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A B S T R A C T 
We present a photometric halo mass estimation technique for local galaxies that enables us to establish the stellar mass–halo 
mass (SMHM) relation down to stellar masses of 10 5 M !. We find no detectable differences among the SMHM relations of four 
local galaxy clusters or between the cluster and field relations and we find agreement with extrapolations of previous SMHM 
relations derived using abundance matching approaches. We fit a power law to our empirical SMHM relation and find that 
for adopted NFW dark matter profiles and for M ∗ < 10 9 M !, the halo mass is M h = 10 10.35 ± 0.02 ( M ∗/10 8 M !) 0.63 ± 0.02 . The 
normalization of this relation is susceptible to systematic modelling errors that depend on the adopted dark matter potential 
and the quoted uncertainties refer to the uncertainties in the median relation. For galaxies with M ∗ < 10 9 M ! that satisfy our 
selection criteria, the scatter about the fit in M h , including uncertainties arising from our methodology, is 0.3 dex. Finally, we 
place lower luminosity Local Group galaxies on the SMHM relationship using the same technique, extending it to M ∗ ∼ 10 3 
M ! and suggest that some of these galaxies sho w e vidence for additional mass interior to the ef fecti v e radius be yond that 
provided by the standard dark matter profile. If this mass is in the form of a central black hole, the black hole masses are in the 
range of intermediate mass black holes, 10 (5.7 ± 0.6) M !, which corresponds to masses of a few percent of M h , well abo v e values 
extrapolated from the relationships describing more massive galaxies. 
Key w ords: galaxies: dw arf – galaxies: formation – galaxies: kinematics and dynamics – galaxies: nuclei – galaxies: structure –
dark matter. 

1  I N T RO D U C T I O N  
How do stars populate the dark matter haloes that define the galaxy 
population? A simple, first order answer is provided by the stellar 
mass–halo mass (SMHM) relation for galaxies. Measuring that 
relation, ho we ver, is not simple. 

There are broadly two ways that this measurement is approached 
for dwarf galaxies. In the first, using forward modelling or statistical 
arguments an association is made between the population of dark 
matter haloes theoretically expected to inhabit a certain volume of 
the Universe and the galaxies observed within the same volume. The 
association is constrained using observables, such as stellar mass, but 
the question of scatter in the relation and simultaneously reproducing 
all known properties of galaxies, such as clustering or lensing as a 
function of magnitude or colour, complicates that association (for a 
re vie w see Wechsler & Tinker 2018 ). This approach generally does 
not provide the relation for each individual galaxy, but is able to bring 
to bear the tremendous statistical power of today’s large surv e ys and 
simulation volumes. Exceptions include the more focused analysis 
of the satellite population of the Milky Way (Nadler et al. 2020 ; 
Chen et al. 2022 ; Manwadkar & Kravtsov 2022 ). In the second, 
measurements of the internal kinematics of each individual galaxy 
are used to obtain a dynamical estimate of the mass enclosed at the 
! E-mail: dennis.zaritsky@gmail.com 

corresponding radius and an extrapolation based on an adopted dark 
matter halo model provides an estimate of the halo mass. A sample of 
galaxies for which this can be done is then used to produce the SMHM 
relation (Dutton et al. 2010 ; Read et al. 2017 ). This approach is able 
to provide the SMHM relationship for individual galaxies, but is 
statistically limited to smaller samples due to the required kinematic 
measurements. Although these two approaches are generally applied 
independently of each other, there are now some examples of joint 
analyses (e.g. Yasin et al. 2022 ). 

A current weakness in the application of either of these approaches 
is their inability to track the SMHM relation outside the LG 
significantly below a halo mass of 10 10 M !. The difficulty arises 
because such galaxies are rare in redshift surv e ys be yond the local 
volume and measurements of the internal kinematics are increasingly 
difficult for fainter, lower surface brightness galaxies. This limitation 
is unfortunate in that a variety of interesting questions, related both 
to galaxy evolution and the nature of dark matter, would benefit from 
an understanding of the low mass SMHM relation. 

We address this current weakness using a no v el approach to 
estimate halo masses for a range of galaxy samples in the literature. 
Our approach follows the kinematic approach in spirit in that we 
estimate the mass for each galaxy in our sample and build up the 
SMHM from observations of many such galaxies. However, we do 
not use kinematic measurements, but rather develop a photometric 
method that enables us to make the mass estimate independent of 
any measurement of the internal kinematics of each galaxy. As such, 

© 2022 The Author(s) 
Published by Oxford University Press on behalf of Royal Astronomical Society 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/1/871/6889534 by guest on 06 June 2023

http://orcid.org/0000-0002-5177-727X
http://orcid.org/0000-0002-2517-6446
mailto:dennis.zaritsky@gmail.com


872 D. Zaritsky and P. Behroozi 

MNRAS 519, 871–883 (2023) 

we are able to construct the SMHM using many low mass galaxies 
and extend the SMHM well below current limits in mass using large 
samples. In Section 2 we describe our approach to estimating the 
galaxy’s halo mass (baryons + dark matter within an estimated virial 
radius, see Section 2.2 ) denoted M h . In Section 3 we present the 
SMHM relations for low mass cluster and field galaxies separately 
and jointly and discuss the effect of uncertainties (both observational 
and theoretical). In Section 4 we extend the relation to even lower 
mass by adding Local Group dwarfs and speculate on the possibility 
of inferring the masses of intermediate mass black holes in these 
galaxies. We adopt a WMAP9 flat " CDM cosmology with H 0 = 
69.7 km s −1 Mpc −1 and #m = 0.281 (Hinshaw et al. 2013 ) for 
consistency with some previous studies to which we compare. 
2  ESTIMATING  H A L O  MASSES  
Because we aim to estimate halo masses for as many galaxies 
as possible, we develop an estimator based solely on photometric 
properties, bypassing measurements of internal kinematics. We 
divide the task of developing a broadly applicable estimator into two 
steps. In the first, we estimate the enclosed mass within the ef fecti ve 
radius, r e . The choice of the ef fecti ve radius as a standard radius 
in galaxy photometry has generally been justified as a compromise 
between a sufficiently small radius where one obtains high signal-to- 
noise measurements and a sufficiently large one that encloses a large 
fraction of the luminous mass. Ho we ver, in our context the choice is 
particularly fortuitous because a simple enclosed mass estimator at 
this radius is surprisingly robust to the internal detailed structure of 
galaxies (see section 2.1 ; Wolf et al. 2010 ). In the second step, we 
fit dark matter halo models, constrained to match the enclosed dark 
matter mass within r e obtained in the first step, to estimate the halo 
mass. 

What we propose in the first step is the no v el part of our approach. 
This approach has the potential to increase the number of galaxies 
with estimated halo masses by the ratio of the size of photometric 
to spectroscopic samples, much in the same way that photometric 
redshifts greatly increase the numbers of galaxies available for study. 
Again, as with photometric redshifts, one exchanges this gain in 
sample size for the precision obtained for each individual case and 
the added potential for the occasional catastrophic error. The second 
step in our procedure is not new and has been taken previously 
using kinematically constrained enclosed mass estimates at r e , and 
other specific radii, in a variety of ways by various investigators (e.g. 
Dutton et al. 2010 ; Read et al. 2017 ). 
2.1 Step 1: estimating M e 
Scaling relations provide an opportunity to take the first of the two 
steps. By providing relationships among measured parameters, the 
appropriate scaling relation, plus the assumption that the galaxies 
of interest lie on the scaling relation, can be used to reco v er 
missing data for those galaxies. Historically, examples of this type 
of approach predominantly focus on the use of scaling relations 
to estimate distances, as in the use of the relationship between 
luminosity and rotation velocity for disc galaxies (Tully & Fisher 
1977 ). Occasionally, those same relations can be used to reco v er 
another of the related parameters (e.g. rotation velocity using the 
Tully–Fisher relation; Gonzalez et al. 2000 ). The work presented 
here most closely resembles the Gonzalez et al. ( 2000 ) study. 

To be able to pull off this trick most broadly, the scaling relation 
must be applicable to all galaxies, not just to a subset of galaxies 
such as disc galaxies. Across several studies, we have developed and 

applied a universal scaling relations for stellar systems (Zaritsky, 
Gonzalez & Zabludoff 2006a , b ; Zaritsky, Zabludoff & Gonzalez 
2008 , 2011 ; Zaritsky 2012 ). In those papers, we showed that galaxies 
that span the known range of luminosities and morphologies satisfy 
a relationship between r e , a measure of the internal kinematics 
(the velocity dispersion, σ , for pressure supported systems or a 
combination of rotational velocity and σ for systems with significant 
dynamical support from both), and the projected mean surface 
brightness within r e , I e . The parameters involved are those also found 
in the Fundamental Plane scaling relation (Djorgovski & Davis 1987 ; 
Dressler et al. 1987 ), but the functional form is more complex to 
allow for the broader range of systems to which it applies. The value 
of having a scaling relation for all galaxies is that we can apply a 
methodology based on it without restriction or any prior knowledge 
of the galaxy to which it is being applied (see Dutton et al. 2010 , for 
an example that combines results using Tully–Fisher for spirals and 
Fundamental Plane for giant spheroids). 

To calibrate the derived estimates of the enclosed mass, M e , within 
a sphere of radius r e , we present an alternative approach to that of our 
previous papers. We start with the well-established, widely adopted 
mass estimator from Wolf et al. ( 2010 ). In that study, Wolf et al. 
( 2010 ) found, based on simulations, a mass estimator that is robust 
against changes in the internal spatial and kinematic details of the 
spheroidal stellar system. 1 Their estimator for the mass enclosed 
within a sphere of radius r e is 
M e = 930 σ 2 r e , (1) 
where σ is the line-of-sight velocity dispersion in km s −1 , r e is the 
ef fecti ve radius of the surface brightness profile in pc, and M e is in 
solar units. By calibrating our results to the 3D enclosed mass, we 
are taking a slightly different approach than our earlier empirical 
one (Zaritsky et al. 2006a , 2008 ) that w ork ed entirely in projected 
quantities. As such, the scaling relation presented here has minor 
quantitati ve dif ferences from that presented pre viously. We repeat 
for emphasis that the observed quantities ( r e and I e ) are projected but 
that the derived quantity ( M e ) is not. 

