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AbstractÐThe microservice architecture is an architectural style for
designing applications that supports a collection of fine-grained and
loosely-coupled services, called microservices, enabling independent
development and deployment. An undesirable complexity that results
from this style is the large state space of possibly inter-dependent
configuration parameters (of the constituent microservices) which
have to be tuned to improve application performance.

This paper investigates optimization algorithms to address the
problem of configuration tuning of microservices applications. To
address the critical issue of large state space, practical dimensionality
reduction strategies are developed based on available system
characteristics. The evaluation of the optimization algorithms
and dimensionality reduction techniques across three popular
benchmarking applications highlights the importance of configuration
tuning to reduce tail latency (by as much as 46%). A detailed analysis
of the efficacy of different dimensionality reduction techniques in
capturing the most important parameters is performed using ANOVA
techniques. Results show that the right combination of optimization
algorithms and dimensionality reduction can provide substantial
latency improvements by identifying the right subset of parameters
to tune, reducing the search space by as much as 83%.

Index TermsÐML for systems, microservices, configuration tuning,
optimization, dimensionality reduction, tail latency

I. INTRODUCTION

The emerging microservice architecture allows applications to

be decomposed into different, interacting modules, each of which

can then be independently managed for agility, scalability, and

fault isolation [1], [2]. Each module or microservice typically

implements a single business capability with inter-microservice

communication enabled via Application Programming Interfaces

(APIs). Applications deployed using the microservice architecture

thus enable flexible software development.

The microservice architecture is especially well suited for

designing online, customer-facing applications where performance

and availability are paramount [3], [4]. For example, an online

application can be deployed as front-end microservices (e.g., Nginx),

a set of microservices that implement the logic of the application

each of which can have their own database (e.g., MongoDB)

and caching (e.g., Memcached) microservices. Consequently, an

application can have numerous microservices. Given the benefits

of the modular architecture, microservices architecture is widely

replacing existing deployments implemented using monolithic or

multi-tier architectures at Amazon, Netflix, and Twitter [1].

Despite the benefits of the microservice architecture, a specific

challenge that this distributed deployment poses is that of tuning

the configuration parameters of the constituent microservices.

A change in configuration parameters can substantially impact

application performance, motivating our investigation of

configuration tuning. For example, sweeping over the valid range

of values for the worker process parameter of the nginx [5]

microservice in the social networking application [1] (while

keeping the rest of the parameters at default) can provide up to 13%

improvement in latency over the default configuration. However,

joint optimization of all the application parameters can provide

46% latency improvement over the default configuration (see

Section IV). On the other hand, setting a sub-optimal (but still valid)

value for the worker process parameter of the nginx while setting

the rest of the parameters to the optimal values can deteriorate the

performance by up to 100× compared to the default configuration.

Tuning the parameters of monolithic or N-tier applications for

maximizing performance is already a difficult task [2], [6]±[10] (see

Section II). With microservice applications, configuration tuning

is especially complicated owing to the following challenges:

• Very large configuration space. Microservices applications have

hundreds to thousands of interacting microservices that each

have several parameters that can be configured [11]. Frameworks

that aid microservices development, such as Apache Thrift [12]

and gRPC [13], introduce additional parameters that impact

application performance. These parameters can take values that

are discrete, continuous, or categorical, complicating attempts

to optimize their values.

• Inter-dependent parameters. The parameter setting of a microser-

vice can influence the optimal value of a different parameter of

the same microservice. As a result, the numerous parameters of a

given microservice cannot be independently optimized (see Sec-

tion IV). For example, for MongoDB, a low value of the cache size

parameter can amplify the number of concurrent read transactions,

making it difficult to independently tune the latter parameter [14].

• Dependency between parameters of different microservices. The

dependency between parameter values extends beyond a single mi-

croservice; parameters of upstream services are often dependent

on the parameter settings of downstream services [8]. For example,

the thread pool size of a microservice may dictate how many

concurrent requests are sent to the downstream microservice.

• Interference among colocated microservices. Microservices,

typically deployed as containers, can be colocated on the same

physical host. Due to potential resource contention, the resource

configuration of a microservice can impact the performance of

other colocated microservices. For example, the cache size of two

colocated caching microservices should not be set independently

as they share the host’s memory resources.

• Non-linear relationship between microservices parameters

and performance. Application performance need not be

monotonically or linearly dependent on parameter values, making

it difficult to determine optimal configuration parameter settings.



Fig. 1: Comparison of 95th percentile of latency for the social

networking application [1] under (i) default configuration values

(Default), (ii) the configuration used by DeathStarBench benchmark

developers [15] (DC), and the configuration found by the best opti-

mization technique among those we explored (iii) with dimensional-

ity reduction (considering only a subset of microservices for tuning)

and (iv) without any reduction (tuning all microservices). The right

y-axis shows the number of microservices tuned for (iii) and (iv).

The thread pool size parameter is a classic example whereby a low

value results in under-utilization of the CPU and a very high value

results in contention for network sockets or CPU resources [2].

There is little prior work on the specific problem of configuration

tuning of microservices, and that work relies on empirically

exploring the configuration setting of only specific parameters of

just stateless microservices [2] . There are, however, prior works that

focus on optimizing the configuration of individual services [9], [16],

but as explained above, the dependencies between the parameters

of microservices makes it infeasible to optimize them in isolation.

