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ABSTRACT 

Carbon fiber reinforced polymer (CFRP) matrix composites have become 
increasingly popular across industries such as aerospace and automotive industries due 
to its outstanding mechanical properties and significant weight saving capability. CFRP 
composites are also widely known to be highly tailorable. For instance, different 
laminate-level mechanical properties for CFRP composites can be achieved by varying 
the individual carbon fiber laminar arrangements, among one of them is the Poisson’s 
ratio. Conventional materials have a positive Poisson’s ratio (PPR), visualize any 
conventional materials in a 2D block shape, when stretching that material in longitudinal 
direction, contraction follows on the transverse direction, whereas for materials with a 
negative Poisson’s ratio (NPR), stretching in the longitudinal direction leads to 
expansion in the transverse direction. Materials with NPRs have been shown to improve 
the indentation and impact resistances, when compared to equivalent materials with 
PPRs. However, producing NPRs could potentially compromise other properties, such 
as tensile properties, which has not been reported. The current work investigates the 
effects of NPR on the tensile properties of CFRP composites. Specifically, a laminate-
level NPR of -0.4094 in the in-plane direction is achieved through ply arrangement of 
CFRP composites using classical lamination theory (CLT). The non-auxetic counterpart 
CFRP composites are designed to produce an PPR of 0.1598 in the in-plane direction 
while simultaneously match their elastic moduli in three directions with those of the 
auxetic composites. Results show that the predicted tensile modulus and in-plane 
Poisson’s ratio were in excellent agreement with the experiment results. It was found 
that the ultimate tensile strength and failure strain or ductility of auxetic specimens were 
on average 40% lower than those of the conventional CFRP composites. 
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INTRODUCTION 

 
Carbon fiber reinforced polymer (CFRP) matrix composites have become 

increasingly popular across industries such as in aerospace, automotive, energy, marine, 
civil infrastructure, and high-end sports for their high specific mechanical properties and 
excellent fatigue and corrosion resistances. These properties translate to significant 
weight savings when compared to conventional metallic materials, such as aluminum. 
While having superior mechanical performance than conventional metals, CFRP 
composites are susceptible to various impact damages, such as tool drop impact, hail 
impact, ballistic impact, and bird strike during their service life. These impacts could 
lead to various extents of damage modes, such as delamination, matrix cracking, fiber 
breakage, and penetration, which results in significant degradations in mechanical 
performances of CFRP [1-4]. One solution to mitigate impact damages, especially low 
velocity impact damage, for CFRP is to introduce auxeticity or negative Poisson’s ratio 
into the CFRP structure [5-9]. 

Auxeticity can be introduced into CFRP structures by i) introducing auxetic 
inclusions or using auxetic matrix and ii) stacking a specific ply arrangement of 
individual anisotropic lamina. For instance, Li and Wang investigated the effects of 
auxetic and non-auxetic core materials on the bending behavior of sandwich 
composites. A negative Poisson’s ratio of -1.732 was reported for the sandwich 
composite with re-entrant honeycomb core [10]. Gunaydin et al. [11] investigated the 
energy absorption characteristics of chiral auxetic lattices filled cylindrical composite 
tubes under uniaxial and lateral compression. It was found that the chiral auxetic lattices 
inserts improved the specific energy absorption by 360% due to the triggered auxetic 
deformation. Auxeticity can also be produced by stacking a specific ply arrangement of 
individual anisotropic lamina. A well-validated procedure was proposed by Sun and Li 
where laminate-level effective moduli, shear moduli, and in-plane and out-of-plane 
Poisson’s ratios can be determined according to the Classical Lamination Theory (CLT) 
[12]. For instance, researchers have produced laminate-level (or effective) negative 
Poisson’s ratios in the in-plane direction (𝜈ଵଶ

௘ ) and in the through-thickness direction 
(𝜈ଵଷ

௘ ) through tuning the layups of the anisotropic layered carbon fiber reinforced 
polymer (CFRP) matrix composites [13]. In this study, we focus on auxetic CFRP 
structures produced by the latter method, i.e., stacking individual anisotropic lamina 
using a specific layup. 

