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Let V C [n] be a k-element subset of [n]. The uniform distribution on the 2 strings
from {0,1}™ that are set to zero outside of V is called an (n,k)-zero-fixing source. An e-
extractor for (n,k)-zero-fixing sources is a mapping F': {0,1}" —{0,1}™, for some m, such
that F(X) is e-close in statistical distance to the uniform distribution on {0,1}™ for every
(n, k)-zero-fixing source X. Zero-fixing sources were introduced by Cohen and Shinkar
in [7] in connection with the previously studied extractors for bit-fixing sources. They
constructed, for every u >0, an efficiently computable extractor that extracts a positive
fraction of entropy, i.e., £2(k) bits, from (n,k)-zero-fixing sources where k> (loglogn)?*#.

In this paper we present two different constructions of extractors for zero-fixing sources
that are able to extract a positive fraction of entropy for k£ substantially smaller than
loglogn. The first extractor works for k&> C'logloglogn, for some constant C. The second
extractor extracts a positive fraction of entropy for k>1log n for any fixed i €N, where
log® denotes i-times iterated logarithm. The fraction of extracted entropy decreases with
i. The first extractor is a function computable in polynomial time in n; the second one is
computable in polynomial time in n when k <aloglogn/logloglogn, where « is a positive
constant.

Our results can also be viewed as lower bounds on some Ramsey-type properties. The
main difference between the problems about extractors studied here and the standard
Ramsey theory is that we study colorings of all subsets of size up to k£ while in Ramsey
theory the sizes are fixed to k. However it is easy to derive results also for coloring of
subsets of sizes equal to k. In Corollary 3.1 of Theorem 5.1 we show that for every [ €N
there exists 8 < 1 such that for every k and n, n < expl(k), there exists a 2-coloring of
k-tuples of elements of [n], ¥: (")) — {~1,1} such that for every V C [n], |V| = 2k, we
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have |- v, x)= P(X)] < G* (2:) (Corollary 3.1 is more general — the number of colors
may be more than 2).

1. Introduction

The theory of randomness extractors, a field in theoretical computer science,
is closely related to Ramsey theory, a classical field in finite combinatorics.
The best example of such a connection is the polynomial time construction of
graphs [1,2] that gets very close to the bound on Ramsey numbers for graphs,
the bound for which we do not have a proof based on explicit constructions.
In this paper we study a problem about a certain type of extractors and
answer some questions about their existence posed in [7,6]. These questions
can also be stated in purely combinatorial terms and thus our results can
be viewed as results in Ramsey theory (see Corollary 3.1). Although we
use some concepts and results from Ramsey theory in our proofs, it was
important to view these questions through the lens of extractors. In this
respect this is similar to [1,2], where breakthrough results in combinatorics
of graphs were obtained by studying extractors.

In this introduction we will describe our results only in terms of the
concepts used in the theory of extractors and defer describing the Ramsey
theoretical interpretation to Section 3. A randomness extractor is, roughly
speaking, a function F' that maps n bits to [ bits, where [ < n in such a
way that for every distribution X from some class of distributions on n-
bit strings, the output F(X) is close to the uniform distribution on [-bit
strings. A necessary condition for the existence of an extractor is that the
entropy of the sources is > [ — o(l). If the only condition on the sources
of randomness is a lower bound on their entropies, then F' needs a few
additional truly random bits, called a random seed, as a part of input. There
are many interesting classes of sources for which no additional random bits
are needed for their extractors; such extractors are called deterministic (in
order to distinguish them from those that do need random seeds, which
are called seeded extractors). Examples of sources for which deterministic
extractors have been constructed are sources that consist of two, or several,
independent parts, affine sources, which are uniform distributions on affine
subspaces of Fy of a given dimension, bit-fixing sources where all bits are
fixed except of bits on some subset V C[n], |V|=Fk, where the bits are truly
random (these are special cases of affine sources of dimension k), and zero-
fixing sources, which are a special case of bit-fixing sources where all fixed
bits are zeros. (For a precise definition of the last two concepts, see the next
section.)
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Bit-fixing sources were introduced in the 1980s, see [18,3,5]. Initially,
the study of these sources was connected to applications in cryptography,
communication complexity and fault-tolerant computations. More recently,
applications of bit-fixing sources were found in proving lower bounds on the
formula size and designing compression algorithms.

In [15] Kamp and Zuckerman proved that for every n and k <n there
exists an extractor that extracts (% —0(1)) log k bits of entropy. Cohen and
Shinkar have shown in [7] that in general one cannot extract more entropy.
This is because the Ramsey Theorem implies that if n is sufficiently large
w.r.t. k, then for any coloring of subsets of size at most k, there exists a
subset V', |V| =k, such that for every [ <k, the color of all [-subsets is the
same. Since almost all subsets of V have cardinalities between k/2—O(v'k)
and k/2+0(V/k), only colors in this range occur with non-negligible proba-
bilities.

The first construction of an extractor for (n,k)-bit-fixing source with
k=o(n) that outputs k*(1) bits is due to Kamp-Zuckerman [15]. This was
improved to k=log®n, for some ¢, by Gabizon, Raz and Shaltiel [11]. Their
extractor also outputs almost all entropy bits, i.e., (1 —o(1))k bits. More
recently, Cohen and Shinkar found a construction for k= (1+0(1))loglogn
with k£ — O(1) output bits, however, their construction gives only functions
computable in quasipolynomial time [7].

In the same paper, Cohen and Shinkar proposed to study zero-fixing
extractors. Their motivation was twofold. First, impossibility results for the
existence of zero-fixing extractors are also impossibility results for bit-fixing
extractors. Second, constructing zero-fixing extractors seems to be an easier
task, which may eventually help us to construct extractors for bit-fixing
sources. Cohen and Shinkar were able to find a polynomial time construction
of an extractor for (n,k)-zero-fixing sources with k = (loglogn)?™#, u > 0,
and (2(k) output bits (i.e., they gave a polynomial time construction in
the regime where only quasipolynimal time constructions are known for bit-
fixing sources). Another reason for studying extractors for zero-fixing sources
is that they are related to problems studied in Ramsey theory.

In this paper we will present two polynomial time constructions of extrac-
tors that produce §2(k) bits for zero-fixing sources where k can be essentially
smaller than loglogn. Prior to our work even the existence of such extrac-
tors had not been known. (Note that for k=o(loglogn) a random function
is not an extractor for (n,k)-zero-fixing sources.)

Our first construction, presented in Section 4, is based on a variant of
the stepping-up lemma of Erdés and Hajnal [9,12]. The stepping up lemma
is a construction that from colorings of k-tuples without monochromatic
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sets, constructs colorings of k + 1-tuples without monochromatic sets on
exponentially larger sets. Our construction produces from extractors for bit-
fixing sources, extractors for zero-fixing sources on exponentially larger sets.

Our second construction, presented in Section 5, is based on shift graphs
S(n,l) which are certain graphs defined on [-tuples of elements of [n]. They
were first studied by Erdds and Hajnal [9], who proved that the chromatic
number of S(n,l) is < log"=Y n. We use this coloring to define the first stage
of our extractor which condenses a positive fraction of the entropy to a set
of size §k, for some § >0. The resulting distribution is very much like a bit-
fixing source, so we can apply a random function to obtain a distribution
close to the uniform. Finding such a function requires a brute-force search,
but if & is small enough, this can be done in polynomial time. (It is possible
that some explicit constructions of extractors for bit-fixing sources can be
adapted to these more general sources and thus the brute-force search can
be avoided.)