This paper explores the problem of configuration tuning of mi-

croservices applications. To address the problem of inter-dependent

parameters, we consider joint optimization of the parameter space.

We conduct an extensive experimental investigation of six black-box

optimization algorithms with the goal of minimizing the tail latency

of a given microservice application deployment. As shown in

Figure 1, the best optimization algorithm can significantly improve

application tail latency (95th percentile), by as much 46% and 43%,

compared to the default configuration setting and the suggested

configuration in prior work [1], respectively. We also find that

combining different algorithms can result in efficient solutions that

quickly (with few exploration points) explore the state space and

provide significant latency improvements.

To address the key challenge of a large configuration space when

jointly tuning microservices applications, we investigate various

dimensionality reduction approaches to identify a subset of microser-

vices that are most likely to impact end-to-end application latency.

As illustrated by the two rightmost bars in Figure 1, by employing

dimensionality reduction, we can achieve significant improvement in

tail latency while only having to tune about 18% of all microservices.

In fact, within a given budget on the number of iterations of the

optimization algorithm, optimizing with dimensionality reduction

can further improve tail latency (by about 6.5%) compared to when

optimizing without any dimensionality reduction since the search

space is reduced, thereby aiding the optimization.

Our investigation of different algorithms reveals that the optimal

choice is application-dependent. While the hybrid algorithm we

devise performs best for the social networking and the train ticket

applications, Bayesian optimization performs best for media

microservices application, in terms of tail latency reduction. In

terms of time taken to run the algorithm, dynamically dimensioned

search (DDS) performs the best.

This paper makes the following contributions:

• We formulate configuration tuning of microservices application as

a joint optimization problem, making it amenable to optimization

algorithms. Contrary to serial tuning, this provides an opportunity

for the optimization algorithms to learn the dependencies among

parameters of the same microservices and across microservices.

• We implement a framework [17] to experimentally explore and

evaluate the configuration space of parameters for microservices.

The framework is fully automated and can be integrated with any

optimization technique.

• We implement six different representative optimization algorithms

using open-sourced libraries and compare their efficacy in choos-

ing the best configuration with respect to minimizing the applica-

tion tail latency. To assess the optimization algorithms’ applicabil-

ity in practice, we also analyze their convergence and overhead.

• Based on our analysis of different algorithms, we design and eval-

uate an efficient hybrid algorithm that combines the strengths of

different algorithms. In particular, the algorithm quickly explores

the state space using heuristic-based search and then uses the

results of this search to initialize a model-based search algorithm.

• For scalability, we investigate different approaches, including

critical path and variability tracking, to reduce the overhead

of optimization by limiting the set of microservices whose

parameters will be configured. We analyze the ability of these

different techniques to capture the most important parameters

that impact application tail latency.

• We use functional analysis of variance (fANOVA) [18] to find

the most important parameters and analyze the values assigned to

them by different optimization algorithms. We also examine the

change in service time of individual microservices to assess the

impact of optimization on different request types in the workload.

II. BACKGROUND AND PRIOR WORK

Microservice architecture is a style of architecture where the

application is implemented as a set of loosely coupled services,

called microservices. This shift in design of distributed applications

requires revisiting some of the problems that have been addressed for

monolithic and N-tier architectures. Resource management [19] and

bottleneck mitigation [20] for microservices applications are some

of the problems that have garnered significant attention from the

research and development community. We take a different approach

to improving the performance of distributed applications imple-

mented using a microservices architecture. In particular, we tackle

the problem of tuning the parameters of microservices to improve

the performance metric of interest (e.g., tail latency or throughput).

The general problem of tuning parameters of computer systems

has gained significant attention [9], [10], [16]. However, these works

do not focus on the specific problem of microservices configuration

where several, inter-dependent parameter configurations have to



be tuned. The one extensive prior work on configuration tuning

of microservices that we are aware of is by Sriraman et al. [2].

In this work, the authors explore the tuning of a small subset of

microservices parameters, limited to thread pool size and threading

model. However, the state space of configuration parameters for

microservices is very large, as discussed in Section I, and hence

a more comprehensive investigation of parameters is required for

performance optimization of microservices applications.

A naive approach to address the large state space of configurations

for microservices applications is to tune one microservice at a

time. While this approach significantly reduces the state space

dimensionality for configuration tuning, it does proportionally

increase the tuning effort. Further, this serial tuning approach cannot

capture the complex relationship between different parameters and

the cascading effects between different microservices [20], [21].

Based on the above discussion, we argue that there is a need

to investigate joint optimization of the microservices’ parameters.

The joint optimization is needed in order to capture the impact of

multiple parameters of one microservice on its performance as well

as the impact of a microservice’s parameters on the performance

of other microservices. Further, mechanisms are needed to reduce

the configuration state space, given the numerous parameters and

microservices employed by modern applications.

We now briefly discuss prior works related to the general

problem of configuration tuning in systems before we formalize

our specific problem in Section III-A.

Application configuration tuning. There has been considerable

research in parameter tuning for individual applications, such as

Apache web server [8], Memcached [22], database [9] and storage

systems [16], [23], etc. While the above works can be used to tune

individual microservices in isolation, the dependencies between

microservices necessitates global optimization across microservices.

