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ABSTRACT

Using techniques in motivic homotopy theory, especially the theorem of Gheorghe, the second and the third
author on the isomorphism between motivic Adams spectral sequence for Ct and the algebraic Novikov spectral sequence
for BP,,, we compute the classical and motivic stable homotopy groups of spheres from dimension 0 to 90, except for some
carefully enumerated uncertainties.
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1. Introduction

The computation of stable homotopy groups of spheres is one of the most fun-
damental and important problems in homotopy theory. It informs on many topics in
topology, such as the cobordism theory of framed manifolds, the classification of smooth
structures on spheres, obstruction theory, the theory of topological modular forms, alge-
braic K-theory, motivic homotopy theory, and equivariant homotopy theory.

Despite their simple definition, which was available eighty years ago, these groups
are notoriously hard to compute. All known methods only give a complete answer
through a range, but they eventually stall. Further progress requires the introduction
of a new method. The standard approach to computing stable stems is to use an Adams
spectral sequence (based on a generalized cohomology theory E) that converges from
algebra to homotopy. In turn, to identify the algebraic Ey-pages, one needs algebraic
spectral sequences that converge from simpler algebra to more complicated algebra. For
any spectral sequence, difficulties arise in computing differentials and in solving extension
problems. Different methods lead to trade-offs. One method may compute some types
of differentials and extension problems efficiently, but leave other types unanswered, per-
haps even unsolvable by that technique. To obtain complete computations, one must be
eclectic, applying and combining different methodologies. Even so, combining all known
methods, there are eventually some problems that have not been solved. Mahowald’s un-
certainty principle states that no finite collection of methods can completely compute the
stable homotopy groups of spheres.

Because stable stems are finite abelian groups (except for the 0-stem), the compu-
tation is most easily accomplished by working one prime at a time. At odd primes, the
Adams-Novikov spectral sequence and the chromatic spectral sequence, which are based
on complex cobordism and formal groups, have yielded a wealth of data [53]. As the
prime grows, so does the range of computation. For example, at the primes 3 and 5, we
have complete knowledge up to around 100 and 1000 stems respectively [53].

The prime 2, being the smallest prime, remains the most difficult part of the
computation. This entire manuscript considers exclusively the 2-completed stable ho-
motopy groups. In this case, the Adams spectral sequence is the most effective tool. The
manuscript [30] presents a careful analysis of the Adams spectral sequence, in both the
classical and G-motivic contexts, that is essentially complete through the 59-stem. This
includes a verification of the details in the classical literature [2, 3, 10, 45]. Subsequently,
the second and third authors computed the 60-stem and 61-stem [60].

We also mention [38, 40], which take an entirely different approach to comput-
ing stable homotopy groups. However, the computations in [38, 40] are now known to
contain several errors. See [60, Section 2] for a more detailed discussion.

The goal of this manuscript is to continue the analysis of the Adams spectral se-
quence into higher stems at the prime 2. We will present information up to the 90-stem.
While we have not been able to resolve all of the possible differentials in this range, we
enumerate the handful of uncertainties explicitly within Table 9.
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The charts in [33] and [34] are an essential companion to this manuscript. They
present the same information in an easily interpretable graphical format.

Our analysis uses various methods and techniques, including machine-generated
homological algebra computations, a deformation of homotopy theories that connects C-
motivic and classical stable homotopy theory, and the theory of motivic modular forms.
Here is a quick summary of our approach:

(1) Compute the cohomology of the C-motivic Steenrod algebra by machine.
These groups serve as the input to the G-motivic Adams spectral sequence.

(2) Compute by machine the algebraic Novikov spectral sequence that converges
to the cohomology of the Hopf algebroid (BP,, BP,BP). This includes all dif-
ferentials, and the multiplicative structure of the cohomology of (BP,, BP,BP).

(3) Identify the G-motivic Adams spectral sequence for the cofiber of 7 with the
algebraic Novikov spectral sequence [21]. This includes an identification of the
cohomology of (BP,, BP,BP) with the homotopy groups of the cofiber of 7.

(4) Pull back and push forward Adams differentials for the cofiber of 7 to Adams
differentials for the C-motivic sphere, along the inclusion of the bottom cell
and the projection to the top cell.

