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ABSTRACT We use mathematical modeling and computation to investigate how protein friction facilitates contraction of disor-
dered actomyosin networks. We simulate two-dimensional networks using an agent-based model, consisting of a system of
force-balance equations for myosin motor proteins and semiflexible actin filaments. A major advantage of our approach is
that it enables direct calculation of the network stress tensor, which provides a quantitative measure of contractility. Exploiting
this, we use repeated simulations of disordered networks to confirm that both protein friction and actin filament bending are
required for contraction. We then use simulations of elementary two-filament systems to show that filament bending flexibility
can facilitate contraction on the microscopic scale. Finally, we show that actin filament turnover is necessary to sustain contrac-
tion and prevent filament aggregation. Simulations with and without turnover also exhibit contractile pulses. However, these
pulses are aperiodic, suggesting that periodic pulsation can only arise because of additional regulatory mechanisms or more
complex mechanical behavior.
SIGNIFICANCE Actomyosin contraction is a vital process in cell movement and division. We introduce an energy
minimization framework for modeling actomyosin networks that enables direct calculation of forces and stress. Using
simulations, we show that protein friction and actin filament bending facilitate network-scale contraction. On the
microscopic scale, we define a heuristic index that explains bending-induced contraction in terms of motor position and
mutual filament angle. On the network scale, we show that turnover prevents pattern formation and enables persistent,
aperiodic contraction.
INTRODUCTION

The mechanics of actomyosin networks govern essential
cellular processes, including muscle contraction (1), cell
division (2), and cell motility (3). Assemblies of actin and
myosin exhibit diverse structural organization. In muscles,
actin filaments are aligned in parallel to form sarcomeres,
in which myosin-II motor proteins generate force in accor-
dance with the sliding filament theory (1). Alternatively,
actin filaments form a disordered two-dimensional mesh-
work in the cell cortex, located below the membrane of
living cells. These filaments are cross-linked by myosin
motors, which exert forces that give rise to cortical tension
and flow (4). This cortex deformation subsequently deter-
mines cellular morphology and locomotion. Understanding
the mechanisms by which myosin motors generate local
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forces is challenging and can be investigated using mathe-
matical modeling and computation.

The sliding filament mechanism provides a starting point
for investigating contraction in disordered networks.
Myosin motors attached to pairs of parallel actin filaments
can generate either contraction or expansion, depending
on filament orientation. A motor protein bound to a pair
of filaments with barbed ends facing outwards will generate
local contraction, as shown in Fig. 1A. Conversely, the fila-
ments generate expansion if the pointed ends face outwards
(Fig. 1B). However, this sliding filament mechanism alone
cannot explain net contraction in disordered networks, in
which filaments can cross at arbitrary angles and in either
configuration with equal probability. In these networks,
there must be additional symmetry-breaking mechanisms
that favor contraction over expansion.

Candidate mechanisms for generating contraction in
disordered networks fall into the broad categories of struc-
tural and force asymmetries. Structural asymmetries break
the random alignment of actin and myosin, enabling
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FIGURE 1 Schematic representations of (A) contraction via the sliding filament mechanism, (B) expansion via the sliding filament mechanism, (C) fila-

ment zippering, (D) filament anchoring, and (E) actin treadmilling. Asterisks indicate filament barbed (plus) ends, and arrow heads indicate pointed (minus)

ends. Dashed arrows represent direction of filament movement. To see this figure in color, go online.
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contractile configurations to emerge more often than expan-
sive ones. Force asymmetries arise if filaments behave
differently under tension and compression, enabling
contraction more readily than expansion. In cells, mecha-
nisms of contraction can be redundant and act as fail-safes
in case network components are absent or lose function
(5–7). Many contractile mechanisms have been proposed
and investigated for this reason.

Several hypotheses exist for generating structural asym-
metries in two-dimensional networks. One example is a zip-
pering mechanism, whereby a motor with nonzero length is
displaced ahead of the intersection between two filaments
(see Fig. 1C). Motor movement toward the plus ends then
pulls the filaments inwards, generating contraction (8–10).
Theoretical work by Lenz (9) showed that zippering can
generate net contraction in disordered networks but is un-
likely to occur in practice. Another possible structural asym-
metry is based on the observation that some filaments grow
with barbed ends anchored to the cell membrane (5,6) (see
Fig. 1D). Contraction can then occur via the sliding filament
mechanism because the anchored filaments are in a contrac-
tile alignment. However, a drawback of this hypothesis is
that only a small fraction of filaments in the cortex are
anchored, such that nonanchored filaments are thought to
play a major role in contractility (6). A third hypothesized
structural asymmetry for generating contraction is actin
treadmilling, which involves simultaneous filament depoly-
merization at minus ends and polymerization at plus ends
(11). This enables contractile structures to persist as barbed
ends are pulled inwards, generating a structural asymmetry
(see Fig. 1E). Oelz, Rubinstein, and Mogilner (12) showed
that treadmilling gives rise to network-scale contraction in
one-dimensional ring-like geometry. Previous theoretical
work has also shown that myosin motors lingering at fila-
ment barbed ends instead of unbinding can generate
contraction (9,13,14). However, although this behavior has
been observed in experiments, it is not known whether it
occurs in nonmuscle cells (15).

In contrast to these structural asymmetries, many studies
consider a mechanism whereby filaments buckle, and
possibly sever (16), under longitudinal compression.
Because filaments can sustain longitudinal tension without
buckling, this gives rise to asymmetric force propagation
that favors contraction. Buckling has been illustrated
in vitro (16) as well as theoretically (17) and occurs if
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filament length exceeds a threshold length. Another possible
force asymmetry arises when filaments bend elastically in
response to transverse forces (9). Filament bending is likely
to be relevant in cellular actomyosin, because the forces ex-
erted by myosin motors are large enough to bend filaments
with lengths below 1 mm (16), which is the approximate fila-
ment length (18). However, the forces required to initiate
bending are �1000 times smaller than those required to
rupture filaments (19). Therefore, filament bending without
buckling might also play a role in contraction.

Mathematical modeling has facilitated advancements in
understanding actomyosin contraction. One phenomenolog-
ical approach is to treat the actomyosin network as an active
gel continuum (13,20). In these models, filament and motor
positions are expressed in terms of continuous density fields.
Although these models can effectively predict pattern forma-
tion in actomyosin networks (21), many recent models focus
on developing accurate microscopic descriptions of network
components. Because we are interested in whether actin fila-
ment bending can induce contraction on both the microscopic
and network scales, we focus on coarse-grained agent-based
models. These models use simplified representations of indi-
vidual network components and track how they evolve over
time. Agent-based models enable detailed description of
the mechanics on a microscopic scale and can subsequently
be used to derive accurate continuum models (22).

Many agent-based models for the cytoskeleton exist,
including publicly available software Cytosim (23),
AFINES (24), and MEDYAN (25). These, and many other
authors (7,26–29), use modified Brownian dynamics to
simulate actomyosin networks. Under this approach, actin
filaments move according to an overdamped Langevin-like
equation for the balance of forces between network compo-
nents (7,23–29). Within this framework, many authors have
recognized the importance of filament bending forces to
contractility (7,14,24,30–33). A common approach is to
focus on filament buckling (17,24,32,34,35) as a mechanism
of contraction. This represents an extreme case of force
asymmetry generated by deformable filaments. Using a
one-filament worm-like chain model, Lenz (9) showed
that motor-induced filament bending is more effective than
filament buckling at facilitating contraction and is relevant
for typical experimental parameters. However, further quan-
titative analysis of this bending force asymmetry in filament
networks is required.