Many studies have reported the enhancement of indentation and impact resistances 
of auxetic structures, when compared to their non-auxetic counterparts [5-9]. For 
example, researchers from the University of Bolton (UK) used IM7/5882 carbon fiber 
reinforced epoxy resin prepregs and produced a negative in-plane Poisson’s ratio (i.e., 
𝜈ଵଶ

௘ ) of -0.134 with a layup of [±30]6s and a negative through-thickness Poisson’s ratio 
(i.e., 𝜈ଵଷ

௘ ) of -0.156 with a layup of [0/15/75/15]s [14]. Experimental results of quasi-
static indentation and low velocity impact tests showed consistently a much smaller 
damage area (i.e., delamination and fiber breakage) in auxetic composites when 
compared to non-auxetic composite laminates with matched stiffnesses. Under an 
impact energy of 18 J, the extent of the damage showed a reduction of 27%.  

Despite the many studies conducted to investigate the indentation and impact 
resistance enhancements for auxetic CFRP composites, effects of negative Poisson’s 
ratio on other mechanical properties, such as tensile strength of CFRP composites are 



yet to be explored as the imparted negative Poisson’s ratios could lead to adverse effects 
to tensile strength, which is the most advantageous characteristics of CFRP structures. 
In the current study, we designed CFRP composites with in-plane negative Poisson’s 
ratio and matched non-auxetic counterpart CFRP composites with in-plane positive 
Poisson’s ratio while ensuring close agreement of the three laminate-level effective 
moduli. Tensile tests were performed to determine the experimentally measured in-
plane Poisson’s ratio and tensile modulus and evaluate effects of negative Poisson’s 
ratio on the ultimate tensile strength and the failure strain. 
 

 
LAMINATE-LEVEL EFFECTIVE CONSTANTS 
 
Effective In-Plane Poisson’s Ratio 

Given the transversely isotropic nature of the individual unidirectional lamina, 
varying lamina stacking sequence of a CFRP laminate could lead to different laminate-
level mechanical properties and the laminate-level in-plane Poisson’s ratio is of interest 
of the current study. The laminate-level in-plane effective Poisson’s ratio, 𝜈ଵଶ

௘ , can be 
obtained based on the Classical Lamination Theory (CLT), 

 

𝜈ଵଶ
௘ =  

ି௃మభ

௃భభ
     (1) 

 

𝜈ଵଷ
௘ =  

ି௃యభ

௃భభ
     (2) 

 
where 𝐽ଵଵ, 𝐽ଶଵ, and 𝐽ଷଵ are elements of the J matrix, 
 

𝐽 = 𝐴ିଵ + 𝐴ିଵ𝐵(𝐷 − 𝐵𝐴ିଵ𝐵)ିଵ𝐵𝐴ିଵ          (3) 
 

where A, B, and D are the extensional stiffness matrix, extensional-bending coupling 
matrix, and bending stiffness matrix according to the CLT. Detailed derivation can be 
found in author’s previous works in [15,16] and Sun and Li [12].  

After obtaining the above expressions, a MATLAB code was developed to identify 
the layup sequences that will produce in-plane negative Poisson’s ratio. A final layup 
sequence consists of five plies of orientation [15/65/15/65/15] was chosen, which 
produces an in-plane Poisson’s ratio of -0.4094.  
 
Effective Moduli 

Note that by varying the layup sequence to produce the desired in-plane Poisson’s 
ratio, other mechanical properties are affected at the same time. To effectively 
investigate the effects of Poisson’s ratio on the tensile properties of CFRP composites 
alone, it is important to minimize effects from other apparent mechanical properties, 
such as effective moduli in the longitudinal 𝐸ଵ

௘ , transverse 𝐸ଶ
௘  and out-of-plane 

directions 𝐸ଷ
௘. The three laminate-level effective moduli can be calculated using the 

  
Table I. Ply-level engineering constants of an IM7/977-3 CFRP composite lamina [17]. 

Elastic moduli (GPa) 𝐸ଵଵ = 159, 𝐸ଶଶ = 𝐸ଷଷ = 9.2, 𝐺ଵଶ = 𝐺ଵଷ = 4.37, 𝐺ଶଷ = 2.57 

Poisson’s ratio 𝜈ଵଶ  = 𝜈ଵଷ = 0.253, 𝜈ଶଷ = 0.456 



 
 

Table II. Laminate-level effective constants of auxetic and conventional non-auxetic 
IM7/977-3 CFRP composite laminates. 

