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ABSTRACT

We present a photometric halo mass estimation technique for local galaxies that enables us to establish the stellar mass—halo
mass (SMHM) relation down to stellar masses of 10° M. We find no detectable differences among the SMHM relations of four
local galaxy clusters or between the cluster and field relations and we find agreement with extrapolations of previous SMHM
relations derived using abundance matching approaches. We fit a power law to our empirical SMHM relation and find that
for adopted NFW dark matter profiles and for M, < 10° Mg, the halo mass is M, = 1093 +002(p7 /108 M)*63+ 002 The
normalization of this relation is susceptible to systematic modelling errors that depend on the adopted dark matter potential
and the quoted uncertainties refer to the uncertainties in the median relation. For galaxies with M, < 10° M, that satisfy our
selection criteria, the scatter about the fit in M, including uncertainties arising from our methodology, is 0.3 dex. Finally, we
place lower luminosity Local Group galaxies on the SMHM relationship using the same technique, extending it to M, ~ 103
Mg and suggest that some of these galaxies show evidence for additional mass interior to the effective radius beyond that
provided by the standard dark matter profile. If this mass is in the form of a central black hole, the black hole masses are in the
range of intermediate mass black holes, 1007 %9 M which corresponds to masses of a few percent of M), well above values
extrapolated from the relationships describing more massive galaxies.

Key words: galaxies: dwarf — galaxies: formation — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: structure —

dark matter.

1 INTRODUCTION

How do stars populate the dark matter haloes that define the galaxy
population? A simple, first order answer is provided by the stellar
mass—halo mass (SMHM) relation for galaxies. Measuring that
relation, however, is not simple.

There are broadly two ways that this measurement is approached
for dwarf galaxies. In the first, using forward modelling or statistical
arguments an association is made between the population of dark
matter haloes theoretically expected to inhabit a certain volume of
the Universe and the galaxies observed within the same volume. The
association is constrained using observables, such as stellar mass, but
the question of scatter in the relation and simultaneously reproducing
all known properties of galaxies, such as clustering or lensing as a
function of magnitude or colour, complicates that association (for a
review see Wechsler & Tinker 2018). This approach generally does
not provide the relation for each individual galaxy, but is able to bring
to bear the tremendous statistical power of today’s large surveys and
simulation volumes. Exceptions include the more focused analysis
of the satellite population of the Milky Way (Nadler et al. 2020;
Chen et al. 2022; Manwadkar & Kravtsov 2022). In the second,
measurements of the internal kinematics of each individual galaxy
are used to obtain a dynamical estimate of the mass enclosed at the
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corresponding radius and an extrapolation based on an adopted dark
matter halo model provides an estimate of the halo mass. A sample of
galaxies for which this can be done is then used to produce the SMHM
relation (Dutton et al. 2010; Read et al. 2017). This approach is able
to provide the SMHM relationship for individual galaxies, but is
statistically limited to smaller samples due to the required kinematic
measurements. Although these two approaches are generally applied
independently of each other, there are now some examples of joint
analyses (e.g. Yasin et al. 2022).

A current weakness in the application of either of these approaches
is their inability to track the SMHM relation outside the LG
significantly below a halo mass of 10'© M. The difficulty arises
because such galaxies are rare in redshift surveys beyond the local
volume and measurements of the internal kinematics are increasingly
difficult for fainter, lower surface brightness galaxies. This limitation
is unfortunate in that a variety of interesting questions, related both
to galaxy evolution and the nature of dark matter, would benefit from
an understanding of the low mass SMHM relation.

We address this current weakness using a novel approach to
estimate halo masses for a range of galaxy samples in the literature.
Our approach follows the kinematic approach in spirit in that we
estimate the mass for each galaxy in our sample and build up the
SMHM from observations of many such galaxies. However, we do
not use kinematic measurements, but rather develop a photometric
method that enables us to make the mass estimate independent of
any measurement of the internal kinematics of each galaxy. As such,
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we are able to construct the SMHM using many low mass galaxies
and extend the SMHM well below current limits in mass using large
samples. In Section 2 we describe our approach to estimating the
galaxy’s halo mass (baryons + dark matter within an estimated virial
radius, see Section 2.2) denoted M,. In Section 3 we present the
SMHM relations for low mass cluster and field galaxies separately
and jointly and discuss the effect of uncertainties (both observational
and theoretical). In Section 4 we extend the relation to even lower
mass by adding Local Group dwarfs and speculate on the possibility
of inferring the masses of intermediate mass black holes in these
galaxies. We adopt a WMAP9 flat ACDM cosmology with Hy =
69.7 km s7! Mpc_1 and ,, = 0.281 (Hinshaw et al. 2013) for
consistency with some previous studies to which we compare.

2 ESTIMATING HALO MASSES

Because we aim to estimate halo masses for as many galaxies
as possible, we develop an estimator based solely on photometric
properties, bypassing measurements of internal kinematics. We
divide the task of developing a broadly applicable estimator into two
steps. In the first, we estimate the enclosed mass within the effective
radius, r,. The choice of the effective radius as a standard radius
in galaxy photometry has generally been justified as a compromise
between a sufficiently small radius where one obtains high signal-to-
noise measurements and a sufficiently large one that encloses a large
fraction of the luminous mass. However, in our context the choice is
particularly fortuitous because a simple enclosed mass estimator at
this radius is surprisingly robust to the internal detailed structure of
galaxies (see section 2.1; Wolf et al. 2010). In the second step, we
fit dark matter halo models, constrained to match the enclosed dark
matter mass within r, obtained in the first step, to estimate the halo
mass.

What we propose in the first step is the novel part of our approach.
This approach has the potential to increase the number of galaxies
with estimated halo masses by the ratio of the size of photometric
to spectroscopic samples, much in the same way that photometric
redshifts greatly increase the numbers of galaxies available for study.
Again, as with photometric redshifts, one exchanges this gain in
sample size for the precision obtained for each individual case and
the added potential for the occasional catastrophic error. The second
step in our procedure is not new and has been taken previously
using kinematically constrained enclosed mass estimates at r,, and
other specific radii, in a variety of ways by various investigators (e.g.
Dutton et al. 2010; Read et al. 2017).

2.1 Step 1: estimating M,

Scaling relations provide an opportunity to take the first of the two
steps. By providing relationships among measured parameters, the
appropriate scaling relation, plus the assumption that the galaxies
of interest lie on the scaling relation, can be used to recover
missing data for those galaxies. Historically, examples of this type
of approach predominantly focus on the use of scaling relations
to estimate distances, as in the use of the relationship between
luminosity and rotation velocity for disc galaxies (Tully & Fisher
1977). Occasionally, those same relations can be used to recover
another of the related parameters (e.g. rotation velocity using the
Tully—Fisher relation; Gonzalez et al. 2000). The work presented
here most closely resembles the Gonzalez et al. (2000) study.

