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Abstract—The ability to obtain the steady-state probability distribu-
tion of a Markov chain is invaluable for modern service providers who
aim to satisfy arbitrary tail performance requirements. However, it is
often challenging and even intractable to obtain the steady-state distri-
bution for several classes of Markov chains, such as multi-dimensional
and infinite state-space Markov chains with state-dependent transitions.
Two examples include the M/M/1 with Discriminatory Processor
Sharing (DPS) and the preemptive M/M/c with multiple priority classes
and customer abandonment. This paper proposes a Lyapunov function-
based state-space truncation technique for such Markov chains. Our
technique leverages the available moments, or bounds on moments,
of the state variables of the Markov chain to obtain tight truncation
bounds while satisfying arbitrary probability mass guarantees for the
truncated chain. We demonstrate the efficacy of our technique for the
multi-dimensional DPS and M/M/c priority queue with abandonment
and highlight the significant reduction in state space (as much as 72%)
afforded by our approach compared to the state-of-the-art.

Index Terms—Markov chains, state-space truncation,
discriminatory processor sharing, priority queues, tail measures

I. INTRODUCTION

Continuous-Time Markov chains (CTMCs) are widely used to
model and analyze networked systems, such as processor-sharing
(PS) and priority queue systems. Evaluating these systems’
performance often requires the steady-state probability distribution
of an underlying CTMC model. For example, to obtain tail
measures (e.g., the tail queue length), which are the performance
metric of choice for modern service operators such as those at
Google [1] and Amazon [2], it is often necessary to first obtain
the steady-state probability distribution by solving the balance
equations governing the state transitions of a CTMC model.

Obtaining the exact steady-state probability distribution is not
always practical or even possible. For many applications, the
state space of the CTMC is infinite and multi-dimensional; exact
analysis of such models is challenging. For CTMCs with specific
structures, efficient numerical techniques exist for obtaining the
exact steady-state distribution. For example, Matrix Analytic
Methods are known to be efficient for solving CTMCs with a
repeating pattern of transitions between adjacent states, including
quasi-birth-and-death processes (QBDs, which are infinite state
space multi-dimensional CTMCs in which states are organized into
levels and transitions are skip-free between the levels) [3].

For chains with more general transitions, obtaining the exact
steady-state probability distribution can be more challenging. For
example, finding the distribution of the number of jobs in the
system in the Discriminatory Processor Sharing (DPS) model (first
introduced by Kleinrock in 1967 [4] and one of the models that we
analyze in this paper) is still an open challenge. Even for CTMCs

with a finite but large state space, computing the steady-state
probability distribution can be computationally prohibitive [5].
We instead resort to obtaining accurate approximations of the
steady-state probability distribution for such chains.

An approach to approximate the steady-state probability distri-
bution of multi-dimensional infinite CTMCs with general state
transitions is to truncate their state space in one or more dimensions
and then solve for the steady-state probability distribution of the
truncated CTMC using existing analytical or numerical methods.
Truncation algorithms [6] (e.g., algorithms based on Lyapunov
functions; see Section II) have been proposed in the literature to
carefully find truncation bounds such that the steady-state probability
distribution of the truncated CTMC closely approximates that of
the original infinite CTMC. As acknowledged by prior work [6], an
issue with such truncation techniques is that they lead to loose trunca-
tion bounds, which results in unnecessarily large truncated CTMCs
and, consequently, expensive computational effort to analyze them.

In this paper, we use the moments (or bounds on moments) of the
state variables of a CTMC to derive tighter truncation bounds while
ensuring that these bounds satisfy the desired probability mass
guarantees. By leveraging the moments and using concepts from
probability theory (specifically the Paley-Zygmund inequality [7]),
we scale the drift of the Lyapunov function (the expected rate
of change in its value) more efficiently to achieve much tighter
truncation bounds without increasing the computational complexity,
compared to the existing Lyapunov-function truncation techniques.
Our bounds are, in theory, at least as tight as those obtained by
the state-of-the-art Lyapunov function-based procedure proposed
by Dayar et al. [6]. In practice, our bounds are significantly tighter,
resulting in as much as 7×  computational time efficiency.

We demonstrate the effectiveness of our proposed truncation
technique by applying it to the M/M/1-DPS system, which is a
multi-class extension of the classic processor sharing system where
the server capacity can be unequally shared, via user-specified
weights, among different job or customer classes. The
M/M/1-DPS system is known to be a “class of models
notoriously hard to analyze in an exact manner” [8]. We analyze
the K-class DPS system (for K = 2,3,4) using our truncation
technique, leveraging the known moments of the queue-length
distribution of the DPS system [9]. Across different parameter
settings, our technique
achieves, on average, 34% (and up to 72%) tighter truncation bounds
than those obtained when applying the Dayar et al.’s procedure for
the same desired accuracy. We also apply our truncation technique
to the M/M/c+M model (an M/M/c queue with exponential abandon-
ment) with multiple priority classes and preemptive service policy
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as another example where our technique yields tighter truncation
bounds. Our technique can reduce the size of the truncated state
space by as much as 42% for the same accuracy level.