Protein friction contracts actomyosin
Protein friction can be represented as effective viscous
drag that acts pointwise at the binding site of a motor or
cross-linker or at the point of contact between filaments
(36). Using a one-dimensional model, Oelz, Rubinstein,
and Mogilner (12) showed that a combination of actin tread-
milling and drag distributed along filament pairs that over-
lap can contract a ring-like network of rigid filaments. In
two dimensions, protein friction manifests as pointwise
drag at filament intersections (37,38). McFadden et al.
(38) showed that pointwise drag and bending force asymme-
try facilitate contraction. These models with protein friction
draw parallels between pointwise drag and cross-linkers
(37,38). However, this implies that cross-linkers are either
short and abundant or turn over rapidly. The possibility of
using pointwise drag to represent solid friction between fil-
aments remains largely unexplored, and additional work is
required to determine how this affects network contraction.

To address these research gaps, we develop a mathemat-
ical model for semiflexible actin filaments and myosin
motors to investigate how protein friction affects contrac-
tility. A promising simulation approach was developed by
Dasanayake, Michalski, and Carlsson (39) and Hiraiwa
and Salbreux (10), in which the network configuration is
given by the minimizer of a potential energy functional.
However, these studies considered the evolution of random
networks to a steady state and neglected longer-time
evolution of the network. In developing our model, we
extend this approach to fully time-dependent simulations.
MATERIALS AND METHODS

Mathematical model

Wedevelopanagent-basedmodel to simulate two-dimensional disorderednet-

works. The network contains semiflexible actin filaments, which we represent

as finite-length curves in two-dimensional space.We represent myosinmotors

as dumbbells that behave as linear springs with equilibrium length zero such

that they attach to filament pairs at intersections. We assume that myosin mo-

tors detach immediately if they reach a filament plus end and otherwisemodel

force-dependent random detachment according to Bell’s law (40). Movement

of unattached motors is not modeled explicitly. Instead, we assume that a new

motor immediately attaches at a randomfilament intersectionwhen an unbind-

ing event occurs. Although this is not representative of real networks, it en-

forces that the density of active motors remains constant. This ensures

variation in the number of motors cannot influence the results. We then simu-

late network evolution by solving for the positions of filament nodes and

myosin motors on a square domain with periodic boundary conditions.

Components in cytoskeletal networks undergo continuous turnover

(33,41–43). This refers to the exchange of filaments, motors, and cross-

linkers between the network and cytoplasm (10). Turnover can occur

when filaments sever (16) or undergo treadmilling (12,44,45), which de-

pends on motor (16) and cross-linker activity (35). We explicitly model

actin turnover by removing filaments (and any attached motors) at random

with a constant rate (10,38). When a filament is removed, we immediately

replace it with a new one at a random position to maintain constant filament

density. This represents a simple model for actin turnover, just as our treat-

ment of myosin unbinding represents a simple model for motor turnover.

Protein friction is another mechanical feature that might influence network

contractility (36,46). It can arise from binding and unbinding interactions
between filaments and motors (46) or filaments and cross-linkers (47) or

from solid friction between filament pairs in contact (48) (see Figure 1 C).

Contact frictional forces are larger than hydrodynamic friction between fila-

ments and the cytoplasm (47,48) and have comparable magnitude to forces

exerted by myosin motors (48). In our model, we apply viscous drag at inter-

sections between actin filaments to model protein friction originating from

either cross-linking or filament contact (37,38). We assume that the presence

of a myosin motor prevents protein friction via cross-linking or filament con-

tact, and do not apply pointwise drag between filament pairs connected to the

samemotor. Our model then enables investigation of whether protein friction,

in conjunction with actin filament bending, gives rise to contraction.

We write the core model as a system of force-balance equations, which

contains all mechanical features included in the model. In abstract terms,

the system of equations is

0 ¼ Fa;drag � dEa;bend � dEa;spring þ Fa;pf

�dEm;spring þ Fm;a:
(1)

Actin filaments contribute to the force balance via viscous drag, bending,

stretching, and protein friction. Viscous friction penalizes relative motion

between actin filaments and the background medium, giving rise to drag

forces Fa,drag. We account for filament bending via the variation of Ea,bend,

which sums the elastic potential energy along the extent of each filament.

The contribution of longitudinal spring forces, Ea,spring, follows Hooke’s

law with spring constant ka. Because actin filaments are effectively inexten-

sible (49), we assume that ka is large. The symbol Fa,pf represents pointwise

drag due to protein friction, which opposes the relative motion of filament

intersections. We also investigated the effect of including random filament

motion due to thermal forces. These have only a small impact on stress and

filament aggregation, so we neglect thermal forces in Eq. 1. Further details

on their effects are provided in the Supporting materials and methods.

The system (Eq. 1) also contains two contributions relevant to myosin

motors. Like for actin filaments, Em,spring is the energy associated with lon-

gitudinal spring forces. These forces are governed by Hooke’s law with the

spring constant km, which we assume large to model the short length of

myosin motors compared to actin filaments. For actin-myosin interactions,

we adopt a linear force-velocity relation for myosin motors, written as Fm,a.

Under this assumption, unloaded motors move at the velocity Vm, and

motors cannot move if force exceeds the stall force, Fs.
Numerical method and stress calculation

In each simulation, we represent actin filaments as chains of nodes, with

adjacent nodes connected by straight line segments. We initialize filaments

as straight entities with random center positions and orientations such that

all nodes on the same filament are equidistant. Given the initial filament

network, we place myosin motors at random intersections between fila-

ments such that each intersection accommodates a maximum of one motor.

To evolve the network, at each time step we construct and minimize the

energy functional

Enet :¼ Ea;drag þ Ea;bend þ Ea;spring þ Ea;pf

þEm;spring þ Em;a:
(2)

This functional includes pseudoenergy terms Ea,drag, Ea,pf, and Em,a,

whose variations correspond to finite difference approximations of the force

terms Fa,drag, Fa,pf, and Fm,a, which cannot be interpreted as variations of

potential energy. Further details and mathematical descriptions of the en-

ergy terms in Eq. 2 are provided in the Supporting materials and methods.

Each time step, we use the limited-memory Broyden-Fletcher-Goldfarb-

Shanno method to minimize Eq. 2 with respect to the positions of filament

nodes and myosin motors. We perform this optimization using the Optim.jl

(50) package in JULIA, using automatic differentiation (ForwardDiff.jl) to

evaluate the gradient. Our energy minimization method is time implicit,
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which enables comparatively large time steps without loss of numerical sta-

bility. One drawback is that large time steps enable only coarse simulation

of filament turnover and motor unbinding. Also, our implementation using

automatic differentiation is typically slower than explicit methods.

A key advantage of our energy minimization numerical method is that it

enables direct computation of the forces on the domain boundary required

to prevent uniform elongation and shear deformations. These forces aggre-

gate the contributions of each filament and motor in the network and thus

provide a measure of contractility. We compute these forces, Fx and Fy,

by adding extra terms to the energy functional and defining the total energy

Etotal : ¼ Enet þ Fx$Lx þ Fy$Ly; (3)
where Lx ¼ (Lxx, Lxy) and Ly ¼ (Lyx, Lyy) are vectors representing two edges

of the domain. The vectors Fx ¼ (Fxx, Fxy) and Fy ¼ (Fyx, Fyy), illustrated in

Fig. 2, contain the normal and shear forces acting on the domain

boundaries.