To be able to pull off this trick most broadly, the scaling relation
must be applicable to all galaxies, not just to a subset of galaxies
such as disc galaxies. Across several studies, we have developed and
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applied a universal scaling relations for stellar systems (Zaritsky,
Gonzalez & Zabludoft 2006a, b; Zaritsky, Zabludoff & Gonzalez
2008, 2011; Zaritsky 2012). In those papers, we showed that galaxies
that span the known range of luminosities and morphologies satisty
a relationship between r,, a measure of the internal kinematics
(the velocity dispersion, o, for pressure supported systems or a
combination of rotational velocity and o for systems with significant
dynamical support from both), and the projected mean surface
brightness within r,, I,. The parameters involved are those also found
in the Fundamental Plane scaling relation (Djorgovski & Davis 1987;
Dressler et al. 1987), but the functional form is more complex to
allow for the broader range of systems to which it applies. The value
of having a scaling relation for all galaxies is that we can apply a
methodology based on it without restriction or any prior knowledge
of the galaxy to which it is being applied (see Dutton et al. 2010, for
an example that combines results using Tully—Fisher for spirals and
Fundamental Plane for giant spheroids).

To calibrate the derived estimates of the enclosed mass, M., within
a sphere of radius r,, we present an alternative approach to that of our
previous papers. We start with the well-established, widely adopted
mass estimator from Wolf et al. (2010). In that study, Wolf et al.
(2010) found, based on simulations, a mass estimator that is robust
against changes in the internal spatial and kinematic details of the
spheroidal stellar system.! Their estimator for the mass enclosed
within a sphere of radius r, is

M, = 9300°r,, (D

where o is the line-of-sight velocity dispersion in km s~!, r, is the
effective radius of the surface brightness profile in pc, and M, is in
solar units. By calibrating our results to the 3D enclosed mass, we
are taking a slightly different approach than our earlier empirical
one (Zaritsky et al. 2006a, 2008) that worked entirely in projected
quantities. As such, the scaling relation presented here has minor
quantitative differences from that presented previously. We repeat
for emphasis that the observed quantities (r, and /,) are projected but
that the derived quantity (M,) is not.

Between the two measurements needed to apply this estimator, o is
by far the more challenging to obtain, particularly for low luminosity
galaxies. As such, it is particularly advantageous to express the
mass estimator exclusively in terms of photometric measurements.
To do this, we first define the enclosed 3D mass as the enclosed
projected luminosity times an effective mass-to-light ratio, Y, to
rewrite equation (1) as

2l Y, = 9300°%r,, )

where I, is the mean surface brightness within 7, in units of L, pc™2
and Y, is given in solar units. Taking the logarithm (all logarithms
presented in this paper are base 10) of both sides, expressing r, in
kpc, and organizing terms we find

logr, =2logo —log I, —log Y, — 0.53. 3)

So far, this is simply a different expression of the Wolf et al. (2010)
mass estimator.

To eliminate or solve for o, we need a second equation involving
the two unknowns, ¢ and Y,. At this point progress requires an

The Wolf et al. (2010) estimator was validated only for spheroidal galaxies,
but the empirical scaling relation is valid for both discs and spheroids if the
appropriate kinematic measurement is used for discs (Zaritsky et al. 2008). As
such, once the enclosed mass estimates are calibrated for spheroidal galaxies,
then the estimates are calibrated for all galaxies.
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Table 1. Samples used.

Stellar mass—halo mass relation 873

Source Type Band Ve o Sample with M), Notes
S1z¢e
Chilingarian et al. (2008) dE B - v 46 - -
Collins et al. (2014) LG dSph \% - v 36 - tidal objects removed
Geha, Guhathakurta & van der Marel (2003) dE \% v v 17 - -
Jorgensen, Franx & Kjaergaard (1996) E & SO r - v 280 - in clusters
Mieske et al. (2008) UCD \%4 - v 15 - only those they observed
assorted (see the text) UDGs various - v 19 - -
Blanton et al. (2005) assorted r - - 49968 1661 SDSS low z NYU-VAGC
Drlica-Wagner et al. (2020) LG galaxies \%4 - - 54 24 LG galaxy compilation
Ferrarese et al. (2020) dwarfs g - - 404 240 Virgo
La Marca et al. (2022) dwarfs r - - 317 257 Hydra
Mao et al. (2021) satellites r - - 127 119 SAGA survey
Park et al. (2017, 2019) dwarfs 1 - - 87 82 NGC 2784 & NGC 3595 groups
Venhola et al. (2019) dwarfs r - - 564 477 Fornax
Yagi et al. (2016) dwarfs r - - 751 685 Coma
is a dependence of Y, on o, there is also a bifurcation in behaviour
at low o. The two branches highlight the divergence in properties
4 =t between high and low surface brightness stellar systems. Given this
behaviour, it is manifestly not possible to describe Y, as only a
=} function of o. We conclude that any appropriate functional form
must at least also include 7,.
34 The next simplest ansatz is that log Y, = f(log o, log/,) and that
- .. . this function is first order in both log o and log I,. Such a proposition
o) . - leads to equations of the form of the Fundamental Plane (Djorgovski
= T & Davis 1987; Dressler et al. 1987), which has been so successful at
% 24 mr describing giant ellipticals, but which fails to describe low luminosity
i) '* o spheroids. The cause of that failure is also evident in Fig. 1. One can
! . only describe log T, adequately with a linear function of log o for
= . the higher o stellar systems.
14 m T y The next step in complexity is adopting a function f that is second
" % do a3 , order in log o and log 1,
ik #'%
20 i‘-:’f‘ ' log Y, =a (logo)® + blogo + ¢ (log I)*+ 4
0 aa b4 dlogl, +elogl,logo + f, @
00 05 0 5 20 25 where we neglect cross terms that are leading second order but discuss
_1 them further below.
log(c/ kms™)

Figure 1. The effective mass-to-light ratio, Y., such that M, = m’f 1. Y.,
versus o. Three branches can be distinguished. Toward larger o the space is
that populated by ellipticals and dwarf ellipticals (lightly coloured circles).
At smaller o there are two branches, that populated by dsph and ultrafaint
galaxies satellites of the Milky Way and M31 (red squares) and that populated
by compact dwarf galaxies (green triangles).

ansatz for the functional form of Y. A natural (i.e. simple) proposal
is that log T, = f(log o).

To guide our understanding of what form such a function might
take we evaluate Y, using equation (3) and plot those values versus o
for a wide range of spheroidal stellar systems with spectroscopically
measured o’s (see Table 1; Jorgensen et al. 1996; Geha et al. 2003;
Chilingarian et al. 2008; Mieske et al. 2008; Collins et al. 2014)
in Fig. 1. We have made one set of edits to the literature sample
in that we have removed five galaxies from the Collins et al. (2014)
sample of LG dwarfs that are suspected to be experiencing significant
tidal forces (Crater II (Sanders, Evans & Dehnen 2018); Wilman I
and Triangulum II (Fritz et al. 2018); Hercules I (Fu, Simon &
Alarcon Jara 2019)); and Leo V (Collins et al. 2017)). While there

We evaluate the coefficients in equation (4) by replacing log Y,
in equation (3) with the right-hand side of equation (4) and fitting
the data shown in Fig. 1 plus a compilation of ultradiffuse galaxies
(Chilingarian et al. 2008; van Dokkum et al. 2017; Toloba et al. 2018;
Martin-Navarro et al. 2019; van Dokkum et al. 2019; Gannon et al.
2021) to extend further the range of galaxy types. We do make one
further edit of the literature data in that we exclude systems with r,
< 10pc, which are predominantly globular clusters but do include
some ultracompact dwarfs. There are not many such systems in the
sample, so the derived coefficient values are not significantly affected
by this choice, but there are indications that these systems start to
deviate from a scaling relation of this form (Forbes et al. 2008, and
this work). We believe this deviation happens because such compact
systems are completely stellar dominated within r,, and therefore
have an Y, that is independent of /, and o, making it difficult for a
low order functional form to adequately adjust to such behaviour.

