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Abstract—Automating hardware design could obviate a signif-
icant amount of human error from the engineering process and
lead to fewer errors. Verilog is a popular hardware description
language to model and design digital systems, thus generating
Verilog code is a critical first step. Emerging large language
models (LLMs) are able to write high-quality code in other
programming languages. In this paper, we characterize the ability
of LLMs to generate useful Verilog. For this, we fine-tune
pre-trained LLMs on Verilog datasets collected from GitHub
and Verilog textbooks. We construct an evaluation framework
comprising test-benches for functional analysis and a flow to test
the syntax of Verilog code generated in response to problems of
varying difficulty. Our findings show that across our problem
scenarios, the fine-tuning results in LLMs more capable of
producing syntactically correct code (25.9% overall). Further,
when analyzing functional correctness, a fine-tuned open-source
CodeGen LLM can outperform the state-of-the-art commercial
Codex LLM (6.5% overall). We release our training/evaluation
scripts and LLM checkpoints as open source contributions.

Index Terms—Transformers, Verilog, GPT, LLM

I. INTRODUCTION

State-of-the-art hardware design flows use hardware de-
scription languages (HDLs) such as Verilog and VHDL to
specify hardware architectures and behaviors. However, the
process of writing HDL code is time-consuming and bug-
prone [1]]. As design complexity grows, there is a need to
reduce design costs and developer effort during hardware
specification. High-level synthesis tools enable developers to
specify functionality in languages like C but come at the
expense of hardware efficiency. A promising new approach is
the use of large language models (LLMs) [2] to automatically
generate code from natural language specifications. LLMs are
successful in generating code in languages like C and Python.
Their use in generating HDL code requires study.

LLMs are deep neural networks, typically based on trans-
former architectures, that aim to model the underlying dis-
tribution of a natural or structured language corpus. Given a
sequence of words (or “tokens”) LLMs predict a distribution
over the next word/token. Used in a loop, LLMs can complete
paragraphs in English starting with the first sentence, or code
from comments or initial lines of code.

We undertake the first comprehensive evaluation of the
syntactic and functional correctness of synthesizable Verilog
code generated by both open-source and commercial LLMs.
There are several challenges. First, baseline LLMs, including
GitHub Copilot which ostensibly generates code in many pro-
gramming languages including Verilog, frequently fail syntax,
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synthesis, and functional checks [3]. Fine-tuning LLMs on
a Verilog corpus can help, but requires a large dataset of
Verilog code which is lacking. Prior work trained models on
template-generated hardware specifications and corresponding
Verilog, but this is time-consuming and does not generalize
to unseen problems [4]. Finally, test problems and methods
to evaluate the syntactic and functional correctness of LLM-
generated code on a large scale are lacking.

Our paper contributes the following. (1) By consolidating
available open-source Verilog code as well as a selection of
textbooks about Verilog, we create (to the best of our knowl-
edge) the largest training corpus of Verilog code yet used for
training LLMs. (2) Using this corpus, we examine fine-tuning
five different pre-trained LLMs models with parameter counts
ranging from 345M to 16B, producing five new fine-tuned
models specialized for Verilog. (3) To evaluate the efficacy of
the models and determine the effect of the parameter sizes, we
design a set of Verilog coding problems with varying difficulty
levels, and corresponding test benches to test the functional
correctness of generated code. Open source: We provide the
training/evaluation cod¢l] and LLM checkpoint{’]

illustrates our experimental platform for studying
the impact of parameters such as temperature, number of
sequences generated per problem, and number of LLM pa-
rameters. discusses creating the training data from
GitHub and PDFs of Verilog textbooks (1) with pre-processing
(2 and the five pre-trained LLMs (3) that we fine-tune @ for
completing Verilog code (5). explains the evalua-
tion setup, including our hand-designed prompts (6).
presents our results from generating code suggestions (7) and

evaluating with an analysis pipeline that compiles the Verilog
and checks it against unit tests (8). [Section VI discusses how

Uhttps://github.com/shailja-thakur/VGen
Zhttps://huggingface.co/shailja
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our evaluation shows that the largest code-based LLMs (i.e.,
CodeGen-16B) fine-tuned on our Verilog corpus outperforms
all other evaluated LLMs. Qualitatively, our best-performing
LLMs can generate functioning code for challenging problems.

