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Abstract—High-level synthesis (HLS) has been widely
adopted as it significantly improves the hardware design pro-
ductivity and enables efficient design space exploration (DSE).
Existing HLS tools are built using compiler infrastructures
largely based on a single-level abstraction, such as LLVM. How-
ever, as HLS designs typically come with intrinsic structural
or functional hierarchies, different HLS optimization problems
are often better solved with different levels of abstractions. This
paper proposes ScaleHLS', a new scalable and customizable
HLS framework, on top of a multi-level compiler infrastructure
called MLIR. ScaleHLS represents HLS designs at multiple
representation levels and provides an HLS-dedicated analysis
and transform library to solve the optimization problems at
the suitable levels. Using this library, we provide a DSE engine
to generate optimized HLS designs automatically. In addition,
we develop an HLS C front-end and a C/C++ emission back-
end to translate HLS designs into/from MLIR for enabling an
end-to-end compilation flow. Experimental results show that,
comparing to the baseline designs without manual directives
insertion and code-rewriting, that are only optimized by Xilinx
Vivado HLS, ScaleHLS improves the performances with amaz-
ing quality-of-results — up to 768.1x better on computation
kernel level programs and up to 3825.0x better on neural
network models.

Keywords-High-Level Synthesis; MLIR; Compiler; FPGA;
Optimization; Design Space Exploration;

I. INTRODUCTION

High-level synthesis (HLS) automatically translates high-
level languages into dedicated hardware accelerators,
thereby removing the reliance of the cumbersome and
potentially error-prone hardware design practices that use
dedicated hardware description languages [1], [2]. In recent
years, HLS has been widely used in many application
developments, such as neural networks [3], [4], [oT applica-
tions [5]-[7], and video processing [8]. Existing algorithmic
HLS tools typically focus on extracting parallelism from
algorithmic descriptions and compiling the result into a
parallel hardware execution model [9], [10]. Thus, HLS tools
would enable a designer to implement different algorith-
mic choices quickly, identify high-level area-performance
tradeoffs, and avoid premature optimizations [11]. While
some of these alternatives can be explored automatically,
it is also true that large-scale designs often make it very
challenging to comprehensively explore the resulting large

I'ScaleHLS is open-sourced at https:/github.com/hanchenye/scalehls

design space and produce high-quality design solutions [12].
As a result, existing HLS tools often provide user-specified
directives to control or guide the HLS process to generate
different micro-architectures, which means the tools would
rely on designers for writing *good’ code and setting ’good’
directives to achieve good design quality [13].

In recent years, we have witnessed many studies for inves-
tigating different design space exploration (DSE) methods of
setting HLS directives [12]. These efforts can be classified
into two main types of methods: synthesis-based and model-
based. Synthesis-based methods [13]-[16] invoke down-
stream HLS tools to evaluate the quality of result (QoR),
including the latency, throughput, and resource utilization,
of discovered design points. Model-based methods [17]-
[21] instead extract necessary design information from static
dataflow graphs or dynamic execution traces and pass such
information to predefined analytical models for estimating
the QoR without invoking HLS tools. Recently, machine
learning methods are also investigated [22]-[25] to extract
unique features that cannot be easily characterized by analyt-
ical models and deduce estimations for more complicated de-
signs. Once performance and resource utilization estimates
can be determined, the DSE process can be regularized
and solved through simulated annealing [14], linear pro-
gramming [20], or other dedicated heuristics [13], [16], etc.
Apart from different DSE methods, some other studies [9],
[26], [27] leverage parallel-programming languages, such
as CUDA [28], as inputs to expose the parallelism of the
accelerator designs and generate synthesizable C code with
HLS directives inserted.

However, we find that existing research efforts and so-
lutions face significant difficulty to handle large-scale HLS
designs containing a large number of sub-modules and so-
phisticated inter-dependencies. The challenges mainly come
from three aspects:

Representation. Existing works exploit C/C++ abstract
syntax tree (AST) [29], traditional software compiler in-
termediate representation (IR) [30], or C/C++ source-level
R [31], [32], to represent and analyze HLS designs. These
representations are originally designed for software compi-
lation and only contain a single operation-level abstraction.
However, HLS optimizations can often be carried out at
or across different levels of abstraction for better results.
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For example, task/module level parallelization should be ap-
plied on high-level operators, such as convolution operators,
rather than nested loops to avoid conservative assumption
and sophisticated memory dependency analysis. Directly
combining different levels of representation from differ-
ent frameworks could cause significant fragmentation and
cumbersome and inconsistent cross-level optimizations. We
argue that we should have a systematic approach to represent
HLS designs at multiple abstraction levels in order to honor
the intrinsic hierarchies of HLS designs. This representation
should act as the foundation of HLS optimization and
address the various fragmentation and inconsistency issues
that we are facing.

Optimization. Existing works leave many important HLS
optimizations, such as task/module level resource-sharing
and parallelization, hardware IP integration, and loop level
analysis and transformation, to human designers done by
manual code rewriting. Such an approach is not productive
and scalable enough to deal with large HLS designs and
may obstruct the comprehensive DSE. We argue that HLS
optimizations should be fully automated and parameter-
ized rather than relying on manual code rewriting. These
optimizations should be carried out at multiple different
abstraction levels automatically to reduce the complexity
of program analysis and make the compilation flow more
scalable to large HLS designs.

Exploration. In the domain of compiler development,
the parameters of each optimization technique are typically
determined by a cost model indicating the “benefit’ of the
combination of such parameters. However, in HLS designs,
because the effects of different HLS optimizations correlate
(and sometimes in conflict) with one another, we cannot
calculate the *benefit’ of one optimization in isolation of the
other optimizations. In order to solve this problem, a global
DSE engine is desired to take all HLS optimizations across
different levels of abstraction into consideration and explore
the large design space effectively.

In this paper, we propose a new tool, named as ScaleHLS,
to tackle the challenges present in the representation, opti-
mization, and exploration of HLS designs. ScaleHLS rep-
resents HLS designs with a multi-level IR for the first
time, solves HLS optimization problems at the right levels
of abstraction, and automates such optimizations through a
new end-to-end flow. ScaleHLS can optimize large HLS
designs and still deliver high QoR for FPGA hardware
implementation. We summarize the main contributions of
our work as follows.

o To the best of our knowledge, ScaleHLS is the first
end-to-end automated HLS compilation flow built on
multiple levels of design abstraction naturally honoring
intrinsic structural or functional hierarchies of large-
scale designs.

ScaleHLS proposes a hierarchical and scalable HLS
representation and optimization methodology, which
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func @foo(%A, %B) { func @foo(%A, %B) {
affine.for %i = @ to 16 step 1 { Abbo (%A, %B):
%0 = affine.load %A[%i] %c@ = constant ©
affine.store %0, %B[%i] - %c16 = constant 16
} © %cl = constant 1
return 2| br ~bbi(%ce)
(i) Affine | &
o | “bb1(%0):
l Pi->ii: lower Affine to SCF | %1 = cmpi slt, %@, %c16
2 cond_br %1, ~bb2, ~bb3
func @foo(%A, %B) { 5
%c@ = constant © 2 | ~bb2:
%cl6 = constant 16 -_o. %2 = memref.load %A[%0]
%cl = constant 1 = memref.store %2, %B[%0]
scf.for %i = %c@ to %cl6 step %cl { :g %3 = addi %@, %cl
%0 = memref.load %A[%i] o br ~bb1(%3)
memref.store %0, %B[%i] —>
~bb3:
return return
} (ii) SCF } (iii) unstructured
Figure 1. An IR example, where affine and scf dialect represents

structured control flow. af fine dialect can be lowered to scf and then
lowered to unstructured IR. All types are omitted for simplicity.

optimizes HLS designs at graph, loop, and directive
levels holistically, to handle the complexity of the
increasing HLS design space.