In practice, we simulate the model on a two-dimensional domain of fixed

geometry, keeping the vectors Lx and Ly constant. Minimizing Eq. 2 is then

equivalent to minimizing Eq. 3, where the normal and shear force compo-

nents are Lagrange multipliers that constrain the domain to constant size

and shape. In numerical simulations, we solve the model using Eq. 2,

then compute Fx ¼ �vLx
Enet and Fy ¼ �vLy

Enet using automatic differen-

tiation. After calculating Fx and Fy, we combine the force components to

compute the two-dimensional plane stress tensor,

s ¼
"
Fxx

�
Lyy Fxy

�
Lyy

Fyx

�
Lxx Fyy

�
Lxx

#
: (4)
This describes the state of plane stress in the network at any time step.

Although in-plane shear can produce nonzero out-of-plane normal stress

(51,52), we neglect these in our description. To obtain a measure of contrac-

tility in a simulation, we define the bulk stress and time-averaged bulk stress
zi(s, t)
zj(s, t)

zi(mij(t), t)

+ +

Lx

Ly

Fxy

Fxx

Fyy

Fyx

FIGURE 2 Schematic diagram of the periodic domain, two actin fila-

ments, and a myosin motor. The vectors zi(s, t) ˛R2 denote filament posi-

tions, parameterized by the arc length s. The variable mij(t) is the position

of the motor. To see this figure in color, go online.
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s ¼ 1

2
trðsÞ and s ¼ 1

T

Z T

0

s dt; (5)

respectively, where T is the time over which the simulation runs and tr(s) is

the trace of the stress tensor, which is invariant to coordinate rotations. The

trace is also equal to the sum of the eigenvalues of s, and the associated ei-

genvectors indicate the principal stress directions. By convention, negative s

indicates contraction, and positive s indicates expansion. Our method of

quantifying network stress enables addition or removal of features from the

energy functional without changing the method of computing the forces.

This flexibility is another advantage of our approach. In addition, our frame-

work enables explicit simulation of domain deformation by treatingFx andFy

as applied external forces instead of Lagrange multipliers and Lx and Ly as

degrees of freedom. Contractile networks would then cause |Lx| and |Ly| to

decrease, and expansive networks would cause |Lx| and |Ly| to increase.
RESULTS AND DISCUSSION

We use numerical simulations of our mathematical model to
investigate how filament bending and protein friction affect
contractility. In general, we simulate actomyosin networks us-
ing a default set of biophysically realistic parameters obtained
from literature (18,27,42,44,48,53–67). The complete list of
parameter values and details on their estimation are provided
in the Supportingmaterials and methods. We outline the main
simulation results under subsequent headings.
Actin filament bending facilitates network
contraction

To investigate actin filament bending as a contractile mech-
anism, we compared 25 simulations of semiflexible fila-
ments with 25 simulations of rigid, straight filaments. In
each simulation, we simulated 50 filaments and 10 motors
in a domain of width 2.5 mm and ran simulations until
T ¼ 60 s, with a time step size of Dt ¼ 0.05 s. This is suf-
ficient to obtain results independent of the domain width
and time step size (see Supporting materials and methods).
We then compared the time-averaged bulk stresses (Eq. 5)
and these reveal that bending is essential for contraction.
As Fig. 3A shows, the network contracted in each simulation
with semiflexible filaments (mean s ¼ �0.072 pN mm�1)
but always expanded with rigid filaments (mean
s ¼ 0.161 pN mm�1). With rigid filaments, we observe
net expansion because motor movement biases mean motor
position toward filament plus ends. In subsequent results
(see Fig. 4), we will show this to be an expansive configura-
tion. However, filament bending counteracts this tendency
to expand, facilitating systematic bias to contraction.

We hypothesize that the magnitude of contraction de-
pends on the extent of filament bending in the network. To
investigate this, at each time step in the simulations we
compute the local curvature

kðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x00ðsÞ2 þ y00ðsÞ2

q
(6)



A

B C

FIGURE 3 (A) Box plots comparing mean s in 25 semiflexible networks and 25 rigid networks. (B and C) The effect of flexural rigidity, ka, on (B) s and

(C) k: Boxplots represent data from 10 simulations with a given parameter, and the dashed curve represents mean data smoothed with a Savitsky-Golay filter.

To see this figure in color, go online.

Protein friction contracts actomyosin
at each filament node. To obtain a measure of total curvature
for one filament, we use the trapezoidal rule to integrate the
curvature along the filament. We quantify the extent of fila-
ment bending in the network by averaging the integrated
curvature over all filaments and time, defining

k ¼ 1

T

1

Na

XNa

i¼ 1

Z T

0

Z Li

0

kðsÞ ds dt: (7)

In the remainder of this manuscript, bar notation will repre-
sent quantities similarly averaged over filaments and time.

Because the flexural rigidity describes the resistance of a
filament to bending, we varied ka and investigated its effect
on stress production. For each value of ka tested, we ran 10
random simulations and computed s: Box plots of network
bulk stress presented in Fig. 3B show that decreasing ka in-
creases contractility. This is expected because decreased
values of ka correspond to decreased resistance to filament
bending. As Fig. 3C shows, the increase in contractile stress
that occurs with decreasing ka corresponds to increased fila-
ment curvature. This accords with the hypothesis that filament
bending gives rise to force asymmetry and subsequently
contraction. Furthermore, the flexural rigidity for actin fila-
ments, ka ¼ 0.073 pN mm2 (55), lies within the region for
which we expect contraction. Actin filament bending is thus
a plausible mechanism of contraction in biological cells.
Bending facilitates net contraction on the
microscopic scale

To better understand the microscopic mechanisms of
contraction, we simulate systems of two actin filaments
with an attached myosin motor. Our objective is to
determine whether the force asymmetry occurs in this sim-
ple structure or whether contraction relies on network-
scale interactions. In two-filament simulations, we use
la ¼ 10 pN mm�2 s, which is larger than the value la ¼
0.05 pN mm�2 s used in network simulations. This is
because we assume the two-filament structure is embedded
in a dense, homogeneous background network. When a sin-
gle fiber is immersed in such a network, protein friction
manifests itself as drag acting uniformly along the entire
filament length. The larger value of la then replaces protein
friction at filament intersections, which cannot occur in the
two-filament simulations because the motor occupies the
only intersection.

We initialize the two filaments in a square domain and
characterize their positions by the angle q ˛ [0, p], which
is the angle between the two filaments measured at their
intersection point. The relative motor positions are denoted
by m1 and m2 such that mi ˛ [0, Li] for i ¼ 1, 2 measures the
distance of the motor binding site from the minus end of fila-
ment i. We hypothesize that the extent of expansion or
contraction of the two-filament structure depends on q,
m1, and m2. As the motor slides the filaments, it pulls fila-
ment branches between the motor and plus ends together,
generating contraction. Simultaneously, it pushes filament
branches between the motor and minus ends apart, gener-
ating expansion. Furthermore, the filaments will move the
most if they are antiparallel, or q ¼ p. Conversely, when
filaments are parallel (q ¼ 0), the motor will traverse the
filaments without generating relative motion.

