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Abstract

We present 226 large ultra-diffuse galaxy (UDG) candidates (r, > 573, 1y, > 24 mag arcsec” ) in the SDSS Stripe
82 region recovered using our improved procedure developed in anticipation of processing the entire Legacy
Surveys footprint. The advancements include less constrained structural parameter fitting, expanded wavelet
filtering criteria, consideration of Galactic dust, estimates of parameter uncertainties and completeness based on
simulated sources, and refinements of our automated candidate classification. We have a sensitivity ~1 mag fainter
in i, g than the largest published catalog of this region. Using our completeness-corrected sample, we find that (1)
there is no 51gn1ﬁcant decline in the number of UDG candidates as a function of fi . to the limit of our survey
(~26 5 mag arcsec™ ) (2) bluer candidates have smaller Sérsic n; (3) most blue (g—r < 0.45 mag) candidates have
Hog S 25 mag arcsec 2 and will fade to populate the UDG red sequence we observe to ~26.5 mag arcsec ; (4)
any red UDGs that exist significantly below our fi . sensitivity limit are not descendent from blue UDGs in our
sample; and (5) candidates with lower 1, tend to smaller n. We anticipate that the final SMUDGes sample will

contain ~30 X as many candidates.

Unified Astronomy Thesaurus concepts: Galaxies (573); Low surface brightness galaxies (940)

Supporting material: machine-readable table

1. Introduction

Recent findings of large, low surface brightness galaxies in
large numbers (e.g., van Dokkum et al. 2015a; Koda et al.
2015; Mihos et al. 2015; Muifioz et al. 2015; Roméan &
Trujillo 2017a; Shi et al. 2017; van der Burg et al. 2017;
Venhola et al. 2017; Wittmann et al. 2017; Greco et al. 2018;
Zaritsky et al. 2019; Tanoglidis et al. 2021) have renewed
appreciation for these objects that first started puzzling us
over 40 yr ago (Disney 1976; Sandage & Binggeli 1984;
Impey et al. 1988; Schombert & Bothun 1988; Schwartzenberg
et al. 1995; Sprayberry et al. 1997; Dalcanton et al. 1997; Penny
et al. 2009; Conselice 2018). The largest among these galaxies
are of a scale comparable, in certain ways, to that of our own
Galaxy (van Dokkum et al. 2015a). As such, they are challenging
objects to understand in that they have an integrated star
formation efficiency that is ~1%—10% that
of our Galaxy. In the current vernacular, these large low surface
brightness galaxies, commonly defined to have central g-band
surface brightness fainter than 24 mag arcsec > and effective
radii greater than 1.5kpc, are termed ultra-diffuse
galaxies (UDGs).

Although there is no evidence yet that they are not simply
the long tail of the galaxy distribution toward both low central
surface brightness and large physical size (Conselice 2018; Lim
et al. 2020), these are compelling objects for directed study. As
shown in Figure 3 of van Dokkum et al. (2016), they can lie in
a region of parameter space that was previously empty (this
remains true even when the mass-to-light ratio of some of these
are revised downward; van Dokkum et al. 2019). As such, they

provide stress tests for models of galaxy scaling relations
(Zaritsky et al. 2008), evolution (e.g., Amorisco & Loeb 2016;
Di Cintio et al. 2017; Carleton et al. 2019; Martin et al. 2019;
Sales et al. 2020), and, possibly, dark matter behavior (van
Dokkum et al. 2018).

With our observational program, we seek to compile as
extensive a sample as currently possible of nearby, physically
large UDGs across all environments to establish the characteristics
of this population. We have coined our effort to be one of
Systematically Measuring Ultra-Diffuse Galaxies or SMUDGes
(Zaritsky et al. 2019, hereafter Paper I). In Paper I, where we first
described the survey, we enumerated the reasons why the largest
UDGs are extremely interesting test cases for dark matter studies,
described our approach for recovering large numbers of such
galaxies from existing data, and presented a catalog of UDGs in
the region surrounding the Coma cluster as a demonstration case.
Although the Coma cluster was also an area of focus for some of
the earliest of the recent set of UDG studies (van Dokkum et al.
2015a; Koda et al. 2015), UDGs are now known across all
environments (e.g., Makarov et al. 2015; Martinez-Delgado et al.
2016; van der Burg et al. 2017; Roman & Trujillo 2017a, 2017b;
Greco et al. 2018; Shi et al. 2017; Wittmann et al. 2017; Leisman
et al. 2017; Prole et al. 2018; Tanoglidis et al. 2021), and here we
also extend our survey to an area separate from the Coma cluster.

There are various shortcomings of our initial work that we need
to address before proceeding to process the majority of the sky
that is mostly not obscured by the Galaxy. First, in Paper I we did
not provide a method for estimating the completeness of our
survey as a function of position on the sky and UDG candidate
properties. This omission severely limits the sample’s value for
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statistical analyses of the UDG population, and can obscure some
key trends. Second, we did not present full estimates of parameter
measurement uncertainties and biases. These are potentially quite
severe for extremely low surface brightness objects (e.g., van der
Burg et al. 2017; Bennet et al. 2017). Third, we did not address
the deleterious effects of Galactic cirrus that become increasingly
important as we study regions at lower Galactic latitudes than the
Coma cluster region. While large swaths of dust are easily
differentiated from UDG candidates, small, isolated regions of
reflected light can produce false positive detections (Duc et al.
2015; Romén et al. 2020). Last, although we discussed some
automated classification in the first paper, we depended heavily on
visual classification. Such an approach is unmanageable when we
extend our survey beyond regions that we are currently
processing.

The core of the work remains unchanged. We still avail
ourselves of the tremendous resource provided by the Dark
Energy Spectroscopic Instrument project (Schlegel et al. 2011;
The DESI Collaboration et al. 2016a, 2016b, and http://desi.
Ibl.gov) in the form of their Legacy Surveys imaging data (Dey
et al. 2019). This paper describes these modifications in
preparation for the upcoming presentation of the full catalog
drawn from the entirety of the Legacy Surveys footprint. In
Section 2, we describe the data. In Section 3, we discuss in
detail the enhancements we make to the data processing we
described in Paper 1. In Section 4, we present our catalog for
the Stripe 82 area. All magnitudes are on the AB system
(Oke 1964; Oke & Gunn 1983). Finally, in Section 5, we
discuss some preliminary inferences drawn from the catalog
regarding UDG properties. For consistency with van Dokkum
et al. (2015a), we adopt an angular diameter distance of 98 Mpc
to the Coma cluster, which implies a physical to angular scale
of 0.475 kpc arcsec” ' when referencing physical properties in
the Coma cluster and vicinity. The corresponding luminosity
distance to the Coma cluster is adopted to be 102.7 Mpc. For
other calculations, we adopt WMAP9 cosmological parameters
(Hinshaw et al. 2013).

2. The Data

Stripe 82 is a region encompassing ~300 deg”® along the
Celestial Equator that has been repeatedly imaged by the Sloan
Digital Sky Survey (SDSS) as described by Annis et al. (2014)
and Jiang et al. (2014). It extends from about 20h to 4h in R.A.
and from — 1926 to +1926 in decl. We selected this region as the
second test of our pipeline for several reasons. First, the available
deeper imaging enables us to assess the limitations of our
procedure on the more typical shallower data. Moreover, it has
been extensively imaged by the Dark Energy Survey (Abbott et al.
2018), which is included within the DECaLS collection (Dey et al.
2019). Some objects were observed as many as 32 times, which
allows us to estimate our detection limits independent of SDSS.
Second, other investigators are applying their techniques to search
for low surface brightness objects in at least portions of this region
(Fliri & Trujillo 2016; Greco et al. 2018; Roman & Trujillo 2018;
Romén et al. 2020; Tanoglidis et al. 2021), which will provide
independent benchmarks. Third, multiwavelength complementary
data exist, making it an excellent field region to explore (e.g.,
Hodge et al. 2011; Takey et al. 2016; Geach et al. 2017; Mendes
de Oliveira et al. 2019). Finally, it provides a physical contrast
with our initial survey area that was centered on the Coma cluster
and covered a similar sized area (~290 deg?; Paper I).
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A detailed description of the Legacy Surveys is available in
Dey et al. (2019). Briefly, the data consist of a three-band
imaging survey, with g =24.7, r=23.9, and 7z =23.0 AB mag,
five-sigma point-source limits, obtained using DECam at the
CTIO 4 m (DECaLS), an upgraded MOSAIC camera at the
KPNO 4 m (MzLS; Mayall z-band Legacy Survey), and the
90Prime camera at the Steward Observatory 2.3 m telescope
(BASS, Beijing-Arizona Sky Survey). These limits make it
roughly two magnitudes deeper than SDSS, with better image
quality as well. The pipeline-processed data, using the DECam
Community Pipeline (Valdes & Gruendl 2014), are publicly
available at the NSF’s National Optical-Infrared Astronomy
Research Lab (NOIRLab) science archives® and the Legacy
Surveys’ website’.

In this paper, we reanalyze the CCD images associated with the
Eighth data release (DRS8) of the Legacy Surveys. We focus on
applying our own post-processing of the Legacy Surveys images
to com}l)ile a catalog of low surface brightness (11, > 24 mag
arcsec” ) galaxies of large angular extent (effective radii r, 2 5”3,
corresponding to physical values >2.5kpc at the distance of
Coma) in the Stripe 82 field. As we went about this work, we
reworked our pipeline to address the issues described above. The
DECam field of view is 2°2. To ensure that that we use all
DECaLS observations covering the Stripe 82 footprint, we extend
our analysis region by 172 on all sides and process all images with
centers within these boundaries. This extension results in an area
of ~670 deg® with coverage in all three filters, as shown in
Figure 1. The Coma region that we discuss is described in detail in
Paper L.

3. Enhancements to Our Post-processing

We perform our image processing and analyses using the
Puma cluster at the University of Arizona High Performance
Computing center.® A detailed description of our approach to
building the UDG candidate catalog is given in Paper 1. Here,
we focus on describing improvements and additions. Our Stripe
82 footprint contains 3575 separate DECam exposures.
Because of the amount of computer memory and temporary
storage required for processing the entire footprint, the data are
divided into four separate rectangular “tiles” along the long
axis of the stripe. These tiles are processed separately. To avoid
difficulties with objects at the edges of the tiles and ensure that
all of the images taken of each object are processed together in
at least one tile, we overlap adjacent tiles by 172 in R.A. to
account for the 292 DECam field of view.