As expected from such a large list of disparate studies, the data
are a heterogeneous set of photometric and kinematic measurements.
We place the surface brightnesses on a comparable system of solar
luminosities, appropriate for each band (Willmer 2018), but make no
correction for colour differences between the galaxies and the Sun.
There is also no correction for how colour gradients might affect r,
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Figure 2. Posterior distributions of each of the coefficients in equation (4).

Table 2. Coefficients for equation (4).

Coeff. Optical Near-IR

a 0.19870034 0.4430031

b 0.1407007) —0.978%022

c 0192750 015820,

d ~0.9230010  ~0.96720%,

e ~0.108X5015  —0.04020,¢
+0.056 0.102

f 1.306+0:0% 51870002

or how kinematic measurements vary between central values of o
and aperture values. All of these irregularities among data sets and
improper or ignored corrections can be expected to lead to less rather
than more coherence in the resulting scaling relation. Our eventual
estimation of the precision of our mass estimates using this set of
data is therefore an upper limit on the intrinsic scatter.

We derive the coefficients using a Bayesian approach and the
EMCEE Python implementation of a Markov chain Monte Carlo
sampler (Foreman-Mackey et al. 2013). The model is assumed to
have no intrinsic scatter and be as given by equation (4). We adopt
uniform priors on all of the parameters and parameter ranges that
avoid resulting posterior distributions that peak near the range edges.
The corner plot showing the character of the uncertainties in the
coefficients is presented in Fig. 2 and the resulting coefficient values
are listed in Table 2. The correspondence between our estimate of
M, and that obtained using the spectroscopically measured o and
the Wolf et al. (2010) estimator is excellent (Fig. 3), with a standard
deviation about the 1:1 line of 0.17 dex (corresponding to a relative
error of ~ 50 per cent). In the right panel of Fig. 3 we show that
the majority of the estimates are within a factor of two of the Wolf
et al. (2010) values, with larger scatter for systems with o < 10 km
s~! although at these low values of o there are large fractional
uncertainties in the spectroscopically measured o’s as well. As such,
we cannot ascertain whether the larger scatter is due to intrinsically
larger scatter about our scaling relation or observational errors in the
spectroscopically determined values of o. In either case, there is no
evident systematic residual with ¢ although one must remain aware
that binaries in these lowest mass galaxies could lead to an upward
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bias in the measured o’s and hence in the functional form of the fit
as well.

To further explore the nature of the scatter, we now redo the
analysis with a sample of K-band photometry for spheroidal stellar
systems from Forbes et al. (2008). As described by those authors,
the advantage provided by using near-IR is a decreased sensitivity
to variations in the stellar mass-to-light ratios. For our purposes,
we also benefit from the single-source nature of the photometry
and analysis. The result of applying the same procedure to these
data, which includes a similarly diverse range of stellar systems, is a
scatter about the 1:1 relation between the Wolf et al. (2010) estimator
and ours of 0.17 dex, exactly what the optical estimates yielded.> We
conclude that the use of a wide variety of studies in the optical did
not contribute significantly to the scatter in our mass estimates. We
favour the use of the optical relation going forward because there
is so much more data currently available that we can use in our
subsequent analysis.

Finally, returning to the choice we made to neglect the cross terms
that are leading second order terms in equation (4), we redo the
coefficient fitting including those terms and find that both of the
resulting coefficients, for the log o (log 1,)* and (log o’)*log I, terms,
are consistent with zero. Of course, neither higher order functions or
the inclusion of other parameters are excluded by our analysis, but
a function of the form presented in equation (4) appears to be the
simplest that can adequately express the behaviour seen in Fig. 1 to
the current level of observational precision.

2.2 Step 2: extrapolating from M, to M,

The use of the scaling relation only provides an estimate of the mass
interior to r,. To calculate the halo mass, M), we need an estimate
of the dark matter mass. To obtain this estimate, we subtract the
contribution to M, from stars projected within r, and then determine
the parameters of an NFW dark matter density profile (Navarro,
Frenk & White 1997) that best reproduces the remaining mass, the
dark matter, within a sphere of radius r,, or M, pm. To estimate the
stellar mass within r,, we convert the luminosity within 7, to stellar
mass by adopting stellar M/L ratios that are either colour-dependent
(Roediger & Courteau 2015) when a colour is available or fixed in
the case where only one photometric band is provided (McGaugh
& Schombert 2014). We discuss the effect of uncertainties arising
from our choice of the stellar M/L in Section 3.3 and of the dark
matter density profile in Section 3.3.6. This approach assumes that
star formation does not alter the dark matter profile. In practice,
the condensation of gas to the centre may lead to dark matter halo
contraction (Blumenthal et al. 1986); and vice versa, feedback from
stars may lead to expansion/coring (Pontzen & Governato 2012).
Besides the fiducial approach of assuming an NFW profile, we also
test inferring masses using cored Burkert profiles (Burkert 1995).
We iterate to find the best-fitting dark matter profile from within
the adopted family of NFW profiles. We define a trial NFW model by
setting M), and evaluating its concentration parameter using the mean
relation between concentration and mass (Maccio et al. 2007). We
use GALPY (Bovy 2015, http://github.com/jobovy/galpy) to evaluate
M, pm and compare to our empirical estimate. We evaluate models
over a range of M), to find the best-fitting halo. The calculations are
done for the adopted cosmology and a redshift of 0.01 to correspond

2There are two significant outliers from the 1:1 relation. Excluding these two
yields a standard deviation of 0.16 dex, still nearly identical to the optical
results.
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Figure 3. Comparison of the inferred enclosed masses at r, using the Wolf et al. (2010) estimator, Mworr+, and our scaling-relation based estimate, Mzp, for
the optical galaxy sample (see Table 1). Left-hand panel shows the derived values and the 1:1 line and includes both the high and low surface branches visible
in Fig. 1. Right-hand panel shows the differences in the two estimates versus o. The shaded region encloses values that are within a factor of two of each other.

to an overdensity of 346 relative to the matter density (cf. Bryan
& Norman 1998). For the best-fitting halo mass, we then add back
the baryonic mass using the universal baryon fraction to estimate
M,. This is certainly an upper limit to the baryon content and some
suggest low mass haloes have far less than their ‘fair share’ of baryons
(Papastergis et al. 2012). We will explore the effect of adopting the
lower limit in Section 3.3. This approach, including the estimation of
o from the scaling relation, was first applied to examine the relation
between the number of globular clusters in a galaxy, Ngc, and M),
(Zaritsky 2022). The resulting linear relation between Ngc and M), is
circumstantial supporting evidence for the accuracy of our estimated
M,, values, modulo the normalization factor.

We ignore scatter in the halo mass—concentration relation, which
simulations show is significant (>0.1dex; Maccio et al. 2007).
Zaritsky (2022) noted that ignoring the scatter may, for a subtle
reason, be the correct approach in this method. The estimates of
the internal kinematics of these galaxies is based on the scaling
relations, which also sidestep variations among individual galax-
ies to provide a ‘typical’ o and enclosed mass for each galaxy.
Therefore, because the o’s we use do not include the effects of
differences in the concentration among galaxies of equal mass,
the use of mean concentration—halo mass relation may indeed be
appropriate.