Fig. 4, A–J illustrate two-filament simulations for both
rigid and semiflexible filaments. In the upper row (Fig. 4,
A–E), the rigid filaments evolve symmetrically. As the
Biophysical Journal 120, 4029–4040, September 21, 2021 4033



FIGURE 4 (A–F) Two-filament simulations with initial motor positions m1 ¼ m2 ¼ 0 and q ¼ p/2. (A–F) Rigid actin filaments. (G–L) Semiflexible

filaments. Results are presented (left to right) at t ˛ {0.04, 0.5, 1.55, 2.59, 3.09, 4} s. Arrows centered at (1, 1) indicate the principal stress directions,

and their lengths (given by the eigenvalues of s) represent the relative magnitude of stress. Blue arrows represent contraction, and orange arrows represent

expansion. (M and N) s and q vs. time in two-filament simulations. (O and P) Comparison of s and ~I2 in rigid and semiflexible two-filament simulations.

(Q–T) Comparison between s and I2 for one time step of a two-filament simulation, with Dt ¼ 2 � 10�5 s. To see this figure in color, go online.
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motor traverses the filaments from the minus to plus ends,
the filaments move and rotate such that their final position
is a mirror image of the original. As reported by Lenz (9),
this polarity-reversal symmetry causes the initial contrac-
tion and subsequent expansion to cancel. Principal stress
arrows in the upper panel confirm this. The result is no
net contraction for rigid filaments. However, the picture is
different for semiflexible filaments, as the lower row
(Fig. 4, F–J) reveals. When the motor begins to move,
filament bending increases q, increasing contraction in the
x-direction. Subsequently, as the motor positions become
favorable to expansion, the angle between the filaments de-
creases (see the fourth image in the lower panel), decreasing
the magnitude of expansion. Consequently, the semiflexible
filaments experience net contraction, providing evidence of
the force asymmetry.

To verify this, we plot the bulk stress and q vs. time for
both rigid and semiflexible filaments. The bulk stress results
in Fig. 4K confirm that rigid filaments experience no net
contraction because the magnitude of early contraction is
equal to the magnitude of later expansion. The results in
Fig. 4L support this, in which the angle q for the initial
contraction mirrors the angle for the subsequent expansion.
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In contrast, for semiflexible filaments the structure experi-
ences larger contractile than expansive stress. This is
because filament bending leads to an asymmetric pattern
in q with time, with a decrease as the motor approaches
the plus ends. As a result, the semiflexible filaments are un-
able to attain the large expansion that occurs toward the end
of the rigid filament solution. This analysis confirms that a
force asymmetry is a possible explanation for bending-
induced actomyosin contraction.
A heuristic index predicts stress generated by
two-filament-motor assemblies

Inspired by the previous results on the contraction of a two-
filament-motor system, we propose a heuristic index that
summarizes the contractile potential of two filaments,

I2 ¼
�
2ðm1 þ m2Þ
L1 þ L2

� 1

�
sin2

�
q

2

�
: (8)

In Eq. 8, the left term in the brackets describes the length
of the expansive and contractile branches, such that it is �1
if both motors are at the minus ends (contractile) and 1 if
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both motors are at the plus ends (expansive). To capture
the effect of angle, the term in the right brackets is zero if
q ¼ 0 and 1 if q ¼ p.

To confirm the effect of angle on contraction, we plot I2
(Eq. 8) vs. time in the two-filament simulations. In Fig. 4,
M and N, we multiplied I2 by a constant such that its mini-
mum is equal to the minimal stress obtained in the simula-
tion. We refer to this normalized index as ~I2. The index
accurately predicts the bulk stress in both simulations. Of
particular note, ~I2 correctly predicts the loss of contraction
with semiflexible filaments, as Fig. 4N shows. Combined
with Fig. 4L, this shows that filament bending facilitates
contraction by influencing the angle between filaments,
such that larger angles occur under contraction than under
expansion.

To confirm the predictive ability of Eq. 8, we compute I2
for varying m1, m2, and q. For each configuration, we
compute one time step and compare the simulated bulk
stress with Eq. 8. The results in Fig. 4, O–R show that the
two-filament index I2 effectively captures the stress gener-
ated by two filaments. This is true if we hold m1 ¼ m2

and vary q (as in Fig. 4, O and P) and if we hold q constant
and vary both m1 and m2 (as in Fig. 4, Q and R).
Protein friction enables network-scale
contraction

Protein friction, either from cross-linking or filament con-
tact, penalizes relative motion where filaments overlap.
Previous studies have suggested that intermediate cross-
linker density maximizes contraction (25,29,32,43,68,69).
Without cross-linking, filaments move independently of
each other and are unable to generate collective contraction.
However, strongly cross-linked networks generate large
resistance to filament motion as myosin moves, which
also inhibits contraction. To investigate this dependence us-
ing our model, we varied the protein friction drag coeffi-
cient, lpf, and computed 10 simulations with each
parameter value. Results from these simulations are shown
in Fig. 5.

Fig. 5A shows the relationship between lpf and bulk
stress. As expected, networks become more contractile as
lpf increases from 0. Although the precise value of the
A B

FIGURE 5 The effect of protein friction coefficient, lpf, on (A) s, (B) k, and (

and the dashed curve represents mean data smoothed with a Savitsky-Golay fil
protein friction coefficient for actin filaments is unknown,
Ward et al. (48) suggest a protein friction due to filament
contact of approximately lpf ¼ 30 pN mm�1 s. Estimating
lpf based on the cross-linker a-actinin yields approximately
lpf ¼ 20 pN mm�1 s (see Supporting materials and
methods). Both values are sufficient to demonstrate contrac-
tile bias. Subsequent increases in lpf beyond these values
incur diminishing returns, such that contractility becomes
stable after approximately lpf ¼ 200 pN mm�1 s. We do
not observe a U-shaped curve in stress with lpf. A possible
explanation is the sparseness of our simulated networks,
which does not enable sufficient connectivity to restrict
contraction given that we assume no protein friction
between filament pairs with a motor attached.

Plots of the time-averaged curvature and I2 in Fig. 5, B
and C, respectively, demonstrate that contraction correlates
with increased curvature and decreased I2. An important
finding is that filament bending does not occur in the
absence of protein friction. This is because protein friction
supplies resistance to motion at specific points along the
filament. Without this drag, neglecting thermal fluctuations,
the filament will tend to adopt the energetically preferable
straight configuration. Therefore, protein friction is essential
to contraction. Furthermore, only a small increase in
filament bending is attainable by increasing the protein fric-
tion coefficient beyond the biologically feasible value of
lpf ¼ 30 pN mm�1 s.
Viscous friction inhibits contraction

The viscous drag coefficient la represents drag between
actin filaments and structures external to the network. This
can arise from drag between the filaments and the cytoplasm
or drag between filaments and a dense, homogeneous back-
ground network that interacts uniformly with the simulated
filaments. Increasing la thus corresponds to increasing cyto-
plasm viscosity or increasing the network density. In vitro
experiments by Murrell and Gardel (16) showed that
increasing adhesion between actomyosin networks and the
membrane inhibits contraction. We suggest that increased
membrane adhesion corresponds to an increase in drag co-
efficient in our model because both restrict filament motion.
C

C) I2. Boxplots represent data from 10 simulations with a given parameter,

ter. To see this figure in color, go online.
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FIGURE 6 The effect of viscous drag coefficient, la, on (A) s, (B) k, and (C) I2. Boxplots represent data from 10 simulations with a given parameter, and

the dashed curve represents mean data smoothed with a Savitsky-Golay filter. To see this figure in color, go online.
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For these reasons, we are interested in how contractility
depends on la.

