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Abstract

We derive the incompressible Euler equations with heat convection with the no-penetration boundary
condition from the Boltzmann equation with the diffuse boundary in the hydrodynamic limit for the scale
of large Reynold number. Inspired by the recent framework in [30], we consider the Navier-Stokes-Fourier
system with no-slip boundary conditions as an intermediary approximation and develop a Hilbert-type
expansion of the Boltzmann equation around the global Maxwellian that allows the nontrivial heat transfer
by convection in the limit. To justify our expansion and the limit, a new direct estimate of the heat flux
and its derivatives in the Navier-Stokes-Fourier system is established adopting a recent Green’s function
approach in the study of the inviscid limit.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

Building the connection between kinetic theory and macroscopic fluid dynamics has been
an important subject over the past decades. Kinetic equations study the time evolution of the
distribution function F (¢, x, v) > O representing the density of particles of some rarified gas with
position x and velocity v in the phase space Q x R3 at time ¢. The interaction of particles through
collisions is often modeled by some binary collision operator Q(F, F).

When the gas is dense enough such that particles go through many collisions, the hydrody-
namic limits are obtained. A small parameter X7 called the Knudsen number, which represents
the ratio of the mean free path of particles between collisions to the characteristic length, is a key
dimensionless number in describing such phenomena. On the other hand, the velocity scale that
some macroscopic portion of the gas is transported, described by the kinetic Strouhal number St,
also affect the limits. The dimensionless Boltzmann equation takes the form of

1
StatF—i—v-VxF:?Q(F,F), on [0, 00) x € x R3, (1.1)
n

where € is an open subset of R3. Throughout this paper, we assume the hard sphere Boltzmann
collision operator:

1
0(F.G) =3 / / (0 = v) - u{FWHG W) + GW)F )
5 (1.2)

— F(0)G(vs) — G(v) F (vy) }dudoy,

where v/ :=v — ((v — vy) - w)u and v} := v, + ((v — vy) - wu. This collision operator enjoys the
collision invariance property: for any F(v) and G (v),

lo|? —

v
F,.G 1,v, ———)dv=(0,0,0). 1.3
R/sQ( (1o, === )dv=(0,0,0 (1.3)
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We denote the global Maxwellian, which satisfies Q(-,-) =0, by u

I _w?
w(v) = e 2. (1.4)
(2m)2

Another parameter considered in hydrodynamic limits is the Mach number Ma, which can be
viewed as the scale of fluctuations around some reference flow. In this paper, we take the scale
that the Mach number is equal to the Strouhal number:

St=Ma=¢. (1.5)

The reciprocal viscosity of a fluid can be measured in terms of the Reynold number Re = Ma/ K.
In this paper, we consider the scale of large Reynold number with

Kn=«e, (1.6)

where k = k(¢) — 0 as ¢ — 0. Under such scaling, we will derive the incompressible Euler
equations with heat convection with the no-penetration boundary condition in the limit

oup +ug - Vyug + Vypep =0 in Q, (1.7)
Vi-ug =0 inQ, (1.8)

ug-n=0 on 08, (1.9)

0,0 +ug - Vy6g =0 in Q. (1.10)

Here n = n(x) is the unit outward normal vector at x € d2. Note that the boundary value of the
heat convection 6 is completely determined by the transport equation (1.10) and the initial data,
therefore no boundary condition on 6 is imposed.

In many important physical applications, e.g. turbulence theory, boundary effect plays an
important role in global dynamics, and it is of both physical and mathematical interests to take
the boundary into consideration in the hydrodynamic limit. In this paper we consider one of
the physical boundary conditions, the so-called diffuse boundary condition, which models the
ideal situation that gas particles reflected from the boundary reach an instantaneous thermal
equilibration (see [13]): for (x, v) € {02 x R3:n(x)-v< 0},

F(t,x,v)=cupu(v) / F(t,x,0)(n(x) - v)do. (1.11)

n(x)-v>0

Here, the constant ¢, is chosen to be V27 so that fn(x)-u>0 w(v)(n(x) - v)do = 1, which ensures
the null flux condition fR3 F(t,x,v)(n(x)-v)dv =0 for x € 9Q2.

The first mathematical studies of hydrodynamic limits of the Boltzmann equation may date
back to Hilbert in [28], where he introduced the method of Hilbert expansion to obtain the
derivations at the formal level. Since then there have been many results on the rigorous jus-
tifications of hydrodynamic limits based on the truncated asymptotic expansions method. For
instance, the compressible Euler limits with heat transfer are derived in [6,44,57]; incompressible
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Navier-Stokes limits are achieved in [5,11,19]; and diffusive limits from the Vlasov-Maxwell-
Boltzmann system have been obtained in [29]; and hydrodynamic limit toward singular fluid
solutions [40,41]. On the other hand, since Bardos, Golse, and Levermore [1,2] have proposed
the derivation of weak solutions of fluid equations from the renormalized solutions of the Boltz-
mann equation [12] in the early nineties, extensive studies have been made in this direction
and a lot of important results have been obtained (see [17,33,52] for the references in this di-
rection). Notably, the Leray solutions of the incompressible Navier-Stokes equations have been
successfully derived in [18,45,46]; and dissipative solutions of the incompressible Euler have
been obtained in [4,45,46,50].

It should be noted that all the results mentioned above deal with domains that do not contain
boundaries. In general, however, solutions of the Boltzmann equation with physical boundary
conditions behave differently; in particular, high regularity may not be expected (see [24,25,36]).
To overcome this an L? — L> framework was developed in [20] to study global solutions of the
Boltzmann equation with various boundary conditions, which prompted substantial development
in various directions including [7-10,13-15,21-23,26,31,32,37-39,42,59]. Among them in [13,
14], the hydrodynamic limit of the incompressible Navier-Stokes-Fourier system was derived
from the Boltzmann equation under the diffuse boundary condition.

In terms of the incompressible Euler limit, based on the relative entropy method, the con-
vergence of renormalized solutions of the Boltzmann equation to dissipative solutions of the
incompressible Euler equations was first obtained in [4] assuming the local conservation of mo-
mentum which is not guaranteed for renormalized solutions of the Boltzmann equation, some
nonlinear estimate, and the initial data to be well-prepared, in particular, the initial temperature
fluctuation 6;,, = 0, so there is no heat transfer. Later, the local conservation of momentum as-
sumption was removed in [45] by using the local momentum conservation with matrix-valued
defect measure satisfied by renormalized solutions of the Boltzmann equation. The nonlinear es-
timate assumption in [4] was further removed in [50] using refined dissipation estimates which
were developed first in the framework of the BGK equation in [49]. When considering physical
boundaries, the incompressible Euler limit with no heat transfer has been derived in [3] from the
Boltzmann equation under the Maxwell boundary condition. Finally, in [51] the well-prepared
initial data assumption in [4] was removed by the construction of refined approximate solutions
with converging modulated entropy, and the incompressible Euler limit with heat transfer has
been justified under specular reflection boundary condition. We refer to [52] for detailed results
and discussions in this direction. As far as we know, all the existing results on the incompressible
Euler limit using the relative entropy methods are limited to the Maxwell-boundary conditions
whose accommodation coefficients essentially vanish when ¢ — 0. In particular, the sole diffuse
boundary condition is excluded.

To the best of our knowledge, the incompressible Euler limit with heat transfer from the
Boltzmann equation with diffuse boundary has not been established in any framework yet. The
main goal of the paper is to rigorously justify the incompressible Euler limit with heat convection
under the no-penetration boundary condition (1.7)-(1.10) from the Boltzmann equation (1.1) in
the scale of (1.5), (1.6) with the diffuse boundary condition (1.11).

Under the scaling (1.5), (1.6), it is well-known that a mismatch exists between the diffuse
boundary condition (1.11) of the Boltzmann equation and the no-penetration boundary condition
(1.9) of the Euler equation. To overcome such difficulty, adopting the recent framework in [30],
we study the Euler limit with heat transfer from the Boltzmann equation through the Navier-
Stokes-Fourier system with the no-slip boundary condition
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ou~+u-Vyu—knyAu+ Vyp =0 in €, (1.12)
Vy-u=0 in 2, (1.13)

u=0 onof2, (1.14)

010 +u-Vi0 —kn.A0=0 in €, (1.15)

6 =0 on 9, (1.16)

Boussinesq relation p+6 =0 in €2, (1.17)

where 7, and 7, are physical constants that can be computed explicitly by the Boltzmann theory
asin (2.17), (2.17).

We expand the Boltzmann solution F around a global Maxwellian u plus the first and second
correction associated with a Navier-Stokes-Fourier flow (1.12)-(1.17):

F=p+efiyiu+e fayi+e* fryit, (1.18)

where fi =(o+u-v+6-—"%— ‘vl )f ,and f», which also determined by u, p, 6, will be specified
in (2.2)-(2.4). Here F = F®, fR = fy, depend on &, but we drop the superscript ¢ for the sake of
simplicity. Then the equation for the Boltzmann remainder fg is

1 1
& fr+ —v- Ve fr+ 5 Lfr
& E°K

1
=~ Lfi (1.19)
! \% 1F 1L 1.20
— v V- TG+ LA (1.20)
1 2
{h v V= ST ) (1.21)

1/2
—s‘/zatfz+—r<f1 fR) + = F(fz fR>+8—F<fz )+ T fr) (122)

where
-2 1
Lf—=_—— , , D(f,9)=— , . 1.23
f ﬁQ(M vuf), T(f.8) ﬁQ(ﬁf Vig) (1.23)
The operators L and I" can be written as
Lf()=vf() - Kf@) =v@)f) - /k(v, i) f (vs)duy, (1.24)
R3

L(f. )@, v) =T4(f, ), v) —T_(f, g, v)
// [(v = vs) - uly/ i (ue) (f (2,0 g (2, v)) + g (1, V) (1, v)))dud, (1.25)

R3xS2
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- // [(v = vs) - uly/ i (ue) (f (2, 0)g (1, vs) + (2, V) f (¢, vy) ) dudu,
R3xS?2

where the collision frequency v is defined as

v(v) = // |(v = vs) - ulpo(v)dudve ~ (v) i=/1+[v]?, (1.26)

R3xS?
and

2 222
7\v\2+\v*|2 C2 _ ook 1 (It vk

K(v, vy) = Cilv — vyle s 808 pwp? (1.27)

[V — vyl

for some constant C1, C; > 0. The null space of L, denoted by N, is a subspace of L2(R3)
spanned by orthogonal bases {¢; \/ﬁ};‘zo with

lv|? -3
o

(1.28)

wo:=1, @i:=v; fori=1,2,3, ¢4:=
We define a hydrodynamic projection P as an L%-projection on N such as

Pg:=) (Pig)pj/it. Pjg:=1(g.9;y/i). and Pg:=(Pog. Pig. Pag. P3g. Psg). (1.29)

where (-, -) stands for an L%-inner product. It is well-known that the operators enjoy PL = LP =
PT" = 0. Importantly the linear operator L enjoys a coercivity away from the kernel N for
v(v) > 0 defined in (1.24),

(Lf, ) = o0ll/v(A=P) flI72 g3 for some o > 0. (130)

From the no-slip boundary condition (1.14), (1.16), fi =0 on 02 and hence u + &f1./u
satisfies the diffuse reflection boundary condition (1.11). By plugging (1.18) into the boundary
condition, we arrive at

2+ fR)ly. = cuy/ 1) / & fo+ &2 fr)v/ (o) (n(x) - v)do.

n(x)-0>0

Letting P,, be an Lz({v :n(x) - v > 0})-projection of /¢, ft, we derive that

fR(t,x,U)|y_ = P}/+fR(tsx’U) _81/2(1 - P}/+)f2(t’-xvv)

=/ eun ) / Rt 2, 0)y/cuu(®@)(n(x) - v)do — ' 2(1 = P,) fo(,x,v). 13D

n(x)-0>0

Note that [ cuit (V) (n(x) - v)dv = 1. And 9, fg satisfies

(x)-v>0
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O frly. = Py, fr —e/*(1 — P,)3,(I—P) fo. (1.32)

We are now ready to state the main result of this paper (informal version); the precise state-
ment can be found in Theorem 10 in Section 4.

Theorem 1 (Informal statement). Let Q2 be a upper half space in 3D:

Q:=T?x Ry 2 (x1,x2,x3), where Ry :={x3 € R:x3 > 0}, (133)
and T is the periodic interval (—m, ). .

Suppose an initial velocity field uiy, is divergence-free, the corresponding initial vorticity wj, =
Vi X uin and the initial heat 0;;, live in some real analytic space and satisfy certain compatibility
conditions. Choosing the proper correction terms f1 and f>, then there exists a large set of initial
data fr i, such that for some T > O, there exists a unique solution F (t, x, v) of the form (1.18)
to the Boltzmann equation (1.1) with the diffuse reflection boundary condition (1.11) under the
scale of (1.5), (1.6) on [0, T such that for some choice of € and k (¢),

F(t,x,v) — 1(v) ?

e/ (v)

|v

sup
0<t<T

_3>m

2

<_€E(t1-x) +ME([,X) *v +9E(tv-x)
L2(QxR3)

—0

as ¢ — 0, where ug and Og are the solutions of the incompressible Euler equations with no-
penetration boundary condition under heat convection (1.7)-(1.10).

For the rest of this section, we present the strategy and key ideas to the theorems for rigor-
ously justifying the limit. The core of Section 2 is to establish an L? estimate for the Boltzmann
remainder fg uniformly in ¢. From our Hilbert expansion around the global Maxwellian w in
(1.18), the equation for fg is (1.19)-(1.22). In order to have a desired bound on fp it is necessary
to dispose of the highly singular terms in (1.19)-(1.21). We show in Section 2.1 that by the choice
of the first and second order correction fi, f> associated with a Navier-Stokes-Fourier flow as in
(2.1)-(2.4), we obtain (1.19) = (1.20) = 0, and P(1.21) = 0. The remaining terms in (1.19)-(1.22)
are of low enough singularity that can be controlled eventually.

The L? estimate for fr shares the same framework as in [30]. A trilinear forcing term comes
up as ”+ﬂ f(; Joxrs T(fr. fRYX—P) fr in the energy estimate of f. Utilizing the dissipation
from the linearized Boltzmann operator (1.30) we can bound this term as

172
€ 1
m”PfRIIL,“L?”PfR”L%Li”" ie lﬁ(I_P)fR”L?.x.v'

The L?Li-estimate for Pfr is achieved by extending fr into a particularly designed domain
first and then into the whole space using special cutoff functions, followed by Duhamel’s for-
mula and employing the 7'7*-method developed in [15,27,34]. Detailed estimates can be found
in section 2.3. An L® integrability gain for P fg is obtained by employing the micro-macro de-
composition method as in [14]. We use the test function method as in [13] to invert the operator
v - V,P and bound the L® norm of P fr by the dissipation and the L? bound of 9, fr. Now the
temporal derivative of fr comes into play and we need to include the estimates of d; fg in a
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parallel way to those of fg. The L7 of fr and the L%Lgo of 9, fr will be controlled using
Duhamel’s formula and analyzing the particle’s interaction with the diffuse boundary condition.
Note that the space L?LX for 9, f is needed as the forcing term V,d2u processes an initial-
boundary layer. Now, the derivatives of the fluid part will need to be considered in order to close
the estimate. From Theorem 8, the control of the kinetic remainder requires the control of fluid
parts as in (2.193), (2.194). This part is explored in Section 3.

We point out one major difference between our estimate for fr and the corresponding
one in [30]. Here in (1.18) we expand around the global Maxwellian . and have two cor-

rection terms fi, f2; while in [30] the expansion was performed around the local Maxwellian
_ el
m = We 2 as

F=ﬂ+82f2\//3+83/2fR\/T»

where u(t, x) is the solution of the Navier-Stokes equation, and the expansion only have one cor-
rection term. Now, in the presence of heat transfer 6, such an expansion around local Maxwellian
would lead to an undesirable propagation of |v|? in the estimates. Which makes the remainder
analysis more complicated and harder.

In both cases, effective cancellations on the singular terms are obtained by making the correct
choice of the correction terms. One benefit in our global Maxwellian setting is that whenever
the derivatives 9;, V, hit w, it vanishes. This reduces the amount of computation and makes
the estimates more straightforward compared to the local Maxwellian setting. However, such a
setting also brings an extra singular term %F(fl, fr) in the equation for fr in (1.22), which can

2 .
(0 +e¢ \/%Vx)\/; frin|

be compared to the term 30]. This singular term will result in a bound

t
1
— [ IPfr(s)I7,ds
K X
0

in the L? estimate of fg, which would essentially give rise to the growth of e by the Gronwall’s
inequality. Fortunately, the expansion leaves enough room so that we can find a range of ¢ in
terms of « in a scale of large Reynolds number to absorb the growth.

In Section 3 we present the inviscid limit of the Navier-Stokes-Fourier system (1.12)-(1.17).
It is well known that due to the mismatch of the boundary conditions (1.9) and (1.14), bound-
ary layers will form. In [53,54] the famous Prandtl expansion was introduced to justify the limit
with analytic initial data. In a recent work [56], the authors proved the inviscid limit using a
new Green’s function approach based on the boundary vorticity formulation established in [48]
(See also [43]). In this paper, we employ the same Green’s function approach using the vortic-
ity formulation (3.2)-(3.6) for the Navier-Stokes-Fourier system. As mentioned above, temporal
derivatives of the solution to the fluid equations also need to be controlled. To this end, we follow
the same strategy in [30] by setting the compatibility as in (3.25) and deriving a similar integral
representation formula for 9, without any initial layer.

It turns out the equation for the heat flow 6 resembles the one for the vertical component of the
vorticity w3. Using Green’s formula (3.60) we can establish the analytic bounds (3.27) for 6 in
the same way for w3. However, this does not fulfill our need since the conormal derivative in the
analytic norm (3.16) allows a % singularity of the normal derivative of 6 in the boundary layer,
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and thus prevents us from getting the L°° bound. In order to tackle the issue we design a similar,
yet different ||-|||, norm in (3.17) to directly target the normal derivative of 6 and its temporal
derivatives. Taking 9y, derivative directly to (3.60) and using integration by parts we derive the
integral formula for d,,6. From there we carefully bound the bilinear integrand and applying the
analytic recovery lemma to obtain the desired bound in (3.28). Note that this estimate leads to
the highest singularity as

V20 !
IV26llLs ~ .

which is of the same order as that of V2u. The results of these estimates are summarized in The-
orem 9. Because of our choice of ¢ with respect to «, such growth is affordable in the Hilbert
expansion. Therefore, combining Theorem 8 and Theorem 9, we prove the main result Theo-
rem 10 in section 4. This concludes the rigorous justification of the incompressible Euler limit
with heat flow.

