
Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 366 (2023) 565–644
www.elsevier.com/locate/jde

Passage from the Boltzmann equation with diffuse 

boundary to the incompressible Euler equation with heat 

convection

Yunbai Cao a,∗, Juhi Jang b, Chanwoo Kim c

a Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA
b Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA

c Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA

Received 28 December 2022; accepted 18 April 2023
Available online 4 May 2023

Abstract

We derive the incompressible Euler equations with heat convection with the no-penetration boundary 
condition from the Boltzmann equation with the diffuse boundary in the hydrodynamic limit for the scale 
of large Reynold number. Inspired by the recent framework in [30], we consider the Navier-Stokes-Fourier 
system with no-slip boundary conditions as an intermediary approximation and develop a Hilbert-type 
expansion of the Boltzmann equation around the global Maxwellian that allows the nontrivial heat transfer 
by convection in the limit. To justify our expansion and the limit, a new direct estimate of the heat flux 
and its derivatives in the Navier-Stokes-Fourier system is established adopting a recent Green’s function 
approach in the study of the inviscid limit.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

Building the connection between kinetic theory and macroscopic fluid dynamics has been 
an important subject over the past decades. Kinetic equations study the time evolution of the 
distribution function F(t, x, v) ≥ 0 representing the density of particles of some rarified gas with 
position x and velocity v in the phase space � ×R3 at time t . The interaction of particles through 
collisions is often modeled by some binary collision operator Q(F, F).

When the gas is dense enough such that particles go through many collisions, the hydrody-
namic limits are obtained. A small parameter Kn called the Knudsen number, which represents 
the ratio of the mean free path of particles between collisions to the characteristic length, is a key 
dimensionless number in describing such phenomena. On the other hand, the velocity scale that 
some macroscopic portion of the gas is transported, described by the kinetic Strouhal number St , 
also affect the limits. The dimensionless Boltzmann equation takes the form of

St∂tF + v · ∇xF = 1

Kn
Q(F,F ), on [0,∞) × � ×R3, (1.1)

where � is an open subset of R3. Throughout this paper, we assume the hard sphere Boltzmann 
collision operator:

Q(F,G) = 1

2

ˆ

R3

ˆ

S2

|(v − v∗) · u|{F(v′)G(v′∗) + G(v′)F (v′∗)

− F(v)G(v∗) − G(v)F (v∗)}dudv∗,

(1.2)

where v′ := v − ((v − v∗) · u)u and v′∗ := v∗ + ((v − v∗) · u)u. This collision operator enjoys the 
collision invariance property: for any F(v) and G(v),

ˆ

3

Q(F,G)(v)
(

1, v,
|v|2 − 3√

6

)
dv = (0,0,0). (1.3)
R
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We denote the global Maxwellian, which satisfies Q(·, ·) = 0, by μ

μ(v) := 1

(2π)
3
2

e− |v|2
2 . (1.4)

Another parameter considered in hydrodynamic limits is the Mach number Ma, which can be 
viewed as the scale of fluctuations around some reference flow. In this paper, we take the scale 
that the Mach number is equal to the Strouhal number:

St =Ma = ε. (1.5)

The reciprocal viscosity of a fluid can be measured in terms of the Reynold number Re =Ma/Kn . 
In this paper, we consider the scale of large Reynold number with

Kn = κε, (1.6)

where κ = κ(ε) → 0 as ε → 0. Under such scaling, we will derive the incompressible Euler 
equations with heat convection with the no-penetration boundary condition in the limit

∂tuE + uE · ∇xuE + ∇xpE = 0 in �, (1.7)

∇x · uE = 0 in �, (1.8)

uE · n = 0 on ∂�, (1.9)

∂t θE + uE · ∇xθE = 0 in �. (1.10)

Here n = n(x) is the unit outward normal vector at x ∈ ∂�. Note that the boundary value of the 
heat convection θE is completely determined by the transport equation (1.10) and the initial data, 
therefore no boundary condition on θE is imposed.

In many important physical applications, e.g. turbulence theory, boundary effect plays an 
important role in global dynamics, and it is of both physical and mathematical interests to take 
the boundary into consideration in the hydrodynamic limit. In this paper we consider one of 
the physical boundary conditions, the so-called diffuse boundary condition, which models the 
ideal situation that gas particles reflected from the boundary reach an instantaneous thermal 
equilibration (see [13]): for (x, v) ∈ {∂� ×R3 : n(x) · v < 0},

F(t, x, v) = cμμ(v)

ˆ

n(x)·v>0

F(t, x,v)(n(x) · v)dv. (1.11)

Here, the constant cμ is chosen to be 
√

2π so that 
´
n(x)·v>0 μ(v)(n(x) · v)dv = 1, which ensures 

the null flux condition 
´
R3 F(t, x, v)(n(x) · v)dv = 0 for x ∈ ∂�.

The first mathematical studies of hydrodynamic limits of the Boltzmann equation may date 
back to Hilbert in [28], where he introduced the method of Hilbert expansion to obtain the 
derivations at the formal level. Since then there have been many results on the rigorous jus-
tifications of hydrodynamic limits based on the truncated asymptotic expansions method. For 
instance, the compressible Euler limits with heat transfer are derived in [6,44,57]; incompressible 
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Navier-Stokes limits are achieved in [5,11,19]; and diffusive limits from the Vlasov-Maxwell-
Boltzmann system have been obtained in [29]; and hydrodynamic limit toward singular fluid 
solutions [40,41]. On the other hand, since Bardos, Golse, and Levermore [1,2] have proposed 
the derivation of weak solutions of fluid equations from the renormalized solutions of the Boltz-
mann equation [12] in the early nineties, extensive studies have been made in this direction 
and a lot of important results have been obtained (see [17,33,52] for the references in this di-
rection). Notably, the Leray solutions of the incompressible Navier-Stokes equations have been 
successfully derived in [18,45,46]; and dissipative solutions of the incompressible Euler have 
been obtained in [4,45,46,50].

It should be noted that all the results mentioned above deal with domains that do not contain 
boundaries. In general, however, solutions of the Boltzmann equation with physical boundary 
conditions behave differently; in particular, high regularity may not be expected (see [24,25,36]). 
To overcome this an L2 − L∞ framework was developed in [20] to study global solutions of the 
Boltzmann equation with various boundary conditions, which prompted substantial development 
in various directions including [7–10,13–15,21–23,26,31,32,37–39,42,59]. Among them in [13,
14], the hydrodynamic limit of the incompressible Navier-Stokes-Fourier system was derived 
from the Boltzmann equation under the diffuse boundary condition.

In terms of the incompressible Euler limit, based on the relative entropy method, the con-
vergence of renormalized solutions of the Boltzmann equation to dissipative solutions of the 
incompressible Euler equations was first obtained in [4] assuming the local conservation of mo-
mentum which is not guaranteed for renormalized solutions of the Boltzmann equation, some 
nonlinear estimate, and the initial data to be well-prepared, in particular, the initial temperature 
fluctuation θin = 0, so there is no heat transfer. Later, the local conservation of momentum as-
sumption was removed in [45] by using the local momentum conservation with matrix-valued 
defect measure satisfied by renormalized solutions of the Boltzmann equation. The nonlinear es-
timate assumption in [4] was further removed in [50] using refined dissipation estimates which 
were developed first in the framework of the BGK equation in [49]. When considering physical 
boundaries, the incompressible Euler limit with no heat transfer has been derived in [3] from the 
Boltzmann equation under the Maxwell boundary condition. Finally, in [51] the well-prepared 
initial data assumption in [4] was removed by the construction of refined approximate solutions 
with converging modulated entropy, and the incompressible Euler limit with heat transfer has 
been justified under specular reflection boundary condition. We refer to [52] for detailed results 
and discussions in this direction. As far as we know, all the existing results on the incompressible 
Euler limit using the relative entropy methods are limited to the Maxwell-boundary conditions 
whose accommodation coefficients essentially vanish when ε → 0. In particular, the sole diffuse 
boundary condition is excluded.

To the best of our knowledge, the incompressible Euler limit with heat transfer from the 
Boltzmann equation with diffuse boundary has not been established in any framework yet. The 
main goal of the paper is to rigorously justify the incompressible Euler limit with heat convection 
under the no-penetration boundary condition (1.7)-(1.10) from the Boltzmann equation (1.1) in 
the scale of (1.5), (1.6) with the diffuse boundary condition (1.11).

Under the scaling (1.5), (1.6), it is well-known that a mismatch exists between the diffuse 
boundary condition (1.11) of the Boltzmann equation and the no-penetration boundary condition 
(1.9) of the Euler equation. To overcome such difficulty, adopting the recent framework in [30], 
we study the Euler limit with heat transfer from the Boltzmann equation through the Navier-
Stokes-Fourier system with the no-slip boundary condition
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∂tu + u · ∇xu − κηv	u + ∇xp = 0 in �, (1.12)

∇x · u = 0 in �, (1.13)

u = 0 on ∂�, (1.14)

∂t θ + u · ∇xθ − κηc	θ = 0 in �, (1.15)

θ = 0 on ∂�, (1.16)

Boussinesq relation ρ + θ = 0 in �, (1.17)

where ηv and ηc are physical constants that can be computed explicitly by the Boltzmann theory 
as in (2.17), (2.17).

We expand the Boltzmann solution F around a global Maxwellian μ plus the first and second 
correction associated with a Navier-Stokes-Fourier flow (1.12)-(1.17):

F = μ + εf1
√

μ + ε2f2
√

μ + ε3/2fR
√

μ, (1.18)

where f1 = (ρ +u · v + θ
|v|2−3

2 )
√

μ, and f2, which also determined by u, ρ, θ , will be specified 
in (2.2)-(2.4). Here F = Fε , fR = f ε

R depend on ε, but we drop the superscript ε for the sake of 
simplicity. Then the equation for the Boltzmann remainder fR is

∂tfR + 1

ε
v · ∇xfR + 1

ε2κ
LfR

= − 1

ε5/2κ
Lf1 (1.19)

− 1

ε3/2

{
v · ∇xf1 − 1

κ
�(f1, f1) + 1

κ
Lf2

}
(1.20)

− 1

ε1/2

{
∂tf1 + v · ∇xf2 − 2

κ
�(f1, f2)

}
(1.21)

− ε1/2∂tf2 + 2

εκ
�(f1, fR) + 2

κ
�(f2, fR) + ε1/2

κ
�(f2, f2) + 1

ε1/2κ
�(fR,fR) (1.22)

where

Lf = −2√
μ

Q(μ,
√

μf ), �(f,g) = 1√
μ

Q(
√

μf,
√

μg). (1.23)

The operators L and � can be written as

Lf (v) = νf (v) − Kf (v) = ν(v)f (v) −
ˆ

R3

k(v, v∗)f (v∗)dv∗, (1.24)

�(f,g)(t, v) = �+(f, g)(t, v) − �−(f, g)(t, v)

=
¨

3 2

|(v − v∗) · u|√μ(v∗)
(
f (t, v′)g(t, v′∗) + g(t, v′)f (t, v′∗)

)
dudv∗ (1.25)
R ×S
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−
¨

R3×S2

|(v − v∗) · u|√μ(v∗)
(
f (t, v)g(t, v∗) + g(t, v)f (t, v∗)

)
dudv∗

where the collision frequency ν is defined as

ν(v) :=
¨

R3×S2

|(v − v∗) · u|μ0(v∗)dudv∗ ∼ 〈v〉 :=
√

1 + |v|2, (1.26)

and

k(v, v∗) = C1|v − v∗|e− |v|2+|v∗|2
4 − C2

|v − v∗|e
− |v−v∗|2

8 − 1
8

(|v|2−|v∗|2)2

|v−v∗|2 (1.27)

for some constant C1, C2 > 0. The null space of L, denoted by N , is a subspace of L2(R3)

spanned by orthogonal bases {ϕi
√

μ}4
i=0 with

ϕ0 := 1, ϕi := vi for i = 1,2,3, ϕ4 := |v|2 − 3

2
. (1.28)

We define a hydrodynamic projection P as an L2
v-projection on N such as

Pg :=
∑

(Pjg)ϕj
√

μ, Pjg := 〈g,ϕj
√

μ〉, and Pg := (P0g,P1g,P2g,P3g,P4g), (1.29)

where 〈·, ·〉 stands for an L2
v-inner product. It is well-known that the operators enjoy PL = LP =

P� = 0. Importantly the linear operator L enjoys a coercivity away from the kernel N : for 
ν(v) ≥ 0 defined in (1.24),

〈Lf,f 〉 ≥ σ0‖√ν(I− P)f ‖2
L2(R3)

for some σ0 > 0. (1.30)

From the no-slip boundary condition (1.14), (1.16), f1 = 0 on ∂� and hence μ + εf1
√

μ

satisfies the diffuse reflection boundary condition (1.11). By plugging (1.18) into the boundary 
condition, we arrive at

(ε2f2 + ε3/2fR)|γ− = cμ

√
μ(v)

ˆ

n(x)·v>0

(ε2f2 + ε3/2fR)
√

μ(v)(n(x) · v)dv.

Letting Pγ+ be an L2({v : n(x) · v > 0})-projection of 
√

cμμ, we derive that

fR(t, x, v)|γ− = Pγ+fR(t, x, v) − ε1/2(1 − Pγ+)f2(t, x, v)

:= √
cμμ(v)

ˆ

n(x)·v>0

fR(t, x,v)
√

cμμ(v)(n(x) · v)dv− ε1/2(1 − Pγ+)f2(t, x, v).
(1.31)

Note that 
´

cμμ(v)(n(x) · v)dv = 1. And ∂tfR satisfies

n(x)·v>0
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∂tfR|γ− = Pγ+∂tfR − ε1/2(1 − Pγ+)∂t (I− P)f2. (1.32)

We are now ready to state the main result of this paper (informal version); the precise state-
ment can be found in Theorem 10 in Section 4.

Theorem 1 (Informal statement). Let � be a upper half space in 3D:

� := T 2 ×R+ � (x1, x2, x3), where R+ := {x3 ∈R : x3 > 0},
and T is the periodic interval (−π,π).

(1.33)

Suppose an initial velocity field uin is divergence-free, the corresponding initial vorticity ωin =
∇x ×uin and the initial heat θin live in some real analytic space and satisfy certain compatibility 
conditions. Choosing the proper correction terms f1 and f2, then there exists a large set of initial 
data fR,in such that for some T > 0, there exists a unique solution F(t, x, v) of the form (1.18)
to the Boltzmann equation (1.1) with the diffuse reflection boundary condition (1.11) under the 
scale of (1.5), (1.6) on [0, T ] such that for some choice of ε and κ(ε),

sup
0≤t≤T

∥∥∥∥F(t, x, v) − μ(v)

ε
√

μ(v)
−

(
−θE(t, x) + uE(t, x) · v + θE(t, x)

|v|2 − 3

2

)√
μ(v)

∥∥∥∥
L2(�×R3)

−→ 0

as ε → 0, where uE and θE are the solutions of the incompressible Euler equations with no-
penetration boundary condition under heat convection (1.7)-(1.10).

For the rest of this section, we present the strategy and key ideas to the theorems for rigor-
ously justifying the limit. The core of Section 2 is to establish an L2 estimate for the Boltzmann 
remainder fR uniformly in ε. From our Hilbert expansion around the global Maxwellian μ in 
(1.18), the equation for fR is (1.19)-(1.22). In order to have a desired bound on fR it is necessary 
to dispose of the highly singular terms in (1.19)-(1.21). We show in Section 2.1 that by the choice 
of the first and second order correction f1, f2 associated with a Navier-Stokes-Fourier flow as in 
(2.1)-(2.4), we obtain (1.19) = (1.20) = 0, and P(1.21) = 0. The remaining terms in (1.19)-(1.22)
are of low enough singularity that can be controlled eventually.

The L2 estimate for fR shares the same framework as in [30]. A trilinear forcing term comes 
up as 1

κε1/2

´ t

0

˜
�×R3 �(fR, fR)(I −P)fR in the energy estimate of fR . Utilizing the dissipation 

from the linearized Boltzmann operator (1.30) we can bound this term as

ε1/2

κ1/2 ‖PfR‖L∞
t L6

x
‖PfR‖L2

t L
3
x
‖κ− 1

2 ε−1√ν(I− P)fR‖L2
t,x,v

.

The L2
t L

3
x -estimate for PfR is achieved by extending fR into a particularly designed domain 

first and then into the whole space using special cutoff functions, followed by Duhamel’s for-
mula and employing the T T ∗-method developed in [15,27,34]. Detailed estimates can be found 
in section 2.3. An L6 integrability gain for PfR is obtained by employing the micro-macro de-
composition method as in [14]. We use the test function method as in [13] to invert the operator 
v · ∇xP and bound the L6 norm of PfR by the dissipation and the L2 bound of ∂tfR . Now the 
temporal derivative of fR comes into play and we need to include the estimates of ∂tfR in a 
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parallel way to those of fR . The L∞
t,x of fR and the L2

t L
∞
x of ∂tfR will be controlled using 

Duhamel’s formula and analyzing the particle’s interaction with the diffuse boundary condition. 
Note that the space L2

t L
∞
x for ∂tfR is needed as the forcing term ∇x∂

2
t u processes an initial-

boundary layer. Now, the derivatives of the fluid part will need to be considered in order to close 
the estimate. From Theorem 8, the control of the kinetic remainder requires the control of fluid 
parts as in (2.193), (2.194). This part is explored in Section 3.

We point out one major difference between our estimate for fR and the corresponding 
one in [30]. Here in (1.18) we expand around the global Maxwellian μ and have two cor-
rection terms f1, f2; while in [30] the expansion was performed around the local Maxwellian 

μ̃ = 1
(2π)3/2 e− |v−εu(t,x)|2

2 as

F = μ̃ + ε2f2

√
μ̃ + ε3/2fR

√
μ̃,

where u(t, x) is the solution of the Navier-Stokes equation, and the expansion only have one cor-
rection term. Now, in the presence of heat transfer θ , such an expansion around local Maxwellian 
would lead to an undesirable propagation of |v|3 in the estimates. Which makes the remainder 
analysis more complicated and harder.

In both cases, effective cancellations on the singular terms are obtained by making the correct 
choice of the correction terms. One benefit in our global Maxwellian setting is that whenever 
the derivatives ∂t , ∇x hit μ, it vanishes. This reduces the amount of computation and makes 
the estimates more straightforward compared to the local Maxwellian setting. However, such a 
setting also brings an extra singular term 2

εκ
�(f1, fR) in the equation for fR in (1.22), which can 

be compared to the term (∂t+ε−1v·∇x)
√

μ̃√
μ̃

fR in [30]. This singular term will result in a bound

1

κ

tˆ

0

‖PfR(s)‖2
L2

x
ds

in the L2 estimate of fR , which would essentially give rise to the growth of e
1
κ by the Gronwall’s 

inequality. Fortunately, the expansion leaves enough room so that we can find a range of ε in 
terms of κ in a scale of large Reynolds number to absorb the growth.

In Section 3 we present the inviscid limit of the Navier-Stokes-Fourier system (1.12)-(1.17). 
It is well known that due to the mismatch of the boundary conditions (1.9) and (1.14), bound-
ary layers will form. In [53,54] the famous Prandtl expansion was introduced to justify the limit 
with analytic initial data. In a recent work [56], the authors proved the inviscid limit using a 
new Green’s function approach based on the boundary vorticity formulation established in [48]
(See also [43]). In this paper, we employ the same Green’s function approach using the vortic-
ity formulation (3.2)-(3.6) for the Navier-Stokes-Fourier system. As mentioned above, temporal 
derivatives of the solution to the fluid equations also need to be controlled. To this end, we follow 
the same strategy in [30] by setting the compatibility as in (3.25) and deriving a similar integral 
representation formula for ∂tω without any initial layer.

It turns out the equation for the heat flow θ resembles the one for the vertical component of the 
vorticity ω3. Using Green’s formula (3.60) we can establish the analytic bounds (3.27) for θ in 
the same way for ω3. However, this does not fulfill our need since the conormal derivative in the 
analytic norm (3.16) allows a 1 singularity of the normal derivative of θ in the boundary layer, 
x3
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and thus prevents us from getting the L∞ bound. In order to tackle the issue we design a similar, 
yet different |||·|||z norm in (3.17) to directly target the normal derivative of θ and its temporal 
derivatives. Taking ∂x3 derivative directly to (3.60) and using integration by parts we derive the 
integral formula for ∂x3θ . From there we carefully bound the bilinear integrand and applying the 
analytic recovery lemma to obtain the desired bound in (3.28). Note that this estimate leads to 
the highest singularity as

‖∇2
xθ‖L∞

t,x
∼ 1

κ
,

which is of the same order as that of ∇2
xu. The results of these estimates are summarized in The-

orem 9. Because of our choice of ε with respect to κ , such growth is affordable in the Hilbert 
expansion. Therefore, combining Theorem 8 and Theorem 9, we prove the main result Theo-
rem 10 in section 4. This concludes the rigorous justification of the incompressible Euler limit 
with heat flow.

2. Boltzmann estimate

2.1. Hilbert expansion

In this section we prove the following proposition:

Proposition 2. Suppose that F of (1.18), solves (1.1) and (1.11) with (1.5), (1.6), and that 
(ρ, u, θ) solves (1.12)-(1.17). We choose f1 and f2 as

f1 = (ρ + u · v + θ
|v|2 − 3

2
)
√

μ, (2.1)

(I− P)f2 = L−1(−κv · ∇xf1 + �(f1, f1)), (2.2)

Pf2 = (ρ2 + u2 · v + θ2
|v|2 − 3

2
)
√

μ, (2.3)

where ρ2, u2, and θ2 satisfy

∇ · u2 = −∂tρ,

∇x

(
ρ2 + θ2 − 1

3
|u|2

)
= ∇xp.

(2.4)

Then fR in (1.18) satisfies

[
∂t + 1

ε
v · ∇x + 1

ε2κ
L
]
fR = − 1

ε1/2

{
(I− P)(v · ∇xf2) − 2

κ
�(f1, f2)

}

+ ε1/2
(

−∂tf2 + 1

κ
�(f2, f2)

)
+ 2

εκ
�(f1 + εf2, fR) + 1

ε1/2κ
�(fR,fR),

(2.5)

and ∂tfR satisfies
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[
∂t + 1

ε
v · ∇x + 1

ε2κ
L
]
∂tfR

= − 1

ε1/2

{
(I− P)(v · ∇x∂tf2) − 2

κ
�(∂tf1, f2) − 2

κ
�(f1, ∂tf2)

}

+ ε1/2
(

−∂2
t f2 + 2

κ
�(∂tf2, f2)

)

+ 2

εκ
(�(∂tf1 + ε∂tf2, fR) + �(f1 + εf2, ∂tfR))

+ 2

ε1/2κ
�(∂tfR,fR).

(2.6)

Remark 1. There is some freedom to choose u2, ρ2, θ2 satisfying (2.4). One possible choice 
could be

u2(xh, x3) =
⎡
⎣ 0

0´ x3
0 ∂t θ(xh, y) dy

⎤
⎦ , ρ2 = 1

3
|u|2 + p, θ2 = 0. (2.7)

Proof. To show (2.5), it suffices to prove (1.19) = 0, (1.20) = 0 and P(1.21) = 0 from the re-
mainder equation (1.19)-(1.22), and (2.6) follows from a direct differentiation of (2.5).

From our choice (2.1), we have (I− P)f1 = 0, therefore (1.19) = 0. Next, let’s show (2.2) is 
well-defined, which implies (1.20) = 0. By the Fredholm alternative, the inverse operator of L
maps

L−1 : N⊥ →N⊥, where N⊥ stands an L2
v − orthogonal complement of N .

Hence in order to show (2.2) is well-defined, all we need is to show

P(−κv · ∇xf1 + �(f1, f1)) = −κP(v · ∇xf1) = 0,

or equivalently

〈
v · ∇xf1,

[
1, v,

|v|2
2

]√
μ

〉
= 0. (2.8)

By direction computation, from the oddness in the v-integral and the incompressible condition 
(1.13) we have

〈v · ∇xf1,
√

μ〉 =〈v · ∇xρ,μ〉 + 〈v · ∇xu · v,μ〉 + 〈v · ∇xθ,
|v|2 − 3

2
μ〉

=
3∑

i=1

∂iu
i

⎛
⎜⎝ˆ
R3

v2
i μdv

⎞
⎟⎠ = ∇ · u = 0.

(2.9)

Next, for fixed i = 1, 2, 3, again from the oddness in the v-integral and (1.17) we have
574



Y. Cao, J. Jang and C. Kim Journal of Differential Equations 366 (2023) 565–644
〈v · ∇xf1, vi
√

μ〉 =〈v · ∇xρ, viμ〉 + 〈v · ∇xu · v, viμ〉 + 〈v · ∇xθ,
|v|2 − 3

2
viμ〉

=∂iρ

⎛
⎜⎝ˆ
R3

v2
i μdv

⎞
⎟⎠+ ∂iθ

⎛
⎜⎝ˆ
R3

|v|2 − 3

2
v2
i μdv

⎞
⎟⎠ = ∂i(ρ + θ) = 0.

(2.10)

Finally similar to (2.9), we have

〈
v · ∇xf1,

|v|2
2

√
μ

〉
=

〈
v · ∇xρ,

|v|2
2

μ

〉
+

〈
v · ∇xu · v,

|v|2
2

μ

〉
+

〈
v · ∇xθ,

|v|2 − 3

2

|v|2
2

μ

〉

=
3∑

i=1

∂iu
i

⎛
⎜⎝ˆ
R3

v2
i

|v|2
2

μdv

⎞
⎟⎠ = 5

2
∇ · u = 0.

(2.11)

Therefore from (2.9), (2.10), and (2.11) we prove (2.8).
The only thing left to get (2.5) is then to prove P(1.21) = 0. It suffices to prove

〈
∂tf1 + v · ∇xf2,

[
1, v,

|v|2
2

]√
μ

〉
= 0. (2.12)

This is equivalent to

∂tρ + ∇ · u2 = 0,

∂tu + 〈v · ∇x(I− P)f2, v
√

μ〉 + ∇x(ρ2 + θ2) = 0,

3

2
∂t (ρ + θ) + 1

2
〈v · ∇x(I− P)f2, |v|2√μ〉 + 5

2
∇ · u2 = 0.

(2.13)

Let’s consider the second equation of (2.13). Using (2.2) we compute

〈v · ∇x(I− P)f2, v
√

μ〉 =〈v · ∇xL
−1(−κv · ∇xf1 + �(f1, f1)), v

√
μ〉

=〈v · ∇xL
−1(−κv · ∇xf1), v

√
μ〉︸ ︷︷ ︸

(2.14)1

+〈v · ∇xL
−1(�(f1, f1)), v

√
μ〉︸ ︷︷ ︸

(2.14)2

.