We varied la and performed 10 simulations for each
parameter value. These results are shown in Fig. 6 A. As pre-
dicted by experiments, network contractility increases as we
decrease la. Interestingly, Fig. 6, B and C show that this
increased contraction does not correspond to an increase
in filament curvature or decrease in the two-filament index.
Instead, a possible explanation is that increasing la in-
creases resistance to actin filament movement. When
myosin motors exert forces on the network, a larger propor-
tion is used to overcome drag as la increases. This inhibits
the ability of myosin motors to remodel the network, and
this slower remodeling results in decreased contraction.
Myosin unbinding does not affect the mechanism
of contraction

Myosin motor unbinding is another feature of our model
that might influence contractility. In our simulations, motor
unbinding is governed by Bell’s law. All motors that have
not reached the end of a filament unbind with a rate that
depends on the spring force on the motor and the reference
off rate, koff,m. To investigate how this off rate affects
contractility, we computed a series of simulations with
varying koff,m and present results in Fig. 7, A–C.

Overall, the reference off rate has no consistent effect on
stress. However, Fig. 7, B and C suggest that the means of
contraction changes as koff,m changes. A possible explana-
tion is that koff,m governs the expected time for which a mo-
tor remains attached to the filaments. For example, lower
values of koff,m enable motors to remain attached to actin fil-
aments for longer time. Highly persistent motors have a
longer time to initiate bending, and therefore, curvature in-
creases as koff,m decreases (see Fig. 7B). However, such
persistent motors also walk further toward the plus ends,
increasing I2 (see Fig. 7C). As previously shown, motor
positioning closer to the plus ends is favorable for expan-
sion. The competing effects of filament bending and motor
position enable disordered networks to generate similar con-
tractile stress for all reference motor off rates tested.

We also tested how the force dependence introduced by
Bell’s law influences contractility. To do this, we performed
4036 Biophysical Journal 120, 4029–4040, September 21, 2021
25 simulations with both rigid and semiflexible filaments and
compared the time-averaged bulk stress results with the
default simulations in Fig. 3A. Results with force-indepen-
dent unbinding are given in Fig. 7 D. Compared to simula-
tions with force-dependent unbinding, simulations with
force-independent unbinding display a small bias to contrac-
tion in both rigid and semiflexible simulations. A possible
explanation is that the stretching force on a myosin motor
is larger for antiparallel filament pairs undergoing contrac-
tion. With force-dependent unbinding, motors more readily
unbind from these antiparallel filaments, decreasing contrac-
tility. However, because the results in Fig. 7D are similar to
Fig. 3A, this does not affect the mechanism of contraction.
Actin filament turnover enables persistent
contraction

In biological cells, actin filament turnover is an important pro-
cess that enables sustained contraction. Turnover refers to the
exchange of proteins with the background cytoplasm and
introduces randomness. Without turnover, actomyosin
networks have been shown to lose contractility over time
(7,12,17,27,43,45). To investigate whether our model repli-
cates this behavior, we varied the actin filament turnover
rate, koff,a, and present results for the simulated stress in
Fig. 8A. Time-averaged stress results show increased contrac-
tion aswe increase actin turnover rate. In support of this, Fig. 8,
B and C show that increased actin turnover corresponds to a
decrease in mean integrated filament curvature, and the two-
filament index shows bias toward expansive configurations.

To investigate the time dependence of contractile stress
with and without turnover, we plot the mean bulk stress in
the 10 simulations versus time for koff,a ¼ 0 s�1 (no turn-
over) and koff,a ¼ 0.2 s�1 (fast turnover). With no turnover,
there is a loss of contractility as time progresses (see
Fig. 8D), whereas no trend occurs with fast turnover.
Because both networks in Fig. 8, D and E show similar con-
tractile stress at t ¼ 0, the results in Fig. 8A occur because
the network loses contractility if there is no turnover,
decreasing time-averaged stress s.

Previous studies have shown that loss of contraction in the
absence of turnover is associated with pattern formation in
the network. This involves filaments aggregating in asters
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FIGURE 7 (A–C) The effect of reference motor off rate, koff,m, on (A) s, (B) k, and (C) I2. Boxplots represent data from 10 simulations with a given param-

eter, and the dashed curve represents mean data smoothed with a Savitsky-Golay filter. (D) Box plots comparing mean s in 25 semiflexible networks and 25

rigid networks, with force-independent motor unbinding. To see this figure in color, go online.
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(71) or bundles (72), after which they do not move under
molecular motor activity. To investigate whether filament
aggregation occurs in our simulations, we computed the dis-
tance between all pairs of nodes on different filaments. If the
distribution of these distances differs from the expected dis-
tribution for two random points in a square, we conclude
that filaments have aggregated. An example comparison of
these distance distributions at 300 s and the corresponding
network images are provided in Fig. 8, F–I. With no turn-
over, there are two peaks in the distribution of distances
that are not predicted by the theoretical distribution. In
contrast, the distance distribution closely matches the
theoretical distribution in the simulation with fast turnover,
koff,a ¼ 0.2 s�1. This provides evidence that actin filaments
aggregate with no turnover. Fast turnover prevents this fila-
ment aggregation by introducing randomness to filament po-
sitions, enabling persistent contraction. Similar distributions
occur across all simulations, a complete summary of which
is given in the Supporting materials and methods.
Simulated networks do not exhibit periodic
pulsation

Interestingly, periodic or pulsed contraction has been
observed in experiments and simulations with filament turn-
over (17,43,73,74). Some authors have suggested that
biochemical signals external to the network are responsible
for this pulsation (73,74). However, recent work by Yu et al.
(75) showed that pulsation might be an inherent result of
actomyosin mechanics, caused by actin treadmilling or
severing. As Fig. 8, D and E show, stress rises and falls in
our simulations with or without turnover, indicating pulse-
like behavior. To investigate whether solutions with turnover
have a characteristic period of pulsation, we simulated 10
random networks to T ¼ 600 s, with default parameters.
Plotting the autocorrelation of the stress signal then enables
us to determine whether a characteristic period exists. These
results are shown in Fig. 8J. Autocorrelation compares the
original stress signal and a time-delayed version and returns
the correlation coefficient at a function of the time delay. If
stress generation is periodic with period T, we would see
peaks in the autocorrelation at all multiples of T. In
Fig. 8J, no such peaks appear in the first 5 min of the 10 so-
lutions and mean data. Therefore, although our results show
oscillations in contractile stress, these oscillations are
aperiodic.

Our findings extend the results of Belmonte, Leptin, and
N�ed�elec (17), who used visual inspection of simulations to
show that pulsation occurs in networks with turnover. Our re-
sults are consistent with observations that pulsation occurs
because of biochemically regulated periodic formation of
actomyosin networks (73,74) and not necessarily periodic
stress generationwithin the networks. Observing periodicme-
chanical behaviorwould require additional features to those in
our model. Examples might include actin treadmilling or
severing, which Yu et al. (75) showed to be necessary for
pulsed contraction in the absence of biochemical regulation.
Theoretical results provide experimentally
testable predictions

Our theoretical work provides predictions that could be tested
using invitro actomyosin assays.One testable prediction is the
detailed dependence of stress on filament flexural rigidity
(Fig. 3B).This could be testedusing actomyosin assays similar
to Alvarado et al. (76) by comparing experimental measure-
ments of force or contraction with our stress results. Another
testable prediction is the dependence of the protein friction co-
efficient on stress (Fig. 5A). This could be tested byvarying the
concentration of cross-linkers, which governs lpf according to
the formula in the Supportingmaterials andmethods. Further-
more, results from in vitro assays could be compared with our
Biophysical Journal 120, 4029–4040, September 21, 2021 4037
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FIGURE 8 (A–C) The effect of actin turnover rate, koff,a, on (A) s, (B) k, and (C) I2. Boxplots represent data from 10 simulations with a given parameter,

and the dashed curve represents mean data smoothed with a Savitsky-Golay filter. (D and E) Mean bulk stress (blue curve) for 10 simulations versus time,
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simulation results, and the black curve is the theoretical distribution for the distance between two random points in a square (70). (F and G) No turnover,

koff,a¼ 0 s�1. (H and I) Fast turnover, koff,a¼ 0.2 s�1. (J) Autocorrelation function of the stress s. The transparent curves represent 10 individual simulations,

and the opaque black curve is the autocorrelation of the mean stress. To see this figure in color, go online.

