Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

A New Schema of Logic Representation and Reasoning
for Automated Building Code Compliance Checking

Fan Yang‘[0000’0001’9842’7 19X] Jiansong Zhangl*[0000—0002-3638-1947] Yunfeng Chen [0000-0002-
2 s
0108-8484] and Luciana Debs![0000-0002-9713-0957)

'School of Construction Management Technology, Purdue University, West Lafa-
yette IN 47907, USA
zhan3062@purdue.edu

Abstract: Manual building code compliance checking is a time-consuming, la-
bor-intensive and error-prone process. Automated logic-based reasoning is an es-
sential step in the automation of this process. There have been previous studies
using logic programming languages for automated logic-based reasoning to sup-
port automated compliance checking (ACC) of building designs with building
codes. As a high-performance implementation of the standard logic programming
language, B-Prolog was widely used in these studies. However, due to the support
of dynamic predicates and user-defined operators, the predicates’ functions vary
according to different user definitions; therefore, B-Prolog is sometimes not reli-
able for building code reasoning. As a more expressive, scalable, and reliable
alterative to B-Prolog, Picat, a logic-based multi-paradigm programming lan-
guage, provides a new and potentially more powerful platform for automated
logic-based reasoning in ACC. To explore the potential value of Picat in ACC,
in this study, the authors compared Picat and B-Prolog performance in automat-
ically checking 20 requirement rules in the 2015 International Building Code.
The experimental results showed that the automated checking for building codes
in the B-Prolog version was faster than that in the Picat version, whereas the Picat
version was more reliable than the B-Prolog version. This could be the result of
B-Prolog using unification and Picat using pattern matching for indexing rules.
More potential applications of Picat in ACC domain need further research. Fur-
thermore, this schema could be used in the teaching of ACC to graduate construc-
tion students, illustrating the need to focus on the reliability, predictability and
scalability of the process, in order to provide a practical solution to improving
code compliance checking processes.

Keywords: Logic representation - Automated reasoning - Automated compli-
ance checking - Building code - Artificial intelligence - Intelligent systems.

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

1 Introduction

Building design and construction activities must meet applicable requirements in build-
ing codes to assure the safety and well-being of construction workers and end users
(e.g., occupants). Building code compliance checking in the past has relied heavily on
manual efforts and the experience, skills, and judgment of building professionals, which
is a time-consuming, labor-intensive and error-prone process [1]. The ongoing devel-
opment of computing technology, especially the emergence of Building Information
Modeling (BIM), provides a great opportunity to the automation of building code com-
pliance checking, which is expected to improve the efficiency and accuracy of such
checking. As a digital representation of the entire life cycle of a building, BIM not only
provides a platform for timely information sharing for all parties involved in the con-
struction process (such as builders, designers, and owners), but also enables the trans-
formation of physical characteristics of buildings into computer-interpretable digital
representations. This provides a solid basis for automated building code compliance
checking. By converting building models into an international standard format, i.e., In-
dustry Foundation Classes (IFC), and expressing building code requirements as com-
pliance checking rules that can be executed by a computer, the rules can be used to
automatically check building design information in the IFC-based BIM, enabling auto-
mated compliance checking of building designs.

Logic representation and automated reasoning is an essential step in automated com-
pliance checking of building designs with building codes. Because the binary nature
(True/False) of the smallest reasoning unit of first-order logic (FOL) naturally fits the
representation of expected result (compliance/noncompliance) of automated compli-
ance checking, and FOL enables fully automated reasoning, it is therefore commonly
used in the logic representation and automatic reasoning of building codes [2,3]. B-
Prolog, a logic programming language developed based on FOL, was adopted by pre-
vious studies due to its high performance [1,4,5]. However, due to the support of dy-
namic predicates and user-defined operators, the predicates’ functions in B-Prolog vary
according to different user definitions, which makes the code requirement reasoning
unreliable sometimes. Also, the cessation of active development of B-Prolog limits its
future applications in the ACC field. At the same time, Picat, a multi-paradigm pro-
gramming language developed based on and served as a successor of B-Prolog, is the
logical replacement and upgrade for B-Prolog. Compared to B-Prolog, Picat is more
expressive, scalable, and reliable because it incorporates many features of both declar-
ative language and imperative language [6]. These advantages of Picat provide a solid
basis for its potential application in the ACC, so there is a need to explore the applica-
tion of Picat in the ACC domain.