(2.14)

We first consider (2.14)1. It suffices to compute for fixed i,∑
j

〈
vivj ∂jL

−1(−κv · ∇xf1),
√

μ
〉
. (2.15)

Since (vivj − |v|2
3 δij )

√
μ ∈ N⊥. Define

Aij (v) := L−1
(
(vivj − |v|2

δij )
√

μ
)
(v). (2.16)
3
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By splitting vivj = (vivj − 1
3 |v|2δij ) + 1

3 |v|2δij in (2.15), and using the self-adjointness of L−1

we have

(2.15) = −κ
∑
j

〈
L−1(

∑
k

vk∂jkf1), (vivj − 1

3
|v|2δij )

√
μ

〉

+ ∂i

(κ

3

〈
L−1(−v · ∇xf1), |v|2√μ

〉)

= −κ
∑
j

〈
L−1(

∑
k

vk∂jkf1), (vivj − 1

3
|v|2δij )

√
μ

〉

= −κ
∑
j,k,l

∂jku
�
〈
vkvl

√
μ,Aij

〉 = −κ
∑
j,k,l

∂jku
�
〈
LAkl,Aij

〉
,

where the θ and ρ terms vanish because of the oddness in the v-integration. Next by the compu-
tation (Lemma 4.4 in [2]), the above term is equal to

−κ
∑
j,k,l

〈Aij ,LAkl〉∂jku
l = −κηv

∑
j,k,l

(
(δikδjl + δilδjk) − 2

3
δij δkl

)
∂jku

l

= −κηv{	ui − ∂i∇ · u − 2

3
∂i∇ · u} = −κηv	ui for i = 1,2,3.

(2.17)

Here we have used the incompressible condition (1.12). Therefore we get

(2.14)1 = −κηv	u. (2.18)

Next we consider (2.14)2. First by direct computation we have

�(f1, f1) − L

(
f 2

1

2
√

μ

)

= 1√
μ

(
Q(

√
μf1,

√
μf1) + Q(μ,f 2

1 )
)

= 1

2
√

μ

¨
|(v − v∗) · u| (2√

μ(v′)f1(v
′)√μ(v′∗)f1(v

′∗) − 2
√

μ(v)f1(v)
√

μ(v∗)f1(v∗)
)
dudv∗

+ 1

2
√

μ

¨
|(v − v∗) · u|

(
μ(v′)f 2

1 (v′∗) + μ(v′∗)f 2
1 (v′) − μ(v)f 2

1 (v∗) − μ(v∗)f 2
1 (v)

)
dudv∗

= 1

2
√

μ

¨
|(v − v∗) · u| (√μ(v′)f1(v

′∗) + √
μ(v′∗)f1(v

′) − √
μ(v)f1(v∗) − √

μ(v∗)f1(v)
)

× (√
μ(v′)f1(v

′∗) + √
μ(v′∗)f1(v

′) + √
μ(v)f1(v∗) + √

μ(v∗)f1(v)
)
dudv∗

=1
¨ √

μ(v∗)|(v − v∗) · u|
(

f1(v
′∗)√ ′ + f1(v

′)√ ′ − f1(v∗)√ − f1(v)√
)

2 μ(v∗) μ(v ) μ(v∗) μ(v)
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× (√
μ(v′)f1(v

′∗) + √
μ(v′∗)f1(v

′) + √
μ(v)f1(v∗) + √

μ(v∗)f1(v)
)
dudv∗.

And since f1 ∈ N , f1(v
′∗)√

μ(v′∗)
+ f1(v

′)√
μ(v′) − f1(v∗)√

μ(v∗) − f1(v)√
μ(v)

= 0. Thus

�(f1, f1) = L

(
f 2

1

2
√

μ

)
, therefore L−1 (�(f1, f1)) = (I− P)(

f 2
1

2
√

μ
). (2.19)

From (2.1),

(I− P)(
f 2

1

2
√

μ
) = 1

2
(I− P)(ρ + u · v + θ

|v|2 − 3

2
)2√μ = 1

2
(I− P)(u · v + θ

|v|2 − 3

2
)2√μ.

(2.20)
Now for fixed i, from (2.19), (2.20), and using |v|2√μ ∈ N ,

〈v · ∇xL
−1(�(f1, f1)), vi

√
μ〉

=1

2

∑
j

〈
∂j

(
(I− P)

(
(u · v + θ

|v|2 − 3

2
)2
)√

μ

)
, vj vi

√
μ

〉

=1

2

∑
j

〈
∂j

(
(I− P)

(
(u · v + θ

|v|2 − 3

2
)2
)√

μ

)
, (vj vi − 1

3
δij |v|2)√μ

〉
.

(2.21)

Now using (vjvi − 1
3δij |v|2)√μ ∈N⊥, we have

〈v · ∇xL
−1(�(f1, f1)), vi

√
μ〉

=1

2

∑
j

〈
∂j

(
(u · v + θ

|v|2 − 3

2
)2√μ

)
, (vj vi − 1

3
δij |v|2)√μ

〉

= 1

2

∑
j

〈
∂j

(
(u · v)2√μ

)
, (vj vi − 1

3
δij |v|2)√μ

〉
︸ ︷︷ ︸

(2.22)1

+ 1

2

∑
j

〈
∂j

(
θ2(

|v|2 − 3

2
)2√μ

)
, (vj vi − 1

3
δij |v|2)√μ

〉
︸ ︷︷ ︸

(2.22)2

+
∑
j

〈
(u · v)θ(|v|2 − 3)

√
μ, (vj vi − 1

3
δij |v|2)√μ

〉
︸ ︷︷ ︸

(2.22)3

.

(2.22)

First we have (2.22)3 = 0 from oddness of the integration. By direct computation
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(2.22)2 = 1

2

∑
j

〈( |v|2 − 3

2

)2

∂j (θ
2)

√
μ,

(
vjvi − 1

3
δij |v|2

)√
μ

〉

= 1

2
∂i(θ

2)

ˆ ( |v|2 − 3

2

)2 (
v2
i − 1

3
|v|2

)
μdv = 0.

Lastly for (2.22)1, we have from computation

(2.22)1 = 1

2

ˆ ⎛
⎝∑

j,k,�

vivj vkv�∂j (u
ku�)

⎞
⎠μdv − 1

6

ˆ ⎛
⎝∑

k,�

∂i(u
ku�)vkv�|v|2

⎞
⎠μdv

= 1

2

ˆ ⎛
⎝∑

j �=i

2v2
i v

2
j ∂j (u

iuj )

⎞
⎠μdv + 1

2

ˆ (∑
k

v2
i v

2
k∂i(u

k)2

)
μdv

− 1

6

ˆ (∑
k

v2
k |v|2∂i(u

k)2

)
μdv

=
∑
j �=i

∂j (u
iuj ) + 3

2
∂i(u

i)2 + 1

2

∑
k �=i

∂i(u
k)2 − 5

6
∂i(|u|2)

=
∑
j

∂j (u
iuj ) + 1

2
∂i(|u|2) − 5

6
∂i(|u|2) =

∑
j

[(∂ju
i)uj ] − 1

3
∂i(|u|2),

where we’ve used ∇ · u = 0. Therefore we get

(2.14)2 = u · ∇xu − 1

3
∇x(|u|2).

Combining with (2.18) we get the second equation of (2.13) is equivalent to

∂tu + u · ∇xu − κνv	u + ∇x

(
ρ2 + θ2 − 1

3
|u|2

)
= 0,

which is guaranteed by (2.4).
We now consider the third equation of (2.13) subtracting 5

2 of the first equation of (2.13):

5

2
∂t θ + 1

2
〈v · ∇x(I− P)f2, |v|2√μ〉 = 0. (2.23)

Using (2.2) we compute

1

2
〈v · ∇x(I− P)f2, |v|2√μ〉 = 1

2
〈v · ∇xL

−1(−κv · ∇xf1 + �(f1, f1)), |v|2√μ〉

= 1

2
〈v · ∇xL

−1(−κv · ∇xf1), |v|2√μ〉︸ ︷︷ ︸+ 1

2
〈v · ∇xL

−1(�(f1, f1)), |v|2√μ〉︸ ︷︷ ︸ .
(2.24)
(2.24)1 (2.24)2
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Since ( |v|2−5
2 )vi

√
μ ∈N⊥. Define

Bi = L−1
(

(
|v|2 − 5

2
)vi

√
μ

)
.

By the self-adjointness of L−1, we compute

(2.24)1 = − κ

2

∑
j,k

〈
∂jL

−1(vk∂kf1),
vj |v|2

2
√

μ

〉

= − κ

2

∑
j,k

〈
vk∂jk

(
ρ + v · u + |v|2 − 3

2
θ

)
,Bj

〉

=−κ

2

∑
j,k

〈vk∂jk(v · u)
√

μ,Bj 〉
︸ ︷︷ ︸

(2.25)1

− κ

2

∑
j,k

〈
vk

( |v|2 − 5

2
∂jkθ

)√
μ,Bj

〉
︸ ︷︷ ︸

(2.25)2

− κ

2

∑
j,k

〈vk∂jk(ρ + θ)
√

μ,Bj 〉
︸ ︷︷ ︸

(2.25)3

.

(2.25)

From [19], Bj is odd in vj , thus (2.25)1 = 0. Also (2.25)3 = 0 as ρ + θ = constant . Now by 
lemma 4.4 in [2], we have for some constant ηc,

〈LBk,Bj 〉 = 5ηcδkj . (2.26)

Thus

(2.25)2 = κ

2

∑
j,k

〈
vk

( |v|2 − 5

2
∂jkθ

)√
μ,Bj

〉
= κ

2

∑
j,k

〈LBk,Bj 〉∂jkθ = 5

2
κηc	θ.

Finally we compute 1
2〈v · ∇xL

−1(�(f1, f1)), |v|2√μ〉. From (2.19), (2.20) and using vj (|v|2 −
5)

√
μ ∈ N⊥,

1

2
〈v · ∇xL

−1(�(f1, f1)), |v|2√μ〉

=1

4

∑
j

〈
∂j

(
(u · v + θ

|v|2 − 3

2
)2√μ)

)
, vj (|v|2 − 5)

√
μ

〉

=1

4

∑
j

〈
∂j

(
(u · v)θ(|v|2 − 3)

√
μ
)

, vj (|v|2 − 5)
√

μ
〉

=1

4

∑
∂j (u

j θ)

ˆ (
(|v|2 − 3)v2

j (|v|2 − 5)μ
)

dv
j
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=5

2
u · ∇θ.

Therefore (2.23) gives

5

2
(∂t θ + u · ∇θ − κηc	θ) = 0,

which is guaranteed by (1.15). �
2.2. L2-energy estimate

We start with an L2-energy estimate for fR and ∂tfR . From (2.5), we define

∂tfR,0 = − 1

ε
v · ∇xfR,in − 1

ε2κ
LfR,in − 1

ε1/2

{
(I− P)(v · ∇xf2,in) − 2

κ
�(f1,in, f2,in)

}

− ε1/2∂tf2,in + 2

εκ
�(f1,in + εf2,in, fR,in) + ε1/2

κ
�(f2,in, f2,in)

+ 1

ε1/2κ
�(fR,in, fR,in).

(2.27)

Here ∂tf2,in is defined through solving the fluid equations for ∂t part and evaluate at t = 0.
For the sake of notational simplicity, let’s denote I, I2 : [0, T ] × � → R5,

I =
[
ρ,u1, u2, u3, θ

]
, and I2 =

[
ρ2, u

1
2, u

2
2, u

3
2, θ2

]
. (2.28)

The following trace theorem is useful to control the boundary terms.

Lemma 1 (Trace theorem).

1

ε

tˆ

0

ˆ

γ N+

|h|dγ ds �N

¨

�×R3

|h(0)| +
tˆ

0

¨

�×R3

|h| +
tˆ

0

¨

�×R3

|∂th + 1

ε
v · ∇xh|, (2.29)

where γ N+ := {(x, v) ∈ γ+ : |n(x) · v| > 1/N and 1/N < |v| < N}.

Proof. The proof is standard (for example see Lemma 3.2 in [14] or Lemma 7 in [8]). �
Proposition 3. Under the same assumptions in Proposition 2, we have
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‖fR(t)‖2
2 + d2‖κ− 1

2 ε−1√ν(I− P)fR‖2
L2

t,x,v
+

tˆ

0

|ε− 1
2 fR|2

L2
γ

� ‖fR(0)‖2
L2

x,v
+ 1

κ
(1 + ‖I‖2

L∞
t,x

)

tˆ

0

‖PfR(s)‖2
L2

x
ds

+ ε

κ3 ‖κ1/2PfR(s)‖2
L∞

t L6
x
‖κ1/2PfR‖2

L2
t L

3
x

+ εκ‖(2.50)‖2
L2

t,x,v
+ ε

κ
‖κ(2.51)‖2

L2
t,x,v

+ ‖(2.35)‖L2
t L

2(∂�),

(2.30)

where

d2 :=σ0

2
− ε3/2‖wfR‖L∞

t,x,v
−

(
ε2‖(2.36)‖L∞

t,x
+ ε‖∇xI‖L∞

t,x
+ ε2

κ
‖(2.36)‖2

L∞
t,x

)

− κ1/2ε1/2‖(2.46)‖L2
t,x

− ε1/2

κ1/2 ‖κ(2.47)‖L2
t,x

− κ1/2ε3/2‖(2.50)‖L2
t,x,v

− ε3/2

κ1/2 ‖κ(2.51)‖L2
t,x,v

.

(2.31)

We also have

‖∂tfR(t)‖2
L2

x,v
+ d2,t‖κ− 1

2 ε−1√ν(I− P)∂tfR‖2
L2

t,x,v
+ |ε− 1

2 ∂tfR|2
L2

t L
2
γ

� ‖∂tfR(0)‖2
L2

x,v
+ εκ‖(2.68)‖2

L2
t,x,v

+ ε

κ
‖κ(2.69)‖2

L2
t,x,v

+ ε

κ3 ‖κ1/2PfR(s)‖2
L∞

t L6
x
‖κ1/2P∂tfR‖2

L2
t L

3
x
+ 1

κ

tˆ

0

‖P∂tfR(s)‖2
L2

x
ds

+
{

1 + 1

κ

(
‖I‖2

L∞
t,x

+ ‖∂tI‖2
L∞

t,x

)}
×

tˆ

0

‖PfR(s)‖2
L2

x
ds

+
{

1 + ε2‖√ν∂tf1‖2
L∞

t,x,v

}
× ‖ε−1κ−1/2√ν(I− P)fR‖2

L2
t,x,v

,

(2.32)

where ∂tfR(0, x, v) := fR,t (0, x, v) is defined in (2.27). Here

d2,t := σ0

2
− ε2

κ
‖(2.49)‖2

L∞
t,x,v

− ε2

κ
‖I2‖L∞

t,x
− ε2

κ
‖(I− P)f2‖L∞

t,x

− ε‖I‖L∞
t,x

− ε3/2‖wfR‖L∞
x,v

− κ1/2ε1/2‖(2.65)‖L2
t,x

− ε1/2

κ1/2 ‖κ(2.66)‖L2
t,x

− κ1/2ε3/2‖(2.68)‖L2
t,x,v

− ε3/2

‖κ(2.69)‖L2

(2.33)
κ1/2 t,x,v
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Proof. We fix a 0 < � < 1
4 . Define

w�(x, v) =w := e�|v|2 . (2.34)

We will use both w� and w equivalently.

From (2.3) we have |Pf2| � e−�|v|2 |I2|. And from (2.2), by [1] we have

|(I− P)f2| = |L−1(−κv · ∇xf1 + �(f1, f1))|
� κe−�|v|2 |∇xI| + e−�|v|2 |I|2.

(2.35)

Thus

|f2|� e−�|v|2 (|I|2 + |I2| + κ|∇xI|
)

. (2.36)

An energy estimate to (2.5) and (1.31) reads as

1

2
‖fR(t)‖2

L2
x,v

− 1

2
‖fR(0)‖2

L2
x,v

+ 1

κε2

tˆ

0

¨

�×R3

fRLfR (2.37)

+ 1

2ε

tˆ

0

ˆ

γ+

|fR|2 − 1

2ε

tˆ

0

ˆ

γ−

|Pγ+fR − ε1/2(1 − Pγ+)(I− P)f2|2 (2.38)

= 1

κε1/2

tˆ

0

¨

�×R3

�(fR,fR)(I− P)fR (2.39)

+ 2

κε

tˆ

0

¨

�×R3

�(f1 + εf2, fR)(I− P)fR (2.40)

+ 1

ε1/2

tˆ

0

¨

�×R3

−
{
(I− P)(v · ∇xf2) − 2

κ
�(f1, f2)

}
(I− P)fR (2.41)

+ ε1/2

tˆ

0

¨

�×R3

(
−∂tf2 + 1

κ
�(f2, f2)

)
fR (2.42)

We start with (2.37). From the spectral gap estimate in (1.30), we have

(2.37) ≥ 1

2
‖fR(t)‖2

L2
x,v

− 1

2
‖fR(0)‖2

L2
x,v

+ σ0‖κ− 1
2 ε−1√ν(I− P)fR‖2

L2
t,x,v

. (2.43)

Now we consider (2.39), in which we need integrability gain of PfR in L6
x of the next sections. 

From decomposition fR = PfR + (I − P)fR and � = �+ − �− in (1.25), we derive
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|(2.39)| � 1

κε1/2

∑
i=±

tˆ

0

¨

�×R3

|ν− 1
2 �i(|fR|, (I− P)fR)||√ν(I− P)fR|

+ δ

κε1/2

∑
i=±

tˆ

0

¨

�×R3

|ν− 1
2 �i(|PfR|, |PfR|)||√ν(I− P)fR|

� ε3/2‖wfR‖L∞
x,v

‖κ− 1
2 ε−1√ν(I− P)fR‖2

L2
t,x,v

+ ε1/2

κ3/2 ‖κ1/2PfR‖L∞
t L6

x
‖κ1/2PfR‖L2

t L
3
x
‖κ− 1

2 ε−1√ν(I− P)fR‖L2
t,x,v

.

(2.44)

Next we consider (2.40), we have

|(2.40)|

≤ 1

κ1/2

(
ε‖(2.36)‖L∞

t,x
+ ‖I‖L∞

t,x

)
{‖PfR‖L2

t,x
+ κ

1
2 ε‖κ− 1

2 ε−1√ν(I− P)fR‖L2
t,x,v

}

× ‖κ− 1
2 ε−1√ν(I− P)fR‖L2

t,x,v

� {ε2‖(2.36)‖L∞
t,x

+ ε‖I‖L∞
t,x

+ ε2

κ
‖(2.36)‖2

L∞
t,x

}‖κ− 1
2 ε−1√ν(I− P)fR‖2

L2
t,x,v

+ σ0

10
‖κ− 1

2 ε−1√ν(I− P)fR‖2
L2

t,x,v
+ 10

σ0

1

κ
‖I‖2

L∞
t,x

‖PfR‖2
L2

t L
2
x
.

(2.45)

From (2.35) and (2.36)

∣∣∣∣(I− P)(v · ∇xf2) − 2

κ
�(f1, f2)

∣∣∣∣
� |(I− P)(v · ∇xPf2)| +

∣∣∣(I− P)(v · ∇xL
−1(−κv · ∇xf1 + �(f1, f1)))

∣∣∣ + 1

κ
|�(f1, f2)|

� e−�|v|2 |∇xI2| + κe−�|v|2 |∇2
xI| + e−�|v|2 |I|2 (2.46)

+ 1

κ
e−�|v|2 |I|

(
|I|2 + |I2| + κ|∇xI|

)
, (2.47)

we derive that

|(2.41)| �
(

κ1/2ε1/2‖(2.46)‖L2
t,x

+ ε1/2

κ1/2 ‖κ(2.47)‖L2
t,x

)
‖κ−1/2ε−1(I− P)fR‖L2

t,x,v
. (2.48)

Next we have from (2.19)
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∂tf2 = ∂tPf2 + ∂t (I− P)f2

= (∂tρ2 + ∂tu2 · v + ∂t θ2
|v|2 − 3

2
)
√

μ + L−1(−κv · ∇x∂tf1 + �(∂tf1, f1) + �(f1, ∂tf1))

= (∂tρ2 + ∂tu2 · v + ∂t θ2
|v|2 − 3

2
)
√

μ + L−1(−κv · ∇x∂tf1) + (I− P)(
f1 · ∂tf1√

μ
).

So we can bound

|∂tf2|�e−�|v|2 (|∂tI2| + κ|∇x∂tI|) + e−�|v|2 |I||∂tI|. (2.49)

Together with (2.36) we have

∣∣∣∣−∂tf2 + 1

κ
�(f2, f2)

∣∣∣∣� e−�|v|2 (|∂tI2| + κ|∇x∂tI| + |I||∂tI|) (2.50)

+ 1

κ

(
e−�|v|2 (|I|2 + |I2| + κ|∇xI|

))2
(2.51)

Thus

|(2.42)| �εκ‖(2.50)‖2
L2

t,x,v
+ ε

κ
‖κ(2.51)‖2

L2
t,x,v

+ 1

κ
‖PfR‖2

L2
t,x,v

+
(

κ1/2ε3/2‖(2.50)‖L2
t,x,v

+ ε3/2

κ1/2 ‖κ(2.51)‖L2
t,x,v

)
‖κ−1/2ε−1(I− P)fR‖L2

t,x,v

(2.52)

Finally we control the boundary term (2.38) using a trace theorem (2.29). First we have, from 
(1.31),

(2.38) = 1

2ε

tˆ

0

ˆ

γ+

{|fR|2 − |Pγ+fR|2} − 1

2

tˆ

0

ˆ

γ−

|(1 − Pγ+)(I− P)f2|2

−
tˆ

0

ˆ

γ−

1

ε1/2 Pγ+fR(1 − Pγ+)(I− P)f2

≥ 1

2
|ε− 1

2 (1 − Pγ+)fR|2
L2

t L
2
γ+

− 1

8C
|ε− 1

2 Pγ+fR|2
L2

t L
2
γ+

− (
1

2
+ 2C)

tˆ

0

ˆ

γ−

|(1 − Pγ+)(I− P)f2|2 for C � 1,

(2.53)

where we have used the fact |Pγ+fR|L2
γ+

= |Pγ+fR|L2
γ−

from Pγ+fR(t, x, v) being a function of 
(t, x, |v|) due to u|∂� = 0.
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Now we estimate Pγ+fR . Since Pγ+ in (1.31) is a projection of cμ
√

μ on γ+, it follows ´
γ+ |Pγ+f |2 ≤ 2 ́

γ N+ |Pγ+f |2 for large enough N > 0, where γ N+ := {(x, v) ∈ γ+ : |n(x) · v| >
1/N and 1/N < |v| < N}. Setting h = |fR|2 in (2.29) and using (2.5) we derive

1

ε

tˆ

0

ˆ

γ N+

|fR|2dγ ds ≤ CN

¨

�×R3

|fR(0)|2 +
tˆ

0

¨

�×R3

|fR|2

+
tˆ

0

¨

�×R3

∣∣∣[− 1

ε2κ
LfR + 2

κε
�(f1 + εf2, fR) + 1

ε1/2κ
�(fR,fR)

− 1

ε1/2

{
(I− P)(v · ∇xf2) − 2

κ
�(f1, f2)

}
+ ε1/2

(
−∂tf2 + 1

κ
�(f2, f2)

)]
fR

∣∣∣
≤ CN

{‖fR(0)‖2
L2

x,v
+ ‖PfR‖2

L2
t,x,v

+ ‖ε−1κ−1/2√ν(I− P)fR‖2
L2

t,x,v

+ (2.44) + (2.45) + (2.48) + (2.52)
}
.

(2.54)

Furthermore from (1.31) and (2.54)

|fR|2
L2

t L
2
γ−

� |fR|2
L2

t L
2
γ+

+ ε|(1 − Pγ+)(I− P)f2|2L2
t L

2
γ−

= |fR|2
L2

t L
2
γ+

+ ε‖(2.35)‖2
L2

t L
2(∂�)

.

(2.55)

Finally we collect the terms as

r.h.s of (2.43) + (2.53) + 1

4C
|ε− 1

2 Pγ+fR|2
L2

t L
2
γ+

+ ε−1

16C
|fR|2

L2
t L

2
γ−

≤ r.h.s of (2.44) + (2.45) + (2.48) + (2.52) + 1

4C
× r.h.s of (2.54) + ε−1

16C
× r.h.s of (2.55).

We choose large N and then large C so that CN

4C
� σ0. Using Young’s inequality for products, 

and then moving contributions of ‖κ− 1
2 ε−1√ν(I − P)fR‖2

L2
t,x,v

to l.h.s., we derive (2.30).

Next we prove (2.32). An energy estimate to (2.6) and (1.32) lead to (2.32)

1

2
‖∂tfR(t)‖2

2 − 1

2
‖∂tfR(0)‖2

2 + 1

κε2

tˆ

0

¨

�×R3

∂tfRL∂tfR (2.56)

+ 1

2ε

tˆ

0

ˆ

γ+

|∂tfR|2

− 1

2ε

tˆ

0

ˆ

γ−

|Pγ+∂tfR − ε1/2(1 − Pγ+)∂t (I− P)f2|2 (2.57)
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= 2

κε1/2

tˆ

0

¨

�×R3

�(∂tfR,fR)(I− P)∂tfR (2.58)

+ 2

εκ

tˆ

0

¨

�×R3

(�(∂tf1 + ε∂tf2, fR) + �(f1 + εf2, ∂tfR)) ∂tfR (2.59)

+ 1

ε1/2

tˆ

0

¨

�×R3

{
−(I− P)(v · ∇x∂tf2) + 2

κ
�(∂tf1, f2) + 2

κ
�(f1, ∂tf2)

}
(I− P)∂tfR

(2.60)

+ ε1/2

tˆ

0

¨

�×R3

(
−∂2

t f2 + 2

κ
�(∂tf2, f2)

)
∂tfR (2.61)

We control the terms similarly as in the proof of (2.30):

(2.56) ≥ 1

2
‖∂tfR(t)‖2

L2
x,v

− 1

2
‖∂tfR(0)‖2

L2
x,v

+ σ0‖κ− 1
2 ε−1√ν(I− P)∂tfR‖2

L2
t,x,v

, (2.62)

|(2.58)|� (ε3/2‖wfR‖L∞
t,x,v

)‖κ− 1
2 ε−1√ν(I− P)∂tfR‖2

L2
t,x,v

+ ε1/2

κ3/2 ‖κ1/2PfR‖L∞
t L6

x
‖κ1/2P∂tfR‖L2

t L
3
x
‖κ− 1

2 ε−1√ν(I− P)∂tfR‖L2
t,x,v

(2.63)

|(2.59)|
�

(
κ− 1

2 ε‖√ν∂tf2‖L∞
t,x,v

+ κ− 1
2 ‖√ν∂tf1‖L∞

t,x,v

)
× {‖PfR‖L2

t,x
+ κ

1
2 ε‖κ− 1

2 ε−1(I− P)fR‖L2
t,x,v

}‖κ− 1
2 ε−1(I− P)∂tfR‖L2

t,x,v

+
(

ε

κ1/2 ‖Pf2‖L∞
t,x

+ ε

κ1/2 ‖(I− P)f2‖L∞
t,x

+ 1

κ1/2 ‖νf1‖L∞
t,x

)

×
(
‖P∂tfR‖L2

t,x
+ κ

1
2 ε‖κ− 1

2 ε−1(I− P)∂tfR‖L2
t,x,v

)
‖κ− 1

2 ε−1(I− P)∂tfR‖L2
t,x,v

�
(

σ0

10
+ ε2

κ
‖√ν∂tf2‖2

L∞
t,x,v

+ ε2

κ
‖Pf2‖L∞

t,x
+ ε2

κ
‖(I− P)f2‖L∞

t,x
+ ε‖νf1‖L∞

t,x

)

× ‖κ− 1
2 ε−1(I− P)∂tfR‖2

L2
t,x,v

+
(

1 + 1

κ
‖√ν∂tf1‖2

L∞
t,x,v

+ 1

κ
‖√νf1‖2

L∞
t,x,v

)
‖PfR‖2

L2
t,x

+
(

1 + ε2‖√ν∂tf1‖2
L∞

)
‖κ− 1

2 ε−1(I− P)fR‖2
2

(2.64)
t,x,v Lt,x,v
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We have∣∣∣∣−(I− P)(v · ∇x∂tf2) + 2

κ
�(∂tf1, f2) + 2

κ
�(f1, ∂tf2)

∣∣∣∣
� |(I− P)(v · ∇xP∂tf2)| +

∣∣∣(I− P)(v · ∇xL
−1(−κv · ∇x∂tf1 + 2�(∂tf1, f1)))

∣∣∣
+ 1

κ
|�(∂tf1, f2)| + 1

κ
|�(f1, ∂tf2)|

� e−�|v|2 |∇x∂tI2| + κe−�|v|2 |∇2
x∂tI| + e−�|v|2 |I||∂tI| (2.65)

+ 1

κ
e−�|v|2 |∂tI|

(
|I|2 + |I2| + κ|∇xI|

)
+ 1

κ
e−�|v|2 |I| (|∂tI2| + κ|∇x∂tI| + |I||∂tI|) .