The consideration of our treatment of scatter in halo concentration
raises a significant concern. How can we verify our estimates of
M,,? Indeed, Gannon et al. (2021) demonstrated that if cored DM
density profiles are adopted, rather than NFW ones, the result can be
to invert the relation between M, and M,,. Given that we do not have
direct measurements of M) on a galaxy-by-galaxy basis (even for
the Milky Way the M), estimates show a significant range of values;
Shen et al. 2022), we must rely on circumstantial evidence for now.
As already mentioned, the resulting linear relation between Ngc and
M,, is one such piece of evidence. In the case of the SMHM relation
(Section 3.1), bear in mind that either an inverted relation between
M, and M, or, perhaps more likely, large scatter between M, pm
and M), — as would result from including concentration scatter in
the DM profiles without accounting for offsetting differences in r,
— would not lead to the relatively tight SMHM relation we find that
closely tracks that obtained using abundance matching techniques.
This is perhaps a less-than-satisfying justification of the approach,

but on the other hand offers an avenue for placing constraints on
the possible range of variations in the M, py—M, relation using
the degree of agreement between independent determinations of the
SMHM relation.

3 RESULTS

3.1 SMHM relation for local galaxy cluster populations

Large samples of low luminosity galaxies are difficult to obtain
because spectroscopy is generally necessary to determine a distance
and a luminosity. The standard way to avoid this observational
expense is to study low luminosity populations in nearby galaxy
clusters, for which one can simply assign the cluster distance to every
faint galaxy. There is some danger of background contamination, but
the projected density of cluster members at the relevant magnitudes
is significantly larger than that of the background and this contrast is
even more pronounced for galaxies with low surface brightnesses and
relatively large angular size — which generally describes the nearby
cluster dwarf galaxy population.

In the application of our methodology to large galaxy samples,
we are likely to be including all morphological types, unless care is
taken to classify and select subsamples. Fortunately, the basic scaling
relation we use is applicable to all morphological types (Zaritsky
et al. 2008), so no morphological pre-selection is required. The only
distinction in applying the relation to rotation versus dispersion-
dominated systems is whether one uses the circular velocity or the
velocity dispersion. When using the circular velocity, one needs
to divide the value by +/2 (the exact value depends on the nature
of the potential, the stellar orbits, and radial distribution of stars,
but empirical study shows only a weak dependence on this value;
Weiner et al. 2006; Zaritsky et al. 2008). However, this distinction is
irrelevant for our purposes because at this point we are neither using
measured kinematics or estimating the kinematics.

To support this claim, we apply our method to the clean sample
of Read et al. (2017) (avoiding ’rogues’ for which they have less
confidence in their derived parameters). That study provides all of the
necessary information once we convert from their stellar exponential
scale radii to effective radii by multiplying their values by 1.68. For
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Figure 4. The SMHM relation for low-luminosity galaxies in nearby galaxy clusters. Results for each of four clusters (Hydra (La Marca et al. 2022); Fornax
(Venhola et al. 2019); Virgo (Ferrarese et al. 2020); and Coma (Yagi et al. 2016)) are presented on the right. The composite of these four populations is presented
on the left. The solid and dotted lines are the extrapolation of the SMHM relations from Behroozi, Conroy & Wechsler (2010) and Behroozi et al. (2019),
respectively, and are the same in all panels. The dash-dotted line in the Virgo panel is the SMHM relation from Grossauer et al. (2015), which is particularly
interesting because it was derived using the same Virgo galaxy sample, but with a different technique (abundance matching).

those nine galaxies, from which they derive total mass using model
fitting to H 1 rotation curves, our estimates of M), deviate on average
from their quoted M5y values by 0.044 dex (~ 10 per cent) and have
an rms difference of 0.24 dex, a value smaller than what we will
eventually find to be observational scatter for our full sample. We
confirm that we can apply our methodology even to Hi-dominated,
rotationally supported low mass galaxies.

There are excellent published catalogues for low luminosity
galaxies in the Virgo (Ferrarese et al. 2020), Hydra (La Marca et al.
2022), Fornax (Venhola et al. 2019), and Coma (Yagi et al. 2016)
clusters. The resulting SMHM relations for each of the four clusters,
as well as for the composite sample, are presented in Fig. 4 and
compared to the extrapolations of the Behroozi et al. (2010, 2019)
SMHM relations. The Virgo data trace the relationship to the smallest
M,’s among the four samples and the Coma data are the richest,
but all are, in the mean, either consistent, or only slightly above the
Behroozi et al. (2010) curve and consistent with each other. Together,
the samples define a clear ridge-line in the M,—M), space for 9 < log
M,/Mg < 11.

One aspect for potential study is highlighted in the panel showing
the results for the Virgo galaxies. There we have included the SMHM
relation from Grossauer et al. (2015), which was derived from the
same Ferrarese et al. (2020) sample of galaxies using an analysis
involving abundance matching. Accepting that the technical aspects,
such as completeness corrections, were handled properly, the offset
between this relation and our results might indicate an anomaly in
the halo distribution in the models that were used. The sense of the
discrepancy is that Grossauer et al. (2015) effectively had to place a
galaxy with a specific M, in a more massive halo than that which we
are associating it with, suggesting a surfeit of halos in the simulations
at these masses. This, in turn, could indicate that halo disruption is
underestimated in those models. The general sense of the offset,
that abundance matching approaches tend to place galaxies in more
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massive haloes, is consistent with recent considerations of the Milky
Way and M 31 (McGaugh & van Dokkum 2021), although, as we
will stress later, the normalization of our SMHM relation is subject
to systematic uncertainties.

Of course, as interesting as such a conclusion might be, it is predi-
cated on the confidence we can place on our overall normalization of
both M, and M. The question of M, can be addressed by consistently
estimating M, and looking at the situation in a relative sense (in other
words, if, for example, the wrong stellar initial mass function is used,
as long as the same incorrect assumption is made in both analyses
then at least the M, part of the comparison is valid). The question of
M, can be addressed by spanning a sufficiently large range of M), that
we probe both the power-law behaviour at low M), and the turnover at
higher M;,. The current difficulty in doing so is that such an analysis
requires splicing disparate samples, as we will see below.

3.2 The M, pm/M, criteria

There are regimes where we might expect our methodology for
inferring M), to perform poorly or not at all. For example, as M,
becomes increasingly dominated by stars our calculation of the dark
matter mass within r,, M, pm, will become increasingly uncertain.
In fact, errors in our estimate of M, could even lead to formally
negative, unphysical, values of M, pm. As such, we need to reject
systems below some value of M, pm/M,. This also works to reject
the highly compact systems that we excluded in our scaling relation
discussion (i.e. those with r, < 10 pc). At the other extreme, systems
with extremely high apparent values of M, pm/M, are unlikely to
be real because those galaxies would have a baryon fraction far
below the universal value. Such systems are most likely due to an
underestimation of M., which leads to an overestimation of M, pu.
Because of the large extrapolation from M, to M;, small errors in
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Figure 5. Deviations from the Behroozi et al. (2010) fiducial relationship,
Ap, as a function of the dark matter mass ratio with a sphere of radius r,,
M., pm/M,, for the set of galaxies shown in Fig. 4. The left-hand panel shows
all of the data, while the right one zooms in on the bulk of the data. The dotted
lines represent our upper and lower criteria for M, pm/M, going forward.