 Auxetic CFRP composite Non-auxetic counterpart CFRP 
composite 

Layup sequence [15/65/15/65/15] [35/60/-5/60/35] 
𝜈ଵଶ

௘  -0.4094 0.1598 
𝜈ଵଷ

௘  0.6302 0.3629 
𝐸ଵ

௘ (GPa) 51.2869 51.2935 (+0.0129%) 
𝐸ଶ

௘ (GPa) 25.5294 21.0296 (-17.626%) 
𝐸ଷ

௘ (GPa) 9.9504 10.2613 (+3.125%) 

 
well-validated method proposed by Sun and Li, the detailed formulations can be found 
in Ref. [12]. A MATLAB code was developed to calculate the effective moduli of the 
specified layup sequence and to identify the layup sequence that could closely match 
the three effective moduli and at the same time producing a positive Poisson’s ratio as 
counterpart for the auxetic CFRP composite. Table I shows the ply-level engineering 
constants of the IM7/977-3 carbon fiber composite lamina (i.e., the specific composite 
considered in this study, see the Materials and Specimens Section) that are used to 
calculate the effective constants. Table II shows the calculated results of the laminate-
level effective constants for both the CFRP composite and the conventional CFRP 
composite. The layup of the conventional non-auxetic CFRP composite is [35/60/-
5/60/35]. In Table II, it can be seen that the longitudinal 𝐸ଵ

௘  and out-of-plane 𝐸ଷ
௘ 

effective moduli could be closely matched with percentage errors of 0.0129% and 
3.125%, respectively, whereas the transverse effective modulus had the highest percent 
error of 17.626%, as it is impossible to match 100% all three effective moduli. Given 
the primary focus of tensile properties of this study, matching the longitudinal moduli 
was given the higher priority when selecting the layup sequence. 

 
 
EXPERIMENTAL SETUP 
 
Materials and Specimens 

 
The CFRP composite specimens used in the current study were manufactured with 

unidirectional IM7/977-3 carbon fiber prepregs. Following the recommended cure 
cycle, a 304.8 mm by 304.8 mm CFRP plate was fabricated using the layup orientation 
of [15/65/15/65/15] for auxetic specimens and [35/60/-5/60/35] for conventional 
specimens, each having five plies and a final thickness of 0.65 mm. After curing, the 
fabricated CFRP plates were trimmed to a dimension of 254 mm by 254 mm. Then, a 
254 mm by 25.4 mm region was prepared on both front and back surfaces of the CFRP 
plates and on both top and bottom sides according to ASTM D2093 standard [18] and 
to be bonded with four 254 mm by 25.4 mm glass fiber tabs using HYSOL EA 9309NA 
adhesive. The purpose of using the bonded tabs was to avoid damage by the grips during 
tensile tests given the small thickness of specimens. The CFRP plates with bonded tabs  



 
 

Figure 1. Tensile test grip with loaded specimen prior to testing.  
 
 
were then cut with a width of 25.4 mm to produce individual specimens which was 254 
mm long by 25.4 mm wide and 0.65 mm thick, with four 25.4 mm by 25.4 mm glass 
fibers tabs on the two ends of both surfaces, making the gage section of the specimens 
with a dimension of 203.2 mm long by 25.4 mm wide as specified in ASTM D3039 
standard [19].  
 
Tensile Test Setup 

 
The tensile tests were carried out according to the ASTM D3039 standard [19] on 

an MTS testing system with a 100 kN capacity load cell calibrated at 20 kN load, with 
a self-tightening tensile grip. The tests were displacement controlled with a 
displacement rate of 1.3 mm/min. To measure the laminate-level Poisson’s ratio, two 
strain gages were used for each tested specimen, where one strain gage was positioned 
vertically on the front surface to measure the longitudinal strain and the other was placed 
horizontally on the back surface to measure the transverse strain, both at the center of 
the gage section, as shown in Fig. 1. 
 
RESULTS AND DISCUSSION 
 
Tensile Test Results 
 

Figure 2 shows the photograph of all tested specimens, where A denotes the auxetic 
specimen group and C denotes the counterpart conventional specimen group. It can be 



seen that both groups have specimen failure towards the end of the gage section instead 
of at the center and both specimen groups failed predominantly with matrix cracking at 
the surface plies, at 15° orientation for auxetic specimens and 35° orientation for 
conventional specimens, along with fiber breakage at embedded plies.  

