the bottleneck of exact range
computation with star sets is the use of LP solving to compute the input bounds
for each neuron [7]. To improve analysis speed, rather than speeding up LP
solving—which is a well-studied problem where further progress is likely to be
difficult—we instead seek methods that can reduce the number of LPs needed.

In earlier work, zonotope abstract domains have been considered for this task.
Rather than just propagating star sets through a network, we also propagate a
zonotope overapproximation that we use in a prefiltering step. Recall that before
splitting we first need to optimize over the set in the direction of the intermediate
value xy). Before optimizing over the star set using LP, we first optimize over
the zonotope abstraction prefilter. If the zonotope abstraction can prove that the
inputs are strictly positive or negative, than we are guaranteed the exact result
from the LP will be strictly positive or negative as well (as the zonotope is an
overapproximation of the star set). This allows us to avoid LP, as optimization
over zonotopes can be done efficiently using a simple loop.

The reason zonotope analysis is not exact is that zonotopes do not support
general half-space intersections when sets must be split. Instead, two approaches
have been considered. The easiest option is to ignore intersections, which is fast
but can cause significant overapproximation error in the abstraction [15,36].
Alternatively, we can perform domain contraction, which is to search for zono-
topes that more tightly overapproximate the intersection. Different approaches
for domain contraction are possible, ranging from reasoning methods over indi-
vidual constraints to more accurate approaches that use LP solving on the star
set in the generator coefficient space [7]. Although the LP approach uses the
expensive operation we are trying to reduce, it can result in an overall reduction
of LPs, as the neuron input bounds can be computed more accurately.

This work proposes using octatope abstract domains as a prefilter. As
described earlier, optimization over octatopes can be done more efficiently than
general LP solving. The greater expressiveness of octatopes compared with zono-
topes means that we can hope to further reduce the number of LPs needed with
the star set when computing a neuron’s input bounds for splitting. We evaluate
this impact in our experiments. In terms of handling intersections when splitting
sets, octatopes (like zonotopes) cannot exactly support any general half-space
intersection operation. This means that a domain contraction step may be nec-
essary to ensure tight overapproximation.

The Octatope Abstract Domain for Verification of Neural Networks 467

5 Experimental Results

We next evaluate the potential savings in LP computation to computing neu-
ron input bounds during exact range computation for neural networks. Our
evaluation is performed on several benchmarks from the ACAS Xu benchmark
suite [20], specifically focusing on property 3 and 4 where earlier work has shown
exact range computation is tractable [7]. We generally report number of LPs for
different operations rather than runtime, as the runtime is influenced by other
factors such code optimizations and the choice of LP solver.

First, we examine the number of LPs needed to perform neuron input range
computation, for different choices of prefilter abstract domain. The LP calls to
find the neuron input ranges is the bottleneck of the overall range computation
algorithm, so its reduction is of particular importance. The results are in Table 1.
The Star-Only approach uses only LP solving with no prefiler, and therefore has
the highest number of LPs. The next column, Zonotope-NC corresponds to the
case where zonotope prefilters are used, but no domain contraction is performed
(halfspace intersections are ignored). This has a significant reduction on the
number of LP calls, for example in the first row with property 3 and network
1-6, where the number of LP calls is reduced from 91K to 11 K. Using domain
contraction with zonotopes, Zono-C, further reduces this to around 3.3 K. The
more precise domains with hexatopes and octatopes can further reduce this to
around 2.6 K and 2.5 K, respectively. The minimum column is computed by see-
ing how many bounds computations could not be eliminated as they correspond
to cases where the input to a neuron truly can be either positive or negative.
Even a perfect prefilter could not eliminate these LPs, as prefilters only elimi-
nate cases where splitting is impossible. Other approaches could be considered to
remove these LPs, such as tracking specific witness input points that can prove
a neuron can have both positive and negative inputs, which we may consider in
future work. Overall, the proposed octatope abstract domain has the potential to
reduce the number of unnecessary LPs significantly in exact range computation.

When using the new abstract domain, however, there is a trade-off where
extra operations are needed to perform domain contraction as well as to optimize
within the abstract domains. We used a witness-tracking approach [5], where for
each constraint a witness point was included that was in the star set and on
the boundary of the constraint. When new intersections are performed, each
witness point is checked to see if it is now excluded from the set. When points
are excluded, new witness points get generated by solving an LP in the direction
of the constraint, which may tighten the constraint. This results in the tight
abstract domains, but can be expensive when many constraints are possible. For
hexatopes and octatopes, the number of possible constraints is quadratic in the
number of variables (ACAS Xu has 5 input variables).

Table 2 shows the number of LPs needed for each example when performing
domain contraction. Star-Only and Zono-NC do not perform domain contraction,
and so have 0 LPs for this operation. As expected, the more complex the abstract
domain, the more operations are needed. This is due to the contraction method

468 S. Bak et al.

Table 1. Number of LP calls to find neuron input bounds for different abstract domain
prefilters on various ACASXu properties and networks.