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

Based on the previous ACC research findings leveraging B-Prolog, in this study, the
authors propose a new logic-based Information Representation and Reasoning (In-
foRR) schema tailored to Picat. The proposed schema was used to implement logic
representation and automated reasoning for checking 20 building requirement rules in
the 2015 International Building Code [7]. The running times of the B-Prolog and Picat
versions of implementing the proposed schema were compared and analyzed. The re-
search presented in this paper provides (1) a foundation for future research on the logic
representation and automated reasoning of building codes in the ACC field using ad-
vanced logic programming platforms such as Picat, and (2) a schema that can be used
to teach graduate level construction courses in automated code checking, considering
the practical needs of municipalities in terms of reliability of the results, aligned with
the scalability and predictability of ACC processes.

2 Background

2.1 Automated Compliance Checking

Automated compliance checking uses computing technology to check the compliance

of building designs with applicable building codes in a way that is more accurate, effi-
cient and economical compared to manual checking. Automated compliance checking
is mainly built upon three parts: the digital representation of building designs, the com-
puter-interpretable representation of building code requirements, and the automated
compliance reasoning mechanism. Previous studies have investigated these three as-
pects extensively [4,8,9]. The following paragraphs mainly introduce the research work
related to the computer-interpretable representation of building regulations.

Beach et al. and Rosenman & Gero proposed rule-based modeling methods to rep-
resent building codes [10,11]. Malsane et al. and ilal & Giinaydin used object-oriented
modeling to represent building codes [9,12]. In addition, some modeling methods based
on the combination of ontology and natural language processing (NLP) have recently
been proposed to achieve automated or semi-automated information extraction of build-
ing regulations [4,13].

Automated compliance checking systems were created and developed in different
countries to enable efficient management of building construction projects, such as
CORENET funded by Singapore’s Ministry of National Development [14], Statsbygg
Solibri system developed by Standards Norway and Norwegian BuildingSMART [15],
SMARTcodes driven by the International Code Council (ICC) [16], and DesignCheck
[15].

Although different systems and methods have been proposed in the past to pursue
automated compliance checking, there are several limitations in the existing work: first,
the existing logic-based representation methods are overly sensitive to the expressions

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

of different types of information in building regulations, such as element definitions
and quantitative requirements for a building element. Second, with the revision and
update of building regulations, the update of the electronic representation and corre-
sponding checking logics imposed high requirements on the computing skills of users.
Third, building codes vary greatly among different countries and regions, so high de-
mands are placed on the scalability and comprehensiveness of the logic representation
method of an ACC system that tries to be widely applicable. Fourth, the existing auto-
mated compliance checking systems need some manual effort and support, and have
not achieved full automation. In this paper, the authors aim to help address the first
limitation.