These two constructions together with the previous one mentioned above
[7] show that for every i >1, there is an extractor for (n, k)-zero fixing sources
for k> log(i) n; the extractor is computable in time polynomial in n from the
input (n,k).

We note that the corresponding problem for bit-fixing extractors remains
widely open and seems very difficult, because for bit fixing sources, we lack
any methods, while for zero-fixing sources, we were able to use techniques
from Ramsey theory. In order to solve the open problems about extractors
for bit fixing sources, it will be necessary to generalize Ramsey theorems to
so-called daisies (we will define these combinatorial structures in Section 3).

Finally, in Section 6 we prove an upper bound on the amount of en-
tropy that can be extracted from small zero-fixing sources. According to this
bound, if i <(1—o0(1))k, then a loss of approximately i —1 bits of entropy is
inevitable if k£ < log(i) n. Instead of using the Ramsey theorem as a black box,
we use its proof streamlined for our purpose. This way we get, in particular,
a better bound on the relation of n and k for which only (% — 0(1)) log k bits
can be extracted than the bound proved in [7]. That said, the upper and
lower bounds are still very far apart. In fact, even in the case of k being
the triply iterated logarithm there is a huge gap: the upper bound on the
entropy gives approximately k— 2, while our constructions only give ek for
a fairly small € >0.
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2. Notation and definitions

We will mostly use standard notation. For a positive integer n, [n] denotes
the set {1,...,n}. For a set V and a positive integer k, (Z) (respectively
( <Vk)) denotes the set of all subsets of V' of cardinality & (at most k), and

P(V) denotes the power set of V. For sets X,Y CN, X <Y means that
max X <minY. We say that o € {0,1,}" is a partial vector, or a restriction,
and pe{0,1,*}" is its extension, if p;=0; for every i such that o; #*. Here,
p may be a total vector, i.e., a vector without any *s. We denote by

.T‘/E

exp,(x) :=r" — tower of i rs,

the iterated exponential. We will omit 4 if it is equal to 1. All logarithms in
this paper are in base 2. We denote by log(i) x the ¢-times iterated logarithm,
and log*x stands for the least ¢ such that log(i)x < 1. The entropy of a
random variable X : £2— R is defined by

1

H[X]:= ) Prob[X =r]log Brob[X =1

reR
Note that H[X] < log|R|, with equality iff the values of X are uniformly
distributed. The total variation distance of probability measures p and v,
often called the statistical distance, is defined by

Aps) 1= 5l = vl = 5 3 le) = vl

Let px denote the probability distribution on R defined by upx(r) :=
Prob[X = r|, where R is the range of X, and let Ur denote the uniform
distribution on R. An important parameter in the theory of extractors is
the distance of the probability distribution generated by a random variable
X from the uniform distribution on the range of X:

1 _
d(px, Ur) = |lpx = Url = 5 > [Prob[X =] — |R|7"].
reR
If the statistical distance d(ux,Ug) is small, then X has large entropy: for
every € >0 there exists § >0 such that

d(px,Ur) <6 = H[X]| > (1—¢€)log|R)|.

Note that this also implies that there must be at least |R|!~¢ elements in the
range of X. The opposite is not true; in order to get a good upper bound on
d(px,Ur), we must know that the entropy is very close to the maximum,
which is log|R)|.
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2.1. Sources of randomness and extractors

In this paper, a source of randomness is either a random variable X, or the
probability distribution ux associated with it. It is convenient to keep both
interpretations, because random variables can be composed with functions,
whereas probability distributions can be treated as vectors in R for some
set R. In this section we will view a source as a probability distribution
1 on some set . We imagine that it has small entropy relative to the size
(cardinality) of R. An extractor is, roughly speaking, a function F' that maps
R to a smaller set S so that u is mapped to a probability distribution v that
is close to the uniform distribution on S; furthermore, we may also require
that v keeps a substantial part of the entropy of u, which means that S is
not too small relative to R.

We will now explain extractors in more detail. Let F': R— S. We define
a mapping L : Rf — RY as follows. Let o € R, and for r € R, let a(r)
denote its r-th coordinate. Then for s € S, the s-th coordinate of L¥(a) is
defined by

r;F(r)=s
We note some basic properties of the function L.

1. L¥ is linear;
2. LY maps a probability distribution to a probability distribution:

L (nx) = pp(x);

3. L¥ is contracting w.r.t. the ¢; norm, i.e., ||L(a)|1 <|la/1;
4. it follows that d(L¥ (), L¥(B)) <d(a, B).

Here we confine ourselves to deterministic extractors, which means that
F' is a function without any additional random seed. Such extractors exist
only for restricted classes of sources, sources with some particular struc-
ture. Before going into details, we suggest the reader to imagine the task of
constructing an extractor as a game. In this game we know that there is ran-
domness in the source, but we do not know where exactly. E.g., in the case
of bit-fixing sources, we know that there is a subset V' of bits with perfect
randomness, but we do not know V. We should prepare a function F' that
will work, i.e., produce random bits, whatever source an opponent chooses;
in the case of bit-fixing sources, this means whatever set V' the enemy picks.

Definition 1. Let {X;};c; be a family of sources with range R, i..,
X;: §2;— R for some (2;, j€J. We say that an F': R— S is an e-extractor



EXTRACTORS FOR SMALL ZERO-FIXING SOURCES 593

f07” {Xj}jej if
d(MF(Xj)> Us) = d(LF(lqu)’ Us) <e

for every je€J.

A necessary condition for the existence of an o(l)-extractor is
that log|S| < min;H[X;] + o(1); in the interesting cases it is always
log|S| < min; H[X;]. In most cases that appeared in the literature the sets
R and S are sets of all 0-1 strings of some lengths. The next important and
well-known fact follows easily from the properties of LT listed above.

Lemma 2.1. If F' is an e-extractor for {X;};cs, then F is also an e-
extractor for every convex combination of the sources { X} cs.

Note that if X is a convex combination of X;: £2; = R, then ux is a
convex combination of ux;, j € J, as vectors in RE. What we will need in
our proofs is a slightly more general principle than Lemma 2.1, which also
follows easily from basic principles:

Lemma 2.2. Let F' be an e-extractor for {X;},c; and let Y be an arbitrary
source. Let Z be a convex combination of sources X; and Y in which Y has
weight <4. Then F is an (e+0)-extractor for Z.

In this paper we will construct extractors for zero-fizing sources, but we
will also need a more general class of bit-fizing sources as building blocks.

Definition 2.

1. A random variable X is an (n,k)-zero-fixing source if for some vector
o €{0,%}" with exactly k stars, X is the uniform distribution on vectors
s €{0,1}" that extend o. Equivalently, X is a uniform distribution on
P(V) for some V C[n], |[V|=k.

2. A random variable X is an (n,k)-bit-fizing source if for some vector
o0 €{0,1,+}™ with exactly k stars, and X is the uniform distribution on
vectors s€{0,1}" that extend o.

Lemma 2.3. If F' is an e-extractor for (n,k)-bit-fixing sources, then F is
also an e-extractor for (n,k’)-bit-fixing sources for every k' > k.