Optical microscopy images of specimens A3 and C3 shown in Figs. 3 and 4 give a 
better representation of the failure mechanisms. For auxetic specimen A3, clean matrix 
cracking along the 15° surface plies can be observed. The embedded 65° plies also failed 
by matrix cracking along with fiber breakage at the exposed edges where the 15° plies 
failed. Whereas for conventional specimen C3, both the 35° surface plies and embedded 
plies with 60° and -5° orientation failed with both matrix cracking and fiber breakage. 
In the microscopy images of the cross section of the tip regions of specimens A3 and 
C3, delamination between the surface and adjacent plies can be observed in specimen 
A3. This could be caused by the combined effect of negative Poisson’s ratio in the in-
plane direction and higher Poisson’s ratio in the out-of-plane  

 
 
 
 
 

 
 

Figure 2. Photograph of specimens after tensile tests, where A1-A3 are auxetic CFRP composite 
specimens (laminate layup: [15/65/15/65/15]) and C1-C3 are non-auxetic counterpart CFRP composite 

specimens (laminate layup: [35/60/-5/60/35]). 
 
 



 
 

Figure 3. Optical microscopy of auxetic CFRP composite specimen A3 (laminate layup: 
[15/65/15/65/15], 𝜈ଵଶ

௘ = -0.3901, 𝐸ଵ
௘=50.92 GPa, see Table III below). 
 
 



  
 

Figure 4. Optical microscopy of conventional non-auxetic counterpart CFRP composite specimen C3 
(laminate layup: [35/60/-5/60/35], 𝜈ଵଶ

௘ = 0.1441, 𝐸ଵ
௘=54.44 GPa, see Table III below). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table III. Experimental and predicted mechanical properties of auxetic (i.e., A1-A3) and non-auxetic 
(i.e., C1-C3) CFRP composite specimens. 

Specimen  
# 

Tensile 
Modulus 
Predicted 

(GPa) 

Tensile 
Modulus 
Measured 

(GPa) 

Poisson’s 
Ratio 

Predicted 

Poisson’s 
Ratio 

Measured 

Ultimate 
Tensile 

Strength 
Measured 

(MPa) 

Failure 
Strain 

Measured 
(mm/mm) 

A1 
51.2869 

50.45 
-0.4094 

-0.4055 323.31 0.00651 
A2 50.93 -0.4189 317.62 0.00633 
A3 50.92 -0.3901 278.31 0.00553 

Average — 
50.75 

(± 5.67) 
— 

-0.4048 
(± 0.0144) 

— — 

C1 
51.2935 

54.30 
0.1598 

0.1283 558.36 0.01032 
C2 55.56 0.1286 576.02  0.01048 
C3 54.44 0.1441 567.72 0.01039 

Average — 
54.79 

(± 5.43) 
— 

0.1337 
(± 0.009) 

— — 

 
 
direction of auxetic specimen than conventional specimen. With the layup sequence of 
[15/65/15/65/15] for auxetic specimen, the in-plane Poisson’s ratio (𝜈ଵଶ

௘ ) is -0.4094 and 
the out-of-plane Poisson’s ratio (𝜈ଵଷ

௘ ) is 0.6302, in comparison with the in-plane 
Poisson’s ratio (𝜈ଵଶ

௘ ) of 0.1598 and out-of-plane Poisson’s ratio (𝜈ଵଷ
௘ ) of 0.3629 of 

conventional specimen with layup sequence of [35/60/-5/60/35]. The combined effect 
of negative Poisson’s ratio in the in-plane direction and higher Poisson’s ratio in the out-
of-plane direction of auxetic specimen indicates that during tensile loading, the in-plane 
direction is expanding in both longitudinal and transverse direction while the thickness 
direction is contracting and could lead to even greater extent of strain mismatch than 
conventional specimens, thereby causing the delamination.  
 