Between the two measurements needed to apply this estimator, σ is 
by far the more challenging to obtain, particularly for low luminosity 
galaxies. As such, it is particularly advantageous to express the 
mass estimator e xclusiv ely in terms of photometric measurements. 
To do this, we first define the enclosed 3D mass as the enclosed 
projected luminosity times an ef fecti ve mass-to-light ratio, ϒ e , to 
rewrite equation ( 1 ) as 
πr 2 e I e ϒ e = 930 σ 2 r e , (2) 
where I e is the mean surface brightness within r e in units of L ! pc −2 
and ϒ e is given in solar units. Taking the logarithm (all logarithms 
presented in this paper are base 10) of both sides, expressing r e in 
kpc, and organizing terms we find 
log r e = 2 log σ − log I e − log ϒ e − 0 . 53 . (3) 
So far, this is simply a different expression of the Wolf et al. ( 2010 ) 
mass estimator. 

To eliminate or solve for σ , we need a second equation involving 
the two unknowns, σ and ϒ e . At this point progress requires an 
1 The Wolf et al. ( 2010 ) estimator was validated only for spheroidal galaxies, 
but the empirical scaling relation is valid for both discs and spheroids if the 
appropriate kinematic measurement is used for discs (Zaritsky et al. 2008 ). As 
such, once the enclosed mass estimates are calibrated for spheroidal galaxies, 
then the estimates are calibrated for all galaxies. 
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Table 1. Samples used. 
Source Type Band v c σ Sample with M h Notes 

size 
Chilingarian et al. ( 2008 ) dE B – ! 46 – –
Collins et al. ( 2014 ) LG dSph V – ! 36 – tidal objects remo v ed 
Geha, Guhathakurta & van der Marel ( 2003 ) dE V ! ! 17 – –
Jorgensen, Franx & Kjaergaard ( 1996 ) E & S0 r – ! 280 – in clusters 
Mieske et al. ( 2008 ) UCD V – ! 15 – only those they observed 
assorted (see the text) UDGs various – ! 19 – –
Blanton et al. ( 2005 ) assorted r – – 49 968 1661 SDSS low z NYU-VAGC 
Drlica-Wagner et al. ( 2020 ) LG galaxies V – – 54 24 LG galaxy compilation 
Ferrarese et al. ( 2020 ) dwarfs g – – 404 240 Virgo 
La Marca et al. ( 2022 ) dwarfs r – – 317 257 Hydra 
Mao et al. ( 2021 ) satellites r – – 127 119 SAGA surv e y 
Park et al. ( 2017 , 2019 ) dwarfs I – – 87 82 NGC 2784 & NGC 3595 groups 
Venhola et al. ( 2019 ) dwarfs r – – 564 477 Fornax 
Yagi et al. ( 2016 ) dwarfs r – – 751 685 Coma 

Figure 1. The ef fecti ve mass-to-light ratio, ϒ e , such that M e = πr 2 e I e ϒ e , 
versus σ . Three branches can be distinguished. Toward larger σ the space is 
that populated by ellipticals and dwarf ellipticals (lightly coloured circles). 
At smaller σ there are two branches, that populated by dsph and ultrafaint 
galaxies satellites of the Milky Way and M31 (red squares) and that populated 
by compact dwarf galaxies (green triangles). 
ansatz for the functional form of ϒ e . A natural (i.e. simple) proposal 
is that log ϒ e = f (log σ ). 

To guide our understanding of what form such a function might 
take we e v aluate ϒ e using equation ( 3 ) and plot those values versus σ
for a wide range of spheroidal stellar systems with spectroscopically 
measured σ ’s (see Table 1 ; Jorgensen et al. 1996 ; Geha et al. 2003 ; 
Chilingarian et al. 2008 ; Mieske et al. 2008 ; Collins et al. 2014 ) 
in Fig. 1 . We have made one set of edits to the literature sample 
in that we have removed five galaxies from the Collins et al. ( 2014 ) 
sample of LG dwarfs that are suspected to be experiencing significant 
tidal forces (Crater II (Sanders, Evans & Dehnen 2018 ); Wilman I 
and Triangulum II (Fritz et al. 2018 ); Hercules I (Fu, Simon & 
Alarc ́on Jara 2019 )); and Leo V (Collins et al. 2017 )). While there 

is a dependence of ϒ e on σ , there is also a bifurcation in behaviour 
at low σ . The two branches highlight the divergence in properties 
between high and low surface brightness stellar systems. Given this 
behaviour, it is manifestly not possible to describe ϒ e as only a 
function of σ . We conclude that any appropriate functional form 
must at least also include I e . 

The next simplest ansatz is that log ϒ e = f (log σ , log I e ) and that 
this function is first order in both log σ and log I e . Such a proposition 
leads to equations of the form of the Fundamental Plane (Djorgovski 
& Davis 1987 ; Dressler et al. 1987 ), which has been so successful at 
describing giant ellipticals, but which fails to describe low luminosity 
spheroids. The cause of that failure is also evident in Fig. 1 . One can 
only describe log ϒ e adequately with a linear function of log σ for 
the higher σ stellar systems. 

The next step in complexity is adopting a function f that is second 
order in log σ and log I e , 
log ϒ e = a ( log σ ) 2 + b log σ + c ( log I e ) 2 + 

d log I e + e log I e log σ + f , (4) 
where we neglect cross terms that are leading second order but discuss 
them further below. 

We e v aluate the coef ficients in equation ( 4 ) by replacing log ϒ e 
in equation ( 3 ) with the right-hand side of equation ( 4 ) and fitting 
the data shown in Fig. 1 plus a compilation of ultradiffuse galaxies 
(Chilingarian et al. 2008 ; van Dokkum et al. 2017 ; Toloba et al. 2018 ; 
Mart ́ın-Navarro et al. 2019 ; van Dokkum et al. 2019 ; Gannon et al. 
2021 ) to extend further the range of galaxy types. We do make one 
further edit of the literature data in that we exclude systems with r e 
< 10 pc, which are predominantly globular clusters but do include 
some ultracompact dwarfs. There are not many such systems in the 
sample, so the derived coefficient values are not significantly affected 
by this choice, but there are indications that these systems start to 
deviate from a scaling relation of this form (Forbes et al. 2008 , and 
this work). We believe this deviation happens because such compact 
systems are completely stellar dominated within r e , and therefore 
have an ϒ e that is independent of I e and σ , making it difficult for a 
low order functional form to adequately adjust to such behaviour. 

As expected from such a large list of disparate studies, the data 
are a heterogeneous set of photometric and kinematic measurements. 
We place the surface brightnesses on a comparable system of solar 
luminosities, appropriate for each band (Willmer 2018 ), but make no 
correction for colour differences between the galaxies and the Sun. 
There is also no correction for how colour gradients might affect r e 
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Figure 2. Posterior distributions of each of the coefficients in equation ( 4 ). 
Table 2. Coefficients for equation ( 4 ). 

Coeff. Optical Near-IR 
a 0 . 198 + 0 . 024 

−0 . 024 0.443 0 . 031 
−0 . 030 

b 0 . 140 + 0 . 071 
−0 . 072 −0 . 978 0 . 122 

−0 . 128 
c 0 . 192 + 0 . 006 

−0 . 006 0 . 158 0 . 007 
−0 . 007 

d −0 . 923 + 0 . 019 
−0 . 019 −0 . 967 0 . 029 

−0 . 031 
e −0 . 108 + 0 . 019 

−0 . 019 −0 . 040 0 . 017 
−0 . 016 

f 1 . 306 + 0 . 056 
−0 . 056 2 . 187 0 . 102 

−0 . 103 
or how kinematic measurements vary between central values of σ
and aperture values. All of these irregularities among data sets and 
improper or ignored corrections can be expected to lead to less rather 
than more coherence in the resulting scaling relation. Our eventual 
estimation of the precision of our mass estimates using this set of 
data is therefore an upper limit on the intrinsic scatter. 

We derive the coefficients using a Bayesian approach and the 
EMCEE Python implementation of a Markov chain Monte Carlo 
sampler (F oreman-Macke y et al. 2013 ). The model is assumed to 
have no intrinsic scatter and be as given by equation ( 4 ). We adopt 
uniform priors on all of the parameters and parameter ranges that 
a v oid resulting posterior distributions that peak near the range edges. 
The corner plot showing the character of the uncertainties in the 
coefficients is presented in Fig. 2 and the resulting coefficient values 
are listed in Table 2 . The correspondence between our estimate of 
M e and that obtained using the spectroscopically measured σ and 
the Wolf et al. ( 2010 ) estimator is excellent (Fig. 3 ), with a standard 
deviation about the 1:1 line of 0.17 dex (corresponding to a relative 
error of ∼ 50 per cent). In the right panel of Fig. 3 we show that 
the majority of the estimates are within a factor of two of the Wolf 
et al. ( 2010 ) values, with larger scatter for systems with σ ! 10 km 
s −1 although at these low values of σ there are large fractional 
uncertainties in the spectroscopically measured σ ’s as well. As such, 
we cannot ascertain whether the larger scatter is due to intrinsically 
larger scatter about our scaling relation or observational errors in the 
spectroscopically determined values of σ . In either case, there is no 
evident systematic residual with σ although one must remain aware 
that binaries in these lowest mass galaxies could lead to an upward 

bias in the measured σ ’s and hence in the functional form of the fit 
as well. 