Proof. Given o with &’ stars defining an (n, k’)-bit-fixing source with &' >k,
we can represent it as convex combination of (n,k)-bit-fixing sources by
fixing some subset of k&’ — k stars in all 2¥'~% ways. |
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3. Extractors for zero-fixing sources and Ramsey theory
3.1. A corollary of our bound on extractors

pluslpt pluslpt plus.5pt plus.5pt

In Ramsey theory mappings of the form F': ([]]Z}) — [M] for numbers
N>2 01>2,and M >2 are studied. Such a mapping is called a coloring of
k-tuples by M colors. A subset V C[N], |V|>k is called monochromatic if

F' is constant on (‘Z/) The finite Ramsey theorem states that for every k> 2,

M > 2, t >k there exists N such that for every coloring F': (UZ]) — [M],
there exists a monochromatic set V' of cardinality t. The least such N is
called the Ramsey number R% (). Exact values of Ramsey numbers are
only known for a few instances of small numbers, but there are good bounds
on the asymptotic behavior of R% () as a function of ¢ for fixed k, M. In
particular, if M =4, then RE (t) grows like (t—1)-times iterated exponential
function. In the construction presented in the following section we will use
the method by which lower bounds on Ramsey numbers were proved, the
stepping-up lemma.

We will now explain the connection with zero-fixing extractors. What is
called a coloring corresponds to an extractor and subsets V' C [N] correspond
to sources. Suppose that N < Rk (t). Then there exists a coloring F: ([Ilzf]) —
[M] such that no subset V C [N] of size t is monochromatic. This can be
equivalently stated as follows: for every V of size ¢, if we consider F'(X) for
a random X € (Z), then this random variable F'(X) has nonzero entropy,
i.e., we can “extract some entropy” (though it may be very little).

It is also well-known that for k=2 and M =2, if N < R3(t), then there
exists a coloring F' such that for every V C[N] of size ¢ the number of pairs
of color 1 is almost the same as the number pairs of color 2. This means
that one can extract almost 1 bit of entropy. One can prove a similar fact
also for M larger, which means that we can extract almost log M bits. In
the corollary below we take t =2k and consider the dependence of N on k.
We show that in this setting IV can be an iterated exponential function in k.

Let M be a set of colors. For a mapping F': (U]Z ]) — M, we define the
discrepancy of F on a set V C[N] by

. | F N ()l 1
discp(V) = max W vk
k

Our results in this paper give constructions of low discrepancy colorings
in some special range of parameters. We can show that for every fixed [, if
N <exp'(k), then there exists a coloring F': ([]IX ]) — [M] such that for every
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V C[N], |V|=2k, F has discrepancy €, where we can take M exponentially
large in k and € exponentially small in k. The precise statement follows.

Corollary 3.1 (of Theorem 5.1). For every [ €N, there exists <1 and
ko such that for every k > kg the following holds true. If N < expl(k) and
2< M < 7%, then there exists a coloring F': (UZ ]) — [M] such that for every
V C[N], |[V|>2k, F has discrepancy <3* on V.

Proof. Clearly, it suffices to prove the corollary for |V|=2k.

Let [ be given. By Theorem 5.1, there exists a <1, v>1 and Ny such that
for every N > Ny, log) N <k < N/2, M <~*, there exists an F: P([N]) —
[M] such that for every V C[N], |V|=2k, the distribution of colors F(X)
for X € P([V]) is a*-close to the uniform distribution on [M]. We will first
show that the distribution of colors F(X) for X € ([Z]) is d*-close to the
uniform distribution on [M] for some § <1 that only depends on «.

Let p' be the probability distribution on [M] generated by F' from uni-
formly random X CV. The probability distribution on [M] generated by F
from uniformly random X € (Z) is :=cp [(Z) where c=2F/ (215) We have

(1) 17Ty =Upwy Tevy < 1P = Upyll < a”.

Hence ||(I’—U(V) |1 <cak. Since ek, we can bound ca’ < 6% with a suitable
k

constant ¢ < 1 for k sufficiently large. We can ensure that k is sufficiently
large by taking Ny sufficiently large. Thus, the distribution of colors F'(X)
for X € ([Z]) is 0*-close to the uniform, which we can write as the inequality

S PO 1)

V - [
ieM (I k |> M
This, clearly, implies discy (V') <§*. To finish the proof, take 8 =max(d,7y~!).
|

3.2. Bit-fixing sources and daisies

The Ramsey-theoretical problems related to extractors for bit-fixing sources
are much less researched. These problems are stated in terms of daisies.

Definition 3. Let Z be a set and [ < k <|Z| be numbers. An (I, k)-daisy
is a set of the form {UUX | X € (‘l/)} for some U,V C Z disjoint sets and
|V|=k.



596 PAVEL PUDLAK, VOJTECH RODL

We define the Ramsey number for daisies Dé\/[(k) to be the minimum
number N such that for every F': P([N]) — [M], there exists a monochro-
matic (I, k)-daisy.

Clearly, D}, (k)< R}, (k). For =2 and M =2, one can show an exponen-
tial lower bound using Lovasz Local Lemma. This is essentially all we know
about D!, (k). For all we know, D}, (k) can be bounded by an exponential
function in k for all constants [ and M. For some results and open problems
on daisies, see [4].

The lack of methods to deal with daisies explains why we are not able to
decide if there exist extractors for bit-fixing sources smaller than loglog V.

4. An extractor for zero-fixing sources of triply logarithmic size

In this section we present our construction based on the idea of the stepping-
up lemma of Erd6s and Hajnal [9]. Given k and n they used binary trees to

project [2"11] on [n] in such a way that from a coloring of ([Z]) without large

. . n+i .
monochromatic sets, one can construct a coloring of ([2k +1}) without large

monochromatic subsets. We will use a similar projection mapping to reduce
the construction of zero-fixing extractor on a set A to a construction of a bit-
fixing extractor on an exponentially smaller set B. Since a construction of
extractors for (n,k) bit-fixing sources are known for k~loglogn, we obtain
an extractor for (n,k) zero-fixing sources with k= O(logloglogn). To this
end we show that the projection of an (IV,k)-zero-fixing source is a convex
combination of (n,k’)-bit-fixing sources with a small error, where k' = 2(k)
and N =22(/k)
We will prove the following:

Theorem 4.1. There exist constants d1,d2 > 0 and C such that for every
N and k such that Clogloglog N < k <logN there exists an e-extractor
F:{0,1}¥ = {0,1}™ for (N,k)-zero-fixing sources where m = §1k and € =
max{(log N)~',2792%}, The extractor is computable in time polynomial in
N from the input (N, k).

4.1. Trees

Our main tool will be binary trees with edges directed towards the root,
which means that every node has indegree either 2 or 0. The 0-indegree
vertices are leaves (note that our leaves are vertices, not edges). Furthermore,
we will assume that the two children of each inner node are ordered. This
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induces a natural linear ordering on the leaves. In the rest of this section all
trees are binary, therefore we will often omit the specification “binary”.

We will measure the size of a tree by the number of its leaves; thus |T'|
will denote the number of leaves of 7.! The number of edges in a binary tree
is 2|T| — 2.

Given a tree T" and a subset of leaves X, we will denote by T'x the subtree
of T' with leaves X defined as follows. View T as an ordered structure where
the root is the maximum and the leaves are minimal elements. This ordering
defines an upper semilattice. Then Tx is the subsemilattice generated by X.
We will call such subtrees leaf-generated subtrees.

We will distinguish two types of leaves. A twin is a leaf that shares a
parent with another leaf (which in turn is also a twin). The other leaves
will be called lone leaves. A pair of twins sharing a parent will be called a
twin pair. There are at most |T'|—2 lone leaves (and there are trees in which
this bound is attained). Parents of lone leaves and twins will be called lone
parents and twin parents, respectively.