We numerically validate the accuracy of our truncation technique,
where possible. For example, the M/M/1-DPS with equal weights
for customer classes reduces to the well-studied M/M/1-PS system.
Likewise, the marginal distribution of the higher priority jobs
under the M/M/c+M queue with preemptive priority reduces to the
distribution of jobs in the standard M/M/c. Across all validations,
the maximum difference in per-state probability between our
truncated CTMC and the original CTMC is about 3 × 10−6% for
the DPS system and about 9 × 10−4% for the M/M/c+M queue
with preemptive priority.

Finally, we use our truncation technique to conduct several
performance analyses that are otherwise intractable, such as
determining when the DPS system outperforms the PS system (and
vice-versa) in terms of the tail of the number of jobs in the system
or comparing the tail performance of the M/M/1-FCFS system with
that of the M/M/1-DPS system. Such performance analyses are
crucial for designing customer-facing web applications that meet
strict tail performance targets [1, 2].

This work improves and refines the theory we proposed in an
earlier, preliminary work [10] and demonstrates its broader
application to processor sharing and priority systems through more
in-depth analytical and numerical analysis

II. BACKGROUND AND PRIOR WORK

A. State space reduction

When a CTMC with an infinite state space cannot be solved
exactly, a natural alternative is to find an approximate solution by
reducing the size of the state space. Prior research in this area has
primarily focused on two key techniques: (i) state space aggregation
and (ii) state space truncation.

The idea of aggregation is to replace a subset of the state space
of a CTMC with a single state. However, a common limitation in
aggregation approaches (e.g., see the works by Muntz et al. [5] and
Mahevas and Rubino [11]) is the assumption that the state space
can be decomposed by the user into two disjoint sets, with one set
containing the states frequently visited by the system in steady state.
Further, aggregation approaches either help find the performance
measures or provide bounds on the performance measures (e.g., see
Buchholz [12]) for Markov chains with infinite state space but do not
find bounds on the steady-state distribution. Thus, guarantees on the
probability mass after aggregation cannot be immediately obtained.

State space truncation: A  more popular approach for state
space reduction is truncation, whereby the state space of a Markov
chain is truncated along one or more dimensions. However, ad-hoc
truncation can result in inaccurate approximations. There has been
prior work on truncation techniques that provide some upper bound
on the loss of accuracy due to truncation. Bright and Taylor [13]
propose a numerical method to solve LDQBDs, which involves
iteratively finding a sufficiently large truncation level. However,
the iterative procedure is computationally intensive and more
concernedly, the authors explicitly state that the proposed method
is not guaranteed to provide accurate results.

Lyapunov analysis has often been used in prior works to find
bounds on the moments and tail probabilities for Markov chains.
Bertsimas et al. demonstrate how lower and upper bounds on the
moments and tail probabilities of a discrete-time Markov chain
can be obtained provided that a suitable Lyapunov function can be
found [14]. One of the conditions on the Lyapunov function is a
finite “jump size,” i.e., the requirement that the maximum change in
the value of the drift function is bounded. Maguluri and Srikant build
on prior works [14, 16] to find an upper bound on tail probabilities
of CTMCs [15]. However, their approach requires the drift of the
Lyapunov function to have a finite lower and upper bound, thus
restricting the approach’s applicability given the difficulty of finding
Lyapunov functions even without these additional constraints [6].
By contrast, our technique does not impose any requirements on
the Lyapunov function. In fact, the drift is unbounded from below
for the Lyapunov functions we employ throughout this paper.
B. Lyapunov function-based truncation

Dayar et al. developed a Lyapunov function-based truncation
method that provides probability mass guarantees for LDQBDs [6].
The central idea is to identify a subset of states towards which the
CTMC drifts and then truncate the infinite state space to ensure that
this subset is part of the truncated CTMC. Our truncation technique
builds on this work, and so we provide an overview of Dayar et al..

Let {N (t),t ≥ 0}  be an ergodic k-dimensional CTMC with state
space S  and generic state n= (n1,n2,...,nk). Let N i  denote the ran-
dom variable corresponding to ni, with N (t) = (N1(t),...,Nk (t)).
Let π(n) = π(n1,n2,...,nk) denote the steady-state probability of
being in state n, and let Q denote the infinitesimal generator matrix.
Without loss of generality, assume that the CTMC is infinite in
the first m-dimensions and finite in the remaining (k −m)
dimensions.