(5) Deduce additional Adams differentials for the G-motivic sphere with a variety
of ad hoc arguments. The most important methods are Toda bracket shuffles
and comparison to the motivic modular forms spectrum mmf [20].

(6) Deduce hidden 7 extensions in the G-motivic Adams spectral sequence for the
sphere, using a long exact sequence in homotopy groups.

(7) Obtain the classical Adams spectral sequence and the classical stable homotopy
groups by inverting 7.

The machine-generated data that we obtain in steps (1) and (2) are available at
[33] and [34]. See also [59] for a discussion of the implementation of the machine com-
putation.

Much of this process is essentially automatic. The exception occurs in step (5)
where ad hoc arguments come into play.

This document describes the results of this systematic program through the 90-
stem. We anticipate that our approach will allow us to compute into even higher stems,
especially towards the last unsolved Kervaire invariant problem in dimension 126. How-
ever, we have not yet carried out a careful analysis.

1.1. New ingredients
We discuss in more detail several new ingredients that allow us to carry out this

program.

1.1.1. Machine-generated algebraic data. — The Adams-Novikov spectral sequence
has been used very successfully to carry out computations at odd primes. However, at the
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prime 2, its usage has not been fully exploited in stemwise computations. This is due to
the difficulty of computing its Ey-page. The first author predicted in [30] that “the next
major breakthrough in computing stable stems will involve machine computation of the
Adams-Novikov Ey-page.”

The second author achieved this machine computation; the resulting data is avail-
able at [34]. The process goes roughly like this. Start with a minimal resolution that
computes the cohomology of the Steenrod algebra. Lift this resolution to a resolution of
BP,BP. Finally, use the Curtis algorithm to compute the homology of the resulting com-
plex, and to compute differentials in the associated algebraic spectral sequences, such as
the algebraic Novikov spectral sequence and the Bockstein spectral sequence. See [59]
for further details.

1.1.2. Motivic homotopy theory. — The CG-motivic stable homotopy category gives
rise to new methods to compute stable stems. These ideas are used in a critical way in
[30] to compute stable stems up to the 59-stem.

The key insight of this article that distinguishes it significantly from [30] is that
C-motivic cellular stable homotopy theory is a deformation of classical stable homotopy
theory [21]. From this perspective, the “generic fiber” of G-motivic stable homotopy
theory is classical stable homotopy theory, and the “special fiber” has an entirely algebraic
description. The special fiber 1s Hovey’s stable derived category of BP,BP-comodules
[26], or equivalently, the stable derived category of quasicoherent sheaves on the moduli
stack of 1-dimensional formal groups.

In more concrete terms, let Ct be the cofiber of the G-motivic stable map 7. The
cofiber sequence S’ — Ct — S"~! induces maps

Ey(S*) —— Ey(Ct) —— Ey(S"7)

ﬂ H U

n*,*(so’o) - JT*’*(CT) - n*,*(sl’il)

of spectral sequences, in which each vertical column represents a G-motivic Adams spec-
tral sequence.

The homotopy category of Cr-modules has an algebraic structure [21]. In par-
ticular, the G-motivic Adams spectral sequence for Ct is isomorphic to the algebraic
Novikov spectral sequence that computes the Eo-page of the Adams-Novikov spectral se-
quence for BP,. This means that the middle spectral sequence in the above diagram can
be computed by machine. Naturality then yields information about the G-motivic Adams
spectral sequence for the G-motivic sphere spectrum in two different ways, since the lat-
ter spectral sequence appears on both the left and right side of the diagram. Finally, the
Betti realization functor produces differentials in the classical Adams spectral sequence.
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Our use of G-motivic stable homotopy theory appears to rely on the fundamental
computations, due to Voevodsky [56] [57], of the motivic cohomology of a point and
of the motivic Steenrod algebra. In fact, recent progress has determined that our re-
sults do not depend on this deep and difficult work. There are now purely topological
constructions of homotopy categories that have identical computational properties to the
cellular stable G-motivic homotopy category [20, 52]. In these homotopy categories, one
can obtain from first principles the fundamental computations of the cohomology of a
point and of the Steenrod algebra, using only well-known classical computations. There-
fore, the material in this manuscript does not logically depend on Voevodsky’s work, even
though the methods were very much inspired by his groundbreaking computations.