Lemma 4.2. If T is a tree and X is a nonempty subset of leaves, then T'x
has at most as many twins as 7.

a lone leaf

a twin

Figure 1. A binary tree with its skeleton consisting of black nodes

Proof. By induction — if T' is not a single vertex, consider the two maximal
proper subtrees of T'. ]

! This notation seems to be in conflict with our notation for the cardinality of sets, but
notice that a binary tree with k leaves can be represented by a set of k binary strings.
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However, the number of lone leaves may increase.

The skeleton of a tree T', denoted by Sk(T'), is the subtree leaf-generated
by twins (see Figure 1). The inner edges of Sk(T), the edges that are not
connected to the leaves, will play a special role. The following is the key
structural property of trees that we will use.

Lemma 4.3. Every binary tree 7" with at least two leaves can be repre-
sented as Sk(T) extended with

1. new nodes on the inner edges and leaves attached to them,
2. a chain with lone leaves attached on the root of Sk(T').

Proof. By induction — if 7" has more than two leaves, consider the two
maximal subtrees of T'. 1

From Lemma 4.2, we have
|Sk(Tx)| < [SK(T)].

The number of inner edges of a skeleton is, clearly, |Sk(T")| —2, which is at
most |T| —2 and when it is equal to |T'| —2, then T does not have any lone
leaves. Given a tree T' we will enumerate (starting with 1) the inner edges
of Sk(T) in a systematic way so that the edges in isomorphic skeletons are
enumerated in the same way. We will denote the i-th inner edge of Sk(T)
by e;(T).

Let T be a tree with leaves L and let o: L—{0,1,%}. Then

To := Tijo(i)ef*1})s

i.e., T, is the tree leaf-generated by leafs labeled by 1s and s of o. We will
call the leaves of T}, labeled by * free.

4.2. The projection mapping

Suppose, w.l.o.g., that k—1 divides n. Let T be the complete binary tree of
depth n/(k—1)+1. Split the set [n] into k—1 disjoint sets, say consecutive
intervals, Dy,...,Di_o each of size n/(k—1). For i=0,...,k—2, let 5; be a
projection of the levels of T', excluding the level of leaves,? onto D;, i.e., for
two non-leaf nodes u,v €T of different rank®, 3;(u)# B;(v).

We will identify the set of leaves of T’ with [N], where N =27/ (k=D+1 Let
K C{0,1}" denote the set of all vectors with at most & ones. Alternatively,

2 In fact, we also do not need the level next to the bottom one.
3 By rank we mean the distance from the root.
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we can view K as the set of characteristic vectors of subsets X C[N] of size
at most k.
The function F; maps K on strings in {0,1}"™ with at most k—2 ones as
follows. For s€ K,
Fl(s) Z:boUblU"'Ubj,
where

e j is the number of inner edges of Sk(T5),

o bo={Bo(vo,1),---,B0(vo,)}, where vg 1,...,v0, are the nodes of T above
the root of Sk(Ts), and

o fori=1,...,5, bj={Bi(vi1),...,Bi(vi;)}, where v;1,...,v;; are the nodes
of Ts on the edge e;(Sk(Ty)).

(Any of b; may be empty; in fact all of them.) In plain words, we project the
lone parents of Ty to [n], for each inner edge of Sk(T), to a different part of
[n], and the lone parents of Ty that are above the root of Sk(T') to another
part. Since the nodes on one e;(T") have different ranks, this ensures that
the projection is bijective?, see Figure 2.

Figure 2. The projection mapping

Let an (N,k) zero fixing source defined by o be given. Let V := {i |
o(i) = *}. The projections Fi(s) for s € {0,1}", o Cs, do not form a zero-
fixing source on [n]. The reason is that for different vectors s, the skeletons
Sk(Ts) may be different and thus the same lone parents may be mapped to

4 This is certainly not the most economical way to ensure bijectivity. E.g., we can omit
Dy, because we can map the lone parents above the root of Sk(Ts) to any block D;, we
can also omit Dy_2, because by_2 is always empty, etc.
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different blocks D;. Therefore, we need to decompose the resulting source
in such a way that on each part the skeleton is fixed while there are still
enough parents of free leaves.

4.3. The skeleton fixing procedure

Let T be a tree with leaves L, |T'|=k. We will define a randomized procedure
that produces a restriction p: L —{0,1,*} such that in T}, all twins are fixed
to 1. Our aim is to show that with probability close to 1 the resulting tree
T, has at least 01k lone leaves for some 7 >0.

The procedure starts with p=x** and gradually extends p by setting stars
to zeros or ones. At each step the procedure checks if there is a twin in the
restricted tree T}, that still has a star. If there is no such twin, then it stops.
If there is some, it picks a suitable one and sets it randomly to 0 or 1 with
equal probability. We will specify the order in which twins are chosen when
we prove the following lemma. When the procedure stops, all twins in T},
are fixed to 1, which means that the skeleton is fixed.

Note that we can view the resulting set of restrictions obtained as a
binary decision tree; in particular, any two restrictions are incompatible.

Lemma 4.4. There exist constants v<1 and § >0 such that for every tree
T, |T| = k, there exists a fixing procedure that with probability > 1 —~*
produces a restriction p such that all twins in T}, are fixed to 1 and such
that there are at least dk lone leaves free (i.e., labeled by x*s).

We will first prove:

Lemma 4.5. Let T be a tree of arbitrary size and let o be an assignment
of s and 1s to the leaves of T. Suppose T has > k/10 lone leaves labeled
with *s. Then there is a fixing procedure as described above that starts
with o and extends it to p so that all twins in 7}, are fixed to 1s and with
probability exponentially close to 1 there are at least k/500 lone leaves in
T, still labeled *.

Proof. Let A be the set of the parents of lone leaves of T' labeled * by «a.
We consider two cases.

(a) Suppose that there is an antichain C C A, |C|>]|A|/10. Let ve C and
let [ be its lone leaf and S the neighbor tree of [, i.e., the two maximal
proper subtrees below v are S and the single element tree [. In order
for [ to be queried in the process, [ must become a twin, which means
that S must be reduced to a single node. There is at least one twin pair
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in S. The twins in this pair can be labeled by two 1s, one 1 and one
x, or two *s. Thus, the probability that both twins are fixed to 1s is at
least 1/4. Hence with probability at least 1/4, S will not be reduced to
a single leaf and thus [ survives to the end (meaning that p(l) =* in
the finial restriction). For two different nodes v,u € C, the events that a
twin pair is fixed are independent, because v and u are incomparable.
Hence, we can apply Chernoff’s inequality and conclude that there are
at least |C|/5 > k/500 lone leaves [ with p(l) = * in T}, for the final
restriction p with probability exponentially close to 1.

(b) Suppose that for every antichain C C A, |C|<|A|/10. Suppose that the
procedure outputs p. For a node v €T, we will denote by © its parent.
Let Dy be the set of lone leaves [ of T' such that p(l) =1 and | & T),.
Hence if [ € Dy, then [ is the unique leaf below [ that is fixed to 1 by p.
This implies that {{|/€ D} is an antichain. By the assumption of this
subcase, it follows that |D;|<|A|/10.

Let Dy be the set of lone leaves [ of T such that p(I)=1 and [ € Ty,
We claim that all leaves in Dy are twins in T),. Indeed, for [ to be fixed
in the process it must first become a twin. That is, [ and some v are
twins in some o C p. Since | € T, we also have [ € T;,. (Once a node
disappears in the process, it is never restored.) Since [ is the parent of
[ in T, it also is the parent of v. So v must also be fixed to 1 in p,
otherwise [ would not be in T,

The parents of twins in 7}, are incomparable and since it is a subtree
of T, they are also incomparable in 7. This implies that {I|l € Dy} is
an antichain and |Ds|<|A|/10.