II. BACKGROUND AND RELATED WORK
A. Background

Transformer-based deep neural networks [5]] have demon-
strated impressive ability in myriad domains, including
language-related tasks. Inputs to LLMs are in the form of
tokens— a set of common character sequences where each
has a unique numeric identifier using a byte pair encoding [6].
Given a sequence of tokens as an input prompt, the LLM
outputs a probability distribution over the vocabulary for the
next token given the prompt. A token is picked from this
distribution, often the most likely token, appended to the
prompt, and this sequence is fed back to the LLM, yielding
a new token. This is repeated to generate a completion, a
sequence of tokens that completes the input prompt.

LLMs for code are trained on a corpus of code in a target
programming language or sometimes even on a mix of source
code files in various languages. Dataset sizes can often be on
the order of hundreds of gigabytes. Prompts for these LLMs
can be in the form of comments, code snippets, or both. An
LLM trained on a mix of programming languages will often
(implicitly) infer the language from the prompt.

LLMs are expensive to train from scratch due to their
large datasets and massive parameter counts. However, pre-
trained LLMs can be specialized for a user task by fine-tuning
them on a specialized dataset. Fine-tuning is significantly
faster than training from scratch because it only requires a
small number of training epochs. Several LLMs pre-trained
for both natural language and code either make the weights
available, like NVIDIA’s MegatronLM [7|] or Salesforce’s
CodeGen models [§]], or provide fine-tuning through an API,
like AI21studio’s Jurassic-1 (J1) models

B. Prior Work

Programming is challenging, given the need for human
designers to interpret and transform natural language speci-
fications into programming structures. This motivates the use
of natural language processing (NLP) to transform language
to code [9]. Hardware design using Verilog HDL is similar
to programming. Prior work explored NLP techniques for
generating assertions [[10f], albeit on a small scale. Pearce et al.
trained DAVE, a small LLM to produce Verilog snippets from
template-based natural language descriptions for a limited set
of functions [4]]. GitHub’s Copilot was evaluated for security
bugs produced during out-of-the-box Verilog completions [3[]
and was found to be lacking. This study is a large-scale
exploration of the capabilities of LLMs across more design
tasks using an automated evaluation framework. There is no
open dataset to train and evaluate LLMs on writing Verilog.

3https://studio.ai21.com/docs/jurassic1-language-models/
#general-purpose-models

TABLE I
BASELINE LLM ARCHITECTURES USED IN OUR STUDY.

Model-Parameters / Laver Head Em- Context
Pre-Training Data ayers caas bed. Length
MegatronLM-355M (7] /

NL (121, [T3] 24 16 64 1024
J1-Large-7B! / NL [/14] 32 32 128 4096
CodeGen-2B [8] /

NL [T5]. Code 32 32 80 2048
CodeGen-6B / NL [15], 33 16 256 2048
Code

CodeGen-16B / NL [15], 34 24 256 2048
Code

code-davinci-002 [2] /

NL [T4], Code NA NA NA 8000

III. LLM TRAINING

We describe our method for training (or fine-tuning) LLM
models. We begin by describing our curated Verilog datasets,
followed by the LLM architectures and fine-tuning method.