ScaleHLS provides an HLS-dedicated transform and
analysis library, which turns a set of HLS optimization
techniques from manual code rewriting to callable and
tunable interfaces, saves significant amount of human
effort and establishes the foundation of automated DSE.
ScaleHLS contains a novel automated DSE engine
to search for the Pareto frontier of the latency-area
tradeoff space. A QoR estimator is also developed to
evaluate design points discovered by the DSE engine
rapidly.

ScaleHLS expands the MLIR framework by providing
an HLS C front-end and a synthesizable HLS C/C++
emission back-end for bridging the gap between the
multi-level IR and C-based HLS designs, thus enabling
an end-to-end HLS compilation flow.

The remaining of this paper is organized as follows. Sec-
tion II introduces the background. In Section III, we provide
an overview of the ScaleHLS framework. In Sections IV and
V, we introduce the details of the multi-level representation
and optimization for HLS designs, respectively. In Section
VI, we present the front-end and back-end integration of
ScaleHLS. In Sections VII and VIII, we provide the evalu-
ation results and conclude this paper, respectively.

II. BACKGROUND
A. MLIR Framework

ScaleHLS is built on top of MLIR [33], [34], a compila-
tion framework supporting multiple levels of functional and
representational hierarchy. In the remainder of this paper,
we use MLIR to refer to the MLIR compilation framework
and IR for the intermediate representation of programs in
MLIR. MLIR includes a single static assignment (SSA)
style IR [35] where an Operation is the minimal unit
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of code. Each operation accepts a set of typed Operands
and produces a set of typed Results. Connections between
the results of one operation and the operands of another
operation describe the SSA-style flow of data. For instance,
%3 addi %0, %cl in Fig. 1(iii) is an operation with
operands $0 and $c1 and result $3. Each operation can also
be parameterized by a set of Attributes indicating important
characteristics of the operation. Unlike operands, which
typically model values produced by other operations when
a program is executed, attributes have values that are known
and fixed at compile time. A sequential list of operations
without control flow is defined as a Block and a control flow
graph (CFG) of blocks is organized into a Region in MLIR.
Regions are, in turn, contained by operations, enabling the
description of arbitrary design hierarchy. In MLIR, Function
is defined as a built-in callable operation always owning one
region. For instance, function @foo in Fig. 1(iii) owns one
region containing four blocks, bb0 to bb3.

A Dialect in MLIR defines a namespace for a group
of related operations, attributes, and types. MLIR not only
provides multiple built-in dialects to represent common
functionalities, but also features an open infrastructure al-
lowing to define new dialects at different abstraction levels.
Pass is a key component of compiler which traverses the
IR for the purpose of optimization or analysis. Similar
to LLVM [30], users can design Transform and Analysis
passes in MLIR to perform the IR transformation and
analysis, respectively. However, in the context of MLIR,
Transform typically refers to the transformation within a
dialect. The transformation between different dialects is
typically referred as Conversion, while the transformation
between MLIR and external representation is referred as
Translation. Lowering is a terminology referring to the
process of lowering the abstraction level of IR.

B. Relevant MLIR Dialects

Many dialects in MLIR are immediately applicable for
representing nested loop programs commonly used in HLS.
The affine dialect provides a powerful abstraction for
affine operations in order to make dependence analysis and
loop transformations efficient and reliable. The affine
dialect defines Affine Map as a mathematical function that
transforms a list of affine values into a list of results.
Affine operations (e.g., affine.for and if) must take
affine values as input operands, therefore the loop bounds
of affine. for operation and conditions of affine.if
operation must be the expression of affine values. The
scf (structured control flow) dialect defines control flow
operations (e.g., scf.for and if) whose loop bounds
or conditions can be any SSA values. Therefore, scf
operations are not constrained by the affine requirements
and can represent a wider range of programs. MLIR also
provides several fundamental built-in dialects to represent
basic arithmetic operations (e.g., addf) and unstructured
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HLS C ONNX PyTorch Transform
and Analysis
Graph-level IR [z
HLS C Graph
Front-end ONNX Torch “1”| optPasses
l VL Loop-level IR
Loop Automated
Affine SCF 7 Opt Passes :> DSE Engine
| Directive-level IR
N Directive
Affine SCF HLSCpp [« Opt Passes
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Emitter Unstruct. IR Estimator <> Transform
l l Analysis
. | HLS C/C++ LLVM IR

ScaleHLS Tool ~ ScaleHLS Dialect  Existing Dialect

Figure 2. ScaleHLS framework.

control flow operations (e.g., br and cond_br). Taking
Fig. 1 as example, the structured control flows in Fig. 1(i)
and (ii) represented with affine and scf operations are
flattened to the unstructured br and cond_br operations
in Fig. 1(iii).

C. Relevant MLIR Front-ends

ScaleHLS uses existing third-party front-ends, Torch-
MLIR [36] and ONNX-MLIR [37], to parse PyTorch [38]
and ONNX [39] models, respectively. Torch-MLIR first
translates PyTorch models into torch dialect, then lowers
the IR to affine dialect as the end of compilation. ONNX-
MLIR defines a subset of ONNX operations in an onnx
dialect for translating ONNX models into MLIR. The onnx
operations are then lowered to krnl (kernel) dialect and
finally lowered to affine dialect by the ONNX-MLIR
compilation flow.

III. SCALEHLS FRAMEWORK OVERVIEW

ScaleHLS compiles programs described in HLS C code
or programming frameworks, such as ONNX and PyTorch,
to optimized and synthesizable HLS C/C++ designs. Fig.
2 shows the architecture of ScaleHLS. In this section, we
organize the main components into four categories (rep-
resentation, optimization, exploration, and integration) and
introduce them one by one.

A. Representation

Graph-level IR (Section IV-A) exploits existing third-
party onnx [37] dialect to represent computation graphs
constructed with tensor operations. Loop-level IR (Section
IV-B) exploits MLIR built-in affine and scf dialects
to represent the loop structures and leverage the powerful
loop transformation and analysis infrastructures of MLIR.
Directive-level IR (Section IV-C) is enabled by our cus-
tomized h1lscpp dialect to represent the HLS-specific struc-
tures and program directives, which provides the capability
of conducting directive optimizations and supports the emis-
sion of synthesizable C/C++ code.
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B. Optimization

On each level of IR, we have designed a set of Optimiza-
tion passes (Section V-A to V-D) to improve the HLS design
quality automatically. The hierarchical IR allows the passes
to be applied at the most suitable abstraction level, thereby
minimizing the processing complexity and improving the
scalability. In order to efficiently explore the large design
spaces brought by large HLS designs, we propose a fast HLS
QoR estimator (Section V-E1) based on analytical models,
which can estimate the latency and resource utilization of
programs on top of the structured directive-level IR.

C. Exploration

The interfaces of the QoR estimator and transform passes
of every abstraction level are packaged into an HLS trans-
form and analysis library (Section V). All the interfaces
in the library are highly parameterized and can be tuned
by DSE engines. This library turns the HLS optimization
techniques from manual code rewriting to callable and
tunable interfaces at different abstraction levels. Leveraging
the HLS transform and analysis library, we have designed
an Automated DSE engine (Section V-E2) to search for
the Pareto frontier of the multi-dimensional design space,
where each dimension corresponds to a tunable parameter
of a transform pass. The DSE engine is extensible to support
different optimization algorithms in the future.