Thus, every p fixes at most % of lone leaves. Since the process assigns
zeros and ones randomly independently, with probability exponentially
close to 1, it will not fix more than % of the lone leaves of T'. Hence with
probability exponentially close to 1, T, has at least %k /10 lone leaves [
with p(l)=x. 1

Proof of Lemma 4.4. Case 1. T has >k/10 lone leaves.
Then we can apply Lemma 4.5 with « empty (all stars).

Case 2. T has <k/10 lone leaves.

Let T be the tree obtained from Sk(T') by removing all twins of 7. We
consider two subcases.

(a) Suppose that 7" has > %k lone leaves. In this case the process will
first query twins of T that are attached to lone leaves of T'. When
the first twin is queried, then it is fixed to 0 with probability 1/2. If
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this happens, the second twin will become a lone leaf in the reduced
tree. Thus we obtain with probability exponentially close to 1 at least
k/10 free lone leaves (i.e., labeled by #). Let a be the restriction that
produces such a tree T, with k/10 free lone leaves. In order to apply
Lemma 4.5, take T}, and « restricted to the leaves of T,,. The restricted
a only assigns 1s and *s and there are at least k£/10 lone leaves with
xs, so we can now apply Lemma 4.5. The resulting fixing procedure is
the composition of the procedure producing « and the procedure from
Lemma 4.5.

(b) Finally, suppose that 7" has < %k‘ lone leaves. Then there are < 1%]{:
twins attached to the lone leaves of T” (i.e., twins that together with
lone leaves form subtrees with 3 leaves). Hence, there are > 1—10k: twins
of T" attached to twins of T”. Then there are at least > ﬁkz quadruples
of twins attached to twin pairs of T”. For each of these quadruples, we
have probability 1/8 that it will be fixed in such a way that one twin
pair is fixed to ones and from the other one twin is fixed to 0 and the
other remains free and becomes a free lone leaf (i.e., they will form a
subtree with 3 leaves in which the twins are fixed to 1 and the lone leaf
is x). Hence with probability exponentially close to 1, the resulting tree
T, will have at least ﬁk lone leaves. 1

4.4. The extractor

Let X be an (N, k)-zero-fixing source given by a subset VC[N], |V|=k. We
will now describe the decomposition of Fj(X) into a convex combination
of bit-fixing sources on [n]. Each of the sources is a k’-bit-fixing source for
some k' >0k, where § >0 is a constant, except for some sources whose total
weight is exponentially small.

The source X generates a random string r € {0,1}" randomly uniformly.
We can view the process of generating the random string r as having two
parts: first we run the skeleton fixing procedure to obtain some p€ {0,1,*}"
and then we randomly extend it to a full vector r D p. The probability that
we obtain p is the weight of the source that p produces (it is 27¢, where
t is the number of leaves set to 0 or 1 by p). Let S be the set of lone
leaves of T, and let F7(S) denote the projection of their parents to [n]. Then
Fi(s) C F1(S) for every s D p, because the skeleton is fixed. Moreover, F}
maps a 0-1 string defined on S to a 0-1 string defined on F(S) in a 1-1 way.”
Hence, extensions of p are mapped by Fj to an (n,k’)-bit-fixing source on

® F is defined on strings K C {0,1}", but now we focus on string of a given source
where the strings are 0 outside of V, so we can view F; as defined on {0, l}V.
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[n], where k' is the number of stars in p. Note that it is a bit-fixing source,
rather than zero-fixing one, because in 7}, there may be some lone leaves
fixed to 1.

Now we are in a position to define our extractor and prove its properties.
We use the extractor constructed by Cohen and Shinkar [7], (see Theo-
rem 5.1. in their paper). They constructed an €-extractor, which we will
denote by Fy: {0,1}"—{0,1}™, for (n,k)-bit-fixing sources which works for
k' >log((logn)/e?)+2loglog((logn)/e’)+O(1). Our extractor is the compo-
sition of Fy with Fy for k' = §k, where ¢ is the constant from the skeleton
fixing procedure. Thus we get an extractor for (N,k)-zero-fixing sources
for k= 0O(logloglog N). Furthermore, one can check that if £’ <log N and
e < max{(logN)~1,27%F} then F, is computable in time sublinear in N.
Since, clearly, F7 is computable in polynomial time, F':= F50 F; can also be
computed in polynomial time.

To finish the proof of Theorem 4.1, it remains to compute the parameters
m, €, and the time needed to compute the function F' in the whole range of
parameters allowed in the theorem.

We want to use an €-extractor Fy: {0,1}"—{0,1}" for (n,k’)-bit-fixing
sources with the following parameters:

1. k' =log((logn)/€?)+2loglog((logn)/e')+O(1),
2. m=Fk—2log(1/¢')—-0(1),
3. furthermore, Fy(s) can be computed in time nOUog”((logn)/))

If we want to get error e for our extractor, which the composed function
FyoF, then we need to have the error € of F slightly smaller, because part
of the sources in the convex combination are not (n,k)-bit-fixing sources.
The weight of the bad sources in the convex combination is exponentially
small, so we have e=¢€'+0(1). Note that even if € were larger by a constant
factor, the expressions above would still keep the same form if we replaced
¢’ by €, because the term o(1) would be consumed by the big O.

Recall that we are projecting an (N, k)-zero-fixing source to (n,k’)-bit-
fixing sources. The construction gives us n<klog N and k' =2(k). Since we
assume k <log N in the statement of the theorem, we have

(2) n < (log N)2.
We need to show three things:

(i) k can be as small as O(logloglog N),
(i) m=92(k),
(iii) F' can be computed in polynomial time.
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To prove (i), we will use 1. in the list of the properties of F. According
to (2), loglogn=Ilogloglog N+O(1). We need to check that the contribution
of the 1/€% in 1. is also of the order (logn)®W. If k = O(loglogn) and
€>279F then we also have k&’ = O(loglogn) and ¢ >2-?%) hence indeed,
1/€?=(logn)°M.

To prove (ii), it suffices to have € > 279% for a sufficiently small 6o,
because then the negative terms in 2. are smaller than k/2.

Since F} is computable in polynomial time, in order to prove (iii), we
only need to bound the time for F5. This amounts to substitute our bounds
on n and ¢ into nO0e®((10sn)/)) Tt us first only estimate the expression
without €’; we will use (2).

nOUog?(logn)) < 9O (log? (log((log N)?))-(log((log N)*)))
This is, clearly, sublinear. The contribution of ¢ will be
nOUog?(1/€)) _ 90(log®(1/¢’)-(log((log N)?)))

Since in the theorem we assume ¢ > (log N)~!, the resulting term is also
sublinear. |

5. Extractors based on shift graphs

In this section we will present our second construction of extractors, based
on colorings of shift graphs.

Theorem 5.1. For every [ €N, there exists a; <1, §;>0 and Ny such that
the following holds true. For every N > Ny and log(l) N <k<N, there exists
an e-extractor F: {0,1}" — {0,1}™ for (N,k)-zero-fixing sources, where
ezozfC and m=|9;k]. Moreover, there exists >0 such that the extractor is
computable in time N if k< Bloglog N/logloglog N and (N, k) is given
as the input.

5.1. Shift graphs

Definition 4. Let 2<I<n—1. The shift graph S=S5(n,l) is a graph with
vertex set V(S)= ([7]) and edge set

ES)={{{er,.m} fwas oz mal} | 1< @1 <y <o <o <)

We will use the property of shift graphs that the asymptotic bounds on
their chromatic numbers decrease rapidly with [ increasing, see (4) below.
In order to express the upper bounds on the chromatic numbers we will use
a function that is asymptotically equal to the binary logarithm. We define
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1. blogx:=x for =1,2,3,4 and
2. blogz :=m where m is the integer satisfying (Lnﬁj) <z < (ernJ) for
2 2
>4,

We note that blogz is nondecreasing and
(3) blog x = log, .