2.2 Logic Programming Language

Logic programming languages use logic facts to represent facts that already exist and
define logic rules to conduct inferences based on the logic facts. As a declarative lan-
guage, it can be used to represent knowledge and allows machines to automatically
make inferences, so it is widely used in the field of artificial intelligence. Common
logic programming languages include Prolog, Answer Set Programming (ASP) and
Datalog. Among them, Prolog is the most commonly used logic programming lan-
guage. B-Prolog, as a high-performance implementation of Prolog, provides an effi-
cient and versatile logic programming system. It has been used to support different tasks
in the building construction domain such as building code compliance checking [5] and
modular construction analysis with robotics automation [17, 18]. There are three types
of logic statements in B-Prolog: facts, rules, and directives. Logic facts are defined in
the form of “p(argl,arg2,...,argn).”, where p is the name of the predicate, and
argl,arg2,...,argn are the arguments of the predicate. After the logic facts are defined,
they become the basis of machine reasoning in the logic programs. Logic rules are de-
fined in the form of “H:-B1,B2,...,Bn.”, where H is the head of the rule, B/, B2,...,Bn
represent the body of the rule, and :- is the operator for implication (i.e., it separates the
head from the body of a rule). The head of a rule is considered to be true when its body
part is evaluated to true. Logic rules define the rules for machine reasoning, and can
also be used as the constraint of reasoning. Therefore, B-Prolog is very suitable for
solving constrained optimization problems. Directives are defined in the form of “:-
B1,B2,...,Bn.”, which are mainly used to query the pragmatic information of the logic
facts through the inference process [19]. Built upon B-Prolog, Picat was created and
developed with logic programming concepts at the core. Picat builds a bridge between
declarative language and imperative language because it incorporates many features of
a declarative language, such as explicit unification, list comprehensions, constraints, as
well as many features from an imperative language, such as assignments and loops [6].

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

This makes Picat a simple and powerful language for various applications. Table 1

comparatively illustrates the syntaxes of B-Prolog and Picat used in this study.

Table 1. Syntaxes of B-Prolog and Picat

Meaning B-Prolog Picat
Conjunction S ,or &&
Disjunction ; sor ||
Negation not or \+ not or \+
Implication - =
Predicate predname(argl,arg2,...,argn). predname(argl,arg2,...,argn).
Rule predh(argl,arg2,...,argn):- Head,Cond=>Body. (Each takes
predl(argl,arg2,...,argn), the form pred-
pred2(argl,arg2,...,argn),..., name(argl,arg2,...,argn))
predm(argl,arg2,...,argn).
Function fun(argl,arg2,..., argn). fun(argl,arg2,...,argn) = re-
turn_value.
Foreach loop foreach(E1l in D1, ..., En in Dn, foreach(E1 in D1, Condl, ..., En in
LocalVars, Goal). Dn, Condn)
Goal
end.
If-then Cond -> Goal; Goalelse. if Cond1 then
Goall
elseif Cond2 then

Goal2

elseif Condn then
Goaln

else
Goalelse

end.

3 Proposed Information Representation and Reasoning
(InfoRR) Schema

Based on existing logic-based information representation and reasoning schemas pro-
posed in previous research [4,5], in this study, the authors proposed a new information
representation and reasoning (InfoRR) schema to leverage the most recent advancement
in logic programming for automated building code compliance checking. Compared to

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

the previous schemas in literature, the proposed new schema divided the information
representation into two parts: (1) the fundamental information elements, and (2) re-
quirements, which were represented and stored in the form of logic facts and logic rules
respectively. Fundamental information elements in this schema included instances that
describe design information and building code concepts, and both were represented and
stored in form of logic facts. The separate storage of logic facts and logic rules in the
new schema facilitates information searching, reasoning, and compatibility with differ-
ent logic programming implementations. Because both building code concepts and de-
sign information instances are represented in the form of logic facts, machines (i.e.,
logic reasoners) can automatically match and reason between the two under suitably
defined logic rules, thereby outputting whether an instance of design information meets
corresponding requirements of building regulations. In addition, the proposed new
schema added secondary functions to obtain the running time of the codes, facilitating
the comparison of different implementations. The structure of the proposed InfoRR
schema is shown in Figure 1. Figure 2 shows the compliance checking process of build-
ing design information (e.g., Instance 1) to regulatory information (e.g., Logic Rule 1)
under the proposed InfoRR schema. In this process, activation of logic rules is achieved
through functional calls. Once a logic rule is activated, the applicability of the instance
is checked by unification or pattern matching mechanism.