M, pm can lead to unphysically large values of Mj,. As such, we also
anticipate needing to set an upper limit on M, pm/M,.

To explore these issues we use the results presented in Fig. 4 and
examine the deviations about the Behroozi et al. (2010) fiducial.
We present the deviations from this fiducial, Ag, as a function of
M, pm/M, in Fig. 5. There are a few galaxies with unphysical results
(M, pm/M, < 0) because, as anticipated, our estimated value of
M, occasionally exceeds that of M,. We reject these cases but they
comprise only 1.7 per cent of the overall sample. Next, we notice
that the main distribution in the figure has an curved shape, with
Ap values trailing lower as M, py approaches zero. Lower values
of Ap correspond to underestimates of M), relative to the fiducial,
which would be expected if scatter moves M, pm/M, below its true
value. This downward tail is most visible for M, pm/M, < 0.5, so
we define a requirement that the ratio exceed 0.5. The dotted line
in the left-hand panel of Fig. 5 shows this cut. At the other end of
the M, pm/M, range there is a sharp rise in Ap. Here, scatter causes
an underestimate of M,, hence an overestimate of M, py, and a,
when extrapolated, a catastrophic overestimate of M. This sharp
rise becomes most prominent for M, py/M, > 0.975, so we set that
value as the upper limit. That cut is shown as the dotted line in
the right-hand panel of Fig. 5. The application of these two criteria
removes much of the most egregious scatter from Fig. 4.

Alternatively, a future treatment of this problem could attempt to
recover M), and the associated uncertainty using a Bayesian approach.
Our hypothesis is that the recovered values of M, that result in high
AB would also have associated large uncertainties. If they do not,
then there is either a tail of systems with intrinsic large scatter in the
SMHM relation or a missing ingredient in our model.

3.3 How uncertainties affect the results

Although the mean trend between M, and M, is well-defined in
Fig. 4, there is significant scatter about that mean even after we have
removed the most egregious outliers using the M, pm/M, criteria we
just described. To better understand the origin of the scatter and how
one might lower the observational scatter, we quantify the effects of
errors in each of the key parameters in Fig. 6. For each quantity, we as-
sess the impact by altering the specific parameter by the value shown.

3.3.1 Distance

In Fig. 6, we show how specific changes in one quantity at a time
move the mean location of the Virgo sample in the M,—M), space.
The upper panel shows the result of doubling and cutting in half
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Figure 6. The sensitivity of the resulting SMHM relation is shown for the
mean location of the Virgo sample (Ferrarese et al. 2020) for a variety of
choices. In some cases the range explored matches the plausible uncertainties,
in others it does not. Where the range was expanded, it was done to aid
visualization of the effect.

the adopted distance. This is a far larger change than we anticipate,
particularly for the cluster galaxies whose hosting clusters are well
studied. Distance estimates are more uncertain for individual field
galaxies where the peculiar velocities could be significant. Neverthe-
less, we find that changes in the distance, even when unrealistically
large, do not contribute significantly to the scatter because they act
to slide sources nearly parallel to the fiducial relation.

3.3.2 M.

We depend on the scaling relation to estimate M,. The scatter in M,,
evaluated relative to values obtained for systems with measured o’s,
is moderate (a factor of 2 in mass) in comparison to the many orders
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of magnitude in mass over which we apply the relation (Fig. 3).
Even so, those uncertainties are sufficiently large that they can lead
to significant errors in the extrapolated estimate of M. In the second
panel of Fig. 6 we illustrate the effect of a +=1¢ systematic change in
the inferred M, . Because of the large extrapolation in going from M,
to M), these changes have large repercussions. An initially puzzling
aspect of this panel is that a change in M, appears to result in a
change in M,, which is an unrelated quantity. This happens because
the change in M, couples to the M, pym/M, criteria and results in
somewhat different samples for which the means are evaluated.

A second surprising finding is that the observed scatter in Fig. 4 is
not as large as the result in Fig. 6 would suggest (the scatter about the
mean relation in Fig. 4 is 0.3 dex while the size of the plotted error
bar in each direction is about 0.8 dex). This amplification of the error
comes about due to two amplifying effects. First, a more massive halo
is also larger and hence r, is proportionally further inside the halo
and, secondly, the concentration of more massive haloes is smaller.
These two effects collaborate to turn a 0.1 dex offset in M, into a 0.5
dex offset in M,,.

If the scatter in Fig. 3 comes primarily from scatter in the
application of the scaling relation, then the smaller than expected
scatter in the SMHM relation may indicate that the errors in M, are
correlated with a change in another parameter that results in galaxies
moving somewhat less across the SMHM relation than indicated in
Fig. 6 and more along it. Alternatively, if the scatter in Fig. 3 comes
mostly from scatter in the Wolf et al. (2010) masses, for example due
to observational errors in o, then the smaller than expected scatter
in Fig. 4 could be the result of adopting the ‘typical’ values of M,
given by the scaling relations.

From our analysis we cannot determine the actual, intrinsic
scatter in the SMHM relation. While it could be smaller than
what we measure, buried underneath the scatter generated by our
crude approach, perhaps it is larger than what we see because we
have imposed a degree of homogeneity that does not exist (for
example, due to our neglect of scatter in the halo-mass-correlation
relationship). Although, measuring the scatter in the SMHM at low
masses is a challenge, a value consistent with what we observe is
within limits presented elsewhere (Allen, Behroozi & Ma 2019),
and hence does not point to any catastrophic error in our analysis.
Independent derivations of the SMHM scatter would allow us to use
our results to provide constraints on possible dark matter density
profiles.

3.3.3 l.andr,

Our determination of M, depends only on the distance, I, and r,.
We explored the effect of distance errors above and now explore
the effects of errors in the other quantities, propagated through the
determination of M,. In the next two panels of Fig. 6 we show that
a much larger than anticipated error in the apparent magnitude and
plausible errors in r, both contribute negligibly to the scatter about
the fiducial line. Neither appears to provide enough of a change
to help counter the effect of a change in M,. We are left with the
conclusion that our estimates of M, must be somewhat better than
reflected in the 0.17 dex scatter in Fig. 3. Part of the explanation
must lie with scatter in the measured o’s, which are particularly
difficult to measure for low mass systems. A second part may lie
with the same hypothesis we made for ignoring scatter in the halo
mass—concentration relation. The scaling relation gives an idealized
estimate of M, and is therefore providing an average M, for similar
galaxies, which by the nature of averages has less scatter than that
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visible in Fig. 6. As such, we may be in the seemingly absurd regime
where having less information (i.e. not having a measured o) leads
to a more precise result — as long as the scatter about the scaling
relation is proportionally less than the observational scatter in o.

3.3.4 Stellar M/L

We now consider two systematic uncertainties that affect the estima-
tion of M,. First, and in the fifth panel in Fig. 6, we consider plausible
changes in the adopted stellar M/L. Here we have adopted a factor of
two change downward and upward in the stellar M/L. These changes
principally result in a lateral shift in M;,, with an amplitude similar to
the uncertainty arising from different extrapolations of the SMHM
relation. This result highlights the difficulty in using these results to
determine the absolute normalization of the SMHM relation and its
dependence on other factors such as the stellar initial mass function.