To further explore the nature of the scatter, we now redo the 
analysis with a sample of K -band photometry for spheroidal stellar 
systems from Forbes et al. ( 2008 ). As described by those authors, 
the advantage provided by using near-IR is a decreased sensitivity 
to variations in the stellar mass-to-light ratios. For our purposes, 
we also benefit from the single-source nature of the photometry 
and analysis. The result of applying the same procedure to these 
data, which includes a similarly diverse range of stellar systems, is a 
scatter about the 1:1 relation between the Wolf et al. ( 2010 ) estimator 
and ours of 0.17 de x, e xactly what the optical estimates yielded. 2 We 
conclude that the use of a wide variety of studies in the optical did 
not contribute significantly to the scatter in our mass estimates. We 
fa v our the use of the optical relation going forward because there 
is so much more data currently available that we can use in our 
subsequent analysis. 

Finally, returning to the choice we made to neglect the cross terms 
that are leading second order terms in equation ( 4 ), we redo the 
coefficient fitting including those terms and find that both of the 
resulting coefficients, for the log σ (log I e ) 2 and (log σ ) 2 log I e terms, 
are consistent with zero. Of course, neither higher order functions or 
the inclusion of other parameters are excluded by our analysis, but 
a function of the form presented in equation ( 4 ) appears to be the 
simplest that can adequately express the behaviour seen in Fig. 1 to 
the current level of observational precision. 
2.2 Step 2: extrapolating from M e to M h 
The use of the scaling relation only provides an estimate of the mass 
interior to r e . To calculate the halo mass, M h , we need an estimate 
of the dark matter mass. To obtain this estimate, we subtract the 
contribution to M e from stars projected within r e and then determine 
the parameters of an NFW dark matter density profile (Navarro, 
Frenk & White 1997 ) that best reproduces the remaining mass, the 
dark matter, within a sphere of radius r e , or M e , DM . To estimate the 
stellar mass within r e , we convert the luminosity within r e to stellar 
mass by adopting stellar M / L ratios that are either colour-dependent 
(Roediger & Courteau 2015 ) when a colour is available or fixed in 
the case where only one photometric band is provided (McGaugh 
& Schombert 2014 ). We discuss the effect of uncertainties arising 
from our choice of the stellar M / L in Section 3.3 and of the dark 
matter density profile in Section 3.3.6 . This approach assumes that 
star formation does not alter the dark matter profile. In practice, 
the condensation of gas to the centre may lead to dark matter halo 
contraction (Blumenthal et al. 1986 ); and vice versa, feedback from 
stars may lead to expansion/coring (Pontzen & Governato 2012 ). 
Besides the fiducial approach of assuming an NFW profile, we also 
test inferring masses using cored Burkert profiles (Burkert 1995 ). 

We iterate to find the best-fitting dark matter profile from within 
the adopted family of NFW profiles. We define a trial NFW model by 
setting M h and e v aluating its concentration parameter using the mean 
relation between concentration and mass (Macci ̀o et al. 2007 ). We 
use GALPY (Bovy 2015 , http:// github.com/jobovy/ galpy ) to e v aluate 
M e , DM and compare to our empirical estimate. We e v aluate models 
o v er a range of M h to find the best-fitting halo. The calculations are 
done for the adopted cosmology and a redshift of 0.01 to correspond 
2 There are two significant outliers from the 1:1 relation. Excluding these two 
yields a standard deviation of 0.16 dex, still nearly identical to the optical 
results. 
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Figure 3. Comparison of the inferred enclosed masses at r e using the Wolf et al. ( 2010 ) estimator, M WOLF + , and our scaling-relation based estimate, M ZB , for 
the optical galaxy sample (see Table 1 ). Left-hand panel shows the derived values and the 1:1 line and includes both the high and low surface branches visible 
in Fig. 1 . Right-hand panel shows the differences in the two estimates versus σ . The shaded region encloses values that are within a factor of two of each other. 
to an o v erdensity of 346 relativ e to the matter density (cf. Bryan 
& Norman 1998 ). For the best-fitting halo mass, we then add back 
the baryonic mass using the universal baryon fraction to estimate 
M h . This is certainly an upper limit to the baryon content and some 
suggest low mass haloes have far less than their ‘fair share’ of baryons 
(Papastergis et al. 2012 ). We will explore the effect of adopting the 
lower limit in Section 3.3 . This approach, including the estimation of 
σ from the scaling relation, was first applied to examine the relation 
between the number of globular clusters in a galaxy, N GC , and M h 
(Zaritsky 2022 ). The resulting linear relation between N GC and M h is 
circumstantial supporting evidence for the accuracy of our estimated 
M h values, modulo the normalization factor. 

We ignore scatter in the halo mass–concentration relation, which 
simulations show is significant ( > 0.1 dex; Macci ̀o et al. 2007 ). 
Zaritsky ( 2022 ) noted that ignoring the scatter may, for a subtle 
reason, be the correct approach in this method. The estimates of 
the internal kinematics of these galaxies is based on the scaling 
relations, which also sidestep variations among individual galax- 
ies to provide a ‘typical’ σ and enclosed mass for each galaxy. 
Therefore, because the σ ’s we use do not include the effects of 
differences in the concentration among galaxies of equal mass, 
the use of mean concentration–halo mass relation may indeed be 
appropriate. 

The consideration of our treatment of scatter in halo concentration 
raises a significant concern. How can we verify our estimates of 
M h ? Indeed, Gannon et al. ( 2021 ) demonstrated that if cored DM 
density profiles are adopted, rather than NFW ones, the result can be 
to invert the relation between M e and M h . Given that we do not have 
direct measurements of M h on a g alaxy-by-g alaxy basis (even for 
the Milky Way the M h estimates show a significant range of values; 
Shen et al. 2022 ), we must rely on circumstantial evidence for now. 
As already mentioned, the resulting linear relation between N GC and 
M h is one such piece of evidence. In the case of the SMHM relation 
(Section 3.1 ), bear in mind that either an inverted relation between 
M e and M h or, perhaps more likely, large scatter between M e , DM 
and M h – as would result from including concentration scatter in 
the DM profiles without accounting for offsetting differences in r e 
– would not lead to the relatively tight SMHM relation we find that 
closely tracks that obtained using abundance matching techniques. 
This is perhaps a less-than-satisfying justification of the approach, 

but on the other hand offers an avenue for placing constraints on 
the possible range of variations in the M e , DM –M h relation using 
the degree of agreement between independent determinations of the 
SMHM relation. 
3  RESULTS  
3.1 SMHM relation for local galaxy cluster populations 
Large samples of low luminosity galaxies are difficult to obtain 
because spectroscopy is generally necessary to determine a distance 
and a luminosity. The standard way to a v oid this observational 
expense is to study low luminosity populations in nearby galaxy 
clusters, for which one can simply assign the cluster distance to every 
faint galaxy. There is some danger of background contamination, but 
the projected density of cluster members at the rele v ant magnitudes 
is significantly larger than that of the background and this contrast is 
even more pronounced for galaxies with low surface brightnesses and 
relatively large angular size – which generally describes the nearby 
cluster dwarf galaxy population. 

In the application of our methodology to large galaxy samples, 
we are likely to be including all morphological types, unless care is 
taken to classify and select subsamples. Fortunately, the basic scaling 
relation we use is applicable to all morphological types (Zaritsky 
et al. 2008 ), so no morphological pre-selection is required. The only 
distinction in applying the relation to rotation versus dispersion- 
dominated systems is whether one uses the circular velocity or the 
velocity dispersion. When using the circular velocity, one needs 
to divide the value by √ 

2 (the exact value depends on the nature 
of the potential, the stellar orbits, and radial distribution of stars, 
but empirical study shows only a weak dependence on this value; 
Weiner et al. 2006 ; Zaritsky et al. 2008 ). Ho we ver, this distinction is 
irrele v ant for our purposes because at this point we are neither using 
measured kinematics or estimating the kinematics. 

To support this claim, we apply our method to the clean sample 
of Read et al. ( 2017 ) (a v oiding ’rogues’ for which the y hav e less 
confidence in their derived parameters). That study provides all of the 
necessary information once we convert from their stellar exponential 
scale radii to ef fecti ve radii by multiplying their values by 1.68. For 
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Figure 4. The SMHM relation for low-luminosity galaxies in nearby galaxy clusters. Results for each of four clusters (Hydra (La Marca et al. 2022 ); Fornax 
(Venhola et al. 2019 ); Virgo (Ferrarese et al. 2020 ); and Coma (Yagi et al. 2016 )) are presented on the right. The composite of these four populations is presented 
on the left. The solid and dotted lines are the extrapolation of the SMHM relations from Behroozi, Conroy & Wechsler ( 2010 ) and Behroozi et al. ( 2019 ), 
respectively, and are the same in all panels. The dash-dotted line in the Virgo panel is the SMHM relation from Grossauer et al. ( 2015 ), which is particularly 
interesting because it was derived using the same Virgo galaxy sample, but with a different technique (abundance matching). 
those nine galaxies, from which they derive total mass using model 
fitting to H I rotation curves, our estimates of M h deviate on average 
from their quoted M 200 values by 0.044 dex ( ∼ 10 per cent) and have 
an rms difference of 0.24 dex, a value smaller than what we will 
eventually find to be observational scatter for our full sample. We 
confirm that we can apply our methodology even to H I -dominated, 
rotationally supported low mass galaxies. 

There are excellent published catalogues for low luminosity 
galaxies in the Virgo (Ferrarese et al. 2020 ), Hydra (La Marca et al. 
2022 ), Fornax (Venhola et al. 2019 ), and Coma (Yagi et al. 2016 ) 
clusters. The resulting SMHM relations for each of the four clusters, 
as well as for the composite sample, are presented in Fig. 4 and 
compared to the extrapolations of the Behroozi et al. ( 2010 , 2019 ) 
SMHM relations. The Virgo data trace the relationship to the smallest 
M h ’s among the four samples and the Coma data are the richest, 
but all are, in the mean, either consistent, or only slightly abo v e the 
Behroozi et al. ( 2010 ) curve and consistent with each other. Together, 
the samples define a clear ridge-line in the M ∗–M h space for 9 ! log 
M h / M ! ! 11. 