1 Logic Facts

| Building Design}
Information |

\r Compliance |
I Checking Rule |

Compliance/
Noncompliance

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

Figure 1. The proposed InfoRR schema

. No . Regulatory Information
—_— v i
Logic Ru,lé_l Activated Logic Ru% 2 | Database

v

No
Instance 1 Instance 2
l Yes

Automated Reasoning

Design Information
Database

Instance 1 is noncompliant with logic rule 1. ¢

Instance 1 is compliant with logic rule 1.

Figure 2. The compliance checking process of the proposed InfoRR schema

4 Experiment

The authors selected 20 building code requirements from Chapter 9 (“Fire Protection
System”) of the 2015 International Building Code [7] as the experimental basis. These
requirements are mainly concerning the dimensions or quantities of fire protection
equipment or related building elements. For each building requirement, the authors ex-
pressed the fundamental information elements with logic facts, wrote a corresponding
compliance checking rule, and designed multiple building design instances that either
comply with or violate the rule. Based on the logical analysis of the requirements, some
rules may have more than one way of being violated, in which case multiple noncom-
pliant instances would be created. The logic statements were implemented in both B-
Prolog and Picat. It should be noted that logic-based reasoning can be implemented
based on two assumptions: the open-world assumption and the closed-world

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

assumption. In the open-world assumption, true information is explicitly represented,
and any information that is not known to be true is treated as unknown. In contrast, in
the closed-world assumption, any information that is not known to be true is treated as
false. According to previous research [5], logic-based reasoning based on the closed-
world assumption is more suitable for automated compliance checking applications,
because it can achieve higher recall in noncompliance detection compared to that based
on the open-world assumption, which means that the probability of missing non-com-
pliant instances will be lower. Therefore, the experiments in this study were based on
the closed-world assumption.

Secondary functions were defined and used during the implementations to provide
functional support. For example, the built-in time counting function was used to record
the running time of the program, and other functions were defined to implement unit
conversions and quantity comparisons, etc. In addition, a loop function was defined in
the main program to run the program ten times and record the running time of each
time, to reduce the influence of random errors on the time measurement results. The
two versions of the program were written and run in the respective executable files of
B-Prolog and Picat, respectively, and output the checking results of 47 instances. The
distribution of 47 instances was summarized in Table 2. For example, the 2015 Inter-
national Building Code requires that the minimum dimension of exterior wall openings
should be no less than 30 inches (762cm) (Chapter 9 Provision [F] 903.2.11.1.1) [7]. In
this study, an exterior wall opening with a dimension greater than 30 inches and an
exterior wall opening with a dimension less than 30 inches were designed to comply
with and violate this rule, respectively, to test the effectiveness of the corresponding
compliance checking rule. Five of the selected requirements have two possible viola-
tion scenarios of the rule, so the authors designed 2 noncompliant instances for each of
these requirements. Chapter 9 Provision [F] 904.12.1 of the 2015 International Building
Code (i.e., “The manual actuation device shall be installed not more than 48 inches
(1200 mm) or less than 42 inches (1067 mm) above the floor and shall clearly identify
the hazard protected.”) [7] is an example of such requirement. Similarly, there is one
requirement that has 3 noncompliant instances as shown in Table 2 below.

Table 2. A summary of the distribution of 47 instances

Number of require- Number of compliant Number of noncompliant Total
ments instances instances