(2.66)

So we derive that

|(2.60)|�
(

κ1/2ε1/2‖(2.65)‖L2
t,x,v

+ ε1/2

κ1/2 ‖κ(2.66)‖L2
t,x,v

)
‖κ−1/2ε−1(I− P)∂tfR‖L2

t,x,v
.

(2.67)

And we have∣∣∣∣−∂2
t f2 + 2

κ
�(∂tf2, f2)

∣∣∣∣�
e−�|v|2 (|∂2

t I2| + κ|∇x∂
2
t I|

)
+ e−�|v|2 (|I||∂2

t I| + |∂tI|2
)

(2.68)

+ 1

κ
e−�|v|2 (|I|2 + |I2| + κ|∇xI|

)
(|∂tI2| + κ|∇x∂tI| + |I||∂tI|) (2.69)

Thus

|(2.61)| �εκ‖(2.68)‖2
L2

t,x,v
+ ε

κ
‖κ(2.69)‖2

L2
t,x,v

+ 1

κ
‖P∂tfR‖2

L2
t,x,v

+
(

κ1/2ε3/2‖(2.68)‖L2
t,x,v

+ ε3/2

κ1/2 ‖κ(2.69)‖L2
t,x,v

)
‖κ−1/2ε−1(I− P)∂tfR‖L2

t,x,v

(2.70)

Lastly we estimate (2.57). As in (2.53) we derive that (2.57) is bounded from below by

1

2
|ε− 1

2 (1 − Pγ+)∂tfR|2
L2((0,T );L2

γ+ )
− 1

8C
|ε− 1

2 Pγ+∂tfR|2
L2((0,T );L2

γ+ )

− C|(1 − Pγ+)(I− P)∂tf2|2L2((0,T );L2
γ− )

≥1

2
|ε− 1

2 (1 − Pγ+)∂tfR|2
L2((0,T );L2

γ+ )
− 1

8C
|ε− 1

2 Pγ+∂tfR|2
L2((0,T );L2

γ+ )

− C
{
‖e−�|v|2(κ|∇x∂tI| + |I||∂tI|)‖L2L2(∂�)

}
(2.71)
t
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for some large C.
Now we bound Pγ+∂tfR using (2.29). Following the argument arriving at (2.54) and setting 

h = |∂tfR|2 we derive

1

ε

tˆ

0

ˆ

γ+

|∂tfR|2dγ ds

�N ‖∂tfR(0)‖L2
x,v

+ ‖∂tfR‖L2
t,x,v

+
tˆ

0

¨

�×R3

∣∣∣(− 1

ε2κ
L∂tfR + r.h.s of (2.6)

)
∂tfR

∣∣∣
�N ‖∂tfR(0)‖2

L2
x,v

+ ‖P∂tfR‖2
L2

t,x
+ ‖ε−1κ−1/2√ν(I− P)∂tfR‖2

L2
t,x,v

+ (2.63) + (2.64) + (2.67) + (2.70).

(2.72)

We conclude (2.32) by collecting the terms. �
2.3. L2

t L
3
x -integrability gain for PfR

The goal for this section is the following proposition:

Proposition 4. Assume the same assumptions in Proposition 2. Then we have, for 2 < p < 3,

d3
∥∥PfR

∥∥
L2

t L
p
x

� ‖fR‖L∞
t L2

x,v
+ ‖fR(0)‖L2

γ
+ 1

κ
‖I‖L∞

t,x
‖PfR‖L2

t,x

+
{ 1

εκ
+ 1

κ

(
‖I‖L∞

t,x
+ ε‖(2.36)‖L∞

t,x

)
+ ε1/2

κ
‖w�fR‖L∞

t,x,v

}
‖√ν(I− P)fR‖L2

t,x,v

+ ε1/2‖(2.46)‖L2
t,x

+ ε1/2

κ
‖κ(2.47)‖L2

t,x
+ ε3/2‖(2.50)‖L2

t,x,v

+ ε3/2

κ
‖κ(2.51)‖L2

t,x,v
,

(2.73)

with

d3 := 1 − ε

κ
‖(2.36)‖

L∞
t L

2p
p−2
x

− ε1/2

κ
‖PfR‖

3(p−2)
p

L∞
t L6

x
‖w�fR‖

6−2p
p

L∞
t,x,v

, (2.74)

and for �′ < �
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d3,t

∥∥P∂tfR

∥∥
L2

t L
p
x

�
{ 1

κ

(
‖∂tI‖L∞

t,x,v
+ ε‖(2.49)‖L∞

t,x,v

)}{
‖PfR‖L2

t,x
+ ‖√ν(I− P)fR‖L2

t,x,v

}
+

{ 1

κε
+ ε1/2

κ
‖wfR‖L∞

t,x,v
+ 1

κ

(
‖I‖L∞

t,x
+ ε‖(2.36)‖L∞

t,x

)}
‖√ν(I− P)∂tfR‖L2

t,x,v

+ (κε)
2

p−2 ‖w�′∂tfR‖L2
t L

∞
x,v

+ ‖∂tfR‖L∞
t L2

x,v
+ ‖∂tfR(0)‖L2

γ
+ 1

κ
‖I‖L∞

t,x
‖P∂tfR‖L2

t L
2
x

+ ε1/2‖(2.65)‖L2
t,x,v

+ ε1/2

κ
‖κ(2.66)‖L2

t,x,v
+ ε3/2‖(2.68)‖2

L2
t,x,v

+ ε3/2

κ
‖κ(2.69)‖2

L2
t,x,v

,

(2.75)

with

d3,t := 1 − ε

κ
‖(2.36)‖

L∞
t L

2p
p−2
x

− ε1/2

κ
‖PfR‖

3(p−2)
p

L∞
t L6

x
‖w�fR‖

6−2p
p

L∞
t,x,v

, (2.76)

where both bounds are uniform-in-p for 2 < p < 3.

We prove the proposition by several steps.

Step 1: Extension. We define a subset

�̃ := (0,2π) × (0,2π) × (0,∞) ⊂R3. (2.77)

We regard �̃ as an open subset but not a periodic domain as �. Without loss of generality we 
may assume that fR(0, x, v) is defined in R3 ×R3 and ‖fR(0)‖Lp(R3×R3) � ‖fR(0)‖

Lp(�̃×R3)

for all 1 ≤ p ≤ ∞. Then we extend a solution for whole time t ∈R as

fI (t, x, v) := 1t≥0fR(t, x, v) + 1t≤0χ1(t)fR(0, x, v), (2.78)

where a smooth non-negative function χ1 satisfies χ1(t) ≡ 1 for t ∈ [−1, 0], χ1(t) ≡ 0 for t <

−2, and 0 ≤ d
dt

χ1 ≤ 4.

A closure of �̃ is given as cl(�̃) = [0, 2π ] × [0, 2π ] × [0, ∞). Let us define t̃B(x, v) ∈ R
for (x, v) ∈ (R3\�̃) × R3. We consider B̃(x, v) := {s ∈ R : x + sv ∈ R3\cl(�̃)}. Clearly if 
B̃(x, v) �= ∅ then {s > 0} ⊂ B̃(x, v) or {s < 0} ⊂ B̃(x, v) exclusively.

If {s > 0} ⊂ B̃(x, v), let I+ be the largest interval such that {s > 0} ⊂ I+ ⊂ B̃(x, v). And if 
{s < 0} ⊂ B̃(x, v), let I− be the largest interval such that {s > 0} ⊂ I− ⊂ B̃(x, v). We define

t̃B(x, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x ∈ ∂�̃,

inf I+ if x ∈ R3\cl(�̃) and B̃(x, v) �= ∅ and {s > 0} ⊂ I+ ⊂ B̃(x, v),

sup I− if x ∈ R3\cl(�̃) and B̃(x, v) �= ∅ and {s < 0} ⊂ I− ⊂ B̃(x, v),

−∞ if B̃(x, v) = ∅ and x /∈ ∂�̃.

(2.79)

Using (2.79) we define
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fE(t, x, v) := 1
(x,v)∈(R3\�̃)×R3fI (t + εt̃B(x, v), x̃B(x, v), v) with x̃B(x, v) := x + t̃B(x, v)v.

(2.80)
It is easy to see that ε∂tfE + v · ∇xfE = 0 in the sense of distributions.

Next we define two cutoff functions. For any N > 0 we define smooth non-negative functions 
as

χ2(x) ≡ 1 for x ∈ [−π,3π ] × [−π,3π ] × [−π,∞),

χ2(x) ≡ 0 for x /∈ [−2π,4π ] × [−2π,4π ] × [−2π,∞), |∇xχ2| ≤ 10,
(2.81)

χ3(v) ≡ 1 for |v| ≤ N − 1, and |vi | ≥ 2/N for all i = 1,2,3,

χ3(v) ≡ 0 for |v| ≥ N or |vi | ≤ 1/N for any i = 1,2,3, |∇vχ3| ≤ 10.
(2.82)

We denote

U := [−2π,4π ] × [−2π,4π ] × [−2π,∞),

V := {v ∈ R3 : |v| ≤ N} ∩
⋂

i=1,2,3

{v ∈R3 : |vi | ≥ 1/N} (2.83)

We define an extension of cut-offed solutions

f̄R(t, x, v) := χ2(x)χ3(v)
{
1
�̃
(x)fI (t, x, v) + fE(t, x, v)

}
for (t, x, v) ∈ (−∞, T ] ×R3 ×R3.

(2.84)
We note that in the sense of distributions f̄R solves

ε∂t f̄R + v · ∇xf̄R = ḡ in (−∞, T ] ×R3 ×R3,

ḡ := v · ∇xχ2

χ2
f̄R + 1t≥01�̃

(x)χ2(x)χ3(v)[ε∂t + v · ∇x]fR

+ 1t≤0{ε∂tχ1(t)fR(0, x, v) + χ1(t)v · ∇xfR(0, x, v)}

(2.85)

Here we have used the fact that f̄R in (2.85) is continuous along the characteristics across ∂�̃

and {t = 0}. We derive that, using (2.85),

f̄R(t, x, v) = 1

ε

tˆ

−∞
ḡ(s, x − t − s

ε
v, v)ds for (t, x, v) ∈ (−∞, T ] ×R3 ×R3. (2.86)

Recall ϕi ∈ {ϕ0, · · ·ϕ4} in (1.28). From (2.84) we note that∥∥∥∥∥∥∥
ˆ

R3

f̄R(t, x, v)ϕi(v)
√

μ(v)dv

∥∥∥∥∥∥∥
L2

t ((0,T );Lp
x (�̃))

=

∥∥∥∥∥∥∥
ˆ

R3

χ2(x)χ3(v)fR(t, x, v)ϕ̃i(v)
√

μ(v)dv

∥∥∥∥∥∥∥
2 p ˜

(2.87)
Lt ((0,T );Lx (�))
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From (1.29), we decompose

(2.87) ≥
∥∥∥∑

j

χ2(x)PjfR(t, x)

ˆ

R3

χ3(v)ϕj (v)ϕi(v)μ(v)dv

∥∥∥
L2

t ((0,T );Lp
x (�̃))

−

∥∥∥∥∥∥∥
ˆ

R3

χ3(v)(I− P)fR(t, x, v)ϕi(v)
√

μ(v)dv

∥∥∥∥∥∥∥
L2

t ((0,T );Lp
x (�̃))

≥∥∥PfR

∥∥
L2

t ((0,T );Lp
x (�̃))

− CT,N‖(I− P)fR‖
Lp((0,T )×�̃×R3)

≥∥∥PfR

∥∥
L2

t ((0,T );Lp
x (�̃))

− CT,N‖w�,ßfR(t)‖
p−2
p

L∞((0,T )×�̃×R3)
‖(I− P)fR‖

2
p

L2((0,T )×�̃×R3)
,

(2.88)

where for the second inequality we use L2
t (0, T ) ⊂ L

p
t (0, T ), and L1({|v| ≤ N}) ⊂ Lp({|v| ≤

N}).

Step 2: Average lemma. Recall ϕi ∈ {ϕ0, · · ·ϕ4} in (1.28). We choose ϕ(v) such that

χ3(v)|ϕi(v)|√μ0(v) ≤ ϕ(v), ϕ(v) ∈ C∞
c (R3)

and ϕ(v) ≡ 0 for |v| ≥ N or |vi | ≤ 1/N for any i = 1,2,3.
(2.89)

Lemma 2. We define

S(ḡ)(t, x) := 1

ε

tˆ

−∞

ˆ

R3

|ḡ(s, x − t − s

ε
v, v)|ϕ(v)dvds for (t, x) ∈ (−∞, T ] ×R3. (2.90)

Then, for p < 3 and 1 � N ,

‖S(ḡ)‖L2
t ((0,T );Lp

x (T 2×R)) �N ‖1(t,x,v)∈DT
ḡ‖L2((0,T )×(T 2×R)×{|v|≤N}), (2.91)

where the bound (2.91) only depends on N but can be independent on p < 3.

We remark that from (2.86) and (2.90)
´
R3 f̄R(t, x, v)ϕi(v)dv ≤ S(ḡ)(t, x). For the proof we 

refer to Lemma 6 in [30].
Now we apply Lemma 2 to (2.86) and derive that∥∥∥∥∥∥∥

ˆ

R3

f̄R(t, x, v)ϕ(v)dv

∥∥∥∥∥∥∥
L2

t ((−1,T ];Lp
x (�̃))

� ‖1(t,x,v)∈DT
ḡ‖L2((−1,T ]×U×V )

� ‖fR(t, x, v)‖ 2 ˜ + ‖fR(0, x, v)‖ 2 ˜ + ‖∇xfR(0, x, v)‖ 2 ˜
L ((0,T ]×�×V ) L (�×V ) L (�×V )

591



Y. Cao, J. Jang and C. Kim Journal of Differential Equations 366 (2023) 565–644
+ ‖1(t,x,v)∈DT
fI (t + εt̃B(x, v), x̃B(x, v), v)‖

L2((−1,T ]×(U\�̃)×V )
(2.92)

+ ‖[ε∂t + v · ∇x]fR‖
L2((0,T ]×�̃×V )

, (2.93)

where we have used (2.84), (2.78), (2.80), and the fact that |v · ∇xχ2(x)| �N 1 on v ∈ V .
First we consider (2.92). We split the cases of (2.92) according to (2.79). For x ∈ ∂�̃, which 

has a zero measure in L2((−1, T ] × (U\�̃) × V ), we have t̃B(x, v) = 0 from the first line of 
(2.79). If B̃(x, v) = ∅ and x /∈ ∂�̃ then t̃B(x, v) = −∞ from the last line of (2.79) and hence 
f̄R(−∞) = 0 since χ1(−∞) = 0 in (2.78). Therefore we derive that

(2.92) ≤ ‖1{s<0}⊂B̃(x,v)
1(t,x,v)∈DT

fI (t + εt̃B(x, v), x̃B(x, v), v)‖
L2((−1,T ]×(U\�̃)×V )

(2.94)

+ ‖1{s>0}⊂B̃(x,v)
1(t,x,v)∈DT

fI (t + εt̃B(x, v), x̃B(x, v), v)‖
L2((−1,T ]×(U\�̃)×V )

.

(2.95)

We need a special attention to (2.94). Since (t, x, v) ∈ DT we know that inf{τ ≥ t : x + τ−t
ε

v ∈
cl(�̃)} ≤ T . If {s < 0} ⊂ B̃(x, v) then, from the third line of (2.79), t̃B(x, v) = sup B̃(x, v) =
sup{s ∈ R : x + sv ∈R3\cl(�̃)} ≤ (T − t)/ε. Therefore the argument of fI in (2.94) is confined 
as

(t + εt̃B(x, v), x̃B(x, v), v) ∈ (−∞, T ] × ∂�̃ × V. (2.96)

For (2.95), from the second line of (2.79), t̃B(x, v) = inf B̃(x, v) = inf{s ∈ R : x + sv ∈
R3\cl(�̃)} ≤ 0. Therefore t + εt̃B(x, v) ≤ t ≤ T and hence the argument of fI in (2.95) is 
confined as in (2.96). Now we apply the Minkowski’s inequality in time, change of variables 
t + εt̃B(x, v) �→ t , and use (2.96) to derive that

(2.94) + (2.95) �
∥∥∥‖fI (t, x̃B(x, v), v)‖L2

t ((−1,T ])
∥∥∥

L2
x,v((U\�̃)×V )

. (2.97)

Let us define an outward normal ñ(x) on ∂�̃. More precisely

ñ(x) =

⎧⎪⎨
⎪⎩

(0,0,−1) if x3 = 0 and x ∈ ∂�̃,

((−1)
x1
2π

+1,0,0) if x1 ∈ {0,2π} and x ∈ ∂�̃,

(0, (−1)
x2
2π

+1,0) if x2 ∈ {0,2π} and x ∈ ∂�̃.

(2.98)

From (2.83) we have therefore (x, v) ∈ (U\�̃) × V then |ñ(x̃B(x, v)) · v| ≥ 1/N . We consider 
maps

(x1, x3) �→ x̃B(x, v) ∈ (0,2π) × (0,2π) × {x3 = 0},
with

∣∣∣det
(∂(x̃B,1(x, v), x̃B,2(x, v))

∂(x1, x3)

)∣∣∣ =
∣∣∣ v2

v · ñ
∣∣∣,

(xi, x3) �→ (x̃B,i(x, v), x̃B,3(x, v)) ∈ (0,2π) × (0,∞),

with
∣∣∣det

(∂(x̃B,i(x, v), x̃B,3(x, v)))∣∣∣ =
∣∣∣ vi

∣∣∣, for i = 1,2.

(2.99)
∂(x1, x3) v · ñ
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Note that if v ∈ V of (2.83) then |vi | ≥ 1/N for all i = 1, 2, 3. We define

γ̃ := ∂�̃ ×R3, γ̃ N := ∂�̃ × (R3\V ). (2.100)

We apply the change of variables (2.99) to (2.97):

(2.97) =
∥∥∥∥
[ 4πˆ

−2π

∞̂

−2π

4πˆ

−2π

‖fI (t, x̃B(x, v), v)‖2
L2

t ((−1,T ])dx1dx3dx2

]1/2∥∥∥∥
L2

v(V )

≤
∥∥∥∥
[

5 × 6πN

ˆ

∂�̃

T̂

−1

|fI (t, y, v)|2|v · ñ(y)|dtdy

]1/2∥∥∥∥
L2

v(V )

� ‖fR‖L2((0,T )×γ̃ \γ̃ N ) + ‖fR(0)‖L2(γ̃ \γ̃ N ).

(2.101)

We recall the trace theorem:

T̂

0

ˆ

γ̃ \γ̃ N

|h|dγ ds � sup
t∈[0,T ]

‖h(t)‖
L1(�̃×V )

+
T̂

0

‖h(s)‖
L1(�̃×V )

ds

+
T̂

0

‖[ε∂t + v · ∇x]h‖
L1(�̃×V )

ds.

(2.102)

We apply (2.102) with h = f 2 and derive an estimate

‖fR‖2
L2((0,T )×γ̃ \γ̃ N )

� sup
t∈[0,T ]

‖fR(t)‖2
L2(�̃×V )

+
T̂

0

‖fR(s)‖2
L2(�̃×V )

ds +
T̂

0

¨

�̃×V

∣∣fR[ε∂t + v · ∇x]fR

∣∣dxdvds

�T ‖fR‖2
L∞([0,T ];L2(�×R3))

+ ∥∥[ε∂t + v · ∇x]fR

∥∥
L2([0,T ]×�×R3)

.

(2.103)

Finally we conclude a bound of (2.92) as below via (2.94), (2.95), (2.97), (2.101), and (2.103)

(2.92) � ‖fR(0)‖L2
γ

+ ‖fR‖L∞([0,T ];L2(�×R3)) + ∥∥[ε∂t + v · ∇x]fR

∥∥
L2([0,T ]×�×R3)︸ ︷︷ ︸ . (2.104)
(2.104)∗
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Next we estimate (2.93) (and (2.104)∗). Using (2.85) and (2.5) we conclude that

(2.93) + (2.104)∗

�
∥∥∥∥− 1

εκ
LfR + 2

κ
�(f1 + εf2, fR) + ε1/2

κ
�(fR,fR)

− ε1/2
{
(I− P)(v · ∇xf2) − 2

κ
�(f1, f2)

}
+ ε3/2

(
−∂tf2 + 1

κ
�(f2, f2)

)∥∥∥∥
L2((0,T ]×�×V )

.

Following the arguments of (2.44)-(2.52), we derive that

(2.93) + (2.104)∗

�
{ ε

κ
‖(2.36)‖

L∞
t ((0,T );L

2p
p−2
x (�))

+ ε1/2

κ
‖PfR‖

L∞
t ((0,T );L

2p
p−2
x (�))

}
‖PfR‖L2

t ((0,T );Lp
x (�))

+ 1

κ
‖Pf1‖L∞

t,x
‖PfR‖L2

t,x

+
{ 1

εκ
+ 1

κ

(
‖Pf1‖L∞

t,x
+ ε‖(2.36)‖L∞

t,x

)
+ ε1/2

κ
‖w�fR‖L∞

t ((0,T )×�×R3)

}
× ‖(I− P)fR‖L2

t ((0,T )×�×R3)

+ ε1/2‖(2.46)‖L2
t,x

+ ε1/2

κ
‖κ(2.47)‖L2

t,x
+ ε3/2‖(2.50)‖L2

t,x,v
+ ε3/2

κ
‖κ(2.51)‖L2

t,x,v
,

(2.105)

where we further bound

‖PfR‖
L

2p
p−2
x (�)

≤ ‖PfR‖
3(p−2)

p

L6
x(�)

‖w�fR‖
6−2p

p

L∞
x (�). (2.106)

Step 3. Proof of (2.73). First we use (2.88) and then (2.92) and (2.93). We bound (2.92) via 
(2.97) and (2.101), which are bounded by (2.103) and (2.105) respectively. These conclude that, 
for p < 3,

∥∥PfR

∥∥
L2

t ((0,T );Lp
x (�̃))

− CT,N‖w�,ßfR(t)‖
p−2
p

L∞((0,T )×�̃×R3)
‖(I− P)fR‖

2
p

L2((0,T )×�̃×R3)

≤

∥∥∥∥∥∥∥
ˆ

R3

f̄R(t, x, v)ϕi(v)
√

μ0(v)dv

∥∥∥∥∥∥∥
L2

t ((0,T );Lp
x (�̃))

≤

∥∥∥∥∥∥∥
ˆ

R3

f̄R(t, x, v)ϕ(v)dv

∥∥∥∥∥∥∥
L2

t ((0,T );Lp
x (�̃))

� ‖fR‖L∞([0,T ];L2(�×R3)) + ‖fR(0)‖L2
γ

+ r.h.s. of (2.105) with (2.106).

(2.107)
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Then we move a contribution of ‖PfR‖L2
t ((0,T );Lp

x (�)) to the l.h.s. and use (2.106). This concludes 
(2.73).

Step 4: Sketch of proof for (2.75). We follow the same argument for (2.73). Thereby we only 
pin point the difference of the proof of (2.75). Recall ∂tfR(0, x, v) = fR,t (0, x, v) from (2.27). 
We regard �̃ as an open subset but not a periodic domain as �. Without loss of generality we may 
assume that fR,t (0, x, v) is defined in R3 × R3 and ‖fR,t (0)‖Lp(R3)×R3 � ‖fR,t (0)‖

Lp(�̃)×R3

for all 1 ≤ p ≤ ∞. Then we extend a solution for whole time t ∈R as

fI,t (t, x, v) := 1t≥0∂tfR(t, x, v) + 1t≤0χ1(t)fR,t (0, x, v). (2.108)

Using t̃B(x, v) in (2.79) we define

fE,t (t, x, v) := 1
(x,v)∈(R3\�̃)×R3fI,t (t + εt̃B(x, v), x̃B(x, v), v). (2.109)

We define an extension of cut-offed solutions

f̄R,t (t, x, v) := χ2(x)χ3(v)
{
1
�̃
(x)fI,t (t, x, v) + fE,t (t, x, v)

}
for (t, x, v) ∈ (−∞, T ] ×R3 ×R3.

(2.110)

We note that in the sense of distributions f̄R,t solves

ε∂t f̄R,t + v · ∇xf̄R,t = ḡt in (−∞, T ] ×R3 ×R3, where

ḡt := v · ∇xχ2

χ2
f̄R,t + 1t≥01�̃

(x)χ2(x)χ3(v)[ε∂t + v · ∇x]∂tfR

+ 1t≤0χ2(x)χ3(v){ε∂tχ1(t)fR,t (0, x, v) + χ1(t)v · ∇xfR,t (0, x, v)}.