One aspect for potential study is highlighted in the panel showing 
the results for the Virgo galaxies. There we have included the SMHM 
relation from Grossauer et al. ( 2015 ), which was derived from the 
same Ferrarese et al. ( 2020 ) sample of galaxies using an analysis 
inv olving ab undance matching. Accepting that the technical aspects, 
such as completeness corrections, were handled properly, the offset 
between this relation and our results might indicate an anomaly in 
the halo distribution in the models that were used. The sense of the 
discrepancy is that Grossauer et al. ( 2015 ) ef fecti vely had to place a 
galaxy with a specific M ∗ in a more massive halo than that which we 
are associating it with, suggesting a surfeit of halos in the simulations 
at these masses. This, in turn, could indicate that halo disruption is 
underestimated in those models. The general sense of the offset, 
that abundance matching approaches tend to place galaxies in more 

massive haloes, is consistent with recent considerations of the Milky 
Way and M 31 (McGaugh & van Dokkum 2021 ), although, as we 
will stress later, the normalization of our SMHM relation is subject 
to systematic uncertainties. 

Of course, as interesting as such a conclusion might be, it is predi- 
cated on the confidence we can place on our o v erall normalization of 
both M ∗ and M h . The question of M ∗ can be addressed by consistently 
estimating M ∗ and looking at the situation in a relative sense (in other 
words, if, for example, the wrong stellar initial mass function is used, 
as long as the same incorrect assumption is made in both analyses 
then at least the M ∗ part of the comparison is valid). The question of 
M h can be addressed by spanning a sufficiently large range of M h that 
we probe both the power-law behaviour at low M h and the turno v er at 
higher M h . The current difficulty in doing so is that such an analysis 
requires splicing disparate samples, as we will see below. 
3.2 The M e , DM / M e criteria 
There are regimes where we might expect our methodology for 
inferring M h to perform poorly or not at all. For example, as M e 
becomes increasingly dominated by stars our calculation of the dark 
matter mass within r e , M e , DM , will become increasingly uncertain. 
In fact, errors in our estimate of M ∗ could even lead to formally 
ne gativ e, unphysical, values of M e , DM . As such, we need to reject 
systems below some value of M e , DM / M e . This also works to reject 
the highly compact systems that we excluded in our scaling relation 
discussion (i.e. those with r e < 10 pc). At the other extreme, systems 
with extremely high apparent values of M e , DM / M e are unlikely to 
be real because those galaxies would have a baryon fraction far 
below the universal value. Such systems are most likely due to an 
underestimation of M ∗, which leads to an o v erestimation of M e , DM . 
Because of the large extrapolation from M e to M h , small errors in 
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Figure 5. Deviations from the Behroozi et al. ( 2010 ) fiducial relationship, 
' B , as a function of the dark matter mass ratio with a sphere of radius r e , 
M e , DM / M e , for the set of galaxies shown in Fig. 4 . The left-hand panel shows 
all of the data, while the right one zooms in on the bulk of the data. The dotted 
lines represent our upper and lower criteria for M e , DM / M e going forward. 
M e , DM can lead to unphysically large values of M h . As such, we also 
anticipate needing to set an upper limit on M e , DM / M e . 

To explore these issues we use the results presented in Fig. 4 and 
examine the deviations about the Behroozi et al. ( 2010 ) fiducial. 
We present the deviations from this fiducial, ' B , as a function of 
M e , DM / M e in Fig. 5 . There are a few galaxies with unphysical results 
( M e , DM / M e < 0) because, as anticipated, our estimated value of 
M ∗ occasionally exceeds that of M e . We reject these cases but they 
comprise only 1.7 per cent of the o v erall sample. Ne xt, we notice 
that the main distribution in the figure has an curved shape, with 
' B values trailing lower as M e , DM approaches zero. Lower values 
of ' B correspond to underestimates of M h relative to the fiducial, 
which would be expected if scatter moves M e , DM / M e below its true 
v alue. This do wnward tail is most visible for M e , DM / M e < 0.5, so 
we define a requirement that the ratio exceed 0.5. The dotted line 
in the left-hand panel of Fig. 5 shows this cut. At the other end of 
the M e , DM / M e range there is a sharp rise in ' B . Here, scatter causes 
an underestimate of M ∗, hence an o v erestimate of M e , DM , and a, 
when extrapolated, a catastrophic overestimate of M h . This sharp 
rise becomes most prominent for M e , DM / M e > 0.975, so we set that 
value as the upper limit. That cut is shown as the dotted line in 
the right-hand panel of Fig. 5 . The application of these two criteria 
remo v es much of the most e gre gious scatter from Fig. 4 . 

Alternatively, a future treatment of this problem could attempt to 
reco v er M h and the associated uncertainty using a Bayesian approach. 
Our hypothesis is that the reco v ered values of M h that result in high 
' B would also have associated large uncertainties. If they do not, 
then there is either a tail of systems with intrinsic large scatter in the 
SMHM relation or a missing ingredient in our model. 
3.3 How uncertainties affect the results 
Although the mean trend between M ∗ and M h is well-defined in 
Fig. 4 , there is significant scatter about that mean even after we have 
remo v ed the most e gre gious outliers using the M e , DM / M e criteria we 
just described. To better understand the origin of the scatter and how 
one might lower the observational scatter, we quantify the effects of 
errors in each of the key parameters in Fig. 6 . For each quantity, we as- 
sess the impact by altering the specific parameter by the value shown. 
3.3.1 Distance 
In Fig. 6 , we show how specific changes in one quantity at a time 
mo v e the mean location of the Virgo sample in the M ∗–M h space. 
The upper panel shows the result of doubling and cutting in half 

Figure 6. The sensitivity of the resulting SMHM relation is shown for the 
mean location of the Virgo sample (Ferrarese et al. 2020 ) for a variety of 
choices. In some cases the range explored matches the plausible uncertainties, 
in others it does not. Where the range was expanded, it was done to aid 
visualization of the effect. 
the adopted distance. This is a far larger change than we anticipate, 
particularly for the cluster galaxies whose hosting clusters are well 
studied. Distance estimates are more uncertain for individual field 
galaxies where the peculiar velocities could be significant. Neverthe- 
less, we find that changes in the distance, even when unrealistically 
large, do not contribute significantly to the scatter because they act 
to slide sources nearly parallel to the fiducial relation. 
3.3.2 M e 
We depend on the scaling relation to estimate M e . The scatter in M e , 
e v aluated relati ve to v alues obtained for systems with measured σ ’s, 
is moderate (a factor of 2 in mass) in comparison to the many orders 
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of magnitude in mass o v er which we apply the relation (Fig. 3 ). 
Even so, those uncertainties are sufficiently large that they can lead 
to significant errors in the extrapolated estimate of M h . In the second 
panel of Fig. 6 we illustrate the effect of a ±1 σ systematic change in 
the inferred M e . Because of the large extrapolation in going from M e 
to M h , these changes have large repercussions. An initially puzzling 
aspect of this panel is that a change in M e appears to result in a 
change in M ∗, which is an unrelated quantity. This happens because 
the change in M e couples to the M e , DM / M e criteria and results in 
some what dif ferent samples for which the means are e v aluated. 

A second surprising finding is that the observed scatter in Fig. 4 is 
not as large as the result in Fig. 6 would suggest (the scatter about the 
mean relation in Fig. 4 is 0.3 dex while the size of the plotted error 
bar in each direction is about 0.8 dex). This amplification of the error 
comes about due to two amplifying effects. First, a more massive halo 
is also larger and hence r e is proportionally further inside the halo 
and, secondly, the concentration of more massive haloes is smaller. 
These two effects collaborate to turn a 0.1 dex offset in M e into a 0.5 
dex offset in M h . 

If the scatter in Fig. 3 comes primarily from scatter in the 
application of the scaling relation, then the smaller than expected 
scatter in the SMHM relation may indicate that the errors in M e are 
correlated with a change in another parameter that results in galaxies 
moving somewhat less across the SMHM relation than indicated in 
Fig. 6 and more along it. Alternatively, if the scatter in Fig. 3 comes 
mostly from scatter in the Wolf et al. ( 2010 ) masses, for example due 
to observational errors in σ , then the smaller than expected scatter 
in Fig. 4 could be the result of adopting the ‘typical’ values of M e 
given by the scaling relations. 

From our analysis we cannot determine the actual, intrinsic 
scatter in the SMHM relation. While it could be smaller than 
what we measure, buried underneath the scatter generated by our 
crude approach, perhaps it is larger than what we see because we 
have imposed a degree of homogeneity that does not exist (for 
example, due to our neglect of scatter in the halo-mass-correlation 
relationship). Although, measuring the scatter in the SMHM at low 
masses is a challenge, a value consistent with what we observe is 
within limits presented elsewhere (Allen, Behroozi & Ma 2019 ), 
and hence does not point to any catastrophic error in our analysis. 
Independent deri v ations of the SMHM scatter would allo w us to use 
our results to provide constraints on possible dark matter density 
profiles. 
3.3.3 I e and r e 
Our determination of M e depends only on the distance, I e and r e . 
We explored the effect of distance errors above and now explore 
the effects of errors in the other quantities, propagated through the 
determination of M e . In the next two panels of Fig. 6 we show that 
a much larger than anticipated error in the apparent magnitude and 
plausible errors in r e both contribute negligibly to the scatter about 
the fiducial line. Neither appears to provide enough of a change 
to help counter the effect of a change in M e . We are left with the 
conclusion that our estimates of M e must be somewhat better than 
reflected in the 0.17 dex scatter in Fig. 3 . Part of the explanation 
must lie with scatter in the measured σ ’s, which are particularly 
difficult to measure for low mass systems. A second part may lie 
with the same hypothesis we made for ignoring scatter in the halo 
mass–concentration relation. The scaling relation gives an idealized 
estimate of M e and is therefore providing an average M e for similar 
galaxies, which by the nature of averages has less scatter than that 