SmartConf [7] is a control-theoretic framework that automatically

sets and dynamically adjusts parameters of software systems to op-

timize performance metrics while meeting the operating constraints

set by the user. However, SmartConf is only applicable to parameters

that have a linear relationship with performance; this is not necessar-

ily the case for parameters of microservices [2]. BestConfig [6] uses

sampling and search-based methods to tune parameters of software

systems. However, the sampling effort required increases exponen-

tially with the number of parameters, suggesting that BestConfig is

infeasible for microservices applications with a large configuration

space. Fekry et al. [24] concentrate on dynamically tuning config-

urations of data analytics frameworks for varying workloads and

environments. While online tuning is an interesting research direc-

tion, it significantly limits the number of parameters available for

(online) tuning. Alabed et al. [25] tune 10 parameters of RocksDB by

optimizing multiple objectives using Bayesian optimization. How-

ever, finding the low-level metrics and reducing the dimensionality

of each optimization task requires expert knowledge of the system

being tuned which is not feasible for microservices architecture due

to the variety of microservices that are part of each application.

Resource allocation tuning. Bilal et al. [26] perform an exhaustive

comparison of existing black-box techniques for the problem of

finding the best cloud configuration that minimizes the execution

time or cost. Vanir [21] optimizes the cloud configuration for

analytics clusters using Mondrian forest-based performance model

and transfer learning. OPTIMUSCLOUD [10] jointly optimizes

VM configurations and database configurations for cloud-deployed

database systems by training a performance prediction model.

CherryPick [27] uses Bayesian Optimization (BO) to build a

performance model for Big Data systems, which is then used to

find the best cloud configuration for these systems.

While some of the optimization algorithms explored in our

evaluation are similar to the ones employed by the above works,

we note that our focus is on tuning the parameters of the numerous

microservices that make up an application, as opposed to only

focusing on a handful of resource allocation parameters, such as

number of CPUs, memory capacity, etc.

Reducing the configuration space. Kanellis et al. [28] employ

learning-based techniques to find the most important parameters

of database systems that impact performance. Carver [29] employs

Latin Hypercube Sampling to explore the effect of different

parameters on storage system performance and uses the variance

in performance caused by a parameter as an indicator of the

parameter’s importance. As discussed in Section IV, focusing on

microservices on the critical path is a more effective approach.

III. PROBLEM FORMULATION AND SYSTEM DESIGN

In this section, we formulate the microservices configuration

setting problem as an optimization problem. We then describe

our system design for the automated framework (which we have

made publicly available [17]) that aids our experimental evaluation

(presented in Section IV).

A. Microservices configuration setting problem

Let f(c) denote the objective function (or performance metric)

for the microservices application under the configuration c; here, c

is the (potentially large) vector of parameter settings for all tunable

parameters of all microservices. Note that a parameter refers to

a configurable option and a configuration is a combination of

parameter values. Let C denote the set of all configurations, i.e.,

all feasible values that vector c can take. Finally, let copt∈C denote

the configuration that minimizes the performance metric, f(). Thus,

copt=argminc∈Cf(c). We could consider metrics that need to be

maximized by minimizing the negative of the objective function. Our

problem statement is to find copt or a near-optimal configuration.

We focus on the realistic case where no assumptions can be made

on the structure of f() or on the availability of offline training data.

We further assert, for practical purposes, that the (near-)optimal

configuration should be determined in a reasonable amount of time.

While f() can represent any metric of interest, including

combinations of metrics, we consider the 95th percentile of

end-to-end application latency to be our metric, f(). We note that

customer-facing applications often employ such tail latency metrics

to assess application performance [3], [4].

Given the dependencies between parameters and the possible

non-linear relationship between performance and parameter values

(as described in Section I), it is unlikely that f() can be determined

or inferred accurately. Thus, classic convex optimization techniques

cannot be readily applied to determine copt. However, for a given
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Fig. 2: Illustration of our solution framework. f() is the objective

function or performance metric of interest and c(i) is the config-

uration setting for iteration i. The optimizer takes in the observed

objective function value for a configuration, f(c(i)), and outputs

the next configuration to employ, c(i + 1). The dimensionality

reduction module trims the configuration vector size to speed up the

optimization process. The controller interfaces with the application

and invokes the execution based on the required configuration.

c, the value of f(c) can be observed or measured by setting

the parameter values in c for the microservices and running an

experiment. This suggests that black-box optimization techniques,

that iteratively observe the value of f() at a given c and determine

the next configuration value c′ to explore, can be applied to find

copt or near-optimal c values.

B. Automated framework to aid optimization

Unlike prior works [16], [26] that run optimization algorithms

over readily available datasets, we evaluate the value of the objective

function, f(), by running an experiment. To streamline the iterative

exploration of configurations (for determining copt), we thus require

a robust framework that can automatically: (i) configure the param-

eters of the microservices selected by the dimensionality reduction

technique and run the application with these parameter settings, (ii)

collect the required metrics, and (iii) run the optimization algorithm

to obtain the next configuration to experiment with.

Figure 2 illustrates the design of our automated framework that

we use to conduct our experiments. The application deployment file

has information necessary to create the docker-compose files, viz.,

the list of microservices, their images, the host details, environment

variables, etc. The parameters file contains the list of parameters

being tuned and their range. The size of this list depends on the

dimensionality reduction method being employed. The controller

passes the value of the measured objective function, f(c(i)), of

the current iteration, i, and queries the optimizer for the next

configuration setting, c(i+1).
The optimizer, in its first iteration, queries the dimensionality

reduction module to obtain a subset of the microservices parameters

that will be subject to optimization. The dimensionality reduction

module uses the application deployment file, parameters file,

and the request traces to pass a reduced list of parameters to the

optimizer. The dimensionality reduction techniques are discussed in

Section IV-B2. The optimizer then generates, via the optimization

algorithm, the next configuration setting, c(i+1), for the reduced

list of parameters.