(2.111)

Here we have used the fact that f̄R,t in (2.111) is continuous along the characteristics across ∂�̃

and {t = 0}. We derive that, using (2.111),

f̄R,t (t, x, v) = 1

ε

tˆ

−∞
ḡt (s, x − t − s

ε
v, v)ds for (t, x, v) ∈ (−∞, T ] ×R3 ×R3. (2.112)

Now we apply Lemma 2 to (2.112) and derive that, for p < 3,

‖S(ḡt )‖L2
t ((0,T );Lp

x (T 2×R))

�‖1(t,x,v)∈DT
ḡt‖L2((0,T )×(T 2×R)×{|v|≤N})

� ‖fR,t (0)‖L2(�×R3) + ‖ε∂tfR + v · ∇xfR‖
L2((0,T )×�̃×V )

+ ‖1(t,x,v)∈DT
fI,t (t + εt̃B(x, v), x̃B(x, v), v)‖

L2((−1,T ]×(U\�̃)×V )
.

(2.113)

Following the same argument of (2.104)-(2.105) we deduce that
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(2.113) �‖∂tfR‖L∞([0,T ];L2(�×R3)) + ‖∂tfR(0)‖L2
γ

+ ∥∥− 1

εκ
L(I− P)∂tfR + ε × r.h.s. of (2.6)

∥∥
L2((0,T ]×�×V )

.
(2.114)

From (2.63)-(2.70), the last term of (2.114) is bounded above by

{ 1

κ

(
‖∂tI‖L∞

t,x,v
+ ε‖(2.49)‖L∞

t,x,v

)}{
‖PfR‖L2

t,x
+ ‖√ν(I− P)fR‖L2

t,x,v

}
+

{ 1

κε
+ ε1/2

κ
‖wfR‖L∞

t,x,v
+ 1

κ

(
‖Pf1‖L∞

t,x
+ ε‖(2.36)‖L∞

t,x

)}
‖√ν(I− P)∂tfR‖L2

t,x,v

+
{ε1/2

κ
‖PfR‖

3(p−2)
p

L∞
t L6

x
‖wfR‖

6−2p
p

L∞
t,x,v

+ ε

κ
‖(2.36)‖

L∞
t L

2p
p−2
x

}
‖P∂tfR‖L2

t L
p
x

+ 1

κ
‖Pf1‖L∞

t,x
‖P∂tfR‖L2

t L
2
x

+ ε1/2‖(2.65)‖L2
t,x,v

+ ε1/2

κ
‖κ(2.66)‖L2

t,x,v
+ ε3/2‖(2.68)‖2

L2
t,x,v

+ ε3/2

κ
‖κ(2.69)‖2

L2
t,x,v

.

(2.115)

On the other hand from (2.110) and the argument of (2.87) we derive

‖S(ḡt )‖L2
t ((0,T );Lp

x (T 2×R)) �

∥∥∥∥∥∥∥
ˆ

R3

f̄R,t (t, x, v)ϕi(v)
√

μ0(v)dv

∥∥∥∥∥∥∥
L2

t ((0,T );Lp
x (�̃))

�
∥∥P∂tfR

∥∥
L2

t ((0,T );Lp
x (�̃))

− (κε)
2

p−2 ‖w′∂tfR‖L2
t ((0,T );L∞

x,v(�×R3))

− 1

κε
‖(I− P)∂tfR‖L2((0,T )×�×R3).

(2.116)

Here we have used∥∥∥∥∥∥∥
ˆ

R3

χ2(x)χ3(v)(I− P)∂tfR(t, x, v)ϕi(v)
√

μ0(v)dv

∥∥∥∥∥∥∥
L2

t ((0,T );Lp
x (�̃))

≤‖(I− P)∂tfR(t, x, v)‖
L2

t ((0,T );Lp
x,v(�̃×R3))

�
∥∥∥‖w′∂tfR‖

p−2
p

L∞
x,v(�×R3)

‖(I− P)∂tfR‖
2
p

L2
x,v(�×R3)

∥∥∥
L2

t ((0,T ))

�
∥∥∥‖w′∂tfR‖

p−2
p

L∞
x,v(�×R3)

∥∥∥
L

2p
p−2
t ((0,T ))

∥∥∥‖(I− P)∂tfR‖
2
p

L2
x,v(�×R3)

∥∥∥
L

p
t ((0,T ))

� (κε)
2
p ‖w′∂tfR‖

p−2
p

L2
t ((0,T );L∞

x,v(�×R3))
(κε)

− 2
p ‖(I− P)∂tfR‖

2
p

L2((0,T )×�×R3)

� (κε)
2

p−2 ‖w′∂tfR‖L2
t ((0,T );L∞

x,v(�×R3)) + (κε)−1‖(I− P)∂tfR‖L2((0,T )×�×R3).

(2.117)
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Combining (2.116), (2.113), (2.114), and (2.115) and choosing N � 1 we conclude (2.75).

2.4. L6
x -integrability gain for PfR

We prove an important L6
x-integrability gain for PfR in the next proposition.

Proposition 5. Under the same assumptions in Proposition 2, we have for all t ∈ [0, T ]
d6‖PfR(t)‖L6

x

� (εκ−1‖(2.36)‖L∞
t,x

)‖fR(t)‖L2
x,v

+ ε‖∂tfR(t)‖L2
x,v

+ o(1)(κε)1/2‖wfR(t)‖L∞
x,v

+ ε1/2|(2.36)|L4(∂�)

+ ε1/2‖(2.46)‖L2
t,x

+ ε1/2

κ
‖κ(2.47)‖L2

t,x
+ ε3/2‖(2.50)‖L2

t,x,v
+ ε3/2

κ
‖κ(2.51)‖L2

t,x,v

+
( 1

εκ
+ 1

κ
‖I‖∞ + ε

κ
‖(2.36)‖∞ + ε1/2

κ
‖w�fR(t)‖L∞

x,v

)
× {‖(I− P)fR‖L2

t,x,v
+ ‖(I− P)∂tfR‖L2

t,x,v

}
+

(
1

κ
‖I‖∞ + ε

κ
‖(2.36)‖∞

)
‖PfR‖L2

x,v

+ ‖w�fR(t)‖1/2
L∞

x,v

{|fR|1/2
L2

t L
2(γ+)

+ |∂tfR|1/2
L2

t L
2(γ+)

}
,

(2.118)

where

d6 := 1 −
[ε1/2

κ
‖PfR(t)‖1/2

L6
x
‖PfR(t)‖1/2

L2
x

]1/6
. (2.119)

Proof. We view (2.5) as a weak formulation for a test function ψ
¨

�×R3

fRv · ∇xψ

︸ ︷︷ ︸
(2.120)1

−
ˆ

γ

fRψ

︸ ︷︷ ︸
(2.120)2

−
¨

�×R3

ε∂tfRψ

︸ ︷︷ ︸
(2.120)3

=
¨

�×R3

ψ

{
1

εκ
LfR + ε1/2

(
(I− P)(v · ∇xf2) − 2

κ
�(f1, f2)

)
− ε3/2

(
−∂tf2 + 1

κ
�(f2, f2)

)

− 2

κ
�(f1 + εf2, fR) + ε1/2

κ
�(fR,fR)

}
.

(2.120)

The proof of the lemma is based on a recent test function method in the weak formulation ([13,
14]). We define

P̃fR :=
{
a + b · v + c

|v|2 − 3√
}√

μ and P̃ fR := (a, b, c), (2.121)

6
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where a := 〈fR, 
√

μ〉, b := 〈fR, v
√

μ〉, and c := 〈fR, |v|2−3√
6

√
μ〉. We choose a family of test 

functions as

ψa := (|v|2 − βa)v
√

μ0 · ∇xϕa, (2.122)

ψ
i,j
b,1 := (v2

i − βb)
√

μ0∂jϕ
j
b , i, j = 1,2,3, (2.123)

ψ
i,j

b,2 := |v|2vivj
√

μ0∂jϕ
i
b, i �= j, (2.124)

ψc := (|v|2 − βc)v
√

μ0 · ∇xϕc, (2.125)

where we choose βa = 10, βb = 1, βc = 5 such that

0 =
ˆ

R3

(|v|2 − βa)
|v|2 − 3√

6
(v1)

2μ0(v)dv =
ˆ

R

(v2
1 − βb)μ0(v1)dv1 =

ˆ

R3

(|v|2 − βc)v
2
i μ0(v)dv.

(2.126)
Here,

−	xϕa = a5 with
∂ϕa

∂n

∣∣∣
∂�

= 0, (2.127)

−	xϕ
j
b = b5

j with ϕ
j
b |∂� = 0, (2.128)

−	xϕc = c5 with ϕc|∂� = 0. (2.129)

A unique solvability to the above Poisson equations when (a, b, c) ∈ L6(�) and an estimate

‖∇2
xϕ(a,b,c)‖L6/5(�) + ‖∇xϕ(a,b,c)‖L2(�) + ‖ϕ(a,b,c)‖L6(�) � ‖|P̃ fR|5‖L6/5(�) � ‖P̃ fR‖5

L6(�)
.

(2.130)
is a direct consequence of Lax-Milgram and suitable extension (extend a5 of (2.127) evenly in 
x3 ∈ R, and b5 and c5 of (2.128) and (2.129) oddly in x3 ∈ R, then solve the Poisson equation, 
and then restrict the whole space solutions to the half space x3 > 0) and a standard elliptic 
estimate (L

6
5 (�) → Ẇ 2, 6

5 (�) ∩ Ẇ 1,2(�) ∩ L6(�)).
Clearly to prove the lemma and (2.118) it suffices to prove the same bound for ‖P̃ fR‖L6

x,v
:=

‖(a, b, c)‖L6
x
.

Following the direct computations in the proof of Lemma 2.12 in [14] we derive that

(2.120)1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5‖a(t)‖6
6 + o(1)‖P̃fR(t)‖6

6 + O(1)‖(I− P)fR(t)‖6
6 if ψ = ψa,

−2
´
�

bi∂i∂jϕ
j
b + o(1)‖P̃fR(t)‖6

6 + O(1)‖(I− P)fR(t)‖6
6 if ψ = ψ

i,j

b,1,´
�

bj∂i∂jϕ
i
b + ´

�
bi∂j ∂jϕ

i
b + O(1)‖(I− P)fR(t)‖6

6 if ψ = ψ
i,j

b,2 and i �= j,

5‖c(t)‖6
6 + o(1)‖P̃fR(t)‖6

6 + O(1)‖(I− P)fR(t)‖6
6 if ψ = ψc.

(2.131)
For ‖bi‖6, using the second and third estimate of (2.131) we deduce that
6
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‖bi‖6
L6(�)

= −
ˆ

�

bi	xϕ
i
bdx = −

ˆ

�

bi∂
2
i ϕi

bdx −
∑
j (�=i)

ˆ

�

bi∂
2
j ϕi

bdx

= 1

2

∑
j

(2.120)1|ψj,i
b,1

−
∑
j (�=i)

(2.120)1|ψi,j
b,2

+ o(1)‖P̃fR(t)‖6
6 + O(1)‖(I− P)fR(t)‖6

6.

(2.132)

Now we consider the boundary term (2.120)2. From (2.122)-(2.125) and (2.126)

ˆ

γ

ψPγ+fR =

⎧⎪⎨
⎪⎩
´
∂�

∂nϕa

´
R3(|v|2 − βa)(v · n)2μ0dvdSx = 0 if ψ = ψa,

0 if ψ = ψ
i,j
b,1 or ψ

i,j
b,2,´

∂�
∂nϕc

´
R3(|v|2 − βc)(v · n)2μ0dvdSx = 0 if ψ = ψc.

(2.133)

Here we have used the Neumann boundary condition of (2.127) for ψa , and the last identity in 
(2.126) for ψc. For ψi,j

b,1 or ψi,j

b,2 we used the fact that the integrands are odd in v. From (1.31), 
we decompose fR|γ = Pγ+fR + 1γ+(1 − Pγ+)fR − 1γ−ε1/2(1 − Pγ+)f2. From (2.133) we have

|(2.120)2| =
∣∣∣
�

�
�

�
�ˆ

γ

ψPγ+fR +
ˆ

γ

ψ{1γ+(1 − Pγ+)fR − 1γ−ε1/2(1 − Pγ+)f2}
∣∣∣

� |∇xϕ|L4/3(∂�)

{|(1 − Pγ+)fR|4,γ+ + ε1/2|(2.36)|L4(∂�)

} (2.134)

where we have used | ́
γ+ ψ(1 −Pγ+)fR| � |∇xϕ|L4/3(∂�)|(1 −Pγ+)fR|4,γ+ at the last line. Here 

ϕ ∈ {ϕa, ϕb, ϕc}. For the first term of (2.134) we interpolate

|(1 − Pγ+)fR|4,γ+ � |ε− 1
2 (1 − Pγ+)fR|1/2

2,γ+ε
1
4 ‖w�fR‖1/2∞ . (2.135)

For the second term of (2.134), we use (2.130) and a trace theorem (Ẇ 1, 6
5 (T 2 ×R+) ∩L2(T 2 ×

R+) → W
1− 1

6/5 , 6
5 (T 2)), and the Sobolev embedding (W

1
6 , 6

5 (T 2) → L4/3(T 2)) to conclude that

|∇xϕ|
L

4
3 (T 2)

� |∇xϕ|
W

1
6 , 6

5 (T 2)
� ‖∇xϕ‖

Ẇ
1, 6

5 (T 2×R+)∩L2(�)
� ‖P̃ fR‖5

L6(T 2×R+)
. (2.136)

Next we consider (2.120)3. For ψ of (2.122)-(2.125) and ϕ of (2.127)-(2.129), using (2.130), 
it follows that

|(2.120)3|� ε‖∂tfR‖L2
x,v

‖ψ‖L2
x,v

� ε‖∂tfR‖L2
x,v

‖∇xϕ‖L2
x
� ε‖∂tfR‖L2

x,v
‖P̃ fR‖5

L6
x

≤ O(1)[ε‖∂tfR‖L2 ]6 + o(1)‖P̃ fR‖6
6 .

(2.137)
x,v Lx
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Lastly we consider the right hand side of (2.120). From (2.130), it follows

∣∣∣ ¨
�×R3

ψ
1

εκ
LfR

∣∣∣ =
∣∣∣ ¨
�×R3

ψ
1

εκ
L(I− P)fR

∣∣∣
� 1

εκ

ˆ

�

ˆ

R3

|∇xϕ(a,b,c)(x)|μ(v)1/4
[
ν(v)|(I− P)fR(x, v)|

+
ˆ

R3

kϑ(v, v∗)|(I− P)fR(x, v∗)|dv∗
]
dvdx

� 1

εκ
‖∇xϕ(a,b,c)‖L2

x
‖(I− P)fR‖L2

x,v
� 1

εκ
‖P̃ f ‖5

L6
x
‖(I− P)fR‖L2

x,v

≤ o(1)‖P̃ f ‖6
L6

x
+ [

ε−1κ−1‖(I− P)fR‖L2
x,v

]6
.

(2.138)

We have

∣∣∣ ¨
�×R3

ψ
1

κ
�(f1 + εf2, fR)

∣∣∣
� ‖∇xϕ(a,b,c)‖L2

x

(
1

κ
‖I‖∞ + ε

κ
‖(2.36)‖∞

)
‖fR‖L2

x,v

≤ o(1)‖P̃ f ‖6
L6

x
+ [( 1

κ
‖I‖∞ + ε

κ
‖(2.36)‖∞

)
(‖PfR‖L2

x,v
+ ‖(I− P)fR‖L2

x,v
)
]6

.

(2.139)

For the contribution of �(fR, fR) we decompose fR = PfR + (I − P)fR , and we have

|�(fR,fR)(v)|
� |�(PfR,PfR)(v)| + |�((I− P)fR, (I− P)fR)(v)|
� ν(v)|PfR|2

+ ‖w�fR‖∞
{
ν(v)|(I− P)fR)(v)| +

ˆ

R3

kϑ(v, v∗)|(I− P)fR)(v∗)|dv∗
}
.

(2.140)

Then from (2.122)-(2.125), and the Hölder’s inequality (1 = 1/2 + 1/3 + 1/6)

∣∣∣ ¨
�×R3

ψ
ε1/2

κ
�(fR,fR)

∣∣∣
� ε1/2

κ
‖∇xϕ(a,b,c)‖L2

x

{
‖PfR‖L3

x
‖PfR‖L6

x
+ ‖w�fR‖L∞

x,v
‖(I− P)fR‖L2

x,v

}
� ε1/2

κ
‖P̃ fR‖5

L6
x
‖PfR‖3/2

L6
x
‖PfR‖1/2

L2
x

+ ε3/2

κ1/2 ‖P̃ fR‖5
L6

x
‖w�fR‖L∞

x,v
‖ε−1κ−1/2(I− P)fR‖L2

x,v
,

(2.141)
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where we have used an interpolation ‖PfR‖L3 ≤ ‖PfR‖1/2
L6 ‖PfR‖1/2

L2 and (2.130) at the last step. 
A contribution of the rest of terms in the r.h.s. of (2.120) can be easily bounded as

¨

�×R3

|ψ |
∣∣∣∣ε1/2

(
(I− P)(v · ∇xf2) − 2

κ
�(f1, f2)

)
− ε3/2

(
−∂tf2 + 1

κ
�(f2, f2)

)∣∣∣∣
� ‖PfR‖5

L6
x

{
ε1/2‖(2.46)‖L2

t,x
+ ε1/2

κ
‖κ(2.47)‖L2

t,x
+ ε3/2‖(2.50)‖L2

t,x,v
+ ε3/2

κ
‖κ(2.51)‖L2

t,x,v

}
.

(2.142)

Finally, from a standard 1D embedding (see appendix (A.1) in [30] for the proof): for T > 0,

|g(t)|2 �T

T̂

0

|g(s)|2ds +
T̂

0

|g′(s)|2ds for t ∈ [0, T ], (2.143)

we collect the terms from (2.131) with (2.132), (2.134) with (2.135) and (2.136), (2.137), (2.138), 
(2.139), (2.141), (2.142) to conclude

sup
0≤s≤t

‖(I− P)fR(s)‖L2
x,v

� ‖(I− P)fR‖L2
t,x,v

+ ‖(I− P)∂tfR‖L2
t,x,v

,

sup
0≤s≤t

‖PfR(s)‖L2
x,v

� ‖PfR‖L2
t,x,v

+ ‖P∂tfR‖L2
t,x,v

,

sup
0≤s≤t

|(1 − Pγ+)fR(s)|L2(γ+) � sup
0≤s≤t

|fR(s)|L2(γ+) � |fR|L2
t L

2(γ+) + |∂tfR|L2
t L

2(γ+).

(2.144)

This proves (2.118). �
2.5. L∞-estimate

In this section we develop a unified L∞-estimate.
Recall the weight w in (2.34). We consider

h(t, x, v) =w(v)fR(t, x, v). (2.145)

An equation for h can be written from (2.5) and (1.31) as

∂th + 1

ε
v · ∇xh + ν

ε2κ
h = 1

ε2κ
Kwh + Sh, (2.146)

h|γ− =wPγ+
( h

w

)
+ r. (2.147)

For (2.145) and (2.5), we have r = −ε1/2w(1 − Pγ+)f2 and
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Sh := 1

κε1/2 �w(h,h) + 2

κε
�w(wf1 + εwf2, h)

+ 1

ε1/2

{
−w(I− P)(v · ∇xf2) + 2

κ
�w(wf1,wf2)

}

+ ε1/2
(

−w∂tf2 + 1

κ
�w(wf2,wf2)

)
,

where we denote �w(·, ·)(v) := w(v)�( ·
w

, ·
w

)(v) and Kw(·) := wK( ·
w

).
From (1.25)

|w(v)�(
h

w
,

h

w
)(v)|

≤
¨

R3×S2

|(v − v∗) · u|√μ(v∗)e−�|v∗|2{|h(v′)||h(v′∗)| + |h(v)||h(v∗)|
}
dudv∗

�� ν(v)‖h‖2
L∞

v
.

(2.148)

From (expression of k) clearly we have

k(v, v∗)
w�(v)

w�(v∗)
≤ kw(v, v∗) := 2C2

|v − v∗|e
− |v−v∗|2

8 − 1
8

(|v−εu|2−|v∗−εu|2)2

|v−v∗|2 w�(v)

w�(v∗)
. (2.149)

As in (estimate for k) we derive

ˆ

R3

kw(v, v∗)dv∗ �
1

1 + |v| . (2.150)

Proposition 6. Recall w� in (2.34). Assume the same assumptions in Proposition 2. Then

d∞‖w�fR‖L∞
t,x,v

� ‖w�f (0)‖L∞
x,v

+ ε1/2‖(2.36)‖L∞
t,x

+ ε3/2κ

(
‖(2.46)‖∞ + 1

κ
‖κ(2.47)‖∞

)
+ ε5/2κ

(
‖(2.50)‖∞ + 1

κ
‖κ(2.51)‖∞

)

+ 1

ε1/2κ1/2 ‖PfR‖L∞
t L6

x
+ 1

ε3/2κ3/2

{
‖√ν(I− P)fR‖L2

t,x,v
+ ‖√ν(I− P)∂tfR‖L2

t,x,v

}
,

(2.151)

where

d∞ := 1 − ε2‖(2.36)‖L∞
t,x

− ε‖I‖L∞
t,x

− ε3/2‖w�fR‖L∞
t,x,v

. (2.152)

Proposition 7. Assume the same assumptions of Proposition 6. We denote

w′(v) := w�′(v) for �′ < �. (2.153)
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Let p < 3. Then

d∞,t‖w′∂tfR‖L2
t ((0,T );L∞

x,v(�×R3))

� εκ1/2‖w′∂tfR(0)‖L∞
x,v

+ 1

ε3/pκ3/p
‖P∂tf ‖L2

t L
p
x

+ 1

ε3/2κ3/2 ‖√ν(I− P)∂tf ‖L2
t,x,v

+ ε3/2
(
κ‖(2.65)‖L2

t L
∞
x

+ ‖κ(2.66)‖L2
t L

∞
x

)
+ ε5/2

(
κ‖(2.68)‖L2

t L
∞
x

+ ‖κ(2.69)‖L2
t L

∞
x

)
+ (

ε‖∂tI‖L∞
t,x

+ ε2‖(2.49)‖L∞
t,x

)‖wfR‖L∞
t,x,v

,

(2.154)

with

d∞,t := 1 − ε‖I‖L∞
t,x

− ε2‖(2.36)‖L∞
t,x

− ε3/2‖wfR‖L∞
t,x,v

. (2.155)

In the proof of propositions, for simplicity, we often use ‖ · ‖∞ for ‖ · ‖L∞
t,x,v

, ‖ · ‖L∞
x,v

or 
‖ · ‖L∞

x
if there would be no confusion.

Proof of Proposition 6. We define backward exit time and position as

tb(x, v) := ε
x3

v3
, xb(x, v) := x − x3

v3
v for (x, v) ∈ � ×R3. (2.156)

Since the characteristics for (2.146) are given by (x − t−s
ε

v, v), we have, for 0 ≤ t − s < tb(x, v),

d

ds

{
e
−´ t

s
ν

ε2κ h(s, x − t − s

ε
v, v)

}
= e

−´ t
s

ν

ε2κ

{ 1

ε2κ
Kwh + Sh

}
(s, x − t − s

ε
v, v). (2.157)

Here e−´ t
s

ν

ε2κ = e
−´ t

s

ν(τ,x− t−τ
ε v,v)

ε2κ
dτ

. We regard (x1 − t−s
ε

v1, x2 − t−s
ε

v2) ∈ R2 belongs to T 2

without redefining them in [−π, π]2.
Now we represent h using (2.157) and (2.147) as

h(t, x, v) =1t−tb(x,v)<0e
−´ t

0
ν

ε2κ h(0, x − t

ε
v, v)

+
tˆ

max{0,t−tb(x,v)}
e
−´ t

s
ν

ε2κ
1

ε2κ
Kwh(s, x − t − s

ε
v, v)ds (2.158)

+
tˆ

max{0,t−tb(x,v)}
e
−´ t

s
ν

ε2κ Sh(s, x − t − s

ε
v, v)ds

+ 1t−tb(x,v)≥0e
−´ t

t−tb(x,v)
ν

ε2κ h(t − tb(x, v), xb(x, v), v). (2.159)

Since the integrand of (2.159) reads on the boundary, using the boundary condition (2.147) and 
(2.157) again, we represent it as
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h(t − tb(x, v), xb(x, v), v)

=w(v)cμ

√
μ(v)

ˆ

v3<0

h(t − tb(x, v), xb(x, v),v)

√
μ(v)|v3|
w(v)

dv+ r(t − tb(x, v), xb(x, v), v)

=w(v)cμ

√
μ(v)

ˆ

v3<0

e
−´ t−tb(x,v)

0
ν

ε2κ h(0, xb(x, v) − t − tb(x, v)

ε
v,v)

√
μ(v)|v3|
w(v)

dv

+w(v)cμ

√
μ(v)

ˆ

v3<0

×
t−tb(x,v)ˆ

0

e
−´ t−tb(x,v)

s
ν

ε2κ
1

ε2κ
Kwh(s, xb(x, v) − t − tb(x, v) − s

ε
v,v)

√
μ(v)|v3|
w(v)

dsdv

(2.160)

+w(v)cμ

√
μ(v)

ˆ

v3<0

×
t−tb(x,v)ˆ

0

e
−´ t−tb(x,v)

s
ν

ε2κ Sh(s, xb(x, v) − t − tb(x, v) − s

ε
v,v)

√
μ(v)|v3|
w(v)

dsdv

+ r(t − tb(x, v), xb(x, v), v),

where r = −ε1/2w(1 −Pγ+)f2 and e−´ t−tb(x,v)

0
ν

ε2κ := e
−´ t−tb(x,v)

0
1

ε2κ
ν(τ,x− tb(x,v)

ε
v− t−tb(x,v)−s

ε
v,v)dτ

.
Note that, from (2.46), (2.47), (2.50), (2.51), and (2.36),

|Sh(s, x − t − s

ε
v, v)|

� ν(v)
1

κε1/2 ‖h‖2∞ + ν(v)

κε
(‖I‖∞ + ε‖(2.36)‖∞)‖h‖∞

+ 1

ε1/2

(
‖(2.46)‖∞ + 1

κ
‖κ(2.47)‖∞

)
+ ε1/2

(
‖(2.50)‖∞ + 1

κ
‖κ(2.51)‖∞

)
,

|w(1 − Pγ+)f2| � ‖(2.36)‖∞.