The stability of a Markov chain can be established if a Lyapunov
function that maps the state space to positive real numbers is found
such that its drift (the expected rate of change in the value of the
Lyapunov function in a state) is negative outside a finite subset of the
state space and is bounded in this finite subset; such a finite subset is
referred to as the attractor set, C .  Formally, if N (t) is ergodic,
there exists a Lyapunov function g : S → R≥0  and a set C �S  such
that the following conditions hold for some γ > 0 [6]:

(i) d(n) ≤ −γ ,  �n�C, where C = S \ C ,
(ii) d(n) <∞, �n�C, and

(iii) {n�S | g(n) ≤ r} is finite, �r <∞,
where d(n) denotes the value of the drift function in state n:

d(n) = (d/dt) E[g(N (t)) | N (t) = n], (1)

where E [ X ]  denotes the expectation of X .  Dayar et al. use the
above conditions to derive an upper bound on the probability mass
(sum of steady-state probabilities of all states) in C .  The authors
define a function g�(n) =  g(n)/(c+γ ), where c =  sup d(n)
(note that c is finite from condition (ii)) and γ is as defined in
condition (i). Figure 1 illustrates the above concepts pictorially,
where the x-axis and y-axis correspond to the state variable and the
value of the drift function, respectively. The figure also shows the
parameter γ that partitions the state space into the attractor set and its
complement. All the states whose value of the drift function is above
the line corresponding to −γ  can be grouped into an attractor set.
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Fig. 1: Illustration of the drift d(ni), supremum c, parameter γ, and
our state-dependent drift bounds f1 (ni ) and f2(ni).

Using conditions (i)–(iii), the authors derive an upper bound on
the probability mass outside the attractor set C ,  thereby providing a
lower bound on the probability mass inside C .  Conditions (i) and
(ii) and the fact that c = supn�S d(n) yield:

d�(n) = 
c +γ  

≤  
c+γ

,     �n�C; and d�(n) ≤ −
c +γ

,      �n�C

=⇒ d�(n) ≤  
c +γ  

− I   , (2)

where I   =  1 if n � C  and 0 otherwise. If d, g, and π are the
vectors of drift function values, Lyapunov function values, and
steady-state probabilities for all states, respectively, by the definition
of drift in Eq. (1) and the fact that πQ = 0 [17], we have:

dT = Qg T  =⇒  πdT =πQgT  = 0  =⇒  πd�T =πQg�T = 0.      (3)

Using Eqs. (2) and (3), a bound on the probability mass in C  is
obtained as follows:

0 = d�(n)·π(n)≤ π(n)· 
c 

− π(n)
n�S n�S n�C

=⇒ π (n) ≤ π(n)·
c+γ 

=  
c+γ

. (4)
n�C

This guarantees that the probability mass in C  is at
least 1 −  c/(c+γ ). Hence, the value of γ obtained by
solving c/(c +γ ) = ϵ,  where 0 < ϵ < 1, guarantees that a truncated
CTMC containing C  has at least (1−ϵ)  fraction of the probability
mass and thus loses at most ϵ fraction of the probability mass after
truncation. Once γ is found, the set C  can be found as follows:

C = {n�S | d(n) > −γ }. (5)

Omitting the states outside the attractor set C  truncates the CTMC

Note that Eq. (4) only provides an upper bound on the probability
mass in C ;  the actual probability mass in C  could be much smaller
than c/(c+γ ), as Dayar et al. acknowledge in their work [6].
Indeed, our experiments in Section IV  show that the truncation
bounds obtained via the above technique are loose. Our work aims to
address this issue and provide tighter truncation bounds.

II I . OUR TRUNCATION TECHNIQUE

Figure 1 illustrates the high-level idea of our state space truncation
technique for the Discriminatory Processor Sharing (DPS) system
that we analyze later in Section IV. The solid black line is the drift as
a function of the state variable, d(ni). Dayar et al.’s method obtains
truncation bounds by bounding the drift function with the trivial
upper bound of c = sup d(n) (the dashed black line). The ad-
vantage of using the supremum is that the bound on n�Cπ(n) in

Eq. (4) can be easily obtained as 
P

π(n) ·c/(c+γ ) = c/(c+γ ).
However, there is a gap between the drift and the supremum, which
tends to grow larger for higher values of ni, as highlighted in
Figure 1. The drift is a state-dependent function, but the supremum
is a fixed function that does not adapt to changes in the state variate,
thus making it a loose upper bound of the drift.

The key idea in our technique is to employ a state-dependent
bounding function that mimics, to some extent, the changes in
the drift function in response to the state variable to provide
tighter upper bounds of the drift function; examples of such
state-dependent bounding functions include a step function and a
decaying function (e.g., f1 (ni ) and f2 (ni ) in Figure 1). However,
when using a generic state-dependent bounding function, f (n), in
place of c in Eq. (4), the upper bound on the probability mass in C
may not be easily obtained in closed-form, making it difficult to
solve for the set C .  We formalize this challenge below.

Generic bounding functions:     Consider a generic state-
dependent bounding function f (n) that bounds the drift d(n),
i.e., f (n)≥max(d(n),0), �n�S. Expanding Eq. (3) gives us:

0 =
X
π (n ) · d (n) =

X
π (n ) · d (n) +

X
π (n ) · d (n)

n�S n�C n�C

=⇒  0 ≤ π(n)·d(n)−γ π(n) �d(n) ≤ −γ �n�C
n�C n�C

=⇒  
X
π ( n ) ≤ n�C

π(n)· f (n) 
�f (n)≥max(d(n),0). (6)

n�C

The truncated CTMC consisting of the set C  can now be
obtained by setting the right-hand-side of Eq. (6) to ϵ, solving for γ,
and then using Eq. (5). However, this requires knowing the exact
value or an upper bound of the term π(n) · f (n). We show,
in subsections III-A and III-B, examples of one-dimensional and
two-dimensional generic bounding functions f (n) that result in
simple expressions for π(n)·f (n). In all the cases, the final
expressions are in terms of the moments of the state variables.