A critical component of this work is the file survey-ccds-
decam-dr8.kd.fits, which is included in the Legacy Surveys Data
Release 8 (DRS), which contains information for each individual
CCD image used in the data release and excludes those CCDs
considered inadequate for further processing. We therefore limit
our processing to the images included in that file. The file also
contains magnitude zero points and image FWHMSs generated for
each CCD by the Legacy Surveys pipeline, and we use these
values when needed. The descriptions below apply to the
processing of a single tile, and the process is identical for all
four tiles. Unless otherwise stated, total numbers provided below
indicate the total for all four tiles. Duplicate identifications of
UDG candidates (hereafter, often referred to as candidates), from

6 .
astroarchive.noao.edu
7 legacysurvey.org /dr8/
8 public.confluence.arizona.edu/display /UAHPC /Resources
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Figure 1. Footprint of the Stripe 82 observations used in this study. In the top three panels, the shading denotes the observation density for each band as shown in the
top color bar. The bottom panel shows regions for which we have coverage in all three filters.

the overlap regions, are removed after all tiles are completely
processed.

3.1. Modifications to SMUDGes v1.0

Our processing pipeline consists of the following major
components. Steps that are entirely new to our procedure are
written in bold while those that were modified from our
previous work are in italics:

1. identify and remove CCD artifacts;

2. subtract high surface brightness objects using a model
that includes background noise;

3. detect candidates using wavelet filtering;

4. reproject images to minimize misalignments;

5. create a list of potential candidates by requiring
coincident detections among different, overlapping,
multi-band exposures;

6. obtain preliminary candidate parameters using a least-
squares fit of an n = 1 (exponential) Sérsic model to each
candidate on each individual image that produced a
detection, and reject detections that do not satisfy
conservative size and brightness criteria;

7. obtain refined candidate parameters using GALFIT (Peng
et al. 2002) and an n = 1 Sérsic model on a stacked image
for each candidate produced using all observations, again
rejecting some using conservative criteria;

8. obtain final candidate parameters using GALFIT,
including now the effects of an estimated point-spread
function (PSF) and fitting for the Sérsic index;

9. reject candidates from areas of sky where Galactic
dust map values exceed predefined thresholds;

10. execute automated classification of all candidates and
visually screen all those that remain viable; and

11. add simulated UDGs to the images and reprocess the
data to enable us to measure recovery completeness
and estimate random errors and biases in our results.

Below, we briefly describe each step, and when pertinent,
discuss why and how we have modified them from our
previous implementation. Additions to the pipeline are
described in detail.

3.1.1. Image Preprocessing

We process a total of 227,001 CCDs for Stripe 82. Artifacts
identified in the data quality mask provided by the DECam
Community Pipeline are removed as described in Paper I. We
then fit the extended wings of stars identified as saturated in
these same masks with a Moffat profile and subtract the model
from the image. In a change from Paper I, we no longer
subtract wings of bright stars not identified as saturated,
because this adds significant processing time without notice-
able benefit. Unsaturated stars are subtracted in a manner
similar to other objects as described in the next section.

3.1.2. Object Subtraction

To reduce “noise” before detecting candidates using wavelet
filtering, we subtract foreground/background sources that have
significantly higher surface brightness than our target UDGs.
Our previously imposed Source Extractor thresholds (Bertin &
Arnouts 1996) of 30 above sky occasionally also subtracted
candidates in low-noise environments. We correct this problem
by now only subtracting objects that have a central surface
brightness that is at least 2 mag arcsec > brighter than a
specified threshold in each band (24.0 for g, 23.6 for r, and
23.0 for 7).



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 257:60 (20pp), 2021 December

3.1.3. Wavelet Filtering

We use wavelet transforms after object subtraction to isolate
potential candidates of different angular scales with a tailored
filter. Higher wavelet levels will preferentially accentuate
objects of larger sizes. In our previous work, we selected
candidates that were prominent at our level four (the smoothing
kernel in this case has an FWHM ~ 1172; see Paper 1 for
details) because this choice highlighted the UDGs at the
distance of the Coma region. To detect potentially larger
candidates, we now add both levels five and six to this process
(each level increase is a factor of two in size). The filtering
transforms the UDG candidates into highly statistically
significant sources because they are not inherently faint
sources—they just have their flux spread over many image
pixels. The vast majority of the candidates turn out to have
mg <21 mag. As such, we do not require the latest, most
sophisticated image analysis tools to detect these objects in
appropriately smoothed images (see Figure 4 in Paper I for a
visual demonstration).

3.1.4. Reprojection

While not significant at the decl. of Stripe 82 or the Coma
cluster, image misalignment when stacking is an issue at the
more extreme declinations included within the Legacy Survey.
We minimize misalignment by using SWarp (Bertin et al.
2002) to reproject all CCD images such that north is directly up
before saving them for further processing.

3.1.5. UDG Candidate List Creation

After wavelet filtering, we have a total of 19,331,154
detections in Stripe 82, or an average of about 85 per CCD. The
vast majority of these will prove to be spurious, or otherwise
poor candidates. Isolating, coadding, and modeling candidates
is time-consuming, and the following procedure decreases the
number of detections for which we need to perform each
subsequent step. We limit spurious detections by only retaining
candidates with at least two coincident detections among
different exposures, regardless of which wavelength filter was
used in the detection. Detections that meet this criterion must
lie within 2” of the mean centroid of all the coincident
candidate detections. Each group of detections created in this
manner is considered to be a unique candidate located at the
mean centroid position.

3.1.6. Preliminary Parameter Screening

At this point, we still have 3,528,371 distinct sources
containing a total of 11,811,322 detections that require further
screening, the vast majority of which will not meet our UDG
criteria. As described in Paper I, we limit the number of
detections requiring time-consuming coaddition and GALFIT
modeling by obtaining much faster, rough parameter estimates
by fitting an exponential Sérsic model (n = 1) to each candidate
on a CCD using the LEASTSQ function from the Python SciPy
library (Jones & Oliphant 2001). The fitting is done on a
201 x 201 pixel (54” x 54") cutout image centered on the
candidate location.

As part of this process, we mask objects not associated with
the candidate detection, to minimize their effects on the model.
We create the mask from a segmentation map of a Gaussian-
smoothed version of the cutout image using SEP (Barbary 2016),
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an application based on Source Extractor (Bertin &
Arouts 1996). Because the cutout is centered on the candidate,
we remove the central detection from the mask, thereby allowing
it to be modeled. We found that our original detection threshold
of twice the background noise occasionally missed very faint
candidates, and we now use a threshold of 1.5 times background
noise. This fitting provides only rough parameter estimates;
therefore, we set requirements for candidates that are generous
relative to our final criteria. For now, we retain candidates with
r,>4" and f1y thresholds of 23.0, 22.0 and 21.5 mag arcsec” >
for g, r, and z, respectively.

3.1.7. Refined Parameter Screening

After preliminary screening, we are left with 464,796
detections of 322,704 candidates, confirming our hypothesis
that the vast majority of wavelet detections are spurious or do
not meet our UDG criteria. Although we required at least two
coincident detections for each candidate (Section 3.1.5),
following this initial screening some candidates are left with
only one viable detection. Again requiring confirmation of each
candidate source, we reject any candidates with only a single
remaining detection.

The specific requirement of at least two coincident detections
was based on our initial experience with our study of the Coma
region, which occurred relatively early in the DECaLS survey
when observations were limited. In Stripe 82, we are working
in regions with more than 30 observations. In such cases,
requiring only two detections is rather weak confirmation of the
source. Therefore, we require that candidates pass our
preliminary screening on at least 20% of the available
observations, or a minimum of two observations for those
with less than ten observations.

Again, the vast majority are rejected after applying these
criteria, and we are left with 20,058 candidates that require
image stacking and modeling. These are performed on
201 x 201 pixel cutouts centered on the candidate’s coordi-
nates. Details on preparing the cutouts for fitting are discussed
in Paper 1. For stacking the final image, we use all CCDs
covering the coordinates rather than using only those that
resulted in a detection of the candidate. We now perform a
slightly more sophisticated, but still compromised, fit using
GALFIT where the Sérsic index remains fixed at n =1 and the
PSF is not incorporated into the model. These constraints are
placed at this step for computational efficiency. In a change
from Paper I, we start by using GALFIT to estimate
morphological parameters (b/a, 6, and r.,) using a cutout
created by stacking all associated CCDs, regardless of band.
Photometric properties (i), magnitude, and color) are then
obtained from stacked images in each band, with these
morphological values held constant during modeling. Because
we will do a final pass using GALFIT with a floating Sérsic
index and incorporating the PSF, we again set our criteria
generously at this stage, requiring only r, > 4", b/a > 0.34, and
Ho,g = 22.95 mag arcsec™~ (or pg>21.95 mag arcsec” > if
there is no available measurement of i ).

3.1.8. Final Parameter Determination

After our initial GALFIT pass, we are left with 6625
candidates that require better modeling. In Paper I, we only
used a model with a variable Sérsic index for our confirmed
candidates. Now, we allow the Sérsic index to vary for all
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Table 1
UDG Candidate Final Parametric Selection
Criteria
Parameter Criterion
Ho,g >24.0 mag arcsec” >
Te >5.3"
n <2
b/a >0.37
g-r <1 mag

candidates and include an estimated PSF in GALFIT. We
create the estimated PSF using a Gaussian kernel with a
standard deviation equivalent to the median FWHM obtained
from DRS for all CCDs included in the stack being processed.
Our UDG criteria of fi, > 24 mag arcsec” 2 (or Loz = 23 mag
arcsec 2 in a few cases where g data are missing), r, > 5”3,
and b/a > 0.37 are applied to the results from this step. These
are applied without consideration of uncertainties, either
random or systematic. Systematic uncertainties are described in
Section 3.1.11, and correcting for those will lead to the
inclusion in our final catalog of a few sources that exceed these
defined criteria. Our final set of quantitative selection criteria is
reprised in Table 1, and the candidate catalog is discussed and
presented in Section 4. Before proceeding to the catalog,
however, we expand on some key new aspects of our approach.