Let x denote the chromatic number of a graph. We will need the following
facts.

Fact 1. If X(S(n,l))é( m

LmJ)’ then x(S(n,l+1))<m.
2

Since, trivially, x(S(n,1))=n, we have
(4) X(S(n, 1)) = O(log V) n).
Proof of Fact 1. Let ¢: ([7]) — (UE?/Z}Q J) be a coloring, which means that
W(L1) # ¢(Lo) whenever (L1,Ls) € E(S(n,l)). We define ¢: ([}) — [m)]

+1
as follows. For 1 < 21 < x2 < -+ < 241 < n, we choose

x € Y(xy,22,...,2) \ ¥ (x2,...,21,2111), say the first such element, and set
d(x1,22,...,21,T141) =1.
Now, if ((z1,...,2141), (X2,...,2112)) € E(S(n,l4+1)), then we have

gf)(xl, o ,l‘l+1) € ¢($1, ... ,xl) \¢($2, .. ,Il+1),
and
(w2, . T142) € P(T2,. s 2141) \ V(3,0 T42).

Consequent1Y7 d)(‘rla"'7xl+1)#¢($25"'7xl+2)‘ 1
Fact 2. If x(S(n,l—1)) <4, then x(S(n,l+1))<3.

Proof of Fact 2. Consider a 4-coloring v: S(n,l — 1) — [4]. We define
¢: S(n,l+1)—3] as follows. For 1<z; <zo<---<x141 <n, set

d(x1, .. xp41) = U(xe, ... xp) if Y(xe,...,27) # 4, otherwise
i=some j € 4|\ {¢(z1, ..., z-1), (22, ... m1), P(2s, .., 241) -

Consider ((z1,...,214+1), (z2,...,2142)) € E(S(n,l+1)). We distinguish two
cases.

(a) If Y(xa,...,x;1) # 4, then ¢(z1,...,2141) = ¢¥(z2,...,27). On the other
hand, ¢(x2,...,2142) equals either to ¥ (xs,...,x;141), or belongs to
[B]\¥(x2,...,x1). Since ¥ (xa,...,z1) #Y(x3,...,21+1), we have in either
case ¢(r1,...,7141) FA(22,..., T142).
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(b) If ¢(xg,...,x;) =4, then ¢ (xs,...,211)#4 and we have
QZ)(J?]_, B ,.’17[4,_1) € [3] \ {1/1(1131, v )xl—l)a Q;Z)(l‘?)u s ,CUH_l)}

¢(:L127 s 7$l+2) = w(l‘i’n s 7$l+1)-
Consequently, ¢(z1,...,x141) #d(22,...,T142). ]

It follows from these facts that for every n there exists an integer [ such
that x(S(n,l))) < 3. On the other hand we have:

Fact 3. If n>2[+1, then S(n,l) contains an odd cycle and consequently,
X(S(n,1)) =3.

Proof. (of Fact 3) Let n>2/+1. Then the sets
{1,2,.... 0,42, ., LU+ 1}, o {0+ 1,200, {0+ 2, ..., 20+ 13
{Li+2,.. .20 {I-1,1,1+2,...,2l —1},...,{2,3,..., = 1,1,1 + 2}
form an odd cycle in S(n,l). 1

The bound from Fact 1 was first proved for infinite cardinals by Erdos
and Hajnal [9]. The version for finite cardinals, the one above, appeared
in [13]. Fact 2 has not appeared in the literature, but a similar idea was
used by Schmerl [17], Poljak [16], and Duffus, Lefman, and Rodl [8].

5.2. Special symbol-fixing sources and their extractors

A symbol-fixing source, introduced in [15], is like a bit-fixing source except
that the alphabet of the strings is larger than 2. We will introduce an auxil-
iary concept that we need in our construction, which is a sort of cross-bread
between a symbol-fixing source and a bit-fixing source. In plain words, a
special (n, k,d)-symbol-fixing source is a set of 2* strings from [d]* such that
for some subset of indices V' C [n], |V|=k, the strings have same elements
of coordinates i € [n]\V and for i€V, two given values. On the set we have
the uniform distribution.

Formally such a source is determined by a string o € ([d]U ([g]))" that has
exactly k pairs from ([‘21]) and the rest of the coordinates of o are elements
from [d]. We say that s € [d]" is consistent with o if s; =0; or s; € 0; for
every 1=1,...,n.

Definition 5. A special (n,k,d)-symbol-fizing source X is a random vari-
able producing strings from [d]"™ of the following form. For some string

o€ ([dU ([g]))” that has exactly k pairs from ([g]), X produces strings
s€[d]™ that are consistent with o each with probability 27%.
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Example. Let n=4,d=3,k=2 and 0=(1,{1,2},{2,3},2). Then the source
produces strings 1122,1132,1222,1232 with equal probability.
Lemma 5.2. For every e,n,k,m and d, 0<e<1, I<m<k<n, if
2 . 2k+1 —_om _ 1
2n ) ’

1 .
2§d§exp2<0ge €

then there exists an e-extractor F for special (n,k,d)-symbol-fixing sources
with m outputs bits, i.e., F': [d]"—{0,1}"™.

The right hand term is at least 2 if loge-€2- 2571 > 2™ 4 9n 4 1 we will,
however, need d larger, linear in n. For such a d, it suffices that m <Jk for a
sufficiently small constant &, k> en for some constant € >0 and n sufficiently
large. (The specific values to which the lemma will be applied are listed at
the end of the proof.)

Proof. This lemma is proved by a standard counting argument, for which
we only need to know (1) the number of strings a special (n,k,d)-symbol-
fixing source produces, which is 2¥, and (2) the number of such sources,
which we will estimate by 227,

Before we start our proof, we need to recall an equivalent definition of
the total variation distance of two probability distributions p and v on the
same universe:

d(p,v) = sup | Prob,(A) — Prob,(A)|.
A

The supremum is over all events A (subsets of the universe).% In our case v
will be the uniform distribution.

Let X be a special (n, k,d)-symbol-fixing source. The random variable X
produces strings from some set S of size 2%, each string with the same prob-
ability 27%. Let Y be distributed uniformly on {0,1}™. Let A C{0,1}" be
an arbitrary event on {0,1}™. Consider random function F': [d|" — {0,1}™.
We need to bound the following probability

Probp[| Proby[A(F(X))] — Proby [A(Y)]]| > €].

{o,1}k

(We are comparing the distribution on {0,1}* induced by F(X) with the
uniform distribution on {0,1}*.) The outer probability is, as indicated, with
respect to randomly chosen function F. The term Prob[A(F(X))] is the
number of strings s from S such that F(s) € A divided by |S|, which is 2.
The term Prob[A(Y")] is the probability that a random string ¢ chosen from

5 In this paper the supremum is always the maximum, since we only consider finite
probability spaces.
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{0,1}™ is in A, which is |A|/2™; let us denote it by p. Since S is fixed, we
only need to know the values of F' on this set. For a given s € S, we have
Probp[A(F(s))]=p and for 5,8’ €S, s#s', the events A(F(s)) and A(F(s))
are independent. Hence w.r.t. random F', Proby[A(F(X))] is distributed
as Bin(2¥,p)/2*, where Bin denotes binomial distribution. The inequality
inside of Probp]...] says that Bin(2*,p) deviates from the mean by more
than €2¥. Thus the Chernoff bound gives us

(e2M)?