Reliance on the CTMC moments: Though our technique relies
on the knowledge of the first few moments of the original CTMC’s
state variables, it can also be applied to CTMCs with known lower
bounds on the moments. In general, knowledge of moments may
not be enough to obtain the steady-state probability distribution [18].
The DPS system is an example of a CTMC for which the moments
of the number of jobs are computationally achievable [9]; however,
obtaining its closed-form and exact steady-state distribution has
proven to be extremely challenging [18]. The preemptive M/M/c
priority queue with abandonment is another example with some
known moments (e.g., for the highest priority jobs, since they
constitute the classic M/M/c queue), but the exact steady-state
probability distribution is not known, especially for c > 2 [19].

A. Truncation bounds based on the moments

We now employ a specific function, a simple step function, along
one of the dimensions of a CTMC to bound its drift function. Con-
sider a 1-D step function (depicted in Figure 1 as f1(n)) that initially
is equal to the supremum and then drops to a lower value, c1, along
one dimension of the state space, resulting in a tighter bounding
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of the drift for larger values of the state variate. Note that the step
function subsumes the supremum function used by Dayar et al. [6].

Consider a k-dimensional CTMC with state space S  with a
generic state denoted by n =  (n1,n2,...,nk), and let the CTMC
be infinite in m-dimensions and finite in the remaining (k−m) di-
mensions. We denote with N j  the random variable corresponding to
the jth dimension of the state space, nj. We improve the upper bound
of the drift along an arbitrary infinite dimension, say dimension i,
corresponding to Ni .  We formally define the step function, which
drops to c1 ≤ c  for R = {n | ni  > n},  where n is a parameter, as:

c       = sup�n�S d(n),                  �n�R,
c1       = sup�n�Rd(n),                  �n�R.

Substituting f  (n) in place of f (n) in Eq. (6) and rearranging
the terms gives us:

γ
X
π ( n ) ≤ c  

X  
π(n)+c1      

X  
π(n)

n�C n�C ∩ R n�C ∩ R

= c π(n)+c1 π(n)−c π(n)−c1 π(n)
n�R                          n�R n�C ∩ R                          n�C ∩ R

≤ c π(n)+c1 π(n)−c1 π(n)     �−c ≤ −c 1

n�R                          n�R                          n�C

=⇒ π (n) ≤  
c + γ  

−
c  + γ

π(n). (8)
n�C

Recall from Section II-B that C  is the set of states outside the
attractor set. Thus, π(n) represents the probability mass
outside the attractor set. T o obtain the probability mass
guarantee on π(n), we require a lower bound on the tail
probability,              π(n). While any applicable lower bound can be
employed, we leverage a generic lower bound.

Definition 1. Paley-Zygmund inequality [7]: For
a positive random variable     X       with finite     variance
and 0 ≤ θ ≤ 1, Pr(X > θE [X ]) ≥ (1−θ )2 E [X ] 2 /E [X 2 ] .

Applying     the     Paley-Zygmund     inequality     for     N i        and
setting n = θE [Ni ],  we have, from Eq. (8):

X
π ( n ) ≤  

c + γ  
−

c  +γ
(1−θ )2  

E [ N  
]
] 
. (9)

n�C

The above upper bound on the probability mass in C  (or the
lower bound on the probability mass inside C ) results in a provably
tighter truncation bound compared to Dayar et al. when ϵ ≤  E [ N i ] 2
(proof deferred to Appendix B  of the technical report [20]):

i

Lemma 1. The truncation obtained via our 1-D step bounding
function (given in Eq. (7)) is at least as tight as that obtained via the
supremum bounding function, as employed in Dayar et al., when ϵ ≤
E [ N i ] 2

 
, where i  is an arbitrary infinite dimension of the CTMC.

i

B. Tighter truncation bounds using joint moments of state variables
In general, since the drift function is defined on the state space

of the CTMC, it can be multi-variate. To obtain tighter truncation
bounds, we now consider multi-dimensional bounding functions.
In such cases, the joint moments of the state variables may be
needed to obtain the truncation bounds. For simplicity, we consider

two-dimensional bounding functions; however, our proposed
technique can be extended to higher-dimensional functions.

Figure 2a plots a two-dimensional step function that bounds the
drift; here, we assume that the CTMC is k-dimensional, k > 1, but
we only show the bounding function for the two dimensions, say i
and j ,  along which it takes a step. Mathematically, we define the 2-
D step function as:

c       = sup�n�S d(n),              �n�R,
c1       = sup�n�Rd(n),              �n�R,

where R  = {n �S  | max{ni ,nj } ≤ n} and R  = S \ R .  Thus, the
bounding function takes the value c in the “square” region (if
projected onto two dimensions) defined by ni ≤ n  and nj  ≤n, and
takes the value c1 outside this region. Substituting Eq. (10) in the
generic upper bound on the probability mass in C  (Eq. (6)) gives
us a result similar to Eq. (8):