3.1.9. Coarse Screening of Spurious Sources Caused by Cirrus

In contrast to the Coma region, significant portions of Stripe
82 are near the Galactic plane, with resulting greater Galactic
cirrus contamination. Small regions of dust may reflect light,
and without more information, it can be difficult to differentiate
these low surface brightness enhancements from legitimate
candidates. To address this challenge, we develop a screening
process for probable cirrus contamination. Cirrus is more easily
discerned using color images and larger regions than in the
grayscale cutouts used for our modeling. We use color JPEG
images retrieved from the archive and the Legacy Surveys
Viewer’. Even with these additional images, it can sometimes
be difficult to identify cirrus if it smoothly covers large areas.
We visually inspected nearly 1000 Stripe 82 candidates
meeting our UDG criteria for the presence or absence of dust
and/or a UDG. Although subjective, our dust classifications
are adequate for our purposes because we are aiming only to
guide our application of a more quantitative approach. We
visually classify 579 candidates as reflected light from cirrus,
26 as a UDG candidate superimposed on reflected light from
cirrus, 156 as uncontaminated candidates, and 168 as neither
(e.g., tidal tails, poorly resolved groups and clusters, scattered
light, etc.).

We consider four existing Galactic dust maps for our
quantitative screening procedure. Three are provided by
dustmaps.py (Green 2018) and include 7353 (optical depth at
353 GHz), E(B — V) from the Planck Collaboration (Planck
Collaboration et al. 2014), and the Schlegel, Finkbeiner, &
Davis (SFD) dust map (Schlegel et al. 1998). The fourth map is
derived from WISE 12 um observations by Meisner &
Finkbeiner (2014). We extract single point values from each
dust map located at the coordinates of each candidate. For the

° https: //www.legacysurvey.org /viewer
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WISE values, we set any map value that is <0 to 0. We refer to
these measurements as dust proxies.

Results comparing the various map values to our classifications
are shown in Figure 2, where we plot the distributions of the
various dust proxy values at the position of candidates we identified
as cirrus, UDG candidate, and candidate + cirrus. All four plots are
quite similar, suggesting the choice of dust proxy does not play an
integral part in the results. As expected, the peak of the proxy value
distributions associated with candidates unambiguously classified
as UDG candidates lie at low values. Conversely, the distribution
of candidates that we classified as arising due to dust have higher
dust proxy values. Fortunately, the two regimes appear quite
distinguishable, with only modest overlap.

Using the above information, we choose to select values
from the 7353 and WISE 12 pm dust maps to set our thresholds.
Although all four dust proxies appear to work similarly well in
distinguishing UDGs from reflected light sources, we opt to use
the two measures that do not depend on extinction curves and R
values, i.e., the WISE 12 ym and 7353 estimates. In Figure 3,
we show where each candidate confirmed as a UDG candidate,
dust, or candidate superimposed on dust falls on the WISE
12 pym—T353 plane. Although there is some overlap, candidates
and dust primarily fall into two distinct groups. Selecting a
threshold is a compromise between rejecting legitimate
candidates and allowing the possibility of isolated, small dust
patches to be misclassified as potential UDGs. We set
thresholds of 7353 =0.05 and WISE 12 um =0.1 Mly/sr as
shown by the dotted lines in Figure 3, and reject candidates
with dust proxy values exceeding either threshold. Even so, as
is evident from Figures 2 and 3, these criteria fail to exclude all
dust contamination.

We did not screen for dust contamination in Paper I. We do
that now for the 275 catalog entries presented there and find that
five (1.8%) exceed our thresholds. We reviewed each of these
and found one, SMDG1257423+-211254, that appears to be only
cirrus. The other four are SMDG12313774-203617, which barely
failed our threshold (7353 =0.05003; WISE 12 pm = 0.04608)
and we feel is a faint UDG, as well as SMDG1301004+210356,
SMDG1302280+204900, and SMDG1304250+210738, which
appear to be UDGs superimposed on dust.

Examining the WISE 12 ym dust map over the entire
DECaLS footprint in the Legacy Survey Sky Viewer'” suggests
that Stripe 82 has above-average cirrus contamination while the
Coma region has less contamination than average. Using dust
proxy map values at the locations of our randomly placed
simulated sources as described in Section 3.1.11, we find that
43.4% of the Stripe 82 region and 1.7% of Coma exceed our
dust thresholds (Figure 4), confirming the large variation within
the DECaLS footprint. Our completeness estimates discussed
in that section will account for these losses due to cirrus, but it
is evident that dust is likely to be a dominant source of large-
scale completeness variations.

3.1.10. Improved Automated Classification

The argument of the relative merits of visual versus
automated classification becomes moot when dealing with the
expected volume of candidates in the full version of
SMUDGes. At the current scale, we can still contemplate
visual screening, but this cannot scale further. In addition, as
discussed in Section 3.1.11, we are increasing the size of our

10 https: //www.legacysurvey.org/viewer
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Figure 2. Distribution of UDG candidate visual classifications (color-coded) relative to four measurements of the column density of dust along the line of sight. For
illustration purposes, any value of WISE 12 um flux above 0.5 MJy/sr is set to 0.5. In all cases, there is a relatively clean separation between candidates we visually
classified as UDG candidates and sources attributed to reflected light from dust clouds.

05 . o UDG
Dust
'5‘04 r o Both b
~
>
=
~,03r
g * . .
N °
. 0.2 o .
0 .
=
gt S

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Planck 7353
Figure 3. WISE 12 ym flux vs. Planck-derived optical depth (73s3) at the
locations of UDG candidates. Our independent visual classification of the
candidates is shown in the color coding. Dotted lines represent the thresholds
we have set using this comparison for rejecting candidates on the basis of the
WISE and Planck measurements. Only candidates in the lower left quadrant are
retained.

sample further by injecting artificial sources. As such, the
classification problem is multiplied many-fold. Automated
classification becomes an imperative.

To maximize the data set available for training, we combine
the Coma candidates from Paper I with those from our current
processing of Stripe 82. Because of processing changes, we
reanalyze our Coma observations using our current pipeline
version and revised criteria. This results in a total of 3073
candidates (1568 from Stripe 82 and 1505 from Coma) that are

successfully modeled by GALFIT using a variable Sérsic index
and a PSF correction (Section 3.1.8). To further increase the
number of UDGs in our classification training set and allow for
simulated sources that may not meet our final thresholds, we set
weaker criteria than those we apply in defining our final
catalog. We will use all candidates that passed our initial
screening using GALFIT fitting with a fixed Sérsic index.
Because many of the systems we are now classifying will not
meet our final UDG criteria for reasons other than visual
appearance, we will visually classify them as potential UDG
candidates and non-UDGs. These are visually reviewed by
three of the authors (DZ, RD, and AK) and assigned to a class
using the majority of our votes.

During visual inspection, we found a few objects that were
structurally similar to other candidates but significantly redder
than the Coma cluster red sequence. Because we do not expect
to find high redshift, low surface brightness galaxies, nor do we
expect UDGs to be highly reddened, we suspect that these are
high redshift, high surface brightness galaxies masquerading as
UDGs or possibly something more exotic, such as emission
line nebulae (e.g., Steidel et al. 2000). Because it might be
difficult for our machine-learning algorithm to reject these with
the current small sample of such objects, we define a g—r color
threshold instead. As shown in Figure 5, the vast majority of
our confirmed UDGs within the Coma environs fall at or below
the color of the bright tip of the Coma cluster red sequence.
Using this result as a guide, we set a relaxed color criterion of
g-r < 1.0 mag to exclude a small number of likely high redshift
interlopers (Figure 6). We do not exclude those where GALFIT
failed to provide an estimate in either the g or r band.

Our visual classification also revealed a few cases where
GALFIT incorporated a superimposed or abutting object in its
model due to incomplete masking. This results in parameter
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Figure 4. Cirrus contamination in our Stripe 82 (top three panels) and Coma
cluster (bottom three panels) footprints. The top panel in each set shows the
distribution of 7353 while the middle panels show it for WISE 12 pm. In the
bottom panels in each set, the regions in black exceed our dust proxy thresholds
(43.4% of the area for Stripe 82 footprint and 1.7% for Coma) and illustrate the
large variation in dust contamination found within the DECaLS footprint. Due
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estimates with high Sérsic indices and effective radii that are
much larger than those suggested by visual inspection. We
show and fit the distribution of measured n values with a
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Figure 7. Sérsic n index distribution of UDG candidates. The solid line
represents the least squares Gaussian fit for 0.5 < n < 1.5, which has p = 0.89
and o = 0.27 and is used to guide our definition of the range of acceptable n
values (see text). The final catalog has additional criteria imposed that
marginally affect this distribution.

Gaussian (¢ =0.89 and 0 =0.27) in Figure 7. Based on this
distribution, and seeking to remove the most egregious cases
where the fit is affected by projected neighbors, we reject
candidates that are best fit by models with n > 2.0. With the
new criteria just described (g—r < 1.0 mag and n < 2.0), we
have a sample of 2665 candidates where 1539 are visually
classified as potential UDG candidates and 1126 as non-UDGs.

Details on our approach for computer classification are
described in the appendix of Paper I, and here we only
summarize and discuss slight differences in the approach and
the results. Because we want to evaluate different algorithms
and hyperparameters, we set aside 20% (533) of the candidates
(306 potential UDG candidates and 227 non-UDGs) to be used
as a test set after all hyperparameters are finalized. The
remaining candidates are divided into four folds to be used for
cross-validation during evaluation. In Paper I, we used the
coadded cutout images created by our pipeline. Because one of
the parameters we want to evaluate is image size, we now
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Figure 8. Classifications where predictions produced by an automated classifier differ from our visual classification (FN = false negative; FP = false positive, relative
to our visual classification). R.A., decl., and name (if included in our catalog) are provided for each panel. See the text for details. (a) 357.76977, —0.18146. (b)
320.88322, 1.26719. (c) 20.30798, 1.38641. (d) 9.26339, —2.13205. (e) 358.39504, —0.79389. (f) 31.10827, 2.25552. (g) 195.04037, 20.44296. (h) 28.77117,
—0.14588. (i) 194.12349, 28.44472; SMDG1256296+-282641. (j) 192.01841, 17.96964; SMDG1248044+175811. (k) 324.99352, —2.41781; SMDG2139584-
022504. (1) 12.4503, 0.96312; SMDG0049481+005747. (m) 194.95842, 28.1958; SMDG1259500+281145. (n) 195.67625, 18.86472; SMDG1302423+-185153. (0)
192.835, 27.22306; SMDG1251204+-271323. (p) 183.34124, 29.56713; SMDG1213219+4293402. (q) 192.90708, 27.345; SMDG1251377+272042. (r) 195.81109,
27.61941; SMDG1303147+4-273710. (s) 193.21574, 22.30942; SMDG1252518+-221834. (t) 184.22557, 29.90266; SMDG1216541+295410. Color cutouts obtained
using resources provided by the Legacy Surveys (Legacy Surveys Image Viewer/ D. Lang (Perimeter Institute)).

extract images centered on the candidates from the Legacy
Surveys, which allows the needed flexibility. We evaluate
images ranging from 150 pixels (~39") on a side to 300 pixels
(~79"). We also test the relative effects of resolution versus
signal-to-noise ratio by rebinning the images by factors of 2 or
3. Because our data set is reasonably balanced between
potential UDG candidates and non-UDGs, we augment the
training set uniformly for each candidate by adding four images
that are randomly flipped and/or rotated. The FITS cutouts
provided by the Legacy Survey are in units of nanomaggies and
sky-subtracted (some pixel values may be <0), and we
normalize these by clipping at —0.01 and 0.1 nanomaggies.
We evaluate five different convolutional networks: the
TensorFlow Keras versions of DenseNet121, DenseNet201
(Huang et al. 2017), EfficientNetBO, EfficientNetB1, and
EfficientNetB2 (Tan & Le 2020). As in Paper I, final layers
are replaced with dense layers having a sigmoid activation as a
single output. However, we no longer use pretrained weights
during initialization. We found the best cross-validation results
using EfficientNetB1 with a 224 x 224 pixel (~59" x 59")
image without any smoothing, and we choose this network
configuration for classifying our final test set. Pertinent
hyperparameters for this network are: 1) dropout fraction of
0.3; 2) initial learning rate of 0.0001, which is decreased by
multiplying by 0.3 every 20 epochs; 3) optimizer using Adam
(Kingma & Ba 2017) with beta_1=0.9, beta_2=0.999,
epsilon = 107, and decay = 0.0; and 4) training length of 60
epochs with a batch size of 16 samples. We do not use early
stopping at this time, and the model shows signs of overfitting
at the end of 60 epochs, with the vast majority of probabilities
approaching O or 1. However, the best accuracies during
training are very noisy and only a fraction of a percent better
than those at the end. We may change our approach when we
acquire a larger training set as we process the remainder of the
Legacy Surveys. Because we want to minimize false entries in

our catalog, we set a probability threshold of 0.99 for accepting
a candidate as a potential UDG. Using this threshold for our
test set, we obtain an accuracy of 96.2% (513/533) with 8 false
positives (specificity of 96.5%) and 12 false negative assign-
ments (sensitivity of 96.1%).

Images of all incorrect classifications are shown in Figure 8.
Classification errors tend to fall into a few main categories,
with potential UDG candidates confused with tidal material or
outer spiral arms (c, d, g, 1, and t), distant faint clusters or
apparently empty sky (e, i, j, m, p, g, and r), distant galaxies (a,
f, and s), and extended glow from a nearby object (n and 0). On
occasion, the host galaxy for tidal material is not visible on the
image supplied to the network, making automated classification
very difficult. In six cases (c, d, f, n, p, and q) there were
disagreements among us, with the label assigned via majority
vote. Panel (b) clearly shows cirrus contamination when a
larger area is viewed, although we cannot definitely rule out the
possibility of a superimposed UDG. This particular candidate
barely missed our dust thresholds for rejection, with
T353 = 0.048 and WISE 12 yum =0.099 MJy/sr. There were
no similarly contaminated images in the training set. The
candidate in panel (h) was mislabeled during data entry and
was correctly identified as a potential UDG by the network. It is
included in our catalog. The remaining false negative
prediction in panel (k) barely missed our inclusion threshold,
with a probability of 0.9897.

3.1.11. Simulated UDGs

Simulated sources were not added to the images in Paper L.
In this study, we estimate parameter systematic and random
uncertainties, as well as recovery completeness, by planting
simulated UDGs at random locations throughout the observed
region. These are modeled using Sérsic profiles with random
structural and photometric properties. To obtain an adequate



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 257:60 (20pp), 2021 December

Table 2

Simulation Parameter Ranges for Uncertainties
Parameter Distribution
n [0.1,3.0)
b/a [0.25,1.0)
0 [—90°, +90°)
Te [375,20")
Ho.g [22.5 mag arcsec 2, 27.5 mag arcsec %)
g—r [0.0 mag , 0.96 mag]
-z [—0.07 mag, 0.60 mag]

Note. The range given for 1 4 is for the one of three processing runs with the
largest range. See text for details.

number of simulated sources for robust analysis, we do the
implanting and analysis separately from our science processing.
This approach allows us to use a higher density of simulated
sources with no risk that the simulated sources affect the
detection and measurement of real sources.

Although our approaches to estimating completeness and
uncertainties differ in several aspects, they also have much in
common, and we discuss those commonalities first. In both
cases, image processing and classification are identical to that
applied to our science images. To provide the most general
results and maximize the number of available simulated
sources, we combine results from both the Coma and Stripe
82 data.

We randomly draw Sérsic indices (n), axis ratios (b/a),
position angles (), effective radii (r,), central surface bright-
nesses in g (io ), and colors (g — r, r — z) uniformly within the
parameter ranges given in Table 2. Because errors may scatter
objects into our selection space (as well as out), the parameter
space explored extends beyond our UDG criteria when
possible. The effective radius limits match the angular sizes
of objects ranging from about 1.7 to 9.5 kpc at the distance of
Coma. Recall that our minimum angular size criterion
corresponds to 2.5 kpc at the distance of Coma, rather than
the more standard 1.5 kpc UDG criterion. The color ranges
represent the 3¢ limits of the distributions of our actual UDGs.
We randomly place simulated sources with unique identifica-
tion numbers at an average density of 2000 per deg > (about
100 per CCD) and require a minimum of 40" separation. The
source locations are limited to the actual footprints of the
surveys, including CCD gaps, and we require that any
simulated source fall on at least two CCDs for inclusion. This
last limitation is necessary because some observations at the
edges of the footprint may not have any overlap and our
standard pipeline would automatically reject any candidates in
such regions. CCDs are initially processed individually, and
any simulated source whose center falls within the boundaries
of a CCD is placed on that CCD before any further processing.
As noted in Section 3.1.8 describing our revised treatment, we
now obtain our final GALFIT results for each candidate using a
floating Sérsic index and an estimate of the PSF. Therefore,
before placing a simulated source on a CCD, we convolve it
with a Gaussian estimate of the PSF, using the point-source
FWHM provided by DRS8 for each CCD. A detection by our
pipeline that lies within 4” of a placed source is assigned the
identification number of that source. This separation tolerance
allows some error in the location estimate, while still staying
within our threshold for r,. About 2.5% of the detections are
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duplicates associated with the same simulated source, and we
simply select the first match and delete the others.

Finding that the surviving number of faint simulated sources
was inadequate, we augmented the initial runs with two more
where we created sources drawn from a normal distribution of
o,e centered at 26.4 mag arcsec > with a sigma of 1.3 mag
arcsec 2. With these criteria, a total of 3,700,777 simulated
sources are generated, 2,772,724 fall completely on at least two
CCDs, and 741,642 survive the pipeline through GALFIT
modeling.

After applying our various criteria, including rejecting areas
where dust contamination is suspected, we have a total of 440,015
surviving candidates before automated classification. As with our
standard pipeline, we use 224 x 224 pixel cutouts obtained from
the Legacy Surveys for this step. When we place a simulated
source on a cutout, we convolve the model with a Gaussian PSF
created with an FWHM that is the mean FWHM of all of the
CCDs contributing to the stacked image in each band. Because of
the high density of simulated sources, there may be cases where a
real source is incorrectly associated with a simulated one, leading
to errors in our estimates. We mitigate this problem by making
two passes through our automated classification network (see
Section 3.1.10). In the first pass, we use a cutout that does not
include the simulated source associated with the detection, and in
the second, one that does. If we find a source classified as a UDG
candidate on the first pass, then the association with the simulated
source is rejected because we had not yet placed the simulated
source at that location. In fact, in only 1,124 cases out of 440,015
(0.25%) was there a source classified as a candidate that was
sufficiently coincident on the location of the simulated source
to cause potential confusion. We conclude that overlaps are
an insignificant problem for our recovered measurements of
simulated sources. A total of 316,621 simulated candidates
survive the automated classification and form the data set used for
further evaluation.

In all cases, our models focus on what we consider the key
parameters appropriate for exploring the variable under
consideration. These are pgy or my, r., n, and b/a, where X
represents each of the different filter bands. Specifically, we
consider the structural components (r,, 1, and b/a) to be color-
independent. We assess completeness with regard to 11 g, and
have confirmed that we see no effective change in complete-
ness with color over the UDG color range.

To provide the measurements of completeness and uncer-
tainties that will guide our modeling, we evaluate those
quantities for simulated sources within limited range parameter
windows that are repeatedly placed randomly throughout the
parameter space. There is a tension between setting smaller
windows, which will contain more homogeneous systems and
have higher resolution in tracing how quantities vary with
parameter changes, and larger ones, which will have more
robust statistics. To address this tension, we use a fixed window
size in general, but let it decrease to as small as 1/3 of its base
size near the limits of a parameter range. We refer to each set of
windows that describes the selection of sources in the 4D
parameter space as a bin. In theory, there is no limit to the
number of bins that can be created, but the size of the data set
must be large enough to allow adequate modeling across the
full parameter space. The specifics of this basic implementation
when we evaluate uncertainties and completeness are described
in more detail in their respective sections.
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In practice, we have two distinct data sets that we will be
discussing: (1) the parameters describing the unprocessed
sample of simulated sources, and (2) the parameters recovered
by our pipeline describing those same simulated sources. For
clarity, we refer to these as our input and output simulated
samples, respectively.

We fit the resulting multiparameter data from our random
binning technique using polynomial models created with the
PolynomialFeatures function from the Python Scikit-learn
library (Pedregosa et al. 2011) and a four-layer neural network
implemented with Keras (Chollet & Keras Team 2015). To
confirm that we are neither significantly under- nor overfitting
the data, we use 80% of the bin data set for training and set
aside the remainder for testing and optimizing the neural
network. Because the parameter ranges of our simulations
(Table 2) exceed those of our UDGs, we have options for the
selection of the limits used for modeling. Broader limits will
encompass a larger parameter space but may adversely affect
the model. We explore these limits separately for completeness
and uncertainties. A disadvantage of polynomial modeling,
especially when using polynomials of high degree, is that the fit
may extrapolate very poorly for data points lying outside of the
fitted range. We underscore this potential problem by placing
flags on cataloged completeness and uncertainty estimates of
any candidate has no simulated sources lying beyond its
location in parameter space.

To reiterate, we aim to recover mappings that enable us to go
from measured candidate quantities to estimates of complete-
ness and uncertainties. We do this by comparing the results
obtained using the simulated sources to first define the
measurement bias, which translates an observed quantity to
an intrinsic one, and then evaluate the corresponding
uncertainties and completeness given the pipeline results for
model UDGs with those intrinsic properties. Readers not
interested in further details of our completeness and error
estimation can skip ahead to Section 4.

With the general approach defined, we focus on four distinct
aspects: the optimal window size, the number of bins, the
parameter limits used for modeling, and the order of the
polynomial model. These considerations and more detailed
descriptions of our approaches for estimating parameter
uncertainties and sample completeness are discussed separately
below.

Uncertainties. Error estimates produced by GALFIT,
derived from covariance matrices, are statistical in nature (Peng
et al. 2002) and have been shown to significantly underestimate
the true errors (Haussler et al. 2007). We attempt to better
define both any systematic error (parameter bias) and random
uncertainties (the confidence limits) using our simulated
sources. The parameter error for a given simulated object is
defined as the difference between the derived GALFIT value
and the input value (GALFIT — input). Because the errors are
generally asymmetric, we define the bias as the median
difference and the “lo” confidence limits as the 15.1 and
84.9 percentiles of the distribution for a set of simulated
objects. We will present both the uncorrected measurements
and our estimated parameter biases in the catalog. Users of the
catalog are encouraged to apply the bias values (by subtracting
the values presented in the catalog from the corresponding
uncorrected measurement), but we present them separately for
transparency and in the interest of reproducibility.

10
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For each of the ten parameters of interest (1to g, o, H0,z> Mg,
m,, m_ r., b/a, n, and 0) we fit models to the uncertainties that
are functions of four parameters. For the uncertainties in the
structural components, these include g, 1., n, and b/a.
Uncertainties in the photometric components are modeled
using r,, n, and b/a and the corresponding central surface
brightness or magnitude of the band under evaluation. We
determine best-fit models for the bias in each parameter and for
the 15.1% and 84.9% confidence bounds for each parameter.

The models are fit to the results obtained using a set of
simulated sources. To define the sets, binning is required, and
we begin by exploring different values for the window size for
that binning. To simplify the problem, we set the window size
for each of the four parameters to be the same, yet undefined,
fraction of each parameter’s range. We then randomly place
those windows to define a 4D parameter bin. Note that we will
define a large number of partially overlapping bins. We do this
to mitigate sensitivity in the fitting to the exact placement of
independent bins. The parameter values defining each part-
icular bin are the median values of those sources in the sample
that lie within the bin. As such, fewer windows mean lower
resolution and less coverage near the edge of the parameter
ranges. Uncertainty estimates require a statistical sample to
evaluate, and therefore, we require that windows contain at
least 10 detections. This criterion leads to a further reduction in
the range of parameter space that is well-modeled. We evaluate
window sizes that range from one-tenth to one-quarter of the
parameter ranges by laying down 10° windows for each size
and testing with a seventh-order polynomial model. Two
metrics are used when making our selections: the Coefficients
of Determination (R*) of the models and the number of our 226
Stripe 82 UDGs whose GALFIT results fall out of the model’s
parameter space. These are both estimated as the averages of
ten separate generations of the model.

In our first attempts, we found that the lower confidence
limits of the surface brightness were among the most difficult to
model robustly. Therefore, we pay special attention to the i,
lower confidence limits to guide our selections. Based on the
results of this exploration and considerations of fidelity toward
the ends of the parameter range, we select a base window size
of one-seventh the parameter range.

Using this window size, we next explore the effects of the
number of random bins on our metrics by testing data sets
ranging from 100,000 to 3,000,000 samples. Although there is
a slight improvement in R above 2.5 x 10° points, we select
this value because of the long computation times required to
process significantly larger data sets when modeling high-order
polynomials. The absence of significant differences between
the R* metric obtained for the training and test sets indicates
that overfitting is not a problem with data sets of this size. We
find that parameter limits of pg,>23.3 mag arcsec 2,
re>5.3",b/a>0.34, and n < 2.0 provide the best compromise
between maximizing R* and minimizing the number of UDGs
falling outside of the model parameter space for our Stripe
82 UDGs.

We train separate models using all 2.5 x 10° random bins for
each of the 30 values to be estimated (lower confidence limits,
median and upper confidence limits for each of 10 constrained
parameters). The Coefficients of Determination, R2, for the
models are shown in Table 3. The vast majority are close to one
suggesting that our selected models accurately predict errors
and biases for those data sets. Except as noted below for 6, the
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Table 3
Coefficients of Determination®

Parameter 15.1% C.L Median 84.9% C.I
o,g 0.806 0.965 0.964
to.r 0.791 0.965 0.964
1o,z 0.832 0.974 0.974
T, 0.988 0.975 0.918
b/a 0.955 0.794 0.929
n 0.988 0.973 0.850
[% 0.960 0.406 0.958
myg 0911 0.980 0.973
m, 0.908 0.981 0.972
m, 0.951 0.986 0.981
Note.

2 Each entry is the R? value obtained from the best-fit model of that quantity.
For example, the uppermost left entry represents the results for the model fit to
recover the 15.1% confidence interval for g .

models provide excellent approximations within their asso-
ciated ranges.

With these models, we now calculate the expected
systematic and random errors in each of the parameters
anywhere within the parameter space. The biases, as well as
the “lo” confidence limits, are presented in the catalog. As
shown in Table 3, the R? value for the median of 0, while
clearly nonzero, is significantly smaller than those of the other
models. As expected, the error in 6 as a function of all four
parameters used for modeling (i g, re, b/a, and n) is highly
symmetric around zero, indicating a negligible bias in our 6
determinations. To avoid adding noise, we set all § biases to
zero in the catalog.

We conclude this section by commenting on subtleties that
we have so far neglected. Our simulated sources are modeled as
smooth UDGs, like those found in the Coma cluster (e.g., van
Dokkum et al. 2015a). Field UDGs often show much more
structure (e.g., Singh et al. 2019; Karunakaran et al. 2020), and
the effect of this structure on parameter uncertainties is unclear.
Modeling these effects is obviously much more complex
because of the unconstrained nature of the range of possible
structures. Moreover, our test samples for modeling are drawn
from the same population as the training samples, and therefore
we cannot assume that the lack of overfitting also applies to
real UDGs with significant morphological differences. Despite
these caveats, the recovery of simulated sources does provide
baseline estimates of the uncertainties and completeness (see
below for the latter). Ultimately, both the uncertainties and
completeness will be validated through comparison with other
surveys that have different selection, such as HI surveys, and
structural analyses using other observations that are less
sensitive to star formation, such as near-IR images.

Completeness. We define completeness as the probability
that a UDG candidate with given structural and photometric
parameters will be identified as such after passing through our
entire pipeline, including the automated classification. We use
four modeled parameters (g g, 7o, b /a, and n) when assessing
completeness, and only include surviving simulations that meet
the threshold limits defined by our model. Criteria for selecting
these limits are discussed below.

As we did for the uncertainty modeling, we explore different
values for the window size and the degree of the polynomial
model that we use in the fitting to define our final model. To
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specify the model, we fit to completeness values defined for
bins that span the parameter space. Within each bin, we
calculate the probability of recovering a UDG candidate by
evaluating the ratio of the number of simulated sources
recovered by our pipeline processing to the number input.

We evaluate window sizes ranging from one-tenth to one-
quarter of the parameter ranges. We again lay down 10°
windows for each selected window size. However, we now
require a minimum recovery fraction of 0.0004, to avoid
spurious detections in unpopulated parts of parameter space,
and we test with a seventh-order polynomial model. At this
point, we set the model parameter limits to be j, >23 mag
arcsec 2, 4.0” <r,<20.0", b/a>0.30, and n <2.4. The R
values are near unity for all window sizes. We select a window
size of one-sixth of the parameter ranges, to minimize the
number of UDGs (3) falling out of the parameter space.
Because the initial parameter limits used for evaluating window
sizes produced excellent results, we see no need for further
exploration of these limits, and use them for further evaluations
and modeling.

We now use the selected window size and parameter limits
to evaluate polynomial models of order ranging from 3 to 10.
We elect to use a third-degree polynomial in order to minimize
extrapolation errors. With these choices, we have a model that
provides us with estimates of the completeness at the specific
location in parameter space for each of our candidates, and we
include these values in our catalog (Section 4).

We show the sensitivity of the completeness fraction on
candidate parameters in Figure 9. The completeness function is
clearly complex and shows at least some sensitivity to each of
the parameters we track. The dominant factor appears to be
central surface brightness, perhaps with Sérsic index being the
next most important, but the necessity of modeling it across at
least this set of parameters is evident. Although van der Burg
et al. (2017) used a lower effective radius threshold, our
completeness estimates show similar qualitative behavior to
their estimates in an effective radius versus central surface
brightness parameter space.

Quantitative comparisons are difficult to make, given the
range of different choices and definitions in the two studies. For
example, our maximum completeness appears low, <0.5, in
Figure 9 for two reasons. First, because a large fraction of our
survey area is masked or rejected due to Galactic dust
contamination, many simulated sources land in regions that
are not analyzed and are therefore not recovered. Second,
Figure 9 shows the completeness marginalized over all of the
unplotted parameters. As such, if our model suite includes
many simulated sources of extremely faint surface brightness,
then the completeness as presented in the Figure will appear to
be very low. In practice, however, the completeness correction
factor applied to any given candidate is appropriate for its own
multiparameter characterization, and is therefore unaffected by
the many much lower surface brightness objects we included in
our modeling and failed to recover.

We now discuss two issues that potentially affect the
interpretation of our completeness estimates. First, the survey
has variable depth across its footprint because certain regions,
such as Stripe 82, are imaged more frequently than others. The
Legacy Surveys were constructed only to meet a minimum
depth requirement, not to be homogeneous (although, in
practice, most of the area is covered to roughly the same
depth). As such, our sensitivity will vary across the sky. This
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Figure 9. The fractional completeness as a function of candidate UDG parameters. The structural parameters (r,, n, and b/a) are shown on the vertical axes to
demonstrate their effects when coupled with central surface brightness, jio,. We have similar models for the r- and z-band data. As plotted, the maximum
completeness appears to be <0.5, but for certain types of candidates the completeness is much larger (see text for discussion).

phenomenon is captured by our random placement of simulations,
assuming large-scale density fluctuations are negligible (e.g.,
assuming Virgo does not lie in an unusually deep region of the
survey). However, it does lead to large scatter in completeness (a
candidate with ji, =27 mag arcsec > may be detected in one
region of the sky, but not in another), which means that our
completeness estimates are representative for the whole survey
and should not be applied to small, limited regions. Second, as
mentioned above, our simulations are modeled as simple Sérsic
profiles, while the structure of real UDGs can be more complex—
and therefore have different completeness distributions. Ongoing
work (Karunakaran et al., in prep) involving a comparison of HI
selected and optically selected UDGs will, in part, address
questions regarding our completeness for such sources.

4. The Catalog

We present our catalog of 226 UDG candidates within the
Stripe 82 region, with a description of the catalog entries
presented in Table 4 (and the full catalog in the electronic version
of the Table). Each parameter entry includes its GALFIT estimate
as well as the bias and confidence limits produced by our models.
We additionally flag any entry where we had to extrapolate the
fitted model beyond the range of the constraints. Uncertainties and
completeness estimates for flagged entries are suspect and should
be used with caution. Photometric parameters are not corrected for
extinction, but extinction values are included in the table for those
who wish to use them. Our extinction estimates (A,, A,, and A,)
are calculated using the SDSS g, r, and z coefficients in Table 6 of
Schlafly & Finkbeiner (2011) for an Ry = Ay/EB-V)sgp value of
3.1. Here, E(B-V)sgp is estimated using the dustmaps.py
(Green 2018) SFD dust map based on Schlegel et al. (1998).
Alternatively, users may wish to apply different extinction
determinations. Parameters are corrected for bias before their
completeness values are estimated. Those with bias corrections
considered unreliable (completeness flag = 0) have flag=2, to
distinguish them from objects with flag =1 where the complete-
ness correction was derived beyond the model parameter range.
Our approach inherently prevents us from including values
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approaching the b/a physical limit of 1.0. Therefore, when
estimating completeness for our catalog UDGs, we set any b/a
value > 097 to 0.97, which occupies a region relatively
insensitive to this parameter (Figure 9).

We show the distribution in the sky of the 226 candidates
relative to known “normal” galaxies that satisfy 1000 <
cz/kms™' < 15000 and 12<m< 18 in Figure 10. There are
two noteworthy aspects. First, the distribution of candidate UDGs
tends to follow the higher-density regions among the normal
galaxies. This association was also seen in Paper I, and qualitatively
confirms that UDGs are correlated with normal galaxies. Second,
the projected density of candidate UDGs falls steeply for
R.A. < —15° and R. A. > 40°. These declines mirror the increase
in Galactic dust, and hence excluded regions, evident in Figure 4.

4.1. Comparison to Previous UDG Searches

The overlapping regions between the area we have surveyed
and previous surveys provide a check of our results—but also
clear examples of how the various searches differ.

4.1.1. Romdn & Trujillo (2017a, 2017b)

Roman & Trujillo (2017a) compiled a sample of 80 UDG
candidates in an area corresponding to 8 x 8 Mpc around A168
(z=0.045) using the Stripe 82 SDSS data to explore the role of
environment on UDGs. This cluster is about twice as far as the
Coma cluster (z=10.023), meaning that our angular criterion
used to select galaxies with r, > 2.5 kpc at Coma will select
galaxies with r, 2 5 kpc at the distance of A168. Such galaxies
are rare, so we do not expect a large sample. Among the 80
candidates Romédn & Trujillo (2017a) identified and measured
are two with r, > 5" (IAC37 and TAC63). Our catalog contains
both (SMDGO0115352+001434 and SMDGO0113177-001417).
The remainder of their sample lies below our angular size cut,
demonstrating how different UDG studies can probe distinct
populations by virtue of their selection criteria.

Roméan & Truyjillo (2017b) present data for 11 UDGs in
Hickson Compact Groups within Stripe 82. Of those 11, five
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Table 4
The Catalog®
Column Name Description Format
SMDG Object Name SMDG designator plus coordinates
RAdeg R.A. (J2000.0) decimal degrees
DEdeg decl. (J2000.0) decimal degrees
Re effective radius angular (arcsec)
E_Re effective radius 1o upper uncertainty angular (arcsec)
Re-bias effective radius measurement bias angular (arcsec)
e_Re effective radius 1o lower uncertainty angular (arcsec)
f Re effective radius uncertainty model flag 0 = good, 1 = extrapolated
AR axis ratio (b/a) unitless
E_AR axis ratio 1o upper uncertainty unitless
AR-bias axis ratio measurement bias unitless
e_AR axis ratio 1o lower uncertainty unitless
f_ AR axis ratio uncertainty model flag 0 = good, 1 = extrapolated
n Sérsic index unitless
E_n Sérsic index 1o upper uncertainty unitless
n-bias Sérsic index measurement bias unitless
e_n Sérsic index 1o lower uncertainty unitless
fn Sérsic index uncertainty model flag 0 = good, 1 = extrapolated
PA major axis position angle defined to be [—90,90) measured
N to E, in degrees
E_PA major axis position angle 1o upper uncertainty degrees
PA-bias major axis position angle measurement bias degrees
e_PA major axis position angle 1o lower uncertainty degrees
f_ PA major axis position angle uncertainty model flag 0 = good, 1 = extrapolated
mu0X central surface brightness in band X (X = g,r,z) AB mag arcsec”
E_mu0X central surface brightness 1o upper uncertainty in band X AB mag arcsec®
mu0X-bias central surface brightness measurement bias in band X AB mag arcsec®
e_mu0X central surface brightness 1o lower uncertainty in band X AB mag arcsec’
f mu0X central surface brightness uncertainty model flag in band X 0 = good, 1 = extrapolated
Xmag total apparent magnitude in band X AB mag
E_Xmag total apparent magnitude 1o upper uncertainty in band X AB mag
Xmag-bias total apparent magnitude measurement bias in band X AB mag
e_Xmag total apparent magnitude 1o lower uncertainty in band X AB mag
f Xmag total apparent magnitude uncertainty model flag in band X 0 = good, 1 = extrapolated
SFD Optical depth at SMDG location from Schlegel et al. (2011) unitless
AXmag Corresponding extinction at SMDG location in band X AB mag
Comp fractional completeness for similar UDGs unitless
f_Comp completeness model flag 0 = good, 1 = extrapolated,
2 = biases extrapolated
Note.

 The catalog is available as the electronic version of this table.

(This table is available in its entirety in machine-readable form.)

have r, < 5" and three others have pg, <24 mag arcsec” 2.
Given these properties, only three could potentially be
included in our catalog. Among those three, two have
o =24 mag arcsec > in the Romdn & Trujillo (2017b)
catalog, just at the bright end of our central surface brightness
boundary. We do not have matches to either of these
(UDG-B1 and UDG-B2), and indeed, in our estimation, these
two galaxies (SMDG0320211-011014 and SMDG0038239
+010621) have jigo=23.37 and 23.48 mag arcsec” 2,
respectively, and so fail to satisfy our criterion. Our catalog
does include the remaining one (UDG-R4). Again, this
comparison is a cautionary tale about the nature of different
UDG samples. We recover the galaxies that are well within
our selection criteria, but uncertainties can move objects in
and out of samples when their parameters are near the
selection boundaries. Simulations designed for the purpose of
understanding the uncertainties and related completeness
levels are critical.
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4.1.2. Leisman et al. (2017)

Leisman et al. (2017) identified a set of large, low surface
brightness galaxies from H I detections. Although their sources are
spread over a much larger area of sky than what we currently
present, there are five galaxies in their catalog that both overlap
our survey area and satisfy our criteria for jo, and r, (AGC
numbers 102375, 103435, 100288, 322019, and 334349). The
first three are in our catalog, while the last two are not. The last
two, however, lie at R.A.< —10, where Galactic dust is
significantly affecting our completeness, and would not affect
the H1 detection, and furthermore, AGC 334349 has a measured
surface brightness, 24.1 mag arcsec~ in the Leisman et al. (2017)
compilation, near our selection limit. Going back through our
results, we find that both galaxies are in regions of high optical
depth (7~ 0.1), and hence in excluded regions, and also that we
measure [l = 23.95 mag arcsec > for ACG 334349, which
would make it slightly brighter than our cutoff. Therefore, there
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Figure 10. Comparison of the distribution on the sky of UDG candidates in the Stripe 82 region (upper panel) and a set of normal galaxies (1000 < cz < 15,
000 km s~ ! and 12 < m < 18) from NED that consists mostly of SDSS galaxies (lower panel). The vertical and horizontal scales are different, leading to an artificial
stretching of coherent physical structures in the vertical direction. For the normal galaxies, which have available redshifts, we color-code by cz as illustrated by the
color bar. The most identifiable structures in the UDG candidate distribution correspond to normal galaxy concentrations at ¢z ~ 5500 km s~ .

are no unexplained differences in the catalogs. This partly
addresses a concern that our procedure might be biased against
star-forming, clumpy systems.

4.1.3. Greco et al. (2018)

Greco et al. (2018) present a large set of low surface
brightness galaxies identified in the Wide Layer of the Hyper
Suprime-Cam Subaru Strategic Program (Aihara et al. 2018).
That survey has fields distributed around the sky, but one field
happens to have partial overlap with our Stripe 82 survey
region. A comparison to that catalog offers an opportunity to
explore how different selection criteria applied to higher-
resolution images obtained with a larger telescope result in a
different catalog. Unfortunately, of the 781 objects in their
catalog, only 139 also satisfy our central surface and angular
size criterion, and of those, only eight overlap with our catalog.
Of those eight, we recover two (objects 191 and 201 in their
catalog). We do not recover their objects 197, 203, 210, 216,
230, and 250. Object 210, with r, = 5”13, does not match our
criteria. Objects 197, 216, 230, and 250 did not pass our r, or
o, criteria in early stages of processing. The last three are
close to our selection boundaries in the parametric values
provided by Greco et al. (2018), suggesting random scatter
could easily move them outside the boundaries. Finally, object
203 was detected in many individual images, but the centroid
disagreed sufficiently among the various images that we did not
reach a critical number of coincident detections. Statistically,
we estimate that this level of misalignment can be expected in 1
out 500 of our detected sources. We will attempt to mitigate
this problem in future applications of the pipeline, but do not
address it here because, statistically, we do not expect any more
such issues for the Stripe 82 sample. Our completeness
calculation captures these various issues because the simulated
sources are processed with the same pipeline. We conclude,
given that we do detect the objects and understand why they are
not included in our catalog, that we are sensitive to galaxies
such as those presented by Greco et al. (2018).

4.1.4. Tanoglidis et al. (2021)

Tanoglidis et al. (2021) present what is probably the closest
comparable effort to that described here. They analyze data
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Figure 11. Distribution of UDG candidates in the p, — n space. The open
circles represent the 226 objects in our catalog, and the filled sources represent
the objects in our catalog for which we found a match within 5” in the
Tanoglidis et al. (2021) compilation.

from the Dark Energy Survey (Abbott et al. 2018), which are
included in the Legacy Surveys that we analyze, and also
employ machine-learning tools to classify objects. We find that
112 out of the 226 candidates we present were also cataloged
by Tanoglidis et al. (2021). The nature of the 114 candidates
that are not matched to objects in their catalog is clarified in
Figure 11. The matching is mostly complete for pg , <25 mag
arcsec 2, about 50% for 25 mag arcsec > < Hog <25.5 mag
arcsec 2, and almost entirely incomplete for Ho,g > 25.5 mag
arcsec” 2. Tanoglidis et al. (2021) claim to be >50% complete
for B = 26.0 mag arcsec_z, which, given the differences
between o and fi,, a typical g—r color, and our own
incompleteness, is an estimate that appears to be in line with
the results in Figure 11.
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It is important to note that different surveys have different
strengths and do not necessarily supersede one another. For
example, although SMUDGes is about one magnitude deeper
in central surface brightness sensitivity, the Tanoglidis et al.
(2021) catalog includes objects of smaller angular extent than
SMUDGes and therefore has a much larger projected surface
density of objects. Among the reasons one might prefer to use
the SMUDGes catalog, aside from the fainter surface bright-
ness limit, are the detailed completeness calculations, the
quantitative treatment of Cirrus contamination, which becomes
more important as one progresses to fainter surface brightness,
and (eventually) the dual hemisphere coverage and larger
survey footprint.

5. Properties of UDG Candidates

We now present some preliminary discussion of the
properties of our candidates. Again, one must bear in mind
that the fitted models are idealized and may lead to systematic
errors in the derived properties for candidates that deviate
significantly from the assumed model (e.g., those candidates
that have very asymmetric surface brightness distributions).
The questions raised here will benefit greatly from the full
SMUDGes survey, which we estimate will contain roughly
30x as many candidates. As such, while we present and
discuss some results, we limit the discussion and interpretation.
Here, we are examining only the Stripe 82 candidates. The
Coma catalog from Paper I was compiled in a sufficiently
different manner, without completeness and full uncertainty
estimates, that we choose not to include it here. The Coma area
will be reprocessed, along with the rest of the Legacy Surveys,
using the procedure described here and presented elsewhere.
We apply the estimated bias to all of the measured parameters,
and consider only those systems that have an unflagged
completeness correction estimate.

5.1. Distances and Physical Sizes

Measuring distances, with which one can then assess the
physical characteristics of the candidates, is the most challen-
ging aspect of compiling a UDG catalog. Indeed, most UDGs
catalogs, like this one, are in reality UDG-candidate catalogs.
Although efforts to build up samples of spectroscopically
confirmed UDGs are ongoing (van Dokkum et al. 2015b;
Kadowaki et al. 2017; Alabi et al. 2018; Chilingarian et al.
2019; Karunakaran et al. 2020; Kadowaki et al. 2021), the
largest samples of UDGs with physical characteristics come
from “distance-by-association.” In such an approach, one
associates UDGs in redshift with a large overdensity of
galaxies, the Coma cluster being the most striking example
(van Dokkum et al. 2015a). This interpretation, for Coma in
particular, has been confirmed with a number of spectroscopic
redshifts (van Dokkum et al. 2015b; Kadowaki et al. 2017;
Alabi et al. 2018). The approach is used in larger surveys as
well (e.g., Tanoglidis et al. 2021).

Six of our candidates have available spectroscopic redshift
measurements in the literature. To obtain these, we searched
the NASA Extragalactic Database (NED) and SIMBAD for
projected matches within 5”. The obtained recessional
velocities are presented in Table 5. Physical effective radii
are calculated assuming a smooth Hubble flow and our
measurements of r.. There are a few noteworthy aspects. First,
the first system in the table (SMDGO0014598+023448) appears
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Table 5
UDG Candidates in Stripe 82 with Spectroscopic Redshifts
Name e cz
[kpc] [km s~ ']

SMDG0014598-+023448 10.33493 17941
SMDG0031454-+024256 2417034 2382
SMDG00323594-000652 527501 13165
SMDG0058555-+003627 445592 5437
SMDG0107238+010008 3.047004 4190
SMDG2334535+011226 1.15531 1306

to have an unrealistically large value for .. This could indicate
that the associated redshift is for a second galaxy seen in
projection. Upon inspection, there is no such system within 5”
of the source. The large apparent size could also indicate a tidal
nature for the source. Tidal features are often identified as low
surface brightness galaxy candidates and can have large extents
(Kadowaki et al. 2021). This does not appear to be the case
here either. We revisited the GALFIT modeling, and that
appears to be fine as well. It is possible that the redshift is
incorrect. The HTI detection from which the redshift is
determined is described as weak by the authors of that study
(Impey et al. 1996). Second, the last object in the Table
(SMDG2334535+011226) has a small r, and does not meet the
standard UDG size criterion of r,>1.5kpc. This object
illustrates how the selection on angular size alone can lead to
a sample contaminated by non-UDG, low surface brightness
galaxies. The remainder of the objects satisfy the UDG size
criterion, and two of the objects (SMDG0032359+000652 and
SMDGO0058555+003627) are among the high end of the UDG
size distribution. These two objects demonstrate that physically
large UDGs are not exclusively found in extremely dense
environments such as the Coma cluster.

This small sampling is consistent with, but not compelling
evidence for, a potential claim that the majority of our
candidates are, in fact, UDGs. To consider the issue further,
note that our angular effective radius lower limit of 5.3”
corresponds to 1.5kpc, the community standard UDG mini-
mum size, for ¢z ~ 4000 km s As such, we could have a
large population of nearby, physically small, low surface
brightness galaxies contaminating our sample. This ambiguity
cannot be resolved for any specific candidate without
spectroscopy, but we can investigate bulk sample properties
statistically using the strength of the angular two-point cross-
correlation function between UDG candidates and normal
galaxies for which we have redshifts, as done in Paper I. We
divide the sample of SDSS normal galaxies out to cz = 15, 000
km s~ ' into four equal redshift interval samples. The first bin
represents the survey volume in which our candidates might
not satisfy the UDG size criterion. The two-point cross-
correlation function is the weakest for this innermost bin and
stronger (by over a factor of two) for the next bin in distance.
The amplitudes decrease thereafter. Therefore, pending direct
distance estimates, we conclude that, although the sample is
certainly not clean of contaminating non-UDGs, the majority of
the sample consists of galaxies that satisfy the UDG size
criterion. This result is in part due to the fact that Stripe 82
mostly avoids dominant nearby structure. As such, our
conclusion is not transferable to any arbitrary region within
the full SMUDGes survey.
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Figure 12. The distribution of central surface brightness. The relative
distributions (normalized histograms) for the cataloged objects (narrow bars,
light green) is to be compared to the completeness-corrected distribution (wide
bars, dark gray). What was a originally a steeply declining distribution with
increasing (fainter) central surface brightness, dropping by approximately a
factor of two across the range, becomes a flatter distribution, where the decline
is at most 20%. There are a small number of objects at jio, < 24.0 because the
bias correction made them brighter than our selection criterion.

5.2. Surface Brightness Distribution

The surface brightness distribution of these galaxies is
intimately tied to the identification of these objects. Intuitively,
we expect the completeness to decline as one considers
galaxies with lower central surface brightnesses, and this
intuition is confirmed by our modeling (Figure 9). The effect of
this trend can be seen in the comparison of the measured i,
distribution and that corrected by our completeness estimates
(Figure 12). While the raw distribution shows a significant
decline (factor of ~2) from the bright to the faint end of the
survey range, the completeness-corrected version shows a
much milder decline of perhaps no more than ~20%. Given the
2.5 mag range of our survey, even a flat distribution in the
numbers of systems suggests a factor of ~10 less stellar mass
density contained in galaxies at the lower versus the upper end
of the range. The properties of the dark matter halos that these
systems occupy is of evident interest, but becomes more and
more difficult to ascertain as the surface brightness drops below
even the limits of this survey.

We have not reached a surface brightness for which there is a
marked decline in the numbers of halos containing identifiable
stellar populations. This finding is not entirely surprising given
that, in the Local Group, where one can reach far lower
effective surface brightness by counting individual stars, there
are known objects reaching a surface brightness of nearly
30 mag arcsec > (Drlica-Wagner et al. 2015), although those
surface brightnesses refer to the mean surface brightness rather
than a central one and those systems are physically smaller
galaxies than those that are the focus of SMUDGes. For various
reasons, including more significant contamination from
Galactic cirrus, it will become increasingly difficult to push
to fainter central surface brightnesses, but upcoming surveys,
such as the LSST with the Rubin Observatory, should be able
to probe this regime.

16

Zaritsky et al.

0.8 0.8
= =
g0.6 ; En““i »
= e Em
I g 1 -
204 <04

0.2 0.2

0 1 2 0 1 2
n n

1.0 1.0

0.8 0.8
g 0.0 e 0.6 i l‘l‘i"
Lo4 404

0.2 0.2

0 1 2 0 1 2
n n

Figure 13. The joint distribution of color, g—r, and Sérsic index, n. The left set
of panels show the distribution for the set of objects in the catalog, while the
right set shows the distribution once we apply the completeness corrections.
The lower panels show the same distributions as the corresponding upper
panels in terms of contours.

5.3. Joint Parameter Distributions

Joint parameter distributions can help us understand the
underlying behavior that defines individual parameter distributions.

5.3.1. Color versus Sérsic Index

Consider the joint distribution of g—r color and the Sérsic
index, n, shown in Figure 13. In either the raw version or the
completeness-corrected version, we find that the tail of objects
with n > 1 are red (g—r = 0.45). The bluer objects are confined
to the smallest values of n, even to somewhat lower n values
than the bulk of the red objects. The completeness-corrected
version of the distribution begins to suggest that the n > 1 red
population may be a distinct population rather than simply a
high-n tail. The statistics are such that this feature may also
simply be a random fluctuation in the joint parameter
distribution. A larger sample is needed to establish this
hypothesis, and that will be available from the complete
SMUDGes survey. Finally, we caution that the interpretation of
this result is complicated by the possibilities of a correlation
between n and r,, differences in the redshift and size
distributions as a function of color, and systematics in fitting
a smooth model to the clumpier blue galaxies that are
unaccounted for in our uncertainty estimates.

5.3.2. Sérsic Index versus Central Surface Brightness

There is previously published evidence for a relation
between n and p (van Dokkum et al. 2015a; Mancera Pifia
et al. 2019; Kadowaki et al. 2021). Kadowaki et al. (2021) find
a highly statistically significant correlation, such that n
decreases as the central surface brightness gets fainter, among
spectroscopically confirmed UDGs. We see a corresponding
trend in Figure 14 if we ignore the population of candidates at
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Figure 14. The joint distribution of Sérsic index, n, and central surface
brightness, 1, The left set of panels show the distribution for the set of
objects in the catalog, while the right set shows the distribution once we apply
the completeness corrections. The lower panels show the same distributions as
the corresponding upper panels in terms of contours.

n ~ 1.3. Interestingly, this n ~ 1.3 population is not present
among the spectroscopically confirmed UDG sample
(Kadowaki et al. 2021), perhaps indicating that these are not
UDG:s, or that they are UDGs with a real structural difference
(such as a nuclear star cluster), or that there is asymmetric
uncertainty in the recovered parameter distribution. Visual
examination of these high-n sources suggests a variety of
explanations for many of them, including the presence of
nuclear star clusters, superimposed background sources, and a
suggestion for a higher-concentration second component, like a
bulge, in some systems. Discriminating among these possibi-
lities is beyond the scope of this paper, but will be treated in
subsequent work. We close here by noting that, if lower surface
brightness UDGs do indeed also have lower n, this makes them
doubly difficult to detect.

5.3.3. Color versus Central Surface Brightness

A third joint parameter distribution that provides some
interesting insights is that of color and central surface
brightness (Figure 15). There are three aspects that we find
noteworthy. First, the completeness correction clearly empha-
sizes the lowest surface brightness systems, which, as we
described before, leads to a much less dramatic decline in the
number of candidates with declining surface brightness.
Second, there is a suggestion in the data that, among the red
population, the color becomes bluer as g, increases. For
otherwise similar systems, an increase in fi, will correspond
to an increase in m, and ultimately to M, and M. Therefore,
the trend in color may reflect the slope of the stellar mass—
metallicity relation in this population. Confirmation of this
interpretation awaits distance estimates for a significant fraction
of these candidates, but would be in line with what has been
found otherwise for UDGs (Barbosa et al. 2020). The last, and
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Figure 15. The joint distribution of color, g—r, and central surface brightness,
Ho,g- The left set of panels show the distribution for the set of objects in the
catalog, while the right set shows the distribution once we apply the
completeness corrections. The lower panels show the same distributions as the
corresponding upper panels in terms of contours.

perhaps most intriguing, aspect we wish to note is the absence
of low surface brightness blue candidates. The blue candidates
are limited to po, <25 mag arcsec >, In other words, had
UDGs been defined to have pg,>25 mag arcsec” 2, they
would have been a nearly entirely red population. This is not a
result of incompleteness, because the completeness corrections
make no qualitative difference to the distribution of blue
galaxies in this figure. Furthermore, we have shown that we did
not miss any HI detected sources (Leisman et al. 2017) in the
Stripe 82 region (Section 4.1.2), and the result is qualitatively
similar to that found by Greco et al. (2018).

While the blue UDGs are expected to fade as their star
formation stops and they age, thereby populating the red part of
these diagrams, the absence of fainter blue systems suggests
that what appears to be a continuing red sequence may end not
far below our current surface brightness limit. Taking the 100
SMUDGes sources that also have S-PLUS data for which the
spectral energy distributions were analyzed (Barbosa et al.
2020), we can now ask how the blue galaxies among that set
would evolve if star formation stopped. In Figure 16, we
compare the current g-band central surface brightness with
what we calculate it would be in 5 Gyr. To calculate the fading,
we adopt the stellar population results from Barbosa et al.
(2020) and allow each galaxy to age passively for an additional
5 Gyr. On average, (i, increases by about 0.9 mag, but the full
distribution of sources matches well the range of 1, that we
find for our red galaxies. We conclude that fading of the blue
candidates we find can explain the fainter red candidates that
we find, and that the absence of fainter blue candidates, which
we were capable of finding, suggests that the red candidate
population is not expected to extend significantly fainter than
o, =27 mag arcsec 2, unless those form via a separate
formation channel.
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Figure 16. The g-band central surface brightness distribution of blue UDG
candidates now and in 5 Gyr, assuming no star formation from the current time.
On average, fio, increases by 0.9 mag arcsec 2, and the distribution matches
well the range we measure for the red UDG candidate population.

5.4. Axis Ratios versus Color

We compare the axis ratio distribution of red and blue
candidates, with the color boundary drawn at g—r = 0.45 mag,
in Figure 17. The distribution of the red candidates is peaked at
b/a ~ 0.75 while that of the blue candidates is a bit more “flat-
topped,” with relative deficit to the red distribution at the
largest values of b/a. This qualitative result remains whether
we apply the completeness correction or not. A two-sided
Kolmogorov—Smirnov test of the completeness-corrected
distributions indicates that the two distributions are different
with 93% confidence. Pending results with higher statistical
significance, understanding how contamination may vary with
color, and an exploration of internal dynamical heating in
UDGs, the differences in the distributions may preclude the
simplest models in which all of the red candidates are simply
faded, blue candidates. Further exploration of this issue might
provide a strong constraint on formation models. A similar, but
more thorough argument, for dwarf galaxies overall is made on
a range of morphological grounds by Carlsten et al. (2021).

6. Summary

We present 226 ultra-diffuse galaxy candidates (r, > 5”3,
fo,g > 24 mag arcsec” %) in Stripe 82 that are recovered using
our improved procedure developed in anticipation of proces-
sing the entire Legacy Surveys footprint. We have implemen-
ted a variety of improvements that make both material
improvements in the output catalog and strengthen both the
robustness and efficiency of the algorithms. We expect the
description presented here of our procedure, in combination
with that presented in Zaritsky et al. (2019), will suffice for the
full catalogs to be presented in subsequent releases.

The advancements relative to Paper I described here include:

1. fitting that includes the effects of the point-spread
function with a floating Sérsic index structural parameter
(n), which leads to a wide range of best-fitting n, but a
clear preference for n <1, and allows us to explore
possible relationships between n and other parameters;
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2. an expanded wavelet filtering criteria that enables us to
simultaneously search for candidates of larger angular
extent;

3. careful consideration of Galactic dust and the false
detections it can give rise to, leading to a selection
criterion based on comparison of Planck- and WISE-
based estimates of the dust column density;

4. parametric uncertainty estimates and completeness esti-
mates that are based on full pipeline processing of
millions of simulated sources that span the full parameter
range; and

5. further refinements and training of our automated
candidate classification.

We compare our catalog to previous catalogs (Romédn &
Trujillo 2017a, 2017b; Leisman et al. 2017; Tanoglidis et al.
2021), and find that we either recover the published sources in
the overlapping parameter ranges or understand the cause for
the discrepancy. We have a sensitivity ~1.5 mag fainter in
central surface brightness than the largest previous catalog of
this region (Tanoglidis et al. 2021). Our recovery of the
Leisman et al. (2017) sources is also important because those
were selected as H I sources, indicating that we are sensitive to
the HI-rich UDG population as well.

We present a set of findings based on this preliminary
sample that do not depend on the (unknown) distance to the
candidate:

1. after correcting for incompleteness, there is no significant
decline in the number of UDG candidates as a function of
g-band central surface brightness down to the limit of our
survey (~26.5 mag arcsec 2);

2. Sérsic structural parameter n and g—r color correlate such
that bluer galaxies have smaller measured n;

3. lower surface brightness UDG candidates tend to have
smaller n, which confirms previous results by van
Dokkum et al. (2015a), Mancera Pifia et al. (2019), and
Kadowaki et al. (2021);

4. the bulk of blue (g—r < 0.45 mag) UDG candidates have
central surface brightness jio , < 25 mag arcsec 2 and can
fade to match the UDG red sequence we observe down to
Ho,g ~ 26.5 mag arcsec 2, but will not fade sufficiently to
match any UDGs that may lie well below our surface
brightness sensitivity; and

5. the differing axis ratio distributions for the red and blue
UDG candidates suggests that, despite the population
modeling described in (4), the red UDG candidates are not
merely faded blue candidates, but instead also require
internally or externally driven morphological transformation.

We look forward to significant upcoming improvements.
First, the processing of the entire Legacy Surveys data will
yield a final SMUDGes sample that contains ~30x as many
candidates. Second, the key to making progress in this field is
having the distance estimates necessary to determining physical
quantities. Spectroscopic redshifts are coming from a variety of
efforts (Karunakaran et al. 2020; Kadowaki et al. 2021), and
given the large footprint and size of SMUDGes, there are many
opportunities for distance-by-association, a technique that
connects UDGs with local overdensities of known galaxies
(van Dokkum et al. 2015a; Tanoglidis et al. 2021). Our initial
efforts, which will be described elsewhere, suggest that we may
be able to provide distance-by-association distance estimates
for as much as 20% of the SMUDGes catalog. Finally, deeper
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Figure 17. Distribution of axis ratios for blue (wider, blue bars) and red (narrower, red bars) UDG candidates. Left panel shows the raw distribution. Right panel
shows the completeness-corrected distribution. The distributions have been normalized to enable more direct comparison. The blue sample contains 47 candidates and

the red sample contains 158.

ground- and space-based surveys will both provide improved
measurements of these UDG candidates and uncover lower
surface brightness ones.
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