Using the details in the application deployment file and the

c(i + 1) configuration passed by the optimizer, the controller

generates docker-compose files on the fly with the necessary network

settings and mounts. The application is then deployed on the servers

using these docker-compose files and the client sends the workload

to the application. The request traces are collected by a tracing

framework and the latency metrics are calculated by the client.

These metrics are passed to the controller which then calculates the

objective function, f(c(i+1)), and repeats the process iteratively

until a good enough configuration is found or until an exploration

time limit is reached. Our framework supports any combination

of average, median, or tail latency for the objective function.

The framework currently supports automatic configuration

management for the most widely used microservices [30]:

Memcached, Redis, MongoDB, MySQL, Nginx, and microservices

implemented using the thrift framework. The parameters of some

of these microservices can be modified by creating a configuration

file (e.g., for Nginx) whereas others expect them as command line

arguments with varying syntax. The user can be agnostic to these

intricacies and treat all parameters similarly. The framework can

be employed for any microservices application consisting of the

supported microservices by including the application deployment

file for that application. Optimization algorithms can be added by

inheriting the Optimizer class and implementing its methods.

IV. EVALUATION

In this section, we first discuss our experimental setup and

methodology, and then present our experimental results. Our

evaluation goal is to (i) investigate the efficacy of various

optimization algorithms with respect to their running time and

their ability to improve tail latency by configuration tuning; and

(ii) investigate dimensionality reduction techniques that can speed

up the optimization algorithms in practice.

A. Experimental setup

We use a cluster with four servers, each with 24 (hyper)cores,

40 GB of memory, and 250GB of disk space. We deploy the

microservices of the application on these servers based on their

functionality: one hosts back-end microservices as is the practice in

industry [11], one server hosts front-end microservices, one hosts the

microservices that implement the logic, and one server is dedicated

for monitoring the microservices and the application performance.

We restrict monitoring services, Jaeger [31] with Elasticsearch [32]

back-end, to a different server to avoid interference with the

application. docker-compose is used to deploy the application and

overlay network connects the microservices across the servers.

Applications. We employ the social networking and media

microservices applications from the DeathStarBench benchmark

suite [1] and train ticket [33] application to evaluate the efficacy

of different black-box optimization algorithms.

The social networking application has 28 microservices that

together implement several features of real-world social networking

applications. The constituent microservices are Nginx, Memcached,

MongoDB, Redis, as well as microservices that implement the

logic of the application. The application workload consists of 10%



requests that create a post, 30% requests that read the timeline of

other users, and 60% requests that read the user’s own timeline.

The media microservices application implements a movie

review system and consists of 31 microservices. The constituent

microservices are similar to the ones in the social networking

application. The workload consists of 25% requests that add a

movie review, 70% requests that read a movie review, and 5%

requests that read the plot of the movie.

The train ticket application is a train ticket booking system

implemented using 41 microservices. In addition to the

microservices that are part of the social networking application,

this application also uses MySQL microservice. The application

workload consists of 50% of requests that search for a train between

two stations, and 50% of requests that reserve a train ticket.

We change the type of server for social networking and media mi-

croservices applications to TNonblockingServer. The Apache Thrift

C++ TNonblockingServer provides better performance and exposes

numerous settings for the developer to customize the server [12]. We

also make modifications to change the thread pool size dynamically

based on the value suggested by the optimizer for each iteration.

B. Evaluation methodology

For evaluation, we consider the 95th percentile of latency as

the performance metric; other latency metrics can be readily used

as well. For each microservice, we select at most five parameters

to tune; we refer to product documentation [5], [12], [34]±[36] to

identify the performance-impacting parameters. Our framework

supports parameters that can take continuous (e.g., factor parameter

of memcached), discrete (e.g., number of processes in Nginx), or

categorical values (e.g., maxmemory-policy in Redis). The range

of allowed values for each parameter is decided based on product

documentation (e.g., internal cache size of mongoDB) or the limits

of the hardware (e.g., number of threads in memcached).

We report results averaged across multiple experimental runs and

provide error bars where appropriate. Each run lasts for 20 minutes,

with the first few minutes (5 minutes for social networking and

media microservices and 10 minutes for train ticket) considered

as warm up until the cache hit rate stabilizes. Performance metrics

are collected after the warm up period.

1) Black-box optimization algorithms: We consider six existing

representative optimization algorithms in our evaluation, and

then propose a seventh hybrid algorithm based on our analysis

of the existing six algorithms. The first 2 are representative of

heuristic-based probabilistic algorithms, the next 2 are evolutionary

algorithms inspired by population-based biological evolution, and

the next 2 are sequential model-based optimization algorithms

that approximate the objective function with a cheaper, surrogate

function [37] to aid optimization. We use skopt [38], Hyperopt [39],

and Nevergrad [40] libraries to implement the algorithms. We also

compare the results of these algorithms with the best configuration

obtained by performing a random search of the configuration space.

Note that we also tried tuning one microservice at a time (as opposed

to a joint tuning), but the results are inferior and are so omitted.

Simulated Annealing (SA) [41] exploits the neighbourhood points

based on the value of the objective function at these points, with the

degree of exploration determined by a time-varying parameter that

decreases with each iteration (annealing). Since SA is known to be

better at global optimization than the hill climbing algorithm [41],

we do not evaluate the latter.

Dynamically Dimensioned Search (DDS) starts with an initial

configuration and perturbs the values of the parameters of the

configuration based on a perturbation factor [42]. With each

iteration, the probability of each parameter being included in the

optimization reduces uniformly, thereby reducing the search space.

Particle Swarm Optimization (PSO) [41] works by moving a

population (called swarm) of candidate solutions (called particles)

around the search space depending on the particle’s best-known

position and the global best position.

Genetic Algorithms (GA) [41] mimic natural selection by first

selecting a subset of candidate solutions based on the objective

function value and then randomly changing the configurations of

some parameters (mutation) and combining configurations of the

candidates (crossover) to generate new candidates.

Bayesian Optimization (BO) starts with a prior distribution of

the search space guided by the surrogate; we experiment with the

popular Gaussian Process (GP) [37], Gradient Boosted Regression

Trees (GBRT) [26], and Random Forests (RF) [26] surrogate

models. The posterior distribution is updated at each step of

exploration using Bayesian method.

Tree-structured Parzen Estimator (TPE) is similar to BO, but

models the likelihood and prior instead of the posterior [37].

Hybrid algorithm is a new algorithm that we construct by combining

the strengths of BO and DDS. BO models the relationship between

performance and the parameters to efficiently search for the optimal

configuration with a convergence rate that is dependent on the initial

samples [25]. On the other hand, DDS is a computationally efficient

heuristic-based search algorithm that performs well (See Section IV).

Since DDS is not model-based, it makes no attempt to learn about

the parameter space. With hybrid, we combine the light-weight

searching feature of DDS with the model-based searching feature

of BO. Specifically, the DDS algorithm is run for a fixed number of

iterations and the resulting best configurations are used as initial sam-

ples for the Bayesian algorithm with the popular Gaussian Process as

the surrogate model [21], [27]. By contrast, when not using hybrid,

the initial samples for Bayesian are (by default) randomly generated.

2) Dimensionality reduction strategies: If an application has m

microservices each with pi parameters (for i=1,2,...,m), then the

number of dimensions in a configuration vector c is n=
∑m

i=1
pi.

For the purpose of illustration, if each parameter can take v different

values, then the number of possible configurations is |C| = vn.

Clearly, the search space of configurations grows exponentially with

the number of microservices. To reduce the search space, we thus

consider strategies that allow us to focus our configuration tuning

effort on only a subset of the microservices. Another advantage of

dimensionality reduction is that several optimization algorithms,

such as Bayesian Optimization (BO), do not work well in high

dimensions (number of tunable parameters, in our case) [43]. We

note that our dimensionality reduction strategies have a different goal

than those used in the machine learning community since our focus

is on using system characteristics to reduce dimensions in a practical

manner. For example, Principal Component Analysis (PCA) [44]



can reduce the configuration space dimensions but would make it

difficult to reconstruct the configuration value after optimization.

1) Critical path. In the call graph of a request, the critical path is

the path formed by microservices that determine the latency of

the request. Tuning the parameters of the microservices that fall

on the critical path of a request is important as any performance

improvements in these microservices will reduce the end-to-end

latency of the request. Algorithm 1 provides an overview of our

critical path determination algorithm. The algorithm takes the

request traces as input T and outputs a list of microservices that

form the critical path of each trace. In summary, the algorithm

traverses the call graph of a request to find all the microservices

on the critical path that have non-negligible latency (at least 1ms).

We rely on the service time (or span) measurements provided

by Jaeger for each microservice to determine the critical path.

Using our algorithm, we identify microservices present on the

critical path of most of the request types for all applications.

Algorithm 1 Find microservices along the Critical Path.

1: Input: Request traces, T .

2: Output: List of microservices along the Critical Path.

3: criticalPathAll←∅
4: for t∈T do

5: currentCriticalPath← getCriticalPath(t.root)

6: append(criticalPathAll,currentCriticalPath)

7: procedure GETCRITICALPATH(node)

8: criticalPath←∅
9: if node.children is NULL then

10: lastChild = nextChild(node)

11: getCriticalPath(lastChild)

12: node.duration = updateDuration(node)

13: if node.duration>1ms then

14: append(criticalPath, node)

2) Bottlenecks. FIRM [19] uses a Support Vector Machine (SVM)

to detect microservices that could be potential bottlenecks for an

application. We train an SVM model using the publicly available

tracing data [45] for the social networking, media microservices,

and the train ticket applications. We use this model to predict

potential bottlenecks in all applications and tune only these.

3) Performance variance. Reducing the source of performance

variance can improve the system performance [3], [46].

Accordingly, we consider configuration tuning only for

microservices that have a high service time coefficient of

variation (above 0.5 in our experiments).

4) Performance variance along the critical path. To combine the

strengths of different dimensionality reduction techniques, we

consider the approach of first determining the critical path (via

Algorithm 1) and then selecting the top five microservices on

the critical path that have the highest variance in service time.

C. Experimental results

In practice, the optimization algorithms cannot be run indefinitely.

Unless otherwise specified, we limit the number of configurations

to be explored for each optimization algorithm to 15. We note that

running each iteration of the algorithm involves bringing up the

application, applying the configuration, and running the workload,

which together takes about half an hour. By contrast, the time taken

by an optimization algorithm to suggest a new configuration is

typically in the order of seconds. Thus, a budget on the optimization

time as a stopping criteria is not as practical as the number of

iterations of the algorithm. For initialization, the optimization

algorithms, except Hybrid, start with a random configuration. For

the evaluation to be fair, we initialize all the algorithms with the same

random samples. Note that (re)setting the configuration parameters

between iterations does incur some overhead and may require

restarting some microservices; during this time, the application may

be momentarily offline. We acknowledge that this can be concerning

for production deployments where application downtime is not

tolerated. However, in a production deployment, the reconfiguration

step can be carried out during planned maintenance or upgrade

windows to avoid additional disruption to the application [47]. We

defer online configuration tuning of microservices to future work.

1) Efficacy of dimensionality reduction strategies: Figure 3

shows the percentage improvement in tail (95th percentile)

latency of all applications under different dimensionality reduction

techniques, compared to the tail latency when using the default

configuration for all parameters. For ease of illustration, we

show results for three specific optimization algorithms. Note that

comparison across optimization algorithms will be discussed in the

next subsection and is not the focus here. Error bars in the figures

indicate the standard deviation around the reported mean results.

In Figure 3a, we see that tuning all 28 microservices of the social

networking application provides about 39±43% improvement in tail

latency. Tuning all the microservices on the critical path provides

similar improvements. However, tuning only the microservices

on the critical path that show high variability (5 microservices)

provides 40±46% improvement. Note that this improvement is

greater than that obtained by tuning all 28 microservices. This

is because dimensionality reduction reduces the configuration

search space, enabling a more efficient tuning within the budget

of 15 configurations to explore. Tuning the known bottlenecks

provides around 42% improvements, suggesting that the critical

path approach correctly identifies the microservices that have

the most impact. Finally, by focusing on the variability causing

microservices, the latency improvement is about 39±44%.

In Figure 3b, we observe that tuning all the 31 microservices

of the media microservices application produces about 25±29%

improvements. We observe that tuning only the microservices on

the critical path that show high variability (5 microservices) again

provides superior performance with up to 31.2% improvement, high-

lighting the impact of dimensionality reduction. The performance

improvements for the critical path, the bottleneck, and the variability

techniques are 28±30%, 27±28%, and 28±30%, respectively

In Figure 3c, we see that tuning the 26 microservices of train

ticket application results in 39±43% improvement. Tuning only the

microservices on the critical path provides up to 46% improvement

in tail latency. Since the train ticket application has the most param-

eters, the benefits of dimensionality reduction are more pronounced.

The performance improvements are around 44%, 42%, and 43% for

bottleneck, variability, and critical path+variability, respectively.



(a) Social networking application. (b) Media microservices application. (c) Train ticket application.

Fig. 3: Evaluation of different dimensionality reduction techniques with respect to improvement in latency over the default configuration un-

der different optimization algorithms. Error bars indicate the standard deviation around the reported mean over 3 runs. The total optimization

time is the time taken by the algorithm across the 15 iterations (excluding the time to run the application with the required configurations).

Fig. 4: Number of microservices to be tuned under different

dimensionality reduction strategies for social networking (SN),

media microservices (MM), and train ticket (TT).

Figure 4 shows the number of microservices tuned under

different dimensionality reduction techniques, compared to no

reduction, for all the three applications. While all techniques reduce

the number of microservices to be tuned by at least 50%, the

ªCritical path + variabilityº approach (Performance variance along

the critical path) allows us to customize and aggressively reduce the

number to just 5. Despite this substantial reduction in the number of

microservices to be tuned, the ªCritical path + variabilityº approach

provides significant tail latency reduction for the applications we

consider, as highlighted in Figure 3.

To further contrast the four different dimensionality reduction

techniques, we consider the overlap in subsets of microservices

chosen by the techniques. For the social networking application,

we find that only two microservices are common among all the

subsets: (i) post-storage-memcached is an important microservice

as it caches posts that are read by requests that constitute 90% of

the workload; and (ii) compose-post-service is critical in the call

graph of the request that writes posts as it is called multiple times

per request. This shows that, despite differences in the subsets,

all techniques have the ability to identify some of the important,

performance-impacting microservices.

A potential drawback of reducing the dimensions by omitting

microservices for optimization is that a dimensionality reduction

technique could miss out on important parameters. To evaluate

this hypothesis, we find the 20 most important parameters using

the offline and expensive fANOVA [18] approach and determine

how many of these 20 parameters are captured by different

Fig. 5: Illustration of coverage of the top 20 parameters captured

by different dimensionality reduction techniques.

dimensionality reduction techniques in Figure 5. We find that while

the different dimensionality reduction techniques do not capture

all 20 important parameters, they do capture 3±4 parameters out

of the top 5. We note that fANOVA parameter importance analysis

can be used to reduce the number of dimensions, but the amount of

training data and effort required makes this approach impractical.

2) Comparing different optimization algorithms: Figures 6a, 6b,

and 6c show the (sorted) percentage improvement (on left y-axis) in

tail latency over the default configuration afforded by different opti-

mization algorithms with no dimensionality reduction for the social

networking, media microservices, and the train ticket applications,

respectively. For comparison, we show (as DC) the improvement

afforded by the configuration employed by the developers of the

DeathStarBench [15] and the train ticket application [33].

For the social networking application in Figure 6a, we see that

Hybrid algorithm provides the best improvement of around 43%, fol-

lowed closely by BO GBRT (42%) and BO GP (41.8%). Using the

configuration chosen by the developers provides a modest improve-

ment of 6% over the default configuration. To evaluate the overhead

of different optimization algorithms, we plot (as red triangles with

right y-axis) the time taken by the optimization across all iterations in

Figure 6. We find that DDS requires the least amount of time (10ms),

followed by SA (0.8s) and BO TPE (1.4s). Hybrid is also relatively

quick, requiring about 1.7s. GA and PSO incur a high overhead; this

is expected as evolutionary algorithms are computationally intensive.

For the media microservices application, as seen in Figure 6b,

the BO TPE algorithm provides the best configuration with an

improvement of around 32%. DDS again takes the least amount



(a) Social networking application. (b) Media microservices application. (c) Train ticket application.

Fig. 6: Improvement in latency compared to default configuration (left y-axis) and the time incurred by the optimization (right y-axis)

for all algorithms when tuning the microservices of the applications with no dimensionality reduction.

Fig. 7: Efficiency of various algorithms over 15 iterations when

tuning on the critical path of social networking application.

of time, about 9ms. The Hybrid algorithm also performs well, with

an improvement of around 29% and requiring about 3s of time.

Using the configuration provided by the developers only provides

a nominal 2% improvement over the default configuration.

For the train ticket application, the Hybrid algorithm again

performs the best with 43% improvement over the default

configuration, closely followed by BO GBRT (42.84%) and BO

RF (42.72%). The developer’s configuration performs worse than

the default configuration because of which it is excluded from

Figure 6c. It is interesting to note the impressive performance

of random search (36% improvement) considering the negligible

run time (∼ 1ms). The existence of multiple optimal regions,

as discussed in Section IV-C, is one likely reason for its good

performance. Further, randomized configuration settings have been

shown to perform well when tuning databases [16], [25].

Based on the above results, we conclude that, for our evaluation,

Hybrid is the best performing algorithm for the social networking

and train ticket applications whereas Tree-structured Parzen

Estimator (TPE) provides a good tradeoff between latency

improvement and optimization runtime for media microservices.

3) Convergence analysis of algorithms: The results shown thus

far are based on the best configuration picked by the algorithms

from among 15 iterations. To analyze the significance of number

of iterations and variance across different sequences (runs), we

plot the best improvement afforded until different iterations for BO

GP and Hybrid, across 3 different sequences of these algorithms,

in Figure 7 for the social networking application. Although the

different sequences vary during the initial iterations, they eventually

converge well within 15 iterations. This suggests that the variability

between runs is low, explaining the narrow error bars in our results.

We also analyzed the results for 100 iterations and found that the

additional performance benefit afforded over 15 iterations is only

about 1±2% compared to the best solution in Figure 6, suggesting

that the optimization algorithms converge quickly. This is useful

in practice given that each additional iteration imposes certain

overhead and application downtime.

4) Significance of initial configuration: The optimization algo-

rithms typically start with a randomly sampled configuration. To

assess the significance of this initial configuration on performance

improvement and convergence, we specifically set the initial

configuration of the social networking application to one that we

know performs poorly to check how the optimization recovers; we

use BO GP for this evaluation. For example, we limit the number of

processes for the Nginx microservice to 1, set the Memcached cache

size to 16MB, etc. We find that, despite the poor initial configuration,

the algorithm does provide significant improvement over the default

configuration, with only a 3.4% relative drop in performance

compared to the randomly chosen initial configuration case.

5) Analysis of configurations set by algorithms: To better

understand the optimal configurations, we now analyze the specific

parameter configuration values determined by different algorithms.

Without loss of generality, we consider the social networking

application and analyze the values selected by each algorithm

for the top 5 important parameters. To identify the important

parameters, we employ fANOVA [18], which uses an empirical

performance model based on random forests to analyze how much

of the observed performance variation in the configuration space is

explained by a single parameter or combinations of few parameters.

To obtain the data for fANOVA, we sample the configuration space

by running up to 1000 experiments for various configurations and

collecting the corresponding 95th percentile latency.

For the social networking application, the top 5 parameters

(along with the associated microservice), in the order of importance,

and the values assigned to them by each algorithm, are given in

Table I. The top parameter is the worker processes parameter of

the frontend microservice (NGINX). While the default value of this

parameter is 1, for a fair comparison, we override the default value

to the number of cores in the server (24) as suggested in product

documentation [5]. We set the allowable range for this parameter

to be 1±48. As seen in Table I, the values set by different algorithms

are close to 24. Since the worker processes for the social networking

application do not perform any I/O, a high value for worker process

would lead to contention and a low value would lead to decreased

processor utilization. This shows that all algorithms judiciously

choose the worker process value.



Parameter (associated microservice) Range Default
Optimization algorithms

| BO GP | BO GBRT | TPE | DDS | PSO | SA | hybrid | GA | BO RF

worker processes (frontend-nginx) 1-48 24 24 21 23 19 20 26 23 19 20
zset-max-ziplist-entries (social-graph-redis) 64-512 128 64 108 77 68 92 238 109 120 89
io threadpool size (social-graph-service) 1-48 13 33 36 43 34 33 46 29 33 30
memory limit (MB) (post-storage-memc) 32-20k 64 4k 6.8k 5.8k 7k 8k 9.1k 8.8k 13k 6.4k

hz (user-timeline-redis) 1-100 10 43 64 60 57 41 61 52 71 39

TABLE I: Top-5 important parameters (as identified by fANOVA analysis) for the social networking application.

The second most important parameter is the zset-max-ziplist-

entries of the social-graph-redis microservice. This parameter sets a

limit on the number of entries allowed in a ZSET (sorted sets) for it

to be encoded as a ziplist. The memory savings due to ziplist come

at the cost of CPU usageÐCPU cycles are spent on decoding every

read, partially re-encoding every write, and may require moving

data in memory. As seen from the table, the value of this parameter

is always set below the default, except for the one generated by SA,

signifying the benefits of prioritizing CPU over memory savings.

The next important parameter is the io threadpool size of the

social-graph-service, which dictates the size of the I/O thread pool

for TNonblockingServer [12]. We see that the io threadpool size

value selected by different algorithms is consistently higher than

the default value (13), suggesting that the default configuration was

under-utilizing the resources.

The next important parameter is the memory limit value for post-

storage-memcached micorservice, which is set at 64MB by default.

Table I shows that the various optimization algorithms have a mem-

ory limit value of at least 4GB for this microservice. This is a critical

microservice that is along the critical path of 90% of the requests,

substantiating the extra memory allocation to improve performance.

Finally, the hz parameter sets the frequency of invocations of

background tasks to remove expired keys in Redis [35]. For the

user-timeline-redis microservice, the value selected for hz is much

higher than the default of 10, indicating that the additional use of

CPU by this microservice (at the expense of other microservices)

is worth the improvement in performance.

Table I highlights the similarities (e.g., for worker processes)

and differences (e.g., for zset-max-ziplist-entries) in the parameter

values chosen by the optimization algorithms. The differences

suggest that the algorithms do converge to different locally optimal

configurations (as opposed to a single globally optimal one);

despite the different configurations, the resulting latency benefits

are comparable (as seen in Figures 6a, 6b, and 6c). The similarities

suggest that minor differences in values (within a range) of some

parameters may not significantly impact performance; a valuable

future direction is to discretize some of the parameter ranges to

reduce the configuration space.

6) Microservice-level analysis of latency reduction afforded by

the best configuration: The workloads used in our experiments

consist of a mixture of different request types (see Section IV-A).

The 95th percentile latency depends heavily on the request type that

takes the longest time. To analyze the ability of optimizations in

prioritizing microservices that serve the long-tailed request types, we

compare the service time (95th percentile) of all microservices along

the call graph of different request types for the best configuration

across all experiments (i.e., across all algorithms and all

dimensionality reduction strategies) with the default configuration.

For the social networking workload, based on the experiment

logs, we find that read-user-timeline requests influence the 95th

percentile of the workload latency the most, followed by read-

home-timeline. post-storage-memcached and post-storage-mongo

microservices, which are along the critical path of both these

request types, can thus have a significant impact on workload

latency. In case of the read-user-timeline request type, the best

configuration results in 65% and 28% reduction in service time of

post-storage-memcached and post-storage-mongo microservices,

respectively. The user-timeline-redis, which is on the critical path

of read-user-timeline, sees a 56% reduction in its service time. On

the other hand, the microservices along the call graph of light-tailed

compose-post request type experience a nominal increase in service

time, notably user-timeline-mongo (7% increase), where the user’s

post IDs are written as part of the compose-post request type. For

the user-timeline-mongo microservice, the best configuration across

all experiments chooses zlib as the compression algorithm which

uses more CPU than the default (snappy) [34]. Likewise, the best

configuration sets wiredTigerConcurrentWriteTransactions to 74

(lower than the default of 128), limiting the maximum concurrent

writes, and increasing the service time of user-timeline-mongo.

We find similar patterns (of prioritizing parameters of

microservices that serve heavy-tailed request types) for other

applications as well. For example, for media microservices,

compose-movie-review request type influences the workload’s 95th

percentile latency the most. compose-review-service microservice,

which is along the critical path of the compose-movie-review

requests, sees a 35% reduction in 95th percentile of the service time

when the best configuration across all experiments is applied. The

key takeaway here is that despite the optimization algorithms being

oblivious to the workload mix, they sample the search space well

enough to find configurations that are near-optimal for the workload.

V. CONCLUSION

Despite the recent shift in application design to microservices

architecture, the fundamental problem of setting the configuration of

individual microservices to improve performance has received very

little attention, with practitioners instead settling for sub-optimal

performance via default or ad-hoc configuration settings. This paper

makes the case for configuration tuning of microservices.

Our investigation of different joint optimization techniques shows

that significant improvements in tail latency, up to 46%, can be real-

ized via configuration tuning. While most algorithms perform well,

the optimal algorithm is application-dependent; further, combining

different algorithms can provide superior performance for some

applications. Our analysis reveals that the optimal configuration



of a microservice (e.g., MongoDB) need not be the same across

applications or even across instances within the same application.

We also investigate techniques to reduce the tuning effort across

algorithms. We consider different approaches to dimensionality re-

duction and find that focusing on tuning the microservices on the crit-

ical path that have the highest service time variability is an effective

dimensionality reduction technique. We conclude that dimensional-

ity reduction based on system characteristics is an effective approach

to the otherwise intractable problem of optimizing a large state space.
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