X
π ( n ) ≤  

c + γ  
−

c  + γ  

X  
π(n). (11)

n�C i

To obtain a lower bound on the probability mass in R,  we define
the new set T = {n �S  |ni + n j  ≤ 2 · n}  and T = S \ T .  Let π(S )
denote π(n). Since T �R, we have π(R) ≥ π (T ).  Figure 2b
illustrates the different regions of the state space S . We now use
the Paley-Zygmund inequality to find the lower bound on π(T ) by
considering Z = N i + N j :

P (Z > θE [Z ] ) ≥ (1− θ )2  
E [Z

]
]
,  with 2n = θE [Z ]

=⇒  π (R) ≥ π (T ) = P (Z > θE [Z ]) ≥ (1− θ )2  
E [Z

]
]
. (12)

Finally, substituting Eq. (12) in Eq. (11) gives us our upper bound
on the probability mass in C  as:

X
π ( n ) ≤  

c + γ  
−

c  +γ
(1−θ )2  

E [Z
]

]
. (13)

n�C

The above bound is provably tighter than Dayar et al.
when ϵ ≤  E [ Z

]  
] (proof deferred to Appendix B  of tech. report [20]):

Lemma 2. The truncation obtained via the 2-D step bounding
function (given in Eq. (10)) is at least as tight as that obtained via the
supremum bounding function, as employed in Dayar et al., when ϵ ≤
E [ Z ] 2

 
where Z = N i + N j  and N i  and N j  represent state variables

corresponding to two arbitrary infinite dimensions of the CTMC.

IV . APPL I C ATI ON TO THE DPS S Y S T E M

We now evaluate the efficacy of our truncation technique by
applying the truncation bounds for the Discriminatory Processor
Sharing (DPS) system. We first consider the DPS system with two
customer classes for ease of exposition. We investigate the tightness
of the drift bounding functions presented in Section III and compare
the resulting bounds with those obtained from Dayar et al. [6].

DPS was first introduced by Kleinrock as a generalization
to the PS system [4]. While all customer classes receive equal
server capacity in the case of an egalitarian PS policy, the server
capacity under DPS is processor shared based on a given weight

4



$

"

!

N
um

be
r 

of
 c

la
ss

-1
 j

ob
s

P k

1        2

1        2 1        2

1 2

1        2 1        2
1 1 2 2

(0, 2 #")

%      (0,"! )

&

(0,0) ("! ,  0) (2 #", 0)

Fig. 2(a): Illustration of a 2-D drift bounding function.

Number of class-2 jobs

λ2 λ2 λ2 λ2 λ2

0,0 0,1 0,2 0,3 0,4
s01 s02 s03 s04 s05

r10        
λ1       λ2      

r11         λ1       λ2      
r12        λ1        λ2      

r13        λ1       λ2      
r14         λ1       λ2

1,0 1,1 1,2 1,3 1,4
s11 s12 s13 s14 s15

r20         λ1                 r21         λ1                 r22         λ1                 r23         λ1                  r24         λ1

Fig. 3: M/M/1-DPS with two customer classes; for state (n1,n2), n1
and n2 are the number of class-1 and class-2 jobs, respectively.

vector α = (α1,α2,...,αk), where αi  is the weight associated with
class-i customers. If there are N i  jobs of class-i, each class-j job
gets a fraction α j / i = 1α i N i  of the server’s capacity.

M/M/1-DPS system: Consider an M/M/1 system operating
under the DPS policy with two customer classes, where the server’s
capacity is shared between two customer classes with the service
priority expressed through weights α1 and α2. Arrivals for each
customer class follow a Poisson distribution with mean λi ,i�{1,2},
and the service times for each class follow an Exponential
distribution with mean 1/µi,i�{1,2}. Figure 3 shows the CTMC
for M/M/1-DPS in which a state is represented by the pair (n1,n2),
where n1 and n2 are the number of jobs in the system for classes 1
and 2, respectively; note that the CTMC is infinite in both
dimensions. The transition rates from state (n1,n2) to (n1−1,n2)
and (n1, n2     −  1) are rn  ,n =      n1α1µ1/(n1α1 +n2α2)
and sn1 ,n2  = n2α2µ2/(n1α1 +n2α2), respectively.

Significance of the M/M/1-DPS system and the challenges in
solving its underlying CTMC: The M/M/1-DPS system, with
the proper choice of weights, has been shown to outperform the
classical M/M/1-PS system for more than one customer class [21].
This has sparked interest in the community in the last decade
to investigate the performance of DPS under various traffic
regimes. Despite the popularity of the DPS model, which was first
introduced in the late 1960s [4], the exact steady-state probability
distribution of its underlying CTMC continues to remain elusive.
This is because of the complex and non-repeating structure of its
multi-dimensional and infinite CTMC. Specifically, the per-class
service rate transitions (rn ,n      and sn ,n      in Figure 3) depend on
the current number of customers in each class. Exact analysis has
been performed only for finite DPS queues [22].

"

Fig. 2(b): State space subsets. The shaded square corresponds
to the set R  =  {n � S  | max{ni ,nj }  ≤  n}  and the region
bounded by the orange line and the axes corresponds to the
set T  = {n �S | ni + nj  ≤ 2·n}.

A. Results for truncation bounds

Fortunately, the exact moments of M/M/1-DPS queue-length
distribution are known [9] in terms of the solution to a system
of linear equations. This allows us to apply our moment-
based truncation bounds via Eqs. (9) and (13). T o apply our
truncation bounds (and Dayar et al.’s bounds for comparison)
to the M/M/1-DPS system, we employ the following feasible
Lyapunov function, motivated by prior work in the stability
literature [23]: g(n1,n2) =  (α1n2)/2λ1 + (α2n2)/2λ2. The drift
function for the M/M/1-DPS chain in the state (n1,n2), obtained
by substituting g(n1,n2) in Eq. (1), is as follows:

d(n1,n2 ) = λ1 (g(n1 +1,n2 )−g(n1,n2 ))+λ2 (g(n1,n2 +1)−g(n1,n2 ))
+s1 (g(n1 −1,n2 )−g(n1 ,n2 ))+s2 (g(n1 ,n2 −1)−g(n1 ,n2 )).          (14)

For the 1-D step drift bounding function, we start by setting an
appropriate value for n in Eq. (7), which in turn is determined via
θ since n =  θE [Ni ]  where i  � {1, 2} is the dimension along
which the drift bound is being improved. Noting that a smaller θ
provides a tighter bound in Eq. (9), we set θ =  0.01; this value of
θ also satisfies the requirements of Lemmas 1 and 2. We then
derive n by obtaining E [Ni ]  via the known first moment of the ith

state variable of the M/M/1-DPS model [9]. We compute c and c1

via Eq. (7). Using the known second moments [9], we compute
the right-hand-side of Eq. (9); by setting this to ϵ (the tolerance
for probability mass loss due to truncation), we solve for γ, which
in turn gives us the attractor set C  via Eq. (5). The chain is then
truncated to include all states in C .  We employ the step function
over either dimension (i = {1,2}  in Eq. (7)) and use the tighter of
the two. Finally, the CTMC is truncated along the two dimensions
at m     = max     n and m     = max     n . A  step-by-step

( n  ,n  )�C ( n  ,n  )�C

illustration is provided in Appendix A  of the technical report [20].
For the 2-D step drift bounding function, we again set θ to a low

value and set n = (θE [Z ])/2,  where Z  = N i + N j .  The remaining
steps are similar to the 1-D step bounding function discussed above.

Evaluation results: T o evaluate the truncation improvement over
the Dayar et al., we numerically experiment with different parameter
values spanning the total offered load in the range [0.1,0.95]; the
total offered load is expressed as ρ =  ρ1 +  ρ2, where ρi  =  λ i /µi .
We set µ2 = 1  and µ1 = 1.2 and vary λ1 and λ2. Figure 4 shows
the reduction in the state space afforded by our drift bounding
functions as a function of the total offered load for different class-1
load shares
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(a) Case 1: ρ1 < ρ 2  (ρ1/ρ = 0.1). (b) Case 2: ρ1 = ρ2  (ρ1/ρ = 0.5). (c) Case 3: ρ1 > ρ2  (ρ1/ρ = 0.8).
Fig. 4: State space reduction by our bounding functions over Dayar et al. [6] for M/M/1-DPS under different total offered loads (ρ) and
class-1 load shares (ρ1/ρ); ϵ= 0.01, α1 = 0.2, and α2 = 1−α1  = 0.8.

(a) Case 1: ρ1 < ρ 2  (ρ1/ρ = 0.1). (b) Case 2: ρ1 = ρ2  (ρ1/ρ = 0.5). (c) Case 3: ρ1 > ρ2  (ρ1/ρ = 0.8).
Fig. 5: State space reduction by our 2-D step bounding function over Dayar et al. [6] for M/M/1-DPS under different DPS weights (α1),
total offered loads (ρ), and class-1 load shares (ρ1/ρ).

when α1 = 0.2, α2 = 1−α1  = 0.8, and ϵ= 0.01. The improvement
is typically greater for moderate total offered loads (ρ≈0.5).

In general, the 2-D step function provides more improvement
over Dayar et al. compared to the 1-D step function, with as much
as 65% reduction in state space. In other words, using our technique,
the truncated DPS CTMC can be up to 65% smaller while
providing the same probability mass accuracy guarantee (ϵ= 0.01).
For this peak reduction case, Dayar et al.’s method truncates the
CTMC at n1 = 1358 and n2 = 101, whereas our 2-D step bounding
function truncates at n1 = 801 and n2 = 60; the truncation bounds
from “below” are n1 = 0  and n2 = 0  in both cases.

Across all experiments in Figure 4, the average improvements
over Dayar et al. are around 39% and 27% for the 2-D and 1-D step
functions, respectively. The corresponding average improvements
for 0.5 ≤ ρ ≤ 0.95 are 45% and 33%; since the truncated CTMC
contains more states for higher loads, the absolute reduction in state
space (the number of states) is much higher for this range.

Further analysis: We consider the better-performing drift
bounding function and the 2-D step function and experiment
with different α1 values. Figure 5 shows the state space reduction
over [6] as a function of total offered load for different class-1
load shares and for different α1 and ϵ values. As before, the
improvement is higher for moderate offered loads. In general, the
improvement increases as α1 increases, except when the load share
of class-1 is high, in which case the improvement tends to decrease
as α1 increases. The improvements are largely insensitive to the
truncation error guarantee, ϵ; we also experimented with smaller ϵ
values with similar insensitivity results.

Across all experiments in Figure 5, the average improvement
is around 33%, 34%, and 35% for α1 = 0.2, α1 = 0.6, and α1 = 0.8,
respectively. The corresponding improvements for 0.5 ≤ ρ ≤ 0.95

are 41%, 42%, and 44%. The maximum improvement is 71%, with
Dayar et al. truncating at n1 = 108 and n2 = 3292, while our 2-D
step bounding function truncates at n1 = 65 and n2 = 1610 (here,
the load share of class-2 was higher, so n2 is truncated at a larger
value than n1).

By providing tighter truncation, our technique significantly
reduces the computational effort required to solve the truncated
CTMC. A veraged across all cases in Figure 5, solving the truncated
CTMC (by obtaining the steady-state probabilities via solving
the relevant balance equations) is 3 ×  faster when employing our
bounds than those obtained by Dayar et al. [6].

Validation results: For validation, we compare the obtained mo-
ments from the truncated CTMC with the exact moments provided
in Rege and Sengupta [9]. Using the 1-D step function and set-
ting ϵ= 0.1, the average difference between our results and the exact
results for the first, second, and third moments of the number of jobs
in the system (for either class) across various parameter settings is
around 4×10−4%, 10−3%, and 5×10−3%, respectively. We further
validate our technique by comparing the steady-state distribution
of the truncated CTMC for α1 =α2  = 0.5 with that of the classical
processor sharing system (a DPS with α1 =  α2). The maximum
observed difference in per-state probability is only around 10−5%.

Application to higher-dimensional DPS chains: Since the exact
moments of the M/M/1-DPS queue-length distribution are known
for any number of customer classes, our truncation technique can be
readily applied to the M/M/1-DPS CTMC for an arbitrary number of
customer classes (along the same lines as for the 2-class M/M/1-DPS
CTMC analyzed above). Note that for a k-class M/M/1-DPS system,
the CTMC will be k-dimensional and infinite in all k dimensions.
We use the same form of Lyapunov function for the k-dimensional
CTMCs as employed for the 2-dimensional CTMC.
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(a) 1-D step function (b) 2-D step function
Fig. 6: State space reduction by our step bounding functions over
Dayar et al. for M/M/1-DPS with k customer classes; ϵ= 0.1.

Fig. 7: Comparison of the sum of P 90 for both classes of jobs in
the system under the PS and DPS scheduling policies (L1  =ρ1/ρ);
results in the [0.9 0.95] range are zoomed in for illustration.

Figure 6 shows the reduction in state space afforded by our
truncation technique over Dayar et al. [6] as a function of the
total offered load for the M/M/1-DPS with k =  2,3,4 customer
classes. We set ϵ= 0.1 and consider equally-distributed load shares
with αi  =  1/k for all k customer classes. We observe that the
reduction in state space increases with k, with the 2-D step function
generally providing better improvements.

Across all experiments shown in Figure 6, the average (and
maximum) state space by our technique is 44% (72%), 36% (68%),
and 30% (58%) for k =  4, k =  3, and k =  2, respectively, using
the 2-D step bounding function. The corresponding improvements
for the 1-D step bounding function are 35% (58%), 30% (53%),
and 24% (45%). In terms of computational effort, across all
experiments in Figure 6, solving the truncated CTMC is as much
as 7×  faster when employing our bounds.

B. Applications of the truncated DPS CTMC
For modern web services, such as Amazon [2] and Google [1],

tail performance measures, e.g., tail latency or tail queue length, are
critical to providing acceptable performance to customers. To ana-
lyze the M/M/1-DPS performance, we consider the 90th percentile
of the number of jobs in the system, denoted as P 90. Other tail
measures can be similarly computed; for example, tail response time
can be computed by truncating the CTMC and leveraging existing
results for finite DPS queues [22]. We employ our 2-D step drift
bounding function to find the truncation bounds by setting ϵ= 0.01.
We then solve the balance equations for the truncated CTMC and
obtain its steady-state probability distribution; we use the resulting
probability distribution to compute the P 90 values.

1) Use case 1: DPS versus PS, for tail metrics: Prior work has
shown that DPS can outperform, in terms of the mean queue length,
the classical M/M/1-PS system with more than one customer class

(a) ρ= 0.7 (b) ρ= 0.9
Fig. 8: Performance of M/M/1-DPS and non-preemptive M/M/1-
FCFS with priority for different load conditions.

when a larger weight is assigned to the class with a smaller mean
service time [21]. We now investigate whether this result still holds
for tail measures. For both PS and DPS, we consider (the same) two
customer classes with the offered load for class i  being ρi  = λ i /µ i ,
and the total offered load ρ =ρ1 +ρ2.