(5) Probp[| Prob[A(F(X))] — Prob[A(Y)]] > ¢] < 2> 2F = 2¢

_622k+1

(We are using a corollary of the Chernoff bound as appears in [14], Re-
mark 2.5, page 28.) We will use (5) to show that there exists an F' such that
| Prob[A(F(X))] — Prob[A(Y)]| < € for every (n,k,d)-symbol-fixing source
and every event A. This property of F' is equivalent to being an e-extractor
for such sources.

The number of events A is 22". Let K denote the number of special
(n,k,d)-symbol-fixing sources. Then, by the union bound, the probability
that | Prob[A(F(X))]—Prob[A(Y)]| > € for some source X and some predicate
A is bounded by

—622k+1

2¢ 22" K.

The number of special (n, k,d)-symbol-fixing sources can be bounded by

oo (9 oo

Hence, there exists an e-extractor if

7622k+1'22m'd2n

2e < 1.

Corollary 5.3. For every ¢y, there exists a <1, § >0, and ¢ such that for
every m,n,k,d such that 1 <m <dk, cologn <k <n, d < cin, there exists
an e-extractor for (n,k,d)-special symbol fixing sources with m output bits

and e=aF.

5.3. The construction of the extractor

The extractor will again be constructed as a composition of two functions
Fy and F;. The first function transforms an (V, k)-zero-fixing source into a
special symbol-fixing source, the second one is an extractor for symbol-fixing
sources. In the previous subsection we have constructed Fs, an extractor for
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special symbol-fixing sources. To prove Theorem 5.1, it remains to construct
.

Let I > 2 be a constant, let £ and N be such that log(lfl)N <k <
log(l*Q)N , and suppose N is sufficiently large. Let 1 be a coloring of the
shift graph S(IV,1) by d colors where d=0(k). Such a coloring exists by (4),

since k>log!"V N. Let n:= L%J Define a mapping

by putting, for X C[N], | X]|
B (X) = (0(X1),¢(X2), ..., ¥(X;),1,...,1),
where
X=X,U---UX;UZ,
(Xaf ==X =1, [Z] <],
X1 < Xo<-- <X <2

Lemma 5.4. Let k' := 272 3n. If X is an (N, k)-zero-fixing source, then
F1(X) is a convex combination of special (n,t,d)-symbol-fixing sources where
the total weight of sources with ¢ <k’ is exponentially small, 27(%)

Proof. Let an (N, k)-zero-fixing source be given by some V C[N], |V|=k.
Let
VZIlUIQU'”UIq, L <Ir < --~<Iq,

be a partition of V' into blocks of sizes |Igj+1|=1+1, |I3;| =1—1, with the
exception that the last block I, may be smaller. According to our choice of
n, the number of blocks with odd indices and size [+1 is [n/2].

Let X be a random subset of V' (generated by our zero-fixing source).
For odd 4, let A;(X) be the event defined by the conjunction of the following
three clauses:

(Cl) |Xﬁ(]1U-"UIi71)‘ =0 modl,
(C2) X NI;_ is an initial segment of I;_1,
(C3) XNhLi=L\{maxL;} or XNI=1I\{minl}.

For i=1, clauses C1 and C2 are always true, hence Prob[A;(X)]=2"", and
for every odd i>3 and Y C 11 U---Ul;_o,

(6) Prob[A;(X) | X N(LLU---UI o) = Y] =271

because this conditional probability is equal to the conditional probability
Prob[XNI_; =2 and (C3) |XN(LHU---Uli_o)=Y],

where Z is the initial segment of I;_; such that Y UZ|=0 mod . Hence

E[|{i| A;(X)}|] >27%~2n. Furthermore, since the probability in (6) is 272!
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independently of Y7 the events A;(X), for i odd, are independent. Thus we
have, by the Chernoff inequality and recalling that &' = 272=3n, which is
less than or equal to one half of the expected value,

2 —2l—2n
(7) Prob[|{i | Ai(X)}| < ] < exp <_<1/2>3

) = exp(—27275np).
We will now define a decomposition of F;(X) into a convex combination
of special (n,t,d) symbol-fixing sources. A source in this combination is given

by

1. a subset J of odd integers in [n] and
2. sets Y;CI; for ie[n|\J

such that

e foricJ, |
12>3,
o forioddi¢J, |

j<z‘j§ZJYj| =0 mod! and Y;_1 is an initial segment of I; ;1 if

i<ijgs Yil#0 modl, or Y; {I;\{maxI;},[;\{minl; } }.
The source determined by (J,{Y;}izs) produces uniformly independently all
X CV such that

1. foralli¢J, XNI;=Y;, and
2. for all i€ J, either X NI;=1;\{maxI;} or XNI;=1I;\{min;}.

Let X be produced by this source, i.e., X satisfies 1. and 2. above. Let
X=X1U---UX;UZ be the partition of X into segments of length [, except
for Z. Then for every i € J, there is an i’ such that X; = I; \ {maxI;} or
Xy =I1;\{minI;}. Hence ¥(Xy) is either ¢(I; \ {max [;}) or ¢ (I; \ {minl;})
and these two colors are different. The blocks X,/ that are not associated
with any I; in this way are fixed. Hence (J,{Y;}izs) determines a special
(n,t,d) symbol-fixing source.

Note that the weight of the source is the probability that a random X
satisfies 1. and 2. The probability in the inequality (7) is the probability
that a random X satisfies these conditions for some source (J,{Y;}igs) with
|J| < k'. Thus we have shown that the total weight of the special (n,t,d)
with t <k’ is exponentially small. 1

To finish the proof of Theorem 5.1, we only need to compose F; with
an extractor Fy for special (n,k’,d) symbol-fixing sources whose existence

7 This is the reason why we have clause (C2). Without this clause the argument would be
more complicated, because we would not be able to use the Chernoff inequality, although
we might get a better constant by a more complicated argument.
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follows from Corollary 5.3 where we take

k—1
n:=|——
l )
m = 0K |,
k=K =p272%3
d:=O0(k) = O(K).

The resulting F' is not explicitly defined, because we do not have an
explicit definition of F5. However, since F} is computable in polynomial
time and a brute force search for F, can be done in polynomial time if
k is sufficiently small, we obtain a polynomial time algorithm for F' for all

sufficiently small k. We will now estimate how small k should be. We have to

search through all functions F»: [d|" —2™. Here we have d=0(k), p,m <k.

Hence the number of such functions is < 920 (losk) Since the time needed to

test each function is negligible w.r.t. the number of functions, the total time

can also be bounded by < 920 (Hloeh). Thus, there exists § >0 such that the
time needed for the search is polynomial if k< /loglog N/logloglog N. 1

5.4. A lossless disperser

The following version of our construction can produce only o(k) bits of
entropy, but it has the interesting feature that it is a lossless disperser, by
which we mean that all possible values are always present. Although it also
holds true for colorings of (zl]]c) it is more natural to state it for k-tuples.
Let A(n) be the minimal [ with x(S(n,1)) <3. It follows from (3) that

A(n) = (14 o(1))log* n.
Theorem 5.5. Let A\(n) <k <n. Then there exists an efficiently computable
function F': ([Z]) — [m], where m = 3¥/X(™]such that for every V C [n],
|V|=2k+|k/A(n)], F maps ([Z]) onto [m].
Proof. We will use essentially the same mapping as F} in the construction

of our extractor, except that we now take [ large enough for the shift graph to
be colorable by three colors. In more detail, let [:=A(n) and assume w.l.o.g.

that [ divides k. Let X € ([Z]). Divide X into consecutive parts Xi,..., Xy
of size | and define

F(X) = (v(X1), - v(X)),
where 7 is the three-coloring of S(n,).
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Let V C|[n], |V|=2k+k/l be given. Divide V into k/I consecutive parts
Vi,..., Vi of size 214+ 1. On each block V;, each of the three colors must

appear for some Y CV;, |Y|=1, by Fact 3. Hence, for every vector v € [3]*/!
we can pick sets X1 CVy,..., X}, CVy )y such that F(X1U---UXk/l):v. |

6. Upper bounds on the available entropy
6.1. A lower bound on the size of zero-fixing sources

In this section we will prove that if N is slightly more than i-times iterated
exponential, then for every F': {0,1}" —{0,1}* there exists an (N, k)-zero-
fixing source X such that F(X) has at most k—i+O(i/2¥%) bits of entropy.