Tam et al.
predictions of the effect of actin filament turnover rate on
stress (Fig. 8A). Computing a pair-correlation function to
mimic the distance distributions visualized in Fig. 8, G and I
would also enable comparison with the quantitative predic-
tions on aggregation reported in more detail in the Supporting
materials andmethods.Overall, experimental validation could
uncover whether the minimal mechanics included in our
model is sufficient. If not, possible extensions to the model
include simulating filament polymerization or treadmilling
and incorporating a three-dimensional description of the ma-
terial mechanics (52).
CONCLUSIONS

Contraction of disordered actomyosin networks is essential to
biological cell function.Because the origins of this contraction
are not yet fully understood, scientists haveworked to build an
inventory of possible contraction mechanisms. In this study,
we investigated the hypothesis that protein friction, arising
from cross-linking or solid friction between actin filaments,
enables the contraction of networks consisting of semiflexible
actin filaments. We achieved this by developing an agent-
based mathematical model for two-dimensional actomyosin
networks. By formulating the force-balance equations as a
gradient flow, our model provides a way of quantifying
network stress. Numerical simulations confirmed that actin
filament bending facilitates a force asymmetry that biases
contraction over expansion in random networks. Importantly,
network-scale bending is only possible with protein friction,
making protein friction crucial to contraction.

To understand the bending-induced force asymmetry at the
microscopic scale, we simulated the simplest actomyosin sys-
tem consisting of a single myosin motor bound to two actin
filaments. For both rigid and semiflexible filaments, the
4038 Biophysical Journal 120, 4029–4040, September 21, 2021
contractile force depends on the motor relative positions and
the angle between the two filaments. As the motor moves
fromtheminus to theplus ends, semiflexiblefilaments generate
a wider angle than rigid filaments. Because these wider angles
are more conducive to contraction, our microscopic simula-
tions showed that filament bending induces contractile bias at
the microscopic scale. Furthermore, this confirmed that
bending forces are sufficient to facilitate contraction.

Our simulations also confirmed previous experimental and
theoretical results that filament turnover is required to sustain
contraction. Although actin bending and protein friction
facilitate contraction, without turnover the filaments aggre-
gate and form patterns, after which the network loses contrac-
tility. In our simulations, introducing turnover causes a more
random spatial distribution of filaments and enables the
network to sustain contractility. However, in many cell types,
actin filaments can form contractile actomyosin bundles such
as stress fibers, which are aggregated structures that sustain
and mediate contractility (77). An important application of
our modeling and simulation framework will be to identify
the minimal mechanisms that enable self-organization and
persistence of such bundles, even in networks with fast turn-
over. We plan to tackle this problem in future work.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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A Mathematical Model Derivation
We develop and implement an agent-based mathematical model for two-dimensional
actomyosin networks. We represent actin filaments as finite-length curves in R2, and to
track their position introduce the variables zi(s(t), t) ∈ R2 for i = 1, . . . , Na, where Na is
the number of semi-flexible actin filaments. These represent the physical position of the
actin filament, parameterised by the arc length s(t) ∈ [0, Li], where Li is the length of the
i-th actin filament. We consider a simplified representation of myosin motors as dumbbells
that behave like stiff linear springs. The two ends of the dumbbell represent motor ‘heads’
that bind to actin filaments and exert forces. To track motor head positions, we define the
variables mik(t) ∈ [0, Li], for k = 1, . . . , Nm, where Nm is the number of myosin motors.
These are the positions (measured from the minus end) of the k-th myosin motor along
the actin filament with index i, to which it is bound. The derivation of our model in a
time-discrete context then involves constructing an energy functional that depends on the
degrees of freedom zi and mik. At each time step, the solution is given by the minimiser of
this functional, and advancing in time enables us to simulate network evolution. We solve
the model on a two-dimensional domain with periodic boundary conditions, such that the
network evolves on the surface of a torus.

A.1 Energy Functional

We write the mathematical model in a time-discrete context in terms of an energy functional
that depends on the degrees of freedom zi(s(t), t), and mik(t). This functional contains

∗Corresponding author: alex.tam@uq.edu.au
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contributions from each mechanical feature in the model. It combines the potential
energy contributions for filament bending and filament and motor spring forces, with
pseudo-energy terms whose variations correspond to finite-difference approximations of
the thermal, drag, protein friction, and motor forces acting on filaments. At each time
step of the simulation, the network evolves to minimise this energy functional. In abstract
terms, the energy functional for the network is

Enet := Ea,drag + Ea,bend + Ea,spring + Ea,pf

+Em,spring + Em,a,
(A.1)

where the subscripts a and m refer to actin and myosin respectively. Below, we outline
the meaning and mathematical description of each term in (A.1).

We assume that viscous drag with a background medium resists motion of the actin
filaments. We then obtain the pseudo-energy contribution for actin drag,

Ea,drag =
Na∑
i=1

∫ Li

0

λa
2∆t |zi − Fzni |

2 dsi. (A.2)

In (A.2), λa is the coefficient of viscous drag for actin–background interactions, and
is similar to the damping term λ in the Langevin equation. The vector zni represents
filament positions at the previous time step, where ∆t is the time step size. To account for
stretching and rotation of the domain, we multiply zni by the deformation gradient tensor

F =
Lxx/Lnxx Lyx/L

n
yy

Lxy/L
n
xx Lyy/L

n
yy

 , (A.3)

which ensures both zi and zni are represented in the current spatial co-ordinates. In network-
scale simulations, this drag term represents hydrodynamic drag with the background
cytoplasm. An alternative interpretation of viscous drag is to assume that the simulated
network is a subset of a dense, homogeneous, cross-linked network of filaments.

Since filaments are semi-flexible, we also include the contribution of elastic potential
energy due to bending. This is given by

Ea,bend =
Na∑
i=1

∫ Li

0

κa
2 |z

′′
i |

2 dsi, (A.4)

where κa is the flexural rigidity, assumed constant for all actin filaments. The third term in
(A.1), Ea,spring, is the energy associated with local longitudinal extension of actin filaments.
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According to Hooke’s law, after summing the contributions of all filaments, it is given by

Ea,spring =
Na∑
i=1

∫ Li

0

k̃a
2 (|z′i| − 1)2 dsi, (A.5)

where k̃a = ka∆s, where ∆s is the segment length used in the numerical discretisation.
We assume the longitudinal stiffness, ka, to be the same for all filaments. Note that in
the context of our model we regard (A.5) as a penalising potential with large coefficient
ka in order to model actin filament inextensibility and to regard si as an arc-length
parametrisation.