Prop | Net | Star-Only | Zono-NC | Zono-C | Hex | Oct | Minimum
3 1-6 | 91762 11152 3382 2635 | 2571 | 1886
3 2-7 77896 9365 2921 2240 | 2198 | 1626
3 3-5 | 80988 8990 2711 2131 12092 | 1710
3 5-2 | 54758 15523 7762 6820 | 6704 | 3779
4 1-4 | 53036 7736 2597 2389 | 2330 | 1926
4 2-7 | 38748 3851 1249 888 | 861 | 753
4 5-9 | 68750 8814 2952 2286 | 2151 | 1591

Table 2. Number of LP calls for the domain contraction step for different abstract
domain prefilters for various ACAS Xu properties and networks.

Prop | Net | Star-Only | Zono-NC | Zono-C | Hex | Oct

3 1-6 |0 0 12765 | 38400 | 115200
3 2-710 0 12280 | 36840 | 110520
3 3510 0 10407 | 31230 93690
3 5210 0 21249 | 63750 | 191250
4 1410 0 11828 | 35493 | 106476
4 2-710 0 5533 | 16620 | 49860
4 5910 0 9906 |29730| 89190

performed, where the number of possible LPs needed at a domain contraction
step increases as the number of possible constraints increases.

In terms of the performance of network simplex for optimizing within the
octatope domain, the engineering aspect of the problem also requires further
development. When computing the range of network 2-7 with the input set
from property 4, the UTVPI constraints were optimized 38748 times. When
using the commercial LP solver Gurobi on these constraints, each call took
on average of 0.17ms. Formulating the min-cost flow problem and calling the
network_simplex implementation from the networkx python library, however,
used about 1.9ms per call, about 11x slower. Further, while Gurobi always
obtained a result, numerical issues caused network simplex to fail about 0.65%
of the time.

In summary, while octatopes effectively reduce the bottleneck step of input
bounds computation, further improvements must be made to octatope domain
contraction algorithms as well as to implementation optimizations of min-cost
flow solvers, before an overall speedup can be achieved. Nonetheless, it is an
encouraging result for DNN verification as developing more efficient domain
contraction algorithms and improving min-cost flow implementations is likely
easier than coming up with new ways to speed up LP solving.

The Octatope Abstract Domain for Verification of Neural Networks 469

6 Conclusion

The advent of deep neural networks and their inevitable widespread adoption
necessitates tools by which we can reason about their robustness. The verifi-
cation community has made great strides on this front in recent years through
the development of neural network verification solutions based on search, opti-
mization, and reachability. While search and optimization can often be used to
yield sound and complete solutions, such techniques pay the cost of scalability.
Methods based on reachability analysis, on the other, can often scale better at
the cost of completeness. These methods typically employ an abstract domain
representation of the input-output behavior of nodes in the neural network for
a given set of inputs. These abstract domains range from zonotopes to star sets
that differ in their trade-off between scalability and precision.

We proposed octatopes as a new abstract domain which corresponds to
affine transformations of unit two-variable per inequality (UTVPI) constraints.
Octatopes provide tighter abstractions than zonotopes while optimization can
be formulated as a min-cost flow problem that is theoretically more efficient
than linear programming. Our experiments using octatope abstract domains for
exact range computation of neural networks confirmed their accuracy, as we
were able to reduce the bottleneck step of using LP to compute each neuron’s
input bounds. However, engineering improvements must still be made to min-
cost flow libraries. In our application of UTVPI optimization, it was faster to use
the highly-optimized commercial LP solver Gurobi instead of the theoretically
faster min-cost flow formulation. In future work, we plan to examine ways to
improve domain contraction, as well as investigating other application areas of
octatopes such as neural network verification with over-approximations, software
analysis, and hybrid systems reachability.

Acknowledgment. This material is based upon work supported by the Air Force
Office of Scientific Research and the Office of Naval Research under award num-
bers FA9550-19-1-0288, FA9550-21-1-0121, FA9550-22-1-0450, FA9550-22-1-0029 and
N00014-22-1-2156. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Air Force or the United States Navy. This research
was supported in part by the Air Force Research Laboratory Information Directorate,
through the Air Force Office of Scientific Research Summer Faculty Fellowship Pro-
gram, Contract Numbers FA8750-15-3-6003, FA9550-15-0001 and FA9550-20-F-0005.

This work is also supported by the National Science Foundation (NSF) grant CCF-
2009022 and by NSF CAREER award CCF-2146563.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and
Applications. Prentice Hall (1993)

2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall (1993)

470

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Bak et al.