visible in Fig. 6 . As such, we may be in the seemingly absurd regime 
where having less information (i.e. not having a measured σ ) leads 
to a more precise result – as long as the scatter about the scaling 
relation is proportionally less than the observational scatter in σ . 
3.3.4 Stellar M/L 
We now consider two systematic uncertainties that affect the estima- 
tion of M h . First, and in the fifth panel in Fig. 6 , we consider plausible 
changes in the adopted stellar M / L . Here we have adopted a factor of 
tw o change downw ard and upw ard in the stellar M / L . These changes 
principally result in a lateral shift in M h , with an amplitude similar to 
the uncertainty arising from different extrapolations of the SMHM 
relation. This result highlights the difficulty in using these results to 
determine the absolute normalization of the SMHM relation and its 
dependence on other factors such as the stellar initial mass function. 
3.3.5 Baryon fraction 
To e v aluate M h we assigned each halo a baryon mass determined from 
the universal baryon fraction. This almost certainly an o v erestimation 
of the baryons in each halo (Papastergis et al. 2012 ), and therefore 
of M h , although some studies do not find evidence of greater baryon 
loss in low mass galaxies (Geha et al. 2006 ). Nevertheless, to probe 
the possible full extent of mischaracterizing the baryon fraction, 
we adopt the other extreme of this correction and only add the 
observed stellar mass to the dark matter halo mass to obtain M h . In the 
bottom panel of Fig. 6 we show the effect of making that correction 
instead. Unsurprisingly, the change is visible, but minimal given that 
a 16 per cent change in halo mass corresponds to a change in M h 
of only 0.075 dex. Because the proper correction must lie between 
these two alternatives, the effect of adopting the improper correction 
within these extremes is even smaller and therefore a minor source 
of uncertainty relative to other issues we have discussed. 
3.3.6 The impact of the adopted potential 
Comparisons between data and models are also affected by the 
extrapolation we make from M e to M h . The analysis presented so 
far is predicated on the adopted NFW dark matter mass profile. 
Ho we ver, there is extensive literature advocating alternative profiles 
to resolve some apparent empirical discrepancies between data and 
the predictions of NFW-based models, particularly among lower 
mass galaxies (e.g. Burkert 2020 ). Here we briefly discuss the 
qualitative impact of loosening the adoption of the NFW profile 
on our results. 

Cored potentials offer a larger, and somewhat degenerate, set of 
models that can fit single radius kinematic constraints (Gannon et al. 
2021 ). In fact, those authors showed that, at least for the UDGs 
that they were considering, it was possible among some plausible 
models to invert the relationship between M e and M h . This raises 
the important question of whether there is any value in extrapolating 
measurements of the enclosed mass at small radii to estimates of M h . 

The most extreme scenarios, where either the relationship between 
M e and M h is inverted or there is no information in M e regarding 
M h , can be rejected on the grounds that we do reco v er an SMHM 
relation in qualitative agreement with that reco v ered from abundance 
matching studies. 

The more subtle question of whether fitting NFW profiles adds 
any value, or whether one could simply scale upwards the values of 
M e , DM , requires a quantitative exploration. For galaxies within our 
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Figure 7. A comparison of residuals about the best-fitting SMHM relations 
using our approach (NFW; darker, wider bars) a simple scaling of M e , DM 
( ∝ M αe, DM ; lighter, narrower bars). The generally narrower distribution of 
residuals for the standard approach indicate that there is physical information 
in the extrapolation to M h using the NFW models. The few outliers ( ' > 0.5) 
are again a demonstration of the potential for catastrophic failure in a small 
fraction of the sample. 
limits on M e , DM , we fit for a power-law relation between M ∗ and 
M e , DM . We compare the residuals from that fit, to the residuals from 
fit for the SMHM using our NFW fitting approach in Fig. 7 . Aside 
from a sparsely populated tail of large outliers (due to the methods 
strong sensitivity to M e , DM errors), the results from our NFW fit show 
less scatter than the uncorrected values. Because the application of 
the NFW fitting is unlikely to result in a tighter SMHM if there is no 
relation between M e and M h , we conclude that our estimates of M h 
do add value to the investigation. 
3.4 SMHM for local field populations 
Although cluster dwarf galaxy samples have the advantage of sample 
size, the y hav e a significant disadvantage in terms of interpretation. 
Cluster galaxy populations are subject to various effects (Gunn & 
Oke 1975 ; Larson, Tinsley & Caldwell 1980 ; Valluri 1993 ; Moore 
1996 ), and as such may not be representative of the general galaxy 
population. To address this issue, we examine three sets of field 
populations of galaxies that include dwarfs (Blanton et al. 2005 ; 
Park et al. 2017 , 2019 ; Mao et al. 2021 ). The Blanton et al. ( 2005 ) 
sample consists of low z galaxies from SDSS, reanalysed to impro v e 
the photometry for systems of large angular extent, the Mao et al. 
( 2021 ) sample is from the SAGA spectroscopic surv e y for satellites 
of Milky Way analogues (Geha et al. 2017 ), and the third set comes 
from an ongoing surv e y of nearby poor groups (Park et al. 2017 , 
2019 ). The Park et al. sample is different than the other two samples 
in that distances are assigned from the group membership rather 
than from recessional velocities. Because their analysis suggests 
only ∼ 30 per cent contamination and distance errors tend to mo v e 
galaxies along the SMHM fiducial, we include their sample to extend 
co v erage down to M h ∼ 10 8 M !. We convert from Johnson to SDSS 
photometric bands using the transformations presented by Jester et al. 
( 2005 ). 

In Fig. 8 we show the results for the three samples, both separately 
for each sample and together. For the Blanton et al. ( 2005 ) sample 
we hav e e xcluded galaxies with m r > 18, which showed far larger 
scatter than their brighter counterparts, suggesting poor photometry 
at the faint end of their range. The three samples together co v er a 

large range in M h and fall between the two plotted extrapolations of 
the SMHM relations. 

Interestingly, at higher masses they appear to show an offset 
relative to the Behroozi et al. ( 2010 ) fiducial, which the cluster 
galaxies followed closely (albeit at lower M h ), and then fall in line 
with that fiducial once in a M h range below 10 10 M !. This behaviour 
could be a reflection of the fact that dwarf field galaxies tend to be 
star forming unless they are of very low mass, and because they have 
not yet formed all of their stars they lie below the fiducial SMHM 
relation. This is consistent with findings from several past studies, 
in which satellite galaxies have larger stellar mass-to-halo mass 
ratios than field galaxies (e.g. Rodr ́ıguez-Puebla, Drory & Avila- 
Reese 2012 ; Behroozi et al. 2019 ). It may also simply reflect a shal- 
lower SMHM relation than the extrapolated Behroozi et al. ( 2010 ) 
relation. 

These are intriguing, although preliminary interpretations. Com- 
parison across samples is complicated by different measurement 
techniques, for example the definition of total magnitudes and 
e xtinction corrections. Ev en where we hav e tried to homogenize the 
analysis, by correcting to one set of stellar mass-to-light ratios, the 
correction is often hampered by a lack of similar colour information 
and photometry in different photometric bands. Even with homoge- 
neous data it will continue to be challenging to obtain absolute values 
of quantities like the stellar mass-to-light ratio, which depends on 
the poorly known low end of the stellar mass function. However, if 
the data are homogeneous and the analysis is done consistently, then 
relati ve v alues will be meaningful and comparisons as that done here 
can be confidently made. 
4  DI SCUSSI ON  
We close by extending the technique to lower mass galaxies in 
the Local Group. This leads to some mixed results that moti v ate 
speculation on the nature of the mass distribution in some of these 
systems. 
4.1 The composite SMHM relation extended to local group 
galaxies 
In Fig. 9 we present all of the data discussed so far to track the global 
SMHM relation. Fitting a power law to those low mass galaxies ( M ∗
< 10 9 M ! and M h < 10 12 M !) yields 
M h = 10 10 . 35 ±0 . 02 ( M ∗

10 8 M !
)0 . 63 ±0 . 02 

. 
The data have a standard deviation of 0.31 dex about the line. The 
measured scatter does not depend strongly on our M e , DM / M e upper 
cut. Removing the criteria that M e , DM / M e < 0.975 increases the 
scatter for the sample about the best-fitting relation to 0.37 dex. 
We nevertheless apply the criteria because the 12 per cent of 
sources abo v e this criteria do significantly affect the fitted param- 
eters of the SMHM relation when they are equally weighted in 
the fit. 

In Fig. 9 we also add our estimates of M ∗ and M h for Local 
Group (LG) dwarf galaxies derived from the data provided in the 
Drlica-Wagner et al. ( 2020 ) compilation. From that list, we exclude 
Crater II, which is a challenging galaxy to model in any regard 
(Borukho v etskaya et al. 2022 ) and Kim 2, Triangulum II, and DES 
J0225 + 0304, which have r e ∼ 10 pc. This compilation provides 
V -band photometry and we adopt a standard stellar M/L = 1.2 for 
the remaining 54 galaxies as suggested by McGaugh & Schombert 
( 2014 ) when colours are not available to estimate the stellar mass. We 
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Figure 8. The SMHM relation for low-luminosity galaxies in low density environments. Results for two samples probing lower density environments (local 
volume dwarf galaxies (Carlsten et al. 2021 ); satellites of Milky Way analogues (SAGA; Geha et al. 2003 ; Mao et al. 2021 ) are presented on the right. The 
SAGA sample has a tail toward very high halo masses that we believe to be spurious. We increase the minimum dark matter fraction requirement to 0.9, the 
restricted sample, and the tail is mostly remo v ed. The composite of the Carlsten et al. ( 2021 ) and restricted SAGA sample is presented on the left. The solid and 
dotted lines are the extrapolation of the SMHM relations from Behroozi et al. ( 2010 ) and Behroozi et al. ( 2019 ), respectively, and are the same in all panels. 