Figure 7 shows the summation of P 90 values of the number
of customers in the system for both classes, P 90(N1)+P 90(N2),
as a function of ρ for the M/M/1-PS (black line with circles) and
different M/M/1-DPS systems with varying ρ1 values; we set the
parameters for the figure such that the mean service time of class-1
customers is lesser than that of class-2 customers (1/µ1 <  1/µ2)
and set α1 = 0.9 to give preferential treatment to the class-1. We
separately zoom in and plot the [0.9 0.95] x-axis range results for
illustration. Note that the P 90 values for M/M/1-PS for different
values of ρ1/ρ are quite similar and appear as a single line.

We find that the DPS system outperforms the PS system for
almost all parameter configurations shown in the figure, with more
pronounced (and visible) improvements, ranging from 2%–9%, at
higher offered loads (see zoomed-in plot on the right of Figure 7).
The average improvement over all cases shown in Figure 7 is about
4%. For the DPS cases in Figure 7, α1 = 0.1, and thus α2

= 0.9 >α1. By providing higher priority, or weights, for the class
with smaller mean service time (with smaller jobs), DPS can
achieve better
performance by as much as 9%. We also experimented withα1 >α2,
and found that, in this case, PS outperforms DPS. We analyze the
impact of class weights on the performance of M/M/1-DPS in detail
as a separate use case in our technical report [20].

2) Use case 2: When is DPS better than FCFS with priority?:
This use case focuses on the long-standing debate between PS and
FCFS policies [24]. We investigate the performance of M/M/1-DPS
when compared with that of an M/M/1-FCFS with priority; as
before, we consider two customer (priority) classes. For SLO, we
consider the weighted sum of the tail of the number of jobs in sys-
tem: 10×P 90(N1)+P 90(N2 ). For the M/M/1-FCFS with priority,
we employ existing analytical results to obtain the P 90 values [25].

We start by considering the non-preemptive version of the
M/M/1-FCFS with priority. Figure 8 shows our results for the
weighted metric as a function of ρ1/ρ. T o prioritize class-1 jobs, we
set α1 = 0.95 for DPS; results are qualitatively similar, but not as
pronounced, under otherα1 >0.5 values. We set µ1 =0.6 and µ2 = 1
and experiment with total offered loads ρ = 0.7 and ρ = 0.9. For
each case, we find values of λ1 and λ2 such that the total load is ρ
and the fractional load of customer 1 is as shown on the x-axis.

When ρ =  0.7, both policies perform similarly. However,
when ρ = 0.9, we observe an interesting behavior. When the load
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share of customer class-1 is low, DPS performs better, whereas
when the load share of class-1 is high, FCFS performs better. This is
because for the low load share of class-1, the load is higher for class-
2 jobs, and due to the non-preemptive FCFS  policy we consider,
class-2 jobs can “hold up” incoming class-1 jobs, resulting in a high
penalty under our metric that gives a higher weight to P 90(N1). For
the high load share of class-1, FCFS outperforms DPS since FCFS
provides strict priority, as opposed to the α1-weighted DPS policy,
which still provides a weight of 1−α1 = 0.05 for class-2 jobs. We
observed a similar trend for other values of µ1 and µ2 as well.

We also compared the performance of M/M/1-DPS with that of
preemptive M/M/1-FCFS. However, in this case, across different pa-
rameter settings, the preemptive FCFS always outperforms M/M/1-
DPS, with respect to the tail of the number of jobs in the system.

V . APPL ICATION TO THE PREEM PT I V E M/M/C+M QUEUE

Multi-server priority queues with preemption have been
widely employed to model differentiated service for multiple
customer classes. For the case of customer abandonment (impatient
customers), referred to as the M/M/c+M priority queue, the exact
steady-state probability distribution for the low-priority customers
is not known. However, truncating using the 1-D step bounding
function (See Section III-A) only requires the moments of one of the
customer classes, which are readily available for the high-priority
class [26]. Employing the 1-D step function for the M/M/3+M
model provides 21% (52%) average (peak) reduction in state space
over Dayar et al. [6]. A  detailed discussion of our truncation bounds
and results is provided in Section V  of the technical report [20].
We also applied our truncation technique to the preemptive M/M/c
priority queue with two priority classes but without abandonment,
for which the analysis is known to be cumbersome when c > 2 [19].
For the preemptive M/M/3 queue with two priority classes, our 1-D
step bounding function provides, on average, a 23% reduction in
state space compared to Dayar et al.’s truncation.

VI . CONCLUSION

This paper presents a Lyapunov function-based technique to
obtain tight truncation bounds with probability mass guarantees for
multi-dimensional and infinite state-space CTMCs. By leveraging
the known moments of the CTMC, our technique significantly
truncates the state space by an average of around 34% and by as
much as 72% (compared to Dayar et al. [6]) in the case of
M/M/1-DPS model; The improvement in the M/M/3+M model is
around 21% on average and by as much as 52%. Importantly, we
prove that the truncation guarantees a user-specified bound on loss
in probability mass, thus allowing for arbitrary accuracy guarantees.
Acknowledgment: This work was partially supported by NSF
grant CNS 1750109.
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