A. Verilog Training Corpus

Our primary Verilog training corpus comes from open-
source Verilog code in public GitHub repositories. Addition-
ally, we also created a dataset of text from Verilog textbooks to
understand whether that further improved LLM performance.

a) GitHub Corpus: We use Google BigQuery to gather
Verilog repositories from GitHub, where it has a snapshot of
over 2.8 million repositories. We use a query that looks for
keywords such as “Verilog” and files with ‘.v’ extension. We
de-duplicated files (using MinHash and Jaccard similarity met-
rics [11]) and filtered files by keeping ‘.v’ files that contain at
least one pair of module and endmodule statements. Finally,
we filtered large files (number of characters > 20K). The
training corpus from GitHub yielded ~50K files / ~300 MB.

b) Verilog Books Corpus: We downloaded 70 Verilog-
based textbooks from an online e-library in PDF format, then
extracted text using the Python-based tool pymuPDF which
uses optical character recognition to extract text. Depending
on the quality of the PDF, the text quality varies. We cleaned
the text by filtering irrelevant passages (e.g., index, preface,
and acknowledgments) and used regular expressions such
asS: module(.*\n*\s*\t*) (\Q ((?!module) (?!endmodule) . *\W*) *endmodule
to identify blocks of prose and associated Verilog snippets.
From these blocks, overlapping sliding windows were used
to produce training examples. The final Verilog corpus of
textbook-extracted and GitHub code had a size of 400 MB.

B. Baseline LLM Architectures

Table [I| shows the LLMs we used and summarizes design
parameters, including the number of layers, heads, embedding
size (head dimension), context length, and the data source
(natural language (NL) and/or code). As code-davinci-002 is
derived from GPT-3 [2]], its architecture is the same as GPT-3.
Its exact parameters are not known, so we leave these as NA.
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TABLE II
PROBLEM SET

Prob. #  Difficulty Description

1 Basic A simple wire

2 Basic A 2-input and gate

3 Basic A 3-bit priority encoder

4 Basic A 2-input multiplexer

5 Intermediate A half adder

6 Intermediate A 1-to-12 counter

7 Intermediate  LFSR with taps at 3 and 5

8 Intermediate  FSM with two states

9 Intermediate  Shift left and rotate

10 Intermediate  Random Access Memory

11 Intermediate ~ Permutation

12 Intermediate  Truth table

13 Advanced Signed 8-bit adder with overflow
14 Advanced Counter with enable signal

15 Advanced FSM to recognize ‘101’

16 Advanced 64-bit arithmetic shift register
17 Advanced ABRO FSM*

*from Potop-Butucaru, Edwards, and Berry’s “Compiling Esterel”

C. LLM fine-tuning

We fine-tune five LLMs from [Table T on our Verilog training
datasets. Training the CodeGen LLMs was challenging due to
the large number of parameters. At 16-bit precision, CodeGen-
16B’s parameters alone occupy 30 GB of GPU memory;
fine-tuning additionally requires sufficient GPU memory to
store optimizer states and intermediate calculations, requiring
around 250GB across multiple GPUs. We use model and data
parallelism and strategies for sharding the optimizer states
across GPUs by basing our implementation on DeepSpeedE]
We set the training hyperparameters to their defaults. The
CodeGen LLMs (2B, 6B, 16B) are fine-tuned for 1 epoch
on an HPC cluster with two RTX8000s, four RTX8000s, and
three A100s, and training completes in two, four, and six days,
respectively. Megatron-LM 1is fine-tuned for 9 epochs using
one RTX8000 for 15 hours using the default configuration [/7].
We use the off-the-shelf AI21 studio for fine-tuning J1-Large.

IV. LLM EVALUATION SETUP

The LLM input is a prompt from the problem set in
We truncated generated code at keywords end
and endmodule and checked for compilation and functional
correctness. We compile Verilog with Icarus Verilog v11.0.

A. The Problem Set

We created 17 Verilog problems inspired by classroom
exercises and examples from the HDLBits websiteE] We assign
a difficulty level for each problem (see [Table TI). The problem
set covers combinational and sequential logic designs. It
has three finite state machines with different requirements,
operations such as permutation, shift left, and rotate, and
basic blocks like a MUX, RAM, LFSR, adders, and counters.
Examples for basic, intermediate, and advanced problems
are shown in Fig. P}f4] respectively. They are obtained using
CodeGen-16B-FT and edited for visualization and brevity.