Figure 9. The low mass ( M ∗ < 10 9 M !) M ∗–M h relation for the combination of the cluster and field subsamples (in lightly coloured circles). Power-law fit 
given in equation ( 4.1 ) is shown in red dashed lines. The Local Group members from the Drlica-Wagner et al. ( 2020 ) compilation for which we can obtain 
reliable M h estimates ( M e , DM / M e < 0.99) are shown as squares and labelled in the left-hand panel. Those for which we obtain unreliable mass estimates are 
shown in the right-hand panel. Some galaxies are labelled to help provide context. The red crosses indicated those for which claims of tidal distortion exist in 
the literature (Mutlu-Pakdil et al. 2019 , and references therein). 
adjust the M e , DM / M e limit upward to 0.99, to include more galaxies 
and because these galaxies are generally more dark matter dominated 
than the more massive galaxies we discussed previously. After 
applying the new M e , DM /M e criteria, we are left with 24 galaxies and 
they fall tightly along an extension of the SMHM relation obtained 
from the cluster and field samples (Fig. 9 , left-hand panel). These 
galaxies include six of the classic dwarf Spheroidals, with Sextans, 
the one that does not satisfy the criterion, lying just slightly farther 
off the mean trend. As such, these systems fall nicely along the 
extrapolation of the SMHM and, therefore, consistent with model 
expectations, as found previously to be the case for these galaxies in 
an independent analysis (Read & Erkal 2019 ). 

Ho we ver, slightly less than half of the LG galaxies survived the 
M e , DM / M e criteria, and those that do not populate the lower right of 
the right-hand panel of Fig. 9 . This includes some with an estimated 
M h that differs from that inferred from their stellar mass by several 
orders of magnitude. The discrepancy is sufficiently large that simple 
observational errors cannot be responsible. A natural suspicion falls 
on the estimated σ , and related M e , obtained using the scaling 
relation. Ho we ver, for the 13 LG galaxies that fall more than 1 dex 
away from the extrapolated SMHM relation for which we have found 
a spectroscopically measured σ in the literature (Table 3 ), only one 
has an estimated velocity dispersion that exceeds the measured one 
by more than 3 σ . Although it is worth investigating why some have 
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Table 3. Comparing σ determinations for SMHM LG outliers. 
Galaxy Estimate Observed Reference 

(km s −1 ) (km s −1 ) 
Bootes I 7.2 5.1 + 0 . 8 −0 . 7 Jenkins et al. ( 2021 ) 
Bootes II 3.4 10.5 ± 7.4 Koch et al. ( 2009 ) 
Coma Berenices 4.4 4.6 ± 0.8 Simon & Geha ( 2007 ) 
Grus I 1.9 2 . 5 1 . 3 −0 . 8 Chiti et al. ( 2021 ) 
Grus II 6.7 < 1.9 Simon et al. ( 2020 ) 
Hercules 6.2 5.1 ± 0.9 Simon & Geha ( 2007 ) 
Leo IV 6.2 3.4 1 . 3 −0 . 9 Jenkins et al. ( 2021 ) 
Segue 1 2.7 3.7 + 1 . 4 −1 . 1 Simon et al. ( 2011 ) 
Sextans 8.5 8.9 ± 0.4 Walker et al. ( 2006 ) 
Tucana II 10.6 4.6 ± 1.5 Chiti et al. ( 2021 ) 

10.6 8.6 4 . 4 −2 . 7 Walker et al. ( 2016 ) 
10.6 6.2 + 1 . 6 −1 . 3 Taibi et al. ( 2020 ) 

Tucana IV 9.3 4 . 3 1 . 7 −1 . 0 Simon et al. ( 2020 ) 
Ursa Major I 7.9 7.6 ± 1 Simon & Geha ( 2007 ) 
Ursa Major II 6.0 6.7 ± 1.4 Simon & Geha ( 2007 ) 
statistically large deviations, errors in our estimation of σ are not 
responsible for the bulk of the large offsets from the SMHM relation. 
Ne vertheless, gi ven the small values of σ for this set of objects there 
is a concern that large deviations can only work to o v erestimate σ , 
creating a bias in the outliers in one direction. 

The outliers can be interpreted in a variety of ways. First, these may 
be tidally distorted systems for which the assumption of equilibrium 
is inappropriate. Given the large number of such systems, this seems 
unlikely as a blanket explanation, but is likely to be an important 
factor in a number of cases. For example, Tuc IV appears to have 
collided with the LMC a mere 120 Myr ago (Simon et al. 2020 ), 
Cetus II is an enhancement along the Sagittarius stream (Conn et al. 
2018 ), Tucana III has long tidal streams emanating from it (Shipp 
et al. 2018 ), and Draco II and Antlia 2 are believed to be disrupting 
(Longeard et al. 2018 ; Ji et al. 2021 ). We have highlighted with red 
crosses in the Figure those systems for which tidal distortions have 
been empirically claimed (Mutlu-Pakdil et al. 2019 , and references 
therein). Because theoretical modelling suggests that all of these 
systems should have suffered significantly as a result of tidal 
interactions (Fattahi et al. 2018 ), explanations along these lines 
cannot be easily dismissed. 

Secondly, the mass estimates could at least be roughly correct, in 
that these may be systems with unusually low values of stellar mass 
for their halo mass. Such systems would be examples of relatively 
massive subhaloes with vastly underproduced stellar populations and 
examples of a large scatter in the SMHM relation at low masses. 
We disfa v our this as a blanket interpretation as well because at the 
higher end of the mass range ( M h > 10 11 M !) such systems would 
have macroscopic dynamical consequences on the LG. Furthermore, 
from the right-hand panel of Fig. 9 , the distribution of outliers suggest 
a progression to higher M h at fixed M ∗ rather than one of lower M ∗
at fixed M h . 

Lastly, the discrepancy may hint at deviations from our standard 
dark matter model. In our particular problem, the nature of this 
excess mass is unspecified, and so we explore the possibility that it 
is in the form of a central black hole. Ho we ver, these system could 
also be strong outliers from the mass–concentration relation that 
we use. 

A massive central black hole could contribute a significant fraction 
of the mass measured within r e and, therefore, removing that mass 
from what the standard (e.g. NFW) dark matter halo has to match 
within r e will significantly lower the derived halo mass. We now 

Figure 10. Central massive black hole scenario. For those LG galaxies 
that fall far from the SMHM relation and do not have published claims 
of tidal distortion, we redo the analysis assuming that they fall on the relation 
and reco v er the required central black hole mass to make this happen. That 
calculated M • is plotted versus M h in the left-hand panel. For comparison 
the extrapolation of the corresponding relation for massive galaxies (Bandara 
et al. 2009 ), a line representing M • = M h /100, and a line assuming all of the 
baryons in the halo are in the black hole are also shown. In the right-hand 
panel we show the distribution of reco v ered M • for the physically plausible 
cases where M • < f B M h . 
estimate the central black hole masses, M •, needed to place these 
systems on the extrapolation of the SMHM relation shown in Fig. 9 . 
We simply refit our model, now subtracting both M • and 0.5 ∗M ∗
from M e to obtain M e , DM , and ask what value of M • places the 
galaxy nearest the SMHM relation. We do this for all of the galaxies 
that are at least 1 dex away from the relation in our original analysis 
and do not already have published claims of being tidally distorted. 
We can place all of the systems back on the relation and the inferred 
black hole masses are shown in Fig. 10 . 

The resulting black hole masses are orders of magnitude larger 
than one might invoke using an extrapolation of the M •–M h relation 
for larger galaxies (Bandara, Crampton & Simard 2009 ), but relations 
such as this are expected to flatten at low masses (Greene, Strader & 
Ho 2020 ). This model has various implications for black hole seed 
masses and the evolution of the black hole mass function with time 
that we do not explore here, but it offers a straightforw ard w ay of 
addressing our difficulty in fitting these systems without invoking 
exotic dark matter physics. A significant challenge that this scenario 
faces is that the black hole mass accounts for a large fraction of the 
baryons expected within these haloes (apparently surpassing it in five 
cases), although a combination of observational errors and relaxing 
the requirement that the galaxies lie exactly on the mean SMHM 
relation may address the most extreme cases. If we reject those three 
systems for which M • > f B M h as being physically implausible, the 
remainder of the set have log ( M •/M !) = 5.7 ± 0.6 (right-hand panel 
of Fig. 10 ). 

The large inferred values of M • may appear, and may ultimately 
pro v e to be, problematic for this hypothesis. Nevertheless, for 
some systems that fall off the SMHM relation, there is additional 
information in the literature that we can use to gain intuition into the 
rele v ant uncertainties and test our inferences. Tuc II, which is one of 
the five galaxies for which the inferred M • is larger than f b M h , and is 
therefore suspect, is one galaxy for which additional spectroscopic 
data and modelling of the enclosed mass out to large radii exist and 
e xtend well be yond r e (Chiti et al. 2021 ). That study provides an 
estimate of the enclosed mass within 1.1 kpc (2.14 + 3 . 67 

−1 . 24 × 10 7 M !), 
which is ∼ 39 times smaller than what we derive (8.4 × 10 8 M !) 
from our baseline model, i.e. one without a central black hole. Of 
course an o v erestimate of the mass enclosed at 1.1 kpc leads to an 
o v erestimate of the halo mass, which is what led to Tuc II falling so far 
off the SMHM relation. Our suggested solution of including a central 
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black hole lowers both the inferred halo mass and the inferred mass at 
1.1 kpc. For our inferred M •, the resulting enclosed mass (halo + BH 
+ stars) at 1.1 kpc drops to 2.4 × 10 7 M !, in excellent agreement with 
the measurement by Chiti et al. ( 2021 ) thereby providing supporting 
evidence for our suggestion. For completeness, we note that Chiti 
et al. ( 2021 ) adopted r e = 120 pc, as opposed to the 165 pc in Drlica- 
Wagner et al. ( 2020 ). Doing the calculation for this different value 
of r e , our estimate for σ drops from 10.8 to 8.4 km s −1 , in better 
agreement with Walker et al. ( 2016 ), the inferred black hole mass 
drops to 10 6.7 from 10 7.3 M ! but it is still among the largest of our set 
and remains close to f b M h , and the enclosed mass drops to 1.3 × 10 7 
M !, still within the uncertainty range of the measurement by Chiti 
et al. ( 2021 ). Loosening the criterion that Tuc II lies exactly on the 
SMHM reduces the inferred M • and increases the enclosed mass at 
1.1 kpc, both of which would align even better with expectations. 
We close by noting that the need for excess central mass in Tuc II 
remains if one adopts the smallest observed value of σ rather than 
our inferred value. 