Akintunde, M., Lomuscio, A., Maganti, L., Pirovano, E.: Reachability analysis
for neural agent-environment systems. In: Sixteenth International Conference on
Principles of Knowledge Representation and Reasoning (2018)

Aws Albarghouthi: Introduction to Neural Network Verification (2021). http://
verifieddeeplearning.com

. Bak, S.: nnenum: verification of ReLLU neural networks with optimized abstraction

refinement. In: Dutle, A., Moscato, M.M., Titolo, L., Murtioz, C.A., Perez, I. (eds.)
NFM 2021. LNCS, vol. 12673, pp. 19-36. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-76384-8_2

Bak, S., Liu, C., Johnson, T.: The second international verification of neural
networks competition (VNN-COMP 2021): summary and results. arXiv preprint
arXiv:2109.00498 (2021)

Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 66-96. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8_4

Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows.
Wiley, Hoboken (2008)

Behrmann, G., et al.: UPPAAL 4.0. In: Third International Conference on the
Quantitative Evaluation of Systems (QEST 2006), 11-14 September 2006, River-
side, California, USA, pp. 125-126. IEEE Computer Society (2006)

Cohen, M.B., Lee, Y.T., Song, Z.: Solving linear programs in the current matrix
multiplication time. J. ACM 68(1), 1-39 (2021)

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238-252 (1977)

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

Duggirala, P.S., Viswanathan, M.: Parsimonious, simulation based verification of
linear systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
477-494. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_26
Friedmann, O., Hansen, T.D., Zwick, U.: Subexponential lower bounds for ran-
domized pivoting rules for the simplex algorithm. In: Symposium on Theory of
Computing (STOC 2011), pp. 283-292, ACM, New York (2011)

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3-18. IEEE
(2018)

Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain Taylorl+. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 627-633. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_47

Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling
negative cycles. J. ACM 36(4), 873—-886 (1989)

Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive
refinement and adversarial search. In: ECAT 2020, pp. 2513-2520. IOS Press (2020)
Henriksen, P., Lomuscio, A.: DEEPSPLIT: an efficient splitting method for neural
network verification via indirect effect analysis. In: Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence (IJCAI21) (2021). To appear

http://verifieddeeplearning.com
http://verifieddeeplearning.com
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-76384-8_2
http://arxiv.org/abs/2109.00498
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-41528-4_26
https://doi.org/10.1007/978-3-642-02658-4_47

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

The Octatope Abstract Domain for Verification of Neural Networks 471

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kuncak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97-117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443-452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26
Khachiyan, L.G.: A polynomial time algorithm for linear programming. Dokl.
Akad. Nauk SSSR 244(5), 1093-1096 (1979). English translation in Soviet Math.
Dokl. 20, 191-194

Klee, F., Minty, G.J.: How good is the simplex algorithm? Inequalities ITI, 159175
(1972)

Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI con-
straints. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNATI), vol. 3717, pp. 168-183.
Springer, Heidelberg (2005). https://doi.org/10.1007/11559306-9

Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J.: Algo-
rithms for verifying deep neural networks. Found. Trends Optim. 4(3-4), 244-404
(2021)

Manzanas Lopez, D., Johnson, T., Tran, H.D., Bak, S., Chen, X., Hobbs, K.L.:
Verification of neural network compression of ACAS Xu lookup tables with star
set reachability. In: ATAA Scitech 2021 Forum, p. 0995 (2021)

Miné, A.: The octagon abstract domain. High.-Order Symb. Comput. 19(1), 31—
100 (2006)

Orlin, J.B.: A polynomial time primal network simplex algorithm for minimum cost
flows. Math. Program. 78, 109-129 (1997). https://doi.org/10.1007/BF02614365
Singh, G., Gehr, T., Mirman, M., Piischel, M., Vechev, M.: Fast and effective
robustness certification. NeurIPS 1(4), 6 (2018)

Singh, G., Gehr, T., Piischel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 1-30 (2019)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press (2018)

Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2018)

Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional
neural networks using ImageStars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 18-42. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8_2

Tran, H.D., Cai, F., Diego, M.L., Musau, P., Johnson, T.T., Koutsoukos, X.: Safety
verification of cyber-physical systems with reinforcement learning control. ACM
Trans. Embed. Comput. Syst. 18(5s), 1-22 (2019)

Tran, H.-D., et al.: Star-based reachability analysis of deep neural networks. In:
ter Beek, M.H., Mclver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp.
670-686. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_39
Tran, H.-D., et al.: Robustness verification of semantic segmentation neural net-
works using relaxed reachability. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12759, pp. 263-286. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81685-8_12

Tran, H.-D.; et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/11559306_9
https://doi.org/10.1007/BF02614365
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/978-3-030-81685-8_12

472 S. Bak et al.

(eds.) CAV 2020. LNCS, vol. 12224, pp. 3-17. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8-1

38. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. Adv. Neural Inf. Process. Syst. 31 (2018)

39. Wang, S., et al.: Beta-crown: efficient bound propagation with per-neuron split
constraints for neural network robustness verification. Adv. Neural. Inf. Process.
Syst. 34, 29909-29921 (2021)

https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1

	The Octatope Abstract Domain for Verification of Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Linear, UTVPI, and Difference Constraints
	2.2 Minimum Cost Network Flow Problem
	2.3 Verification of Neural Networks

	3 Abstract Domains: Octatopes and Hexatopes
	3.1 Zonotopes and Linear Star Sets
	3.2 Octatopes and Hexatopes
	3.3 Linear Optimization Over Octatopes and Hexatopes
	3.4 Intersection of Octatopes/Hexatopes and Half-Spaces

	4 Range Computation for Neural Nets with Prefilters
	5 Experimental Results
	6 Conclusion
	References