4https://huggingface.co/docs/transformers/main_classes/deepspeed
Shttps://hdlbits.01xz.net/wiki/Problem_sets

1| // This is a 3-bit priority encoder.
position of the first high bit.
2| module priority_encoder (input[2:0] in,output reg[1:0]
pos);

none of the input
zero), output zero.
// assign the position of the highest bit of in to

It outputs the

3| /7 If bits are high (i.e., input is

pos.

(a) Prompt

1| always @(in)

2| if (in == 0) pos <= 2'h0;

il else if (in[0]) pos <= 2'h0;
4| else if (in[l]) pos <= 2'hl;
5| else pos <= 2'h2;

6| endmodule

(b) Correct completion

1| always @(in) begin

2| case(in)

3l 3'b000: pos=2'b00;
4 3'b001: pos=2'b0Ol;
5| 3'b010: pos=2'bl0;
6| 3'b011: pos=2'bll;
7| default: pos=2'b00;

(c) Incorrect completion. Positions are offset by 1.

Fig. 2. Basic example - Problem 3: A 3-bit priority encoder

=

1| // This is a counter that counts from 1 to 12
2| module counter(input clk,input reset,output reg[3:0] q);

(a) Prompt

1| always @(posedge clk) begin
2| if(reset) q <= 4'dl;

3| else begin

| if(q == 4'd12) q <= 4'dl;

sl else q <= q + 4'dl;

(b) Correct completion

1| always @ (posedge clk) begin
2| if (reset) q <= 4'dl;

3| else begin

1q<=q + 4'dl;

5| end end endmodule

(c) Incorrect completion. Counter does not stop at 12.
Fig. 3. Intermediate example - Problem 6: A 1 to 12 counter

B. Input parameters

Each LLM query has a prompt, a sampling temperature (),
and a number of completions/prompt (n).
Prompts: We provide three prompts with increasing detail,
i.e., low (L), medium (M), and high (H). Prompt L has an
initial comment describing the function of the module and
the module header with name and inputs/outputs with types.
We declare internal signals. M includes L plus comments that
describe the function using signal names. H replaces and/or ap-
pends comments in M with more detail and resembles pseudo-
code instead of a predominantly natural language specification.
is an example for Problem 15. L has no lines highlighted
(the prompt is lines 1-4). M includes L and lines highlighted
yellow (the prompt is lines 1-8). H includes M and lines in
gray (the prompt is lines 1-15).
Sampling temperature (t): A higher value means that the
LLM takes more risks and yields more creative completions.
We use t € {0.1,0.3.0.5,0.7, 1}.
Completions per prompt (n): For each prompt, LLM gen-
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1| // This is an FSM
2| // It outputs I when | is received for signals a and b
irrespetive of their order, either simultaneously or
non—simultaneously .
3| module abro(input clk,input reset,input a,input b,output
z);
| parameter IDLE = 0, SA = 1, SB = 2, SAB = 3;
s|reg [1:0] cur_state ,next_state;
6| // Update state or reset on every clock edge
7\ // Output z depends only on the state SAB
8| // The output z is high when cur_state is SAB
9| // cur_state is reset to IDLE when reset is high.
Otherwise, it takes value of next_state.
10| //Next state generation logic:
1| //If cur_state is IDLE and a and b are both high, state
changes to SAB
12| //If cur_state is IDLE,and a is high,state changes to SA
13 //If cur_state is IDLE,and b is high,state changes to SB
14| //If cur_state is SA,and b is high,state changes to SAB
15| //1f cur_state is SB,and a is high,state changes to SAB
16| //If cur_state is SAB, state changes to IDLE
(a) Prompt
1| // Implements an FSM in Verilog
2| always @(posedge clk or posedge reset) begin
;| if (reset) cur_state <= IDLE;
4] else cur_state <= next_state; end
5| always @(cur_state or a or b) begin
6| case(cur_state)
7| IDLE: begin
s] if (a && b) next_state = SAB;
9l else if (a) next_state = SA;
0| else if (b) next_state = SB; end
11| SA: begin
12| if (b) next_state = SAB;
13| else next_state = SA; end
14| SB: begin
15| if (a) next_state = SAB;
6| else next_state = SB; end
17| SAB: begin
18| next_state = IDLE; end
19| default:
20| next_state = IDLE; endcase end
21( // Output logic:
22| // Output z is high when cur_state is SAB
23{ // Output z is high when cur_state is IDLE and a and b
are both high
24| // Output z is low otherwise.
25| assign z = (cur_state == SAB || (cur_state == IDLE && a
&& b))
26| endmodule
(b) Correct completion
I SAME AS (b) TILL LINE 24 ...
2| assign z = (cur_state == IDLE & a && b) || (cur_state
3| == IDLE && a);
| endmodule