Although a massive central black hole is one way to address 
the outliers, this approach for resolving the discrepancies only 
requires a highly concentrated secondary mass component. This 
mass component could be a black hole, but it could also be a more 
tightly bound secondary dark matter component that contributes mass 
primarily at radii within r e . We do not find that the deviations from the 
SMHM relation depend on r e , which one might expect if this second 
component dominates within a physical radius that is comparable to 
r e . 

We close by noting that among these alternatives, the only one 
we know must play a role in at least some of these systems is that 
of tidal deformation/destruction. As such, it is not necessary for any 
of the alternatives to be true in every one of the discrepant galaxies. 
There may be some with a significant error in our estimate of M e , 
some with lower than expected M ∗, and some with a nuclear black 
hole. At the very least, this discussion highlights which Local Group 
galaxies merit further attention. 
5  SUMMARY  
We present a photometric halo mass estimation technique for local 
galaxies. The technique is predicated on (1) the university applica- 
bility of the Wolf et al. ( 2010 ) mass estimator, (2) our empirical 
fit to the ef fecti ve mass-to-light ratio within the ef fecti ve radius, 
ϒ e , that is second order in log σ and log I e , where I e is the mean 
surface brightness within r e , and (3) the adoption of a dark matter 
density profile that is used to extrapolate to a halo mass. Each of 
these has the potential for systematic errors. The first was established 
using numerical simulations to be valid for spheroidal galaxies (Wolf 
et al. 2010 ). Bootstrapping to the universality of the scaling relation 
presented by Zaritsky et al. ( 2008 ), the mass estimation should 
be independent of morphological type. The second we validate by 
comparing the our resulting estimated enclosed masses within r e with 
those obtained with the Wolf et al. ( 2010 ) estimator for a sample of 
galaxies with available measurements of σ . The last is the most 
difficult to verify as there are few measurements of the halo mass 
for individual galaxies. The general behaviour of our mass estimates 
is indirectly validated by the resulting linear relationship between 
the number of globular clusters and halo mass when using this 
methodology (Zaritsky 2022 ) and by the agreement shown here in 
the reco v ered SMHS relation with that e xtrapolated from abundance 
matching techniques (e.g. Behroozi et al. 2010 ). 

We find no detectable difference among the SMHM relations of 
four local clusters or between the cluster and field relations. We 

find no change in the slope of the relation for 9 < log M h /M ! < 
11, although the slope across the full mass range explored (9 < 
log M h /M ! < 12 may be shallower than that extrapolated from 
abundance matching (Behroozi et al. 2010 , 2019 ). We fit a power 
law to our empirical SMHM relation and find that for adopted NFW 
dark matter profiles and for M ∗ < 10 9 M !, 
M h = 10 10 . 35 ±0 . 02 ( M ∗

10 8 M !
)0 . 63 ±0 . 02 

. 
The normalization is susceptible to systematic errors that depend 

on the adopted dark matter potential. The slope will have systematic 
errors if typical dark matter profiles systematically depend on mass. 
F or e xample, if dw arf galaxies were more lik ely to have feedback- 
driven cores than more massive galaxies (Pontzen & Governato 
2012 ), then the slope would be shallower than our fiducial result here, 
similar to the extrapolated abundance matching results. We note also 
that the quoted uncertainties abo v e refer to the uncertainties in the 
median relation and do not capture the g alaxy-to-g alaxy scatter. For 
galaxies with M h < 10 11 M ! the scatter about the fit in M h is 0.3 dex 
inclusive of the uncertainties in our method but with the additional 
sample cuts described in Section 3.2 . 

Finally, we place lower luminosity Local Group galaxies on the 
relationship using the same technique and find that about half lie well 
along the extrapolated relationship, but that those with extremely high 
inferred ratios of dark matter to luminous matter within r e , which we 
generally rejected in our technique as being unphysical, f all f ar from 
the SMHM relationship. If one accepts these values, then the nature 
of discrepancy is that there is too much dark mass within r e . When 
we posit that these galaxies indeed do lie on the SMHM and that the 
extra dark matter mass within r e does not belong to the larger dark 
matter component, we can calculate how much extra mass there is. 
Hypothesizing that this mass is in the form of a central black hole 
mostly yields black hole masses in the range of intermediate mass 
black hole, 10 5.7 ± 0.6 M !, and roughly one to a few percent of M h . At 
the very least, this analysis highlights several Local Group galaxies 
that merit a closer look. 

Our technique provides an independent way to derive SMHM 
relationships for local galaxy samples. Its power is mostly in enabling 
statistical comparisons, although it can be used to highlight interest- 
ing cases worthy of follow up study, such as in the case of the inferred 
IMBHs in certain Local Group dwarf galaxies. The empirical basis 
for the relation means that refinements will be made as the calibrating 
samples grow in size and provide greater representation of galaxies 
at the extremes, such as ultradiffuse galaxies and ultracompact 
dwarfs. Nevertheless, it currently provides a valuable independent 
comparison to the dominant abundance matching approach and 
provides support for the power-law extrapolation of those results 
to lower halo masses. 
ACKNOWLEDGEMENTS  
DZ acknowledges financial support from AST-2006785. PB was 
partially funded by a Packard Fellowship, Grant #2019-69646. 
DATA  AVAILABILITY  
No new data were generated or analysed in support of this research. 
REFERENCES  
Allen M., Behroozi P., Ma C.-P., 2019, MNRAS , 488, 4916 
Bandara K., Crampton D., Simard L., 2009, ApJ , 704, 1135 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/1/871/6889534 by guest on 06 June 2023

http://dx.doi.org/10.1093/mnras/stz2067
http://dx.doi.org/10.1088/0004-637X/704/2/1135


Stellar mass–halo mass relation 883 

MNRAS 519, 871–883 (2023) 

Behroozi P. S., Conroy C., Wechsler R. H., 2010, ApJ , 717, 379 
Behroozi P., Wechsler R. H., Hearin A. P., Conroy C., 2019, MNRAS , 488, 

3143 
Blanton M. R., Lupton R. H., Schlegel D. J., Strauss M. A., Brinkmann J., 

Fukugita M., Lo v eday J., 2005, ApJ , 631, 208 
Blumenthal G. R., Faber S. M., Flores R., Primack J. R., 1986, ApJ , 301, 27 
Borukho v etskaya A., Navarro J. F., Errani R., Fattahi A., 2022, MNRAS , 

512, 5247 
Bovy J., 2015, ApJS , 216, 29 
Bryan G. L., Norman M. L., 1998, ApJ , 495, 80 
Burkert A., 1995, ApJ , 447, L25 
Burkert A., 2020, ApJ , 904, 161 
Carlsten S. G., Greene J. E., Greco J. P., Beaton R. L., Kado-Fong E., 2021, 

ApJ , 922, 267 
Chen L.-H., Magg M., Hartwig T., Glo v er S. C. O., Ji A. P., Klessen R. S., 

2022, MNRAS , 513, 934 
Chilingarian I. V., Cayatte V., Durret F., Adami C., Balkowski C., Chemin L., 

Lagan ́a T. F., Prugniel P., 2008, A&A , 486, 85 
Chiti A. et al., 2021, Nat. Astron. , 5, 392 
Collins M. L. M. et al., 2014, ApJ , 783, 7 
Collins M. L. M., Tollerud E. J., Sand D. J., Bonaca A., Willman B., Strader 

J., 2017, MNRAS , 467, 573 
Conn B. C., Jerjen H., Kim D., Schirmer M., 2018, ApJ , 857, 70 
Djorgovski S., Davis M., 1987, ApJ , 313, 59 
Dressler A., Lynden-Bell D., Burstein D., Davies R. L., Faber S. M., Terlevich 

R., Wegner G., 1987, ApJ , 313, 42 
Drlica-Wagner A. et al., 2020, ApJ , 893, 47 
Dutton A. A., Conroy C., van den Bosch F. C., Prada F., More S., 2010, 

MNRAS , 407, 2 
Fattahi A., Navarro J. F., Frenk C. S., Oman K. A., Sawala T., Schaller M., 

2018, MNRAS , 476, 3816 
Ferrarese L. et al., 2020, ApJ , 890, 128 
Forbes D. A., Lasky P., Graham A. W., Spitler L., 2008, MNRAS , 389, 

1924 
F oreman-Macke y D., Hogg D. W., Lang D., Goodman J., 2013, PASP , 125, 

306 
Fritz T. K., Battaglia G., P a wlo wski M. S., Kalli v ayalil N., v an der Marel R., 

Sohn S. T., Brook C., Besla G., 2018, A&A , 619, A103 
Fu S. W., Simon J. D., Alarc ́on Jara A. G., 2019, ApJ , 883, 11 
Gannon J. S. et al., 2021, MNRAS , 502, 3144 
Geha M., Guhathakurta P., van der Marel R. P., 2003, AJ , 126, 1794 
Geha M., Blanton M. R., Masjedi M., West A. A., 2006, ApJ , 653, 240 
Geha M. et al., 2017, ApJ , 847, 4 
Gonzalez A. H., Williams K. A., Bullock J. S., Kolatt T. S., Primack J. R., 

2000, ApJ , 528, 145 
Greene J. E., Strader J., Ho L. C., 2020, ARA&A , 58, 257 
Grossauer J. et al., 2015, ApJ , 807, 88 
Gunn J. E., Oke J. B., 1975, ApJ , 195, 255 
Hinshaw G. et al., 2013, ApJS , 208, 19 
Jenkins S. A., Li T. S., Pace A. B., Ji A. P., Koposov S. E., Mutlu-Pakdil B., 