 
 

 
Figure 5. Stress vs. Strain curves for all tested specimens, where A1-A3 are auxetic CFRP composite 

specimens (laminate layup: [15/65/15/65/15]) and C1-C3 are non-auxetic counterpart CFRP composite 
specimens (laminate layup: [35/60/-5/60/35]). 
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Figure 5 shows the stress vs. strain curves for all the tested specimens, it can be 
observed that all specimens exhibit a brittle failure where the stress vs. strain curves for 
all specimens increased linearly up to the failure point and immediately dropped to zero 
beyond the failure point. Table III shows the predicted and experimental mechanical 
properties data for the auxetic and conventional specimens, the tensile modulus is 
calculated by finding the slope of the stress vs. strain curves and the Poisson’s ratio is 
calculated by finding the slope between the transverse strain vs. longitudinal strain 
curves for each specimen. The overall tensile modulus was found to be 50.75 GPa with 
a standard deviation of 5.67 GPa for auxetic specimens and 54.79 GPa with a standard 
deviation of 5.43 GPa for conventional specimens. The average in-plane Poisson’s ratio 
was found to be -0.4048 with a standard deviation of 0.0144 for auxetic specimens and 
0.1337 with a standard deviation of 0.009 for conventional specimens. Note that the 
predicted and measured tensile modulus are in excellent agreement where the predicted 
tensile modulus is 51.2869 GPa for auxetic specimens and 51.2935 GPa for 
conventional specimens, which have a percent difference of 1.05% and 6.82% from the 
measured values, respectively. 

Even though both layup sequences had similar tensile modulus, the failure strain 
and ultimate tensile strength of the auxetic specimens on average were only around 60% 
of those of the conventional specimens, where the average failure strain for conventional 
specimen was around 1.04%. Note that IM7/977-3 lamina (i.e., a single ply of IM7/977-
3, not the laminate) was reported to have a tensile failure strain of 1.61% [20]. The lower 
ultimate tensile strength and failure strain could also be due to the combined effect of 
negative Poisson’s ratio in the in-plane direction and higher Poisson’s ratio in the out-
of-plane direction of auxetic specimen where the strain mismatch in the in-plane and 
out-of-plane directions caused premature delamination and impaired the interface 
bonding strength between plies causing the lower ultimate tensile strength and failure 
strain of the auxetic specimens.  
 
 
CONCLUSION 

 
Auxetic structures were shown to improve the indentation and impact resistances in 

existing studies. However, producing auxeticity could potentially compromise other 
properties, such as the tensile properties. The current study investigated the effect of in-
plane negative Poisson’s ratio on the tensile properties of CFRP composites by 
designing layup sequence that would produce in-plane negative Poisson’s ratio (𝜈ଵଶ

௘ =
 -0.4094) and then matching counterpart conventional laminates with in-plane positive 
Poisson’s ratio (𝜈ଵଶ

௘ = 0.1598) while matching the three laminate-level effective moduli 
between the auxetic and conventional laminates. Tensile tests were conducted to 
evaluate the tensile performance of auxetic and conventional non-auxetic specimens 
followed by photography and optical microscopy to document the failure mechanisms 
exhibited. 

It was found that both auxetic and conventional specimen groups failed in a brittle 
manner where the stress vs. strain curves increased linearly up to failure point and 
immediately dropped to zero beyond the yield point. The tensile modulus and the in-
plane Poisson’s ratio were found to be in excellent agreement with the predicted values. 
However, the ultimate tensile strength and failure strain or ductility of the auxetic 
specimens were found to be 40% on average lower than those of the conventional 



specimens which could be attributed to the combined effect of negative Poisson’s ratio 
in the in-plane direction and higher Poisson’s ratio in the out-of-plane direction of 
auxetic specimen where the greater strain mismatch in the in-plane and out-of-plane 
directions led to premature failure.  

This study suggests that considerations need to be given when designing CFRP 
structures with negative Poisson’s ratio by weighing the desired properties of improved 
impact resistance and lowered tensile strength. In the future work, we will continue by 
obtaining the delamination and impact resistances of the two proposed layup sequences. 
A new auxetic layup sequence will also be investigated which will have good agreement 
of laminate-level effective moduli with the current layup schedules, but with a lower in-
plane negative Poisson’s ratio to further investigate the effect of varying the in-plane 
negative Poisson’s ratios on the ultimate tensile strength and ductility of CFRP 
composites. 
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