2. Boltzmann estimate
2.1. Hilbert expansion
In this section we prove the following proposition:

Proposition 2. Suppose that F of (1.18), solves (1.1) and (1.11) with (1.5), (1.6), and that
(p,u,0) solves (1.12)-(1.17). We choose f and f> as

lv* =3
fi=(+u-v+0 7 )/ 1L 2.1
A—P)fo=L""(—kv- Vi fi +T(f1. /1)), (2.2)

lv* =3
PfHh=(p2+uz-v+6; 3 IR (2.3)

where py, uy, and 9, satisfy
V-uy=—09p,

2.4)

Vv, (,02 +6, — —|u|2) Vip.

Then fgin (1.18) satisfies

1 1
[3[ +-v-V,+ TL]fR = 12 {(I P)(v- Vi fo) — _F(fl’fz)}
€ %K (2.5

1 2
T+ el2 <_3[f2+;r(f2,f2)> —F(f1+sf2 fR)+ F(fR IR,

and 0; fr satisfies
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1 1
[31 +-v-Vy+ TL]asz
& E°K
1 2 2
=— 5 {AT=P)v-Vi0 f2) = =T f1, f2) = =T(f1, 3 f2)
gl/2 K K
2
+el/? (—affz + =T (@ fa. fz)) (2:6)
2
o (T f1 + €0: f2, fR) + T (f1 + &f2,0: fR))

2
+ mr(atfR’ fr)-

Remark 1. There is some freedom to choose uj, o2, 0, satisfying (2.4). One possible choice
could be

0
1
2 (xp, X3) = 0 o2 =lul’ + p, 62=0. @7
fOX3 ate(xhv )’)dy
Proof. To show (2.5), it suffices to prove (1.19) =0, (1.20) =0 and P(1.21) = 0 from the re-
mainder equation (1.19)-(1.22), and (2.6) follows from a direct differentiation of (2.5).
From our choice (2.1), we have (I — P) f; = 0, therefore (1.19) = 0. Next, let’s show (2.2) is

well-defined, which implies (1.20) = 0. By the Fredholm alternative, the inverse operator of L
maps

L™V Nt — N, where N stands an L2 — orthogonal complement of A
Hence in order to show (2.2) is well-defined, all we need is to show
P(—kv- Vi fi +T(f1, f1)) = —«P(v -V, f1) =0,
or equivalently

vf?

<v~fo1, |:1,v, T:| ﬁ>=0. (2.8)

By direction computation, from the oddness in the v-integral and the incompressible condition
(1.13) we have

lv|? -3
(V- Ve fi, 1) =(v- Vep, i) + (v Vet v, ) + (v Vi, ——

3 _ 2.9

M)

Next, for fixed i = 1, 2, 3, again from the oddness in the v-integral and (1.17) we have
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] —3
(V- Vi frovi/m) = - Vep,vip) + (v - Veu - v, viu) + (v- V0, T”iﬂ)

(2.10)

2
v|-—3
=9, 0 /viz,udv + 0,0 /| |2 v?udv =0;(p+6)=0.
3

3

Finally similar to (2.9), we have

2 2 5 ) 5
L v v v|c=3 v
<v-vxf1,|2' \/ﬁ>=<v.vxp,%u>+<v,vxu.v’|2| u>+<v-vxe,' 2 =31l M>

2 2

(2.11)
Therefore from (2.9), (2.10), and (2.11) we prove (2.8).
The only thing left to get (2.5) is then to prove P(1.21) = 0. It suffices to prove
v[?
0 fi+v- Ve o | Lo [ ViE) =0, 2.12)
This is equivalent to
Op+V-uy=0,
ou+ (v-ViI—P)f, U«/ﬁ)+vx(p2+92)=0, (2.13)

3 1 5
S +0)+ (0 Vi@ =P) fo, [0’ /1) + 5V 12 =0,
Let’s consider the second equation of (2.13). Using (2.2) we compute

(V- Ve =P) fo, v /1) =(v - Vo L™ (—kv - Vi fi + T(f1, £1)), v/ 18)
= (- VoL (kv - Vi fi), v/I0) + (v - Vo LU (f1, f1)), v/12) -

(.14, (2.14),
(2.14)

We first consider (2.14),. It suffices to compute for fixed i,
> (w7 oo Vi), V). 2.15)

J
Since (vjv; — 1428,/ /7t € VL. Define
. v|?

Ay )= L7 (wiw; - Taij)ﬁ)(v). (2.16)
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By splitting v;v; = (v;v; — %|v|28,-j) + %|v|26ij in (2.15), and using the self-adjointness of L1
we have

1
(2.15) = —« Z<L1(Z vk djk f1), (Vivj — §|v|25i1)\/ﬁ>
i k

J

1o (g <L’1(—v Vi 1), |v|2ﬁ>)
— Z<L‘1(Z vkdjk f1), (viv; — %|U|25ij)x/ﬁ>
7 k

=—K Z Bjkug(vkvlf, Aij) =—kK Z ajkue (LAkl, A,'j),

Jikl Jk,l

where the 6 and p terms vanish because of the oddness in the v-integration. Next by the compu-
tation (Lemma 4.4 in [2]), the above term is equal to

2
—1c Y (Aij, LA djiu’ = —rny Y (@iwﬂ + 818 1) — gaij5k1> 3’
Jok,l ik,

. 2 4
= —knp{Au' — OV -u— EBI'V ‘u} = —knyAu' fori=1,2,3.
2.17)

Here we have used the incompressible condition (1.12). Therefore we get
(2.14); = —knyAu. (2.18)

Next we consider (2.14),. First by direct computation we have

C(f1, f1))—L f—lz
N

1
= QWS VES) + 0. D)

Vi
1
=m / |0 = vs) - 1] 24/ (V) f1 W)/ f1(0)) = 2/1 (W) f1(0) /12 (0:) f1(v4)) dudvie

+% [ 10 = 00wl (10 260+ ) £ = 2000 = 00) FR(0)) dud,
1
=ﬁ//|(v—v*)-ul (V@) fi(0)) + V() i) = VR(O) f1(vs) — (V) f1 ()
X (V") f1(0)) + V() f1(0) + VW) f1(0x) + VI (0s) f1(v)) dudv,
_1 o (N AR) A fl(U)>
= J] vAww = u'(ﬁ(v;) RV R R )
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x (VRO FL)) + V) fi (V) + VW) fi(vs) + /R (05) f1(0)) dudvs.

And since fl EN fl(”;,) + f1v) _ fi(vs) f1() — 0. Thus

N/ CA R/ O B/ W /()
T'(fi. fy=L S ,thereforeL—l(F(fl,fo):(I—P)( fl (2.19)
2/ «/—
From (2.1),
- P)(——— 17 _—(I—P)(,o—l-u u+9| )f (I—P)(u-v+e|v|27_3)2\/ﬁ
N 2 :
(2.20)
Now for fixed i, from (2.19), (2.20), and using |v|2ﬁ enN,
(v- VL™ NT(f1, 1)), vid/IE)
2_3
—-Z( ((I P)((u-v+e'”'2 )2)ﬂ>,vjviﬁ>
2.21)
-3, 1 )
—Z( ((I—P)( VO ))Jﬁ>,(vjv,-—§ai,-|v| )ﬂ>.
Now using (vjv; — %Sij|v|2)\/ﬁ e Nt, we have
(v- VLN T (f1, 1)), vid/IE)
1 1
=§Z< ((u v+9| )f) (ujvi—gaij|u|2)ﬁ>
J
1 1
= Z<a,~ (w2, v - gaij|v|2)¢ﬁ>
J
@22 (2.22)
1 1
+52Jj< ( 2 0P = )f) (vjvi—gaij|v|2>ﬁ>

(2.22),

1
+ Z<(u 0O = 3) 1, (vjvi — §8i,;|v|2)ﬂ>.

J

(2.22);
First we have (2.22); = 0 from oddness of the integration. By direct computation
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1 w2=3\". 1,
(2-22)2:§Z< . )8.;(9 )ﬁ,(vjv,-—gamw)ﬁ
j

1 v =3\? 1
=§a,-(92)/<| '2 ) <u,.2—§|u|2>y,du=o.

Lastly for (2.22), we have from computation

1 k, ¢ 1 k¢ 2
(2.22), :E/ Zvivjvkvgaj(u u) N«dU—g/ ;ai(u u)vrve|v|” | pdv

k.t

1 - 1
ZE/ sz?v?aj(ulu]) /,LdU—’—E/(ZUZZUI%al(uk)z) Mdv
k

J#

- é / (Z v,%|v|zai<uk>2) pdv
k

o 3 X 1 5
= Za,-(uw) + 50w + 5 Za,-(u"f = 20i(u?)
J#i ki

o 1 5 A |
=D 0wl 30 (ul?) = 20 (ul®) = 1@ uhu1 = 30 i),
J J
where we’ve used V - u = 0. Therefore we get

1
Q14 =u-Vyu — §VX(|u|2).

Combining with (2.18) we get the second equation of (2.13) is equivalent to
LI,
Ot +u - Vet — kvyAu + Vy p2+02—§|u| =0,

which is guaranteed by (2.4).
We now consider the third equation of (2.13) subtracting % of the first equation of (2.13):

5 1
S0+ S (v Ve =P) fo, v /1) =0. (2.23)

Using (2.2) we compute

1 1
S Vd=P)fr, 2 y/m) = S Vo L™ (kv - Vo fi + T(f1, S0, 02 /10)

! 1
= E(v VLN (=kv - Vi 1), |U|2\/ﬁ) + Ew VLN T ), |U|2ﬂ) . (2.24)

(2.24)y (2.24),
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Smce(‘| )v,fe/\/l Define

Bi=L" <('”' )w_)-

By the self-adjointness of L~!, we compute

Q. 24)1_—§Z<a L™ (ede f1), —J_>

J.k

K [v|> =3
=—§Z<vk8jk(p+v-u+ 5 9>,Bj>
.k

=—§Z<vk8jk<v-u)f,Bj>—§Z<vk('”'2 ,ke)fB> (2.25)
j.k

J-k

(2.25), (2.25),

— 3 " (o +0) V. By)
j.k

(2.25)

From [19], B; is odd in v}, thus (2.25); = 0. Also (2.25)3 =0 as p + 6 = constant. Now by
lemma 4.4 in [2], we have for some constant 7,

(LB, B > = 57Icfsk/ (2.26)

Thus

2_5 5
(2.25), = §Z<vk (Ivl . jkg)f B > 3 Z(LBk, B;)djx0 = ZKUCAQ.

Jj.k jk

Finally we compute 1(v - Vi L~V (D'(f1, f1)), [v|*/&). From (2.19), (2.20) and using v; (Jv|?> —
5)J/meNt,

%(v-vxL”(r(fl,fo),wWﬁ)
=_Z< ((u v+9| )f)) vi(jvf? —5)f>
=3 Z( (@00 =3)/0) v, (0P = 5)V/R)

=2 Zaj(ujG) / ((Ivl2 =33 (v]* - 5)#) dv
J
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5
=—u-Vo.
2

Therefore (2.23) gives

5
5 @16 +u- VO — kncAB) =0,

which is guaranteed by (1.15). O
2.2. L?-energy estimate

We start with an L2-energy estimate for fz and 9; fz. From (2.5), we define

1 1 1 2
0 frRO=— Jv Vi Rin — ELfR,in — L {(I —P)(v -V f2,in) — ;F(fl,m, fz,m)}

> 12
—e' 28 foin + ;F(fl,in +ef2,in, fRin) + Tr(fz,in, Sf2,in)

1
+ mr(fle,in, SfR,in)-
2.27)

Here 0, f2.;, is defined through solving the fluid equations for 9, part and evaluate at t = 0.
For the sake of notational simplicity, let’s denote Z, 75 : [0, T] x Q — R3,

I= [p, ' w2, 9] L and T, = I:,oz, b w2, i, 92] . (2.28)

The following trace theorem is useful to control the boundary terms.
Lemma 1 (Trace theorem).

t t t

é//|h|dyds§;v // |h(0)|+/ // |h|+/ // |8th+év~vxh|, (2.29)
0N

QxR3 0 QxR3 0 QxR3
where yﬁ’ ={x,v) eyt :|n(x)-v]|>1/Nand 1/N < |v| < N}.
Proof. The proof is standard (for example see Lemma 3.2 in [14] or Lemma 7 in [8]). O

Proposition 3. Under the same assumptions in Proposition 2, we have
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t
N _1
@B+ dalie e A= faly + [1ed paly
0

t
1
SO, + -1+ 1T1G) / |PfR)IIT > ds (2.30)
0

&
+ e PR () e e PRI 5
2 € 2
+ecll @507, +—Ie@SDIZ  +1C39) 21200,

where

O
dy == — &3t fr 1

2
&
5 o - <82||(2.36)||ng +e|ViZllLx + 7”(2.36)”%,03)

1/2

1/2.1/2
—Kk'%e 2.46 - —
”( )||Lt2,x K1/2|

@ADLz — k221250 2 (2.31)

£3/2
— k@Dl

We also have
1 1
18 @17, + sl 2™ VoA =P)d; frll7, 1720 frl]a,
X,V WXLV Y

&
S Ilasz(O)IIiE ot 8K||(2.68)||it2x e ”K(2'69)”i?x v

t
£ 1
g 6P IR o gle 2 Pon frlfz y + / P9 fa(5) 12 ds
0

(2.32)
t
i (e s IPfr()]3,d
p L i Lo ) % fr(s 129s
0
{1+ il L x e e AP frl2,
where 0; fr(0, x,v) := fr:(0, x, v) is defined in (2.27). Here
2 2 2
o) & £ £
dyyi=— = — QAN — =Tl — —IA—=P) fall 1
K t,x,v K B K B
— el Tl — &l frll L,
1/2 (2.33)

3
=k P20z = K60z — kP29,

§3/2
- ml|K(2'69)||Lt2,x,u
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Proof. We fixa0 <o < %. Define

2
,(x,v) =10 = el

We will use both tv, and tv equivalently.
From (2.3) we have [P f>| < e=@"F|Z,|. And from (2.2), by [1] we have

|X=P) fo| = L™ (=kv - Vi fi + T(f1, 1))

2 2
< ke V|V, Z| 4 e70l1 72,

Thus
2
ol S e (122 +1Z2] + k19,71

An energy estimate to (2.5) and (1.31) reads as

t

1 A2 1 012 1 L
SIFROIG: = 51/ ”'@,ﬁ@// fRLfr

0 OQxR3
L 1
+£//'lez—z//mm—81/2<1—Py+><I—P>fz|2
0 v+ 0 y-
1 t
Zm/ // C(fre )T~ P) fr
0 OxR3
2 t
r / // L(fi +fa. fR)A—P) fr
0 QxR3

t
1 2
+ﬁ - (I_P)(vafz)——r(fl,fz) (I—P)fR
el/ P
0 QxR3

t

+81/2/ // (—3;f2+%r(f2»f2)>fR

0 QxR3

We start with (2.37). From the spectral gap estimate in (1.30), we have

1 1 R
@371z SRz = S1/ROIZ; +oollk™ 2™ VoA =P frllj; .

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

Now we consider (2.39), in which we need integrability gain of P f in L§ of the next sections.

From decomposition fg =Pfr + (I —P)frand '=T4 —I'_ in (1.25), we derive
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12391 5 I/QZ/ // V73T (| Rl A= P) fR)l Vo (I~ P) fz|

=0 oxR3

KEWZ// VI (PRl PSR DIV~ P) frl

(2.44)
i=+ 0 OxR3
5e”znmfRnLgfu||x—fs—1ﬁ<l—P)fR||2
3/2 ||K1/2PfR||LooLs||x1/2PfR||LzL3 2™ A= P frll
Next we consider (2.40), we have
[(2.40)|
1 |
<5 (en(z 36)Il52 +||I||Lm){||PfR||L;x+m||f< 267 WA -P) frll2 )
-1 -1
x =2 VA= P) frll 2 (2.45)
2
& 1
S N30 +elTliys + — 1300 Hik ™2™ VA= P) frll},
(o) ,% ,]\/—I P 2 101 I 2 P 2
+ 1ol e T VVA=P Rl T PSR -
From (2.35) and (2.36)
2
(I—P)(U'foz)—;F(fl,fz)

_ 1
<|(I—P><v-vfoz)|+((I—P)(v-vxL H—rv - Ve i + T, D]+ =IT(f1, f2)
< e M|V, Ty | + ke O | V2T 4 om0 |72 (2.46)

1
+ ;e—glv‘zm <|I|2 +|To| +x|vxz|) : 2.47)

we derive that

1/2
&
[XIES <K1/281/2||(2.46>||L;,x +

—-1/2 -1
mIIK(2~47)||Lt2,x)IIK Pl A=P)frll,2 . (248)

Next we have from (2.19)
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O fr=0Pfa+0,0I-P)f

vf* —3

= (0;02 + sz - v+ 0:62 Wi+ L7 (—kv - Vo0, f1 + T f1, f1) +T(f1, 80 1))

lv|? -3 _ -0 fi
= (3 p2 + Bz - v + 365 W+ L (=kv - Vid, fi) + a—py 0Ny
JiE
So we can bound
19 ol <e @ (18, + k| V2, Z]) + e 21| 7)19,Z]. (2.49)
Together with (2.36) we have
1 2
~0f2+ -T2 f2)| Se e (19, 2o + |V 8, L] + 1Z118,Z1) (2.50)
1 _ |U|2 2 2
+- (7" (121 + 12l + €1V, 71)) @2.51)
Thus
g 1
12.42) Secll 250017, + =lle@5DI7,  +=IPf&I3,
t,x,v K t,x,v K t,x,v
1/2.3/2 g3/? 1/2.—1
+ (K 222500, + v ||x<2.51)||L;M) I 2T A=P) fRl 2

(2.52)

Finally we control the boundary term (2.38) using a trace theorem (2.29). First we have, from
(1.31),

t t

1 1
(2~38):£//{|fR|2—|Py+fR|2}—§//|(1—Py+)(I—P)f2|2

0 v+ 0 y-
/ 1
_//mp}q.fR(l_P}q_)(I_P)fz
0 v- (2.53)

_1 I 1
> e 2(1—Py+>fR|itzL%+—@|e 21°y+fR|§rzL£+

N =

13
1
_(E+2C)//|(1—P,,+)(I—P)f2|2 for C>> 1,

0 v-

where we have used the fact | P, fR|L5 =|P, fR|L§/ from P,, fr(t, x, v) being a function of
+ _
(t, x,|v|) due to u|yq = 0.
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Now we estimate P, fg. Since P,, in (1.31) is a projection of ¢, ,/u on y4, it follows
fH |Py, fI> < zfyf |P,, f|* for large enough N > 0, where ¥ :={(x,v) € y4 : [n(x) - v| >
1/N and 1/N < |v| < N}. Setting h = | f|? in (2.29) and using (2.5) we derive

//|fR|2dyds<cN/ RO +// |l

QxR3 0 QxR3

/// ‘ ‘—LfR+—F<f1+8fz IR+ =T (fre fo)
0 QxR3

1 2 12 1
— 7 {A=PYW- Vi fo) = T fo) 62 (<0 fa T (fa 1)) ] |
& K K

<CN{IfrO)T; +IPFRIZ, +lle™ " 2/vA=P) frllf,

+(2.44) 4 (2.45) + (2.48) + (2.52)}.
(2.54)

Furthermore from (1.31) and (2.54)

Frlfasy SURlag, +el0= BO@=P) folly s =1kl 1239000,
(2.55)

Finally we collect the terms as

-1
_1 & 2
rh.s of (2.43) + (2.53) + —|8 2PV+fR|L2L2 + —16C|fR|Lx2L%,

1 -1
<rh.sof (2.44) 4+ (2.45) + (2.48) + (2.52) + ic x r.h.s of (2.54) + f6—C x r.h.s of (2.55).