Protein friction between actin filaments also contributes to the energy functional.
In our model, we represent this as a viscous drag contribution that acts point-wise at
intersections between actin filaments. This viscous force can arise due to contact friction
between overlapping filaments [1], or as the macroscopic effect of abundant cross-linkers
that undergo turnover [2]. The pseudo-energy contribution due to protein friction is

Ea,pf =
Na∑
i=1

Na∑
j=1
j>i

Aij
λpf

2∆td (zi (αij, t) , zj (αji, t))2 , (A.6)

where λpf is the protein friction drag coefficient. In (A.6), Aij is a binary variable such that
Aij = 1 if filaments i and j intersect and no motor is bound to both filaments, and Aij = 0
otherwise. We also define d(z1, z2) to be the shortest physical distance between two points
z1, z2 ∈ R2 or their periodic translations, enabling us to account for periodic boundary
conditions. Finally, αij ∈ [0, Li] is the position along filament i at which the intersection
with filament j occurs, and ensures that protein friction drag is applied point-wise at these
intersections.

The final two terms in (A.1) model the effects of myosin motors. In the same way as
we account for F-actin inextensibility, we use the penalising potential

Em,spring =
Na∑
i=1

Na∑
j=1
j>i

Nm∑
k=1

θijk
km
2 d (zi(mik, t), zj(mjk, t))2 , (A.7)

to model myosin inextensibility. Here km is the myosin motor spring constant which we take
as very large, and θijk is a binary variable such that θijk = 1 if myosin motor k is attached
to filaments i and j, and θijk = 0 otherwise. The final term in (A.1) describes interactions
between filaments and motors. We assume that myosin obeys a linear force–velocity
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relation, such that positions evolve according to

dmik

dt = Vm

(
1− Fk

Fs

)
, (A.8)

where Vm is the load-free myosin motor velocity, Fs is the motor stall force, and Fk =
km[zi(mik, t)− zj(mjk, t)] · z′i is the projection of the spring force through the k-th myosin
motor onto the direction of the i-th filament. To reproduce (A.8) as the variation of a
pseudo-energy, we introduce a linear term for the load-free velocity, and a quadratic term
with the same scaling as the drag terms above for the linear velocity reduction due to
motor loading. The pseudo-energy then reads

Em,a = −
Na∑
i=1

Nm∑
k=1

θik

[
Fs (mik −mn

ik)−
Fs
Vm

(mik −mn
ik)

2

2∆t

]
, (A.9)

where θik is a binary variable such that θik = 1 if motor k is attached to filament i, and
θik = 0 otherwise. This completes the description of all terms in the network energy
functional.

A.2 Stochastic Filament and Motor Turnover

We simulate random actin filament turnover and myosin motor unbinding. Given an
off-rate koff , the probability of turnover or detachment in a given time step according to
an exponential distribution is

poff = 1− e−koff∆t, (A.10)

where ∆t is the time step size. We assume that the turnover rate for actin filaments, koff,a,

is constant and the same for each filament. At each time step, we use a pseudo-random
number generator to simulate whether each filament will turn over. To maintain constant
filament density, we immediately replace filaments that turn over with new ones at random
positions and orientations. If a filament turns over, we also assume that any myosin motor
attached to the filament automatically unbinds.

In contrast, we assume that the unbinding rate for myosin motors depends on the force
it experiences. According to Bell’s law, the force-dependent unbinding rate is given by

km = koff,meF/Fref , (A.11)

where koff,m is the reference off-rate for unloaded motors, and Fref is a reference force.
The force to which the k-th motor is subject is the variation of the penalising potential
(A.7) and given by a Hooke’s law, where motors are assumed to be linear springs with
equilibrium length zero. This yields Fk = kmd(zi(mik, t)− zj(mjk, t)), where i and j are
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the indices of the two filaments to which the motor attaches, such that the distance term
measures the motor length. Like the actin filaments, we maintain constant myosin motor
density throughout the simulation by assuming that an unbound motor is immediately
replaced with a new one at a random filament intersection.

A.3 Parameters

We performed network simulations in the main text with a set of default parameters.
These parameters are listed in Table A.1. Additional information on the derivation of

Table A.1: Default parameters for actomyosin network simulations.

Parameter Symbol Value Units Source
Longitudinal stiffness (actin) ka 1000 pN µm−1 [3]
Longitudinal stiffness (myosin) km 1000 pN µm−1 [3]
Actin filament flexural rigidity κa 0.073 pN µm2 [4]
Equilibrium actin filament length La 1 µm [5–7]
Actin–cytoplasm drag coefficient λa 0.05 pN µm−2 s [8–10]
Protein friction drag coefficient λpf 30 pN µm−1 s [1]
Myosin stall force Fs 5 pN [11–13]
Myosin free-moving velocity Vm 0.5 µm s−1 [11, 13, 14]
Actin filament turnover rate koff,a 0.04 s−1 [15, 16]
Myosin reference off-rate koff,m 0.35 s−1 [17, 18]
Myosin reference unbinding force Fref 12.6 pN [19]
Number of actin filaments Na 50 [–] Assumption
Number of myosin motors Nm 10 [–] Assumption
Domain width Lxx, Lyy 2.5 µm Assumption
Simulation duration T 60 s Assumption

some parameters is provided below.

Longitudinal Stiffnesses, ka, km: We assume that actin filament segments and myosin
motors are stiff entities, and following Stachowiak et al. [3] use ka = mm = 1000 pN µm−1.

Although our chosen value for ka is smaller than the value ka = 34.5 pN nm−1 observed
in experiments by Liu and Pollack [20], by inspection our choices are sufficiently large to
ensure filament segments and myosin motors experience negligible extension. A lower value
of ka also accounts for the low-tension regime, where actin filaments are more compliant
than when under high tension [20].

Actin Filament Length: Actin filament length depends on cell type and function, and can
vary across experiments. Since our modelling follows Dasanayake, Michalski, and Carlsson
[6] and Hiraiwa and Salbreux [7], we adapt estimates from these authors. Dasanayake,
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Michalski, and Carlsson [6] use La = 2 µm, whereas Hiraiwa and Salbreux [7] use La =
0.1–1 µm. Experimental measurements of fission yeast by Kamasaki, Osumi, and Mabuchi
[5] give La = 0.6 µm, and Stachowiak et al. [3] use La = 1.3 µm. Based on this data, a
reasonable estimate for our model is La = 1 µm.When implementing semi-flexible filaments
in our numerical code, we discretise this 1 µm length into five segments of length 0.2 µm
each. We represent rigid filaments as a single segment of length 1 µm.

Actin–background drag coefficient, λa: Since the actin–background drag coefficient is
difficult to estimate, we assume λa = 0.05 pN µm−2 s in network simulations. This value is
small enough that actin–background drag has only a minor effect on the network. For an
experimental justification of this parameter, we follow Oelz et al. [9], who adapt a formula
from Berg [8] to obtain

λa = 3πη
log(2a/b) , (A.12)

where η is the viscosity of the medium (in this case the cytoplasm), a is the semi-major
axis length (i.e. half the filament length), and b is the semi-minor axis length (i.e.
the actin filament radius). We assume filaments have the constant length La = 1 µm,
and thus a = 0.5 µm. The actin filament has a diameter of 7 nm [21], such that the
radius is b = 0.0035 µm. The drag coefficient λa = 0.05 pN s µm−2 then corresponds to
η = 0.03 pN s µm−2, which is approximately 30 times the viscosity of water.