14 1 1 28

5 1 2 15

1 3 4

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

5 Results and Discussions

The proposed InfoRR schema was successfully implemented in B-Prolog and Picat,
and output compliance results for all instances correctly. In other words, both B-Prolog
and Picat versions achieved 100% accuracy. Figures 3 through 6 showed the screen-
shots of part of code implementations and corresponding checking results of design
instances corresponding to the same rule in B-Prolog and Picat. However, there was a
significant difference in their running times. It is evident from Figure 7 that the running
time of the B-Prolog version was about half of that of the Picat version. According to
Zhou et al. [6], the Picat version is supposed to be at least as fast as the B-Prolog version
because “the Picat compiler translates loops and list comprehensions into tail recursion,
which is further converted into iteration by tail-recursion optimization.” A tail recursion
is a special form of recursion where the function calls itself at the end of the function.
The Picat compiler can avoid allocating a new stack frame for a function through tail-
recursion optimization, thus consuming less memory space. The results in this study
seem contradictory to Zhou et al. [6]. However, the conclusion of Zhou et al. took the
implementation of Picat and B-Prolog on matrix multiplication as an example, and did
not involve the field of ACC [6]. At the same time, tail recursion was not used in the
code implementations in this study, which could be one of the reasons why the Picat
version was slower than the B-Prolog version. On the other hand, B-Prolog adopted
unification to select the applicable logic rule for a call, whereas Picat used pattern-
matching to execute logic rules. Pattern matching-based logic rules were fully indexed
in Picat, whereas B-Prolog clauses usually indexed only one argument [6]. This differ-
ence could be another reason why the Picat version was slower than the B-Prolog ver-
sion. However, the fully indexed feature gave Picat more scalability, which is reflected
in the fact that the order of the logic clause elements that represent building code re-
quirements did not affect the execution of the compliance checking in Picat. In B-
Prolog, however, changing the order of (building code) regulatory information elements
in a compliance checking rule could cause the rule to fail (to check). Figures 8 through
11 showed a comparison of the codes and outputs after changing the order of the regu-
latory information elements in the checking rule in B-Prolog. After the order of some
logic clause elements was changed (e.g., “greater than(Covered kiosks displays
_booths_concession_stands_or_equipment,quantityl2)” was changed to be the first el-
ement in this case), the program outputted an empty result, without explicitly indicating
whether the instances comply with or violate this regulatory requirement (see Figure
11). In contrast, the change of order of the logic clause elements had no effect on the
functionality of checking rules in Picat and the program could still output compliance
results of instances after the changes, which showed that Picat version was more relia-
ble and scalable.

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

expect ves8:—

findall ((Openings), (openings (Openings) , have
(Openings, A_minimum_dimension), greater than or eq
ual (A_minimum_dimension, quantity8),quantity

(A minimum dimension)),Xs)...

Figure 3. Part of code from the B-Prolog implementation of InfoRR

| ?- expect_yes8
openings8 1, is, compliant, with, section, 903, 2, 11, 1,
1, in, ibe, year2015

Figure 4. Sample output from the B-Prolog implementation of InfoRR

expect yves8=>

findal | ((Openings), (openings (Openings) , have
(Openings, A minimum dimension),greater than or eq
ual (A minimum dimension, quantity8),quantity

(A minimum dimension))) = Xs..

Figure 5. Part of code from the Picat implementation of InfoRR

Picat> expect_yes8
openings8 1, is, compliant, with, section, 903, 2, 11, 1,
1, in, ibc, year2015

Figure 6. Sample output from the Picat implementation of InfoRR

400
3293
2 f
3
3004
2
2
.—'é.
E 200 169.5
a2 Il
& I
E
£ 1004
0
B-Prolog Picat

Implementation Platform

Figure 7. The runtime of the B-Prolog and Picat versions of the experiment

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-
sity of Applied Sciences, Darmstadt, Germany, 72-84.

For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

expect yesl2:—

findall ((Automatic_sprinklers),
(automatic_sprinklers
(Automatic_sprinklers),installed

(Automatic sprinklers),in or under

(Automatic sprinklers,Covered kiosks displays boo
ths concession stands or cquipment),greater than
(Covered kiosks displays booths concession stands
_or_equipment,quantityl2),in_width
(in_width)),Xs). ..

Figure 8. Part of the code in B-Prolog

| 2= ecxpeet yesl?2
automatic sprinklersl? 1, is, compliant,with, sectio
n, 903, 3, 3, in, ibe, year2015

Figure 9. Sample output from the B-Prolog code in normal order

expect_yesl2:—

findall ((Automatic_sprinklers), (greater than
(Covered kiosks displays_booths concession stands
_or_equipment,quantityl2),in or under
(Automatic_sprinklers,Covered kiosks displays_boo
ths concession _stands or equipment),automatic spr
inklers(Automatic_sprinklers),installed
(Automatic_sprinklers),in width(in width)),Xs)...