D. Integration

We have implemented an HLS C front-end (Section
VI-A) based on Clang that directly translates input C pro-
grams into the scf dialect. An scf to affine raising
pass identifies affine regions and converts scf operations
to their corresponding affine operations automatically,
which enables subsequent affine transformations and anal-
yses. In the end of compilation, the structured directive-
level IR is translated into synthesizable C++ code by an
HLS C/C++ emitter (Section VI-B). Meanwhile, LLVM
IR [30] can also be generated, enabling software simulation
and direct interfacing with existing LLVM-compatible tools,
such as Xilinx Vitis HLS [40].

IV. SCALEHLS REPRESENTATION

ScaleHLS features an unique multi-level representation
which allows the transform and analysis passes to be ap-
plied on multiple abstraction levels, thereby exploring more
comprehensive design spaces and improving scalability. In
this section, we introduce the graph, loop, and directive level
IRs of ScaleHLS in detail.

A. Graph-level IR

ScaleHLS exploits existing third-party onnx dialect from
ONNX-MLIR [37] to represent and optimize graph-level
IR. The assembly form of an onnx.Conv operation is (at-
tributes and non-tensor operands are omitted for simplicity):
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Table 1
SUPPORTED HLS DIRECTIVES.

Function Loop Array
dataflow da}taﬂp W partition
I - pipeline
Directives  pipeline resource
ey unroll .
inline interface
merge
$output = "onnx.Conv" (%$input, S$weight) {...} :

(tensor<l1x3x34x34xf32>, tensor<64x3x3x3xf32>)
—-> tensor<lx64x32x32xf32>

where the matrix operands and result are typed as tensors.
Operations of this dialect consume and produce tensor-
type values, which allows optimizing the IR at this level
through simple define-use analysis. If these operations are
lowered to loop-level and tensors are bufferized to memories,
tensor data must be accessed through memory read and
write operations, making optimization and transformation
more cumbersome due to the need for sophisticated memory
dependency analysis. In contrast, many high level analyses
and transformations, such as graph node merging, can be
easily supported in a graph-level IR by manipulating tensor
operations. The graph-level transformations implemented in
ScaleHLS are discussed further in Section V-A.

B. Loop-level IR

Once the graph-level optimizations are completed, the
IR will be lowered to loop-level for further optimization.
ScaleHLS exploits the MLIR built-in dialects, particularly
affine and scf, to represent loop-level IR for reusing
the powerful analysis and transform libraries provided by
MLIR. The code block (ii) of Fig. 5 shows the loop-level
IR of an SYRK (symmetric rank-k update of a matrix)
computation kernel [41] in MLIR where types and attributes
of all operations are omitted for simplicity. Memory ac-
cess and arithmetic operations are nested in affine.for
operations, which explicitly represent the loop structures.
Similarly, the code block (iii) of Fig. 5 shows the struc-
tured representation of a conditionally executed MLIR block
contained by an affine.if operation. Compared to the
unstructured IR, the structured loop-level IR enables more
flexible and efficient loop optimizations (e.g., loop tiling).
Furthermore, the fast affine expression composition and the
use of affine transformation theory allow ScaleHLS to per-
form efficient and comprehensive analyses and transforma-
tions on affine operations. The loop-level optimizations
are discussed in detail in Section V-B.

C. HLS Directives

HLS tools typically use program directives to guide the
hardware generation and fine-tune the latency-area tradeoff.
In this section, we introduce how ScaleHLS represents the
function, loop, and array HLS directives shown in Tab. I.
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1) Function Directives: ScaleHLS supports coarse-
grained and fine-grained parallelism through applying di-
rectives. The dataflow directive enables task parallelism by
pipelining all sub-functions that appear in the target function.
In the generated hardware, the top-module will be ready to
accept a new frame of data once the first sub-module is
done, which effectively improves the throughput of the top-
module. The pipeline directive enables operation parallelism
by scheduling all operations in the target function into
multiple pipelined stages that can be executed in parallel.
For the pipeline directive, ScaleHLS allows specifying the
targeted initiation interval (I/), which indicates that the
pipeline can accept and process a new input every I clock
cycles, impacting the resource usage and performance of the
generated pipeline. To represent and parse these directives in
ScaleHLS, we customize a st ruct MLIR attribute named
FuncDirective in hlscpp dialect. The customized
attribute contains two Boolean parameters, dataflow and
pipeline, and one integer parameter, target II, which
triggers the generation of appropriate directives compatible
with downstream HLS tools, such as Xilinx Vivado HLS
[42]. In ScaleHLS, the function inline directive is not
explicitly represented with an MLIR attribute, but instead
directly inlines the target function in the IR to ease the
transformation and analysis.

2) Loop Directives: The throughput and latency of loop
regions can also be optimized by applying the dataflow and
pipeline directives, which largely share the same character-
istics with the corresponding function directives. Note that
ScaleHLS can automatically identify perfectly nested loops
and flatten them into a single hierarchy, which helps to
further improve the pipeline throughput and latency. Similar
to function directives, ScaleHLS also exploits customized
MLIR attributes to represent the loop dataflow and pipeline
directives and the targeted [/. A LoopDirective at-
tribute is defined in hlscpp dialect and attached to the
corresponding affine. for or scf. for operations when
directives are applied.

The computation parallelism of loops can be improved by
applying the loop unroll directive with the cost of consuming
more resources. The merge directive is used to fuse adjacent
loop nests to improve data locality and decrease the loop
control overhead. ScaleHLS does not explicitly represent
these two directives through MLIR attributes, but instead
directly performs corresponding loop transformation on the
target loops in the IR, which is semantically equivalent to
applying the directives.

3) Array Partition: Array partition is one of the most im-
portant HLS directives because HLS designs require enough
on-chip memory bandwidth to comply with the computation
parallelism. However, single on-chip memory block has
limited read/write ports and hence needs to be partitioned
into multiple physical blocks to enable massive simultaneous
read and write. As MLIR attaches an affine map to each
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d1: none d1: none

d0: none
dO0: cyclic-2

(a) affine_map<(do, d1) ->
(de, di1)>

(b) affine_map<(de, d1) ->
(do mod 2, @, do floordiv 2, di1)>

d1: block-4

d0: cyclic-2

(c) affine_map<(de, d1) ->
(do mod 2, d1 floordiv 2, d@ floordiv 2, dl1 mod 2)>

Figure 3. Affine-based array partition. d{n} indicates the n-th dimension
of the array. Partition fashions and factors: (a) without partition; (b) cyclic
partitioned along the dimension-0 with a factor of 2; (c) block partitioned
along dimension-1 with a factor of 4.

memory type for encoding the memory layout, ScaleHLS
reuses the affine-based memory typing system of MLIR to
flexibly represent the partition factor (the number of memory
blocks after partition) and various partition fashions (e.g.,
cyclic and block). Fig. 3 shows three examples including:
(a) array without partition, (b) partitioned along the first
dimension, and (c) partitioned along both two dimensions.
The partition fashions and factors and the corresponding
affine map are annotated to each example as well. As we
introduced in Section II-B, affine map is a transform function
mapping a list of affine inputs to a list of results. To represent
array partition in ScaleHLS, assuming an N-dimensional
target array, the attached affine map has N inputs and
2N results. While the inputs are the logical indices of the
array, the first and last N results are used to encode the
expressions of partition indices and physical indices after
array partition, respectively. Taking the affine map of Fig.
3(b) as an example, the partition index and physical index
of d0 can be calculated as d0 % 2 and |d0 / 2| when
dimension-0 is partitioned cyclically with a factor of two.

By encoding the partition information into memory types,
ScaleHLS can flexibly support different partition fash-
ions, and quickly infer the partition index and physical
index through affine expression composition. This tech-
nique is used in the QoR estimator (Section V-El) and
the —array-partition pass (Section V-C2). Note that
unsupported memory partition fashions by the downstream
HLS tools are disallowed in the directive-level IR of
ScaleHLS.