(c) Incorrect completion. Output is not assigned to state SAB.
Fig. 4. Advanced example - Problem 17

erates n completions where n € {1,10,25}. For J1-Large, we
skip n = 25 because they do not support this value.
max_tokens: The maximum number of tokens generated for
each completion was set to 300 for all LLMs except J1-Large.
For J1-Large the limit is 256. Nucleus sampling probability
mass (top p) was set to the default value of 1.

C. Test benches

We developed a test bench to check each solution’s func-
tional correctness. The test benches exercise the designs for
corner cases and are exhaustive for basic and some inter-
mediate cases. For the remaining cases, the test benches
are analogous to unit tests. This keeps the evaluation time

// This is a finite state machine that recognizes the
sequence 101 on the input signal x.
module adv_fsm(input clk, input reset, input x, output z);

reg [1:0] present_state , next_state;
parameter IDLE=0, S1=1, S10=2, S101=3;

// output signal z is asserted to | when present_state is
/1 S101

// present_state is reset to IDLE when reset is high,

/! otherwise it is assigned next state

// if present_state is IDLE, next_state is assigned SI if
// x is 1, otherwise next_state stays at IDLE

// if present_state is SI, next_state is assigned SI10 if

// x is 0, otherwise next_state stays at IDLE

// if present_state is S10, next_state is assigned S101 if
// x is 1, otherwise next_state stays at IDLE

// if present_state is S10l, next_state is assigned IDLE

Fig. 5. Varying the prompt details: Low, Medium and High. Problem 15.

reasonable, e.g., for the RAM module, the data width is 8
and the address width is 6 in the prompt; an exhaustive test
bench requires 2'* test inputs. In some cases, specifications in
the prompts are ambiguous and thus can yield several correct
responses. For example, when one does not specify whether a
reset should be synchronous or asynchronous.

V. LLM EVALUATION AND RESULTS
A. Research Questions

We answer research questions (RQs) regarding the quality
of Verilog generation given the scenarios and test benches
from Section RQ1. How well do ‘base’ LLMs perform
on the Verilog generation set? RQ2. Does fine-tuning LLMs
improve that performance? RQ3. Are larger LLMs with more
parameters better? RQ4. Does variability in problem descrip-
tion impact quality and the number of correct completions?

B. Results

We measure generated code quality using problem sets
described in [Section IVl A scenario is a combination of
problems across difficulties and description levels. We query
the models with all prompt X ¢ X n combinations. For
fairness, we present each model’s “best results” by focusing
on the completions generated with the ¢ for each model for
which their completions were most successful at compiling
and passing the functional tests (for each problem difficulty
and description level). We present these best results for n = 10

in [Table II1] and [Table 1V] shows the proportion of

completions that compile and shows the proportion
of completions that pass functional tests, for the completions

produced by a given temperature setting that resulted in the
most successful completions for each scenario. As in prior
work [8], we characterize the model performance with the
Pass@k metric, where k is the number of problems in a
scenario times n, the number of suggestions per problem. A
higher Pass@Fk indicates a relatively ‘better’ result. For com-
pilation (Table TII), the Pass@k metric reflects the proportion
of completions that compile. For functional tests, this metric
is the fraction of the k code samples that pass.