(2.161)

We derive a preliminary estimate as

|h(t, x, v)| � e
− ν

2ε2κ
t‖h(0)‖∞

+ ε3/2 sup
0≤s≤t

‖h(s)‖2∞ + ε2 sup
0≤s≤t

‖(2.36)‖∞‖h(s)‖∞ + ε sup
0≤s≤t

‖I‖∞‖h(s)‖∞

+ ε1/2 sup ‖(2.36)‖∞ + ε3/2κ

(
‖(2.46)‖∞ + 1

κ
‖κ(2.47)‖∞

)

0≤s≤t
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+ ε5/2κ

(
‖(2.50)‖∞ + 1

κ
‖κ(2.51)‖∞

)
(2.162)

+
tˆ

0

e
− ν

2ε2κ
(t−s)

ε2κ

ˆ

R3

kw(v, v∗)|h(s, x − t − s

ε
, v∗)|dv∗ds (2.163)

+w(v)cμ

√
μ(v)

ˆ

v3<0

t−tb(x,v)ˆ

0

e
− ν

2ε2κ
(t−s)

ε2κ

×
ˆ

R3

kw(v, v∗)|h(s, xb(x, v) − t − tb(x, v) − s

ε
v, v∗)|dv∗ds

√
μ(v)|v3|
w(v)

dv. (2.164)

We note that |h(s, x − t−s
ε

, v∗)| has the same upper bound. Then we bound (2.163) by a summa-
tion of (2.162) and

sup
(xb,v)∈∂�×R3

t−tb≥0

w(xb, v)cμ

√
μ(v)

ˆ

v3<0

t−tbˆ

0

e
− ν

2ε2κ
(t−s)

ε2κ

×
ˆ

R3

kw(v, v∗)|h(s, xb − t − tb − s

ε
v, v∗)|dv∗ds

√
μ(v)|v3|
w(xb,v)

dv,

(2.165)

and importantly

tˆ

0

e
− ν(v)

2ε2κ
(t−s)

ε2κ

ˆ

R3

kw(v, v∗)
sˆ

0

e
− ν(v∗)

2ε2κ
(s−τ)

ε2κ

×
ˆ

R3

kw(v∗, v∗∗)|h(s, x − t − s

ε
v − s − τ

ε
v∗, v∗∗)|dv∗∗dτdv∗ds.

(2.166)

We consider (2.166). We decompose the integration of τ ∈ [0, s] = [0, s − o(1)ε2κ] ∪ [s −
o(1)ε2κ, s]. The contribution of 

´ s

s−o(1)ε2κ
· · ·dτ is bounded as

2

ν(v)

(
1 − e

− ν(v)

2ε2κ

)‖kw(v, ·)‖L1
o(1)ε2κ

ε2κ
‖kw(v∗, ·)‖L1 sup

0≤s≤t

‖h(s)‖∞ ≤ o(1) sup
0≤s≤t

‖h(s)‖∞.

(2.167)
For the rest of term we decompose kw(v∗, v∗∗) = kw,N (v∗, v∗∗) +{kw(v∗, v∗∗) −kw,N (v∗, v∗∗)}
where kw,N (v∗, v∗∗) := kw(v∗, v∗∗) ×1 1

N
<|v∗−v∗∗|<N & |v∗|<N

. From (2.150),

ˆ

3

kw(v∗, v∗∗)1|v∗|≥N dv∗∗ � 1/N.
R
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Also from the fact kw(v∗, v∗∗) ≤ e−C|v∗−v∗∗|2
|v∗−v∗∗| ∈ L1({v∗ − v∗∗ ∈ R3}), supv∗

´
R3 kw(v∗, v∗∗)

{1 1
N

≥|v∗−v∗∗| + 1|v∗−v∗∗|≥N }dv∗∗ ↓ 0 as N → ∞. Hence for N � 1

(2.166) ≤
tˆ

0

e
− ν(v)

2ε2κ
(t−s)

ε2κ

ˆ

R3

kw,N (v, v∗)
s−o(1)ε2κˆ

0

e
− ν(v∗)

2ε2κ
(s−τ)

ε2κ

×
ˆ

R3

kw,N (v∗, v∗∗)|h(s, x − t − s

ε
v − s − τ

ε
v∗, v∗∗)|dv∗∗dτdv∗ds

≤ CN

tˆ

0

e
− ν(v)

2ε2κ
(t−s)

ε2κ

ˆ

|v∗|≤2N

s−o(1)ε2κˆ

0

e
− ν(v∗)

2ε2κ
(s−τ)

ε2κ

×
ˆ

|v∗∗|<2N

|fR(s, x − t − s

ε
v − s − τ

ε
v∗, v∗∗)|dv∗∗dτdv∗ds

+ o(1) sup
0≤s≤t

‖h(s)‖L∞
x,v

,

(2.168)

where we have used the fact supx kw(v∗, v∗∗)w�(v∗∗) ≤ CN < ∞ when 1
N

< |v∗ − v∗∗| < N

and |v∗| < N (then |v∗∗| < 2N ).
Now we decompose fR = PfR + (I −P)fR . We first take integrations (2.168) over v∗ and v∗∗

and use Holder’s inequality with p = 6, p = 2 in 1/p+1/p′ = 1 for PfR, (I −P)fR respectively 
to derive

(2.168)

≤ (4N)3CN

1

ν(v)

× sup
0≤s≤t

0≤τ≤s−o(1)ε2κ

⎛
⎜⎝ ¨

|v∗|≤N,|v∗∗|≤2N

|PfR(s, x − t − s

ε
v − s − τ

ε
v∗, v∗∗)|6dv∗∗dv∗

⎞
⎟⎠

1/6

+ (4N)3CN

1

ν(v)

× sup
0≤s≤t

0≤τ≤s−o(1)ε2κ

⎛
⎜⎝ ¨

|v∗|≤N,|v∗∗|≤2N

|(I− P)fR(s, x − t − s

ε
v − s − τ

ε
v∗, v∗∗)|2dv∗∗dv∗

⎞
⎟⎠

1/2

.

(2.169)

Now we consider a map

v∗ ∈ {R3 : |v∗| ≤ N} �→ y := x − t − s

ε
v − s − τ

ε
v∗ ∈ �, where

∣∣∣ ∂y

∂v∗

∣∣∣ =
∣∣∣ s − τ

ε

∣∣∣3 � ε3κ3.

(2.170)
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We note that this mapping is not one-to-one and the image can cover � at most N times. There-
fore we have⎛

⎜⎝ ¨

|v∗|≤N,|v∗∗|≤N

|PfR(s, x − t − s

ε
v − s − τ

ε
v∗, v∗∗)|6dv∗∗dv∗

⎞
⎟⎠

1/6

≤ N1/6

⎛
⎜⎝ ¨

|v∗|≤N,|v∗∗|≤N

|PfR(s, y, v∗∗)|6dv∗∗
dy

ε3κ3

⎞
⎟⎠

1/6

≤ N1/6

ε1/2κ1/2 ‖PfR(s)‖L6
x,v

,

⎛
⎜⎝ ¨

|v∗|≤N,|v∗∗|≤N

|(I− P)fR(s, x − t − s

ε
v − s − τ

ε
v∗, v∗∗)|6dv∗∗dv∗

⎞
⎟⎠

1/6

≤ N1/2

ε3/2κ3/2 ‖(I− P)fR(s)‖L2
x,v

.

Therefore we conclude that

(2.166)

≤ (4N)3CN (2.169) + o(1) sup
0≤s≤t

‖h(s)‖L∞
x,v

≤ (4N)4CN

{
1

ε1/2κ1/2 sup
0≤s≤t

‖PfR(s)‖L6
x,v

+ 1

ε3/2κ3/2 sup
0≤s≤t

‖(I− P)fR(s)‖L2
x,v

}

+ o(1) sup
0≤s≤t

‖h(s)‖L∞
x,v

�N

1

ε1/2κ1/2 sup
0≤s≤t

‖PfR(s)‖L6
x,v

+ 1

ε3/2κ3/2

{
‖(I− P)fR‖L2

t,x,v
+ ‖(I− P)∂tfR‖L2

t,x,v

}
+ o(1) sup

0≤s≤t

‖h(s)‖L∞
x,v

,

(2.171)

where we have used (2.143) the Sobolev embedding in 1D at the last line.
Now we consider (2.164) and (2.165). We decompose s ∈ [0, t − tb] = [0, t − tb − o(1)ε2κ] ∪

[t − tb − o(1)ε2κ, t − tb]. The contribution of 
´ t−tb
t−tb−o(1)ε2κ

· · · is bounded as

o(1)ε2κ

ε2κ
‖kw(v, ·)‖L1 sup

0≤s≤t

‖h(s)‖∞ ≤ o(1) sup
0≤s≤t

‖h(s)‖∞. (2.172)

For s ∈ [0, t − tb − o(1)ε2κ] we consider a map as (2.170)

v ∈ {v ∈ R3 : v3 < 0} �→ y := xb − t − tb − s

ε
v ∈ �, where

∣∣∣∣∂y∂v
∣∣∣∣ =

∣∣∣∣ t − tb − s

ε

∣∣∣∣3 � ε3κ3.

(2.173)
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Following the argument to have (2.169) we bound

the contribution of

t−tb−o(1)ε2κˆ

0

· · · of (2.165)

�N

1

ε1/2κ1/2 ‖PfR(s)‖L6
x,v

+ 1

ε3/2κ3/2

{
‖(I− P)fR‖L2

t,x,v
+ ‖(I− P)∂tfR‖L2

t,x,v

}
.

(2.174)

In conclusion, we bound |h(t, x, v)| by (2.162), (2.171), (2.172), (2.174) and conclude (2.151)
by choosing small enough o(1) in (2.171) and (2.172). �
Proof of Proposition 7. Since many parts of the proof are overlapped with the proof of Proposi-
tion 6 we only pin point the differences. An equation for w′∂tfR takes the similar form of (2.146)
and (2.147). We can read (2.6) for

h(t, x, v) =w′(x, v)∂tfR(t, x, v), for �′ < �, (2.175)

as (2.146) and (2.147) replacing

Sh = 2

κε
�w′(w′f1 + εw′f2, h) + 2

ε1/2κ
�w′(w′fR,h) + 2

κε
�w′(w′∂tf1 + εw′∂tf2,w

′fR)

− 1

ε1/2

{
w′(I− P)(v · ∇x∂tf2) − 2

κ
�w′(w′∂tf1,w

′f2) − 2

κ
�w′(w′f1,w

′∂tf2)

}

+ ε1/2
(

−w′∂2
t f2 + 2

κ
�w′(w′∂tf2,w

′f2)

)
,

r = −ε1/2w′(1 − Pγ+)∂tf2.

(2.176)

We have the same equality of (2.158), (2.159) with (2.160) for h of (2.175) but replacing 
Sh and r of (2.176). From (2.49), (2.65), (2.66), (2.68), (2.69), and (2.148), we bound terms of 
(2.176)

|Sh| � ν(v)
{ 1

κε
(‖I‖∞ + ε‖(2.36)‖∞) + 1

κ1/2ε
‖wfR‖∞

}‖h‖∞

+ ν(v)

κε

{‖∂tI‖∞ + ε‖(2.49)‖∞
}‖wfR‖∞

+ 1

ε1/2

(
‖(2.65)‖∞ + 1

κ
‖κ(2.66)‖∞

)
+ ε1/2

(
‖(2.68)‖∞ + 1

κ
‖κ(2.69)‖∞

)
,

(2.177)

|r| � ε1/2‖(2.49)‖∞. (2.178)

Then as in (2.162)-(2.166) we derive a preliminary estimate as
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|h(t, x, v)|

� e
− ν

2ε2κ
t‖h(0)‖∞ + ε2κ

ν(v)
(2.177) + (2.178) (2.179)

+
tˆ

0

e
− ν

2ε2κ
(t−s)

ε2κ

ˆ

R3

kw′(v, v∗)|h(s, x − t − s

ε
, v∗)|dv∗ds (2.180)

+w′(xb(x, v), v)cμ

√
μ(v)

ˆ

v3<0

t−tb(x,v)ˆ

0

e
− ν

2ε2κ
(t−s)

ε2κ

×
ˆ

R3

kw′(v, v∗)|h(s, xb(x, v) − t − tb(x, v) − s

ε
v, v∗)|dv∗ds

√
μ(v)|v3|

w′(xb(x, v),v)
dv. (2.181)

As (2.165) and (2.166), we bound (2.180) by a summation of (2.179) and

tˆ

0

e
− Cν

2ε2κ
(t−s)

ε2κ

s−o(1)ε2κˆ

0

e
− Cν

2ε2κ
(s−τ)

ε2κ

ˆ

|v∗|≤2N

×
ˆ

|v∗∗|≤2N

|h(s, x − t − s

ε
v − s − τ

ε
v∗, v∗∗)|dv∗∗dv∗dτds, (2.182)

+ sup
(xb,v)∈∂�×R3

t−tb≥0

w′(xb, v)cμ

√
μ(v)

ˆ

v3<0

t−tb−o(1)ε2κˆ

0

e
− ν

2ε2κ
(t−s)

ε2κ

×
ˆ

|v∗|≤2N

|h(s, xb − t − tb − s

ε
v, v∗)|dv∗ds

√
μ(v)|v3|

w′(xb,v)
dv (2.183)

+ o(1) sup
0≤s≤t

‖h(s)‖L∞
x,v

. (2.184)

Then we follow the argument of (2.169)-(2.171) to derive that, for p < 3,

|(2.182)| �
tˆ

0

e
− Cν

2ε2κ
(t−s)

ε2κ

s−o(1)ε2κˆ

0

e
− Cν

2ε2κ
(s−τ)

ε2κ

N1/3

ε3/pκ3/p
‖P∂tf (τ )‖L

p
x,v

dτds (2.185)

+
tˆ

0

e
− Cν

2ε2κ
(t−s)

ε2κ

s−o(1)ε2κˆ

0

e
− Cν

2ε2κ
(s−τ)

ε2κ

N1/2

ε3/2κ3/2 ‖P∂tf (τ )‖L2
x,v

dτds. (2.186)

Now we use the Young’s inequality for temporal convolution twice to derive that, for p < 3,
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‖(2.182)‖L2
t (0,T )

�
∥∥∥∥e

− Cν

2ε2κ
|s|

ε2κ

∥∥∥∥
L1

s (R)

∥∥∥∥
×

sˆ

0

e
− Cν

2ε2κ
(s−τ)

ε2κ

(
N1/3

ε3/pκ3/p
‖P∂tf (τ )‖L

p
x,v

+ N1/2

ε3/2κ3/2 ‖(I− P)∂tf (τ )‖L2
x,v

)
dτ

∥∥∥∥
L2

s (R)

�
∥∥∥∥e

− Cν

2ε2κ
|s|

ε2κ

∥∥∥∥
L1

s (R)

∥∥∥∥e
− Cν

2ε2κ
|τ |

ε2κ

∥∥∥∥
L1

τ (R)

×
(

N1/3

ε3/pκ3/p
‖P∂tf ‖L2

t ((0,T );Lp
x (�)) + N1/2

ε3/2κ3/2 ‖(I− P)∂tf ‖L2((0,T )×�×R3)

)

�N

1

ε3/pκ3/p
‖P∂tf ‖L2

t ((0,T );Lp
x (�)) + 1

ε3/2κ3/2 ‖(I− P)∂tf ‖L2((0,T )×�×R3).

(2.187)

As in (2.174), for (2.183) we use (2.173) to derive that, for p < 3,

‖(2.183)‖L2
t (0,T )

�
∥∥∥∥

tˆ

0

e
− Cν

2ε2κ
(t−s)

ε2κ

(
1

ε3/pκ3/p
‖P∂tf (s)‖L

p
x,v

+ 1

ε3/2κ3/2 ‖(I− P)∂tf (s)‖L2
x,v

)
ds

∥∥∥∥
L2

t (0,T )

�
∥∥∥∥e

− Cν

2ε2κ
|s|

ε2κ

∥∥∥∥
L1

s (R)

{ 1

ε3/pκ3/p
‖P∂tf ‖L2

t ((0,T );Lp
x (�)) + 1

ε3/2κ3/2 ‖(I− P)∂tf ‖L2((0,T )×�×R3)

}

� 1

ε3/pκ3/p
‖P∂tf ‖L2

t ((0,T );Lp
x (�)) + 1

ε3/2κ3/2 ‖(I− P)∂tf ‖L2((0,T )×�×R3),

(2.188)

where we have used the Young’s inequality for temporal convolution.
In conclusion, we bound ‖h‖L2

t L
∞
x,v

by ‖(2.179)‖L2
t L

∞
x,v

, (2.187), (2.184), (2.188) and conclude 
(2.154) by choosing small enough o(1) in (2.184). �

2.6. Uniform controls of the Boltzmann remainder fR (Theorem 8)

Inspired by the energy structure of the PDE and the coercivity of the linear operator L in 
(1.30), we define an energy and a dissipation as
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E(t) := ‖fR(t)‖2
L2(�×R3)

+ ‖∂tfR(t)‖2
L2(�×R3)

,

D(t) :=
tˆ

0

‖κ− 1
2 ε−1√ν(I− P)fR(s)‖2

L2(�×R3)
ds

+
tˆ

0

‖κ− 1
2 ε−1√ν(I− P)∂tfR(s)‖2

L2(�×R3)
ds

+
tˆ

0

(
|ε− 1

2 fR(s)|2
L2

γ
+ |ε− 1

2 ∂tfR(s)|2
L2

γ

)
ds.

(2.189)

As explained in Section 1.2, the temporal derivative gets involved mainly in order to access the 
L6-bound of the hydrodynamic part PfR , while we will control the following auxiliary norm to 
be used in order to handle the nonlinearity: for p < 3 and t > 0

Fp(t) := sup
0≤s≤t

{
‖κ1/2PfR(s)‖2

L6(�)
+ ‖κ1/2PfR‖2

L2((0,s);Lp(�))

+ ‖κP+1/2P∂tfR‖2
L2((0,s);Lp(�))

+ ‖ε1/2κw�fR(s)‖2
L∞(�×R3)

+ ‖(εκ)3/pκ
1
2 +Pw�′fR(s)‖2

L2((0,s);L∞(�×R3))

}
.

(2.190)

We will use the norms of the initial data:

E(0) := E(fR,0) := ‖fR,0‖2
L2(�×R3)

+ ‖∂tfR,0‖2
L2(�×R3)

, (2.191)

Fp(0) :={
κ

1
2 |fR,0|L2

γ
+ κP+ 1

2 |∂tfR,0|L2
γ

+ ε
1
2 κ‖wfR,0‖L∞(�̄×R3) + (εκ)

1+ 3
p κP‖w′∂tfR,0‖L∞(�̄×R3)

}2
.

(2.192)

Theorem 8 (Uniform controls of the Boltzmann remainder fR). Recall I in (2.28). Suppose for 
T > 0 and P ≥ 1/2

∑
�=0,1

‖∇x∂
�
t I‖L∞([0,T ]×�̄) + 1

κ1/2

∑
�=0,1,2

‖∂�
t I‖L∞([0,T ]×�̄) + 1

κ1/2 ‖p‖L∞([0,T ]×�̄) �
1

κP
.

(2.193)
We further assume that, for 0 ≤P′ <P,∑

�=1,2

‖∂�
t I‖L∞([0,T ];L∞(�̄)∩L2(�)) +

∑
0≤�≤1

1≤|β|≤2

‖∇β
x ∂�

t I‖L∞([0,T ];L∞(�̄)∩L2(�))

+
∑
|β|=1

‖∇β
x ∂2

t I‖L2([0,T ];L∞(�̄)∩L2(�))

+ ‖∂2
t p‖L2([0,T ];L∞(�̄)∩L2(�)) +

∑
‖∇β

x ∂tp‖L∞([0,T ];L∞(�̄)∩L2(�)) � exp
( 1

κP′
)
.

(2.194)
|β|=0,1
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For given such T > 0, let us choose ε and κ as, for some C � 1,

ε = exp
(−C(T + 1)

κ2P

)
. (2.195)

Assume that an initial datum for the remainder fR,in satisfies, for some p < 3 and |p − 3| � 1,

√
E(0) +

√
Fp(0) � 1. (2.196)

Then we construct a unique solution fR(t, x, v) of the form of

F = μ + εf1
√

μ + ε2f2
√

μ + ε3/2fR
√

μ in [0, T ] × � ×R3,

which solves the Boltzmann equation (1.1) and the diffuse reflection boundary condition (1.11)
with the scale of (1.5), (1.6) and (2.195), and satisfies the initial condition F |t=0 = μ +
εf1|t=0

√
μ + ε2f2|t=0

√
μ + ε3/2fR|t=0

√
μ + δεfR,in, in a time interval t ∈ [0, T ]. Moreover, 

we have

ε
1
4 − 3

2p
(1− p

3 ) sup
0≤t≤T

{√
E(t) +√

D(t) +
√
Fp(t)

}
� 1. (2.197)

Proof of Theorem 8. An existence of a unique global solution F for each ε > 0 can be found in 
[13–16]. Thereby we only focus on the (a priori) estimates (2.197).

Step 1. Fix δ0 > 0, C1 > 0, C2 > 0 such that 0 < 1√
C1

� δ0 � 1. And we choose ε with

ε ≤
⎡
⎣ κ

5
2 +3P+ 3

p
(1− p

3 )

C1
(
E(0) +Fp(0) + 1

) exp
(−2C2(T + 1)

κ2P

)⎤⎦
1

1
2 − 3

p (1− p
3 )

. (2.198)

Then we define T∗ > 0 as

T∗ = sup
{
t ≥ 0 : min{d2, d2,t , d6, d3, d3,t , d∞, d∞,t } ≥ σ0

4
,

ε

κ

√
D(s) + ε3/2‖w�f (s)‖L∞

x,v
+ ε

κ1+P
‖PfR(s)‖L2

x
< δ0, and

ε
1
4 − 3

2p

(
1− p

3
)
κ

− 3
4 −P

2 − 3
2p

(1− p
3 )

(√
E(s) +√

D(s) + 1

κ1/2+P
‖fR(s)‖L2

x,v

)
< δ0,

for all 0 ≤ s ≤ t
}
,

(2.199)

where d2, d2,t , d6, d3, d3,t , d∞, d∞,t are defined in (2.31), (2.33), (2.119), (2.74), (2.76), (2.152)

and (2.155). Note that from (2.198) we have ε
1
4 − 3

2p

(
1− p

3
)
κ

− 3
4 −P

2 − 3
2p

(1− p
3 )

< δ0, so T∗ > 0 is well 
defined.
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First from (2.193) and (2.194),

‖(2.36)‖L∞
t,x

+ ‖(2.46)‖L∞
t,x

+ ‖κ(2.47)‖L∞
t,x

+ ‖(2.50)‖L∞
t,x

+ ‖κ(2.51)‖L∞
t,x

+ ‖(2.65)‖L∞
t,x

+ ‖κ(2.66)‖L∞
t,x

+ ‖(2.68)‖L∞
t,x

+ ‖κ(2.69)‖L∞
t,x

+ ‖(2.49)‖L∞
t,x

� exp

(
2

κP′

)
.

Now from (2.194) and (2.199) we read all the estimates of Proposition 3, Proposition 5, Propo-
sition 6, Proposition 4, and Proposition 7 in terms of E(t) and D(t) as follows.

From (2.151), (2.199), and (2.194)

sup
0≤s≤t

‖w�fR(s)‖L∞
x,v

� 1

ε1/2κ1/2 sup
0≤s≤t

‖PfR(s)‖L6
x,v

+ 1

ε1/2κ

√
D(t)+ 1

ε1/2κ1+P
‖PfR‖L2

t,x

+ ‖w�f (0)‖∞ + ε1/2 exp
( 3

κP′
)
.

(2.200)

Now applying (2.200) to (2.118) we derive that

sup
0≤s≤t

‖PfR(s)‖L6
x
� ε

κ
exp

( 1

κP′
)

sup
0≤s≤t

√
E(s) + 1

κ1/2

√
D(t)+ 1

κ1/2+P
‖PfR‖L2

t,x

+ (εκ)
1
2 ‖w�f (0)‖L∞

x,v
+ ε1/2 exp

( 3

κP′
)

+ 1

κ1+P
sup

0≤s≤t

‖fR‖L2
x,v

.

(2.201)

From (2.200), (2.201), and (2.199) and (2.194) we conclude that

sup
0≤s≤t

{
κ

1
2 ‖PfR(s)‖L6

x
+ ε

1
2 κ‖w�fR(s)‖L∞

x,v

}
� ε1/2κ1/2 exp

( 3

κP
′
)

+
√
Fp(0) + sup

0≤s≤t

{√
E(s) + √

D(s)
}+ 1

κP
‖PfR‖

L2
t,x

+ 1

κ1/2+P
sup

0≤s≤t

‖fR‖
L2

x,v︸ ︷︷ ︸
(2.202)∗

.

(2.202)

From (2.73), (2.202), (2.199) and (2.194)

κ
1
2 ‖PfR‖L2

t ((0,t);Lp
x ) � (2.202)∗

(
1 + ε

κ
(2.202)∗

)
︸ ︷︷ ︸

(2.203)∗

.
(2.203)

Using (2.202) and (2.193), from (2.75) and (2.154), we deduce that, for p < 3 and �′ < �,

κ
1
2 +ß

∥∥P∂tfR

∥∥
L2

t ((0,t);Lp
x )

+ (εκ)3/pκ
1
2 +ß‖w�′∂tfR‖L2

t ((0,t);L∞
x,v) � (2.203)∗ (2.204)

Step 2. Using the estimates of the previous step we will close the estimate ultimately in the ba-
sic energy estimates (2.30) and (2.32) via the Gronwall’s inequality. We note that from (2.193) the 
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multipliers of 
´ t

0 ‖PfR(s)‖2
L2

x
ds in (2.30) and 

´ t

0 ‖P∂tfR(s)‖2
L2

x
ds in (2.32) are bounded above 

by

O(1)κ−2P(
1 + εκ

1
2 −P + (εκ

1
2 −P)2)� κ−2P, (2.205)

where we have used (2.195).
In (2.30) and (2.32) we bound

‖κ1/2PfR‖L2
t L

3
x
� κ

1
2 (1− p

3 )‖PfR‖1− p
3

L2
t L

∞
x

‖κ1/2PfR‖
p
3

L2
t L

p
x

�T (εκ)−
1
2 (1− p

3 )|(2.202)∗|1− p
3 |(2.203)∗|

p
3 ,

‖P∂tfR‖L2
t L

3
x
� ‖P∂tfR‖1− p

3

L2
t L

∞
x

‖P∂tfR‖
p
3

L2
t L

p
x
� ε

− 3
p

(1− p
3 )

κ
− 1

2 −P− 3
p

(1− p
3 )|(2.203)∗|.

(2.206)

Applying (2.202), (2.203), (2.204), (2.206) to (2.30) + o(1)(2.32), using the above bound and 
(2.195), and collecting the terms, we derive that

sup
0≤s≤t

E(s) + (d2 − o(1))D(t)

� E(0) +F(0) + exp
( 6

κP′
)

+ (2.205)

T̂

0

E(s)ds

+ ε1−(1− p
3 )κ−4+ p

3 |(2.202)∗|4− 2p
3 |(2.203)∗|

2p
3

+ ε
1− 6

p
(1− p

3 )
κ

−3−2P− 6
p

(1− p
3 )|(2.202)∗|2|(2.203)∗|2.

(2.207)

Now from the last inequality in (2.199),

[ε1−(1− p
3 )κ−4+ p

3 ]1/4(2.202)∗ � 1, [ε1− 6
p

(1− p
3 )

κ
−3−2P− 6

p
(1− p

3 )]1/4(2.202)∗ � 1, (2.208)

thus we derive that, for C1 > 0 and C2 > 0 large enough,

sup
0≤s≤t

E(s) +D(t) ≤ C1

(
E(0) +Fp(0) + exp

( 6

κP′
))

+ C2κ
−2P

tˆ

0

E(s)ds. (2.209)

Applying the Gronwall’s inequality to (2.209) (we may redefine E(t) as sup0≤s≤t E(s) if nec-
essary), and using the fact P′ <P we derive that, after redefining C1 if necessary,

sup
0≤s≤t

E(s) +D(t) +Fp(t) ≤ C1
(
E(0) +Fp(0) + 1

)
exp

(2C2(t + 1)

κ2P

)
for all t ≤ T∗, (2.210)

under the assumptions of (2.194), (2.199), and (2.208).
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Now from (2.210) and (2.195) we derive (2.197), which implies

sup
0≤s≤t

{
‖κ1/2PfR(s)‖L6

x
+ ‖ε1/2κw�,ßfR(s)‖L∞

x,v
+ ‖(εκ)3/pκ

1
2 +Pw�′,ßfR(s)‖L2((0,s);L∞

x,v)

}
� ε

− 1
4 + 3

2p
(1− p

3 )
.

These imply min{d2, d2,t , d6, d3, d3,t , d∞, d∞,t } ≥ 1
4 and ε

κ

√
D(t) � δ0 from (2.31), (2.33), 

(2.119), (2.74), (2.76), (2.152) and (2.155). Moreover, we have

ε
1
4 − 3

2p

(
1− p

3
)
κ

− 3
4 −P

2 − 3
2p

(1− p
3 )

(√
E(s) + √

D(s) + 1

κ1/2+P
‖fR(s)‖L2

x,v

)
<

1√
C

� δ0.

Then by the standard continuation argument we can verify all assumptions (2.199) up to t ≤ T

and T = T∗. The estimate (2.197) follows easily. �
3. Fluid estimate

We denote the vorticity by

ω = ∇ × u, u = ∇ × (−	)−1ω, (3.1)

while the second identity is the famous Biot-Savart law. Here (−	)−1 denotes the inverse of −	

with the zero Dirichlet boundary condition on ∂�.
Our analysis of the Navier-Stokes-Fourier system is based on the vorticity formulation of the 

velocity field in 3D ([47,48]):

∂tω − κη0	ω = −u · ∇ω + ω · ∇u in �, (3.2)

ω |t=0 = ωin in �, (3.3)

κη0(∂x3 +√−	h)ωh = [∂x3(−	)−1(−u · ∇ωh + ω · ∇uh)] , ω3 = 0 on ∂�, (3.4)

∂t θ + u · ∇xθ − κηc	θ = 0 in �, (3.5)

θ = 0 on ∂� (3.6)

where 
√−	h = |∇h| is defined as

√−	hg(xh, x3) =
∑
ξ∈Z2

|ξ |gξ (x3)e
ixh·ξ . (3.7)

Here, gξ (x3) = 1
(2π)2

˜
T 2 e−ixh·ξ g(xh, x3)dxh ∈ C with ξ = (ξ1, ξ2) ∈ Z2 denotes the Fourier 

transform in the horizontal variables, which satisfies g(x1, x2, x3) = ∑
ξ∈Z2 gξ (x3)e

ixh·ξ . The 
Fourier transform can be regarded as a function gξ (z) where z is sitting in a pencil-like complex 
domain: for any λ > 0,

Hλ :=
{
z ∈C : Re z ≥ 0, |Im z| < λmin{Re z,1}

}
. (3.8)
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3.1. Higher regularity of Navier-Stokes-Fourier system in the inviscid limit (Theorem 9)

In this section, we will use the following notations: x = (xh, x3) = (x1, x2, x3) ∈ T 2 ×R+ =
�, ∇x = ∇ = (∇h, ∂3) = (∂x1 , ∂x2 , ∂x3); for a vector valued function g ∈ R3, g = (gh, g3) =
(g1, g2, g3).

We define analytic function spaces without the boundary layer, Lp,λ, for holomorphic func-
tions with a finite norm, for p ≥ 1,

‖g‖p,λ :=
∑
ξ∈Z2

eλ|ξ |‖gξ‖Lp
λ

where ‖gξ‖Lp
λ

:= sup
0≤σ≤λ

⎛
⎜⎝ ˆ

∂Hσ

|gξ (z)|p|dz|
⎞
⎟⎠

1/p

. (3.9)

Next we introduce an L∞-based analytic boundary layer function space, for λ > 0 and κ ≥ 0, 
that consists of holomorphic functions in Hλ with a finite norm

‖g‖∞,λ,κ =
∑
ξ∈Z2

eλ|ξ |‖gξ‖L∞
λ,κ

, (3.10)

where ‖gξ‖L∞
λ,0

:= ‖eᾱRe zgξ (z)‖L∞
λ

:= supz∈Hλ
eᾱRe zgξ (z) and

‖gξ‖L∞
λ,κ

:=
∥∥∥∥ eᾱRe z

1 + φκ(z)
gξ (z)

∥∥∥∥
L∞

λ

:= sup
z∈Hλ

eᾱRe z

1 + φκ(z)
|gξ (z)|.

Here, a boundary layer weight function is defined as

φκ(z) := 1√
κ

φ(
z√
κ

) with φ(z) = 1

1 + |Re z|r for some r> 1. (3.11)

We define Bλ,κ for holomorphic functions g = (g1, g2, g3) with a finite norm

[[g]]∞,λ,κ =
∑
i=1,2

‖gi‖∞,λ,κ + ‖g3‖∞,λ,0. (3.12)

And we say a scalar valued function g̃ : � →R is in Bλ,κ if ‖g̃‖∞,λ,κ < 0.
We note that Bλ,κ ⊂ L1,λ, but Bλ,0 � L∞,λ if ᾱ > 0.

Due to its singular nature of the Navier-Stokes flow in the inviscid limit, we introduce the 
conormal derivatives

D = (Dh,D3) = (∇h, ζ(x3)∂3) where ζ(z) = z

1 + z
. (3.13)

With the multi-indices β = (βh, β3) := (β1, β2, β3) ∈ N3
0 , the higher derivatives are denoted by 

Dβ = ∂
β1∂

β2D
β3 and Dβ = (iξ1)

β1(iξ2)
β2D

β3 .
1 2 3 ξ 3
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Now we define, for λ0 > 0, γ0 > 0, α > 0, κ ≥ 0, and t ∈ (0, λ0
2γ0

)

|||g|||∞,κ = sup
λ<λ0−γ0t

{ ∑
0≤|β|≤1

[[Dβg]]∞,λ,κ +
∑
|β|=2

(λ0 − λ − γ0t)
α[[Dβg]]∞,λ,κ

}
, (3.14)

|||g|||1 = sup
λ<λ0−γ0t

{ ∑
0≤|β|≤1

‖Dβ(1 + |∇h|)g‖1,λ

+ (λ0 − λ − γ0t)
α
∑
|β|=2

‖Dβ(1 + |∇h|)g‖1,λ

}
.

(3.15)

And for a scalar valued function g̃, define

|||g̃|||∞,0 = sup
λ<λ0−γ0t

{ ∑
0≤|β|≤1

‖Dβg̃‖∞,λ,0 +
∑
|β|=2

(λ0 − λ − γ0t)
α‖Dβg̃‖∞,λ,0

}
, (3.16)

|||g̃|||z := sup
λ<λ0−γ0t

⎧⎨
⎩(λ0 − λ − γ0t)

α
∑

0≤|β|≤1

‖Dβh

h ∂x3g‖∞,λ,0

⎫⎬
⎭ . (3.17)

With an initial-boundary layer weight function as in [56]

φκt (z) = 1√
κt

φ(
z√
κt

), (3.18)

we define an initial-boundary layer function space Bλ,κt for holomorphic functions g =
(g1, g2, g3) with a finite norm

[[g]]∞,λ,κt =
∑
i=1,2

‖gi‖∞,λ,κt + ‖g3‖∞,λ,0, (3.19)

where an L∞-based analytic norm with the initial-boundary layer is defined as

‖g‖∞,λ,κt =
∑
ξ∈Z2

eλ|ξ |‖gξ‖L∞
λ,κt

, ‖gξ‖L∞
λ,κt

=
∥∥∥∥ eᾱRe z

1 + φκ(z) + φκt (z)
gξ (z)

∥∥∥∥
L∞

λ

. (3.20)

We finally define, for t ∈ (0, λ0
2γ0

),

|||g|||∞,κt = sup
λ<λ0−γ0t

{ ∑
0≤|β|≤1

[[Dβg]]∞,λ,κt +
∑
|β|=2

(λ0 − λ − γ0t)
α[[Dβg]]∞,λ,κt

}
. (3.21)

In this section, α, ᾱ are given positive small constants, λ0 is a given positive constant, and γ0 is 
a sufficiently large constant to be determined in Theorem 9.

Next we discuss the initial data uin, θin, and the corresponding vorticity ωin = ∇x × uin. 
Inspired by the PDEs, let
617



Y. Cao, J. Jang and C. Kim Journal of Differential Equations 366 (2023) 565–644
ω0 := ωin, ∂tω0 := κη0	ω0 − u0 · ∇ω0 + ω0 · ∇u0,

u0 := ∇ × (−	)−1ω0, ∂tu0 := ∇ × (−	)−1∂tω0,

∂2
t ω0 := κη0	∂tω0 − u0 · ∇∂tω0 − ∂tu0 · ∇ω0 + ω0 · ∇∂tu0 + ∂tω0 · ∇u0,

∂t θ0 := κηc	θ0 − u0 · ∇θ0,

∂2
t θ0 := κηc	∂tθ0 − u0 · ∇∂t θ0 − ∂tu0 · ∇θ0.

(3.22)

Theorem 9. Let λ0 > 0 and ωin, θin ∈ Bλ0,κ with (3.22) satisfy for � = 0, 1, 2,∑
0≤|β|≤2

‖Dβ∂�
t ω0‖1,λ0 +

∑
0≤|β|≤2

‖Dβ∂�
t ω0‖∞,λ0,κ < ∞, (3.23)

∑
0≤|β|≤2

‖Dβ∂�
t θ0‖1,λ0 +

∑
0≤|β|≤2

‖Dβ∂�
t θ0‖∞,λ0,0 +

∑
0≤|βh|≤1

‖Dβh

h ∂x3∂
�
t θ0(t, x3)‖∞,λ0,0 < ∞.

(3.24)
Further assume that ωin = ω0, θin = θ0, and (3.22) satisfies the compatibility conditions on ∂�

κη0(∂x3 + √−	h)ω0,h = [∂x3(−	)−1(−u0 · ∇ω0,h + ω0 · ∇u0,h)],
ω0,3 = 0, ∂tω0,3 = 0, θ0 = 0, ∂t θ0 = 0, ∂2

t θ0 = 0.
(3.25)

Then there exist a constant γ0 > 0 and a time T > 0 depending only on λ0 and the size of the 
initial data such that the solution ω(t) to the vorticity formulation of the Navier-Stokes equations 
(3.2)-(3.4) exists in C1([0, T ]; Bλ,κ ) with ∂2

t ω in C(0, T ; Bλ,κt ) for 0 < λ < λ0 satisfying

sup
t∈[0,T ]

[
2∑

�=0

∣∣∣∣∣∣∣∣∣∂�
t ω(t)

∣∣∣∣∣∣∣∣∣
1
+

1∑
�=0

∣∣∣∣∣∣∣∣∣∂�
t ω(t)

∣∣∣∣∣∣∣∣∣∞,κ
+

∣∣∣∣∣∣∣∣∣∂2
t ω(t)

∣∣∣∣∣∣∣∣∣∞,κt

]
< ∞. (3.26)

And the solution θ(t) to (3.5)-(3.6) exists in C2([0, T ]; Bλ,0) satisfying

sup
t∈[0,T ]

[
2∑

�=0

∣∣∣∣∣∣∣∣∣∂�
t θ(t)

∣∣∣∣∣∣∣∣∣
1
+

2∑
�=0

∣∣∣∣∣∣∣∣∣∂�
t θ(t)

∣∣∣∣∣∣∣∣∣∞,0

]
< ∞, (3.27)

and

√
κ

(
sup

t∈[0,T ]

2∑
�=0

∣∣∣∣∣∣∣∣∣∂�
t θ(t)

∣∣∣∣∣∣∣∣∣
z

)
< ∞. (3.28)

Furthermore, for each (t, x) ∈ [0, T ] × �,

(1) (Bounds on the vorticity and its derivatives) ω(t, x) enjoys the following bounds:

|∇ i
h∂

�
t ωh(t, x)| � e−ᾱx3 (1 + φκ(x3)) , |∇ i

h∂
�
t ω3(t, x)| � e−ᾱx3 for i, � = 0,1, (3.29)

|∂2
t ωh(t, x)| � e−ᾱx3 (1 + φκ(x3) + φκt (x3)) , |∂2

t ω3(t, x)| � e−ᾱx3, (3.30)

|∂x ∂�ωh(t, x)| � κ−1e−ᾱx3 , |∂x ∂�ω3(t, x)| � e−ᾱx3 (1 + φκ(x3)) for � = 0,1. (3.31)
3 t 3 t
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(2) (Bounds on the velocity and its derivatives) The corresponding velocity field u(t, x) satisfies 
the following:

|∂�
t u(t, x)| � 1 for � = 0,1,2, (3.32)∑

1≤|β|≤2

|∇β∂�
t u(t, x)| � (

1 + φκ(x3) + (|β| − 1)κ−1)e−min(1, ᾱ
2 )x3 for � = 0,1, (3.33)

∑
|β|=1

|∇β∂2
t u(t, x)| � (

1 + φκ(x3) + φκt (x3)
)
e−min(1, ᾱ

2 )x3 . (3.34)

Moreover, we have the decay estimate for ∂�
t u:

|∂�
t u| � κ− 1

2 e−min(1, ᾱ
2 )x3 for � = 1,2. (3.35)

(3) (Bounds on the temperature and its derivatives) The temperature θ(t, x) satisfies the follow-
ing:

∑
0≤βh≤2

|∇βh

h ∂�
t θ(t, x)| � e−ᾱx3 for � = 0,1,2, (3.36)

∑
0≤|βh|≤1

|∇βh

h ∂x3∂
�
t θ(t, x)| � κ− 1

2 e−ᾱx3 for � = 0,1,2, (3.37)

|∂2
x3

∂�
t θ(t, x)| � κ−1e−ᾱx3 for � = 0,1. (3.38)

(4) (Bounds on the pressure and its derivatives) Choosing the pressure such that p(t, x) → 0 as 
x3 → ∞, then p satisfies the following:

|∂�
t p(t, x)| � 1 for � = 0,1,2, (3.39)∑

0≤|β|≤1

|∇β∂�
t p(t, x)| � κ− 1

2 e−min(1, ᾱ
2 )x3 for � = 0,1, (3.40)

|∂2
t p|� (κ− 1

2 + φκt (x3))e
−min(1, ᾱ

2 )x3 . (3.41)

The proof of the theorem relies on the integral representation of the solution to the Navier-
Stokes-Fourier system using the Green’s function for the Stokes problem in the same spirit of 
[56].

3.2. Elliptic estimates and nonlinear estimates

Lemma 3 ([56,58], Embeddings and Cauchy estimates). The following holds

(1) Bλ,κt ⊂ L1,λ and Bλ,κ ⊂ L1,λ.
(2) ‖g1g2‖∗,λ � ‖g1‖∞,λ‖g2‖∗,λ.

(3)
∑ ‖Dβg‖∗,λ �

‖g‖∗,λ̃ , for any 0 < λ < λ̃.
|β|=1 λ̃−λ
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For (2) and (3), ‖ · ‖∗,λ can be either ‖ · ‖∞,λ,κ or ‖ · ‖∞,λ,κt or ‖ · ‖∞,λ,0 or ‖ · ‖1,λ.

Lemma 4 ([56,58], Elliptic estimates). Let φ be the solution of −	φ = ω with the zero Dirichlet 
boundary condition, and let u = ∇ × φ. Then

‖u‖∞,λ + ‖∇u‖1,λ � ‖ω‖1,λ,

‖∇hu‖∞,λ + ‖∇u3‖∞,λ �
∑

0≤|β|≤1

‖∇β
h ω‖1,λ,

‖∂3uh‖∞,λ �
∑

0≤|β|≤1

‖∇β
h ω‖1,λ + ‖ωh‖∞,λ,

‖ζ−1∇β ′
h u3‖∞,λ �

∑
0≤|β|≤1

‖∇β+β ′
h ωh‖1,λ.

(3.42)

As a consequence of Lemma 4, we have the following nonlinear estimates.

Lemma 5 ([56,58]). Let u and ũ be the velocity field associated with ω = ∇x ×u and ω̃ = ∇x × ũ

respectively. Then

‖u · ∇ω̃‖1,λ � ‖ω‖1,λ‖∇hω̃‖1,λ + ‖(1 + |∇h|)ω‖1,λ‖ζ∂zω̃‖1,λ,

‖ω · ∇ũ3‖1,λ � ‖ωh‖1,λ‖∇hũ3‖∞,λ + ‖ω3‖1,λ‖∂3ũ3‖∞,λ � ‖ω‖1,λ‖(1 + |∇h|)ω̃‖1,λ,

‖ω · ∇ũh‖1,λ � ‖ωh‖1,λ‖∇hũh‖∞,λ + ‖ω3‖∞,λ‖∂3ũh‖1,λ

� ‖ω‖1,λ

(‖ω̃3‖∞,λ + ‖(1 + |∇h|)ω‖1,λ

)
.

(3.43)

Moreover

‖u · ∇ω̃h‖∗,λ � ‖ω‖1,λ‖∇hω̃h‖∗,λ + (‖(1 + |∇h|)ω‖1,λ + ‖ζ∂zω3‖∞,λ

)‖ζ∂zω̃h‖∗,λ,

‖ω · ∇ũh‖∗,λ � ‖ω3‖∞,λ,0
(‖(1 + |∇h|)ω̃‖1,λ + ‖ω̃h‖∗,λ

)+ ‖ωh‖∗,λ

∑
0≤|β|≤1

‖∇β
h ω̃‖1,λ,

(3.44)

where ‖ · ‖∗,λ can be either ‖ · ‖∞,λ,κ or ‖ · ‖∞,λ,κt .
Furthermore

‖u · ∇ω̃3‖∞,λ,0 � ‖ω‖1,λ‖∇hω̃3‖∞,λ,0 + ‖(1 + |∇h|)ω‖1,λ‖ζ∂3ω̃3‖∞,λ,0,

‖ω · ∇ũ3‖∞,λ,0 � ‖ωh‖∗,λ‖(1 + |∇h|2)ω̃h‖1,λ + ‖ω3‖∞,λ,0‖(1 + |∇h|)ω̃h‖1,λ,
(3.45)

where ‖(1 + |∇h|k)g‖∗ = ∑k
�=0 ‖∇�

hg‖∗.

We finally record the crucial estimate of nonlinear forcing terms N = −u · ∇ω + ω · ∇u, as 
an outcome of Lemma 5, that will be also crucially used to control B = [∂x3(−	)−1(−u · ∇ω +
ω · ∇u)] |x =0 in the vorticity formulation (1.12) and (1.14).
3
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Lemma 6 ([56,58], Nonlinear estimate). Let λ ∈ (0, λ0 − γ s) be given. We have the following:

‖(1 + |∇h|)N‖1,λ �
(‖(1 + |∇h|)ω‖1,λ + ‖(1 + |∇h|)ω3‖∞,λ,0

)‖(1 + |∇h|2)ω‖1,λ

+
∑
|β|=1

‖(1 + |∇h|)Dβω‖1,λ‖(1 + |∇h|2)ω‖1,λ,
(3.46)

∑
|β|=1

‖Dβ(1 + |∇h|)N‖1,λ

�
∑
|β|≤1

‖Dβ(1 + |∇h|)ω‖1,λ

( ∑
|β|≤2

‖Dβ(1 + |∇h|)ω‖1,λ) + ‖(1 + |∇h|)ω‖∞,λ,0

)

+
∑
|β|≤1

‖Dβ(1 + |∇h|)ω3‖∞,λ,0‖(1 + |∇h|)2ω‖1,λ.

(3.47)

For [[ · ]]∗,λ to be either [[ · ]]∞,λ,κ or [[ · ]]∞,λ,κt ,

[[N ]]∗,λ � ‖(1 + |∇h|2)ω‖1,λ[[ω]]∗,λ + ‖(1 + |∇h|)ω‖1,λ[[Dω]]∗,λ, (3.48)∑
|β|=1

[[DβN ]]∗,λ �
∑
|β|=1

‖(1 + |∇h||βh|+2)ω‖1,λ[[ω]]∗,λ

+
∑
|β|=1

[[Dβω]]∗,λ(‖(1 + |∇h|2)ω‖1,λ + β3[[Dβ3
3 ω]]∗,λ)

+
∑
|β|=2

[[Dβω]]∗,λ‖(1 + |∇h|)ω‖1,λ.

(3.49)

The proof relies on Lemma 5. We refer to Lemma 4.2 and Lemma 4.5 in [58] for the detailed 
proof.

3.3. Green’s function and integral representation

By taking the Fourier transform of (1.12)-(1.13) in xh ∈T 2, we obtain

∂tωξ − κη0	ξωξ = Nξ in R+, (3.50)

κη0(∂x3 + |ξ |)ωξ,h = Bξ , ωξ,3 = 0 on x3 = 0, (3.51)

with ωξ |t=0 = ω0ξ for ξ ∈Z2. Here

	ξ = −|ξ |2 + ∂2
x3

, (3.52)

and

Nξ = Nξ(t, x3) := (−u · ∇ω + ω · ∇u)ξ (t, x3), Bξ = Bξ (t) := (∂x3(−	ξ)
−1Nξ,h(t))|x3=0.

(3.53)
Here (−	ξ)

−1 denotes the inverse of −	ξ with the zero Dirichlet boundary condition at x3 = 0.
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We give the integral representation and present key estimates on Green’s function for 
the Stokes problem. As shown in [56,58], letting Gξ(t, x3, y) be the Green’s function for 
(3.50)-(3.51), the solution can be represented by the integral formula via Duhamel’s principle:

ωξ (t, x3) =
∞̂

0

Gξ(t, x3, y)ω0ξ (y)dy +
tˆ

0

∞̂

0

Gξ(t − s, x3, y)Nξ (s, y)dyds

−
tˆ

0

Gξ(t − s, x3,0)(Bξ (s),0)ds,

(3.54)

where

Gξ =
⎡
⎣Gξh 0 0

0 Gξh 0
0 0 Gξ3

⎤
⎦ , (3.55)

with Gξh of (3.62) and Gξ3 of (3.65): for Gξ∗ can be either Gξh or Gξ3

∂tGξ∗(t, x3, y) − κη0	ξGξ∗(t, x3, y) = 0, x3 > 0, (3.56)

κη0(∂x3 + |ξ |)Gξh(t, x3, y) = 0, x3 = 0, (3.57)

Gξ3(t, x3, y) = 0, x3 = 0. (3.58)

Similarly for θ , by taking the Fourier transform of (3.5), (3.6) in xh, we have θξ (t, x3) solves

∂t θξ − κηc	ξθξ =Mξ in R+,

θξ =0 on x3 = 0,
(3.59)

with θξ |t=0 = θ0ξ for ξ ∈ Z2. Here Mξ = Mξ(t, x3) := (−u · ∇θ)ξ (t, x3). Thus the integral rep-
resentation is

θξ (t, x3) =
∞̂

0

Gξ3(t, x3, y)θ0ξ (y)dy +
tˆ

0

∞̂

0

Gξ3(t − s, x3, y)Mξ (s, y)dyds, (3.60)

here by abuse of notation Gξ3 is the same Green’s function solving (3.56) and (3.58), with η0
replaced by ηc. Note that since u = 0 on ∂�, we have

∂�
t Mξ (t,0) = 0, � = 0,1,2. (3.61)

The following estimates and properties for Gξ will be useful to show the propagation of 
analytic norms of ∂�

t ω, ∂�
t θ , for � = 0, 1, 2.
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Lemma 7 ([56,58]).

(1) (Bounds on Gξh) The Green’s function Gξh for the Stokes problem (3.56) and (3.57) is given 
by

Gξh = H̃ξ + Rξ , (3.62)

where H̃ξ is the one dimensional Heat kernel in the half-space with the homogeneous Neu-
mann boundary condition which takes the form of

H̃ξ (t, x3, y) = Hξ(t, x3 − y) + Hξ(t, x3 + y) = 1√
κη0t

(
e
− |x3−y|2

4κη0 t + e
− |x3+y|2

4κη0 t

)
e−κη0|ξ |2t ,

(3.63)
and the residual kernel Rξ due to the boundary condition satisfies

|∂k
x3

Rξ (t, x3, y)| � bk+1e−θ0b(x3+y) + 1

(κη0t)(k+1)/2
e
−θ0

|x3+y|2
κη0t e− κη0|ξ |2 t

8 , (3.64)

with b = |ξ | + 1√
κη0

and Rξ(t, x3, y) = Rξ (t, x3 + y).

(2) (Formula of Gξ3) The Green’s function Gξ3 for the Stokes problem (3.56) and (3.58) is given 
by one dimensional Heat kernel in the half-space with the homogeneous Dirichlet boundary 
condition as

Gξ3(t, x3, y) = Hξ(t, x3 − y) − Hξ(t, x3 + y) = 1√
κη0t

(
e
− |x3−y|2

4κη0t − e
− |x3+y|2

4κη0t

)
e−κη0|ξ |2t .

(3.65)
(3) (Complex extension) The Green’s function Gξ has a natural extension to the complex domain 

Hλ for small λ > 0 with similar bounds in terms of Rey and Re z (cf. (3.16) in [56]). The 
solution ωξ to (3.50)-(3.51) in Hλ has a similar representation: for any z ∈ Hλ, let σ be the 
positive constant so that z ∈ ∂Hλ, then ωξ satisfies

ωξ (t, z) =
ˆ

∂Hσ

Gξ (t, z, y)ω0ξ (y)dy +
tˆ

0

ˆ

∂Hσ

Gξ (t − s, z, y)Nξ (s, y)dyds

−
tˆ

0

Gξ(t − s, z,0)(Bξ (s),0)ds.

The proof of Lemma 7 can be found in Proposition 3.3 and Section 3.3 of [56]. The next 
lemma concerns the convolution estimates.

Lemma 8. Let T > 0 be given. For any 0 ≤ s < t ≤ T and k ≥ 0, there exists a constant CT > 0
so that the following estimates hold: for Gξ∗ can be either Gξh or Gξ3
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(1) (L1
λ estimates)

k∑
j=0

∥∥∥∥∥∥(ζ(z)∂z)
j

∞̂

0

Gξ∗(t, z, y)gξ (y)dy

∥∥∥∥∥∥
L1

λ

≤ CT

k∑
j=0

∥∥∥(ζ(z)∂z)
j gξ

∥∥∥
L1

λ

, (3.66)

k∑
j=0

∥∥∥∥∥∥(ζ(z)∂z)
j

∞̂

0

Gξ∗(t − s, z, y)gξ (y)dy

∥∥∥∥∥∥
L1

λ

≤ CT

k∑
j=0

∥∥∥(ζ(z)∂z)
j gξ

∥∥∥
L1

λ

. (3.67)

(2) (L∞
λ,κt estimates)

k∑
j=0

∥∥∥∥∥∥(ζ(z)∂z)
j

∞̂

0

Gξ∗(t, z, y)gξ (y)dy

∥∥∥∥∥∥
L∞

λ,κt

≤ CT

k∑
j=0

∥∥∥(ζ(z)∂z)
j gξ

∥∥∥
L∞

λ,κ

,

(3.68)

k∑
j=0

∥∥∥∥∥∥(ζ(z)∂z)
j

∞̂

0

Gξ∗(t − s, z, y)gξ (y)dy

∥∥∥∥∥∥
L∞

λ,κt

≤ CT

k∑
j=0

√
t

s

∥∥∥(ζ(z)∂z)
j gξ

∥∥∥
L∞

λ,κs

.

(3.69)

(3) (L∞
λ,κ estimates) For either κ = 0 or κ > 0

k∑
j=0

∥∥∥∥∥∥(ζ(z)∂z)
j

∞̂

0

Gξ∗(t, z, y)gξ (y)dy

∥∥∥∥∥∥
L∞

λ,κ

≤ CT

k∑
j=0

∥∥∥(ζ(z)∂z)
j gξ

∥∥∥
L∞

λ,κ

, (3.70)

k∑
j=0

∥∥∥∥∥∥(ζ(z)∂z)
j

∞̂

0

Gξ∗(t − s, z, y)gξ (y)dy

∥∥∥∥∥∥
L∞

λ,κ

≤ CT

k∑
j=0

∥∥∥(ζ(z)∂z)
j gξ

∥∥∥
L∞

λ,κ

. (3.71)

The proof of (1) and (2) can be found in Propositions 3.7 and 3.8 of [56]. For the proof of (3) 
we refer to Lemma 12 of [30].

The next result concerns the estimates for the trace kernel.

Lemma 9. Let aξ (s) = [∂z(−	ξ)
−1gξ ] |z=0. Then for any 0 ≤ s < t ≤ T and k ≥ 0, we have the 

following

k∑
j=0

∥∥∥(ζ(z)∂z)
jGξh(t − s, z,0)aξ (s)

∥∥∥
L1

λ

�
∥∥gξ

∥∥
L1

λ
, (3.72)

k∑∥∥∥(ζ(z)∂z)
jGξh(t − s, z,0)aξ (s)

∥∥∥
L∞

λ,κ

� 1√
t − s

∥∥gξ

∥∥
L1

λ
. (3.73)
j=0
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We refer the proof to Lemma 13 of [30].

3.4. Proof of Theorem 9

Our goal is to show that ω(t) indeed belongs to C1([0, T ]; Bλ,κ ) without the initial layer 
under the compatibility condition (3.25), and that ∂2

t ω in Bλ,κt with the initial layer. And θ(t)

belongs to C2([0, T ]; Bλ,0) under the compatibility condition (3.25). The existence of ω(t) and 
θ(t) in their corresponding spaces under the assumption of Theorem 9 can be proved by following 
the argument of [56] and [58]. For the 2D case, Theorem 1.1 of [56] indeed ensures the existence 
of ω(t) in C1([0, T ]; Bλ,κt ) under the assumption of Theorem 9. Such a result follows from 
Lemma 3, Lemma 7, Lemma 8, Lemma 4, Lemma 5. A 3D result can be obtained analogously. 
Hence, it suffices to show the propagation of the analytic norms in (3.26).

The propagation estimate for the vorticity ω is analogous to [30]; we provide steps for reader’s 
convenience and refer to [30] for the detailed proof of some estimates when the same proof holds. 
The detailed proof will be given for the new estimate for the temperature fluctuation θ(t).

Step 1: Propagation of analytic norms for ω. It is convenient to define

|||ω(t)|||t := |||ω(t)|||∞,κ + |||ω(t)|||1. (3.74)

From the nonlinear iteration using the representation formula (3.54), by using Lemma 3 and 
Lemma 6, we obtain for sufficiently large γ0

sup
0≤t<

λ0
2γ0

|||ω(t)|||t �
∑

0≤|β|≤2

‖Dβω0‖∞,λ0,κ +
∑

0≤|β|≤2

‖Dβ(1 + |∇h|)ω0‖1,λ0 . (3.75)

We refer to [30] for the detailed proof.

Step 2: Propagation of analytic norms for ∂tω. The continuity of ω(t) in t follows from 
the mild solution form (3.54) of ωξ (t). We claim that ω(t) ∈ C1([0, T ]; Bλ,κ ) and moreover 
|||∂tω(t)|||t is bounded. To this end, we first derive the mild form of ∂tωξ from (3.54):

∂tωξ (t, x3) =
∞̂

0

Gξ(t, x3, y)∂tω0ξ (y)dy +
tˆ

0

∞̂

0

Gξ(t − s, x3, y)∂sNξ (s, y)dyds

−
tˆ

0

Gξ(t − s, x3,0)(∂sBξ (s),0)ds,

(3.76)

where we recall ∂tω0 in (3.22). To justify this formula, we first recall (3.56)-(3.58). We start with 
the horizontal part of the formula (3.76) for ∂tωξ,h. From Lemma 7, Gξh(t, x3, y) = Hξ(t, x3 −
y) + Hξ(t, x3 + y) + Rξ (t, x3 + y). Then by using the fact that H ′

ξ (t, ·) is an odd function, we 
see ∂x3Gξh(t, x3, y)|x3=0 = R′

ξ (t, y). Now we read (3.57) as

κη0R
′
ξ (t, y) + κη0|ξ |Gξh(t,0, y) = 0, κη0R

′
ξ (t, x3) + κη0|ξ |Gξh(t, x3,0) = 0, (3.77)
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where we have used that Hξ(t, ·) is an even function for the second relation. On the other hand, 
since we also have ∂y3Gξh(t, x3, y)|y=0 = R′

ξ (t, x3), we deduce that

κη0(∂y3 + |ξ |)Gξh(t, x3, y3) = 0, y3 = 0. (3.78)

It is straightforward to see 	ξGξh = ∂2
x3

Gξh − |ξ |2Gξh = ∂2
yGξh − |ξ |2Gξh.

We now take ∂t of (3.54) to obtain

∂t

∞̂

0

Gξh(t, x3, y)ω0ξ,h(y)dy =
∞̂

0

∂tGξ,h(t, x3, y)ω0ξ,h(y)dy

= −κη0∂yGξh(t, x3,0)ω0ξ,h(0) + κη0Gξh(t, x3,0)∂yω0ξ,h(0)

+
∞̂

0

Gξh(t, x3, y)κη0	ξhω0ξ,h(y)dy,

and

∂t

tˆ

0

∞̂

0

Gξh(t − s, x3, y)Nξ,h(s, y)dyds =
∞̂

0

Gξh(t, x3, y)Nξ,h(0, y)dy

+
tˆ

0

∞̂

0

Gξh(s, x3, y)∂tNξ,h(t − s, y)dyds,

∂t

tˆ

0

Gξh(t − s, x3,0)Bξ (s)ds = Gξh(t, x3,0)Bξ (0) +
tˆ

0

Gξh(t − s, x3,0)∂sBξ (s)ds.

Therefore we obtain

∂tωξ,h(t, x3) = − κη0∂yGξh(t, x3,0)ω0ξ,h(0) + κη0Gξh(t, x3,0)∂yω0ξ,h(0)

− Gξh(t, x3,0)Bξ (0) +
∞̂

0

Gξh(t, x3, y){κη0	ξω0ξ,h(y) + Nξ,h(0, y)}dy

+
tˆ

0

∞̂

0

Gξh(t − s, x3, y)∂sNξ,h(s, y)dyds −
tˆ

0

Gξh(t − s, x3,0)∂sBξ (s)ds.

(3.79)

Next we show that the first line in the right-hand side is 0. From (3.78)

−κη0∂yGξh(t, x3,0)ω0ξ,h(0) + κη0Gξh(t, x3,0)∂yω0ξ,h(0)

= Gξh(t, x3,0)κη0(|ξ | + ∂y)ω0ξ,h(0),
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and hence the first line of (3.79) reads

Gξh(t, x3,0)
[
κη0(|ξ | + ∂x3)ω0ξ,h(0) − Bξ (0)

]
, (3.80)

which is zero due to the first compatibility condition of (3.25). Recalling ∂tω0 in (3.22), the 
formula (3.76) for ∂tωξ,h has been established. We may follow the same procedure to verify the 
vertical part of the formula (3.76) for ∂tωξ,3 by noting that the second compatibility condition 
of (3.25) removes the term −κη0∂yGξ3(t, x3, 0)ω0ξ,3(0) which would create the initial layer 
otherwise because ∂yGξ3(t, x3, 0) does not vanish.

We may now repeat Step 1 for ∂tω using the representation formula (3.76). The estimates are 
obtained in the same fashion. For the nonlinear terms, since ∂tN = −u · ∇∂tω − ∂tu · ∇ω + ω ·
∇∂tu + ∂tω · ∇u, the structure of ∂tN with respect to ∂tω is consistent with the one of N with 
respect to ω and we can use the bilinear estimates (3.43) and (3.44). In summary, one can derive 
that for t <

λ0
2γ0

|||∂tω(t)|||1 �
∑

0≤|β|≤2

‖Dβ(1 + |∇h|)∂tω0‖1,λ0 + (t + 1

γ0
) sup

0≤s≤t

|||ω(s)|||s sup
0≤s≤t

|||∂tω(s)|||s ,

(3.81)

|||∂tω(t)|||∞,κ �
∑

0≤|β|≤2

‖Dβ∂tω0‖∞,λ0,κ + (
√

t + 1

γ0
) sup

0≤s≤t

|||ω(s)|||s sup
0≤s≤t

|||∂tω(s)|||s , (3.82)

which lead to the desired bounds for ∂tω(t) by choosing sufficiently large γ0.

Step 3: Propagation of analytic norms for ∂2
t ωξ . As a consequence of Step 2, ∂tωξ (t, x3)

solves the following system

∂2
t ωξ − κη0	ξ∂tωξ = ∂tNξ in R+, (3.83)

κη0(∂x3 + |ξ |)∂tωξ,h = ∂tBξ on x3 = 0, (3.84)

∂tωξ,3 = 0 on x3 = 0, (3.85)

with ∂tωξ |t=0 = ∂tω0ξ for ξ ∈ Z2 where ∂tω0 is defined in (3.22). Then as done in Step 2, by 
using the properties of Gξ and integration by parts and by the last compatibility condition of 
(3.25), we can derive the representation formula for ∂2

t ω:

∂2
t ωξ (t, x3) = (Gξh(t, x3,0)

[
κη0(|ξ | + ∂x3)∂tω0ξ,h(0) − ∂tBξ (0)

]
,0)

+
∞̂

0

Gξ(t, x3, y)∂2
t ω0ξ (y)dy +

tˆ

0

∞̂

0

Gξ(t − s, x3, y)∂2
s Nξ (s, y)dyds

−
tˆ

0

Gξ(t − s, x3,0)(∂2
s Bξ (s),0)ds,

(3.86)

where we recall ∂2
t ω0 in (3.22).
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Similar to the estimate in Step 2, the L1-based analytic norm is easily obtained as∣∣∣∣∣∣∣∣∣∂2
t ω(t)

∣∣∣∣∣∣∣∣∣
1

� κη0‖(1 + |∇h|3)∇∂tω0‖1,λ + ‖(1 + |∇h|4)∂tω0‖1,λ

∑
0≤|β|≤1

‖Dβ(1 + |∇h|3)∂tω0‖1,λ

+
∑

0≤|β|≤2

‖Dβ(1 + |∇h|)∂2
t ω0‖1,λ0 + (t + 1

γ0
) sup

0≤s≤t

|||ω(s)|||s sup
0≤s≤t

∣∣∣∣∣∣∣∣∣∂2
t ω(s)

∣∣∣∣∣∣∣∣∣
s

+ (t + 1

γ0
) sup

0≤s≤t

|||∂tω(s)|||2s .

(3.87)

For the L∞-based analytic norm bound, as we do not require higher order compatibility con-
dition for the horizontal vorticity, a new term representing the initial-boundary layer emerges and 
we obtain∣∣∣∣∣∣∣∣∣∂2

t ω(t)

∣∣∣∣∣∣∣∣∣∞,κt

� κη0

∑
0≤|β|≤2

‖∇β
h ∇∂tω0‖∞,λ + ‖(1 + |∇h|3)∂tω0‖1,λ

∑
0≤|β|≤1

‖Dβ(1 + |∇h|2)∂tω0‖1,λ

+
∑

0≤|β|≤2

‖Dβ∂2
t ω0‖∞,λ0,κt + (

√
t + 1

γ0
) sup

0≤s≤t

|||ω(s)|||s sup
0≤s≤t

∣∣∣∣∣∣∣∣∣∂2
t ω(s)

∣∣∣∣∣∣∣∣∣
s

+ (
√

t + 1

γ0
) sup

0≤s≤t

|||∂tω(s)|||2s .
(3.88)

We refer the detailed proof to [30].
Finally combining (3.87) and (3.88) and then choosing sufficiently large γ0 we derive a desired 

estimate for 
∣∣∣∣∣∣∂2

t ω(t)
∣∣∣∣∣∣

t
for t ∈ (0, λ0

2γ0
).

Altogether from (3.75), (3.81), (3.82), (3.87), and (3.88), we finish the proof of the estimate 
(3.26).

Step 4: Propagation of analytic |||·|||t norms for ∂�
t θ , � = 0, 1, 2.

Recall the norm in (3.16). We define

|||θ(t)|||t := |||θ(t)|||∞,0 + |||θ(t)|||1. (3.89)

Recall (3.60). We now follow the argument in Step 1, from (3.66), (3.67), and Lemma 6 we 
have ∑

0≤|β|≤2

‖Dβ(1 + |∇h|)θ(s)‖1,λ

�
∑

0≤|β|≤2

‖Dβ(1 + |∇h|)θ0‖1,λ +
tˆ ∑

0≤|β|≤2

‖Dβ(1 + |∇h|)M(s)‖1,λds.

(3.90)
0
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Similar to the computation in Lemma 6, and using Lemma 5 we bound the nonlinear M term as

∑
0≤|β|≤1

‖Dβ(1 + |∇h|)M(s)‖1,λ

�
∑

0≤|β|≤1

(‖∇h(1 + |∇h|)θ‖1,λ‖Dβ(1 + |∇h|)uh‖∞,λ

+ ‖∇hD
β(1 + |∇h|)θ‖1,λ‖(1 + |∇h|)uh‖∞,λ

+ ‖ζ∂z(1 + |∇h|)θ‖1,λ‖Dβ(1 + |∇h|)u3

ζ
‖∞,λ

+‖Dβζ∂z(1 + |∇h|)θ‖1,λ‖(1 + |∇h|)u3

ζ
‖∞,λ

)
.

(3.91)

Using Lemma 4 and the definition of |||·||| we have

tˆ

0

∑
0≤|β|≤1

‖Dβ(1 + |∇h|)M(s)‖1,λds �
tˆ

0

|||θ(s)|||s |||ω(s)|||s(1 + (λ0 − λ − γ0s)
−α)ds

�
(

t + 1

γ0

)
sup

0≤s≤t

|||θ(s)|||s sup
0≤s≤t

|||ω(s)|||s .
(3.92)

Next, by applying the analyticity recovery estimate (3) of Lemma 3, and choosing λ̃ =
λ+λ0−γ0s

2 we get for |β| = 2,

∑
|β|=2

‖Dβ(1 + |∇h|)M(s)‖1,λ �
1

λ̃ − λ

∑
0≤|β|≤1

‖Dβ(1 + |∇h|)M(s)‖1,λ̃

�
(

1 + (λ0 − λ − γ0s)
−(α+1)

)
|||θ(s)|||s |||ω(s)|||s ,

(3.93)

Therefore we derive that for t <
λ0
2γ0

and λ < λ0 − γ0t

tˆ

0

∑
|β|=2

‖Dβ(1 + |∇h|)M(s)‖1,λds

�
tˆ

0

(
1 + (λ0 − λ − γ0s)

−(α+1)
)

|||θ(s)|||s |||ω(s)|||sds

�
(

(λ0 − λ − γ0t)
−α 1

γ
+ t

)
sup |||θ(s)|||s sup |||ω(s)|||sds.

(3.94)
0 0≤s≤t 0≤s≤t
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Therefore, we conclude that, from (3.90) with (3.92), and (3.94), for t <
λ0
2γ0

,

|||θ(t)|||1 �
∑

0≤|β|≤2

‖Dβ(1 + |∇h|)θ0‖1,λ0 + (t + 1

γ0
) sup

0≤s≤t

|||θ(s)|||s sup
0≤s≤t

|||ω(s)|||s . (3.95)

The propagation of the L∞-based norm |||θ(t)|||∞ can be shown analogously. Again follow 
the argument in Step 1, from (3.70), (3.71), and Lemma 6 we have

∑
0≤|β|≤2

‖Dβθ(s)‖∞,λ,0 �
∑

0≤|β|≤2

‖Dβθ0‖∞,λ,0 +
tˆ

0

∑
0≤|β|≤2

‖DβM(s)‖∞,λ,0ds. (3.96)

Similar to the computation in Lemma 6, and using Lemma 5 we again bound∑
0≤|β|≤1

‖DβM(s)‖∞,λ,0 �
∑

0≤|β|≤1

(‖∇hθ‖∞,λ,0‖Dβuh‖∞,λ + ‖∇hD
βθ‖∞,λ,0‖uh‖∞,λ

+‖ζ∂zθ‖∞,λ,0‖Dβ u3

ζ
‖∞,λ + ‖Dβζ∂zθ‖∞,λ,0‖u3

ζ
‖∞,λ

)
.

(3.97)

Using Lemma 4 and the definition of |||·||| we have

tˆ

0

∑
0≤|β|≤1

‖DβM(s)‖∞,λ,0ds �
tˆ

0

|||θ(s)|||s |||ω(s)|||s(1 + (λ0 − λ − γ0s)
−α)ds

�
(

t + 1

γ0

)
sup

0≤s≤t

|||θ(s)|||s sup
0≤s≤t

|||ω(s)|||s .
(3.98)

Next, again by applying the analyticity recovery estimate (3) of Lemma 3, and choosing 
λ̃ = λ+λ0−γ0s

2 we get for |β| = 2,

∑
|β|=2

‖DβM(s)‖∞,λ,0 �
1

λ̃ − λ

∑
0≤|β|≤1

‖DβM(s)‖∞,λ̃,0

�
(

1 + (λ0 − λ − γ0s)
−(α+1)

)
|||θ(s)|||s |||ω(s)|||s ,

(3.99)

Therefore we derive that for t <
λ0
2γ0

and λ < λ0 − γ0t

tˆ

0

∑
|β|=2

‖DβM(s)‖∞,λ,0ds �
tˆ

0

(
1 + (λ0 − λ − γ0s)

−(α+1)
)

|||θ(s)|||s |||ω(s)|||sds

�
(

(λ0 − λ − γ0t)
−α 1

γ0
+ t

)
sup

0≤s≤t

|||θ(s)|||s sup
0≤s≤t

|||ω(s)|||sds.

(3.100)
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Therefore, we conclude that, from (3.96) with (3.98), and (3.100), for t <
λ0
2γ0

,

|||θ(t)|||∞,0 �
∑

0≤|β|≤2

‖Dβθ0‖∞,λ0,0 + (t + 1

γ0
) sup

0≤s≤t

|||θ(s)|||s sup
0≤s≤t

|||ω(s)|||s . (3.101)

From (3.95) and (3.101) and a standard continuity argument we conclude for sufficiently large 
γ0,

sup
0≤t<

λ0
2γ0

|||θ(t)|||t �
∑

0≤|β|≤2

‖Dβθ0‖∞,λ0,0 +
∑

0≤|β|≤2

‖Dβ(1 + |∇h|)θ0‖1,λ0 . (3.102)

Step 5: Propagation of analytic |||·|||z norms for ∂�
t θ , � = 0, 1, 2.

Next let’s investigate ∂x3θ . Taking ∂x3 to (3.60) gives

∂x3θξ (t, x3) =
∞̂

0

∂x3Gξ3(t, x3, y)θ0ξ (y)dy +
tˆ

0

∞̂

0

∂x3Gξ3(t − s, x3, y)Mξ (s, y)dyds. (3.103)

Now using Gξ3(t, x3, y) = Hξ(t, x3 −y) −Hξ(t, x3 +y) as in (3.65) (with η0 replaced by ηc), we 
have ∂x3Gξ3(t, x3, y) = −∂yHξ (t, x3 − y) − ∂yHξ (t, x3 + y). From the compatibility condition 
(3.25), θ0ξ (0) = 0. And from (3.61), Mξ(s, 0) = 0. Thus from integration by parts we get

∂x3θξ (t, x3) =
∞̂

0

(
Hξ(t, x3 − y) + Hξ(t, x3 + y)

)
∂yθ0ξ (y)dy

+
tˆ

0

∞̂

0

(
Hξ(t − s, x3 − y) + Hξ(t − s, x3 + y)

)
∂yMξ (s, y)dyds.

(3.104)

From the inequality

e
− |y−z|2

2Mκ(t−s) e−ᾱy = e
− 1

2 | y−z√
Mκ(t−s)

+ᾱ
√

Mκ(t−s)|2
e

M
2 ᾱ2κ(t−s)e−ᾱz ≤ e

M
2 ᾱ2κ(t−s)e−ᾱz � e−ᾱz,

(3.105)
we bound ∣∣∣∣∣∣

∞̂

0

(
Hξ(t, x3 − y) + Hξ(t, x3 + y)

)
∂yθ0ξ (y)dy

∣∣∣∣∣∣
�

∞̂

0

1√
κt

e− |y−z|2
Mκt e−ᾱyeᾱy∂yθ0ξ (y)dy

�e−ᾱx3‖∂x3θ0ξ‖L∞
λ,0

∞̂
1√
κt

e− |y−z|2
2Mκt dy � e−ᾱx3‖∂x3θ0ξ‖L∞

λ,0
.

(3.106)
0
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And similarly

∣∣∣∣∣∣
∞̂

0

(
Hξ(t − s, x3 − y) + Hξ(t − s, x3 + y)

)
∂yMξ (s, y)dy

∣∣∣∣∣∣� e−ᾱx3‖∂x3Mξ(s)‖L∞
λ,0

(3.107)

Therefore from (3.104), (3.106), (3.107), and taking summation in ξ ∈ Z2, we get
‖∂x3θ(t, x3)‖∞,λ,0 � ‖∂x3θ0‖∞,λ,0 + ´ t

0 ‖∂x3M(s)‖∞,λ,0ds. And similarly

∑
0≤|βh|≤1

‖Dβh

h ∂x3θ(t, x3)‖∞,λ,0 �
∑

0≤|βh|≤1

‖Dβh

h ∂x3θ0‖∞,λ,0

+
tˆ

0

∑
0≤|βh|≤1

‖Dβh

h ∂x3M(s)‖∞,λ,0ds.

(3.108)

We have

‖Dh∂x3M(s)‖∞,λ,0 ≤‖Dh∂x3u · ∇θ + ∂x3u · Dh∇θ‖∞,λ,0︸ ︷︷ ︸
(3.109)1

+ ‖Dhu · ∇∂x3θ + u · Dh∇∂x3θ‖∞,λ,0︸ ︷︷ ︸
(3.109)2

,
(3.109)

and we bound the two parts separately.
From (3.42), and that ‖∇hωh‖∞,λ � (1 + 1√

κ
)‖∇hωh‖∞,λ,κ � 1√

κ
, we have

(3.109)1 �

⎛
⎝ ∑

0≤|β|≤2

‖∇β
h ω(s)‖1,λ +

∑
0≤|βh|≤1

‖Dβh

h ωh(s)‖∞,λ

⎞
⎠ sup

0≤s≤t

|||θ(s)|||s

+
⎛
⎝ ∑

0≤|β|≤2

‖∇β
h ω(s)‖1,λ

⎞
⎠ (λ0 − λ − γ0s)

−α sup
0≤s≤t

|||θ(s)|||z

� 1√
κ

sup
0≤s≤t

|||ω(s)|||s sup
0≤s≤t

|||θ(s)|||s + (λ0 − λ − γ0s)
−α sup

0≤s≤t

|||ω(s)|||s sup
0≤s≤t

|||θ(s)|||z

� 1√
κ

+ (λ0 − λ − γ0s)
−α sup

0≤s≤t

|||θ(s)|||z,
(3.110)

where we have used (3.26), (3.27), and from previous steps sup0≤s≤t |||ω(s)|||s < ∞,
sup0≤s≤t |||θ(s)|||z < ∞. Next for (3.109)2, we use (3.42), and the analytic recovery lemma 
(Lemma 3 (3)) to get
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(3.109)2 �
∑
i=1,2

(‖(Dhui∂xi
∂x3θ)(s)‖∞,λ,0 + ‖(uiDh∂xi

∂x3θ)(s)‖∞,λ,0
)

+ ‖(ζ−1Dhu3ζ∂x3∂x3θ)(s)‖∞,λ,0 + ‖(ζ−1u3ζ∂x3Dh∂x3θ)(s)‖∞,λ,0

�

⎛
⎝ ∑

0≤|βh|≤1

‖Dβh

h uh(s)‖∞,λ

⎞
⎠

⎛
⎝ ∑

0≤|βh|≤1

‖∇hD
βh

h ∂x3θ(s)‖∞,λ,0

⎞
⎠

+
⎛
⎝ ∑

0≤|βh|≤1

‖ζ−1D
βh

h u3(s)‖∞,λ

⎞
⎠

⎛
⎝ ∑

0≤|βh|≤1

‖ζ∂x3D
βh

h ∂x3θ(s)‖∞,λ,0

⎞
⎠

�

⎛
⎝ ∑

0≤|β|≤2

‖∇β
h ωh(s)‖1,λ +

∑
0≤|βh|≤1

‖Dβh

h ω(s)‖1,λ

⎞
⎠ 1

λ̃ − λ

∑
0≤|βh|≤1

‖Dβh

h ∂x3θ(s)‖∞,λ̃,0

�(λ0 − λ − γ0s)
−(α+1) sup

0≤s≤t

|||ω(s)|||s sup
0≤s≤t

|||θ(s)|||z

�(λ0 − λ − γ0s)
−(α+1) sup

0≤s≤t

|||θ(s)|||z,
(3.111)

where as before, we have chosen λ̃ = λ+λ0−γ0s
2 , so λ̃ − λ = λ0−γ0s−λ

2 = λ0 − γ0s − λ̃. Thus 
combining (3.108), (3.110), and (3.111) we get

∑
0≤|βh|≤1

‖Dβh

h ∂x3θ(t, x3)‖∞,λ,0

�
∑

0≤|βh|≤1

‖Dβh

h ∂x3θ0‖∞,λ,0 +
tˆ

0

1√
κ

ds +
⎛
⎝ tˆ

0

(λ0 − λ − γ0s)
−αds

⎞
⎠ sup

0≤s≤t

|||θ(s)|||z

+
⎛
⎝ tˆ

0

(λ0 − λ − γ0s)
−(α+1)ds

⎞
⎠ sup

0≤s≤t

|||θ(s)|||z

�
∑

0≤|βh|≤1

‖Dβh

h ∂x3θ0‖∞,λ,0 + t√
κ

+
(

1

γ0
+ (λ0 − λ − γ0t)

−α 1

γ0

)
sup

0≤s≤t

|||θ(s)|||z.

(3.112)

Therefore we conclude that from (3.17), (3.112), for sufficiently large γ0,

sup
0≤t≤ λ0

2γ0

|||θ(t)|||z �
∑

0≤|βh|≤1

‖Dβh

h ∂x3θ0‖∞,λ0,0 + 1√
κ

. (3.113)

This proves the bound for ∂x3θ in (3.28).
Next, we look at ∂tθ . For the propagation of analytic norms |||∂t θ |||t , we follow the argument 

in Step 2. Taking ∂t of (3.60) and using integration by parts, from (3.56), (3.58), we achieve
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∂t θξ (t, x3) =κηc∂yGξ3(t, x3,0)θ0ξ (0) +
∞̂

0

Gξ3(t, x3, y)
(
κηc(−|ξ |2 + ∂2

y )θ0ξ + Mξ(0, y)
)

dy

+
tˆ

0

∞̂

0

Gξ3(t − s, x3, y)∂sMξ (s, y)dyds.

(3.114)

Recalling ∂tθ0 in (3.22), and the compatibility condition (3.25). we get

∂t θξ (t, x3) =
∞̂

0

Gξ3(t, x3, y)∂t θ0ξ dy +
tˆ

0

∞̂

0

Gξ3(t − s, x3, y)∂sMξ (s, y)dyds. (3.115)

With this representation formula we can repeat the estimate earlier in this step in the same fash-
ion. For the nonlinear terms, since ∂tM = −u ·∇∂t θ −∂tu ·∇θ , we can use the bilinear estimates 
(3.43), (3.110), and (3.111) in the same way to derive that for t <

λ0
2γ0

|||∂t θ(t)|||1 �
∑

0≤|β|≤2

‖Dβ(1 + |∇h|)∂t θ0‖1,λ0

+ (t + 1

γ0
)

(
sup

0≤s≤t

|||ω(s)|||s sup
0≤s≤t

|||∂t θ(s)|||s + sup
0≤s≤t

|||∂tω(s)|||s sup
0≤s≤t

|||θ(s)|||s
)

,

(3.116)

|||∂t θ(t)|||∞,0 �
∑

0≤|β|≤2

‖Dβ∂tθ0‖∞,λ0,0

+(t + 1

γ0
)

⎛
⎝ ∑

�=0,1

sup
0≤s≤t

∣∣∣∣∣∣∣∣∣∂�
t ω(s)

∣∣∣∣∣∣∣∣∣
s

⎞
⎠

⎛
⎝ ∑

�=0,1

sup
0≤s≤t

∣∣∣∣∣∣∣∣∣∂�
t θ(s)

∣∣∣∣∣∣∣∣∣
s

⎞
⎠ , (3.117)

which lead to the desired bounds for ∂tθ(t) in (3.27) by choosing sufficiently large γ0.
For the propagation of the norm |||∂t θ |||z, we follow the argument in the estimate of |||θ |||z. 

Taking ∂x3 to (3.115) and from (3.25), (3.61), we have ∂tθ0ξ (0) = 0, ∂tMξ (0) = 0. Thus from 
integration by parts we can follow the argument from (3.103)-(3.108) to get

∑
0≤|βh|≤1

‖Dβh

h ∂x3∂t θ(t, x3)‖∞,λ,0 �
∑

0≤|βh|≤1

‖Dβh

h ∂x3∂t θ0‖∞,λ,0

+
tˆ

0

∑
0≤|βh|≤1

‖Dβh

h ∂x3∂tM(s)‖∞,λ,0ds.

Then following the argument from (3.110)-(3.112) we get
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∑
0≤|βh|≤1

‖Dβh

h ∂x3∂t θ(t, x3)‖∞,λ,0

�
∑

0≤|βh|≤1

‖Dβh

h ∂x3∂t θ0‖∞,λ,0 +
tˆ

0

1√
κ

ds

⎛
⎝ sup

0≤s≤t

∑
�=0,1

∣∣∣∣∣∣∣∣∣∂�
t ω(s)

∣∣∣∣∣∣∣∣∣
s

⎞
⎠

⎛
⎝ sup

0≤s≤t

∑
�=0,1

∣∣∣∣∣∣∣∣∣∂�
t θ(s)

∣∣∣∣∣∣∣∣∣
s

⎞
⎠

+
⎛
⎝ tˆ

0

(λ0 − λ − γ0s)
−αds

⎞
⎠

⎛
⎝ sup

0≤s≤t

∑
�=0,1

∣∣∣∣∣∣∣∣∣∂�
t ω(s)

∣∣∣∣∣∣∣∣∣
s

⎞
⎠

⎛
⎝ sup

0≤s≤t

∑
�=0,1

∣∣∣∣∣∣∣∣∣∂�
t θ(s)

∣∣∣∣∣∣∣∣∣
z

⎞
⎠

+
⎛
⎝ tˆ

0

(λ0 − λ − γ0s)
−(α+1)ds

⎞
⎠

⎛
⎝ sup

0≤s≤t

∑
�=0,1

∣∣∣∣∣∣∣∣∣∂�
t ω(s)

∣∣∣∣∣∣∣∣∣
s

⎞
⎠

⎛
⎝ ∑

�=0,1

sup
0≤s≤t

∣∣∣∣∣∣∣∣∣∂�
t θ(s)

∣∣∣∣∣∣∣∣∣
z

⎞
⎠

�
∑

0≤|βh|≤1

‖Dβh

h ∂x3∂t θ0‖∞,λ,0 + t√
κ

+
(

1

γ0
+ (λ0 − λ − γ0t)

−α 1

γ0

)
sup

0≤s≤t

|||∂t θ(s)|||z,

which lead to the desired bounds for ∂x3∂t θ(t) in (3.28) by choosing sufficiently large γ0.
The propagation of analytic norms for ∂2

t θ follows in the same way. From the compatibility 
condition (3.25) we get

∂2
t θ(t, x3) =

∞̂

0

Gξ3(t, x3, y)∂2
t θ0ξ dy +

tˆ

0

∞̂

0

Gξ3(t − s, x3, y)∂2
s Mξ (s, y)dyds. (3.118)

Using the bilinear estimate on ∂2
t M we derive that for t <

λ0
2γ0

∣∣∣∣∣∣∣∣∣∂2
t θ(t)

∣∣∣∣∣∣∣∣∣
1
�

∑
0≤|β|≤2

‖Dβ(1 + |∇h|)∂2
t θ0‖1,λ0 + (t + 1

γ0
) sup

0≤s≤t

|||∂tω(s)|||s sup
0≤s≤t

|||∂t θ(s)|||s

+ (t + 1

γ0
)

(
sup

0≤s≤t

|||ω(s)|||s sup
0≤s≤t

∣∣∣∣∣∣∣∣∣∂2
t θ(s)

∣∣∣∣∣∣∣∣∣
s
+ sup

0≤s≤t

|||∂tω(s)|||s sup
0≤s≤t

|||∂t θ(s)|||s
)

, (3.119)

∣∣∣∣∣∣∣∣∣∂2
t θ(t)

∣∣∣∣∣∣∣∣∣∞,0
�

∑
0≤|β|≤2

‖Dβ∂2
t θ0‖∞,λ0,0 + (t + 1

γ0
) sup

0≤s≤t

|||∂tω(s)|||s sup
0≤s≤t

|||∂t θ(s)|||s

+ (t + 1

γ0
)

(
sup

0≤s≤t

|||ω(s)|||s sup
0≤s≤t

∣∣∣∣∣∣∣∣∣∂2
t θ(s)

∣∣∣∣∣∣∣∣∣
s
+ sup

0≤s≤t

|||∂tω(s)|||s sup
0≤s≤t

|||∂t θ(s)|||s
)

, (3.120)

which lead to the desired bounds for ∂2
t θ(t) in (3.27) by choosing sufficiently large γ0.

Taking ∂x3 to (3.118) and using (3.25), (3.61), we have ∂2
t θ0ξ (0) = 0, ∂2

t Mξ (0) = 0. Thus 
from integration by parts we again follow the argument from (3.103)-(3.108) to get
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∑
0≤|βh|≤1

‖Dβh

h ∂x3∂
2
t θ(t, x3)‖∞,λ,0 �

∑
0≤|βh|≤1

‖Dβh

h ∂x3∂
2
t θ0‖∞,λ,0

+
tˆ

0

∑
0≤|βh|≤1

‖Dβh

h ∂x3∂
2
t M(s)‖∞,λ,0ds.

Then following the argument from (3.110)-(3.112) we get∑
0≤|βh|≤1

‖Dβh

h ∂x3∂
2
t θ(t, x3)‖∞,λ,0

�
∑

0≤|βh|≤1

‖Dβh

h ∂x3∂
2
t θ0‖∞,λ,0

+
tˆ

0

(
1√
κ

+ 1√
κs

)
ds

(
sup

0≤s≤t

2∑
�=0

∣∣∣∣∣∣∣∣∣∂�
t ω(s)

∣∣∣∣∣∣∣∣∣
s

)(
sup

0≤s≤t

2∑
�=0

∣∣∣∣∣∣∣∣∣∂�
t θ(s)

∣∣∣∣∣∣∣∣∣
s

)

+
⎛
⎝ tˆ

0

(λ0 − λ − γ0s)
−αds

⎞
⎠(

sup
0≤s≤t

2∑
�=0

∣∣∣∣∣∣∣∣∣∂�
t ω(s)

∣∣∣∣∣∣∣∣∣
s

)(
sup

0≤s≤t

2∑
�=0

∣∣∣∣∣∣∣∣∣∂�
t θ(s)

∣∣∣∣∣∣∣∣∣
z

)

+
⎛
⎝ tˆ

0

(λ0 − λ − γ0s)
−(α+1)ds

⎞
⎠(

sup
0≤s≤t

2∑
�=0

∣∣∣∣∣∣∣∣∣∂�
t ω(s)

∣∣∣∣∣∣∣∣∣
s

)(
2∑

�=0

sup
0≤s≤t

∣∣∣∣∣∣∣∣∣∂�
t θ(s)

∣∣∣∣∣∣∣∣∣
z

)

�
∑

0≤|βh|≤1

‖Dβh

h ∂x3∂
2
t θ0‖∞,λ,0 + t + √

t√
κ

+
(

1

γ0
+ (λ0 − λ − γ0t)

−α 1

γ0

)
sup

0≤s≤t

∣∣∣∣∣∣∣∣∣∂2
t θ(s)

∣∣∣∣∣∣∣∣∣
z
.

which lead to the desired bounds for ∂x3∂
2
t θ(t) in (3.28) by choosing sufficiently large γ0.

Step 6: Estimate (1), vorticity estimates. Both (3.29) and (3.30) are direct consequences of 
(3.26). To show (3.31), we first note that the boundedness of ω(t) norms implies |∂x3ωξ (t, x3)| �
e−ᾱx3e−λ|ξ | for all |ξ | and x3 ≥ 1 (away from the boundary). When x3 ≤ 1, we draw on the equa-
tion (3.50) to rewrite ∂2

x3
ωξ,h = 1

κη0
{∂tωξ,h + κη0|ξ |2ωξ,h − Nξ,h} and the boundary condition 

(3.51):

∂x3ωξ,h(t, x3) = ∂x3ωξ,h(t,0) +
x3ˆ

0

∂2
x3

ωξ,h(t, y)dy

= −|ξ |ωξ,h(t,0) + 1

κη0
Bξ (t) +

x3ˆ

0

1

κη0
[∂tωξ,h + κη0|ξ |2ωξ,h − Nξ,h](t, y)dy.

(3.121)

We now appeal to |Bξ(t)| ≤ ‖Nξ(t)‖L1
λ

and 
∑

0≤�≤1(
∣∣∣∣∣∣∂�

t ω(t)
∣∣∣∣∣∣∞,κ

+ ∣∣∣∣∣∣∂�
t ω(t)

∣∣∣∣∣∣
1) < ∞ to ob-

tain that for all x3 ∈ R+
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|∂x3ωξ,h(t, x3)| � 1

κ
e−ᾱx3e−λ|ξ | for 0 < λ < λ0, (3.122)

which proves (3.31) for ωh and � = 0. The remaining case can be estimated similarly. Near O(1)

boundary, from (3.83) and (3.84), we derive

∂x3∂tωξ,h(t, x3)

= −|ξ |∂tωξ,h(t,0) + 1

κη0
∂tBξ (t) +

x3ˆ

0

1

κη0
[∂2

t ωξ,h + κη0|ξ |2∂tωξ,h − ∂tNξ,h](t, y)dy.

(3.123)

Together with 
∑

0≤�≤1

∣∣∣∣∣∣∂�
t ω(t)

∣∣∣∣∣∣∞,κ
+ ∑

0≤�≤2

∣∣∣∣∣∣∂�
t ω(t)

∣∣∣∣∣∣
1 < ∞ we deduce (3.31) for ωh and 

� = 1. For ω3 we use ∇ · ω = 0 to write ∂3ω3 = −∂1ω1 − ∂2ω2. Now (3.31) for ω3 follows from 
(3.29).

Step 7: Estimate (2), velocity estimates, except (3.35). From Lemma 4, the estimation of 
the velocity follows from φ estimate. From (|ξ |2 − ∂2

z )φξ = ωξ and φξ (0) = 0

φξ (z) =
zˆ

0

G−(y, z)ωξ (y)dy +
∞̂

z

G+(y, z)ωξ (y)dy,

with G±(y, z) := −1

2|ξ |
(
e±|ξ |(z−y) − e−|ξ |(y+z)

)
,

(3.124)

and we have

|ξ |βh |∂β3
z ∂�

t φξ (t, z)| �
ˆ

∂Hλ

|ξ ||β|−1e−|ξ ||y−z||∂�
t ωξ (t, y)||dy| for β3 ≤ 1. (3.125)

For |β| = |βh| + β3 = 1 we bound (3.125) by e−λ|ξ |‖∂�
t ω(t)‖1,λ. Then from (3.26) we conclude 

(3.32).
For |β| ≥ 2 and β3 ≤ 1, we bound (3.125) by

(3.125) �
ˆ

∂Hλ

|ξ ||β|−2|ξ |e−|ξ ||y−z|e−ᾱReye−λ|ξ |(1 + φκ(y) + φκt (y)
)|dy|

� |ξ ||β|−2e−λ|ξ |e−min(1, ᾱ
2 )x3

ˆ

∂Hλ

e− ᾱ
2 Rey

(
1 + φκ(y) + φκt (y)

)|dy|

� |ξ ||β|−2e−λ|ξ |e−min(1, ᾱ
2 )x3 for |β| ≥ 2, and β3 ≤ 1, and � = 0,1,2, and t ∈ [0, T ],

(3.126)

where we have used |ξ ||y − z| + ᾱ
2 Rey ≥ min(1, ᾱ2 )x3 for |ξ | ≥ 1 and (3.26).

For β3 = 2, 3 we use ∂2
z ∂�

t φξ = |ξ |2∂�
t φξ + ∂�

t ωξ . Then following the same argument of 
(3.126), we derive
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|ξ |βh |∂β3
z ∂�

t φξ (t, z)|
� |ξ ||βh|+2|∂β3−2

z ∂�
t φξ (t, z)| + |ξ |βh |∂β3−2

z ∂�
t ωξ (t, z)|

�

⎧⎪⎨
⎪⎩

(|ξ ||β|−2 + |ξ |βh)e−λ|ξ |e−min(1, ᾱ
2 )Re z(1 + φκ(z)) for � = 0,1, and β3 = 2,

(|ξ ||β|−2 + |ξ |βh)e−λ|ξ |e−min(1, ᾱ
2 )Re zκ−1 for � = 0,1, and β3 = 3,

(|ξ ||β|−2 + |ξ |βh)e−λ|ξ |e−min(1, ᾱ
2 )Re z(1 + φκ(z) + φκt (z)) for � = 2, and β3 = 2.

(3.127)

Finally from (3.126) and (3.127) we conclude (3.33) and (3.34).

Step 8: Estimate (3), temperature estimates. Both (3.36) and (3.37) are direct consequences 
of (3.27). To show (3.38), we use the equation (3.5) to get

∂2
x3

θ = 1

κηc

(∂t θ + u · ∇xθ) − ∂2
x1

θ − ∂2
x2

θ.

= 1

κηc

(
∂t θ + u1∂x1θ + u2∂x2θ + (

u3

ζ
)(ζ ∂x3θ)

)
− ∂2

x1
θ − ∂2

x2
θ

(3.128)

Then from (3.32), (3.36), and (3.37) we get

1∑
�=0

|∂�
t ∂2

x3
θ | � 1

κηc

[
2∑

�=1

|∂�
t θ | +

(
1∑

�=0

(|∂�
t u1| + |∂�

t u2| + |∂�
t (

u3

ζ
)|)

)

×
(

1∑
�=0

(|∂�
t ∂x1θ | + |∂�

t ∂x2θ | + |∂�
t (ζ ∂x3θ)|)

)]

+
1∑

�=0

(
|∂�

t ∂2
x1

θ | + |∂�
t ∂2

x2
θ |
)

� 1

κ

(
e−ᾱx3

)
+ e−ᾱx3 � κ− 3

2 e−ᾱx3 .

This proves (3.38).
The pressure estimate (3.39)-(3.41) can be found in Theorem 3 of [30]. The last estimate for 

∂�
t u for � = 1, 2 follows from the equation: ∂tu = κη0	u − u · ∇u − ∇p and ∂2

t u = κη0	∂tu −
u · ∇∂tu − ∂tu · ∇u − ∇∂tp. This finishes the proof.

4. Main theorem

In the last section we state and prove the precise statement of the main theorem which was 
informally stated as Theorem 1. Before that we first show the convergence of heat flow θ to θE

in L∞([0, T ]; L2(�)) in the following lemma.

Lemma 10 (Convergence of θ to θE). Let uE be the solution of the Euler equation (1.7), (1.8), 
(1.9), and u be the solution of the Navier-Stokes equation (1.12), (1.13), (1.14). For the following 
equations
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∂t θE + uE · ∇xθE = 0 in �,

∂tθ + u · ∇xθ − κηc	θ = 0 in �, θ = 0 on ∂�.
(4.1)

Assume θE(0, x) = θ(0, x) = θ0(x), and

θ0(x) = 0 on ∂�. (4.2)

Then

sup
0≤t≤T

‖θ − θE‖L2(�) → 0, as κ → 0. (4.3)

Proof. From (4.1) we have

θE(t, x) = θE(0,X(0; t, x)), (4.4)

where X(s; t, x) satisfies

d

ds
X(s; t, x) = uE(s,X(s; t, x)), X(t; t, x) = x.

From assumption (4.2) and uE · n = 0 on ∂�, we have {X(0; t, x) : x ∈ ∂�} ⊂ ∂�. Therefore

θE(t, x) = 0 on ∂�. (4.5)

For the solution uE(t, x) to the Euler equation (1.7), (1.8), (1.9), it is shown in [55] that for 
smooth initial data u0 satisfying ∇ · u0 = 0 and u0 · n = 0 on ∂�, there exists a time T > 0 such 
that uE is smooth on (0, T ). In particular,

sup
0<s<T

‖uE(s)‖C2(�) < ∞. (4.6)

Thus taking ∇x derivative to

X(s; t, x) = x −
tˆ

s

uE(τ,X(τ ; t, x))dτ, (4.7)

we have

|∇xX(s; t, x)| � 1 +
tˆ

s

‖∇xuE(τ)‖L∞|∇xX(τ ; t, x)|dτ.

From Gronwall’s inequality

sup
∗

sup |∇xX(s; t, x)| � eT sup0<s<T ∗ ‖∇xuE(s)‖L∞ < C. (4.8)

0≤s≤t≤T x∈�
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Similarly, taking ∇2
x to (4.7) and using (4.6), (4.8) we get

|∇2
xX(s; t, x)| �

tˆ

s

(
‖∇2

xuE(τ)‖L∞|∇xX(τ ; t, x)| + ‖∇xuE(τ)‖L∞|∇2
xX(τ ; t, x)|

)
dτ

�T C +
tˆ

s

|∇2
xX(τ ; t, x)|dτ

Using Gronwall we get

sup
0≤s≤t≤T ∗

sup
x∈�

|∇2
xX(s; t, x)| � T CeT < C1. (4.9)

Combining (4.4), (4.8), and (4.9) we get

sup
0≤t≤T ∗

sup
x∈�

(
|∇xθE(t, x)| + |∇2

xθE(t, x)|
)

�
(
‖∇xθ0‖L∞ + ‖∇2

xθ0‖L∞
)

sup
0≤t≤T ∗

sup
x∈�

(
|∇xX(s; t, x)| + |∇2

xX(s; t, x)|
)

< C2.

(4.10)

Now let w = θ − θE , then from (4.1), the equation for w is

∂tw + u · ∇w + (u − uE) · ∇θE − κηc	w = κηc	θE. (4.11)

From (4.1) and (4.5), w = 0 on ∂�. Thus from integration by parts one gets
´
�
(	w)w dx =

− ́
�

|∇w|2dx without the boundary term. Therefore the standard energy estimate 
´
�

(4.11) ·
w dx gives

1

2

d

dt
‖w‖2

L2 + κηc‖∇w‖2
L2 +

ˆ

�

(u · ∇w)w dx

= −
ˆ

�

(u − uE) · ∇θEw dx + κηc

ˆ

�

	θEw dx.

(4.12)

From ∇ · u = 0, and u = 0 on ∂�, we have

ˆ

�

(u · ∇w)w dx = 1

2

ˆ

�

u · ∇(w2) dx = −1

2

ˆ

�

(∇ · u)w2 dx = 0.

Now we bound the terms on the RHS of (4.12). Using (4.10) we have

ˆ

�

|(u−uE) · ∇θEw|dx � ‖∇θE‖L∞
(
‖u − uE‖2

L2 + ‖w‖2
L2

)
� ‖u−uE‖2

L2 +‖w‖2
L2, (4.13)

and
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κηc

ˆ

�

|	θEw|dx � (κηc)
2‖	θE‖2

L2 + ‖w‖2
L2 � κ2 + ‖w‖2

L2 . (4.14)

Now collect (4.13), (4.14), (4.12) gives

d

dt
‖w‖2

L2 � ‖w‖2
L2 + ‖u − uE‖2

L2 + κ2,

Therefore by Gronwall’s inequality

sup
0≤t≤T

‖w‖2
L2 � eT

(
‖u − uE‖2

L2 + κ2
)

→ 0, as κ → 0. �
Finally we prove the main theorem of the paper through combining separate estimates we 

established in different sections of the paper.

Theorem 10 (Main Theorem). Let � be a upper half space in 3D:

� := T 2 ×R+ � (x1, x2, x3), where R+ := {x3 ∈R : x3 > 0},
and T is the periodic interval (−π,π).

(4.15)

Suppose an initial velocity field uin is divergence-free

∇x · uin = 0 in �, (4.16)

the corresponding initial vorticity ωin = ∇x × uin and the initial heat θin satisfy

ωin, θin ∈ Bλ0,κ , (4.17)

with the real analytic space Bλ0,κ defined in (3.12) for some λ0 > 0, such that (3.23), (3.24)
hold. Further we assume that ωin, θin satisfies the compatibility conditions (3.25) on ∂�. Then 
there exists a unique real analytic solution (u(t, x), θ(t, x)) to the Navier-Stokes-Fourier flow 
(1.12)-(1.17) in [0, T ] × �, while T > 0 only depends on λ0 and the size of the initial data as in 
(3.23), (3.24).

Choosing a pressure p(t, x) such that p(t, x) → 0 as x3 → ∞, and setting the first order and 
the second order correction terms f1, f2 as (2.1)-(2.4), we also choose ε and κ in the relation of 
(2.195). Assume that an initial datum for the remainder fR,in satisfies (2.196), then for the given 
T > 0, we construct a unique solution fR(t, x, v) of the form of

F = μ + εf1
√

μ + ε2f2
√

μ + ε3/2fR
√

μ in [0, T ] × � ×R3,

which solves the Boltzmann equation (1.1) and the diffuse reflection boundary condition (1.11)
with the scale of (1.5), (1.6), (2.195), and satisfies the initial condition

F |t=0 = μ + ε
√

μf1|t=0 + ε2√μf2|t=0 + ε3/2√μfR,in,

such that, for each ε and κ of (2.195),
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sup
0≤t≤T

∥∥∥∥F(t, x, v) − μ(v)

ε
√

μ(v)
− f1

∥∥∥∥
L2(�×R3)

� exp
(−C(T + 1)

4κ

)
for κ � 1. (4.18)

Moreover. let uE(t, x), θE(t, x) be the unique solution of the incompressible Euler equations 
under heat transfer (1.7)-(1.10) with the initial condition (uE, θE)|t=0 = (uin, θin) satisfying 
(4.16), (4.17). Then

sup
0≤t≤T

∥∥∥∥F(t, x, v) − μ(v)

ε
√

μ(v)
−

(
−θE(t, x) + uE(t, x) · v + θE(t, x)

|v|2 − 3

2

)√
μ(v)

∥∥∥∥
L2(�×R3)

−→ 0

as ε → 0.

Proof. The existence of the Navier-Stokes-Fourier system follows from Theorem 9. For the 
remaining assertions, we note that all the estimates (3.32)-(3.35) of Theorem 9 ensure the condi-
tions of Theorem 8 with P = 1

2 . Therefore (4.18) follows directly as a consequence of Theorem 8
and Theorem 9. As for the incompressible Euler limit, note that

F(t, x, v) − μ(v)

ε
√

μ(v)
−

(
−θE + uE · v + θE

|v|2 − 3

2

)√
μ

= [F(t, x, v) − μ(v)

ε
√

μ(v)
− f1

]+ [
f1 −

(
−θE + uE · v + θE

|v|2 − 3

2

)√
μ
]
.

The first term can be bounded as in (4.18). The second term converges to 0 as κ ↓ 0 from Theo-
rem 9, Lemma 10, and the famous Kato’s condition for vanishing viscosity limit in [35]. �
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