4) Array Resource and Interface: The HLS-based accel-
erators can use different kinds of memories, including on-
chip memories (e.g., BRAM) and off-chip memories (e.g.,
DRAM). The resource directive is introduced for indicating
what kind of memories should an array be allocated to.
This is similar to the concept of memory space in the
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Table IT
SCALEHLS PASSES.

| Passes | Target | Parameters
Graph -leg?llze-da.taﬂow funcqon insert-copy
-split-function function min-gran
-affine-loop-perfectization | loop band | -
-affine-loop-order-opt loop band | perm-map
Loo -remove-variable-bound loop band | -

P -affine-loop-tile loop band | tile-sizes
-affine-loop-unroll loop unroll-factor
-loop-pipelining loop target-ii

Direct. | -func-pipelining function target-ii
-array-partition function part-factors
-simplify-affine-if function -

. -affine-store-forward function -

Misc. . . .
-simplify-memref-access function -
-canonicalize -cse function -

Boldface ones are new passes provided by ScaleHLS, while others

are MLIR built-in passes.

software, where BRAM and DRAM respond to cache and
main memory of a common computer system. As MLIR also
encodes the memory space into the memory type system,
ScaleHLS reuses this for representing resource directive by
mapping different kinds of memories into different mem-
ory spaces. Notably, ScaleHLS distinguishes single port,
simple dual-port, and true dual-port on-chip memories to
precisely control the resource utilization. Additionally, if
an array is identified as a function argument or returned
value, ScaleHLS will automatically determine the interface
category (e.g., AXI [43] or naive BRAM interface) of the
array according to its memory space.

V. SCALEHLS OPTIMIZATION

On top of the hierarchical representation of ScaleHLS,
we propose a multi-level HLS optimization methodology
to address the challenges of optimizing large HLS designs.
This methodology is implemented using a set of MLIR
transformation passes, each operating on MLIR dialects at
an appropriate abstraction level, either the graph, loop, or
directive levels described above. All ScaleHLS transform
passes are listed in Tab. II, together with their transform
targets (e.g., function) and the tunable parameters, where a
Loop Band refers to a continuous set of loops. These passes
traverse the whole IR and operate on all suitable targets in
the IR, making it difficult to apply different combinations of
passes on different targets through the command line tool. To
solve this problem, we also expose the functionality of each
transform pass as a callable method, allowing precise control
on where transforms are applied. These methods together
with the QoR estimator are packaged into an HLS transform
and analysis library, which opens the opportunity to perform
comprehensive DSEs by applying different combinations of
transforms on different targets in the IR and tuning their
parameters.
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In this section, we first introduce the graph, loop, and
directive passes accordingly. Then, we introduce other trans-
form passes provided by ScaleHLS for eliminating redun-
dancies. Finally, we introduce the QoR estimator and the
automated DSE algorithm. In addition, downstream HLS
tools are observed unpredictable: changing parameters in
the program that should improve performance can counter
intuitively yield slower and larger designs [44]. ScaleHLS
deals with this problem with predictable transform passes
and the integrated QoR estimator, which will be elaborated
further in this section.

A. Graph Transform Passes

1) Legalize Dataflow: Downstream HLS tools often sup-
port dataflow pipelining with specific restrictions in coding
style. In particular, for Vivado HLS each intermediate result
must have only one producer and one consumer, bypass and
feedback paths are not allowed, and conditional executions
of sub-functions are not allowed [42]. Previously, users were
required to manually legalize the target function by splitting
the function body into multiple sub-functions and rewriting
the code structure to eliminate the bypass, multi-producer,
or multi-consumer data paths. This procedure is (1) error-
prone and unpredictable since careless rewriting can easily
result in incorrect functionality or undesired effect in terms
of performance and resource utilization and (2) less effective
since large HLS designs containing tens of sub-functions can
take up to hours for human designers to reorganize and split.
The drawbacks of such manual efforts obstruct the existing
HLS tools to effectively explore different configurations
of the dataflow pipelining. Previous work [45] proposes
an automatic method to enable thread-level dataflow on
GPGPUs, yet the dataflow issue in HLS designs has not
been well-studied.

To address this problem, we introduce a —legalize
—dataflow pass in ScaleHLS to analyze the dependen-
cies between dataflow nodes and automatically legalize the
targeted function. Fig. 4(a) shows an example dataflow
containing five procedures, where each edge corresponds
to a tensor delivering. We can observe that Fig. 4(a) is
illegal as there is a path between Proc0O and Proc3 bypassing
Procl-2. This dataflow can be conservatively legalized to
Fig. 4(b) through the —~legalize-dataflow pass. To
eliminate the bypass path, Procl-3 are organized into the
same dataflow stage, thereby Proc0, Procl-3, and Proc4 can
construct a 3-stages dataflow. Note that in Fig. 4(b), the
output buffers of ProcO and Proc3 are automatically double
buffered after the directive is successfully applied, with the
cost of utilizing more memory resources than the original
dataflow in Fig. 4(a).

Alternatively, the dataflow can be aggressively legalized to
Fig. 4(c) through inserting Copy nodes. The original bypass
path is broken by the two inserted copy nodes, which enable
a more fine-grained 5-stage dataflow. Assuming each proce-
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Figure 4.  Graph-level dataflow optimization. (a) original dataflow; (b)
legalized dataflow without copy nodes; (c) legalized dataflow with inserting
copy nodes; (d) dataflow with a minimum granularity of 2.

dure in the dataflow has a latency of 1f, the conservative
and aggressive legalization improves the dataflow interval
from 5t to 3t and 1t, respectively. However, the downside of
the aggressive legalization is more computation and memory
resources are consumed. The strategy of inserting copy
nodes can be tuned through a insert-copy pass option.
If the insert-copy option is enabled, copy nodes are
inserted until the main path and the bypass path have the
same number of nodes on them. Note that if the target
function cannot be legalized, ScaleHLS will provide such
diagnostics back to users and avoid unpredictable design
transforms to be applied.

2) Split Function: Once the dataflow is legalized, the
original function can be splitted into a top function and
multiple sub-functions by a —-split-function pass.
Procedures or inserted copy nodes organized into the same
dataflow stage can be safely clustered into a new sub-
function and converted to a function call. At this stage, we
find a throughput-area tradeoff space can be explored by
merging adjacent dataflow stages into one. For example, in
Fig. 4(d), every two adjacent stages are merged together,
constructing a new 3-stages dataflow with less resource
utilization compared to Fig. 4(c) and an interval of 2t.
To enable this design space, we define granularity as the
number of adjacent dataflow stages to be merged. The
—-split-function pass supports a min—-gran param-
eter to specify the minimum granularity during the splitting.
Therefore, at least min-gran adjacent dataflow stages are
splitted into the one sub-function and converted to one
function call.

B. Loop Transform Passes

We use the SYRK computation kernel shown in Fig. 5 as
the example in the following discussion. In this section, we
introduce the loop transform passes provided by ScaleHLS,
which corresponds to the P;;_,;;; transformation of Fig. 5.

1) Loop Perfectization: Operations between loop state-
ments, such as Fig. 5@ (hereinafter referred to as 5@),
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5®), etc.), result in imperfect loops that may interfere with
some important optimizations (e.g., loop tiling) and prevent
the outer loops from being flattened for reducing latency.
The —affine-loop-perfectization pass relocates
the three in-between operations (5@)) into the innermost
loop and transforms them to 5@), where all in-between
operations are moved into a newly created affine.if.
Then, operations except the state-modifying operations, such
as stores, are hoisted out of the conditional.