For interest, Table m reports the inference time for each
LLMs query, including communication time with a remote
server if required. Note that the results are after fine-tuning the




TABLE III
PASS @ (SCENARIO*n) AT n=10 FOR COMPILED COMPLETIONS
(PASS=COMPILING), PT = PRE-TRAINED, FT = FINE-TUNED. BOLD
REFLECTS THE (BEST) HIGHEST PERFORMANCE FOR THAT DIFFICULTY.

Model Model Type Basic Intermediate =~ Advanced
MegatronLM-345M g 8:328 8:(3)8(1) 8:?2(5)
CodeGen-2B g 8(9)3(2) 8(6)?2 g ;;g
CodeGen 68 oo 06 05
IiLarge T8 T 0w oas o
CodeGen-16B g g;?é 8;2; 8?32
code-davinci-002 PT 0.847 0.452 0.569

model using the training corpus from GitHub only. We discuss
the case for fine-tuning on GitHub and PDFs combined as
an ablation study in the discussion. Fine-tuned CodeGen-16B
LLM outperforms all LLMs. All fine-tuned LLMs outperform
their pre-trained counterparts. [Ans. RQ1 and RQ2].
Completions vs. Temperature (t): summarizes the
Pass @(scenario*n) metric for our experiments sweeping tem-
perature. Pass @ (scenario*10) has the highest value for t = 0.1
and degrades exponentially with temperature. The LLM gen-
erates accurate solutions at low temperatures and accurate
synthesizable codes are expected from fewer candidates.
Completions vs. # Completions/Prompt (n): We study syn-
thesis quality as a function of completions/prompt. The right-
hand panel in shows the Pass@(scenario*n) for all
LLMSs. Pass@(scenario*1) is better than Pass @ (scenario*10).
This improves as the number of completions increases. This
is the case because the number of candidate solutions at low
temperatures increases, increasing the completions passing the
test benches. n = 10 is good for all problem difficulty levels.
Completions vs. LLM Size: and [7] show that LLMs
with more parameters (CodeGen-16B, code-davinci-002) out-
perform LLMs with less parameters such as Megatron-355M
and CodeGen-2B. These LLMs yield more completions that
pass test benches and more correct completions. [Ans. RQ3].
Completions vs. Prompts: Prompt quality impacts the LLM
generation quality. We study the effect of variations in the
prompt description at two levels: How do the difficulty of the
prompt and the description of the prompt impact code comple-
tions? We use Pass@(scenario*10) as the metric. The right-
hand side panel in shows that the Pass@(scenario*10)
decreases with increasing prompt difficulty. Simple problems
such as AND are easy to translate to Verilog, as opposed to
advanced problems such as LFSR. The left-hand side panel in
[Fig. 7] shows that the number of correct solutions decreases
with terse prompts. [Ans. RQ4].

VI. DISCUSSION AND LIMITATIONS

Fine-tuned LLMs generate code that compiles better when
compared to the pre-trained LLMs (Table IV). Using the best
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Pass@(scenario*10) values, only 11.9% of the completions
generated by pre-trained LLMs compiled vs. 64.6% of those
by fine-tuned LLMs. Thus, a designer may use these LLMs
with text/pseudo-code to generate a syntactically-correct de-
sign “skeleton”, and tweak it to meet functional requirements.

We used test benches to assess the generated Verilog.
These test-benches are comprehensive for the Basic problems,
but as the problems become more complex, the test-benches
cover only those behaviors fully specified in the problem
comments. As LLMs tend to provide similar responses when
several completions per prompt are requested, the exact test-
bench implementation can have a large impact on how many
cases pass. We observe this in the LLMs’ responses to FSM
problems 8, 15, and 17. As the problem comments do not
specify whether the reset is synchronous/asynchronous, the
LLMs are free to produce any variation. For all problems, we
verify whether an active-high reset results in the correct value
at the output, but we do not test the asynchronous/synchronous
corner case nor other similar edge conditions.