3.3.5 Baryon fraction

To evaluate M), we assigned each halo a baryon mass determined from
the universal baryon fraction. This almost certainly an overestimation
of the baryons in each halo (Papastergis et al. 2012), and therefore
of M), although some studies do not find evidence of greater baryon
loss in low mass galaxies (Geha et al. 2006). Nevertheless, to probe
the possible full extent of mischaracterizing the baryon fraction,
we adopt the other extreme of this correction and only add the
observed stellar mass to the dark matter halo mass to obtain M,. In the
bottom panel of Fig. 6 we show the effect of making that correction
instead. Unsurprisingly, the change is visible, but minimal given that
a 16 per cent change in halo mass corresponds to a change in M),
of only 0.075 dex. Because the proper correction must lie between
these two alternatives, the effect of adopting the improper correction
within these extremes is even smaller and therefore a minor source
of uncertainty relative to other issues we have discussed.

3.3.6 The impact of the adopted potential

Comparisons between data and models are also affected by the
extrapolation we make from M, to M. The analysis presented so
far is predicated on the adopted NFW dark matter mass profile.
However, there is extensive literature advocating alternative profiles
to resolve some apparent empirical discrepancies between data and
the predictions of NFW-based models, particularly among lower
mass galaxies (e.g. Burkert 2020). Here we briefly discuss the
qualitative impact of loosening the adoption of the NFW profile
on our results.

Cored potentials offer a larger, and somewhat degenerate, set of
models that can fit single radius kinematic constraints (Gannon et al.
2021). In fact, those authors showed that, at least for the UDGs
that they were considering, it was possible among some plausible
models to invert the relationship between M, and M,. This raises
the important question of whether there is any value in extrapolating
measurements of the enclosed mass at small radii to estimates of M.

The most extreme scenarios, where either the relationship between
M, and M, is inverted or there is no information in M, regarding
M, can be rejected on the grounds that we do recover an SMHM
relation in qualitative agreement with that recovered from abundance
matching studies.

The more subtle question of whether fitting NFW profiles adds
any value, or whether one could simply scale upwards the values of
M., pwm, requires a quantitative exploration. For galaxies within our
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Figure 7. A comparison of residuals about the best-fitting SMHM relations
using our approach (NFW; darker, wider bars) a simple scaling of M, pm
(o< My lighter, narrower bars). The generally narrower distribution of
residuals for the standard approach indicate that there is physical information
in the extrapolation to M}, using the NFW models. The few outliers (A > 0.5)
are again a demonstration of the potential for catastrophic failure in a small
fraction of the sample.

limits on M, py, we fit for a power-law relation between M, and
M, pm. We compare the residuals from that fit, to the residuals from
fit for the SMHM using our NFW fitting approach in Fig. 7. Aside
from a sparsely populated tail of large outliers (due to the methods
strong sensitivity to M, pm errors), the results from our NFW fit show
less scatter than the uncorrected values. Because the application of
the NFW fitting is unlikely to result in a tighter SMHM if there is no
relation between M, and M;,, we conclude that our estimates of M,
do add value to the investigation.

3.4 SMHM for local field populations

Although cluster dwarf galaxy samples have the advantage of sample
size, they have a significant disadvantage in terms of interpretation.
Cluster galaxy populations are subject to various effects (Gunn &
Oke 1975; Larson, Tinsley & Caldwell 1980; Valluri 1993; Moore
1996), and as such may not be representative of the general galaxy
population. To address this issue, we examine three sets of field
populations of galaxies that include dwarfs (Blanton et al. 2005;
Park et al. 2017, 2019; Mao et al. 2021). The Blanton et al. (2005)
sample consists of low z galaxies from SDSS, reanalysed to improve
the photometry for systems of large angular extent, the Mao et al.
(2021) sample is from the SAGA spectroscopic survey for satellites
of Milky Way analogues (Geha et al. 2017), and the third set comes
from an ongoing survey of nearby poor groups (Park et al. 2017,
2019). The Park et al. sample is different than the other two samples
in that distances are assigned from the group membership rather
than from recessional velocities. Because their analysis suggests
only ~ 30 per cent contamination and distance errors tend to move
galaxies along the SMHM fiducial, we include their sample to extend
coverage down to M, ~ 108 M. We convert from Johnson to SDSS
photometric bands using the transformations presented by Jester et al.
(2005).

In Fig. 8 we show the results for the three samples, both separately
for each sample and together. For the Blanton et al. (2005) sample
we have excluded galaxies with m, > 18, which showed far larger
scatter than their brighter counterparts, suggesting poor photometry
at the faint end of their range. The three samples together cover a
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large range in M), and fall between the two plotted extrapolations of
the SMHM relations.

Interestingly, at higher masses they appear to show an offset
relative to the Behroozi et al. (2010) fiducial, which the cluster
galaxies followed closely (albeit at lower M},), and then fall in line
with that fiducial once in a M), range below 10'° M. This behaviour
could be a reflection of the fact that dwarf field galaxies tend to be
star forming unless they are of very low mass, and because they have
not yet formed all of their stars they lie below the fiducial SMHM
relation. This is consistent with findings from several past studies,
in which satellite galaxies have larger stellar mass-to-halo mass
ratios than field galaxies (e.g. Rodriguez-Puebla, Drory & Avila-
Reese 2012; Behroozi et al. 2019). It may also simply reflect a shal-
lower SMHM relation than the extrapolated Behroozi et al. (2010)
relation.

These are intriguing, although preliminary interpretations. Com-
parison across samples is complicated by different measurement
techniques, for example the definition of total magnitudes and
extinction corrections. Even where we have tried to homogenize the
analysis, by correcting to one set of stellar mass-to-light ratios, the
correction is often hampered by a lack of similar colour information
and photometry in different photometric bands. Even with homoge-
neous data it will continue to be challenging to obtain absolute values
of quantities like the stellar mass-to-light ratio, which depends on
the poorly known low end of the stellar mass function. However, if
the data are homogeneous and the analysis is done consistently, then
relative values will be meaningful and comparisons as that done here
can be confidently made.

4 DISCUSSION

We close by extending the technique to lower mass galaxies in
the Local Group. This leads to some mixed results that motivate
speculation on the nature of the mass distribution in some of these
systems.

4.1 The composite SMHM relation extended to local group
galaxies

In Fig. 9 we present all of the data discussed so far to track the global
SMHM relation. Fitting a power law to those low mass galaxies (M.
< 10° Mg and M;, < 10'2 M) yields

M* 0.63£0.02
105M, '

The data have a standard deviation of 0.31 dex about the line. The
measured scatter does not depend strongly on our M, pm/M, upper
cut. Removing the criteria that M, pmu/M, < 0.975 increases the
scatter for the sample about the best-fitting relation to 0.37 dex.
We nevertheless apply the criteria because the 12 per cent of
sources above this criteria do significantly affect the fitted param-
eters of the SMHM relation when they are equally weighted in
the fit.