For a finite nonempty set of integers X, we denote by 0X := X\ {max X }.

n—1
Lemma 6.1. Let k,n,m, N be such that k<n and Nzn-m(ékfl).s Then
for every ¢: ([i\;]) — [m] there exists V C [N], |V|=n, such that for every

XCV, X#0, (X) depends only on 0X.
The latter condition means that p(X) = ¢'(0X) for some function
1. ( IN]
o (gk—l)_)[m]'

Proof. Let k,n,m,N and ¢ satisfying the assumption be given. We will
describe the construction of V' by the following pseudocode.

1. V=0, U:=[N]

2. ¢:= the most frequent c=p({u}) for ueU
3. U:={uelU|p({u})=c}

4. V:={minU}, U:=U\ {minU}

5. do while |V|<n and U #0:

6. do for all X CV such that 1<|X|<k and max X =maxV:
7 c:= the most frequent c=p(XU{u}) for ueU
8 U:={ueU|p(XU{u})=c}

9. Vi=VU{minU}, U:=U\{minU}

10. output V'

It is clear that the algorithm produces a set V' with the required proper-
ties if the loop reaches some V' such that |V|=n—1 while U is still nonempty.
So we only need to estimate how big IV suffices. Since we have m colors, the
size of U at 3. is at least N/m. Then at 4. it decreases by one. Similarly in

s (5@11) denotes Zigk—l ("Z1)~




EXTRACTORS FOR SMALL ZERO-FIXING SOURCES 613

[U|-1y_
the loop 6., the size of U decreases at most by a factor m( <) and then

at 9. it decreases by one. Each division (in 3. and 8.) can be coupled with a
subset Y of V\{maxV}, |Y|<k—1, where V is the output V. Similarly, each
subtraction of 1 is coupled with an element of V'\ {maxV}. Hence we can
lower bound the size of U at the end of the procedure (when 9. is reached
for the last time) by a number obtained from N by ( 2];_11) divisions by
m interleaved by n—1 subtractions of 1. If we postpone subtracting 1 to a
later stage, we, clearly, get a smaller (or equal) number. Hence, for the lower
bound, we can assume that all subtractions are done at the end. Thus, in
order for the algorithm to produce a V with properties required, it suffices
that

N/m(gkilﬂ —(n—1)>1,

which gives us the bound stated in the lemma. |

Lemma 6.2. Let k,m,i, N be numbers such that ¢ <k and

2kfi+1
)7

o—
where M =m*. Then for every ¢: ([é\g) — [m] there exists a V C[N], |[V|=k
such that

1. for subsets X CV of cardinality <k—i their color ¢(X) only depends on
their cardinality (i.e., ¢(X)=a(]|X]) for some function a: N— [m]),

2. for subsets X CV of cardinality >k—i their color ¢(X) does not depend
on the last i elements of X (i.e., o(X) = ¢ (9 X) for some function
o0 P(OV) = [m)).

Proof. This lemma follows by repeated applications of Lemma 6.1. Namely,
we first obtain ¢’ from ¢ and all one-element sets have the same ¢-color.
Then we apply the lemma to ¢’; we get ¢’ and all one element sets get the
same ¢'-color, hence all two-element sets get the same ¢-color; and so on.
So it remains to estimate how big IV suffices for performing these opera-
tions. To this end we need to simplify the bound from Lemma 6.1. We will
use two bounds:
1. n- m(;;_ll) < m2"71+logn/10gm < mZ"’

n—1

- —1)k=1) 4 1 k
2_ nm(gk I)Sm(n ) +Ogn/ Ogmgmn ,

for m,n>2 and k>1.
In the last step we need V' of size n=Fk—i+1. So using 1., it suffices to
take Ny =m2 T Assuming we have shown that in the jth step before the
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end it suffices to have P
_exp’ (2FTr)
Nj =m mk ,

then according to 2., it suffices to put

. . k
exp‘?_k1 (Zk_1+1)
m m
Niiq = NF _
jHr=m7 =m
keexp? 1 (2= i
e mm m =m m )

— P () 1

expz;kl (2k7i+1)

The following bound can easily be proven by induction: for all ¢ >0, x>1
and 7> 2,

(8) expl(x) < exph(zlogr + loglogr + 1).

Theorem 6.3. Let k,m,i, N be numbers such that k>2, i <k, 2<m< 2k

and .
N > exps™ (k4 2log k + 2).

Then for every ¢: (22) — [m] there exists a V C[N], |V| =k such that the

number of colors of p(X) for subsets X CV is at most ‘2k_i+i. Hence, the
entropy of p(X) on such a source X is at most log(2F~ +1).

Proof. The theorem follows from the previous lemma by observing that if
X CV, then &' X C 9V for subsets X with at least i elements and |0?V| = k—i.
Hence these sets have at most 27 p-colors. The sets with <i elements have
at most ¢ colors, because their colors only depend on their cardinalities.

It remains to show that the expression in Lemma 6.2 can be bounded by
the one in the theorem, where m <2*. Using m <mF* and the inequality (8),
we can bound it from above by

exp! (2"1) < exph (2" (logm” + loglogm* + 1))
< exph (211“_1"*'1(!4:2 +2logk + 1))
< expht (k + 2logk + 2). |

7. Conclusions and open problems

For k being a finite number iterated logarithm of n, our extractors extract
a positive fraction of entropy from (n,k)-zero-fixing sources. On the other
hand the upper bounds on the amount of entropy that can be extracted
only show that with each logarithm there is a loss of approximately one bit
of entropy. Can one narrow down this gap? In this paper we have not tried
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hard to make the fraction of extracted entropy as large as possible. One
can certainly get larger fractions of the available entropy by analyzing our
constructions more carefully, but we do not see how one can get the amount
of extracted entropy close to k, say 0.9k. We think that new ideas are needed
to this end.

The biggest challenge is to construct extractors for small bit-fizing
sources. We hope that our constructions will eventually help construct also
extractors for small bit-fixing sources, but it is also possible that it will re-
quire developing completely new methods. If new methods are needed, the
natural starting point is studying daisies.

Another possible research project is to extend our first construction to
smaller zero-fixing sources. What prevents us from iterating the stepping
up lemma is that we need a bit-fixing extractor to which the stepping-up
construction is applied. But note that we only need to fix a small number of
bits to 1. So it is possible that our construction can be adapted to construct
extractors for bit-fixing sources with small number of bits fixed to 1 and
then we would be able to iterate the stepping-up process.’ This may be
the first step towards a construction of extractors for bit-fixing sources with
arbitrary number of bits fixed to 1.
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