We choose large N and then large C so that & < 0¢. Using Young’s inequality for products,
and then moving contributions of ||k ™2 8_1 f (I —P)fr ||2 to Lh.s., we derive (2.30).
Next we prove (2.32). An energy estimate to (2.6) and (l 32) lead to (2.32)

t
1 1 1
Enasz(r)n%—5||asz<0>||%+@/ // d frLO; fr (2.56)
0 QxR3
t
4+ //|af &
28 tJR
0 v+
t
1 1/2 2
-5 |P,, 3 fr —€/2(1 = P, )d,(1—P) fa] (2.57)
0 v-
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t

2
:T/ // r'@; fr, frRYXA—P)0; fr (2.58)
kel/
0 QxR3
5 '
+ g/ // (T'@; f1 +€0; f2, frR) +T(f1 +&f2,0: fR)) O fR (2.59)
0 QxR3

13
1 2 2
+ =75 —I=P)(v V0 ) + =T @ f1, f2) + =T (f1,0: f2) f A=P)0; fr
gl/ K K

0 QxR3
(2.60)
t
+e'/? / // (—8?fz + %na,fz, fz)) 3 fr 2.61)
0 QxR3

We control the terms similarly as in the proof of (2.30):

1 1 _1
(2:560) = S0, fr®lizy = 51 fRO)IT; | + ool ™26 VoA =P, frl;, , (262)

1
2.58)] < (2w frllzg e 2e™ V@ —P)dy frll,

1x,v

8]

/2 1
+ Ik PP Frll e el 2 POy frll 2l e T VA= Pd: frl 2 (263)

259)
1 1
S (K Relvva falligs,, +x 2 IV fillezs, )

1 I I
< (IPf&ll 2, +w2ele™2e AP frll 2 Y™ 26 A=P)d; frll2
e £ 1
+ | aIPLIL + I A= P) falls + — Ivfills,

1 1 1
x (13 frll 2+ 2ol 2e™ A=P)a frll2 ) Ik~ 7e ™ A=P)a frll2 6

2 2 2
oy € I3 &
S (— + IV Sl + —IPLalls + — 1A= P) s + anvfluL,og)

10
-1 1 2
x Ik be T A= P frl2,
1 2 1 2 2
+ (1+Ivvafilds  + IV Al ) IPfRIZ
1
+ (1 2IVvan il ) e A= P frll2,
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We have
2 2
—I=P)(v- V0 fo) + ;F(atfl, f2) + ;F(fl, 0 f2)
SIA=P)(w- VPO, )|+ |A=P)(v - Vi L™ (—kv - Vidy f1 + 2T (0; f1, f1)))

1 1
+ 2 IP@fi, 21+ 2T (fr, 9.f2)]

< e M|V, 8, To| + ke O V29, ] + e 719, 7] (2.65)
1 1
+ e a1 (IZP +1Z21 + k19:71) + e P13, Tal + IV, Z| + 210, 21)
(2.66)

So we derive that

1/2
& — —
12.60)] < (K1/251/2||(2,65)||Ltz'x‘v + m||K(2.66)||L?M> I e A =P, frll2 -
(2.67)
And we have
2 2
=07 fo + ;F(azfz, NS
emonr’ (|3312| + K|vxa,21|) +eehl (III 18721+ |8tI|2) (2.68)
1
e (2P 4 Dol 4+ Vo T1) (9T + KV T + IO (269)
Thus
< 2 € 2 1 2
2.6D] Serll Q09172+ w672+ —[IPd; frll72
1,x,v K t,x,v K 1,x,v
1/2,.3/2 e /2,1
+ <K P08z, + m||K(2-69)||Lt2,x1v> e 2e 7 A= P)dy [ 2
(2.70)

Lastly we estimate (2.57). As in (2.53) we derive that (2.57) is bounded from below by

1 1 2 L1 2
5'8 2(1 - Py+)8tfR|L2((O,T);L§,+) - %'8 2PV+8’fR|L2((O,T);Lf,+)

= Cl( = Py )A=P)3: 2o 112

- 2.71
1 1 5 1 1 5 ( )
Zilg 2(1 - PV+)a[fR|L2(((),T);L%+) - %'8 2 Py+atfR|L2((O,T);L}2/+)

2
— e IV T + 1T TDN 2 200 |
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for some large C.
Now we bound Py, 9; fr using (2.29). Following the argument arriving at (2.54) and setting
h =9, fr|> we derive

t

1 2
g//mtfm dyds

0 v+

t
1
SN0 RO 2, + 100 fR L2 +/ // ‘(— oL fr +hs of (2.6)) 8,fR‘ (2.72)

0 QxR3
SN RO, +1Pfrl, +lle™ k™ A/VA=P)3; frllj;
+(2.63) + (2.64) 4 (2.67) + (2.70).

We conclude (2.32) by collecting the terms. O
2.3. L%Li—integrability gain for P fr
The goal for this section is the following proposition:

Proposition 4. Assume the same assumptions in Proposition 2. Then we have, for 2 < p < 3,

d3||PfR”L,2L§

1
S frllgers, + 1ROz + 1Tl 1 el 2,

11 gl/?
— + — (Il +ell2.36 oo) L oo frllie } I-P
=+ = (1Tl +e1@30) ) + —— e frllus, IVDA=P)frlz, . 273)

12
e
+ 81/2||(2'46)”Lt2x + - ”K(2.47)”Lt2,x + 83/2||(2'50)”Lt2.x,v

£3/2
= le@5Dl2, -

with

1/2 3(p=2) 6-2p

—=1-% _e v »
d3:=1 K|I(2-36)IILIOOLYP_zg_2 —IPIRI o lIwo Rl L - (2.74)

and for ¢’ < o
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il PO Sl 30z

,sl% (1 Tlege, +elCADNs, ) HIPsrlz, + VA= frl2 )

1/2

I e 1
=+ el + - (IZ0es +£1C36) s ) IVIA =P fllz,

2 1
+ (we) 2 oo 0 frll 2 e, + 10 frllrger , + 10 frOMzz + N2 2is PO frll 22
1/2 2 3/2 012 e¥? 2
+e 21269l 7, , + —— @66,z |+ 2NN, +—— k69T, .
h T(2.75)
with
P 81/2 3(p=2) 6-2p
d3i=1- ;II(2-36)|I 2, = TIIPfRIIL?fLE IImngIIL?’_ZiYU, (2.76)
L¥L}
where both bounds are uniform-in-p for2 < p < 3.
We prove the proposition by several steps.
Step 1: Extension. We define a subset
= (0, 27) x (0,27) x (0, 00) C R>. (2.77)

We regard Q as an open subset but not a periodic domain as €2. Without loss of generality we
may assume that f(0, x, v) is defined in R* x R¥ and || fr(0)ll 1»r3xR3) S I fRO)] Lr(@xRY)
for all 1 < p < oo. Then we extend a solution for whole time # € R as

f[(t"x7 U) = ltZOfR(tﬂ-xv 'U) + 1150)(1 (t)fR(Ov-xa 'U), (278)

where a smooth non-negative function x satisfies x;(¢) =1 forr € [—1,0], x;(t) =0 for r <
—2,and 0 < —Xl <4.

A closure of € is given as cl () = [0,27] x [0,27] x [0, 00). Let us define 75 (x,v) € R
for (x,v) € (R*\Q) x R®. We consider B(x,v) := {s € R : x + sv € R}\cl(Q)}. Clearly if
B(x,v) # @ then {s > 0} C B(x,v) or {s <0} C B(x,v) exclusively.

If {s >0} C B(x,v), let I be the largest interval such that {s > 0} C I C B(x,v). And if
{s <0} C B(x,v), let I_ be the largest interval such that {s > 0} C I_ C B(x, v). We define

0 if x €0,
s infl, if x e R3\c/(Q) and B(x,v) # ¥ and {s > 0} C I, C B(x,v),
t(x,v) = . 1o - g (2.79)
sup/_ if x e R’\cl(2) and B(x,v) # WP and {s <0} C I_ C B(x,v),
—oo  if B(x,v)=%andx ¢ 0Q.
Using (2.79) we define
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fE(tx,v) =1 mag)xrs /1 + efg(x,v), Xp(x,v),v) with Xg(x,v) :=x +p(x, v)v.
(2.80)
It is easy to see that €9; fg + v - V, fg = 0 in the sense of distributions.
Next we define two cutoff functions. For any N > 0 we define smooth non-negative functions
as

x2o(x)=1forx € [—m,3n] x [—m, 3] x [—7, 00),

x2(x) =0 for x ¢ [—27, 4] x [—27, 4] x [—27, 00), |Vixa| < 10, (2.81)
x3(v)=1for [v] <N — 1, and |v;| > 2/N foralli =1,2,3,
x3(w)=0for |v| > N or |v;| <1/N foranyi =1,2,3, |V,x3| <10. (2.82)
We denote
U :=[-2m,47] x [-27, 4] x [-27, 00),
Vi={veR o <N}n ) (veR |yl 1/N) (2.83)

i=1,2,3

We define an extension of cut-offed solutions

Fr(t,x,) 1= x2(x) x3(V) {15 (X) f1 (£, x,v) + fE(t, x,v)} for (t,x,v) € (—o0, T] x R* x R?.

_ (2.84)
We note that in the sense of distributions fr solves
ed fr+v-Vifr=g in(—o0, T] x R3 x R3,
- vV X2 =
8= X; fr+1iz0lg () x2(x) x3(W)[€d +v - Vil fr (2.85)

+ Li<o{ed; x1(1) frR(O0, x, v) + x1(D)v - Vi fr(0, x, v)}

Here we have used the fact that fR in (2.85) is continuous along the characteristics across Q2
and {t = 0}. We derive that, using (2.85),

t

= 1
Jr(,x,0) == / g(s,x —

—00

Sv, v)ds for (¢, x,v) € (—o0, T] x R3 x R3. (2.86)

Recall ¢; € {¢o, - - - @4} in (1.28). From (2.84) we note that

/ Fr(t, x,v)¢; (V) p(v)dv
R3

L}((0,T);LE () 2.87)

= /xz(x)X3(v)fR (, x,0)@; (v)y/ 1 (v)dv
R? L2((0,T); LY (2))
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From (1.29), we decompose

L2((0,T); LY ()

81z | Cewrifet. [ uwe e ouwa
J R3

- /Xs(v)(I—P)fR(t,x, V)i (v)y/ n(v)dv
R? L2((0,T); LY () (2.88)

= “ Pfr HL,z((O,T);Lf-(fZ)) - CT,N IX—P)fr ||L1’((0,T)><S~2><R3)

| Pfr HL%((O,T);Lf(fZ))

p—2

2
P

— Cr.nllwg s fRO)] X —P) fR]

P
L®((0,T)x2xR3) L2((0,T)x2xR3)’

where for the second inequality we use LtZ(O, T) C L,”(O, T), and L' ({|[v]| < N}) c LP({]v| <
N}).

Step 2: Average lemma. Recall ¢; € {¢g, - - - ¢4} in (1.28). We choose ¢(v) such that

X3 W@ W)V 1o) < (), @) € CXRY)
and ¢(v)=0 for |[v|> N or |vi] <1/N foranyi=1,2,3.

(2.89)

Lemma 2. We define

t

1 _
S@) (1. %) :=g//|g<s,x—’gs

—0coR3

v, v)|e(v)dvds for (t,x) € (—oo, T] x R3. (2.90)

Then, for p <3 and 1 K N,

”S(g)||L,2((0,T);L£(T2><R)) SN ”l(t,x,v)e’Drg||L2((0,T)><(’Il‘2><R)><{|U|§N})v (2.91)

where the bound (2.91) only depends on N but can be independent on p < 3.

We remark that from (2.86) and (2.90) fR3 fR (t, x,v)p;(v)dv < S(g)(¢, x). For the proof we
refer to Lemma 6 in [30].
Now we apply Lemma 2 to (2.86) and derive that

/fR(t,x,v)go(v)dv
} LA(—1,TELY (@)
S e8Il L2 1.11x U xv)

5 ”fR(t’ X, U)HLZ((O,T]XQXV) + ||fR(Oa X, U)”LZ(QXV) + ”foR(O, X, U)||L2(§ZXV)
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+ ”1([,)6,11)6@1 fl (+ lBi:B (x,v), Xp(x,v), v)“Lz((fl,T]x(U\Q)xV) (2.92)
+ [I[ed; +v- VX]fR”LZ((O,T]XQXV)’ (2.93)

where we have used (2.84), (2.78), (2.80), and the fact that |v- V, xo(x)| Sy lonv e V.

First we consider (2.92). We split the cases of (2.92) according to (2.79). For x € 92, which
has a zero measure in L2((—1, T] x (U\S~2) x V), we have fp(x, v) = 0 from the first line of
(2.79). If B(x,v) =¥ and x ¢ 9< then 75(x, v) = —oo from the last line of (2.79) and hence
fr(—00) = 0 since x1(—o00) =0 in (2.78). Therefore we derive that

(2.92) < ”1{S<0}C§(x,v)l(l,x,U)EQT fl(t + SEB()C, v), Xp(x, v), v)”Lz((—],T]X(U\fZ)XV) (2.94)

+ ”1{s>0}c1§(x,v)1(fwst)E©T fl(t + 8I~B(xv U), -’EB ()C, U), U)||L2((—1,T]X(U\Q)XV)'
(2.95)

We need a special attention to (2.94). Since (¢, x, v) € ©7 we know that inf{r >7:x + TT_’U €
Q) <T.If{s <0} C B(~x, v) then, from the third line of (2.79), fp(x, v) = sup B(x,v) =
sup{fseR:x +sv e R3\cl(Q)} < (T —t)/e. Therefore the argument of f7 in (2.94) is confined
as

(t + etg(x,v), ¥ (x,v),v) € (—00, T] x 2 x V. (2.96)

For (2.95), from the second line of (2.79), fg(x,v) = infB(x,v) = inf{s € R : x + sv €
]R3\cl(f2)} < 0. Therefore t + efp(x,v) <t < T and hence the argument of f; in (2.95) is
confined as in (2.96). Now we apply the Minkowski’s inequality in time, change of variables
t +efp(x,v) — t, and use (2.96) to derive that

2.94) +(2.95) < H 1 i (x, ), ‘ . 2.97
( )+ ( VS| Ifi(E, xp(x,v) v)”er((—l,T]) 12, (U\D)xV) (2.97)
Let us define an outward normal 7i(x) on 3€2. More precisely
0,0, —1) if x3=0and x € 92,
i) = (=)=*+,0,0) ifx; €{0,27) and x € 92, (2.98)

O, (=D)F+1,0)  ifxp €{0,27) and x € 3.

From (2.83) we have therefore (x, v) € (U\£~2) x V then |n(xp(x,v))-v| > 1/N. We consider
maps

(x1,x3) > xg(x,v) € (0,2m) x (0,27) x {x3 =0},

a(ig,l(x,v),ig,z(x,v))>‘: v

a(x1,x3)

(xi, x3) B> (¥p.i(x,v), Xp 3(x,v)) € (0, 27) x (0, 00),

d(xp,i(x,v), Xp3(x, v)))‘ _ ‘ v;
a(xy,x3) vl

592
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Note that if v € V of (2.83) then |v;| > 1/N for all i =1, 2, 3. We define

7:=0Q xR, 7V =030 x (R3\V). (2.100)
We apply the change of variables (2.99) to (2.97):

47 oo 4m

1/2
(2.97>=H[ /] ||f1<t,i3<x,v>,v)||§12((_m)dx1dx3dxz}

2
-2 =271 =27 Liv)
7 12 (2.101)
[5><671N//|f1(t,y,v)|2|v-ﬁ(y)ldtdy}
o L2(V)
a6 —1
SR 20,7y %505 F IFROM I L2\ 53 -
We recall the trace theorem:
T
/ / |hldyds < sup IIh(t)IILl(QXv)+/|Ih(S)||L1(§ZXv)ds
tel0, T
0 s
AP (2.102)

+/”[88t+v'vx]h”Ll(§2XV)ds-

We apply (2.102) with & = 2 and derive an estimate

2
||fR||L2((0,T)X)7\17N)

S 500 1ROy, + / 1R 5 + / [ Vrate v 91 asaves
te
0 Qxv

2
rST ”fR ||LOO([0’T];L2(QXR3)) + || [88t +v- Vx]fR ||L2([(),T]><QXR3)'
(2.103)
Finally we conclude a bound of (2.92) as below via (2.94), (2.95), (2.97), (2.101), and (2.103)

(2.92) S I Oz + 1 Frlliqo 112y + 168 + 0= Vel Frll 2o rpeqg - 2104)

(2.104)4
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Next we estimate (2.93) (and (2.104),,). Using (2.85) and (2.5) we conclude that

(2.93) + (2.104),
1 2 12

N H — —Lfr+ -T(f1 +¢f2, frR)+—DL(fr, fR)

EK K K

2 1
—el/? {(I —P)(-Vifo) = —T(/1, fz)} +3/2 (—3zf2 + =T (f2, fz))

L2((O,T]><S2><V)'
Following the arguments of (2.44)-(2.52), we derive that

(2.93) 4 (2.104),
172

£ &
5 {_”(2-36)” 2p_ + —”PfR” 2p_ ]”PfR”LtZ(((),T);Lf(Q))
Kk O @) K L(O,T):; LY ()
1
+ ;”Pfl g IIPfRIILg_X
1 172

1 €
+ {a + = (||Pf1 g + s||(2.36)||L;>5€) + Tllmng||L$°((o,T)xssz3)}
X [X=P) frll 20,7)x2xR?)

172/2.46 ﬁ 2.4 32125 ﬁ 2.51
+e' 212402 +——MQ@ADI 2 +e21Q50N ;| +——Ik@ 5Dl .