Figure 10. Part of the code in B-Prolog after changing the order of the regulatory information
elements

| ?- expect_vesl2
ves

Figure 11. Sample output from the B-Prolog code after changing the order

6 Contributions to the Body of Knowledge

This study contributes to the body of knowledge in three main ways. First, a new infor-
mation representation and reasoning schema was proposed to harness the power of re-
cent advancement in logic programming while facilitating the comparison of different
implementation methods. Two logic programming languages (i.e., B-Prolog and Picat)
were used for ACC implementation under this schema, which showed that the proposed
schema was robust and scalable. Second, this study demonstrated that Picat was a more
feasible implementation method for information representation and automated reason-
ing of ACC. Although Picat-based implementation ran slower than B-Prolog-based im-
plementation currently, the former was less sensitive to the expression of different types

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

of regulatory information, and thus more reliable in the application of ACC. Last but
not least, this research revealed the implications of the different mechanisms behind the
different experimental results of the two implementations, and laid a solid foundation
for future work on logic programming-based information representation and reasoning
for ACC and for automation tasks in the architecture, engineering, and construction
domain in general.

7 Implications for Teaching

Although much research has been published on ACC processes such as [16,17], with
ongoing effort towards its improvement, little has been discussed about how to teach
students about this process. In general, due to the complex nature and interdisciplinarity
of this process, graduate students in advanced courses may be more exposed to this
topic. To this end, our experiment and our findings can be used as a basis for graduate
construction students researching ACC. Our motivation is to improve the ACC pro-
cesses using a practice-based approach. Therefore, by considering issues of reliability
of the results, along with the scalability and predictability of the process and comparing
different programming languages available, our experiment can be used as a case study
to discuss user-centered research and automation in construction.

8 Limitations and Future Work

The authors acknowledge the following limitations of this work. First, logic represen-
tation of regulatory information was implemented manually in this study. This process
varies as individuals may understand and express the same building code requirement
differently. Advanced artificial intelligence technologies, such as Natural Language
Processing (NLP), could be helpful for the automation of this encoding process and
reduction of the influence of individual differences and subjectivity. Second, the pro-
posed InfoRR schema was only tested on dimensional and quantitative requirements in
Chapter 9 of the 2015 International Building Code [7], and did not cover the other re-
quirements of this building code. In order to represent and reason about other types of
regulatory information, such as exceptions to a certain requirement and associations
between different requirements, more modules need to be developed and embedded in
the schema. Due to the complexity of logic relationship in building codes, the combi-
nation of multiple paradigm languages may need to be considered in the future. Third,
the scalability and reliability of Picat were demonstrated through experiments in this
paper, but the Picat-based implementation was not yet optimized with regard to its

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

running speed. Full applications of Picat with optimized performance in ACC need to
be further investigated in future research.

9 Conclusions

The logic representation and automated reasoning of building codes and regulations are
an important process in automated compliance checking. Based on previous work on
B-Prolog, this study proposed an InfoRR schema applicable to Picat, and successfully
applied the schema to the logic representation and automated reasoning of 20 building
requirement rules in the 2015 International Building Code [7] and 47 building design
instances. The proposed schema could accurately output compliance results for all de-
sign instances checked. Compared to the B-Prolog version, the Picat version took
longer to run, but was less sensitive to the order of regulatory information elements in
the compliance checking rules, meaning that Picat was more scalable and reliable in
supporting ACC. One reason behind the test results could be that B-Prolog uses unifi-
cation to select an applicable rule for a call, which usually only indexes one argument,
whereas Picat uses pattern matching to call the logic rules, which fully indexed all rules.
The result in this study provides preliminary conclusions for the potential application
of Picat in ACC compared to B-Prolog. More applications and tests of Picat in ACC
need to be explored in future research.

Acknowledgements

The authors would like to thank the National Science Foundation (NSF). This material
is based on work supported by the NSF under Grant No. 1827733. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

References

1. Zhang J, El-Gohary N M: Integrating semantic NLP and logic reasoning into a unified system
for fully-automated code checking. Automation in Construction, 73, 45-57 (2017).

2. Halpern J Y, Weissman V: Using First-Order Logic to Reason about Policies. ACM Transac-
tions on Information and System Security, 11(4), 21:1-21:41 (2008).

3. Kerrigan S, Law K H: Logic-based regulation compliance-assistance. Proceedings of the 9th
international conference on Artificial intelligence and law - ICAIL ’03. Scotland, United
Kingdom: ACM Press: 126, (2003).

4. Zhang J, El-Gohary N M: Automated Information Transformation for Automated Regulatory
Compliance Checking in Construction. Journal of Computing in Civil Engineering, American

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

Suggested Citation: Yang, F., Zhang, J., Chen, Y., and Debs, L. (2022). “A new
schema of logic representation and reasoning for automated building code
compliance checking.” Proc., Polytechnic Summit 2022, Darmstadt Univer-

sity of Applied Sciences, Darmstadt, Germany, 72-84.
For Final Published Version, please locate it at the 2022 GPEA Polytechnic Summit
Proceedings here: https://arrow.tudublin.ie/eutpresscon/2/

Society of Civil Engineers, 29(4), B4015001 (2015).

5.Zhang J, El-Gohary N M: Semantic-Based Logic Representation and Reasoning for Automated
Regulatory Compliance Checking. Journal of Computing in Civil Engineering, 31(1),
04016037 (2017).

6. Zhou N-F, Kjellerstrand H, Fruhman J: Constraint Solving and Planning with Picat. Cham:
Springer International Publishing (2015).

7. International Code Council. International Building Code 2015 IBC. Country Club Hills, Il1:
International Code Council (2014).

8. Zhou P, El-Gohary N: Domain-specific hierarchical text classification for supporting auto-
mated environmental compliance checking. Journal of Computing in Civil Engineering,
American Society of Civil Engineers, 30(4), 04015057 (2016).

9. Malsane S, Matthews J, Lockley S, et al: Development of an object model for automated com-
pliance checking. Automation in Construction, 49, 51-58 (2015).

10. Beach T H, Rezgui Y, Li H, et al: A rule-based semantic approach for automated regulatory
compliance in the construction sector. Expert Systems with Applications, 42(12), 5219-5231
(2015).

11. Rosenman M A, Gero J S: Design codes as expert systems. Computer-Aided Design, 17(9),
399-409 (1985).

12. Macit {lal S, Giinaydin H M: Computer representation of building codes for automated com-
pliance checking. Automation in Construction, 82, 43—58 (2017).

13. Xu X, Cai H: Semantic approach to compliance checking of underground utilities. Automa-
tion in Construction, 109, 103006 (2020).

14. Foo S T, Zhong Q: Construction and Real Estate NETwork (CORENET). Facilities, MCB
UP Ltd, 19(11/12), 419-428 (2001).

15. Eastman C, Lee J, Jeong Y, et al: Automatic rule-based checking of building designs. Auto-
mation in Construction, 18(8), 1011-1033 (2009).

16. Nawari N O: SmartCodes and BIM. American Society of Civil Engineers, 928-937 (2013).

17. Wong Chong O, Zhang J: Logic representation and reasoning for automated BIM analysis to
support automation in offsite construction. Automation in Construction, 129, 103756(2021).

18. Wong Chong O, Zhang J, Voyles RM, et al: A BIM-based approach to simulate construction
robotics in the assembly process of wood frames to support offsite construction automation.
Automation in Construction, 137, 104194 (2022).

197. Zhou N-F: B-Prolog user’s manual. Version, 7, pp. 1994-2012 (1994).

https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/
https://arrow.tudublin.ie/eutpresscon/2/