The best-performing LLM (CodeGen-16B (FT)) performed
poorly for some problem sets. For any given problem,
CodeGen-16B (FT) produced 540 completions, but for Prob-
lems 7 (LFSR) and 12 (Truth table), none passed, and for
Problem 9 (Shift and Rotate), only one passed. We inspected
the completions and observed that for Prob. # 7, the LLMs
did not concatenate the most significant bits with the feedback
value. This was the problem in most cases and a better prompt
might yield a correct result. This indicates the importance
of creating the best prompt, pointing to prompt engineering
as future work. For Prob. #9, completions either do not



TABLE IV
PASS @ (SCENARIO*n) AT . =10 FOR TEST BENCH PASSING COMPLETIONS (PASS=PASSED FUNCTIONAL TESTS), PT = PRE-TRAINED, FT =
FINE-TUNED. BOLDED VALUE IN EACH TEST COLUMN REFLECTS THE (BEST) HIGHEST PERFORMANCE FOR THAT PROBLEM SET AND DIFFICULTY.

\ Basic Intermediate Advanced
Model Model Inference

Type Time (s) | L M H | L M H | L M H
MeeatronL.M-355M PT 3.628 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000
cgatrontAl- FT 0.175 0.170 0591 0245 | 0.043 0.018 0.025 | 0.000 0.00 0.000
CodeGen-2B PT 1.478 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000 0.016 0.020
FT 0.665 0.835 0.350 0.630 | 0.130 0.092 0.163 | 0.132 0.048 0.068
CodeGen-6B PT 2.332 0.000  0.000 0.000 | 0.000 0.000 0.013 | 0.000 0.000 0.000
FT 0.710 1.000 0.500 0.760 | 0.135 0.150 0.168 | 0.284 0.164 0.164
J1-Laree-7B PT 7.146 0.044 0.058 0.067 | 0.000 0.000 0.021 0.000  0.000  0.000
g FT 2.029 0.388 0.283 0.342 | 0.125 0.075 0.200 | 0.000 0.000  0.000
CodeGen-16B PT 2.835 0.000 0.085 0.055 | 0.035 0.003 0.045 | 0.012 0.000 0.016
FT 1.994 0.745 0720 0.745 | 0.213 0.270 0.255 | 0.246 0.290 0.294
code-davinci-002 PT 3.885 \ 0.520 0.685 0.775 \ 0.175 0.200  0.150 \ 0.156 0.184  0.344

cover all values of the shift or assign incorrect bit positions. [2] M. Chen et al, “Evaluating Large Language Models Trained

For Prob. #12, completions are close to the actual solution
by using all input values in assign statements but fail to
form correct expressions between input bits. This suggests
insufficient diversity in the training corpus.

Next, we study the impact of the training corpus on LLM
fine-tuning. We conduct an ablation study using (a) CodeGen-
16B fine-tuned with GitHub verilog repositories only and
(b) CodeGen-16B fine-tuned with Verilog from Github and
textbooks. The Pass @ (scenario*10) for (a) and (b) show that
option (b) is marginally better (1.4%) than (a). This is the case
because the Verilog corpus from PDFs adds more examples
and this helps the LLM to generalize to Verilog.

VII. CONCLUSIONS

This paper describes a new paradigm for automatically
generating and verifying Verilog from LLMs. Using the pre-
sented Pass@(scenario*n) values from Tables m-lr_VI, pre-
tuned LLMs produced completions that are functionally cor-
rect only 1.09% of the time. This number increases to 27.0%
after tuning, showing a clear benefit to fine-tuning LLMs over
a specific language. The fine-tuned CodeGen-16B LLM was
the most successful in completions with respect to functional
correctness. Overall it produced functionally correct code
41.9% of time, whereas the commercially available state-
of-the-art (non-fine-tuned) code-davinci-002 LLM produced
functionally correct code 35.4% of time.
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