In Fig. 9 we also add our estimates of M, and M, for Local
Group (LG) dwarf galaxies derived from the data provided in the
Drlica-Wagner et al. (2020) compilation. From that list, we exclude
Crater II, which is a challenging galaxy to model in any regard
(Borukhovetskaya et al. 2022) and Kim 2, Triangulum II, and DES
J02254-0304, which have r, ~ 10 pc. This compilation provides
V-band photometry and we adopt a standard stellar M/L = 1.2 for
the remaining 54 galaxies as suggested by McGaugh & Schombert
(2014) when colours are not available to estimate the stellar mass. We

Mh — 1010.35i0A02 (
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Figure 8. The SMHM relation for low-luminosity galaxies in low density environments. Results for two samples probing lower density environments (local
volume dwarf galaxies (Carlsten et al. 2021); satellites of Milky Way analogues (SAGA; Geha et al. 2003; Mao et al. 2021) are presented on the right. The
SAGA sample has a tail toward very high halo masses that we believe to be spurious. We increase the minimum dark matter fraction requirement to 0.9, the
restricted sample, and the tail is mostly removed. The composite of the Carlsten et al. (2021) and restricted SAGA sample is presented on the left. The solid and
dotted lines are the extrapolation of the SMHM relations from Behroozi et al. (2010) and Behroozi et al. (2019), respectively, and are the same in all panels.
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Figure 9. The low mass (M, < 10°Mg) M,—M), relation for the combination of the cluster and field subsamples (in lightly coloured circles). Power-law fit
given in equation (4.1) is shown in red dashed lines. The Local Group members from the Drlica-Wagner et al. (2020) compilation for which we can obtain
reliable M}, estimates (M, pm/M. < 0.99) are shown as squares and labelled in the left-hand panel. Those for which we obtain unreliable mass estimates are
shown in the right-hand panel. Some galaxies are labelled to help provide context. The red crosses indicated those for which claims of tidal distortion exist in

the literature (Mutlu-Pakdil et al. 2019, and references therein).

adjust the M, pm/M, limit upward to 0.99, to include more galaxies
and because these galaxies are generally more dark matter dominated
than the more massive galaxies we discussed previously. After
applying the new M, pu/M, criteria, we are left with 24 galaxies and
they fall tightly along an extension of the SMHM relation obtained
from the cluster and field samples (Fig. 9, left-hand panel). These
galaxies include six of the classic dwarf Spheroidals, with Sextans,
the one that does not satisfy the criterion, lying just slightly farther
off the mean trend. As such, these systems fall nicely along the
extrapolation of the SMHM and, therefore, consistent with model
expectations, as found previously to be the case for these galaxies in
an independent analysis (Read & Erkal 2019).
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However, slightly less than half of the LG galaxies survived the
M, pm/M, criteria, and those that do not populate the lower right of
the right-hand panel of Fig. 9. This includes some with an estimated
Mj, that differs from that inferred from their stellar mass by several
orders of magnitude. The discrepancy is sufficiently large that simple
observational errors cannot be responsible. A natural suspicion falls
on the estimated o, and related M,, obtained using the scaling
relation. However, for the 13 LG galaxies that fall more than 1 dex
away from the extrapolated SMHM relation for which we have found
a spectroscopically measured o in the literature (Table 3), only one
has an estimated velocity dispersion that exceeds the measured one
by more than 3o. Although it is worth investigating why some have
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Table 3. Comparing o determinations for SMHM LG outliers.

Galaxy Estimate Observed  Reference
(km s~ (kms™h)

Bootes I 72 51798 Jenkins et al. (2021)
Bootes 1T 3.4 10.5 £ 7.4 Koch et al. (2009)
Coma Berenices 4.4 4.6 £0.8 Simon & Geha (2007)
Grus I 1.9 2,513, Chiti et al. 2021)
Grus 11 6.7 <1.9 Simon et al. (2020)
Hercules 6.2 51+09 Simon & Geha (2007)
Leo IV 6.2 3413, Jenkins et al. (2021)
Segue 1 2.7 37771 Simonetal (2011)
Sextans 8.5 8.9+ 0.4 Walker et al. (2006)
Tucana II 10.6 4.6+ 1.5  Chiti et al. 2021)

10.6 8.6%3,  Walkeretal. (2016)

10.6 6.211% Taibi et al. (2020)
Tucana IV 9.3 4.3%7 ) Simon et al. (2020)
Ursa Major I 7.9 76+ 1 Simon & Geha (2007)
Ursa Major 11 6.0 6.7+ 1.4  Simon & Geha (2007)

statistically large deviations, errors in our estimation of ¢ are not
responsible for the bulk of the large offsets from the SMHM relation.
Nevertheless, given the small values of o for this set of objects there
is a concern that large deviations can only work to overestimate o,
creating a bias in the outliers in one direction.

The outliers can be interpreted in a variety of ways. First, these may
be tidally distorted systems for which the assumption of equilibrium
is inappropriate. Given the large number of such systems, this seems
unlikely as a blanket explanation, but is likely to be an important
factor in a number of cases. For example, Tuc IV appears to have
collided with the LMC a mere 120 Myr ago (Simon et al. 2020),
Cetus II is an enhancement along the Sagittarius stream (Conn et al.
2018), Tucana III has long tidal streams emanating from it (Shipp
et al. 2018), and Draco II and Antlia 2 are believed to be disrupting
(Longeard et al. 2018; Ji et al. 2021). We have highlighted with red
crosses in the Figure those systems for which tidal distortions have
been empirically claimed (Mutlu-Pakdil et al. 2019, and references
therein). Because theoretical modelling suggests that all of these
systems should have suffered significantly as a result of tidal
interactions (Fattahi et al. 2018), explanations along these lines
cannot be easily dismissed.

Secondly, the mass estimates could at least be roughly correct, in
that these may be systems with unusually low values of stellar mass
for their halo mass. Such systems would be examples of relatively
massive subhaloes with vastly underproduced stellar populations and
examples of a large scatter in the SMHM relation at low masses.
We disfavour this as a blanket interpretation as well because at the
higher end of the mass range (M, > 10" M) such systems would
have macroscopic dynamical consequences on the LG. Furthermore,
from the right-hand panel of Fig. 9, the distribution of outliers suggest
a progression to higher M), at fixed M, rather than one of lower M,
at fixed M,,.

Lastly, the discrepancy may hint at deviations from our standard
dark matter model. In our particular problem, the nature of this
excess mass is unspecified, and so we explore the possibility that it
is in the form of a central black hole. However, these system could
also be strong outliers from the mass—concentration relation that
we use.

A massive central black hole could contribute a significant fraction
of the mass measured within r, and, therefore, removing that mass
from what the standard (e.g. NFW) dark matter halo has to match
within 7, will significantly lower the derived halo mass. We now
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Figure 10. Central massive black hole scenario. For those LG galaxies
that fall far from the SMHM relation and do not have published claims
of tidal distortion, we redo the analysis assuming that they fall on the relation
and recover the required central black hole mass to make this happen. That
calculated M, is plotted versus M), in the left-hand panel. For comparison
the extrapolation of the corresponding relation for massive galaxies (Bandara
et al. 2009), a line representing M, = M}/100, and a line assuming all of the
baryons in the halo are in the black hole are also shown. In the right-hand
panel we show the distribution of recovered M, for the physically plausible
cases where M, < fgM),.

estimate the central black hole masses, M,, needed to place these
systems on the extrapolation of the SMHM relation shown in Fig. 9.
We simply refit our model, now subtracting both M, and 0.5xM,,
from M, to obtain M, py, and ask what value of M, places the
galaxy nearest the SMHM relation. We do this for all of the galaxies
that are at least 1 dex away from the relation in our original analysis
and do not already have published claims of being tidally distorted.
We can place all of the systems back on the relation and the inferred
black hole masses are shown in Fig. 10.

The resulting black hole masses are orders of magnitude larger
than one might invoke using an extrapolation of the M,—M,, relation
for larger galaxies (Bandara, Crampton & Simard 2009), but relations
such as this are expected to flatten at low masses (Greene, Strader &
Ho 2020). This model has various implications for black hole seed
masses and the evolution of the black hole mass function with time
that we do not explore here, but it offers a straightforward way of
addressing our difficulty in fitting these systems without invoking
exotic dark matter physics. A significant challenge that this scenario
faces is that the black hole mass accounts for a large fraction of the
baryons expected within these haloes (apparently surpassing itin five
cases), although a combination of observational errors and relaxing
the requirement that the galaxies lie exactly on the mean SMHM
relation may address the most extreme cases. If we reject those three
systems for which M, > fpM, as being physically implausible, the
remainder of the set have log (M,/My) = 5.7 £ 0.6 (right-hand panel
of Fig. 10).

The large inferred values of M, may appear, and may ultimately
prove to be, problematic for this hypothesis. Nevertheless, for
some systems that fall off the SMHM relation, there is additional
information in the literature that we can use to gain intuition into the
relevant uncertainties and test our inferences. Tuc II, which is one of
the five galaxies for which the inferred M, is larger than f,M),, and is
therefore suspect, is one galaxy for which additional spectroscopic
data and modelling of the enclosed mass out to large radii exist and
extend well beyond r, (Chiti et al. 2021). That study provides an
estimate of the enclosed mass within 1.1 kpc (2.14775] x 107 M),
which is ~ 39 times smaller than what we derive (8.4 x 10% M)
from our baseline model, i.e. one without a central black hole. Of
course an overestimate of the mass enclosed at 1.1 kpc leads to an
overestimate of the halo mass, which is what led to Tuc Il falling so far
off the SMHM relation. Our suggested solution of including a central
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black hole lowers both the inferred halo mass and the inferred mass at
1.1 kpc. For our inferred M,, the resulting enclosed mass (halo + BH
+ stars) at 1.1 kpc drops to 2.4 x 107 Mg, in excellent agreement with
the measurement by Chiti et al. (2021) thereby providing supporting
evidence for our suggestion. For completeness, we note that Chiti
etal. (2021) adopted r, = 120 pc, as opposed to the 165 pc in Drlica-
Wagner et al. (2020). Doing the calculation for this different value
of r,, our estimate for o drops from 10.8 to 8.4 km s~!, in better
agreement with Walker et al. (2016), the inferred black hole mass
drops to 107 from 1073 M, but it is still among the largest of our set
and remains close to f,M),, and the enclosed mass drops to 1.3 x 107
Mg, still within the uncertainty range of the measurement by Chiti
et al. (2021). Loosening the criterion that Tuc II lies exactly on the
SMHM reduces the inferred M, and increases the enclosed mass at
1.1 kpc, both of which would align even better with expectations.
We close by noting that the need for excess central mass in Tuc II
remains if one adopts the smallest observed value of o rather than
our inferred value.

Although a massive central black hole is one way to address
the outliers, this approach for resolving the discrepancies only
requires a highly concentrated secondary mass component. This
mass component could be a black hole, but it could also be a more
tightly bound secondary dark matter component that contributes mass
primarily at radii within r,. We do not find that the deviations from the
SMHM relation depend on r,, which one might expect if this second
component dominates within a physical radius that is comparable to
Te.

We close by noting that among these alternatives, the only one
we know must play a role in at least some of these systems is that
of tidal deformation/destruction. As such, it is not necessary for any
of the alternatives to be true in every one of the discrepant galaxies.
There may be some with a significant error in our estimate of M.,
some with lower than expected M., and some with a nuclear black
hole. At the very least, this discussion highlights which Local Group
galaxies merit further attention.

5 SUMMARY

We present a photometric halo mass estimation technique for local
galaxies. The technique is predicated on (1) the university applica-
bility of the Wolf et al. (2010) mass estimator, (2) our empirical
fit to the effective mass-to-light ratio within the effective radius,
Y., that is second order in logo and logl,, where I, is the mean
surface brightness within 7,, and (3) the adoption of a dark matter
density profile that is used to extrapolate to a halo mass. Each of
these has the potential for systematic errors. The first was established
using numerical simulations to be valid for spheroidal galaxies (Wolf
et al. 2010). Bootstrapping to the universality of the scaling relation
presented by Zaritsky et al. (2008), the mass estimation should
be independent of morphological type. The second we validate by
comparing the our resulting estimated enclosed masses within r, with
those obtained with the Wolf et al. (2010) estimator for a sample of
galaxies with available measurements of o. The last is the most
difficult to verify as there are few measurements of the halo mass
for individual galaxies. The general behaviour of our mass estimates
is indirectly validated by the resulting linear relationship between
the number of globular clusters and halo mass when using this
methodology (Zaritsky 2022) and by the agreement shown here in
the recovered SMHS relation with that extrapolated from abundance
matching techniques (e.g. Behroozi et al. 2010).

We find no detectable difference among the SMHM relations of
four local clusters or between the cluster and field relations. We
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find no change in the slope of the relation for 9 < log M;,/Mg <
11, although the slope across the full mass range explored (9 <
log M;,/My < 12 may be shallower than that extrapolated from
abundance matching (Behroozi et al. 2010, 2019). We fit a power
law to our empirical SMHM relation and find that for adopted NFW
dark matter profiles and for M, < 10° M,

.6310.02
M, )063 0.0

Mh — 1010A35i0.02
10M,,

The normalization is susceptible to systematic errors that depend
on the adopted dark matter potential. The slope will have systematic
errors if typical dark matter profiles systematically depend on mass.
For example, if dwarf galaxies were more likely to have feedback-
driven cores than more massive galaxies (Pontzen & Governato
2012), then the slope would be shallower than our fiducial result here,
similar to the extrapolated abundance matching results. We note also
that the quoted uncertainties above refer to the uncertainties in the
median relation and do not capture the galaxy-to-galaxy scatter. For
galaxies with M, < 10'' M, the scatter about the fit in M), is 0.3 dex
inclusive of the uncertainties in our method but with the additional
sample cuts described in Section 3.2.

Finally, we place lower luminosity Local Group galaxies on the
relationship using the same technique and find that about half lie well
along the extrapolated relationship, but that those with extremely high
inferred ratios of dark matter to luminous matter within r,, which we
generally rejected in our technique as being unphysical, fall far from
the SMHM relationship. If one accepts these values, then the nature
of discrepancy is that there is too much dark mass within r,. When
we posit that these galaxies indeed do lie on the SMHM and that the
extra dark matter mass within r, does not belong to the larger dark
matter component, we can calculate how much extra mass there is.
Hypothesizing that this mass is in the form of a central black hole
mostly yields black hole masses in the range of intermediate mass
black hole, 1037 %6 M, and roughly one to a few percent of M;,. At
the very least, this analysis highlights several Local Group galaxies
that merit a closer look.

Our technique provides an independent way to derive SMHM
relationships for local galaxy samples. Its power is mostly in enabling
statistical comparisons, although it can be used to highlight interest-
ing cases worthy of follow up study, such as in the case of the inferred
IMBHS in certain Local Group dwarf galaxies. The empirical basis
for the relation means that refinements will be made as the calibrating
samples grow in size and provide greater representation of galaxies
at the extremes, such as ultradiffuse galaxies and ultracompact
dwarfs. Nevertheless, it currently provides a valuable independent
comparison to the dominant abundance matching approach and
provides support for the power-law extrapolation of those results
to lower halo masses.
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