2) Loop Order Optimization: Loop permutation can
change the distance of loop-carried memory dependencies,
thereby reducing the achievable I1 of loop pipelining and
reducing latency. The ~affine-loop-order-opt pass
can automatically perform affine-based memory dependency
analysis and apply the best legal loop order to the targeted
loop band. Specifically, loops associated with loop-carried
dependencies are permuted to the outside in order to increase
the distance of the dependencies. In the SYRK example,
the original innermost %k-loop (5(®)) is permuted to the
outermost location (5B)) by the loop order optimization pass.
This pass also accepts an optional integers list, perm-map,
allowing the loop order to be explicitly specified. The i-
th element of perm-map indicates the new position of the
i-th loop in the loop band, where positions are from the
outermost loop to inner loops.

3) Remove Variable Loop Bound: Because MLIR fo-
cuses on rectangular iteration spaces, there are lim-
itations on analyzing non-rectangular nested loops in
MLIR. As a result, variable loop bounds may obstruct
some loop optimizations and disrupt QoR estimation. The
remove-variable-bound pass can calculate the mini-
mum or maximum value of the expression of a variable loop
bound as long as each item is a loop induction variable and
has known lower and upper bounds. In the SYRK example,
the variable loop bound of the % j-loop (5(©) is substituted
with the constants and an affine.if operation (50) is
generated in the innermost loop for the conditional execution
of the loop body. Although this pass may increase the overall
iteration number of the loop band, it opens opportunities for
subsequent optimizations which may offset the negative side
effect.

4) Loop Tiling: Loop tiling is a common loop transform
to improve data locality and accommodate the limited ca-
pacity of on-chip buffers. In the SYRK example, the $i-
loop (5@) is tiled with a factor of 2 and transformed into
50), and the generated intra-tile %$1i1i-loop is relocated into
the innermost loop. The legality of loop tiling is validated
through affine analysis before the transform is applied. The
tiling size is determined by a t i1le-size parameter which
can be tuned by the DSE engine.

C. Directive Transform Passes

In this section, we introduce the directive-level transform
passes of ScaleHLS, which manipulate HLS-specific direc-
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void syrk(float alpha, float beta,
float C[16][8], float A[16][16]) {
for (int 1 = 0; 1 < 16; i++) {
for (int j 0; j <=1; j++) {
C[i][j] *= beta;
for (int k = 0; k < 8; k++) {
C[i][3] += alpha * A[i][k] * A[j][k];
(i) input C

l Pj-ij: parse C into MLIR affine.for %J

%0
%1
%2

func @syrk(%alpha, %beta, %A, %C) {
affine.for %i = 0 to 16 {
affine.for %j = 0 to (%i + 1) {@

affine.store %1, %C[%ii, %31 (@)

#map = affine_map<(de, di)

-> (d@ mod 2, @, do floordiv 2, d1)>
func @syrk(%alpha, %beta,

%A: memref<16x8xf32, #map, 1>,

%C: memref<16x16xf32, #map, 1>) G@

attributes {top_function
affine.for %k = 0 to 8 {

affine.for %i = 0 to 16 step 2 {

0 to 16 {
affine.if (%i - %j >= @) {
affine.load %C[%i, %j1 @)
mulf %beta, %0
affine.load %A[%i, %k]

N i o . 17 %3 affine.load %A[%j, %k] for (int v5 = 0; v5 < 16; v5 += 2) {
;? - ;ﬁin;;::d ;og[m, %31 }9 é %4 = affine.if (%k == 0) { for (int v6 = 0; v6 < 16; v6 += 1) {
e ° > e . < affine.yield %1 #pragma HLS pipeline
affine.store %1, %C[%i, %3] 2 } else { 0
affine.for %k = 0 to 8 { g affine.yield %@ if ((v5 - v6) >= 8) {
:’62 = affine.load ZéA[%:%, o"k] ‘@ float v7 = v3[v5][v6];
D/°3 f aii:l.ne.}oad fA[;%J,’ Alf] x %5 = mulf %alpha, %2 _5 float v8 = vl * v7;
pr o afiine. Joad KL %3] 9 %6 = mulf %5, %3 2 float vo = v2[v5][v4];
%o - mulf ;5 P%3: o © %7 = addf %6, %4 £ float v1@ = v2[v6][v4];
7“7 - addf QG, % S affine.store %7, %C[%i, %3] + float vil = (v4 == 0) ? v8 : Vv7;
ol = (NGa N . o S } 6 float v12 = v@ * v9;
affine.store %7, %C[%1, %3] 2 affine.if (%1 - %j + 1 »>= 0) { pt float v13 = v12 * vie;
ny (i) baseline MLIR | £ %0 = affine.load %C[%i + 1, %1 @] |2 float vid = vI3 + vii;
. 2 %1 = mulf %beta, %0 g v3[v5][v6] = v14;
l Pii-iii: loop transfroms 2 %2 = affine.load %A[%i + 1, %K] ki }
L %3 = affine.load %A[%], %k] G‘E if ((v5 - v6 + 1) >= 0) {
func @syrk(%alpha, %beta, %A, %C) {0 © @ float v15 = v3[(v5 + 1)][v6];
affine.for %k = @ to 8 {e = > float v16 = vl * vi15;
affine.for %i = 0 to 16 step 2 { () X ! float vi7 = v2[(v5 + 1)][v4];
affine.for %j = @ to 16 { a affine.store %7, %C[%i + 1, %j] o float v18 = v2[v6][v4];
affine.for %ii = (%1) to (%i + 2) {@ [ } N
affine.if (%ii - %j >= 0) { } {flatten = false, pipeline = tr‘ue}@
%0 = affine.load %C[%ii, %j]@ } {flatten = true, pipeline = false}
%1 = mulf %beta, %0 } {flatten = true, pipeline = false} v3[(v5 + 1)][v6] = v22;
affine.if (%k == 0) { 1111}

(iv) directive-opted MLIR

void syrk(float ve, float vi,
float v2[16][8], float v3[16][16]) {

#pragma HLS resource variable=v2 \
core=ram_s2p_bram

#pragma HLS array_partition variable=v2 \
cyclic factor=2 dim=1

true} {

#pragma HLS resource variable=v3 \
core=ram_s2p_bram

#pragma HLS array_partition variable=v3 \
cyclic factor=2 dim=1

for (int v4 = 0; v4 < 8; v4 += 1) {

(v) synthesizable C++

)
%2

%3
%4
%5

affine.load %A[%ii, %k]
affine.load %A[%], %k]
affine.load %C[%ii, %j]O
mulf %alpha, %2

%6 = mulf %5, %3

%7 = addf %6, %4

affine.store %7, %C[%ii, %j]
i33230

(iii) loop-opted MLIR

Pii-iii:

Piiiiv:

Pivav:

Pj-ij: scalehls-clang | scalehls-opt -raise-scf-to-affine

scalehls-opt -affine-loop-perfection -remove-variable-bound -affine-loop-order-opt
-partial-affine-loop-tile

scalehls-opt -legalize-to-hlscpp -loop-pipelining -canonicalize -simplify-affine-if
-affine-store-forward -simplify-memref-access -array-partition -cse
scalehls-translate -emit-hlscpp

Figure 5. An SYRK computation kernel example. scalehls—-clang compiles C program into the MLIR framework. scalehls—opt is the command
line tool for conducting all conversion, transform, and analysis passes of ScaleHLS, while scalehls-translate is for the MLIR to C/C++ translation.

Some operation attributes or types are omitted for simplicity.

tives to further improve the design quality. The effect of the
discussed passes are showcased in the P;;;_,;, transforma-
tion of Fig. 5.

1) Function and Loop Pipelining: A legal pipeline
directive allows no hierarchy in the target function or
loop, thus all the sub-loops must be fully unrolled and
all the sub-functions should be also pipelined [42]. The
-loop-pipelining pass first attempts to legalize the
targeted loop by fully unrolling all contained loops and
pipelining all sub-functions. If the legalization succeeds,
loop pipeline directive is applied to the target loop with
the specified /7. In the SYRK example, loop pipelining is
applied to the %j-loop and thus the contained %1ii-loop
(5®) is fully unrolled and the duplicated loop body after
loop unrolling is shown in 5@®. The %j-loop is annotated
as pipeline and all outer perfectly nested loops, $k and
%1i-loop, are annotated as flatten.
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The -function-pipelining pass uses the same
mechanism to legalize the targeted function before setting
the function pipeline directive. Both the loop and function
pipelining will recognize and diagnose illegal transform
targets to avoid unpredictable compilation and allow speci-
fying the targeted /I for exploring the tradeoff design space
between throughput and resource utilization.

2) Array Partition: ScaleHLS enhances the method pro-
posed in [19] to automatically detect the memory access
pattern of a program and apply the suitable array partition
factor and fashion to each dimension of each array. The array
partition metric P of the d-th dimension of the i-th array
can be represented with:

Accesses;

mazx(indezx, — index? , + 1)’
had . ;

Piq=

€]

where Accesses; is the number of unique memory accesses
in the targeted MLIR blocks, index]"; and index} ; are the

Authorized licensed use limited to: CERN. Downloaded on June 06,2023 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.



@ Pareto Point
Non-Pareto Point

@ Pareto Point
Non-Pareto Point

DSP Number

-20

Principal Component 1
IS

20 0 20 40
Principal Component 0

103
Latency (Cycle)

102 60

Figure 6. Design space profiling of a GEMM kernel. (a) the latency-area
space; (b) PCA of the multi-dimensional design space.

indices of the m-th and n-th memory access operations. Note
that m and n can be any two different memory accesses.
The —array-partition pass applies cyclic and block
partitions to the d-th dimension of the ¢-th array when
P, g >= 1 and P, 4 < 1, respectively, with the partition
factor set to Accesses;. Taking the first dimension of the
$C-array (5@®) as example, the index distance between the
only two memory accesses (5@) is (%i+1) — %i+1 = 2.
Therefore, we have P = 1 and the applied partition fashion
is cyclic, which is encoded into the affine map of $C-array.

As instantiated arrays can be accessed by sub-functions,
an inter-procedural analysis is conducted to ensure: (1) the
array partition directives are applied in the correct function
scopes; (2) the globally optimal partition strategies are se-
lected. The array partitioning process can also be guided by
specifying the partition factors of each array which appears
in the function through the part-factors parameter.

D. IR Redundancy Elimination

In addition to the graph, loop, and directive trans-
forms, ScaleHLS adopts the methodology described in [46]
and provides multiple passes to remove the redundant
operations in the IR. The -simplify-affine-if
pass eliminates dead branches of affine.if opera-
tions by detecting always-true/false conditions using affine
analysis. The -affine-store-forward pass elimi-
nates redundant memory access operations and unused
memory instances through store-to-load forwarding. The
-simplify-memref-access pass folds identical mem-
ory access operations if no dependency conflict exists. In the
SYRK example, the memory access operations (50)) are
eliminated and the IR is transformed to 5@. ScaleHLS also
exploits MLIR built-in passes, such as —canonicalize
and -cse (common subexpression elimination) [34], to
eliminate the redundancies in the IR and further optimize
the quality of the HLS design.

E. Automatic Design Space Exploration

On top of the representation and optimization of
ScaleHLS, we can construct a multi-dimensional design
space, where each dimension corresponds to the on/off or
a tunable parameter of a transform pass. In this section,
we propose an automated DSE engine assisted with an
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analytical model-based QoR estimator for exploring the
design space.

1) QoR Estimation: The RTL generation downstream
tools, such as Vivado HLS, can take minutes to hours to
complete the compilation and to report the synthesis results,
which (1) limits the total number of design points that can be
evaluated during DSE, thus results in sub-optimal solutions
and (2) significantly increases the DSE time to up to tens
of hours. To solve these problems and rapidly evaluate the
design points found by the DSE engine, we develop a QoR
estimator to estimate the latency and resource utilization of
the HLS designs. We adopt an ALAP (as late as possible)
algorithm to schedule each MLIR block in the design. The
memory ports are considered as non-shareable resources
and constrained in the scheduling except between two or
more memory read operations with identical address indices.
The dependencies between operations are extracted through
define-use and memory dependency analysis, where function
calls and loops are viewed as nodes in the dependency graph.
By accurately modeling the latency and resource utilization,
ScaleHLS can estimate the effect of design transforms
in the early stage of compilation, which makes the HLS
optimizations more predictable.

2) DSE Algorithm: The target of the DSE engine is to
search for the Pareto frontier of the latency-area tradeoff
space. By tuning the parameters of the transform passes
shown in Tab. II, we can construct a multi-dimensional
design space for each input HLS design. Although the
proposed QoR estimator can rapidly map a design point dis-
covered in the multi-dimensional design space to the latency-
area space, the powerful ScaleHLS transform passes can
easily generate millions of design points, making exhaustive
search impossible. The design space profiling of a GEMM
(general matrix multiply) kernel [41] is shown in Fig. 6,
where we employ principle component analysis (PCA) for
dimensionality reduction and exploratory analysis. We can
observe that the Pareto points (deep blue) in the latency-
area space are clustered in the PCA space. For instance, if
pipeline /1 = 2 is a Pareto point for a nested loop, there is
a high possibility that its neighbors (e.g., pipeline I1 = 3)
are also Pareto points with different latency-area tradeoffs.
Based on this observation, we design a 5-step neighbor-
traversing algorithm to explore the design space.

In Stepl Initial Sampling, we randomly sample the
whole design space and evaluate the latency and resource
utilization of each sampled design point using the QoR
estimator. Then, the initial Pareto frontier is extracted from
all sampled points. In Step2 Point Proposal, we randomly
select a design point in the current Pareto frontier and
propose its closest neighbor as the new point to evaluate.
This point proposal method can effectively inherit beneficial
optimization parameters from evaluated design points. In
Step3 Point Evaluation, we call the QoR estimator to
evaluate the new design point proposed by Step2. The

Authorized licensed use limited to: CERN. Downloaded on June 06,2023 at 15:20:20 UTC from IEEE Xplore. Restrictions apply.



current Pareto frontier is then updated if any point in the
current frontier is dominated by the new design point. In
Step4 Frontier Evolution, we repeat Step2 and Step3
until no eligible neighbor can be found or meeting the
early-termination criteria (e.g., maximum iteration number).
In this procedure, the discovered Pareto frontier evolves
in each iteration and progressively approaches the “real”
Pareto frontier. In Step5S Design Finalization, we sort the
discovered Pareto points in ascending order of latency and
then select the first point meeting the resource constraints
as the final solution. The finalized design is emitted as
synthesizable C++ code. This DSE algorithm is implemented
as an MLIR transform pass called —~dse which can be
applied on the input HLS designs without any manual
efforts. The evaluation of the DSE engine is performed in
Section VII. Note that given the HLS transform and analysis
library of ScaleHLS, the DSE engine is extensible to support
different optimization algorithms.

VI. END-TO-END INTEGRATION
A. HLS C Front-end

The C front-end takes synthesizable HLS C code and
emits the corresponding MLIR in the scf dialect. The scf
dialect provides an abstraction for static control flow and
has a similar set of operations to statements in C, which
reduces the analysis process in the front-end. For instance,
a for loop can be directly translated to an scf.for
operation. The output in the scf dialect is then raised
into the affine dialect using an ScaleHLS pass called
-raise-scf-to-affine. This pass checks whether an
scf. for operation is an affine loop and translates it into an
affine. for operation if it is. Otherwise, the loop remains
as an scf.for operation. Also, the MLIR pass raises each
memory statement to an affine operation if its address
indices have affine formats. The P;_,;; transformation of
Fig. 5 shows the procedure of parsing HLS C codes into
the MLIR framework.

MLIR has its unique memory and indexing types. First,
the memory type memref is a set of exclusive pointers
to the memory and size parameters of the memory [33].
The memref type solves delinearization problem of para-
metrically sized arrays, which was not well-supported in
LLVM [47]. The translation to memref is simplified in our
front-end because common HLS tools, such as Vivado HLS,
only accepts a subset of C [42]. For instance, all the arrays
have to have fixed sizes. These types are directly translated
to fixed-size memref types. A pointer that points to a scalar
hasal x 1 memref type in MLIR. If an unsupported struct
such as pointer to pointer is found, the input code is rejected
by the C front-end.

B. HLS C/C++ Code Emission

After the completion of all conversions and optimizations,
the structured IR can be emitted as synthesizable C/C++
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code for generating the RTL code. The F;,_,, transformation
of Fig. 5 shows the MLIR to C++ emission of the SYRK
example. The HLS C/C++ emitter of ScaleHLS requires the
control flow to be represented by affine or scf oper-
ations. Then, it can directly translate affine/scf.for
and if operations to the for and if statements in C/C++.
The array partition, resource, and interface information is
decoded from the type of memories (5@) and emitted as
pragma directives (50). Meanwhile, the applied HLS-
specific optimizations represented as attributes (5@)) are also
parsed by the emitter accordingly and inserted into the corre-
sponding code region. Notably, to ensure the synthesizability
of the generated C/C++, the emitter always converts returned
values to input pointers.

VII. EXPERIMENTAL RESULTS

To evaluate the ScaleHLS compilation framework, we
conduct comprehensive experiments and ablation studies in
this section. Xilinx Vivado HLS 2019.1 is adopted for gen-
erating RTL code. All reported performances and resources
utilization are collected from the synthesis results reported
by Vivado HLS.

A. Large-Scale Computation Kernels

1) Automatic DSE results: We evaluate the DSE en-
gine on six different computation kernels (BICG, GEMM,
GESUMMYV, SYR2K, SYRK, and TRMM) picked from
PolyBench-C [48] with a problem size of 4096. The target
platform is Xilinx XC7Z020 FPGA, which is an edge FPGA
with 4.9 Mb memories, 220 DSPs, and 53,200 LUTs. The
resource constraints and non-optimized computation kernels
written in C are passed into the DSE engine, which is then
launched to search for the optimized solutions. Finally, the
generated designs are evaluated and the results are shown
in Tab. III. Among all six benchmarks, a speedup ranging
from 41.7x to 768.1x is obtained compared to the base-
line design, which is the original computation kernel from
PolyBench-C without the optimization of DSE or manual
code rewriting. Tab. III also lists the parameters selected by
DSE for each transform pass. Notably, in the procedure of
loop tiling, all generated intra-loops are absorbed into the
innermost loop region and fully unrolled for increasing the
computation parallelism.

After studying the solutions discovered by the DSE en-
gine, we find the performance gains come from multiple
sources: (1) loop perfectization and variable loop bound
removal regularize the target loop bands and enable the
subsequent optimizations; (2) loop permutation alleviates
(or eliminates) the impact of memory dependencies and im-
proves the achievable pipeline I by reducing the distance of
loop-carried dependencies; (3) the computation parallelism
and resource utilization are increased through loop tiling
and intra-tile loop unrolling; (4) loop pipelining is applied
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Table III
DSE RESULTS OF LARGE-SCALE COMPUTATION KERNELS.

Kernel | Prob. Size | Speedup | LP | RVB | Perm. Map | Tiling Sizes | Pipeline II | Array Partition Factors

BICG 4096 41.7x No No [1, 0] [16, 8] 43 A:[8, 16], s:[16], q:[8], p:[16], :[8]

GEMM 4096 768.1x Yes No [1,2, 0] [8, 1, 16] 3 C:[1, 16], A:[1, 8], B:[8, 16]
GESUMMYV 4096 199.1x Yes No [1, 0] [8, 16] 9 A:[16, 8], B:[16, 8], tmp:[16], x:[8], y:[16]

SYR2K 4096 384.0x Yes Yes [1, 2, 0] [8, 4, 4] 8 C:[4, 4], A:[4, 8], B:[4, 8]

SYRK 4096 384.1x Yes Yes [1, 2, 0] [64, 1, 1] 3 C:[1, 1], A:[1, 64]

TRMM 4096 590.9 x Yes Yes [1, 2, 0] [4, 4, 32] 13 A:[4, 4], B:[4, 32]

The data types of all kernels are 32-bits floating-points. Speedup is with respect to the baseline designs from PolyBench-C without the optimization of
DSE. LP and RVB denote Loop Perfectization and Remove Variable Bound, respectively. In the Loop Order Optimization, the i-th loop in the loop nest
is permuted to location PermM apli], where locations are from the outermost loop to inner.

32
768.1
1000 608.2x x 590.9x 64
2 359.4x 384.0x  407.1x 384.1x
£ 500 128
2 199.1x
a 256
5 87.0x
3 100 52:7x W 512
o 41.7x
?3) 50 31.7x | 1024
o W 2048
2]
10 B 4096
BICG GEMM GESUMMV SYR2K SYRK TRMM Problem Size

Figure 7. Scalability study of computation kernels. The problem sizes of computation kernels are scaled from 32 to 4096 and the DSE engine is launched

to search for the optimized solutions under each problem size.

Table IV
CASE STUDY OF GEMM KERNEL WITH A PROBLEM SIZE OF 4096.

Design | Cycles | Speedup | DSP (Util. %)
Unoptimized 1.237 x 1012 1.0x 5 (2.3%)
DSE Optimized 1.610 x 109 | 768.1x | 217 (98.6%)
Manually Optimized | 2.684 x 109 460.9x | 220 (100.0%)
Theoretical Bound 1.562 x 10° | 791.9x | 220 (100.0%)

and the target I/ is fine-tuned to tradeoff between resource-
sharing and throughput while accommodating the resource
constraints; (5) array partitioning strategies are automatically
selected to match the memory access patterns after loop
transformations. The BICG benchmark cannot benefit from
loop permutation because every loop in the loop nests
is associated with critical loop-carried dependency which
prevents the DSE engine to effectively reduce the pipeline
1I. However, the DSE engine still discovers a reasonable
solution for the BICG benchmark and achieves a 41.7x
speedup through increasing the computation parallelism.
Benchmarks except BICG benefit from all speedup sources
above, and achieve significant performance improvements
under the constrained on-chip resources available on the
edge FPGA platform.

To better understand the quality of solutions found by
the DSE, we perform a case study on the GEMM kernel.
We manually implement an HLS design on the same FPGA
platform using a rich set of directives as well as code-
rewriting driven by human design experience and expertise.
We also calculate the best achievable latency on the targeted
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FPGA by assuming all DSPs on chip run without any
stall and the kernel can be perfectly parallelized. The case
study results are shown in Tab. IV. We can observe that
the HLS design generated by our DSE achieves 0.97x of
the theoretical bound and is around 1.67x better than the
manually optimized HLS design. Note that the DSE only
takes minutes to find the design, while the manual design
takes us about 10 hours to finish.

2) Comparison with Previous Works: Previous ef-
forts [17]-[19] also investigate automatic DSE methods to
optimize computation kernel level algorithms. However, they
only support directive optimizations, thus are difficult to
comprehensively explore the design space and find reason-
able design points when the problem sizes are large. For
example, on the six scaled-up benchmarks shown in Tab. III,
the open-sourced framework [19] either generates solutions
that cannot be synthesized by Vivado HLS or takes an
unreasonable long time on exploring the large design spaces.
Meanwhile, as previous DSE efforts do not support the
transform and analysis library featured by ScaleHLS, they
still rely on human to provide optimization hints or rewrite
the code before launching the DSE, leading to low-efficient
and partially-automated compilation flows. Our multi-level
representation and automated optimization enable ScaleHLS
to find previously unachievable design points, explore a
more comprehensive design space, and directly generate
synthesizable HLS designs.

3) Scalability Study: To understand the performance of
our framework on different problem sizes, we scale the
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Table V
OPTIMIZATION RESULTS OF REPRESENTATIVE DNN MODELS.

Model Speed Runtime Memory DSP LUT Our DSP Effi. DSP Effi. of
ode PeeduP | (seconds) | (SLR Util. %) | (SLR Util. %) | (SLR Util. %) | (OP/Cycle/DSP) | TVM-VTA [49]
ResNet-18 | 3825.0x 60.8 91.7Mb (79.5%) | 1326 (58.2%) | 157902 (40.1%) 1.343 0.344
VGG-16 | 1505.3x 373 46.7Mb (40.5%) | 878 (38.5%) | 88108 (22.4%) 0.744 0.296
MobileNet | 1509.0x 38.1 79.4Mb (68.9%) | 1774 (77.8%) | 138060 (35.0%) 0.791 0.468

Speedup is with respect to the baseline designs compiled from PyTorch by ScaleHLS but without the multi-level optimization.
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Figure 8. Ablation study of DNN models. D, L{n}, and G{n} denote directive, loop, and graph optimizations, respectively. Larger n indicates larger

loop unrolling factor and finer dataflow granularity for loop and graph optimizations, respectively.

problem sizes of the six benchmarks from 32 to 4096 and
launch the DSE engine to search for the optimized solution
under each setting. Fig. 7 shows the experimental results. We
can observe that for BICG, GEMM, SYR2K, and SYRK
benchmarks, the DSE engine can achieve stable speedup
under all problem sizes. For GESUMMYV and TRMM, the
speedups for small problem sizes are lower because the small
design space prevents the DSE engine from fully utilizing
the available on-chip resources. Overall, our framework
shows a strong scalability and can effectively optimize
computation kernel level algorithms on a wide range of
problem sizes.

B. Large and Complicated Algorithms

1) Optimization Results: We experiment the ability of
handling large and complicated HLS designs of ScaleHLS
by evaluating three representative DNN (deep neural net-
works) models for the CIFAR-10 [50] image classification
task, ResNet-18 [51], VGG-16 [52], and MobileNet [53].
These DNN models are constructed with a large number
of different hidden layers and have sophisticated inter-layer
dependencies. The target platform is one SLR (super logic
region) of Xilinx VU9P FPGA which is a large FPGA
containing 115.3 Mb memories, 2280 DSPs and 394,080
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LUTs on each SLR. The PyTorch [38] implementations
are parsed into ScaleHLS and optimized using the pro-
posed multi-level optimization methodology. Graph, loop,
and directive optimization passes are applied sequentially to
improve the design quality at the corresponding IR level. The
experimental results are shown in Tab. V. We can observe
that by combining three levels of optimization, the generated
HLS designs achieve significant speedups ranging from
1505.3x to 3825.0x on the metric of throughput compared
to the baseline designs, which are compiled from PyTorch
to HLS C/C++ through ScaleHLS but without the multi-
level optimization applied. Notably, as shown in Tab. V,
ScaleHLS only consumes 37.3 to 60.8 seconds to optimize
the large HLS designs with a single line of command,
which demonstrates the efficiency and scalability of our
optimization methodology. The runtime is collected by using
-pass—-timing, a built-in statistic pass provided by the
MLIR framework.

2) Comparison with Previous Works: To the best of our
knowledge, ScaleHLS is the first general-purpose HLS flow
which can optimize and generate ResNet-18 level DNN
accelerators without human-designed IPs or templates. Pre-
vious HLS optimization flows [17]-[19] focus on small-scale
algorithms, while compilation flows dedicated for DNNs rely
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on pre-defined IP libraries [49], [54], [55] or parameterized
templates [56], [57] to generate the accelerator, which can
not be generalized to applications other than DNNs. To
better understand the optimization results of DNN models,
we compare the DSP efficiency with TVM-VTA [49], a
widely accepted DNN acceleration framework written in
HLS. DSP efficiency is a common metric for comparing the
efficiency of DNN accelerators across different platforms,
which can be calculated as:

OP/s
Numpsp X Freq

As shown in Tab. V, ScaleHLS reaches a better DSP
efficiency, while saves hundreds of human hours for design-
ing the dedicated hardware IPs. These experimental results
demonstrate that ScaleHLS can achieve fruitful productivity
improvement on large and complicated algorithms.

3) Ablation Study: To quantify the speedup contributed
by each of the three optimizations (directive, loop, and
graph), we perform an ablation study shown in Fig. 8.
We can observe that the directive (D), loop (L7), and
graph (G7) optimizations contribute 1.8x, 130.9x, and
10.3x average speedups on the three DNN benchmarks,
respectively, demonstrating the effectiveness of our multi-
level optimization methodology. Note that because the effect
of array partitioning is larger as the loop unrolling factors
increase, the actual speedup of directive optimizations are
larger than 1.8 x when combining with loop optimizations.
ScaleHLS allows to tune the optimization level n between
1 to 7 for loop and graph optimizations, which enables
to explore the tradeoff space between area and speedup.
Larger n indicates larger loop unrolling factor and finer
dataflow granularity for loop and graph optimizations, re-
spectively, leading to higher throughput and more on-chip
resources utilization. By comparing the speedup achieved by
G1+ L7+ D and G7 + L7 + D, we can observe that the
speedup margin between G'1 and G7 is 2.1x on average.
Similarly, the speedup margin between L1 and L7 is 64.0%
on average.

Effipsp = 2)

VIII. CONCLUSION

This paper presents ScaleHLS, an MLIR-based HLS com-
pilation flow, which features multi-level representation and
optimization of HLS designs and supports a transform and
analysis library dedicated for HLS. ScaleHLS enables an
end-to-end compilation pipeline by providing an HLS C
front-end and a C/C++ emission back-end. An automated
and extensible DSE engine is developed to search for
optimized solutions in the multi-dimensional design spaces.
Experimental results demonstrate that ScaleHLS has strong
scalability to optimize large-scale and sophisticated HLS
designs and achieves significant performance and produc-
tivity improvements on a set of benchmarks. In addition,
ScaleHLS is an open-source project and we hope ScaleHLS
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could become an advanced open infrastructure of new HLS
research in the future and boost the innovation in this area
to face new challenges.

ScaleHLS leaves several directions for future works: (1)
IP integration. The graph-level IR of ScaleHLS opens the
opportunity to integrate existing hardware IPs into the com-
pilation flow, making the integration and optimization of IPs
an interesting research direction. (2) DSE algorithms. The
transform and analysis library provided by ScaleHLS en-
ables a great opportunity to further investigate the optimiza-
tion algorithms for the multi-dimensional DSE problem of
HLS. (3) Machine-learning based QoR estimation. Machine-
learning methods can potentially capture more features from
the hierarchical IR of ScaleHLS, thereby generating better
estimation results than the analytical model-based methods.
(4) RTL code generation within MLIR. Currently ScaleHLS
leverages external HLS tools for generating the RTL code.
However, a direct RTL code generation within MLIR can
keep more information from the higher level IR and exploit
the RTL-level representation and optimization (CIRCT [58])
to further improve the quality of the accelerator designs.
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