2021, ApJ , 920, 92 
Jester S. et al., 2005, AJ , 130, 873 
Ji A. P. et al., 2021, ApJ , 921, 32 
Jorgensen I., Franx M., Kjaergaard P., 1996, MNRAS , 280, 167 
Koch A. et al., 2009, ApJ , 690, 453 
La Marca A. et al., 2022, A&A , 659, A92 
Larson R. B., Tinsley B. M., Caldwell C. N., 1980, ApJ , 237, 692 
Longeard N. et al., 2018, MNRAS , 480, 2609 

Macci ̀o A. V., Dutton A. A., van den Bosch F. C., Moore B., Potter D., Stadel 
J., 2007, MNRAS , 378, 55 

Manwadkar V., Kravtsov A. V., 2022, MNRAS , 516, 3944 
Mao Y .-Y ., Geha M., Wechsler R. H., Weiner B., Tollerud E. J., Nadler E. O., 

Kalli v ayalil N., 2021, ApJ , 907, 85 
Mart ́ın-Navarro I. et al., 2019, MNRAS , 484, 3425 
McGaugh S. S., Schombert J. M., 2014, AJ , 148, 77 
McGaugh S. S., van Dokkum P., 2021, Res. Notes Am. Astron. Soc. , 5, 23 
Mieske S. et al., 2008, A&A , 487, 921 
Moore B., 1996, ApJ , 461, L13 
Mutlu-Pakdil B. et al., 2019, ApJ , 885, 53 
Nadler E. O. et al., 2020, ApJ , 893, 48 
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ , 490, 493 
Papastergis E., Cattaneo A., Huang S., Giovanelli R., Haynes M. P., 2012, 

ApJ , 759, 138 
Park H. S., Moon D.-S., Zaritsk y D., P ak M., Lee J.-J., Kim S. C., Kim D.-J., 

Cha S.-M., 2017, ApJ , 848, 19 
Park H. S., Moon D.-S., Zaritsky D., Kim S. C., Lee Y., Cha S.-M., Lee Y., 

2019, ApJ , 885, 88 
Pontzen A., Go v ernato F., 2012, MNRAS , 421, 3464 
Read J. I., Erkal D., 2019, MNRAS , 487, 5799 
Read J. I., Iorio G., Agertz O., Fraternali F., 2017, MNRAS , 467, 2019 
Rodr ́ıguez-Puebla A., Drory N., Avila-Reese V., 2012, ApJ , 756, 2 
Roediger J. C., Courteau S., 2015, MNRAS , 452, 3209 
Sanders J. L., Evans N. W., Dehnen W., 2018, MNRAS , 478, 3879 
Shen J. et al., 2022, ApJ , 925, 1 
Shipp N. et al., 2018, ApJ , 862, 114 
Simon J. D., Geha M., 2007, ApJ , 670, 313 
Simon J. D. et al., 2011, ApJ , 733, 46 
Simon J. D. et al., 2020, ApJ , 892, 137 
Taibi S., Battaglia G., Rejkuba M., Leaman R., Kacharov N., Iorio G., 

Jablonka P., Zoccali M., 2020, A&A , 635, A152 
Toloba E. et al., 2018, ApJ , 856, L31 
Tully R. B., Fisher J. R., 1977, A&A, 54, 661 
Valluri M., 1993, ApJ , 408, 57 
van Dokkum P. et al., 2017, ApJ , 844, L11 
van Dokkum P. et al., 2019, ApJ , 880, 91 
Venhola A. et al., 2019, A&A , 625, A143 
Walker M. G., Mateo M., Olszewski E. W., Pal J. K., Sen B., Woodroofe M., 

2006, ApJ , 642, L41 
Walker M. G. et al., 2016, ApJ , 819, 53 
Wechsler R. H., Tinker J. L., 2018, ARA&A , 56, 435 
Weiner B. J. et al., 2006, ApJ , 653, 1027 
Willmer C. N. A., 2018, ApJS , 236, 47 
Wolf J., Martinez G. D., Bullock J. S., Kaplinghat M., Geha M., Mu ̃ noz R. 

R., Simon J. D., Avedo F. F., 2010, MNRAS , 406, 1220 
Yagi M., Koda J., Komiyama Y., Yamanoi H., 2016, ApJS , 225, 11 
Yasin T., Desmond H., Devriendt J., Slyz A., 2022, preprint 

( arXiv:2206.15443 ) 
Zaritsky D., 2012, A&A , 2012, 189625 
Zaritsky D., 2022, MNRAS , 513, 2609 
Zaritsky D., Gonzalez A. H., Zabludoff A. I., 2006a, ApJ , 638, 725 
Zaritsky D., Gonzalez A. H., Zabludoff A. I., 2006b, ApJ , 642, L37 
Zaritsky D., Zabludoff A. I., Gonzalez A. H., 2008, ApJ , 682, 68 
Zaritsky D., Zabludoff A. I., Gonzalez A. H., 2011, ApJ , 727, 116 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/1/871/6889534 by guest on 06 June 2023

http://dx.doi.org/10.1088/0004-637X/717/1/379
http://dx.doi.org/10.1093/mnras/stz1182
http://dx.doi.org/10.1086/431416
http://dx.doi.org/10.1086/163867
http://dx.doi.org/10.1093/mnras/stac653
http://dx.doi.org/10.1088/0067-0049/216/2/29
http://dx.doi.org/10.1086/305262
http://dx.doi.org/10.1086/309560
http://dx.doi.org/10.3847/1538-4357/abb242
http://dx.doi.org/10.3847/1538-4357/ac2581
http://dx.doi.org/10.1093/mnras/stac933
http://dx.doi.org/10.1051/0004-6361:20078709
http://dx.doi.org/10.1038/s41550-020-01285-w
http://dx.doi.org/10.1088/0004-637X/783/1/7
http://dx.doi.org/10.1093/mnras/stx067
http://dx.doi.org/10.3847/1538-4357/aab61c
http://dx.doi.org/10.1086/164948
http://dx.doi.org/10.1086/164947
http://dx.doi.org/10.3847/1538-4357/ab7eb9
http://dx.doi.org/10.1111/j.1365-2966.2010.16911.x
http://dx.doi.org/10.1093/mnras/sty408
http://dx.doi.org/10.3847/1538-4357/ab339f
http://dx.doi.org/10.1111/j.1365-2966.2008.13739.x
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1051/0004-6361/201833343
http://dx.doi.org/10.3847/1538-4357/ab3658
http://dx.doi.org/10.1093/mnras/stab277
http://dx.doi.org/10.1086/377624
http://dx.doi.org/10.1086/508604
http://dx.doi.org/10.3847/1538-4357/aa8626
http://dx.doi.org/10.1086/308159
http://dx.doi.org/10.1146/annurev-astro-032620-021835
http://dx.doi.org/10.1088/0004-637X/807/1/88
http://dx.doi.org/10.1086/153325
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.3847/1538-4357/ac1353
http://dx.doi.org/10.1086/432466
http://dx.doi.org/10.3847/1538-4357/ac1869
http://dx.doi.org/10.1093/mnras/280.1.167
http://dx.doi.org/10.1088/0004-637X/690/1/453
http://dx.doi.org/10.1051/0004-6361/202141901
http://dx.doi.org/10.1086/157917
http://dx.doi.org/10.1093/mnras/sty1986
http://dx.doi.org/10.1111/j.1365-2966.2007.11720.x
http://dx.doi.org/10.1093/mnras/stac2452
http://dx.doi.org/10.3847/1538-4357/abce58
http://dx.doi.org/10.1093/mnras/stz252
http://dx.doi.org/10.1088/0004-6256/148/5/77
http://dx.doi.org/10.3847/2515-5172/abe1ba
http://dx.doi.org/10.1051/0004-6361:200810077
http://dx.doi.org/10.1086/309998
http://dx.doi.org/10.3847/1538-4357/ab45ec
http://dx.doi.org/10.3847/1538-4357/ab846a
http://dx.doi.org/10.1086/304888
http://dx.doi.org/10.1088/0004-637X/759/2/138
http://dx.doi.org/10.3847/1538-4357/aa88ab
http://dx.doi.org/10.3847/1538-4357/ab4794
http://dx.doi.org/10.1111/j.1365-2966.2012.20571.x
http://dx.doi.org/10.1093/mnras/stz1320
http://dx.doi.org/10.1093/mnras/stx147
http://dx.doi.org/10.1088/0004-637X/756/1/2
http://dx.doi.org/10.1093/mnras/stv1499
http://dx.doi.org/10.1093/mnras/sty1278
http://dx.doi.org/10.3847/1538-4357/ac3a7a
http://dx.doi.org/10.3847/1538-4357/aacdab
http://dx.doi.org/10.1086/521816
http://dx.doi.org/10.1088/0004-637X/733/1/46
http://dx.doi.org/10.3847/1538-4357/ab7ccb
http://dx.doi.org/10.1051/0004-6361/201937240
http://dx.doi.org/10.3847/2041-8213/aab603
http://dx.doi.org/10.1086/172569
http://dx.doi.org/10.3847/2041-8213/aa7ca2
http://dx.doi.org/10.3847/1538-4357/ab2914
http://dx.doi.org/10.1051/0004-6361/201935231
http://dx.doi.org/10.1086/504522
http://dx.doi.org/10.3847/0004-637X/819/1/53
http://dx.doi.org/10.1146/annurev-astro-081817-051756
http://dx.doi.org/10.1086/508921
http://dx.doi.org/10.3847/1538-4365/aabfdf
http://dx.doi.org/10.1111/j.1365-2966.2010.16753.x
http://dx.doi.org/10.3847/0067-0049/225/1/11
http://arxiv.org/abs/2206.15443
http://dx.doi.org/10.5402/2012/189625
http://dx.doi.org/10.1093/mnras/stac1072
http://dx.doi.org/10.1086/498672
http://dx.doi.org/10.1086/504352
http://dx.doi.org/10.1086/529577
http://dx.doi.org/10.1088/0004-637X/727/2/116

	1 INTRODUCTION
	2 ESTIMATING HALO MASSES
	3 RESULTS
	4 DISCUSSION
	5 SUMMARY
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES

