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Abstract

We present a catalog of 5598 ultra-diffuse galaxy (UDG) candidates with effective radius re> 5 3 distributed
throughout the southern portion of the DESI Legacy Imaging Survey covering ∼15,000 deg2. The catalog is most
complete for physically large (re> 2.5 kpc) UDGs lying in the redshift range 1800 cz/km s−1 7000, where the
lower bound is defined by where incompleteness becomes significant for large objects on the sky and the upper
bound by our minimum angular size selection criterion. Because physical size is integral to the definition of a
UDG, we develop a method of distance estimation using existing redshift surveys. With three different galaxy
samples, two of which contain UDGs with spectroscopic redshifts, we estimate that the method has a redshift
accuracy of ∼75% when the method converges, although larger, more representative spectroscopic UDG samples
are needed in order to fully understand the behavior of the method. We are able to estimate distances for 1079 of
our UDG candidates (19%). Finally, to illustrate some uses of the catalog, we present both distance-independent
and distance-dependent results. In the latter category, we establish that the red sequence of UDGs lies on the
extrapolation of the red sequence relation for bright ellipticals and that the environment–color relation is at least
qualitatively similar to that of high surface brightness galaxies. Both of these results challenge some of the models
proposed for UDG evolution.

Unified Astronomy Thesaurus concepts: Low surface brightness galaxies (940); Galaxy structure (622)
Supporting material: machine-readable table

1. Introduction

This is the third paper in a series presenting results from our
ongoing search for low-surface-brightness, physically large
galaxies. The previous papers, (Zaritsky et al. 2019, hereafter,
Paper I) and (Zaritsky et al. 2021, hereafter Paper II), presented
both the scientific motivation and description of our methodol-
ogy. The principal difference between the earlier papers and the
current one is that we have progressed beyond developing and
demonstrating how we identify and measure these galaxies, and
we now produce a large catalog. We present 5598 candidate
ultra-diffuse galaxies (hereafter UDG candidates, with criteria
of μ0,g> 24 mag arcsec−2 and re> 5 3) covering the southern
portion of the Dark Energy Spectroscopic Instrument (DESI)
Legacy Imaging Surveys (hereafter referred to as the Legacy
Survey; Dey et al. 2019), defined as the portion of the Legacy
Survey that uses DECam (Flaugher et al. 2015) images
obtained with the Blanco 4 m telescope. We refer to these
sources as UDG candidates because we do not yet have the
distance measurements needed to determine their physical size.
However, we describe below a method by which we do obtain
distance estimates for 1079 of the candidates and determine

that 514 of those do indeed have re> 1.5 kpc, thereby
confirming their nature as UDGs. Further arguments suggest
that an even greater majority of the candidates presented in the
catalog are likely to be UDGs. We refer the reader to Papers I
and II for a description of our scientific interest in UDGs and
historical context, but stress here that the observational
definition of UDGs is merely a way of selecting objects that
lie on the tails of physical parameter distributions, rather than
defining a physically distinct class of galaxy. Nevertheless,
such extreme objects have the potential to challenge galaxy
evolution models that are tuned to reproduce more typical
galaxies.
To illustrate the science potential of this new catalog, we

revisit a few of the results described in Paper II based on the
much smaller sample available then, and we also present results
using our new UDG subsample with estimated redshifts.
Detailed and complete investigations of the aspects explored
here will be provided in future papers—and, we hope, by other
investigators who exploit this catalog and the upcoming
northern extension. We describe the data and reprise the
outline of our processing methodology in Sections 2 and 3.
Some additional details and the catalog are presented in
Section 4. We describe our method for distance estimation
in Section 5, and a few preliminary results are provided in
Section 6. We use the concordance ΛCDM cosmology when
converting to physical units (WMAP9; Hinshaw et al. 2013)
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and magnitudes are on the AB system (Oke 1964; Oke &
Gunn 1983).

2. The Data

We report the results of our analysis of all images obtained with
DECam (Flaugher et al. 2015) at the CTIO 4m, or Blanco
telescope, which are included in Data Release 9 (DR9) of the
DESI Legacy Imaging Surveys (Dey et al. 2019). Briefly, this
survey was initiated to provide targets for the DESI survey (DESI
Collaboration et al. 1611). In addition to the images from DECam
(referred to as DECaLS), the complete Legacy Survey incorpo-
rates observations obtained with an upgraded MOSAIC camera
(Dey et al. 2016) at the KPNO 4m, or Mayall telescope (MzLS;
Mayall z-band Legacy Survey), and the 90Prime camera
(Williams et al. 2004) at the Steward Observatory 2.3 m, or
Bok telescope (BASS; Beijing-Arizona Sky Survey; Zou et al.
2017), to provide deep three-band (g= 24.7, r= 23.9, and
z= 23.0 AB mag, 5σ point-source limits) images. The Legacy
Survey encompasses about 14,000 deg2 of sky visible from the
northern hemisphere between declinations approximately bounded
by −18° and +84°. The DECaLS covers about 9000 deg2 and
provides the vast majority of observations obtained between −18°
and +32°. DR9 is augmented with deep DES (The Dark Energy
Survey Collaboration 2005) DECam observations8 obtained to
southern declinations of −68° (Figure 1) of an additional
∼6000 deg2.

Here, we present an analysis of only the DECam data.
Extending SMUDGes to the full Legacy Survey footprint will
require some adjustment and recertification of the pipeline for
MzLS and BASS data. We will present that portion of our
catalog in the next data-release paper.

3. Processing

All processing and analyses are performed on the Puma
cluster at the University of Arizona High Performance
Computing center.9 The compute nodes on this machine
currently contain 94 usable CPUs, 512 GB of RAM, and
1640 GB of solid-state storage, with half of the storage
guaranteed to be available during processing. All files and
observational data used in this study are publicly available at
the Legacy Survey10 or the NSFʼs NOIRLab11 website. We
limit observations to those contained in the file survey-ccds-
decam-dr9.kd.fits.gz, which is included in the Legacy Survey’s
DR9. This file has information for each CCD image used in the
data release, and excludes those considered inadequate for
further processing. We also make use of the magnitude zero
points and image FWHMs contained in this file; these values
are generated for each CCD by the Legacy Survey’s pipeline.
The footprint (Figure 1) contains 80,986 observations with
acquisition dates ranging from 2013 August 31 to 2019 March
7 and includes 4,991,222 individual CCD images considered
adequate for processing. In compressed form, these observa-
tions require more than 25 TB of storage, which far exceeds the
capacity of the processing nodes. Because transferring
files between the processing nodes and main storage drives is
inefficient, we limit the number of observations that are
simultaneously processed to 1000, which allows all

intermediate files needed for processing to be kept on the
processing node. This is accomplished by dividing the
observation footprint into individual tiles with sizes determined
by the number of included observations rather than area.
Observation centers extend from about −67°.4 to 34°.8 in decl.,
and we divide this into 10 equal stripes. We overlap adjacent
stripes by 1°.2 in decl. to account for the 2°.2 DECam field of
view. Each stripe is then divided into individual tiles in R.A.,
with an objective of maximizing the number of observations
within our imposed limit of 1000. As with decl., tiles overlap
1°.2 in R.A. to account for the field of view. This process results
in 107 tiles, which are individually processed.
Other than adaptations made because of the much larger

footprint, our processing pipeline is essentially unchanged from
that described in Paper II. The major steps involved in creating
our catalog include: (1) image processing to create a list of
potential UDGs; (2) screening for cirrus contamination, which
can create false positives; (3) automated classification of
remaining candidates; (4) modeling completeness, biases, and
uncertainties using simulated sources; and (5) creating the
catalog. Each of these steps and prior modifications are
described in detail in Paper I and Paper II, and here we only
briefly summarize them. We also describe further modifications
that were implemented because of the expanded footprint.
Unless otherwise stated, total numbers provided below and in
Table 1 include all tiles. Duplicate UDG candidates from
overlapping regions are removed prior to our machine
classification of the candidates.

3.1. Image Processing

Our image processing pipeline for identifying potential UDG
candidates consists of the following steps. Rationales for each
of these steps are provided in Paper II and are not
repeated here.

1. We obtain calibrated images and data quality masks that
have been processed with the DECam Community
Pipeline (Valdes & Gruendl 2014) from the NOIRLab
website. Because of tile overlaps, a total of 99,316
observations consisting of 5,897,921 individual CCD
images are reprocessed by our pipeline.

2. We use the data quality masks to assist in identifying and
removing CCD artifacts and wings of saturated stars.

3. We model and subtract sources on CCDs that are 2 mag
arcsec−2 brighter than a specified threshold in each band
(24.0 for g, 23.6 for r, and 23.0 for z), thereby removing
objects that are clearly too bright to qualify as UDG
candidates.

4. We isolate candidates of different angular scales using
wavelet transforms with tailored filters. This results in a
total of 453,373,301 detections, or an average of ∼77/
CCD, the vast majority of which will not be classified as
UDG candidates after further screening.

5. We only retain candidates with at least two coincident
detections (defined as lying within 2″ of their mean
centroid) among different exposures, regardless of which
wavelength filter was used in the detection to limit
spurious detections. Each group created in this manner is
considered to be a unique candidate located at the mean
centroid position. This requirement rejects all but
267,952,256 wavelet detections, which comprise
82,439,516 groups.

8 legacysurvey.org/dr9/description/
9 public.confluence.arizona.edu/display/UAHPC/Resources
10 legacysurvey.org/dr9/files/
11 astroarchive.noirlab.edu
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6. To limit the number of detections requiring time-
consuming coaddition and GALFIT (Peng et al. 2002)
modeling, we use the LEASTSQ function from the
Python SciPy library (Virtanen et al. 2020) to obtain
much faster, rough parameter estimates. We fit an
exponential Sérsic model (n= 1) to each candidate on a
CCD, and require that they meet parameter thresholds of
re> 4″ and μ0 values of greater than 23.0, 22.0 and 21.5
mag arcsec−2 for g, r, and z, respectively. These criteria
are relaxed, relative to those required after our final
GALFIT modeling (Step 9), in order to avoid inadver-
tently rejecting valid candidates. A total of 11,452,256
detections representing 8,003,489 distinct groups meet
these criteria. However, the majority of the groups have
only a single surviving member, with only 1,853,319
having more than one.

7. For further verification, we require that candidates pass
the preliminary screening described in the prior step on at
least 20% of the available observations, or a minimum of
two observations for those with less than 10. A total of
752,798 meet this threshold.

8. We perform an initial GALFIT screening of stacked
cutouts using a fixed Sérsic index of n= 1, without
incorporating the point-spread function (PSF) into the
model. We again use generous thresholds compared to
those of Step 9, and accept candidates with re> 4″ and
μ0,g> 22.95 mag arcsec−2 or μ0,z> 21.95 mag arcsec−2

if there is no available measurement of μ0,g. A total of
191,933 candidates survive this stage.

9. We obtain our final GALFIT results using a variable
Sérsic index with an estimate of the PSF incorporated
into the model. Estimates of morphological parameters
(re, b/a, n, and θ) are derived from a stacked image using
all three filters. These morphological parameters are then
held fixed when estimating photometric properties.
Because our machine-learning classifier (Section 3.4)
uses information from all three filters, we require that a
candidate have at least one observation in each filter.
Images from a band are used even if the object was not
initially detected on it. The 67,902 candidates that pass
our final criteria of re� 5 3, μ0,g� 24 mag arcsec−2 (or
μ0,z� 23 mag arcsec−2 if GALFIT failed to model g), b/
a� 0.37, and n< 2 form the population used for further
screening as described below.

3.2. Screening of Spurious Sources Caused by Cirrus

Our work on Stripe 82 (Paper II) showed that large regions
of the survey footprint are contaminated by Galactic cirrus that
can result in detections that are sometimes difficult to
differentiate from legitimate UDG candidates. To address this
challenge, we developed a screening process for probable cirrus
contamination that makes use of τ353 (Planck Collaboration
et al. 2014) and WISE 12 μm (Meisner & Finkbeiner 2014)
dust maps. In particular, we extract single point values from
each dust map located at the coordinates of a candidate, and
reject those with values exceeding 0.05 for τ353 or 0.1 MJy sr−1

for WISE 12 μm. With 43.4% of the Stripe 82 footprint from
Paper II exceeding these thresholds, dust contamination was a
major factor in determining completeness in that region. In

Figure 1. Footprint of the Legacy Survey DR9 observations used in this study
in R.A. and decl. In the top three panels, shading denotes the observation
density for each band as shown in the top color bar. The bottom panel shows
regions with coverage available in all three filters. Footprints for our previous
work in Coma (Paper I) and SDSS Stripe 82 (Paper II) are shown in green and
red, respectively. The Galactic plane is traced by the orange curve.
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contrast, only 1.7% of the Coma region studied in Paper I
exceeds these thresholds, demonstrating the large variations
found within the DECaLS footprint. This conclusion is visually
confirmed in Figure 2, which shows that ∼31% of the entire
DECaLS footprint exceeds our thresholds, primarily in regions
immediately adjacent to the Galactic plane. Using our criteria,
we reject 54,029 candidates (∼80%) that survived our image
processing pipeline as potential false detections caused by dust,
leaving 13,873. The fraction of candidates rejected far exceeds
the fraction of the DECaLS footprint that fails our dust criteria,
emphasizing the problem with false-positive detections caused
by cirrus contamination.

3.3. Screening of Duplicates

Before classifying the remaining candidates, we eliminate
duplicate entries that result primarily from our defined
overlapping tiles. We consider any candidates lying within
10″ of each other to to be duplicate detections. While this
theoretically could cause the loss of some closely spaced
UDGs, we visually inspected all 75 cases of duplicates lying
between 5″ and 10″, and found none containing bona fide
separate candidates. The rejected systems consisted either of
cirrus that was not rejected by our dust criteria, tidal material,
or very large candidates that the processing broke up and
identified as separate sources. We discuss our incompleteness
in very large sources in Section 3.6.2.

We follow a two-step protocol for handling duplicates. We
select whichever of the multiple sources has the greater number
of observations and reject the remainder. If two or more have
the maximum number of observations, we create a new entry
using the median values of all parameters. Finally, because our
machine-learning classifier uses information from all three
filters, we require that a candidate have at least one observation
in each of filter, leaving us with 10,892 sources.

3.4. Automated Classification

Details on our approach for computer classification are
described in detail in the appendix of Paper I, with
modifications addressed in Paper II. Briefly, we found that
our best results are obtained with the TensorFlow Keras version
of the convolutional neural network, EfficientNetB1 (Tan &
Le 2019) trained on 224× 224 pixel (∼59″× 59″) cutouts
downloaded from the Legacy Survey. Using this protocol, we
achieved an overall accuracy of 96.2% (513/533) on a test set
with eight false positives (specificity of 96.5%) and 12 false
negative classifications (sensitivity of 96.1%). As described in
Paper II, training and test sets were derived from both our

Coma and Stripe 82 data with depth distributions that should
approximate those of the current footprint shown in Figure 1.
Therefore, we make no changes for the current study and use
the prior trained network resulting in 5860 candidates classified
as potential UDGs. As mentioned in Paper II, we occasionally
find sources structurally similar to other candidates but

Table 1
Number of Detections and UDG Candidates after Each Processing Step

Process Description in Text Detections UDG Candidates

Wavelet screening Section 3.1, Step 4 453,373,301 N/A
Object matching Section 3.1, Step 5 267,952,256 82,439,516
Sérsic screening Section 3.1, Step 6 11,452,256 1,853,319
Required observations Section 3.1, Step 7 N/A 752,798
Initial GALFIT screening Section 3.1, Step 8 N/A 191,933
Final GALFIT screening Section 3.1, Step 9 N/A 67,902
Cirrus screening Section 3.2 N/A 13,873
Duplicate removal Section 3.3 N/A 10,892
Automated classification Section 3.4 N/A 5760
Visual confirmation Section 3.5 N/A 5598

Figure 2. Cirrus contamination within the DECaLS footprint. The top panel
shows the distribution of WISE 12 μm, while the middle panels show it for
τ353. Regions in dark blue in the bottom panel exceed our dust proxy thresholds
of either 0.1 MJy sr−1 for WISE 12 μm or 0.05 for τ353, and comprise ∼30% of
the entire footprint. Overlays in green and red in the bottom panel correspond
to the footprints from our previous work in Coma (Paper I) and SDSS Stripe 82
(Paper II), respectively. The Galactic plane is shown in orange.

4

The Astrophysical Journal Supplement Series, 261:11 (18pp), 2022 August Zaritsky et al.



significantly redder than the Coma cluster red sequence.
Although some of these may be objects of interest in their
own right (e.g., high-redshift Ly α nebulae), we conclude based
on visual inspection that these are unlikely to be UDGs, and so
we reject those with g− r colors >1.0 mag. A total of 100
candidates fail to meet this threshold, leaving 5760 catalog
entries. Applying the completeness corrections described
further below, this number of cataloged candidates corresponds
to 15,830 candidates covering the ∼15,000 deg2 survey
footprint, for a surface density of ∼1 candidate per deg2.

3.5. Visual Confirmation

In Paper II, we concluded from visual examination that about
2.6% (8/306) of the candidates identified as potential UDGs by
our automated classifier in a test set were false positives. To
minimize the effects of false positives in our current catalog,
objects classified as candidate UDGs were visually reviewed by
two authors (D.Z. and R.D.) in three steps. To estimate
consistency, both reviewers initially classified the same random
10% (576) of the sample. Of these, 10 (1.7%) are classified as
false positives by both reviewers, with disagreements on
another 10. Because UDGs may randomly fall in close
proximity to an unrelated normal galaxy along the line of
sight, we find that most disagreements involve differentiating
candidates from tidal material or spiral arms. Although without
additional information (distance measurements, higher-resolu-
tion images, etc.) it is sometimes impossible to be certain, we
attempt to add some objectivity to this decision: for a candidate
to be assigned to another galaxy, we require that it have either a
clear bridge to the purported parent or appear to be part of a
shell surrounding the parent. We then split the remaining
candidates into two groups of 2592 each, which either R.D. or
D.Z. visually evaluated. This step is intended to catch those
with obviously incorrect designation. Of the 5184 candidates
inspected by either R.D. or D.Z., a total of 79 (1.5%) were
classified as false positives and 231 (4.5%) were flagged for
further evaluation. The false positives include two large
candidates with duplicate detections whose centers are
separated by greater than the 10″ distance required for our
duplicate screening (Section 3.3). The final step consisted of
these 231, together with the 10 disagreements from the first set,
being evaluated in more detail by both reviewers. A total of 57
are labeled as false positives by both reviewers, and
disagreements remain on 16. Because we want to minimize
the number of false or ambiguous detections in our catalog, we
consider any disagreements to be false positives resulting in
162/5760 (2.8%) being labeled as such. This fraction is nearly
identical to that presented in Paper II, suggesting that our
earlier training and test sets are appropriate for the current data.

3.6. Estimating Completeness, Biases, and Uncertainties Using
Simulated UDGs

In Paper II, we planted simulated UDGs at random locations,
to estimate uncertainties and recovery completeness. Simulated
sources were placed at an average surface density of 2000 deg−2

(about 100 per CCD) using Sérsic profiles with random
structural and photometric properties. We process the sources
separately with the same pipeline as for our real sources,
including the automated classification. We estimate complete-
ness and both structural and photometric uncertainties using
polynomial models created with the PolynomialFeatures

function from the Python Scikit-learn library (Pedregosa et al.
2011) and a four-layer neural network implemented with Keras
(Chollet & Keras Team 2015). Details about our protocol for
developing the models and selection of their parameters are
given in Paper II, and other than modifications and information
needed for understanding results, they will not be repeated here.
We initially used uniform distributions for all parameters,

but found that the number of faint simulations surviving our
pipeline was inadequate for robust statistics. Therefore, we
augmented the initial run with two more, using normal
distributions with a mean of μ0,g= 26.4 mag arcsec−2 and a
standard deviation of σ= 1.3 mag arcsec−2. We now
incorporate these into a single run consisting of one-third with
a flat distribution and two-thirds with normal distributions.
Because the full DECaLS footprint is so much larger than that
of Stripe 82, we decrease the simulation density to 600 deg−2

or about 30 per CCD. In another departure from Paper II, we
now account for tile overlaps by assigning both simulated
sources and pipeline survivors to a single tile with borders
defined by the midpoints of the overlapping regions. Points
lying outside of this region are ignored. This is necessary
because tile size is determined by a maximum number of
observations, and regions with higher observation densities
have smaller tiles with a relatively larger fraction overlapping,
resulting in a bias toward such regions. Furthermore, because
we require our science candidates to be imaged at least once in
all three filters, we only include the 7,090,079 simulations
meeting this same criterion (see Section 3.3). As described in
Paper II, in order to obtain adequate statistics, our methodology
prevents us from modeling the full range of our simulations.
Because we want our models to include the expected ranges of
our science candidates, we use expanded criteria for simula-
tions (23.5< μ0,g< 27.5 mag arcsec−2, 3.5< re< 20″, b/
a> 0.25, and 0.1< n< 2), with 1,142,617 meeting these
thresholds.
As with our real candidates, we use cutouts downloaded

from the Legacy Survey and centered on the detection when
applying our automated classification. Because real sources
may occasionally be incorrectly associated with a simulated
one, we make two passes through our automated classification
network. We initially evaluate cutouts before placing our
simulations on them. Any that pass our classifier at this step
cannot be simulations, and are rejected from further considera-
tion. We then place the simulations on these same cutouts and
reclassify them. Using these criteria, a total of 956,604 of the
original simulations are classified as candidates and are used
for estimating uncertainties and completeness.
As noted in Paper II, our ability to estimate uncertainties and

completeness is limited by the differences between our smooth
Sérsic models and real UDGs, some of which may have
complex morphologies. Nonetheless, they do provide baseline
estimates of these parameters, which may be augmented in the
future by comparing our results to other surveys using different
observational and analytic strategies.

3.6.1. Uncertainties

We define the parameter error for a given simulated source
as the difference between the final GALFIT value and the value
used when creating the simulated source (GALFIT − input).
Errors are generally asymmetric, and we define the bias as the
median difference and the “1σ” confidence limits as the 15.1
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and 84.9 percentiles of the distribution for a set of similar
simulated objects.

Polynomial models, especially of high order, may extra-
polate very poorly for data points lying outside of the fitted
range. Other than for re, which has an upper limit of 20″, our
simulation range for individual parameters extends beyond
those expected for our science targets. However, the models do
not include all possible combinations in the 4D parameter
space, which is limited by the number of simulations surviving
our entire pipeline. Therefore, candidates with parameters that
are within individual simulation limits may still fall out of the
full parameter space when combined. Our models for Stripe 82
used a ninth-degree polynomial, which, except for a few
candidates, gave us acceptable uncertainty estimates for
parameters that fell out of the modeling range. Because of
the much larger area of observation and the more diverse
population, the range of GALFIT estimates for all parameters
in the current study exceed those found in Stripe 82. This
problem is particularly acute for re, where GALFIT estimates
may produce values several factors greater than our simulation
maximum of 20″. We find that using a ninth-degree polynomial
results in meaningless uncertainty estimates for a significant
number of candidates with parameters lying outside of the fitted
model. Because we use a much larger number of simulations in
the current study, even low-order polynomials fit our model
data points better than the ninth-degree polynomial did for
Stripe 82, and we select a second-order polynomial for this
study. As discussed in Paper II, there is negligible bias in our θ
determinations, and to avoid adding noise, we set all θ biases to
zero in the catalog.

3.6.2. Completeness

Completeness is defined as the probability that a candidate
with given structural and photometric parameters will be
identified as such after passing through our entire pipeline, and
is assessed using four modeled parameters (μ0,g, re, b/a, and
n). We again use a second-degree polynomial to fit the
simulation results, rather than the third-degree polynomial used
for Stripe 82. Bias corrections are applied to our catalog entries
before estimating their completeness probabilities.

A limitation of our completeness analysis arises from the
training sample used for automated classification. This was
drawn from candidates in the Coma and Stripe 82 regions,
which contained very few visually confirmed candidates with
angular extents >30″, and therefore the vast majority of “large”
candidates were classified as artifacts or tidal material. To
estimate the effect of this limitation, we visually examined all
57 candidates with GALFIT re> 25″ in the tile containing the
Virgo cluster prior to our automated classification. The Virgo
cluster is only about one-sixth the distance to the Coma cluster,
and a candidate with our target minimum physical extent of
2.5 kpc at Coma would have an angular extent of ∼32″ in
Virgo. Therefore, all the galaxies that we would classify as
UDGs in the Coma cluster would be susceptible to mis-
classification in the Virgo cluster. Of the 23/57 that we visually
determine to be legitimate candidates, none (0/10) of those
with re> 33″ were correctly classified by our automated
classifier. The recovery rate improves to 50% (3/6) for
candidates with 30″< re< 33″ and to 71% (5/7) for those with
25″< re< 30″.

This incompleteness is unfortunate, but not highly proble-
matic for the survey as a whole. The principal goal of

SMUDGes is to explore the nature of large (re> 2.5 kpc)
UDGs across environments. Accurate distances are required in
order to determine physical parameters, and those galaxies that
have low recessional velocities are plagued by large distance
uncertainties due to unknown peculiar velocities. Our calcu-
lated completeness estimates extend to re= 20″. This angular
size corresponds to 2.5 kpc at z∼ 0.006 or cz= 1800 km s−1.
This lower bound excludes Virgo (cz∼ 1100 km s−1), and
even so is still somewhat of a low recessional velocity for an
accurate (i.e., likely to be good to 10% to 20%) Hubble flow
distance determination. As such, we conclude that our catalog
best reflects the population of large (re> 2.5 kpc) UDGs
beyond cz∼ 1800 km s−1. The upper bound on cz over which
we expect to find large UDGs simply comes from determining
when large UDGs begin to fall below our 5 3 angular size
criterion, which occurs at cz∼ 7000 km s−1. Nevertheless, the
catalog also contains smaller UDGs, with re between 1.5 and
2.5 kpc, and UDGs beyond cz∼ 7000 km s−1.

4. The Catalog

To keep our simulation pipeline identical to our science
pipeline, we include all 5760 candidates in our catalog, with those
visually identified as false positives flagged. Although a relatively
small fraction, these should be omitted from any conclusions
drawn from our results that do not depend sensitively on the
completeness fractions. Descriptions of the catalog entries are
presented in Table 2, with the full catalog available in the
electronic version of the Table. The parameter entries include their
GALFIT estimates as well as their bias and confidence limits
produced by our models. We additionally flag any entry where we
had to extrapolate the fitted model beyond the range of the
constraints. Even when using lower-order polynomials, we find
that uncertainty and completeness estimates may be unacceptable
when a candidate has an estimated re> 30″, and therefore we flag
these by setting these estimates to−99.9999 for candidates with re
values exceeding this limit. Users are encouraged to apply the bias
values by subtracting those presented in the catalog from the
corresponding uncorrected measurements when drawing conclu-
sions from the data. However, uncertainties and completeness
estimates for flagged entries are suspect and should be used with
caution (Section 3.6). Note that this limitation results in severe
incompleteness in physically large UDGs in nearby clusters, such
as Virgo. The distribution on the sky of the 5598 valid candidates
is presented in Figure 3.
Parameters are corrected for bias before their completeness

values are estimated. Completeness estimates may be suspect
(completeness flag≠ 0) for either of two reasons. The
parameters may be outside of the parameter space defined by
our completeness model, and these have flag= 1. Alterna-
tively, the bias correction derived from the uncertainty model
may be unreliable, and these have flag= 2. In either case, the
results should be used with caution.
Photometric parameters are not corrected for extinction, but

extinction values are included in the table for those who wish to
use them. Our extinction estimates (Ag, Ar, Az) are calculated
using the SDSS g, r, and z Legacy Survey extinction
coefficients,12 which differ slightly from those in Table 6 of
Schlafly & Finkbeiner (2011). E(B− V )SFD is estimated using
the dustmaps.py (Green 2018) SFD dust map based on the
work of Schlegel et al. (1998).

12 legacysurvey.org/dr9/catalogs/#galactic-extinction-coefficients
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Finally, we recognize that, even in situations where both of
our reviewers visually classify a candidate as a potential UDG,
in a population of this size, some are going to be ambiguous
and other observers may think otherwise. This number should
be small and not significantly affect any conclusions drawn
from analyses of the entire unflagged data set. However, we
obviously would recommend that images be reviewed for any
studies drawing conclusions based on individual candidates, in
particular if those are extreme in any way (e.g., largest, faintest,
etc.).

4.1. Comparison to Previous Catalogs

In Paper II, we presented a comparison to the Greco et al.
(2018) and Tanoglidis et al. (2021) catalogs over the Stripe

82 region. Here, with our newly realized greater areal
coverage, we expand that comparison and also now include
the Prole et al. (2019) catalog. As we stressed in Paper II,
catalogs tend to have different strengths and weaknesses, so
the comparison here is not meant to place any catalog above
another, but rather to assess the robustness of the catalogs
and highlight where the potential advantages of using the
SMUDGes catalog might lie.
In Figure 4, we present the distribution of matched sources

from the three catalogs and SMUDGes on the sky. The first
clear difference is that SMUDGes covers a much larger area of
sky than the Greco et al. (2018) and Prole et al. (2019) catalogs,
and it provides more northern coverage than the Tanoglidis
et al. (2021) catalog. In detail, the various catalogs differ from
SMUDGes in other ways as well. The Greco et al. (2018)

Table 2
The Cataloga

Column Name Description Format and/or Units

SMDG Name Object Name SMDG designator plus coordinates
RAdeg R.A. (J2000.0) decimal degrees
DEdeg decl. (J2000.0) decimal degrees
Re non-circularized effective radius angular (arcseconds)
E_Re effective radius 1σ upper uncertainty angular (arcseconds)
Re-bias effective radius measurement bias angular (arcseconds)
e_Re effective radius 1σ lower uncertainty angular (arcseconds)
f_Re effective radius uncertainty model flag 0 = good, 1 = extrapolated
b/a axis ratio (minor/major) unitless
E_b/a axis ratio 1σ upper uncertainty unitless
b/a-bias axis ratio measurement bias unitless
e_b/a axis ratio 1σ lower uncertainty unitless
f_b/a axis ratio uncertainty model flag 0 = good, 1 = extrapolated
n Sérsic index unitless
E_n Sérsic index 1σ upper uncertainty unitless
n-bias Sérsic index measurement bias unitless
e_n Sérsic index 1σ lower uncertainty unitless
f_n Sérsic index uncertainty model flag 0 = good, 1 = extrapolated
PA major axis position angle defined to be [−90, 90) measured

N to E, in degrees
E_PA major axis position angle 1σ upper uncertainty degrees
PA-bias major axis position angle measurement bias degrees
e_PA major axis position angle 1σ lower uncertainty degrees
f_PA major axis position angle uncertainty model flag 0 = good, 1 = extrapolated
mu0X central surface brightness in band X (X ≡ g, r, z) AB mag arcsec−2

E_mu0X central surface brightness 1σ upper uncertainty in band X AB mag arcsec−2

mu0X-bias central surface brightness measurement bias in band X AB mag arcsec−2

e_mu0X central surface brightness 1σ lower uncertainty in band X AB mag arcsec−2

f_mu0X central surface brightness uncertainty model flag in band X 0 = good, 1 = extrapolated
Xmag total apparent magnitude in band X AB mag
E_Xmag total apparent magnitude 1σ upper uncertainty in band X AB mag
Xmag-bias total apparent magnitude measurement bias in band X AB mag
e_Xmag total apparent magnitude 1σ lower uncertainty in band X AB mag
f_Xmag total apparent magnitude uncertainty model flag in band X 0 = good, 1 = extrapolated
VC visual classification flag 0 = good, 1 = rejected,

2 = observers disagreed
SFD optical depth at SMDG location (see text) unitless
AXmag corresponding extinction at SMDG location in band X AB mag
comp fractional completeness for similar UDGs unitless
f_comp completeness model flag 0 = good, 1 = extrapolated,

2 = biases extrapolated

Notes.
a The uncertainty range is determined by applying the given upper and lower uncertainties to the measured value (by adding the upper uncertainty value and
subtracting the lower uncertainty value) but represents the uncertainty range about the bias-corrected value.

(This table is available in its entirety in machine-readable form.)
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catalog includes many more systems of small angular extent
(only 23% of the galaxies satisfy the SMUDGes re> 5 3
criterion) and a number of higher central surface brightness
galaxies (only 67% satisfy the SMUDGes μ0,g> 24 criterion,
assuming the global g− i color is representative of the central
color). On the other hand, the Greco et al. (2018) catalog has
significantly better representation at the faintest central surface
brightnesses, where SMUDGes begins to become significantly
incomplete. As such, the two samples, even within the
overlapping regions of sky, are nearly distinct, with only 62
sources in common. Similarly, the Prole et al. (2019) sample
also is dominated by sources of smaller angular extent than the
SMUDGes criterion, and only 57 objects are matched to the
SMUDGes catalog. Of the 66 sources in that catalog with
re> 5 3, 57 are matched, demonstrating that the mutual
completeness is high when comparing similar populations and
that the low number truly reflects the differences in the
selection.

SMUDGes has the greatest overlap with the Tanoglidis et al.
(2021) catalog, where we now identify 1261 objects in
common. However, that catalog has broader selection criteria
and includes many objects with brighter central surface
brightnesses than SMUDGes, so care is still warranted before
comparing results. Furthermore, as described in Paper II and
confirmed here, SMUDGes is especially more sensitive for
objects with μ0,g> 25.5 mag arcsec−2 (Figure 5).

5. Distance by Association

The way we approach the UDG candidate distance challenge
is similar to the methods used by previous investigators. We
identify those UDG candidates projected on overdense physical
systems, as defined using galaxies with existing redshift
measurements, and presume that the UDG candidates are
members of that overdensity. This approach was first adopted
by van Dokkum et al. (2015) for candidates projected on the
Coma cluster and has been used widely (e.g., Mihos et al.
2015; van der Burg et al. 2016; Yagi et al. 2016; Román &
Trujillo 2017; Trujillo et al. 2017; Tanoglidis et al. 2021). At
least for those UDGs projected onto the Coma cluster, this
approach has been verified to work for most candidates using
spectroscopic follow-up (van Dokkum et al. 2016; Kadowaki
et al. 2017, 2021). The results are likely to become more
questionable at lower overdensities, and will depend on the
degree of correlation between “normal” galaxies and UDG
candidates.
Rather than applying this method only in highly overdense

systems, e.g., the Coma or Virgo clusters, we aim to expand the

Figure 3. The current SMUDGes sample of 5598 UDG candidates on the sky in equatorial coordinates. Top panel shows the individual candidates more clearly, while
the lower highlights overdensities. Several well-known structures are circled and labeled, with the strongest concentration being the Virgo cluster, even though the
catalog is significantly incomplete in large UDGs for low redshifts (cz < 1800 km s−1) because they are so large on the sky. The sizes of the projected circles have no
physical meaning.

Figure 4. Distribution of matched UDG candidates on the sky for three
different catalogs compared to the current SMUDGes catalog distribution. The
blue diamonds correspond to galaxies from Greco et al. (2018), the red
triangles are those from Prole et al. (2019), and the green squares are those
from Tanoglidis et al. (2021). The small dots represent the SMUDGes
candidates.

Figure 5. Distribution of sources matched with those of Tanoglidis et al.
(2021) vs. central surface brightness. The darker histogram represents the
distribution of surface brightnesses in the SMUDGes catalog. The lighter
histogram, with thinner bars, represents the distribution of surface brightnesses
among matched sources. This figure shows that the matched source distribution
is skewed toward higher central surface brightness, demonstrating that the
fainter objects in SMUDGes are underrepresented in the Tanoglidis et al.
(2021) catalog.
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environments in which we can provide estimated redshifts. We
define the overdensities ourselves rather than depending on
existing group or cluster catalogs. Our sample of “normal”
galaxies with measured redshifts comes from the compilation
provided by the online database SIMBAD (Wenger et al.
2000). For each galaxy of interest without a spectroscopic
redshift, we draw galaxies from SIMBAD that are projected
within 5° and have 0.0017< z< 0.05. The lower redshift limit,
corresponding to cz∼ 500 km s−1, is set to avoid confusion
with Galactic sources—and in practice, it also removes a few
local galaxies from consideration. Although this selection may
prevent us from identifying a local UDG, working in a regime
where peculiar velocities are comparable to the expansion
velocity renders any association and inferred distance highly
suspect. Furthermore, our completeness for local UDGs is
extremely low (Section 3.6.2). The upper limit, z= 0.05, is
guided by our understanding that UDGs larger than re> 6 kpc
are quite rare (van Dokkum et al. 2015; Yagi et al. 2016) and
often spurious (Kadowaki et al. 2021).

To have roughly equal sensitivity to structures across the
relevant volume, we limit ourselves to using bright galaxies,
MB or Mg<− 19 mag. We include in our consideration only
such galaxies in SIMBAD that lie at a projected physical
distance less than rC,proj from the galaxy of interest, using the
angular diameter distance at the redshift of the SIMBAD
galaxy to evaluate rC,proj. We explored a range of values for
rC,proj ranging from 0.5 to 2.5 Mpc and concluded that
1.5 Mpc provided a compromise between providing an
estimated redshift for as many candidates as possible and
including contaminating, unrelated overdensities in the line-
of-sight galaxy distribution. In practice, the results were not
highly sensitive to the choice of rC,proj within this range.

Using galaxies that satisfy all of these criteria surrounding
each galaxy of interest, we then drop from consideration
those that have two or fewer potential companion galaxies.
We opted for a minimum of three associated galaxies because
we want to measure the mean recessional velocity and its
dispersion for the putative group. To help determine whether

an association between the UDG candidate and a structure
along the line of sight can be plausibly made, we divide the
galaxies along the line of sight into 30 redshift bins between
0.0017< z< 0.05 and identify the location of the peak in the
number distribution. We fit a Gaussian to the redshift
distribution of all the potential companions. We refer to the
standard deviation of this distribution as σALL. Then we work
our way to both lower and higher redshift bins from the peak
of the distribution until there are zero galaxies in a bin. We fit
a second Gaussian to this trimmed z distribution, and refer to
it as sTRIM. The ratio between these two measurements is the
measure of the complexity of the line-of-sight galaxy
distribution that we will use to accept or reject an estimated
redshift.
We explore this and other potential criteria we might use to

help us discriminate between correct and incorrect estimated
redshifts using two different sets of galaxies. First, we
estimate redshifts for galaxies with spectroscopic redshifts
drawn at random from SIMBAD to hone the method and
evaluate the resulting estimated redshifts. The advantage of
this sample is that it can be quite large, limited only by the
number of local galaxies in the SIMBAD database. The
disadvantage is that these galaxies do not match the
properties of UDG candidates, and therefore they may
provide somewhat skewed results. Second, we estimate
redshifts for a sample of SMUDGes sources with previously
obtained spectroscopic redshifts. We compile this sample by
searching for cataloged sources projected within 6″ of our
candidates and with−300< cz/km s−1< 30,000 in NED,
SIMBAD, and SDSS. The association is fairly secure
because the projection of a low-redshift source that is
sufficiently bright to have been previously targeted for
spectroscopy would have most likely prevented us from
detecting the UDG candidate, and we have visually examined
each SMUDGes candidate during our visual classifcation
process. We complement this list with the 68 redshifts from
our own set of compiled spectroscopic measurements from a
variety of sources (Kadowaki et al. 2021). The principal

Figure 6. Example of failure cases for three candidate UDGs. Each panel shows the line-of-sight galaxy distribution, as selected for using the description in the text.
The dashed blue vertical line shows the calculated mean redshift of the main concentration of galaxies identified along the line of sight, and the solid vertical line
shows the spectroscopic redshift of the UDG candidate. The blue histograms highlight the galaxies in the main peak, as defined in the text. The blue dashed curve
shows the Gaussian fit to these galaxies, while the red dashed curve shows the fit to all of the galaxies along each line of sight. The left panel shows an example where
the estimated and spectroscopic redshifts agree well, but the Gaussian fit to all of the galaxies is much broader, suggesting the possibility for confusion due to other
galaxies along the line of sight. Unfortunately, we would reject this estimated redshift even though it is indeed correct. The middle panel shows another case that is
likely to be rejected because of the different widths of the fitted Gaussians, but here we see that the estimated redshift is an inaccurate estimate of the spectroscopic
redshift. Finally, in the right panel we show a case where the fit is accepted because the full distribution and main peak are identical, but the UDG lies at a redshift with
no cataloged galaxies. This is an example of a catastrophic redshift estimation failure that is impervious to our choice of criteria.
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disadvantage of the spectroscopic UDG sample is its size,
with only 187 sources, although it too can be somewhat
nonrepresentative, given the heterogeneous selection of
spectroscopic targets across different studies.

Using both of these samples, we now aim to understand
under what conditions the estimated redshifts are most likely to
be accurate. In Figure 6, we show three example of redshift
estimation failures using SMUDGes sources with existing
spectroscopic redshifts. In the first two cases, we show how a
difference between σALL and sTRIM reflects additional structure
along the line of sight, including one case (middle panel) where
that structure leads to a catastrophic redshift estimate. In the left
panel, we see that we unfortunately reject a case where the
estimated redshift was correct, due to a complex line of sight.
In the right panel of the figure, we show a case where σALL and
sTRIM agree, but the estimated redshift is far from the
spectroscopic one. Here, we have either identified a SMUDGe
that is not associated with other galaxies, we are victims of
incomplete redshift catalogs, or the spectroscopic redshift is
incorrect. The last option may appear unlikely, but with such
low-surface-brightness objects, the spectra are often of very
low S/N (e.g., Kadowaki et al. 2017). Assuming that the
spectroscopic redshift is correct, then this example demon-
strates why this approach will never yield 100% accurate
redshift estimates, although it will improve significantly with
the increased sampling eventually provided by DESI.

Using randomly selected normal galaxies and defining an
accurate estimated redshift as one that is within 3σ of the
spectroscopic redshift, we experimented with different thresh-
olds of s sALL TRIM. We adopt σ as measured for the associated
group unless σ< 100 km s−1, in which case we set σ= 100 km
s−1 for this purpose. For a sample of 10,000 randomly selected
galaxies with spectroscopic redshifts, we were able to find
overdensities to associate them with in 4021 cases. However,
the estimated redshift was accurate in only 49% of those.
Restricting the sample to those with unambiguous lines of
sight, done by requiring s s < 1.5ALL TRIM , increases the
accuracy to 72%. This cut results in a sample size of 734,
from the original sample of 4021 with estimated redshifts.

To see if we can realize any further improvement in the
redshift accuracy, we then applied the Scikit-learn random
forest classifier (Pedregosa et al. 2011) with σALL, sTRIM, the
number of galaxies in the associated peak, the fraction of
galaxies along the line of sight in that associated peak, and the
estimated redshift as the relevant features. We find an
improvement in the accuracy to 92%, while now having
estimated redshifts for only 556 galaxies. The combined
procedure therefore yields estimated redshifts for ∼6% of this
sample, although with reasonably high accuracy (estimated to
be ∼90%). Bypassing the initial cut on s sALL TRIM and relying
only on the random forest classifier results in lower accuracy.

We now proceed to determine if this accuracy is reprodu-
cible with the actual UDG candidates. Of the 187 candidates
with spectroscopic redshifts, we are able to associate over-
densities along the line of sight for 130. Of these, only 57 are
considered as reliable based on the s s < 1.5ALL TRIM criterion.
Applying the further random forest classifier results in a final
sample of 52 candidates with estimated redshifts, and the
resulting accuracy is 76%. We find a far larger return rate of
redshift estimates, but a lower accuracy percentage in
comparison to the random galaxy sample. We attribute both
of these aspects to a feature of this sample that can be seen in

the middle panel of Figure 7. A large fraction of the UDG
candidate sample with spectroscopic redshifts lie either in the
Virgo or Coma cluster regions. This is simply the result of
spectroscopic campaigns preferentially targeting those areas
(see Kadowaki et al. 2017; Chilingarian et al. 2019), but it does
lead to both a higher redshift return rate, because candidates lie
in a region of sky with overdensities, and a lower accuracy,
because any candidate projected onto the Virgo or Coma
clusters will have the corresponding redshift estimate whether it
lies in either cluster or not.
Finally, we also test our method using a distinct sample of

low-surface-brightness galaxies, an HI-bearing sample of ultra-
diffuse galaxies (HUDs; Leisman et al. 2017; Janowiecki et al.
2019). These are likely to be the most isolated subset of UDGs,
and as such, they pose the greatest challenge to our redshift
estimation technique. Because of this relative isolation, the
redshift yield (8%) is lower than that for the SMUDGes
spectroscopic set (28%), but it is nevertheless similar to that of
the random sample (7%), while the accuracy (74%; see
Section 5.1) is comparable to that of the SMUDGes spectro-
scopic set (76%; see Section 5.1). We conclude that, across the
range of prospective UDG properties and environments, our
redshift accuracy is likely to be ∼75% when the method yields
a redshift estimate.
Applying the method and criteria to the full sample of

available UDG candidates from SMUDGes (5598), we are able
to estimate redshifts for 1079. The return rate is 19%, and as
expected, lies between the return rates for the random galaxy
and spectroscopically confirmed UDG samples. In the end, the
random forest classifier removes about 10% of the estimated
redshifts in the SMUDGes training sample, the HUD sample,
and the full SMUDGes catalog. Thus, it provides at best a
modest improvement, given the estimated 25% contamination
rate, but it does highlight a potential way forward once the
training samples are larger.

5.1. Understanding the Redshift Estimates

Figure 7 is our starting point for the discussion of the
properties of the estimated redshifts. As illustrated by the left
and middle panels, the method appears to produce large
fractional errors for galaxies at low cz. For the SMUDGe data,
this is mostly due to Virgo members, which have a large
intrinsic velocity scatter and are at relatively low cz, leading to
large fractional errors. This is related to the generic problem of
using recessional velocities, which include peculiar velocities,
to estimate distances for nearby objects. We exclude objects
with an estimated cz< 1800 km s−1 in our discussion of
physical properties (Section 6.2). That cut is shown in the
shaded region of the upper set of panels in Figure 7, and it is
constructed primarily to exclude very nearby groups and
clusters. Other than this one set of outliers, the method appears
to be roughly equally capable across the relevant redshift range.
The method, after this cut, yields accurate redshifts for 76%
and 74% of the SMUDGes and HUD samples, respectively.
Note that even the majority of the Virgo candidates are likely to
have been assigned the correct distance, as they are probably
truly in Virgo, but given the large angular extent of Virgo, there
are also a significant number of accidental projections and we
opt to exclude the entirety of these low cz objects from our final
sample.
In Figure 8, we examine the estimated redshift quality versus

environment. As might be expected—and appears evident in
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the randomized galaxy sample (upper panel)—the estimated
redshift accuracy and precision are both lower for overdensities
with a small number of associated galaxies, N. While the same
may be true for the SMUDGes and HUDs samples, it is not
clearly the case, perhaps due to small number statistics.
Because it is of scientific interest to explore the distribution of
UDGs in low-N environments, we choose to not require larger
N values than we currently do (i.e., N� 3). However, we do
recommend additional caution when using the estimated
redshifts for systems associated with N� 6 environments. Of
our full sample of estimated redshifts, only about 20% are
associated with environments of N� 6.

The potential increased uncertainty for systems associated
with low N suggests that we should examine how the systems
with recovered cz are distributed in N. We see in Figure 9 that
we are much more successful at recovering systems in high-
density environments. This is not unexpected, because one
would expect to assign systems projected near a rich system to
that system with relatively little confusion, e.g., the Coma
cluster, and have a more difficult time assigning candidates to
those projected near poor systems. As such, the sample of
UDGs with estimated redshifts is not representative of the
overall sample in terms of the numbers of UDGs per
environment, but there is no evidence (yet) that it is not
representative in terms of other UDG properties. The recovery
fraction as a function of N is consistent between our SMUDGes
spectroscopic sample and the full sample (solid line in middle
panel of Figure 9). We find little variation in the recovery

fraction with spectroscopic redshift, except for the features
introduced by the Virgo and Coma clusters in the SMUDGes
spectroscopic sample (Figure 10).
Finally, we examine the estimated redshift quality as a

function of a derived parameter, physical re. We have used the
physical value of re partly as a prior in our methodology by not
allowing redshift solutions that result in what we considered to
be unphysically large values of re (i.e., re� 6 kpc). We
examine the resulting distribution for the two UDG samples in
Figure 11. We find that the recovered redshift behaves well
over the range of inferred sizes that are consistent with a UDG
classification (i.e., re> 1.5 kpc). We find that no further
selection on re would improve the estimated redshifts.
We conclude that, while the estimated redshifts do not

provide redshifts for a representative subset of the UDG
candidates in terms of the numbers across environment, in all
other respects they behave as needed to provide a set of
redshifts that are likely to be correct in ∼75% of the cases and
have no apparent biases in terms of redshift or environment.
For cases that match the criteria that we will use to select the
sample of “redshift-confirmed” UDGs (s s < 1.5ALL TRIM ,
re> 1.5 kpc, cz> 1800 km s−1), the respective levels of
fractional statistical precision on cz for the ∼75% of the
sample with accurate redshifts are 0.09, 0.12, and 0.11, as
calculated from the random, SMUDGes, and HUD samples. Of
course, for the 25% of the sample with catastrophic redshift
estimates the errors turn out to be much larger. Because of this
hybrid error distribution, it is impossible to propagate errors

Figure 7. Comparison of spectroscopic and estimated redshifts. Darker symbols represent those objects for which the estimated redshift is within 10% or 3σ of the
spectroscopic redshift, while the lighter symbols indicate those where it is not. In the left panel, we show the results for galaxies drawn randomly from the SIMBAD
database; in the middle panel, we show those for UDGs with spectroscopic redshifts; and in the right panel, we show those for a sample of HUDs with spectroscopic
redshifts. Shaded regions show exclusion zones based on estimated redshifts that eliminate instances where cz is too low to yield a reliable distance.
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through a frequentist analysis, although one could forward
model these uncertainties for a given model and compare to
the data.

6. Results

In Figure 12, we present a basic overview of the parameter
distribution of the UDG candidates in the catalog by showing
the distributions of re, μ0,g, and mg. The concentrations of
candidates toward smaller, higher surface brightness objects are
evident. The surface brightness limits that are vertical in the
right panel of the Figure, imposed by definition at the bright
end and by the nature of the data at the faint end, lead to
effective diagonal bounds in the left panel.

We now describe some preliminary results from an
inspection of both the full catalog and the subsample with
estimated redshifts. In both cases, we omit from consideration
those objects that were visually rejected by at least one
reviewer, as well as those that lie in regions of parameter space
that are less than 25% complete. The latter criterion is applied
to avoid being misled by a few objects with large—and
uncertain—correction factors.

We will discuss cases where loosening this criterion makes a
qualitative difference to the interpretation. These are all cursory
demonstration cases for the catalog, and more complete
analysis and discussion will follow elsewhere.

6.1. Distance-independent Results

With the much larger sample of candidates in hand, we now
revisit the results we presented in Paper II. First, we previously
found no significant decline in the number of UDG candidates
as a function of μ0,g to the limit of our survey (∼26.5 mag
arcsec−2). However, in Figure 13 we now see a significant
decline. If we remove from consideration the two faintest bins,
as well as the few sources where the measurement bias
correction results in μ0,g< 24, a linear fit to the distribution, as
shown in the Figure, results in a slope that is 7σ away from
zero. One concern is that the uncertainties are simply Poisson
and do not account for uncertainties in the completeness
corrections. Statistically, the uncertainties in the corrections are
small, as we use many simulated sources to recover the
corrections. However, there are possible systematic uncertain-
ties if the nature of the sources differs significantly from what is
assumed in those simulations. We have no reason to suspect
this is the case, in particular at μ0,g∼ 26 mag arcsec−2 where
we have many candidates and the sources are well-modeled
with the same Sérsic models as we use for brighter sources.
However, fainter than this, we have both fewer sources and the
fitting uncertainties become larger. This could allow for a
different kind of low-surface-brightness object—for example,
one that is highly elongated and evades our detection
algorithm. On the basis of the observed distribution for
μ0,g< 26 mag arcsec−2 and our fit to that distribution, we
conclude that there is a decline in the number of candidates as a

Figure 8. Redshift errors vs. the number of galaxies in the associated
overdensity. Symbols coded as in Figure 7.

Figure 9. The fraction of galaxies with recovered estimated redshifts as a
function of the environment they are associated with by our technique. As
expected, we tend to accept the redshift association more often in richer
systems. Also as anticipated, the HUD sample avoids rich systems. The
recovered redshifts for the full SMUDGes sample (solid line in middle panel)
follows the trend established with the spectroscopic sample, showing no clear
bias in the environments that are sampled relative to the training sets. Shaded
regions represent 1σ confidence bounds estimated using Poisson errors.
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function of central surface brightness over the range of surface
brightness we explore.

Second, we previously found that bluer candidates had
smaller Sérsic n. In Figure 14, we confirm that those candidates
with the smallest values of n do appear bluer than the bulk of
the population and that those with the largest values of n do
appear redder. A KS test comparing the n values of blue
(g− r< 0.45) and red (g− r> 0.55) candidates finds that there
is less than a 10−5 chance that they are drawn from the same
parent distribution. The bulk of the population has n∼ 0.8
across all colors, with differences only at the extremes. Because
this difference is only at the extremes, it requires a large sample
to see it at all. This statistical difference may explain why
previous studies (Greco et al. 2018; Tanoglidis et al. 2021) did

not identify this possible behavior—or, as we described in
Section 4.1, this difference may simply reflect the fact that
these galaxy samples are all selected somewhat differently.
Third, we previously found that the bluest (g− r< 0.45

mag) candidates had μ0,g� 25 mag arcsec−2. That result is
more striking with the larger sample available now (Figure 15),
and we might even move the limit a bit brighter to 24.5 mag
arcsec−2. A similar trend has been noted before (e.g., Greco
et al. 2018). We argued in Paper II that there is no identified
low-redshift, blue population that could fade to populate the red
sequence below ∼26.5 mag arcsec−2. This argument appears
to remain valid, and it should be explored further in order to
determine at what surface brightness limit we might expect to
only find “primordial” UDGs. Examples of red and blue UDGs
are provided in Figure 16.
Finally, we previously found that candidates with fainter μ0,g

tended to smaller n. We find that trend here too (Figure 17), but
the slope of the relationship is small and could be the result of
selection biases that are not completely captured in our
completeness-correction procedure. Indeed, we find that the
bias observed in our recovered simulated sources is in the same
sense as—and of larger amplitude than—that observed,
suggesting that the observed one might be due to a slight
undercorrection of the bias.

Figure 10. The fraction of galaxies with recovered estimated redshifts as a
function of the spectroscopic redshift. We find little dependence of the recovery
fraction on redshift across the relevant redshift range for the random and HUD
samples. The SMUDGes sample shows strong fluctuations, but these map the
influence of the Virgo and Coma clusters on this particular data set. Shaded
regions represent 1σ confidence bounds estimated using Poisson errors.

Figure 11. The estimated redshift errors as a function of inferred re in physical
units. Points coded as in Figure 7. Shaded region shows exclusion region for
UDGs. Catastrophic errors are scattered along re, and scatter among successful
redshift estimates is independent of re.

Figure 12. Distribution of basic observational parameters for the cataloged
UDG candidate sample. A small number of candidates have μ0,g < 24 mag
arcsec−2 once the measurement is bias corrected.

Figure 13. Surface brightness distribution of sources in the current SMUDGes
catalog. The thin green bars represent the raw distribution, while the broader,
darker bars represent the completeness corrected distribution. Error bars
represent Poisson noise, multiplied by completeness fraction. The line is a
least-squares fit to all bins with >1000 counts. A small number of candidates
have μ0,g < 24 mag arcsec−2 once the measurement is bias corrected.
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6.2. Distance-dependent Results

6.2.1. The Fraction of UDGs

A basic question underlying the SMUDGes survey is what
fraction of our candidates satisfy the re> 1.5 kpc criterion. Of
the 1079 with redshift estimates, 679 (63%) satisfy
re> 1.5 kpc, although we exclude 165 of those because they
have cz< 1800 km s−2, leaving us with 514 confirmed UDGs.
However, this fractional return (48%) is likely to underestimate
the return from the full catalog. The vast majority of candidates
that failed the size criterion lie in two nearby clusters,
principally Virgo and Fornax (see upper panel of Figure 18).
Excluding sources with an estimated cz< 1800 km s−1, which
effectively excludes these two clusters, 514 (91%) of the
remaining 563 sources satisfy the re> 1.5 kpc criterion. These
results are encouraging and indicate that most SMUDGes
candidates are likely to be UDGs. For the following discussion,
we present results only for the 514 candidates that satisfy this
physical size criterion and cz> 1800 km s−1, the latter cut
being imposed to avoid objects with large distance uncertain-
ties. We refer to these as our UDG sample.
In Figure 18, we present the distribution of the UDGs in our

sample. Although some of the known clusters are well-
represented (compare to Figure 3), many UDGs lie outside the
clusters. This distribution suggests that our approach for
estimating redshifts is able to extend the technique beyond
the strongest overdensities and that the sample of UDGs with
redshifts may not be grossly distorted from a general one.
Next, we support our claim that the bulk of the candidates

are more likely to be UDGs than not, by comparing the
properties of the candidates as a whole to those of the
candidates that are estimated to have re> 1.5 kpc and those that
have re< 1.5 kpc in Figure 19. The distribution of the UDGs,
those with re> 1.5 kpc, is a closer match to the overall
parameter distribution than that of the non-UDGs. The only
systematic deviations in the comparison of the UDGs and the
overall sample properties are at large angular size, which
reflects the overrepresentation of the nearby clusters in the
sample with estimated redshifts, and the slightly redder colors,
which is also related to the overrepresentation of UDGs in
denser environments (see Section 5.1). We conclude that we
have no evident reason to suspect that the redshift distribution
of those candidates without redshift estimates is grossly
different than those for which we obtained estimated redshifts,
and therefore that a large number of the remaining candidates
will also eventually be spectroscopically confirmed as UDGs.

6.2.2. Color–Magnitude Relation

In Figure 15, we see a prominent red population of UDG
candidates. With the estimated redshifts, we can now place the
confirmed UDGs on the color–magnitude diagram and
determine whether they lie on the well-established red
sequence of galaxies. We present the results of this exercise in
Figure 20. The red sequence is evident and falls close to the
extrapolated red sequence defined using the colors of normal,
low-luminosity (L< L*) elliptical galaxies (Schombert 2016).
The density ridge of galaxies is nearly indistinguishable from
the extrapolated relation. Note that the fractional redshift
uncertainties (Section 5.1), for the dominant fraction of UDGs
with accurate redshift estimates, result in absolute magnitudes
errors that are smaller than the bin size (0.3 mag) in Figure 15.

Figure 14. The distribution of color vs. Sérsic n index. The upper left panel
shows the completeness-corrected binned distribution while the upper right
panel shows the smoothed distribution of the same data. The lower panel shows
the distribution of blue candidates (g − r < 0.45) in the blue histogram and red
candidates (g − r > 0.55) in the red histogram. Bluer candidates tend slightly
toward smaller values of n, while those with the largest n values are red. This
large n-red wing of the distribution is sparsely populated and highly
incomplete, and therefore it is less certain than the blue-small n wing. The
sample is dominated by sources with n ∼ 0.8 and g − r ∼ 0.6 mag.

Figure 15. The distribution of color vs. central surface brightness in the g band.
The upper left panel shows the completeness-corrected binned distribution
while the upper right panel shows the smoothed distribution of the same data.
In the lower panel, we compare the distribution of colors for brighter surface
brightness ( m< <-24 mag arcsec 24.5g0,

2 ) in gray and the somewhat lower
surface brightness ( m< <-25 mag arcsec 25.5g0,

2 ) candidates in green.
Blue UDG candidates are mostly confined to the higher central surface
brightnesses. The blue cloud nearly disappears by μ0,g ∼ 25 mag arcsec−2. The
red sequence of objects has a slight tilt that we will return to when discussing
the color–magnitude relation in Section 6.2.2. A small number of candidates
have μ0,g < 24 mag arcsec−2 once the measurement is bias corrected.
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The presence of UDGs on the extension of the color–
magnitude relation suggests that UDGs fall on the stellar mass–
metallicity relation (see also Barbosa et al. 2020). It also argues
against certain formation scenarios for the majority of UDGs.
For example, tidal dwarfs (Hunsberger et al. 1996; Duc 2012;
Bennet et al. 2018) would be expected to lie off this relation
because their stars would come from a more massive parent
galaxy. Even though stars from the outskirts of such a massive
galaxy would be lower than the characteristic chemical
abundance, because of metallicity gradients (Searle 1971), it
is unlikely that the metallicity of those stars would be on
average a match to the extrapolation of the color–magnitude
relation.

Figure 16. Examples of UDGs in the blue (0.2 < g − r < 0.45) and red (0.55 < g − r < 0.7) higher central surface (μ0,g < 24.5) populations. Blue galaxies in the
upper two rows, red in the lower two. Some blue UDGs show more internal structure and irregularities. Some red UDGs show what appear to be nuclear star clusters.

Figure 17. The 2D distribution of n vs. central surface brightness in the g band.
The left panel shows the completeness-corrected binned distribution, while the
right panel shows the smoothed distribution of the same data. A small number
of candidates have μ0,g < 24 mag arcsec−2 once the measurement is bias
corrected.

Figure 18. The distribution of candidates that are estimated to have
re < 1.5 kpc (upper panel) and those that have re > 1.5 kpc and also have
cz > 1800 km s−1 (lower panel), so that the estimated distances are more
reliable. Ellipses highlight positions of two known nearby (cz < 1800 km s−1)
clusters (Virgo, upper left; Fornax, lower right). Outside of nearby clusters, we
do not find that a large fraction of our candidates are likely to have
re < 1.5 kpc, suggesting that most of our candidates (outside of nearby
clusters) are likely to be UDGs (see text for numbers).
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These observations can also provide a constraint on an
alternative UDG formation model that posits that UDGs are
galaxies that have lost a majority of their initial stellar mass
(e.g., Conselice 2018). Galaxies with significant stellar mass

loss would be expected to have a metallicity above that implied
by their current luminosity. This argument is made more clearly
in the bottom panel of Figure 20, where we compare the color
distribution of UDGs with−15.5<Mr<−15 to the position
of the extrapolated red sequence (dotted line) and the
corresponding mean color of galaxies on that red sequence
that lost either 50 or 90% of their initial stellar mass to match
the currentMr. Although the scenario where 50% of the mass is
lost is marginally consistent with the observed color distribu-
tion, given uncertainties in the extrapolation of the red
sequence and photometric calibration, models with larger mass
loss become increasingly inconsistent with the observations.
We close this discussion by noting that DF 44, one of the best-
studied UDGs and a close analog in total mass to the Large
Magellanic Cloud (LMC) with a mass of∼1011 Me (van
Dokkum et al. 2019; Erkal et al. 2019), has an I-band mass-to-
light ratio of -

+26 6
7 in solar units (van Dokkum et al. 2019)

compared to the LMC’s of 4.6 (Kadowaki et al. 2021). If an
LMC-like galaxy was the progenitor of DF 44, then it lost
∼80% of its stellar mass.

6.2.3. Color–Environment Relation

We quantify the environment of each UDG using the
standard deviation of the fitted Gaussian to the associated peak
of normal galaxies along the line of sight. This measurement is
an estimate of the velocity dispersion of the environment. In
Figure 21, we plot color, g− r, as a function of environmental
velocity dispersion. Red, quenched UDGs are found in all
environments, while blue, star-forming ones are more highly
represented in the lower velocity dispersion environments. This
is highlighted by the rolling mean (solid line), which bends at
σ∼ 400 km s−1. The same qualitative behavior is evident when
we categorize environment by the number of normal galaxies
found in the associated redshift peak. As seen in previous
studies (Greco et al. 2018; Kadowaki et al. 2021; Tanoglidis
et al. 2021), UDG properties track environment, confirming
that models of UDGs in isolation will not fully describe them.

7. Summary

This paper principally presents a catalog of 5598 ultra-
diffuse galaxy (UDG) candidates distributed throughout the
southern fraction of the DESI Legacy Imaging Surveys (Dey

Figure 19. The comparison of observed properties of the overall sample in
gray, the sample of candidates for which we were able to estimate a redshift
and the inferred size confirms the candidate as a UDG (re > 1.5 kpc) in green
(upper panels), and candidates with an estimated redshift that are rejected as
UDGs (re < 1.5 kpc) in red (lower panels). All distributions are normalized to
sum to unity for comparison.

Figure 20. The color–magnitude diagram for UDGs with estimated redshifts.
The distribution has been corrected using our completeness estimates. Upper
left panel shows the binned distribution, while the right shows the smoothed
distribution. The dashed line is the extrapolation of the red sequence derived
for faint (L < L

*
) ellipticals (Schombert 2016). In the lower panel, we show the

color distribution for UDGs with −15.0 < Mr < 15.0, and take note of the
color along the red sequence of possible progenitors of this population for two
different mass-loss factors. The dotted vertical line is the position of the red
sequence corresponding to Mr = 15.25 mag.

Figure 21. The dependence of UDG color on environment. In the left panel, we
plot UDG color, g − r, vs. the line-of-sight velocity dispersion of the
associated overdensity (σ) for each UDG with an estimated redshift. In the right
panel, we plot color vs. the number of galaxies with known redshift in the
associated overdensity for each UDG with an estimated redshift. In each panel,
the solid line is the rolling mean of 75 galaxies. The lightly shaded area shows
the dispersion among measurements in each rolling bin, while the more heavily
shaded area shows the dispersion in the mean.
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et al. 2019), defined as the portion of the survey that used the
Blanco 4 m telescope and DECam (Flaugher et al. 2015). By
focusing on those candidates that are large on the sky
(re> 5 3), we aim to limit the number of spurious sources
and provide those for which the measured structural and
photometric parameters are most accurately determined. The
catalog, therefore, is most complete for physically large
(re> 2.5 kpc) UDGs lying in the approximate redshift range
1800 cz/km s−1 7000. The lower bound is defined by
where peculiar velocity uncertainties do not significantly affect
the distance estimates and completeness is high, and the upper
bound is defined by the limits introduced by our angular
selection criterion.

Because the definition of UDG incorporates a physical size
criterion, we proceed to develop a methodology for estimating
distances based on an extension of the way the original UDG
samples were constructed, using distance by association. In
distance by association, those UDG candidates projected near
evident overdensities (e.g., the Coma cluster; van Dokkum
et al. (2015)) are placed at the distance of the overdensity. We
extend the method to lower-amplitude, uncataloged over-
densities, and obtain preliminary estimated redshifts for 1050
candidates. We find that the redshifts are accurate for between
70% and 90% of the sources. Of those with estimated redshifts,
514 satisfy the re� 1.5 kpc criterion for UDGs and lie at
cz> 1800 km s−1. We consider these preliminary redshift
estimates because, as the sample of UDG candidates with
spectroscopic redshifts increases, we will be able to train the
method further and refine the sample of estimated redshifts that
we consider to be accurate.

Finally, we present a sampling of results drawn from the
catalog to illustrate its uses. We present both distance-
independent and distance-dependent results. In the case of the
former, we revisit results from Paper II, and in the latter case,
we establish that the red sequence of UDGs closely follows the
extrapolation of the red sequence relation for bright ellipticals
and that the environment–color relation is at least qualitatively
similar to that of high surface brightness galaxies. Both of these
results challenge some of the models proposed for UDG
evolution, and more detailed examination of the catalog will
surely provide further constraints. Modelers now have addi-
tional empirical results to target.
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