(2.105)

where we further bound

3(p=2) 6-2p

Pl 22, < IPFel iy o Skl (2.106)

Step 3. Proof of (2.73). First we use (2.88) and then (2.92) and (2.93). We bound (2.92) via
(2.97) and (2.101), which are bounded by (2.103) and (2.105) respectively. These conclude that,
for p <3,

b2 2
R P _ 14
| P ”L?((O,T);Lf(ﬂ)) CT’N”mQ’BfR(t)||L°°((0,T)foxR3)”(I P)fR”L2((0,T)x§2xR3)

IA

/fR(f,x, v)@; (v)y/ o (v)dv

R? LA(©.T): L (&)

IA

/ fr(, x, v)g(v)dv
R? L2(0,7): LE ()
”fR ||L°°([0,T];L2(Q><R3)) + ”fR(O)”L% 4+ r.h.s. of (2105) with (2106)

A

(2.107)
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Then we move a contribution of || P fr || L2(0,7): L2 (@) 1O the L.h.s. and use (2.106). This concludes
(2.73).

Step 4: Sketch of proof for (2.75). We follow the same argument for (2.73). Thereby we only
pin point th~e difference of the proof of (2.75). Recall 9; fr(0, x, v) = fr+(0, x, v) from (2.27).
We regard €2 as an open subset but not a periodic domain as 2. Without loss of generality we may

assume that fx (0, x, v) is defined in R3 x R3 and /ROl Lr(r3) xRS < ||fRJ(O)||LP(§z)xR3
for all 1 < p < oco. Then we extend a solution for whole time # € R as

Sre(t, x,v) =100 fR(t, x,v) + Li<0x1(2) fr,: (0, x, V). (2.108)
Using 75 (x, v) in (2.79) we define
fE,t(t’ X, U) = l(x,v)e(R3\§Z)xR3 fl,t(t + SfB(X, v)7 EB(X’ U), U)~ (2109)
We define an extension of cut-offed solutions

f-R,t(ts-xv U) = X2(x)X3(U){1§2(x)fl,l(tvxs 'U) + fE,t(tv-x» U)}

(2.110)
for (t,x,v) € (—o0, T] x R3 x R3.
We note that in the sense of distributions fR,, solves
SatfR,t +v- foR,, = g; in (—oo, T] x R x R?, where
o v-Vixa £
8= P SR+ Liz01g(x) x2(x) x3(v)[€0; +v - Vi fr (2.111)

+ Li<ox2(x) x3(){€d; x1(®) fr,1 (0, X, v) + x1(H)v - Vi fr, (0, x, v)}.

Here we have used the fact that f ®,+ 1n (2.111) is continuous along the characteristics across aQ
and {¢t = 0}. We derive that, using (2.111),

t

- 1 _ t
fR,t(t7-xvv)=g/gt(va_

—00

S v, v)ds for (1, x,v) € (o0, T] x R x R, (2.112)

Now we apply Lemma 2 to (2.112) and derive that, for p < 3,

N2 ”L,z((O,T);Lf(Tz xR))
S x, 00781120, 7) x (T2 xR x {[u] <N )

2.113)
5 ||fR,t(0)||L2(Q><R3) + ||88tfR +v- foR”Lz((O,T)XQXV)

+ ”1(!,)(,1))6@7 f[,t(t + SEB(X, v), Xg(x, v), v)”Lz((—l,T]X(U\fZ)XV)’
Following the same argument of (2.104)-(2.105) we deduce that
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(2.113) SN3 fR Il Lo o, 7): L2 (2 xR3)) T 10 fr(O)I 2

(2.114)

+| - —L(I P)d; fr + ¢ x r.hs. of (2. 6)HL2((OT X ExXVY"

From (2.63)-(2.70), the last term of (2.114) is bounded above by

tx,v 1,x,v

[ (||atz||Loo +el 4l ) HIPrele, + IV a=P sl ]

o172

1
o i srls, + o (1Pl +elC30s ) [IVoa - ez,

1,x,v

3(p—2) 6—2p

&
{—nPfRanLs ol s, + NC3O1 2 JIPOfrll 2 @.115)
L®Ly

1
+ ;”Pfl llzge ||P3sz||LgL§
1/2 &3/2
172 € 3/2 2
+é& ”(2'65)”L3x,v + T”K(Z'%)”L%x.v +e& ||(2-68)||L + — e (2. 69)||

On the other hand from (2.110) and the argument of (2.87) we derive

1SN 20, 7y; L (T2xR)) 7 / TR (8, x, )@ (V)y/ po(v)dv

L2((0,T); LY ()
' (2.116)

2
-2

/
2 ||P3rfR | 20,7012y — KO PZN0D: fR I L200,7: L5, xR

- K—g X =P frll 120, 7)x2xR3)-

Here we have used

/ x2@) x3()A=P)o; fr(t, x, v)@; (V)/ o(v)dv
R3 L2((0,T); LY ()
<I@X—-P)o; fr(, x, U)”LZ((O T)'va(fZX]R3))

=3

”m 8lfR||Loc (QXR’*)”(I P)atfR“LZ (QXRS)

A

LZ((O T)) (2.117)

HH(I—P)atfm [

p=2
5 ”m atfR”Loo (@xR3)

L" = ((0,T)) LY ((0,T))

p=2 2

< (&) p ”m 8tfR”L2((0 T);LE, (QX]R3))(K8) p ”(I P)alfR”LZ((O T)xQxR3)

_2_ _
5 (ke)r—2 ”m/affR||L,2((0,T);L2?U(QxR3)) + (ke) 1”(1 - P)asz||L2((0,T)><Q><R3)-
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Combining (2.116), (2.113), (2.114), and (2.115) and choosing N >> 1 we conclude (2.75).
2.4. LE-integrability gain for P fp
We prove an important Lg-integrability gain for P fr in the next proposition.

Proposition 5. Under the same assumptions in Proposition 2, we have for all t € [0, T']
ds|| Pfr(®IlLs
S (e @30 fRO L2, +elld frD 2, + 0D kee) 2w fr®)lLg,

+8'21(2.36)| 490

U 1/2 32 372
+ &' 21QA6) 2, + Ik CADl gz, +Y 20N 3, |+ — k@D,

11 e gl/2 (2.118)
+ (— + = 1Zlloo + = 1(2.36)]l0c + —||meR(f)||L;?°v)
EK K K K ’

< {IA=P)frll2  +1A=Pd frl2 }

1 e
+ (; 1Zlloo + —|I(2-36)|Ioo> PSRz,

1/2 1/2 1/2
+ o SR Ol e {17100, + 100 RIS, )
where
172
&
dsi=1-[=1pon2iemon?] " (2.119)

Proof. We view (2.5) as a weak formulation for a test function

// SRV - Vah — /fRI/f // 0 frRY

QxR3 QxR3
—_— ‘/—‘ — ———
(2.120); (2.120), (2.120)3

1 12 2 32 1
= // 4 gLfR‘i‘g (I—P)(U'foz)—;F(fl,fz) —¢ —3zf2+;1“(f2,f2)
QxR3
e1/2
__F(fl+5f2’fR)+—F(fR,fR)}
(2.120)

The proof of the lemma is based on a recent test function method in the weak formulation ([13
14]). We define

lv|? —
NG
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where a := (fr, /1), b := (fr, v/1), and ¢ := ([, ‘"5(;3 /1) We choose a family of test
functions as

o = (0> = Ba)v/10 - V@a. (2.122)

U= 0 — Bp)Iodje). i j=1,2,3, (2.123)
b = lPviv; iodeh, i # ), (2.124)
Ve = (10]* = B)v/1h0 - Ve, (2.125)

where we choose 8, = 10, B, = 1, B, = 5 such that

/<|v| B!

3 )2 o (w)dv = / (W2 — By)o(v)dv) = / (0l = Boyv2puo(v)dv.

(2.126)
Here,
—Ara=a’ with 2%a ,=0 (2.127)
Bn
—Ap] =b3 with soélag =0, 2.128)
—Aype =¢ with .|y =0. (2.129)

A unique solvability to the above Poisson equations when (a, b, ¢) € L%(Q) and an estimate

IVEe@bollLos@ + 1Vxp@boll 2@ + 10@bolls@ S 1P FRPllos @) S 1P fRlI6q)-
(2.130)
is a direct consequence of Lax-Milgram and suitable extension (extend a> of (2.127) evenly in
x3 € R, and b5 and ¢ of (2.128) and (2.129) oddly in x3 € R, then solve the Poisson equation,
and then restrict the whole space solutions to the half space x3 > 0) and a standard elliptic
estimate (L3 (Q) — W2$(Q) N W'2(Q) N LS(Q)).
Clearly to prove the lemma and (2.118) it suffices to prove the same bound for || f’fR ||L2 =

ll(a,b,c)lLs-
Followmg the direct computations in the proof of Lemma 2.12 in [14] we derive that

Sla@®lig +oMIPfR@IE+ OMIA—P) fr®) if ¥ = v,
(.10, = | 2 Jabidi0i¢] + oDIPSRWIG+ OMIA=P) RWIF if ¥ =1,

Ja 0880} + [ bi9;8;0, + O A~ P) frO)I if y =3 andi # j,

Sle@I§ +oMIPfrOIE+ OMIA—-P) RO if Y = .

(2.131)
For | b; ||g, using the second and third estimate of (2.131) we deduce that
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T L e N T Ol LT T

Q Q JEFED o

1 -
= 3 2 Q12001 s = 37 1200 sg +o(DIPFROIG + O A= P) frO)I.

J D '
(2.132)

Now we consider the boundary term (2.120),. From (2.122)-(2.125) and (2.126)

3o 9@ [ra (10> = B) (W - 1) podvdSy =0 if ¥ = Yu,
/¢Py+fR= 0 if g =y or gy, (2.133)
Jyq dnpe [ra (WP = B (v -n)?uodvdS,y =0 if ¥ = .

Here we have used the Neumann boundary condition of (2.127) for ¥, and the last identity in
(2.126) for .. For I/fb | or I/fb » we used the fact that the integrands are odd in v. From (1.31),
we decompose frl, = Py, fr +1,,(1 = P,,) fr — 1, €/>(1 — P,,) f>. From (2.133) we have

. 120>2|—}%+/w{1y+<1 P fr = 1,621 = Py fo)|
(2.134)

SIVe@lanpa (1= P frlay, +€21(2.36) 4oy }

where we have used | fy+ V(L= Py ) fRI S IVx@lpanpa (1 — Py,) frla,y, atthe last line. Here
© € {@4, b, ©c}. For the first term of (2.134) we interpolate

(1= ) frlay, S le2(1— Py frIy2 e [0, frllS. (2.135)

For the second term of (2.134), we use (2.130) and a trace theorem (W ! $ (T2 xR)NLA(T? x
1 6
R.) — W'~55(T2)), and the Sobolev embedding (W &% (T2) — L43(T?)) to conclude that

IVagl 4 (2.136)

S IVl

6
L?TZN 5

L SVl

we'S (T2) WS (T2 xR )mLZ(Q) fR||L"(T2><R )

Next we consider (2.120)5. For v of (2.122)-(2.125) and ¢ of (2.127)-(2.129), using (2.130),
it follows that

12120)31 S elld frll2, Wiz, S eld frlliz, IVl S eldr frlliz, I P frll3

~ (2.137)
< OWelldr frll 2, 1° +oIP frllf.
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Lastly we consider the right hand side of (2.120). From (2.130), it follows

‘// Ve LfR‘_’ // lﬂiL(I—P)fR‘

QxR3 QxR3
1
S / / V00,0 1) [0 @) A= ) fr(x, )]
Q R3
(2.138)
+ [ ko (0,00l = P) e, v, |dud
R3
1 | [
S Ve ol IA=P) frllz S —IPSI5oIA=P) frl2,
~ —1 — 6
<oMIPSIGs+ [ e NA=P) frll2, ]
We have
1
] vircniren o)
QxR3
1 e
SIVe@anolliz (;nzum + ;n(z.%)um) I fll.z, (2.139)
- 1 e 6
<o(IIPflIfq +] (;nznw +- ||<2.36>||oo> (IPfrllz2, + 10— P) frllz2 )]
For the contribution of I'(fg, fr) we decompose fg =P fr + (I — P) fr, and we have
IC(fr, fR) (V)]
SIT® fr.PfR)W)] + DA = P) fr. A= P) fr)(v)]
Sv)|PfrI? (2.140)
+ g frlloo | V)X = P) fR) )] +/kﬁ<v,v*>|<I—P>fR)<v*>|dv*}.
R3
Then from (2.122)-(2.125), and the Holder’s inequality (1 =1/2+41/3 4+ 1/6)
e1/2
] v e
QxR3
el/2
S == IVattwno iz | IPSRI 3 1PFR g + g frllze, | A= P frl 2, |
12
S P FRIG I PARILG IPSRILS + 1/2 1B fr Lollmg frllzg, e e 2A=P) frlz .
Q. 141)
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where we have used an interpolation || Pfr|l;3 < || Pfr || 12 I1Pfr || 1/2 and (2.130) at the last step.
A contribution of the rest of terms in the r.h.s. of (2. 120) can be easﬂy bounded as

// V]

QxR3

2 1
el/? ((I ~P)(©-Vif2) = =T(fi, f2)> — 32 (—atfz + T, fz))‘

5 [ 172 g/? 3/2 &/
S IPfRIe {8 I246)l 2 + TIIK(2-47)IIL;_X +e NS0 2+ —IIK(2 SOz, }
(2. 142)

Finally, from a standard 1D embedding (see appendix (A.1) in [30] for the proof): for T > 0,

le)* <r / lg(s)1%ds + / lg'(s)|ds forze[0,T], (2.143)

we collect the terms from (2.131) with (2.132), (2.134) with (2.135) and (2.136), (2.137), (2.138),
(2.139), (2.141), (2.142) to conclude

sup [|T=P)fr()l2, SIA=P)frll2  +N1A=P)3: frll,2 .

0<s<t

sup [Pfr()lz2, S IPfrlliz,  +1P3:fllz, . (2.144)

0<s<t

sup [(1 — y+)fR(S)|L2(y+) SUP |fR(S)|L2(y+) ~ |fR|L2L2(y+) + |atfR|L2L2(),+)
<s<t

0<s<t
This proves (2.118). O
2.5. L®-estimate

In this section we develop a unified L°°-estimate.
Recall the weight 1 in (2.34). We consider

h(t,x,v) =1() fr(t, x,v). (2.145)

An equation for /& can be written from (2.5) and (1.31) as

I I
i+ —v- Vah + 5—h = ——Kioh + 8. (2.146)
K
h
hl,. =mP},+<E> +r (2.147)

For (2.145) and (2.5), we have r = —¢!/?w(1 — P,,) f> and
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1 2
Shi=—7Tw (. h) + —Tw (0 fi + et fo, h)
K& KeE
1 2

+81T —m(I—P)(v-foz)—i—;Fm(mfl,mfz)
1

+gl/2 <_m8,f2 + ;Fm(me mfz)) ,

where we denote 'y (-, ) (v) := 10 ()T (5;, 5)(v) and K () := 1w K ().
From (1.25)

h h
[P (—, —) ()]
o’

< // 1w = v - uly/r e RO R+ ()7 (v)])dudu, (2.148)
R3xS?

2
SQ V(U)”h”Lvoo

From (expression of k) clearly we have

o 20, w1 Qveen—ju—eut)?
K(v, vy) o®) <Ky (v, vy) 1= 2 R ) (2.149)
0, (v4) [v — vy mQ(U*)
As in (estimate for k) we derive
Kip (v, vy )dvy < . 2.150
/ w (U, V) S Tl ( )

R3

Proposition 6. Recall w,, in (2.34). Assume the same assumptions in Proposition 2. Then

doo 0o fRII LSS

1,x,v

S lIwg f Oz, +&"212:36)] 1<

32 1 5/2 1
+ ek ||(2~46)||oo+K||K(2-47)||oo + &%k ||(2-50)||oo+K||K(2~51)||oo

1 1
+ a7l Plrlliens + = [IVVA=P) Sl + VY A=Poaifrl 2, ).

(2.151)
where
doo :=1-&1236) 12, — el Zll g0 — &2 llwog frllLzs - (2.152)
Proposition 7. Assume the same assumptions of Proposition 6. We denote
' (v) :=wy (v) foro' <o. (2.153)
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Let p < 3. Then
doo,t”m/atfR||Lt2((O,T);L§;?u(Q><R3))
1 1
1/2 / - - _
< e 200 frO) s, + =775 1 PO S 2y + =757 IV A= P)ar f 2

+&32 (,<||(2.65)||L’2L$o + ||K(2.66)||Lt2L§o> &2 (K||(2.68)||L;L§o + ||K(2.69)||L[2L§o)

+ (10Tl e + 2124920 ) o frllzs,

(2.154)
with
doo,i =1 =l TllLe — 1230l — &2l fRllLx - (2.155)
In the proof of propositions, for simplicity, we often use || - ||o for || - ”L?.C;r,v’ I+ llzgs, or
-1 L if there would be no confusion.
Proof of Proposition 6. We define backward exit time and position as
th(x,v) = ai—z, xp(x,v) i=x — i—zv for (x,v) € 2 x R3. (2.156)

Since the characteristics for (2.146) are given by (x — ’%Sv, v), we have, for0 <t —s < tp(x, v),

t—=s

i[e‘ff T h(s,x — Soov). (2.157)

e 1 t
v,v)} =e Js 3 {—Kmh—i—Sh}(s,x -
ds &2k

&

f—
v 7‘[; v(t,x—Trv,v)
s

Here e s 2% = ¢ Zo 9T We regard (x; — S0, 00 — Siup) € R? belongs to T?
without redefining them in [—7, 7]3.
Now we represent £ using (2.157) and (2.147) as

I S t
h(t, %, 0) =1y x5y <0¢ 0 22 (0, x — —v, v)
£

t

-1 t—s
+ e s 2 5~ Kwh(s,x — ——v,v)ds (2.158)
£°K &
max{0,f—tp(x,v)}
t
— [t r—
+ e Js 35 Sp(s, x — i v, v)ds
max{0,f—1(x,v)}
+ lz—;b(x,u)zoe_j”’b(x’”) ih(l — 1 (x,v), xp(x, V), V). (2.159)

Since the integrand of (2.159) reads on the boundary, using the boundary condition (2.147) and
(2.157) again, we represent it as
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v)|v
—ro(0)euy/ (V) / h(r—tb(x,v),xb<x,v>,u>7”ftf(£3'dn+r(r—rb(x,v>,xb(x,v),v)
03<0
t h(x,v) t—t , v)|b
=10 ()1 (v) / F 10, xp(x, v) — &V VirOlos]
£ to(b)
v3<0
+ )y 1n(v) /
03 <0
t—tp(x,v) 1
t—tp(x,0) v t — 1 , _ v)|o
« L h(s. xp(x. v) — b(X, V) S o o, vu( |3| do
£ to(v)
0
(2.160)
+ 1)y 1n(v) /
0v3<0
t—tp(x,v)
11—t (x, v) ]) t — , —_ / v)lv
X / e - 2 Sp (s, xp(x, v) — b(¥, V) —§ , p(o)l 3' dsdo
£ to(v)
0
+r(t —tp(x,v), xp(x, v), v),
t—tp(x,v) t—tp (x,0) ] 1, (x,v) t—tp (x,v)—s
where r = —¢!/2ro(1— P, ) frande” 0 2= Do v P — 0 0)dr
Note that, from (2.46), (2.47), (2.50), (2.51), and (2.36),
l_
|Sh(s, x — sv,v)l
v(v)
V(v) 1/2I|h|I +—(IIIIIoo+8||(236)|Ioo)IIhlloo
(2.161)

1 1
toin (H(z 46) 0o + —||K<2.47)||oo) +el? <||(2.50>||oo + ;||K(2.51)||oo> ,

(1 — Py) fol S 1(2.36)]loo

We derive a preliminary estimate as

h(t, x,v)| < ¢ 25 [h0)]|oo

+&% sup [h(s)1Z% 4+ sup [(2:36)col($)lloo +& sup [ Zlloolli(s) oo

0<s<t 0<s<t

0<s<t

1
+e!72 sup [1(2.36)]l00 + &3/« <||(2.46>||oo + ;||x<2.47)||oo)

0<s<t
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1
+ &%k (||(2.50)||00 + - ||K(2.51)||oo> (2.162)
t e 2;2K( t—s
+/f/km(v,v*)|h(s,x — , Us)|dvugds (2.163)
E°K
0 R3
t—tp(x, v)e7252 (t—s)
+w)cyy/ mn(v) / / 2
v3<0 0
t— 1 N — v)|v
x /km(n,v*)|h(s,xb(x,v)— E @ V) 7S duads YO0 2 16a)
e to(v)
R3

We note that |A(s, x — ’%s, v4)| has the same upper bound. Then we bound (2.163) by a summa-
tion of (2.162) and

S5 (t—

sup 0 (Xp, v)Cyy/ 1(v) / /e i

(xp,v)€dQxR3

t—tp>0 0v3<0 (2165)
i v)lo
x /km(t’, oG5, 3 — T 1 duds YOl g
€ o (xp, v)
R3
and importantly
Te 211(5/) (t—s) \;(l;*)(s 0
[ / Ko (0, 02) /
0 (2.166)
t— —
) ./km (U*7 U**)|h(s, X - . U= uv*, v**)|dv**drdv*ds.
&

R3

We consider (2.166). We decompose the integration of 7 € [0,s] = [0, s — o2k U [s —

o(1)&2k, s]. The contribution of fsio(l)szk ---drt is bounded as

v(v) 1 2
——(1—e 2% ) [ kn (v, )||L1&||km(v*, Mzt sup [[A($)lloc < 0(1) sup [[A(s)]loc-

v(v) 0<s<t 0<s<t
(2.167)
For the rest of term we decompose Ky (Vs Vssx) = Ko, & (U, Vsese) - {Kio (Vs Vsese) — Ko, v (Vs Vi) }

where Ky & (Ui, Vsere) 1= Kio (Vs Vsere) X1 1 1 o venl <N & [v,|<N" From (2.150),

/km(U*’ U**)l\v*|>Ndv** < I/N.
R3
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- U**v**z
Also from the fact Ky (ve, Vas) < oo € L1 ({vy — vew € R3)), sup,. [z Kro (Vs V)

[V — Vs |

{l%zw*—v**\ + 1}y, —v,.|=N}dVss | 0 as N — oo. Hence for N > 1
v(v —o(l 2 V(v
! e_ﬁ(t_s) s—o(De "e—ﬁ(s—r)
c160= [ — [knneon [ S
&%k &%k
0 R3 0
t—s s—T
X /km,N(v*a V) [ (s, x — v — Vs, Vs ) | dUssdTdUsds
]RS
) — 2 v(vx
. s E R G (2.168)
< N - @
- N/ &2k / / &2k
0 |vg|<2N 0
t—s §s—T
X / | fr(s, x — v— Vs, Vs ) |[dUssdTdvds
€ &
|Vgs | <2N
+o(1) sup [|A(s)llLe,,
0<s<t

where we have used the fact sup, Ky (Vs, 04410, (V44) < Cy < 00 when % < vy — Vgl < N
and |v| < N (then |v.s| < 2N).

Now we decompose fr =P fr + (I—P) fr. We first take integrations (2.168) over v, and v
and use Holder’s inequality with p =6, p =2in1/p+1/p’ =1 for P fg, (I—P) fr respectively
to derive

(2.168)

3 1
< (4N) CNm

1/6

— S §—T
v —

t
X sup // [Pfr(s,x — Vs, U**)|6dv**dv*

0<s<t
05‘[53—0(1)821( Vi | SN, [V | <2N

3 1
+ (4N) CNm

1/2
s 5 —

t T
X sup // I(I - P)fR (s,x — Uk, v**)|2dv**dv*

0<s<t
05-{53_0(])82,( V| SN, |vss | <2N

(2.169)

Now we consider a map

t—s §—T
v —

0
vy € Q, where ‘_y
0 Vs

U*E{R3:|v*|§N}|—>y:=x—

3
‘ > g3k,

‘S — 7T
&
(2.170)
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We note that this mapping is not one-to-one and the image can cover €2 at most N times. There-
fore we have

1/6
t—s s—T 6
[Pfr(s,x — VT e Vsere) |0, d v
Vi| SN, |V |[<N
1/6
1/6 6 dy 1/6
=N / // [PfR(S, Y, Vss)| dv**m = W”PfR(S)||L2v’
Vi | SN, [vss | <N
1/6
t—s S—T
[XA—P)fr(s, x — v — Ux, U**)lédv**dv*

Vx| SN, [vss | <N
1/2
< s | =P ()12,

Therefore we conclude that

(2.166)
< (N)’Cn(2.169) + o(1) sup [|h(s)]lLz,

0<s<t

1 1
4
< (@4N)"Cy !W Sup Pfr)Ls, + 37237 Sup IX—=P) ()2, }

+o(1) sup [[7(s)llLss

0<s<t X,V
< o P ! I-P I-P)o
N i S0P IPSe®lig, + i (1A= P Sl + 1A= P Sl |

+o(1) sup [|h(s)]lLe,
0<s<t

(2.171)

where we have used (2.143) the Sobolev embedding in 1D at the last line.
Now we consider (2.164) and (2.165). We decompose s € [0, —tp] = [0, — 1 — o(1)e?k]U

[t — ty — o(1)&2k, t — tp]. The contribution of fzt—_zi,b—ou)g%( -+ is bounded as

1 2
o(ggi’fﬂkm(n, Mzt sup [12()]leo < 0(1) sup [[A(s)]lco- (2.172)

0<s<t 0<s<t
Fors € [0,7 — 1y, — 0(1)&2k] we consider a map as (2.170)

3
t—th—s t—tph—>5
ne{neR3:n3<0}r—>y::xb—7ne§2, where _
&

> g3k,

:

(2.173)
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Following the argument to have (2.169) we bound
t*th*()(l)&zl(
the contribution of / ... of (2.165)
0 (2.174)
1 1
N T IPFROlg, + = { 1A= P frl iz, + 1A =P frllz, |-

In conclusion, we bound |a(¢, x, v)| by (2.162), (2.171), (2.172), (2.174) and conclude (2.151)
by choosing small enough o(1) in (2.171) and (2.172). O

Proof of Proposition 7. Since many parts of the proof are overlapped with the proof of Proposi-
tion 6 we only pin point the differences. An equation for 1’9, fx takes the similar form of (2.146)
and (2.147). We can read (2.6) for

h(t, x,v) =1'(x,v)d fr(t, x,v), foro <o, (2.175)

as (2.146) and (2.147) replacing

2 2 2
Sp = —Fm/(m fi+ew fo,h) + Fm’(m fro)+ —Fm/(m 3 f1+ew'd; fr, 0 fr)
1 2 2
Y {m A=P)(v- Vi f2) — —Fm/(m 3 fr.w' f2) — _Fm’(m fi,w azfz)}

2
+el/? (—m/a?fz + ;me(m’azfz, m’fz)) ;

r=—"'(1 = P,)d fo.
(2.176)

We have the same equality of (2.158), (2.159) with (2.160) for & of (2.175) but replacing
Sy, and r of (2.176). From (2.49), (2.65), (2.66), (2.68), (2.69), and (2.148), we bound terms of
(2.176)

ISnl S v(v) {—(III|I<><>+8|I(236)||c>o)vL 1/2 10 R lloo 17100
){”atI”oo+8||(249)||oo}”mfR”oo (2.177)

1 1
+ 175 (||(2.65)||oo + —||K<2.66>||oo) +el/2 <||<2‘68)||oo + - ||x<2.69)||oo) ,
& K K

Ir| < e211(2.49) o (2.178)

Then as in (2.162)-(2.166) we derive a preliminary estimate as
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|h(t, x,v)]|
—Lt 82/(
< ¢ ROl + 1 ST+ 2178) (2.179)
V(v
/ eiﬁ(lﬂ) t—s
+ [ o [ k0, 0 lA s, x — =, v,)[dvds (2.180)
E°K &
0 R3
) - ()
10/ (e (2, ), )/ (D) / -
0v3<0 0
t — 1 s — v)lv
x/km/(u,v*)|h(s,xb(x,v) @V TS duds YOl 081
€ 0’ (xp(x, v), )

H{S

As (2.165) and (2.166), we bound (2.180) by a summation of (2.179) and

t_ Cv o s—o(De* _ Cy o
e 262¢ (=) e 262x (—7)
&2k 82k
0 0 [vg|<2N

t—s S—T
v —

X / |h(s, x — Vs, Vs ) |[dUsndv,dTds, (2.182)

[V | <2ZN

t—ty—o(Me2c (t—s)

262k
+ sup 10’ (xp, v)cpy/ (V) / / ¢

A 82k
SR w1
t—1ty — A u(v)|o
x / (s, xp — —2 %, v*)|dv*dstn (2.183)
. 1’ (xp, 0)
Uy |<
+o(1) sup [[h(s)lLes, - (2.184)
0<s<t
Then we follow the argument of (2.169)-(2.171) to derive that, for p < 3,
_ 2
t _ZSZUK (1—s) S—0(De Ke_zf_;K(s—r) 1/3
< -
[(2.182)] S / = / ~p TP ||P8tf(r)||L§‘Udfds (2.185)
0 0
te_sz (t—s) sio(])g%(e—zg—z”(s—r) 1/2
+/T / P 320372 ||P8,f(t)||L)zC'vdtds. (2.186)
0 0

Now we use the Young’s inequality for temporal convolution twice to derive that, for p < 3,
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11821 120,77y

Cy
67252x Is|

2
E°K LI(R)

s

e — (=) 1/3 N1/2
X/ 2 <e3/PK3/P IP3, f(Dll.r, + WII(I—P)azf(t)IIL;U>dT
0

L2(R)
Pl .l
2 2
EK LAI(R) EK L%(R)

N1/3 N1/2
X (83/pK3/p ”Palf”L?((O,T);Li’(Q)) + £3/2,3/2 ”(I_P)aff||L2((0,T)xQxR3))

SN mlll’&fllg((o;);w(g)) + W”(I_P)atf||L2((0,T)xQx]R3)'

(2.187)
As in (2.174), for (2.183) we use (2.173) to derive that, for p < 3,
12183 20,7,
< e 2€2K( 1 1
~ / 2k 23/Pic3/p ||P8tf(5)||L§1v + m”(l - P)atf(S)HL%U ds 2o
0 1 (O,

e 2921( ]
S &2k Lg(R){g3/PK3/[7 ”Pa’f”L?((O,T);Li?(Q)) + £3/2,3/2 ”(I_P)alf||L2((0,T)><Q><R3)}
S e WPzt T mman TPl «axrs):

(2.188)

where we have used the Young’s inequality for temporal convolution.
In conclusion, we bound ||h||LzLoo by [|(2. 179)”L2L°° ,(2.187), (2.184), (2.188) and conclude
(2.154) by choosing small enough 0(1) in (2.184). O

2.6. Uniform controls of the Boltzmann remainder fg (Theorem §8)
Inspired by the energy structure of the PDE and the coercivity of the linear operator L in

(1.30), we define an energy and a dissipation as
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E@) = I frRO 72 qrs) + 19 RO 2 g r3):
t
1
D(1) := / e ™26 V@ = P) fR(9) 172 g 3 d5
0

Fo , (2.189)
+/||K ze \/;(I_P)alfR(s)”L2(QXR3)ds
0

t

+ / (1e72 FR ), + 20w ), )ds.

0

As explained in Section 1.2, the temporal derivative gets involved mainly in order to access the
L%-bound of the hydrodynamic part P fg, while we will control the following auxiliary norm to
be used in order to handle the nonlinearity: for p <3 and t > 0

Fp@ = sup {llc' > Pfr)I76qy + I PrrlGa 0.0 10
0<s<t ”

+ ”K‘n-‘rl/zPat fR ”iz((o,s);L"(Q)) + ||81/2KmeR (S) ”iDO(QXR3) (2190)
1
+ 1) P g fR) 720,501 (xR }

We will use the norms of the initial data:

£0) :=E(fr0) = I fR.017205m) + 10 fROI 203 (2.191)
1 1
Fp0) :={k| frolz +cF 212 frol1
(2.192)
1 1+3
+ &2kl fR 0ll Lo @) + (6) 7k [0'9; fR 0ll oo Giir) ) -

Theorem 8 (Uniform controls of the Boltzmann remainder fr). Recall T in (2.28). Suppose for
T>0andB>1/2

1 1 1
14 _ 14 _ _
8_2031 IVed/ Zll oo 110 + 273 Z_; 2 18 Tl o150 + 7z 1Pl sqo. 11 S 5

(2.193)
We further assume that, for 0 <P’ <R,
¢ 4
Z 19, I”LOO([O,T];LOO(Q)QLZ(Q)) + Z ”Vfar I||L°°([O,T];L°°(S_Z)HL2(Q)>
=12 0<e<1
1=<|B|=2
2
+ Z IVEa; Ll L2 g0.7): Lo @)NL2 (%) (2.194)
[Bl=1

1
2
+ ”81‘ p”Lz([O,T];LOO(Q)ﬂLZ(Q)) + Z ||Vfatp”LOO([O,T];LOO(Q)QLZ(Q)) S exXp <W>
|81=0,1
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For given such T > 0, let us choose ¢ and k as, for some € > 1,

(T +1
8:=exp<———%§ﬁ——2). (2.195)

Assume that an initial datum for the remainder fr i, satisfies, for some p <3 and |p —3| K 1,

VEWO) +,/F,(0) S 1. (2.196)

Then we construct a unique solution fg(t, x, v) of the form of

F=p+efiyu+efo/m+e? fryi in [0,T] x Q x R,

which solves the Boltzmann equation (1.1) and the diffuse reflection boundary condition (1.11)
with the scale of (1.5), (1.6) and (2.195), and satisfies the initial condition F|,—o = u +

efili=o/I + &% foli=o/IE + €32 fRrli=0/I + 8&fR,in, in a time interval t € [0, T]. Moreover,
we have

3

7300 up (VEO+VD0+[Fn) S 1. @197

0<t<T

Proof of Theorem 8. An existence of a unique global solution F for each ¢ > 0 can be found in
[13—16]. Thereby we only focus on the (a priori) estimates (2.197).

Step 1. Fix §p > 0, €; > 0, €, > 0 such that 0 < % < 8p < 1. And we choose & with

(2.198)

IR A-5) 26 (T + 1)y | 2705
oo (2T
€1(E0) + Fp(0) + 1) P

Then we define T, > 0 as

T, =Sup[t >0 min{da, day. d. ds, 3.1, doo. dso.s} > ?

&

€ 3/2
- D(s) + & |lwg f ()L, + mllpr(S)lng < dp, and

forall0<s < t},
(2.199)

where da, d 1, ds, d3, d3 1, doo, doo ¢ are defined in (2.31), (2.33), (2.119), (2.74), (2.76), (2.152)
1_3q_py _3_B_3q_»p
and (2.155). Note that from (2.198) we have &4 =5, 155 5 < 60, 80 Ty > 01is well

defined.
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First from (2.193) and (2.194),

1(2.36) [l Lge, + 1(2.46) [l oo, + Nk 24Dl Lge, + [12.50) I Lge, + e (2.5D) I Lge,

fx ™~

2
+ 1265 Lge, + Ik 2.66)lI e, + 1(2.68)]I22 + k(2.6 + 12491 < exp <K‘J3’) :

Now from (2.194) and (2.199) we read all the estimates of Proposition 3, Proposition 5, Propo-
sition 6, Proposition 4, and Proposition 7 in terms of £(¢) and D(¢) as follows.
From (2.151), (2.199), and (2.194)

1 1 1
[ _ -
sup ”mng(S)”Lx_v ~ 81/2K1/2 OSSI;I;[ ”PfR(S)”LEv + 81/2K D([)+81/2K1+m ”PfR”Ltz’X

0<s<t

3
100 f O)llo + ¢ exp ().
(2.200)

Now applying (2.200) to (2.118) we derive that

e 1 1 1
sup IPfr@)lig S ~exp (=) sup VE®) + —75V DO+ 75 | PAl 2,

1
0<s<t 0<s<t K

} o e exp (g ) + g
+ (ex)2|[wo f(0) [ Lgs, + &7/ exp o + s osglil; ||fR||L'zm.
(2.201)

From (2.200), (2.201), and (2.199) and (2.194) we conclude that

1 1
sup {k2[[PfR(s)]l s + e2kllwg fR(5)II L,

0<s<t

3 1 1
12,172 - -
<2 Pexp 9p,)Jr,/er(0)+Og;;l{ E®) + VDO 5 I1PIRI 2+ g e g2,

K

(2.202),
(2.202)
From (2.73), (2.202), (2.199) and (2.194)
1 I
2P LRI 200 0 < (2.202) (1+—(2,202) )

(2.203),

Using (2.202) and (2.193), from (2.75) and (2.154), we deduce that, for p <3 and o’ < 0,

1 1
2B ”PatfR H L2010 + (8K)3/pK 2+Bl|mg/arfR||L12((0,,);L;ov) < (2.203), (2.204)

Step 2. Using the estimates of the previous step we will close the estimate ultimately in the ba-
sic energy estimates (2.30) and (2.32) via the Gronwall’s inequality. We note that from (2.193) the
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multipliers of fé IPfr (s)||i2 ds in (2.30) and fot |Po; fr (s)||i2 ds in (2.32) are bounded above
by X X

O 2P (14 a7~ 4 (e P)2) < 2P, (2.205)

where we have used (2.195).
In (2.30) and (2.32) we bound

I 2P frl 2y S 30 3>||PfR|| 3 ||K‘/2PfR||L2Lp
<r (sx)*f“*%H(z.zoz)*P*% 1(2.203),/5,

_py _l_ g,y 3q_2
1PO: frll 22 S 1P fl o, .8 ||PatfR||L2Lp§s PR, TP 0m010.003), .
(2.206)

Applying (2.202), (2.203), (2.204), (2.206) to (2.30) + o(1)(2.32), using the above bound and
(2.195), and collecting the terms, we derive that

sup E(s) + (d2 — o(1))D(¢)

0<s<t

SEO +FO +exp (5 ° ;) +(2:209) / £()ds (2.207)

405451 2.200), 1+ #12.203), | F

6 6
4l h D 3B 050 00, 121(2.203), 2.
Now from the last inequality in (2.199),
6 6
[ 0= =45 1140000), « 1, [e' 2193 2F 5001140 000), « 1, (2.208)

thus we derive that, for €; > 0 and €, > 0 large enough,

t
sup E(s) + D(1) < € (5(0) + F,(0) +exp( ; )) + iR / Es)ds.  (2.209)

O<s<t

Applying the Gronwall’s inequality to (2.209) (we may redefine £(¢) as supy;<, €(s) if nec-
essary), and using the fact 3’ < 3 we derive that, after redefining €, if necessary,

(2@22(t+ 1)

sup E(s) +D(t) + Fp(t) < €1(£(0) + Fp(0) + 1) exp e

0<s<t

) forall 1 <T,. (2.210)

under the assumptions of (2.194), (2.199), and (2.208).
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Now from (2.210) and (2.195) we derive (2.197), which implies
s {10 2P ()l g + e 2erog fr() s, + 1Y 73 ¥ w00 f () 20,0115 |
égi%Jr%(l—%)_

These imply min{ds, d>;,de, d3,d3 1, doo, doc.t} = % and %«/D(t) < §p from (2.31), (2.33),
(2.119), (2.74), (2.76), (2.152) and (2.155). Moreover, we have

P_3

1 3 3
F- 505, -1-F-F0-b) ! i
i3 (1-8) i F 504 (\/e(s)+\/D<s>+Kl/mnf}e(s)u%)< 75 <o

Then by the standard continuation argument we can verify all assumptions (2.199)uptot <T
and T = T,. The estimate (2.197) follows easily. 0O

3. Fluid estimate

We denote the vorticity by

wo=Vxu, u=Vx(—A)"o, (3.1

while the second identity is the famous Biot-Savart law. Here (—A)~! denotes the inverse of —A
with the zero Dirichlet boundary condition on 9€2.

Our analysis of the Navier-Stokes-Fourier system is based on the vorticity formulation of the

velocity field in 3D ([47,48]):

0w —kNoAw=—u-Vo+w-Vu in Q, (3.2)

wli=0 = wip in £, (3.3)

kno(0x; + v —Ap)wp = [0y, (—A)_l(—u -Vop +w-Vup)], wz3=0 on 92, (3.4)

00 +u-V0 —kn.A0 =0 in Q, (3.5)

0 =0 on I 3.6)

where /—Aj, = |V}| is defined as

V=2ng G, x3) =Y [lge (xa)e™ 5. (3.7)
teZ?

Here, g¢(x3) = # J> e 8 g (xp, x3)dxy, € C with & = (&1, &) € Z? denotes the Fourier
transform in the horizontal variables, which satisfies g(xp, x2, x3) = deZZ 43 (x3)e*E . The

Fourier transform can be regarded as a function gg (z) where z is sitting in a pencil-like complex
domain: for any A > 0,

H, ::{ze(C:RezzO, |Imz|<kmin{Rez,1}}. (3.8)
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3.1. Higher regularity of Navier-Stokes-Fourier system in the inviscid limit (Theorem 9)

In this section, we will use the following notations: x = (xp,, x3) = (x1, X2, X3) € T2 x Ry =
Q, Vy, =V = (V},,03) = (0y,, 0x,, dx;); for a vector valued function g € R3, g=(gn &)=
(g1, 82, 83)-

We define analytic function spaces without the boundary layer, £7+*, for holomorphic func-
tions with a finite norm, for p > 1,

1/p

lgllpa:= D eligellp where ligellzp:= sup / lge@Pldzl | . (B9)

0<o<\
teZ? OHo

Next we introduce an L°°-based analytic boundary layer function space, for A > 0 and « > 0,
that consists of holomorphic functions in H; with a finite norm

_ AlE| -
g oo e = Zf [ (3.10)
el
where [|gz [l 2, = [16¥8¢% ¢ (2) | e = sup, g, ¢™*¢¥ge () and
aRez e&Rez
lgell g, := H—g (2) = sup ————|gz(2)|.
T 0@ e T o 1+ 0@

Here, a boundary layer weight function is defined as

1 b4 . 1
(bK(Z) = ﬁ(b(ﬁ) with ¢(Z) = m for some v > 1. (311)

We define B8*+* for holomorphic functions g = (g1, g2, g3) with a finite norm

[[g1loo i = ) lIgilloo.sx + 1g3ll00.1.0- (3.12)
i=1,2

And we say a scalar valued function g : Q@ — R is in B** if 18 lloo.r.x <O.
We note that B*¢ c ¢4, but B*0 G £%4if @ > 0.

Due to its singular nature of the Navier-Stokes flow in the inviscid limit, we introduce the
conormal derivatives

Z

D = (Dp, D3) = (Vp, £(x3)03) where £(z) = Tz

(3.13)

With the multi-indices 8 = (81, B3) := (B1, B2, B3) € N2, the higher derivatives are denoted by
DF = 3" 9> D§* and Df = (i&))P1 (i£2)"2 DS
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Now we define, for 1o > 0, 9 > 0, > 0,k >0, and ¢ € (0, 2y 0)

lglloo,c = sup { Y PP glloosn + Z(Ao—x—yon“[[Dﬂg]]oo,x,K}, (3.14)

A<ro=nt Locigi<i 181=2

gy = sup { > IDPA+ Vbl
r<ro=not Lo<igi<i

(3.15)

+(Go—A—yn* Y 1D+ |Vh|)g||1,x}~
|B1=2

And for a scalar valued function g, define

lglo,0=sup { > D &leno+ Z()»o—/\—Vof)aHDﬂgHoo,x,o}, (3.16)

A=ko=wt Lo<ipl< 1BI=2
gl == sup 3 Go—A—30 Y D} xgllooro | - (3.17)
A<ho=yot 0<Ipl<l

With an initial-boundary layer weight function as in [56]

et (2) = (3.18)

«/_«/_

we define an initial-boundary layer function space B**’ for holomorphic functions g =
(g1, g2, g3) with a finite norm

[[g1loorer = Y lgilloo.pxr + 11g3]l0.2.0, (3.19)
i=1,2

where an L°°-based analytic norm with the initial-boundary layer is defined as

aRez
g ¢
e Z 3.20
oot = 22 lgellc,.  Ngellc, ” FurwE et 0 (3.20)
11V// L
We finally define, for ¢ € (0, 3 J/0)

liglooer = sup { > D’ glloor + Z(xo—x—yor)“[[Dﬁgnoo,x,m}. (3.21)

A<ro=wt Lo<ipl<i 181=2

In this section, «, & are given positive small constants, Ag is a given positive constant, and yy is
a sufficiently large constant to be determined in Theorem 9.

Next we discuss the initial data u;,, 6;,, and the corresponding vorticity w;, = Vy X uj,.
Inspired by the PDEs, let
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Wy = Wip, 0rwo:=knNoAwy—ug- Vg + wo - Vug,
uo =V x (=A) g, dup:=V x (—A) "',
Btzwo = knoAdwy — ug - Vorwg — d;ug - Vo + wo - Vorug + drwp - Vuo, (3.22)
0:600 := kn.AbBy — ug - V6o,
8260 := K. A0 — ug - V00 — d:ug - Véo.

Theorem 9. Let Lo > 0 and w;y,, 6;, € B*0X with (3.22) satisfy for £ =0, 1,2,

> Dol + D I1DP wolloosgn < oo, (3.23)
0=|B|=2 0=|B|=2
> IDPo ol + > 1DP8 bollsore0+ D D) 848{0(1, x3)llow.20,0 < 0O
0=|Bl=2 0=IB|=2 0<IBnl=1
(3.24)

Further assume that w;, = wq, 0i, = 6y, and (3.22) satisfies the compatibility conditions on 92

K10(Dxy + v/ = AR w0 = [y (—A) " (—ug - Varo i + wo - Vuo )],

(3.25)
w03 =0, dwy3=0, 6p=0, 960=0, 326p=0.
Then there exist a constant yy > 0 and a time T > 0 depending only on Aoy and the size of the
initial data such that the solution w(t) to the vorticity formulation of the Navier-Stokes equations
(3.2)-(3.4) exists in C'([0, T1; B**) with 32w in C (0, T; B**") for 0 < A < Ag satisfying

o]+

ol

sup [ a)(t)m } . (3.26)
te[0,T] 00,Kt

And the solution 6(t) to (3.5)-(3.6) exists in C%([0, T1; B*0) satisfying

sup (3.27)
t€[0,T]

and

K
teOT

Furthermore, for each (t,x) € [0, T] x €,

e(r)m ) (3.28)

(1) (Bounds on the vorticity and its derivatives) w(t, x) enjoys the following bounds:

IVidfwn(t, x)| S e ™3 (14 ¢ (x3)), |V} dfw3(t, x)| Se ™ fori, € =0,1, (3.29)
1070n (1, )| S €73 (1 + i (x3) + P (13)), 187 w3(2, %) S e, (3.30)
105300 (1, )| Sk e |0, 0l ws(t, x)| S e (14 ¢y (x3)) for £=0, 1. (3.31)
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(2) (Bounds on the velocity and its derivatives) The corresponding velocity field u(t, x) satisfies
the following:

18fuz, x)| <1 for£=0,1,2, (3.32)

3 VP 01 S (1+ deas) + (18] — D™ )e™ ™95 forg=0,1, (3.33)
1=|p|=2

3 IVPu(t. 01 S (14 e (63) + e (x3))e ™05, (3.34)
1Bl1=1

Moreover, we have the decay estimate for Bteu:

0ul <k~ zem ML DB forp =12, (3.35)

(3) (Bounds on the temperature and its derivatives) The temperature 0(t, x) satisfies the follow-
ing:

> Vet )| e fore=0,1,2, (3.36)
0=<p,=2
3 V0,000, 1) Sk fore=0,1,2, (3.37)
0=|Bnl=1
02,0{0(t.x)| Sk™'e™ for =0, 1. (3.38)

(4) (Bounds on the pressure and its derivatives) Choosing the pressure such that p(t,x) — 0 as
X3 — 00, then p satisfies the following:

19fp(t,. )| S 1 for£=0,1,2, (3.39)

Z |Vﬁ8fp(t,x)|SK_%e_min(l’%)“ fort=0,1, (3.40)
0=IB|=1

102P1 S (€77 + s (x3))e ™15 (3.41)

The proof of the theorem relies on the integral representation of the solution to the Navier-
Stokes-Fourier system using the Green’s function for the Stokes problem in the same spirit of
[56].

3.2. Elliptic estimates and nonlinear estimates

Lemma 3 (/56,58], Embeddings and Cauchy estimates). The following holds

(1) Bt c gb* and Br* c gl
) lg1g2llen < ||81||oo,xull<ﬁ2||*,x~
3) Xipi=1 IDPgllwi S %,for any 0 < A < A.
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For (2) and (3), || - |l+,» can be either || - llooxic OF I - lloopicr 07 || - lloo,a0 07 I - 11,2

Lemma 4 (/56,58], Elliptic estimates). Let ¢ be the solution of — A¢ = w with the zero Dirichlet
boundary condition, and let u =V X ¢. Then

lulloo,n + IVullin S llwllia,

IVattlloos + IVitslloon S Y IVE @11,
0=IB|=1

185unlloos S D IVh @l + llon oo (3.42)
0=<|B|=1

_ ’ + ’
1e7' Ve uslloon S Y IVE P onlla
0=IB|=1

As a consequence of Lemma 4, we have the following nonlinear estimates.

Lemma 5 ([56,58]). Let u and u be the velocity field associated with w = V, X u and & = Vy X i
respectively. Then

lu- Vol S el Vol + 1+ VDol ool
lw- Vsl S lonlliallVaisleon + lwslliallozizlloo. S llwlli (X4 VaDol1, )

lw- Viigllx S lonllal Vaiinlloon + w3 lloo,a 19385 11,

Sllellia(ldzlloos + 11+ VaDoll1.)-

Moreover

llu - Van Il S ol 2l Va@nllsa + (I + [ViD@ll1, + 188 @3ll00,2) 115 8211,

o Vitnllss < losllooro (I + [VaD@ 15 + 1@nls2) + lonlls Y 1VE@lL G4
0=[Bl=1

where || - ||, can be either || - |lco 3.k OF || - lloo,n k-
Furthermore

lu - Vslloo,,0 S ol il Va@3lloo,x,0 + 11+ [VaDoll1,311£ 0303 [l 00,20,

_ ~ ~ (3.45)
e+ Vitzlloo,1.0 S lleon e 11+ V125 11,2 + leslloonoll (1 + [VaD@n 1,1
k _\k 4
where ||(1+ Vi)l =250 IV, 8l
We finally record the crucial estimate of nonlinear forcing terms N = —u - Vo + o - Vu, as

an outcome of Lemma 5, that will be also crucially used to control B = [0y, (=A) "N (—u Vo +
- Vu)] | ;=0 in the vorticity formulation (1.12) and (1.14).
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Lemma 6 (/56,58], Nonlinear estimate). Let X € (0, Ao — vs) be given. We have the following:

I+ 1VADN 12 S (1A + VD@l + 11+ VD@3 lloo,1,0) (14 Vi Pl

+ 1A+ VD DP ol (1 + VaPoll1 1, (3.46)
1B]=1

> IDPA+ |VaD NI
1B]=1

sy ||Dﬁ(1+|vh|>w||1,x< > IDP A+ Vhhola) + 1+ |vh|>w||oo,x,o) (3.47)

1BI=1 1B1=2
+ > IDP A+ [Vihwsllcoroll (1 + VA ol 1.
1B1=1

For [[ - 1]4,a to be either [[ - Yoo, a,c OF [[ - oo, a,kts

[N SIA + Vi Pollallollo + (1 + Vil A [[Dollk 1, (3.48)

D UDPNTLx S Y 1A+ VP20l s el
[Bl=1 |Bl=1

+ > D oll (10 + VDol 1 + BIDS oll) (3.49)
IBl=1

+ Y UDPollall (1 + ViDoll 2.
1B1=2

The proof relies on Lemma 5. We refer to Lemma 4.2 and Lemma 4.5 in [58] for the detailed
proof.

3.3. Green’s function and integral representation

By taking the Fourier transform of (1.12)-(1.13) in x;, € T2, we obtain

ywe — knoAgws = Ng inRy, (3.50)
kno(0xy + |EDwe h = Bg, wg3=0 onx3=0, (3.51)

with wg|;=0 = wpg for & € Z*. Here
Ag = —[E]* + 05, (3.52)
and

Ng = Ne(t,x3) := (=t - Vo + - Vg (1,%3),  Be = Be(t) 1= (3, (= Ag) ™' Nea (1)) [x3=0-
(3.53)
Here (—Ag)’l denotes the inverse of —A¢ with the zero Dirichlet boundary condition at x3 = 0.
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We give the integral representation and present key estimates on Green’s function for
the Stokes problem. As shown in [56,58], letting Gg¢(¢, x3,y) be the Green’s function for
(3.50)-(3.51), the solution can be represented by the integral formula via Duhamel’s principle:

o r o0
we (1, x3) =/ Ge(t, x3, y)woe (y)dy + //Gg(l —5,x3, ¥)Ne (s, y)dyds
0 00

. (3.54)
—/Gs(t —5,x3,0)(Bg (s), 0)ds,
0
where
Gen 0 0
Ge = 0 Genp 0 , (3.55)
0 0 Ges
with Ggj, of (3.62) and Gg3 of (3.65): for Gg, can be either Ggj, or Gg3
0:Gex(t, x3,y) —knoAgGex(t, x3,y) =0, x3>0, (3.56)
Kr’o(axg, +|§|)G§h(t7x3v )’)ZO, x3=07 (357)
Ge3(t,x3,y) =0, x3=0. (3.58)

Similarly for 0, by taking the Fourier transform of (3.5), (3.6) in x;,, we have ¢ (¢, x3) solves

0:0s — kneAg0: =M: in Ry,
1V& cR&be § (3.59)
0: =0 on x3 =0,

with Og|;—o = 6p¢ for & € 7?. Here Mg = Mg (t, x3) := (—u - VO)e(t, x3). Thus the integral rep-
resentation is

o0 t o0
e (1, x3) = / Gt x3, )6o: () dy + / / Gealt — s, x3, Me (s, y)dyds,  (3.60)
0 00

here by abuse of notation G¢3 is the same Green’s function solving (3.56) and (3.58), with 19
replaced by 7. Note that since # = 0 on 92, we have

3 Mg (1,00=0, £=0,1,2. (3.61)

The following estimates and properties for Gz will be useful to show the propagation of
analytic norms of Bfa), afe, fort =0,1,2.
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Lemma 7 ([56,58]).

(D

2

3)

(Bounds on Ggp) The Green’s function Ggy, for the Stokes problem (3.56) and (3.57) is given
by

Gep = ﬁg + R, (3.62)

where f[g is the one dimensional Heat kernel in the half-space with the homogeneous Neu-
mann boundary condition which takes the form of

- 1 gy bty 5
He(t,x3,y) =He(t,x3 —y)+ He(t, x3+y) = e Wt 4o gt e Kmolgl ¢
Kot
(3.63)
and the residual kernel Rg due to the boundary condition satisfies
k < pht1 p—fob(x3+y) I ~6o - et 3.64
|ax3R§(t»x37y)|N e +W€ of e , (3.64)

with b= |§| + = and R, x3,y) = Re(t,x3 + y).
(Formula of G¢3) The Green’s function Ggs for the Stokes problem (3.56) and (3.58) is given
by one dimensional Heat kernel in the half-space with the homogeneous Dirichlet boundary

condition as

P gy
Ge3(t,x3,y) = He(t,x3 —y) — He (1, x3+ y) = (e gt — g Mot )e"’7°|5|2’.

(3.65)
(Complex extension) The Green’s function G¢ has a natural extension to the complex domain
H,;. for small A > 0 with similar bounds in terms of Rey and Rez (cf. (3.16) in [56]). The

solution wg to (3.50)-(3.51) in H; has a similar representation: for any z € H,, let o be the
positive constant so that 7 € 0H,, then wg satisfies

1
Kknot

t
ws(t,z)=/ Gg(t,z,y)wog(y)dy+//Gs(t—s,z,y)Ng(s,y)dyds
OHs 0 dHs
t

—/Gg(t—S,Z,O)(Bg(S),O)dS.
0

The proof of Lemma 7 can be found in Proposition 3.3 and Section 3.3 of [56]. The next

lemma concerns the convolution estimates.

Lemma 8. Let T > 0 be given. For any 0 <s <t <T and k > 0, there exists a constant Ct > 0
so that the following estimates hold: for Gg, can be either Ggj, or Gg3
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@)) (E}L estimates)

k co k
Y@@ / Gealt. 2 )geIdY|  =Cr Y| €@ g, . (366)
k % k ‘
> |€@s) [Gett=szngm] zcry|c@ais], . con
Jj=0 0 c! Jj=0 *
2) (Ei‘fm estimates)
> |€@a [Gatzyemn| sy |c@iny,. .
j=0 0 ey j=0 s
’ (3.68)
k 7 ko _
> €@ [ Geatt 5.z g0y SC&E:JCH@&WA%4£w~
j:0 0 oo j:() s hKkS
‘ (3.69)
3) (Ei‘fk estimates) For either k =0 or k >0
> €@a [Gutzngman| sy |c@aig,. . 610
j=0 0 ﬁgo Jj=0 Aok
> @@ﬁ»f/lkﬁr—xaymayMy <oy |e@ae,. - 6
j=0 0 £ Jj=0 e

The proof of (1) and (2) can be found in Propositions 3.7 and 3.8 of [56]. For the proof of (3)
we refer to Lemma 12 of [30].
The next result concerns the estimates for the trace kernel.

Lemma 9. Let ag (s) = [0, (—Ag)_lgg] |;=0. Then for any 0 <s <t <T and k > 0, we have the
following

Xk: H (£(2)3:) Gen(t — 5.2, 0)ag (s)‘

Jj=0

o Sl (3.72)

k
> |c@aiGente - 5.2, 00a5(5) (373)
j=0

1
<
o S 7= Nl
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We refer the proof to Lemma 13 of [30].
3.4. Proof of Theorem 9

Our goal is to show that w(¢) indeed belongs to C L([0, T1; B*%) without the initial layer
under the compatibility condition (3.25), and that 8t2a) in B**! with the initial layer. And 6(¢)
belongs to C 2([0, T1; B*Y) under the compatibility condition (3.25). The existence of w(t) and
6(t) in their corresponding spaces under the assumption of Theorem 9 can be proved by following
the argument of [56] and [58]. For the 2D case, Theorem 1.1 of [56] indeed ensures the existence
of w(t) in C! ([0, T1; B**") under the assumption of Theorem 9. Such a result follows from
Lemma 3, Lemma 7, Lemma 8, Lemma 4, Lemma 5. A 3D result can be obtained analogously.
Hence, it suffices to show the propagation of the analytic norms in (3.26).

The propagation estimate for the vorticity w is analogous to [30]; we provide steps for reader’s
convenience and refer to [30] for the detailed proof of some estimates when the same proof holds.
The detailed proof will be given for the new estimate for the temperature fluctuation 6 (z).

Step 1: Propagation of analytic norms for w. It is convenient to define

llw@lll; == llew @ oo, + Mo @l - (3.74)

From the nonlinear iteration using the representation formula (3.54), by using Lemma 3 and
Lemma 6, we obtain for sufficiently large 3

swp Mol S - 1D wolloosan+ 35 IDP(+Viboolsg:  (B75)
0sr<32 0<|8I<2 0<|pl<2

We refer to [30] for the detailed proof.

Step 2: Propagation of analytic norms for d;,w. The continuity of w(¢) in ¢ follows from
the mild solution form (3.54) of wg (7). We claim that w(t) € Cc'([0, T1; B**) and moreover
19; (#)]ll; is bounded. To this end, we first derive the mild form of ;e from (3.54):

(0.¢] t o0
0rwg (1, x3) =/G§(l‘sx3,)’)3ta)os()’)dy+//G§(t—S,X3,Y)3sNg(S,y)dde
0 00

(3.76)

t

— /Gg(t — 5, x3,0)(9s Be (5), 0)ds,
0

where we recall d;wq in (3.22). To justify this formula, we first recall (3.56)-(3.58). We start with
the horizontal part of the formula (3.76) for 9;w¢ ;. From Lemma 7, Ggp(t, x3, y) = He (t, x3 —
y) + He(t, x3 + y) + Re (2, x3 + y). Then by using the fact that Hé (t,-) is an odd function, we
see dyy Gep(f, X3, ¥)|x3=0 = Ré (t,y). Now we read (3.57) as

knoRg (2, y) +knol€|Gen(t,0,y) =0,  knoR:(t, x3) +knol§|Gen(r,x3,0) =0,  (3.77)
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where we have used that H (¢, -) is an even function for the second relation. On the other hand,
since we also have 3y, G¢p (¢, x3, y)|y=0 = Ré (t, x3), we deduce that

kno(dy; + 1ENGen(t, x3,¥3) =0, y3=0. (3.78)

It is straightforward to see Az Gep = 02, Gen — |£1°Gen = 07 Gen — 1€ Gen,.
We now take 9, of (3.54) to obtain

o0 o0
3;/Ggh(t,x3,y)wos,h(y)dy=/3ng,h(t,X3,y)wos,h(y)dy
0 0

= —kn00yGep(t, x3, 0woe, 1 (0) + knoGen (2, x3, 0)0ywoe, 1 (0)

oo

+/Ggh(l,x3,y)KﬂoAghwog,h(y)dy,
0
and
t o0 o0
8t//G$h(f_S,x3,)’)N€,h(sv)’)dde=/Géh(fvx%)’)Ns,h(Ov y)dy
00 0

r o0
+ / / Gen(s, x3, V)3 Nes(t — s, y)dyds,
00

t

t
at/ Gep(t —5,x3,0)Be (s)ds = Gep (2, x3,0) B (0) + / Gep(t —s5,x3,0)05 Be (s)ds.
0 0

Therefore we obtain

Orwe p(t, x3) = — knpdyGep (L, x3, 0)wog, 1, (0) + ko Gen (2, x3,0)dywoe, 1 (0)

o]

— Gegp(t,x3,0)B: (0) +/Ggh(t,X3, YxnoAswog, n(y) + Nen (0, y)}dy
0
t

t oo
—{-//G;h(t—s,X3,y)83Ng,h(s,y)dyds—/G,gh(t—s,x3,0)8ng(s)ds.
0 0 0
(3.79)

Next we show that the first line in the right-hand side is 0. From (3.78)

—knodyGep(t, X3, 0)wog, 1 (0) + knoGep(t, x3,0)dywoe, 1 (0)
= Gep(t, x3, 0)cno(1€] + 0y)wog, 1 (0),
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and hence the first line of (3.79) reads

Gen(t,x3,0) [k10(€] + B3 )woz, 1 (0) — B (0)] (3.80)

which is zero due to the first compatibility condition of (3.25). Recalling d;wq in (3.22), the
formula (3.76) for 0;we ; has been established. We may follow the same procedure to verify the
vertical part of the formula (3.76) for 0;w¢ 3 by noting that the second compatibility condition
of (3.25) removes the term —knodyGe3(t, x3, 0)wog,3(0) which would create the initial layer
otherwise because d,G¢3(t, x3, 0) does not vanish.

We may now repeat Step 1 for d;w using the representation formula (3.76). The estimates are
obtained in the same fashion. For the nonlinear terms, since ;N = —u - Vo;w — 0;u - Vo + w -
Vo:u + 0:w - Vu, the structure of 9; N with respect to d;w is consistent with the one of N with
respect to w and we can use the bilinear estimates (3.43) and (3.44). In summary, one can derive

A0
that for ¢ < o

B 1
Ir®lly S > IDPA+Vadwolliz + (¢ +—) sup llo®lly sup 13wl

0<|Bl<2 0 O<s<t 0<s<t

(3.81)

1
30Ol S Y 1DPd0llsoon + W7+ —) sup llo@lly sup I3l (3.82)

0<|B|<2 Y0 0<s<t 0<s<t
which lead to the desired bounds for d;w(¢) by choosing sufficiently large yp.

Step 3: Propagation of analytic norms for 8t2a)§. As a consequence of Step 2, 0;we (¢, x3)
solves the following system

3w — koA dws =3 Ng  in Ry, (3.83)
kno(Ox; + 1§ 0rwe n =3 B  onx3 =0, (3.84)
dwg3=0 onx3=0, (3.85)

with 0;wg ;=0 = 0;wpe for & € 7* where 9wy is defined in (3.22). Then as done in Step 2, by
using the properties of G¢ and integration by parts and by the last compatibility condition of
(3.25), we can derive the representation formula for 8t2w:

32 ws (t, x3) = (Gen(t, x3,0) [k10(I&| 4 0x;) 9 w01 (0) — 0, Bz (0)], 0)

o0 r o0
+ / Ge(t, x3, )82 woe (y)dy + / / Ge(t — 5, %3, )32 N (s, y)dyds
0 0 0 (3.86)

t

—/Gg(r—s,x3,0>(aEBg(s),0>ds,
0

where we recall afwo in (3.22).
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Similar to the estimate in Step 2, the L'-based analytic norm is easily obtained as

oo,

Swenoll (14 1ValP)Varwoll a4+ 1L+ Vel Dol Y IDP(L+Val’)denllrs
0=|pl=1

1 (3.87)
+ Y IDPA+[VAD wolliag + (t+—) sup flo(s)]ls sup

0<IB|<2 0 O<s<t 0<s<t

o],

1
o) sup 3w ()12

O<s<t

For the L°°-based analytic norm bound, as we do not require higher order compatibility con-
dition for the horizontal vorticity, a new term representing the initial-boundary layer emerges and
we obtain

3,2w(t)m
o0,k

Skno Y IVEVEwolloor + 1A+ 1VaPdwollin D I1DPA +V4P)dwollr.s
0=|Bl=2 0=<|Bl=1

1
+ Y IDP ol g + (Vi+ =) sup llo@)lly sup [|97e(s)

0<|p1<2 Y0 0<s<t O<s<t

N

1
+ (VT +—) sup 1802

Y0 O<s<t

(3.88)

We refer the detailed proof to [30].

Finally combining (3.87) and (3.88) and then choosing sufficiently large yy we derive a desired
estimate for |”8t2w(t)|||t fort € (0, 2)‘—00).

Altogether from (3.75), (3.81), (3.82), (3.87), and (3.88), we finish the proof of the estimate
(3.26).

Step 4: Propagation of analytic ||-||; norms for 8;‘9, £=0,1,2.
Recall the norm in (3.16). We define

10l == MOl oo,0 + MO @I - (3.89)

Recall (3.60). We now follow the argument in Step 1, from (3.66), (3.67), and Lemma 6 we
have

> AP A+ (VDO

0=|Bl=2
' (3.90)
Y ||Dﬁ(1+|vh|)90||l,x+/ Y IDPA+ VM)l ds.

0=<[pl=2 o 0=lIpl=2
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Similar to the computation in Lemma 6, and using Lemma 5 we bound the nonlinear M term as

DA+ VAM ()1

0<|BI=1
S Y (VA + VaDOILAIDE A + Vi Dun o
0=<|8]=1
+ IV DP A+ (VDO 11+ Vi Dunlloor (3.91)

u3
+120.(1+ VDO DP (1 + |Vh|)?||oo,k

us
+IDPga.(1+ViDOl1 (1 + IVhI)?Iloo,A> .

Using Lemma 4 and the definition of ||-|| we have

t

t
/ Y. IDPA+ VDM )l xds 5/|||9(s)lllsIIIw(s)IIIx(l+(ko—k—yos)‘°‘)ds
0 0<lBi=l 0 (3.92)

1
5<f+—> sup [[16(s)llls sup fle(s)lls.

Y0/ 0<s<t 0<s<t

Next, by applying the analyticity recovery estimate (3) of Lemma 3, and choosing A =
A+Xo—Y0s _
=== we get for | 8| =2,

D IDPA+ VDM s S5 3 IDPA+ VDM, ;
IBl=2 ~*o<ipi< (3.93)

S(1+ G0 =2 =) D) IOl )l
Therefore we derive that for r < 2’\700 and A < Ap — pot

t
/ > UIDPA+ VDM ()1 ads
0 1B1=2
t
S / (14 (o =2 = )~ D) @Il @)l ds

0

(3.94)

o 1
S ((/\o — A —o1) “% +t> sup [I0()llls sup flw(s)llsds.

0<s<t 0<s<t
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Therefore, we conclude that, from (3.90) with (3.92), and (3.94), for t < 2%,

1
e < Z IDP (14 [ViDBoll1sg + ¢ +—) sup 105 sup o). (3.95)

0<|g|<2 0 O<s<t 0<s<t

The propagation of the L°-based norm |[[|6(¢)||, can be shown analogously. Again follow
the argument in Step 1, from (3.70), (3.71), and Lemma 6 we have

t

> ADPIO os0 S Y I1DPOllcso+ [ Y. IDPM(S)loos0ds.  (3.96)
0=|pl=2 0=<|Bl=2 o 0=IBl=2

Similar to the computation in Lemma 6, and using Lemma 5 we again bound

D ADPM S oor0S D (1VhOllooroll D nlloo s + IVADPOlloo 1 0llunllo.r
0=[Bl=1 0=IB|=1

us us
+||§329||00,A,0||Dﬁ?”oo,k + ||Dﬂ§az9||oo,k,0||?||oo,k) .

3.97
Using Lemma 4 and the definition of [|-||| we have
t t
/ > IDPM($)lloo0ds S / 16 )l Nl ()l (1 4+ (ho — & — 705)™*)dls
o 0=IBI<1 0 (3.98)

1
§(f+—> sup [10()llls sup [l (s)]lls-

Y0/ 0<s<t 0<s<t

_ Next, again by applying the analyticity recovery estimate (3) of Lemma 3, and choosing
A= )‘H"z—*yos we get for |8 =2,

1
D AIDPM$) o0 S=—— Y. IDPM$)llo 5.0
1B1=2 —ospl=t (3.99)

S (14 G0 =2 =)~ D) 6l llo ),

Therefore we derive that for r < ;7% and A < Ap — yot

t

t
/ > IDPM(s)llsor0ds < / (14 Go =2 = 9™ Y IOl o)l ds
o 181=2 0
ol
S(Go=r=yn ™= +1) sup [16Ily sup llw(s)llyds.
Yo 0<s<t 0<s<t

(3.100)
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Therefore, we conclude that, from (3.96) with (3.98), and (3.100), for ¢ < 2)‘700,

1
M0 loco S Y 1DPBollocig0+ (2 + =) sup [0l sup flo(s)ll;- (3.101)

0<IBl<2 0 O<s<t 0<s<t

From (3.95) and (3.101) and a standard continuity argument we conclude for sufficiently large
Y0,

sup 1001, S D 1D ollocrgo+ Y, I1DP A+ ViDbolls- (3.102)

0sr<7% 0<Ipl<2 0<|BI<2

Step 5: Propagation of analytic ||-||, norms for Bfé’, £=0,1,2.
Next let’s investigate d,,6. Taking 9y, to (3.60) gives

0]

3X39§(I,X3)=/3X3Gga(t,X3,y)90§(y)dy+//3x3Gg3(t—s,X3,y)Mg(S,y)dde- (3.103)
0

Now using Gg3(t, x3, y) = He (¢, x3 —y) — He (¢, x3+y) as in (3.65) (with ng replaced by n.), we
have 0,,G¢3(t, x3,y) = —0y He (¢, x3 — y) — 0y Hg (t, x3 + y). From the compatibility condition
(3.25), 6o (0) = 0. And from (3.61), Mg (s, 0) = 0. Thus from integration by parts we get

o]

D00 (1, x3) = / (He(t.x3 — y) + He(t. x3 + 1)) 3y60: (5)dy
(3.104)

1 o0
+//(Hg(t—s,x3—y)+Hg(t—s,X3+y)) dy Mg (s, y)dyds.
0

From the inequality

=z /=52 Mg
e IMr(—5) ¢~ Oty_e 2| /7M,((, 5 +ayvMi(i—s)| e2® a2k (t—s) 7otz<eza 2 (t—s) 7otz<efutz

(3.105)
we bound
o0
/ He(t,x3 — y) + He (1, x3 4 y)) 0y60¢ (y)dy
0
7 1
/ t ~ i e~ ey y00e (y)dy (3.106)
K
0

20"

o0
G 1
Se “x3||3x3905||Lg?0/ Ta ~ e dy<6 531 9,360¢ [ L2
0

631



Y. Cao, J. Jang and C. Kim Journal of Differential Equations 366 (2023) 565—644

And similarly
(0.¢]
/ (He(t = 5,33 = 3) + He(t — 5,53+ 1)) 8y M (s, y)dy| S e [0y, Me )|, (3.107)
0

Therefore from (3.104), (3.106), (3.107), and taking summation in & € 7%, we get
18530 (F, x3) l00,2.0 S 19x360ll00,2.0 + fo 1853 M () lloc.,0d's. And similarly

> D 00 x3)loes0 S D ID) 84360010020
0=<|BnI=1 0=IBnl=1

‘ (3.108)
+ 3 1D 8 M($)lloo,r.0ds.
o 0=IBnl=l

We have

1 Dn0xs M ($)1l00,2,0 < | Dhdxyut - VO + dxs1t - DpVO|loo,1,0

(3.109),

(3.109)
+ [|Dpu - V3y,0 +u - DpVx;0|l00.2.0,
(3.109),
and we bound the two parts separately.
From (3.42), and that || Vi,wp lleox < (1+ ﬁ)nvhwhnoo,u < % we have
G109 < YD Vil + Y. 1Dy on®) s | sup OO
0<|l<2 0<lpnl<1 O=s=t
+ X Vel | Go—x =197 sup 18Il
0=|p|=2 O=s=t
1 _
S—= sup [lo)lls sup MOl + (o — A —yos)™* sup [lw()lly sup [0,
K 0<s<t 0<s<t 0<s<t 0<s<t
5— + o —A—y08)"" sup IO,
N 0<s<t ‘
(3.110)

where we have used (3.26), (3.27), and from previous steps supy <, [lw(s)lll; < oo,
supg<s< IO, < 0o. Next for (3.109),, we use (3.42), and the analytic recovery lemma
(Lemma 3 (3)) to get
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(3.109), S Z | (Dputi dx; 3x30) ()l ow,2.,0 + 1| (10 Dpdx; 0530)(5) llo0,2.,0)
i=1,2

+ 11 ™" D3¢ 8x3030) () 00,20 + 16 ™" 43¢ By D03 0) (5) [l .20

S lloos | | Y 1VAD 8,69 llso.0.0
0<|/3h|<1 0<[Bnl<1

+ X 1D s loos | | DD 1686 DY 009 oo

0=<|BnI=<1 0<|Bnl=1

1
<D Ve + Y ID o)l — 2 1D} 8,6 (5) o 5.0

0<[B|=2 0=|[rl=1 0=|nl=1

<o =2 —108)" D sup [lws)llly sup N6

0<s<t 0<s<t

<o — 2 —y08) @ sup 16(s)ll,

0<s<t

@3.111)

?»+?~o Y08

where as before, we have chosen A = ,SOA— A= W = o — Yos — A. Thus

combining (3.108), (3.110), and (3.111) we get

> ID 0t x3) o0
0=|Bnl=1

t
< > ||Dh3x;90||ooxo+/—ds+ /(xo—x—yosr“ds sup [10)ll
0

0<Ipul<1 O=s=t
(3.112)
/ Go— 1 — 7o)~ @5 | sup 105l
0<s<t
< Y IDfr a0l A0+L+(1 o= o1 1) sup 16(s)ll
~ X o0, A, .
h 75 \/E 11 Y0/ 0<s<t ¢
0=[Bnl=1
Therefore we conclude that from (3.17), (3.112), for sufficiently large yp,
1
sup OO, S Y ||D,'fha)C3eo||oo,A0,o+ﬁ. (3.113)

A
Osr=g% 0=|Bnl=<1

This proves the bound for 9,6 in (3.28).
Next, we look at ;6. For the propagation of analytic norms |[|d,6]|;, we follow the argument
in Step 2. Taking 9; of (3.60) and using integration by parts, from (3.56), (3.58), we achieve
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o]

0,05 (1. x3) =K71y G3 (1. x3. 0)00¢ (0) + / Gealt,x3,3) (e (— 1€ + 0D)60e + Me 0, y) ) dy
0

t oo
—I—//Ggg(t—s,x3,y)8sMg(s,y)dyds.
0 0

(3.114)
Recalling 96y in (3.22), and the compatibility condition (3.25). we get
o0 t o0
0,0 (2, x3) = / Ge3(t, x3, )0 00cdy + //Gg3(t —5,x3,y)0s Mg (s, y)dyds.  (3.115)
0 00

With this representation formula we can repeat the estimate earlier in this step in the same fash-
ion. For the nonlinear terms, since o, M = —u - V0,60 — d;u - VO, we can use the bilinear estimates
(3.43), (3.110), and (3.111) in the same way to derive that for r < 2%

N0 S Y I1DP A+ VaD)dboll g
0=[B|=2

1
+(t+%) < sup [l (s)lly sup [I8:0(s)lls + sup [ (s)lls sup |||9(S)||Is>,

0<s<t 0<s<t 0<s<t 0<s=<t
(3.116)
H0: 0O lloeo S Y 1DP3:60lloc.19.0
0=|Bl=2
1
r+— 3! alo ., (3.117
+e+—)| Y sup |9 w(s) > sup |[3/0)|| | G.117)

Yo\ g2 Oss=t § ¢=0.1 0=s=t

which lead to the desired bounds for 9,0(¢) in (3.27) by choosing sufficiently large yy.

For the propagation of the norm |[|9;6]||,, we follow the argument in the estimate of [||&]],.
Taking 0y, to (3.115) and from (3.25), (3.61), we have 9,60 (0) = 0, 9; M¢(0) = 0. Thus from
integration by parts we can follow the argument from (3.103)-(3.108) to get

> ID) 080t %) l00p0 S D 11D Bs 8180ll00.1.0
0<|Bnl=1 0=|Bnl=1

t

+ Y 1D 868 M) lloo,n.0ds.
0 0=IBul=1

Then following the argument from (3.110)-(3.112) we get
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> I 05,8,6(t. x3)llse.0
0<Ifnl<1

s Y pf amateonmw/—ds

0<|Byl<1 O=s=ty

0<Y<t

O<s<t O<s<t

/(Ao — X —yos) %ds sup Z H‘E)Z
0

/ (ho — 1 —yo5)~ @ Dds

0<S<l‘

Z sup
4

—0.10=s=t

t 1 1
S S IDPa000llon0 + —= + (— + 00— A— yor)—“—> sup 0l
0<IBxl<l NCEANT Y0/ 0<s=i

which lead to the desired bounds for d,,9;6(¢) in (3.28) by choosing sufficiently large yy.
The propagation of analytic norms for 8,29 follows in the same way. From the compatibility
condition (3.25) we get

e ¢]

8,29(I,X3):/G§3(I,X3,y)812005dy+//Gg3(t—s,x3,y)8S2Mg(s,y)dyds. (3.118)
0

Using the bilinear estimate on 3> M we derive that for ¢ < %

1
20| 5 3 IDPA+ VDAl + ¢+ —) sup 130G, sup 18,66)ll;
: 0<|Bl<2 Yo 0<s<t 0<s<t

020()|| + sup @l sup |||afe<s>|||s>, (3.119)

0<s<t 0<s<t

1
+(t+%)(sup lleo()llls sup

0<s<t 0<s<t

SED I 12 Bolloo00+ t +—) sup I30()ll, sup 136G,
0<|p|<2 Y0 O<s<t 0<s<t

0200)[| + sup Naw )l sup |||a,9(s)|||s>, (3.120)

0<s<t O<s<t

1
+0+—) ( sup [l (s)lls sup
Yo

0<s<t 0<s<t

which lead to the desired bounds for 3390) in (3.27) by choosing sufficiently large yp.
Taking 9, to (3.118) and using (3.25), (3.61), we have 8,2905 0) =0, 8t2M§ (0) = 0. Thus
from integration by parts we again follow the argument from (3.103)-(3.108) to get
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> ID 04020 x3) l00s0 S D DL 8507001000
0=|Bnl=1 0=|Bnl=1
t

+ [ Y 1D 802 M(9)lloo 1045
o 0<IBul<l

Then following the argument from (3.110)-(3.112) we get

3 1D 8,,026.(t, x3) 1 00.1.0
0=<|Bnl=1

< Y 1D} 9.,92600100.0

~

0=|Bnl=1

t
+ [ (1 L] >d
—+ —)ds
5 x/E VKS O<s=<ty
t
/(Ko—k—VOS)fadS (
0 O<v<t

t
[Go=1=moe s
0 O=s=<t,

t+f
NG

Nl

) (0<v<t
2

Z sup

00§s§t

< +Go—A—yt) " — >SUP
Yo Yo

y

y

a}e(s)m .
Zz

< Y 1D 8402600000 + —

~

0=<|Bnl=1

0<s<t

which lead to the desired bounds for 9, 3,29(t) in (3.28) by choosing sufficiently large yp.

Step 6: Estimate (1), vorticity estimates. Both (3.29) and (3.30) are direct consequences of
(3.26). To show (3.31), we first note that the boundedness of  (¢) norms implies |3y, we (¢, x3)| S
e~ ¥%30=MEl for all |€| and x3 > 1 (away from the boundary) When x3 < 1, we draw on the equa-
tion (3.50) to rewrite sza)g’h = {8ta)g n+ Kno|§| g, — Ng p} and the boundary condition
(3.51):

X3

3x3wg,h(t,X3)=3xsws,h(t,0)+/3§3ws,h(t,y)dy
0

X3

1 1
= —|&|we 5 (t,0) + —B: (1) + / —[dwe.n + knol&1Pwe n — Nepl(t, y)dy.
Kno Kno

(3.121)

We now appeal to |Bg (1) < [N ()l 21 and Yo, ([[[3f 0 ][ . + [[3f @ @] ,) < 00 to ob-
tain that for all x3 € R4
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1 -
|9y g n (2, x3)] < ;e—me—“f‘ for0 < A < Ao, (3.122)

which proves (3.31) for w;, and £ = 0. The remaining case can be estimated similarly. Near O (1)
boundary, from (3.83) and (3.84), we derive

a)q 8lw§,h (t,x3)

X3

1 1
= —IElfrosn(1.0)+ = Be (1) + / (8P mlE e s — 0N A1 ).

(3.123)
Together with 205651 |||8fw(t)|||oo’,€ + 205652 |H8fa)(t)|||1 < oo we deduce (3.31) for wy, and
£ =1. For w3 weuse V - w =0 to write d3w3 = —djw1 — drw>. Now (3.31) for w3 follows from
(3.29).

Step 7: Estimate (2), velocity estimates, except (3.35). From Lemma 4, the estimation of
the velocity follows from ¢ estimate. From (|€]? — 312)@3 =wg and ¢ (0) =0

Z o0
¢§(Z)=/G—(y,Z)wg(y)dy—I-/G+(y,z)a)§(y)dy’
0 z (3.124)
—1

ith Gu(y.z2) = — (X1 _ o6+,

with G+(y, ) 2|§|(e e )

and we have
161719229 ¢ (1, )| < / & |1P1=1e= 1=l 5L 0o (1, y)|Idy| for B3 < 1. (3.125)

AH,;,

For |8 = |Bn| + B3 = 1 we bound (3.125) by e *1||3w(#) |1 ;.. Then from (3.26) we conclude
(3.32).
For |B| > 2 and B3 < 1, we bound (3.125) by

(3.125) < / |E[1F1=2 ) |e I8y =2l g maRey o =MEN(] b () + e (7)) 1dy |
OH,;

< | |P1=2¢m 48l = min(l. 3)xs / e TR (14 e () + e (1) Idy |
oM.

< || II=2eHEl g~ min(L.5)xs for 181> 2 and B3 <1, and £=0,1,2, and € [0, T],
(3.126)

where we have used |£||y — z| + %Rey > min(1, %)x3 for || > 1 and (3.26).
For B3 = 2,3 we use 329 ¢ = |&|°9 ¢ + d/ws. Then following the same argument of
(3.126), we derive
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1&1P11855 8 e (2, 7))
SIEIPIT21053 725 e (1, 2)| + 1611|9558 we (1, 2)
(I&]1P1=2 4 |g|frye+Elg=min( 5IREZ (1 4 6 (2)) for €=0, 1, and B3 =2,
S (ENPI=2 4 (g |Pryelslgmmin(L5IRez —1 for p — (), 1, and B3 = 3,
(|&[1B1=2 4 |g|Prye=Elemmin(L DRI (] 4 (2) + s (2)) for £ =2, and B3 =
(3.127)
Finally from (3.126) and (3.127) we conclude (3.33) and (3.34).

Step 8: Estimate (3), temperature estimates. Both (3.36) and (3.37) are direct consequences
of (3.27). To show (3.38), we use the equation (3.5) to get

050 =— (a,e Fu-Vif) — 3760 —050.
(3.128)

<8;9+u18x]9+MQBX29+( )(;‘8)639)) 829

Ne

Then from (3.32), (3.36), and (3.37) we get

1
D 1070361 S— p— [Da 9|+(Zuaeuu+|aguz|+|a‘(—>|)>
=0

£=0

x (Zuaf&xlm + 105 0,0 + |af(<:aX39)|>)}

£=0

M_

=

O

1 - 3 -
—(e ‘”‘)+e W T eT,
K

This proves (3.38).

The pressure estimate (3.39)-(3.41) can be found in Theorem 3 of [30]. The last estimate for
8,214 for £ = 1, 2 follows from the equation: d;u = «knoAu —u - Vu — Vp and 3t2u =KknoAdu —
u-Vou — ou - Vu — Vo, p. This finishes the proof.

4. Main theorem

In the last section we state and prove the precise statement of the main theorem which was
informally stated as Theorem 1. Before that we first show the convergence of heat flow 6 to 6
in L*°([0, T, LZ(SZ)) in the following lemma.

Lemma 10 (Convergence of 6 to 0g). Let ug be the solution of the Euler equation (1.7), (1.8),
(1.9), and u be the solution of the Navier-Stokes equation (1.12), (1.13), (1.14). For the following
equations
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00 +ug -V =0 in Q,

30 +u-Vih —kn.AO=0inQ, 6=0 ondQ. @D
Assume 0 (0, x) =0(0, x) = 6y(x), and
Oo(x) =0 on 3%2. 4.2)
Then
O;IET 160 — Okl 2 — 0, ask — 0. “4.3)
Proof. From (4.1) we have
Or(t,x) =00, X (0; 1, x)), 4.4)

where X (s; 1, x) satisfies
d
EX(S; t,x)=up(s, X(s;t,x)), X(;t,x)=x.
From assumption (4.2) and ug - n =0 on 92, we have {X (0; ¢, x) : x € 92} C 9R2. Therefore
Or(t,x) =0o0n 9. 4.5)
For the solution u#g(f, x) to the Euler equation (1.7), (1.8), (1.9), it is shown in [55] that for

smooth initial data u satisfying V - ug =0 and ug - n = 0 on 92, there exists a time T > 0 such
that u g is smooth on (0, T'). In particular,

Sup ”ME(S)”Cz(Q) < OQ. (46)
O<s<T
Thus taking V, derivative to
t
X(s;t,x)=x—/uE(t,X(r;t,x))dt, 4.7

N

we have
t
|VXX(S;th)|5l+/||quE(T)||L°0|VxX(T§tvx)ldf-
S

From Gronwall’s inequality

sup  sup |V X (s; 1, x)| < el SWPo<s<r+ IVxue e o ¢ (4.8)
0<s<t<T*xeQ
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Similarly, taking V)% to (4.7) and using (4.6), (4.8) we get

t

VX (53 1,%)] 5/(||VEME<r>||Lm|VxX(r; 0+ | Vo (Ol VX (51,001 ) de
S

t
<TC+ / V23X (z;1,x)|dT

S

Using Gronwall we get

sup  sup |V§X(s; t,x)| < TCe! <. 4.9

0<s<t<T*xeQ

Combining (4.4), (4.8), and (4.9) we get

sup sup (|Vx95(t,x)| + |V§9E(t,x)|)

0<1<T*xeQ
(4.10)
< (I9:B0ll + IV260ll) sup sup (IVeX (53 1, 00|+ [VEX (s 1,)]) < Ca.
0<1<T* xeQ
Now let w =6 — 0, then from (4.1), the equation for w is
oow—~+u-Vw+ (u—ug)- Vg —kncAw = kn.Ab0g. 4.11)

From (4.1) and (4.5), w = 0 on 2. Thus from integration by parts one gets fQ (Aw)wdx =
- fQ |Vw|?dx without the boundary term. Therefore the standard energy estimate fQ “.11) -
wdx gives

N =

d
i+ ke Vol +/(u Vw)wdx
Q

4.12)
:—/(u—uE)~V6?Ewdx—|—/<nc/AGEwdx.
Q Q

From V-u =0, and u = 0 on 92, we have

/(u-Vw)wdx:%/u-V(w2)dx=—%/(V~u)w2dx=0.
Q Q

Q

Now we bound the terms on the RHS of (4.12). Using (4.10) we have

/|(u —ug)-Vogw|dx < | VOEllL~ (||u —ugli, + ||w||iz) Slu—uel, +lwl?,, (4.13)
Q

and
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Knc/|AeEw|dx S n) 1 A0g |17, + lwllF, Sk + w3, (4.14)
Q

Now collect (4.13), (4.14), (4.12) gives

d
oI S HwlZs + e = welgs + %,
Therefore by Gronwall’s inequality

sup [[wi?, Se” (||u —upl?, +K2) 50, ask—0. O
0<r<T

Finally we prove the main theorem of the paper through combining separate estimates we
established in different sections of the paper.

Theorem 10 (Main Theorem). Let 2 be a upper half space in 3D:

Q:=T2x Ry > (x1, x2,x3), where Ry :={x3 € R:x3 >0},

4.15)
and T is the periodic interval (—m, ).
Suppose an initial velocity field u;, is divergence-free
Vi -uin =0 in <, (4.16)
the corresponding initial vorticity wi, = Vy X u;, and the initial heat 6;;, satisfy
Win, Oin € BHOK, 4.17)

with the real analytic space B0 defined in (3.12) for some Ay > 0, such that (3.23), (3.24)
hold. Further we assume that w;,, 0;, satisfies the compatibility conditions (3.25) on dQ2. Then
there exists a unique real analytic solution (u(t,x),0(t,x)) to the Navier-Stokes-Fourier flow
(1.12)-(1.17) in [0, T] x , while T > 0 only depends on Ay and the size of the initial data as in
(3.23), (3.24).

Choosing a pressure p(t, x) such that p(t, x) — 0 as x3 — 00, and setting the first order and
the second order correction terms f1, f>» as (2.1)-(2.4), we also choose € and k in the relation of
(2.195). Assume that an initial datum for the remainder fr ;, satisfies (2.196), then for the given
T > 0, we construct a unique solution fr(t,x,v) of the form of

F=pu+efiyu+eryu+e?fryim in [0,T] x Q x R3,

which solves the Boltzmann equation (1.1) and the diffuse reflection boundary condition (1.11)
with the scale of (1.5), (1.6), (2.195), and satisfies the initial condition

Fli=o = i+ e/I fili=o + &I fali=o + /> 1L fR.in,

such that, for each ¢ and k of (2.195),
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F(t’xv U) _I‘L(U)
e/ i(v)
Moreover. let ug(t,x),0p(t,x) be the unique solution of the incompressible Euler equations

under heat transfer (1.7)-(1.10) with the initial condition (ug,0g)|i=0 = WUin, 0in) satisfying
(4.16), (4.17). Then

—&(T +1
5exp<g

" )for K< 1. (4.18)

sup
0<t<T

L2(QxR3)

— 2_
F,x,0) —pn) <_9E(;,x) +ug(t,x)-v +GE(I,X)M> Vi)

sup
0<1<T e/ (v) 2 L2(QxR3)
—0

as € — 0.

Proof. The existence of the Navier-Stokes-Fourier system follows from Theorem 9. For the
remaining assertions, we note that all the estimates (3.32)-(3.35) of Theorem 9 ensure the condi-
tions of Theorem 8§ with 3 = % Therefore (4.18) follows directly as a consequence of Theorem 8
and Theorem 9. As for the incompressible Euler limit, note that

lv|* -3

LV

e/ (v)

F(t,x,v) — 23
=[%—f1]+[ﬁ—(—9E+ME-U+9E%>\/E].

The first term can be bounded as in (4.18). The second term converges to 0 as « | 0 from Theo-
rem 9, Lemma 10, and the famous Kato’s condition for vanishing viscosity limit in [35]. O
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