Protein Friction Drag Coefficient, λpf : We estimate the protein friction drag coefficient
using experimental work by Ward et al. [1] on sliding friction between F-actin filaments.
Given a pulling velocity of 0.2 µm s−1, they obtain a frictional force of approximately 6 pN,
suggesting that λpf = 30 pN µm−1 s.

Under the alternative interpretation of protein friction as the macroscopic effect of
abundant, transient cross-linkers, we can estimate λpf by modifying the formula used by
Oelz [22]. We then have

λpf = kαραsαLαµ1,0,α (A.13)

where kα is the spring stiffness constant of the cross-linker (α-actinin), ρα is the maximal
cross-linker density, sα is a saturation factor, Lα is the cross-linker length, and µ1,0 =
1/(ζ(1 + ζ/β)) is a parameter that incorporates the on-rate, β, and off-rate, ζ, of the
cross-linker, as derived in Milišić and Oelz [2]. Ferrer et al. [23] give kα = 100 pN µm−1, and
Oelz [22] estimate that ρα = 70 µm−1 and sα = 0.05. The length of α-actinin is Lα = 36 nm
[24]. From Goldmann and Isenberg [25], we obtain an on-rate of β = 1 s−1, if we assume
that the concentration of α-actinin is 1 µM. Goldmann and Isenberg [25] also claim that
ζ = 0.44 s−1, allowing us to compute µ1,0,α = 1.5783 s. Thus, λpf = 19.89 pN µm−1 s. This
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is similar in magnitude to the estimate from Ward et al. [1].

Myosin Reference Off-Rate, koff,m: Stam et al. [17], citing Wang et al. [18], state that
the reference off-rate koff (0) for non-muscle myosin is 0.35 s−1 (IIA) and 1.71 s−1 (IIB).
This parameter therefore depends on the isoform of the myosin, and we adopt the value
for myosin-IIA.

Actin Turnover Rate, koff,a: In the cell cortex, Saha et al. [15] estimate the timescale
for actin filament turnover to be approximately 25 s for C. elegans. Based on this, we will
use a turnover rate of koff,a = 0.04 s−1 in our simulations.

B Numerical Simulations and Performance Information
This appendix contains information about the numerical algorithm, including its perfor-
mance, convergence, and the effect of thermal forces.

B.1 Effect of Thermal Forces

Random filament movement due to thermal fluctuations is commonly included in math-
ematical models for actomyosin networks. This involves adding the thermal force term
Fa,therm to the force balance equations,

0 = Fa,therm + Fa,drag − δEa,bend − δEa,spring + Fa,pf

− δEm,spring + Fm,a.
(B.1)

In the time-discrete formulation of (B.1) in which we represent filament k as a sequence of
nodes with indices i, the thermal force term applied to each node is

F k,i
a,therm :=

√√√√2kbTλal̄nk,i
∆t θnk,i. (B.2)

In (B.2), kb = 1.38× 10−5 µm pN K−1 is the Boltzmann constant, T is the temperature
(assumed to be 298.15 K), l̄nk,i is the mean length of the two filament segments adjacent to
the node i of filament k at time n (or half the length of the first or last segment for minus
and plus-end nodes respectively), and θnk,i is a random vector sampled with the standard
normal distribution.

To investigate how these affect our results, we performed 25 simulations with thermal
fluctuations included. Bulk stress results from these simulations are presented in the box
plots in Figure B.1. These results confirm that thermal fluctuations have little effect
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σ̄ (pN µm−1)

Figure B.1: Box plots comparing the bulk stress in 25 simulations of disordered networks.

on stress. Indeed, for rigid filaments their effect is negligible. In semi-flexible networks,
thermal fluctuations can generate stochastic filament bending, which might cause increased
contractility. However, the results presented in Figure B.1 confirm that stochastic bending
effects are minor. Therefore, we omit thermal fluctuations from the main results presented
in the paper, to emphasise protein friction and motor-induced bending as mechanisms of
contraction.

B.2 Effect of Simulation Domain Size

Next, we performed 10 simulations on a larger (5 µm× 5 µm) domain, to confirm that the
domain size and periodic boundary conditions do not affect the results. To maintain the
same density of filaments and motors, for each larger simulation we used 200 filaments
and 40 motors. We compare bulk stress results for these large-domain simulations with
the default simulations in Figure B.2. These confirm that the domain size and periodic

−0.14 −0.12 −0.1 −8 · 10−2−6 · 10−2−4 · 10−2−2 · 10−2

Large Domain

Regular Domain

σ̄ (pN µm−1)

Figure B.2: Box plots comparing the bulk stress in simulations on the regular domain
used throughout the manuscript, and a larger domain of size 5 µm× 5 µm.

boundary have no discernible effect on mean bulk stress σ̄. Since the large-domain simula-
tions aggregate forces for more filaments and motors than the regular-domain simulations,
they exhibit variation in stress across the simulations.
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B.3 Effect of System Size on Performance

The following plots describe how the simulation time and memory usage vary with the
system size. In each simulation, we use the parameters from Table A.1, and compute
the time and memory requirements for 100 time steps with ∆t = 0.05 s. The simulations
were performed using a Dell Optiplex 7060 i7-8700 desktop computer, with a 3.2GHz
6-core CPU and 15.4GB RAM, running the Linux Mint 20.1 (Cinnamon) operating system.
We perform the energy minimisation using the LBFGS method from Optim.jl, and use
AutoDiff.jl to evaluate the gradient.
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Figure B.3: Effect of system size on simulation time. Simulations in (a) varying the
number of filaments were performed using Nm = 5 myosin motors. Simulations in (b)
varying the number of myosin motors were performed using Na = 50 actin filaments.

B.4 Effect of Time Step Size on Performance

We also investigated how the time step size affects performance. In Figure B.4, we vary
∆t, and measure the time to simulate a random network to T = 5 s. All other parameters
are as in Table A.1, and the same computer was used as in §B.3. An advantage of
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Figure B.4: Effect of time step size on simulation time.
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our time-implicit numerical method is that we can take large time steps without loss of
numerical stability. However, as Figure B.4 shows, the marginal performance improvement
diminishes as we increase ∆t. This is because the optimisation routine uses the previous
time step as its initial guess. For smaller time steps, the solution will be closer to this
initial guess, enabling the optimisation routine to converge faster at each step. Our results
were computed with ∆t = 0.05 s, which ensured that solutions were independent of ∆t.

B.5 Effect of Optimisation Routine Tolerance on Performance

The Optim.jl package enables users to specify the tolerance, ε, that determines when the
routine considers the optimisation to have converged. Figure B.5 shows how this tolerance
affects the time to simulate 101 time steps with ∆t = 0.05 s, and default parameters from
Table A.1. As expected, decreasing the tolerance increases the speed of simulation. Our
results were computed with ε = 1× 10−8, which was sufficiently small such that solutions
were independent of ε.
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400
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C
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T
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Figure B.5: Effect of optimisation routine tolerance on simulation time.
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C Filament Aggregation Results
The following series of plots contains the final network configurations and distance dis-
tributions for the ten simulations performed with T = 300 s, and both koff,a = 0 s−1 and
koff,a = 0.2 s−1.
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Figure C.1: Final network configurations at t = 300 s and histograms of the distances
between pairs of nodes on different filaments. Results presented for ten simulations with
koff,a = 0 s−1.
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Figure C.2: Final network configurations at t = 300 s and histograms of the distances
between pairs of nodes on different filaments. Results presented for ten simulations with
koff,a = 0.2 s−1.
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