1.1.3. Motivic modular forms. — In classical chromatic homotopy theory, the theory
of topological modular forms, introduced by Hopkins and Mahowald [18], plays a central
role in the computations of the K(2)-local sphere.

Using a topological model of the cellular stable C-motivic homotopy category,
one can construct a “motivic modular forms” spectrum mmf [20], whose motivic Fs-
cohomology is the quotient of the G-motivic Steenrod algebra by its subalgebra gener-
ated by Sq', Sq?, and Sq*. Just as #mf plays an essential role in studies of the classical
Adams spectral sequence [5, 8], mmf1is an essential tool for motivic computations. The
C-motivic Adams spectral sequence for mmf can be analyzed completely [31], and natu-
rality of Adams spectral sequences along the unit map of mmf provides much information
about the behavior of the G-motivic Adams spectral sequence for the G-motivic sphere
spectrum.

1.2. Man results

We summarize our main results in the following theorem and corollaries.

Theorem 1.1, — The G-motivic Adams spectral sequence for the G-motivic sphere spectrum s
displayed in the charts in [33], up to the 90-stem.

The proof of Theorem 1.1 consists of a series of specific computational facts, which
are verified throughout this manuscript.

Corollary 1.2. — The classical Adams spectral sequence for the sphere spectrum s displayed in
the charts in [33], up to the 90-stem.

Corollary 1.2 follows immediately from Theorem 1.1. One simply inverts 7, or
equivalently ignores 7-torsion.

Theorem 1.1 could also be used to completely determine the Eo-page and all dif-
ferentials of the Adams-Novikov spectral sequence for the sphere spectrum. As described
in [30, Chapter 6], the Adams-Novikov spectral sequence can be reverse-engineered from
information about G-motivic stable homotopy groups.
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Corollary 1.3. — Table 1 describes the stable homotopy groups v, _for all values of k up to 90.

We adopt the following notation in Table 1. An integer n stands for the cyclic
abelian group Z/n; the symbol - by itself stands for the trivial group; the expression n-m
stands for the direct sum Z/n @ Z/m; and #' stands for the direct sum of j copies of Z/n.
The horizontal line after dimension 61 indicates the range in which our computations
are new information.

Table 1 describes each group m; as the direct sum of three subgroups: the 2-
primary v;-torsion, the odd primary v;-torsion, and the v,-periodic subgroups.

The last column of Table 1 describes the groups of homotopy spheres that classify
smooth structures on spheres in dimensions at least 5. See Section 1.4 and Theorem 1.6
for more details.

Starting in dimension 84, there remain some uncertainties in the 2-primary v,-
torsion. In most cases, these uncertainties mean that the order of some stable homotopy
groups are known only up to factors of 2. In a few cases, the additive group structures are
also undetermined.

These uncertainties have two causes. First, there are a handful of differentials that
remain unresolved; they are listed in Table 9. Second, there are some possible hidden 2
extensions that remain unresolved.

Figure 1 displays the 2-primary stable homotopy groups in a graphical format
that 1s a modification by Allen Hatcher of Adams spectral sequence charts [23] (color
figure online). Vertical chains of n dots indicate Z/2". The non-vertical lines indicate
multiplications by 1 and v. The blue dots represent the v,-periodic subgroups. The green
dots are associated to the topological modular forms spectrum #mf. These elements are
detected by the unit map from the sphere spectrum to #mf, either in homotopy or in the
algebraic Ext groups that serve as Adams Ey-pages.

Finally, the red dots indicate uncertainties. In addition, in higher stems, there are
possible extensions by 2, n, and v that are not indicated in Figure 1. See Tables 17, 20,
and 23 for more details about these possible extensions.

The orders of individual 2-primary stable homotopy groups do not follow a clear
pattern, with large increases and decreases seemingly at random. However, an empir-
ically observed pattern emerges if we consider the cumulative size of the groups, i.e.,
the product of the orders of all 2-primary stable homotopy groups from dimension 1 to
dimension £.

Our data strongly suggest that asymptotically, there is a linear relationship between
k* and the logarithm of this product of orders. In other words, the number of dots in Fig-
ure | in stems 1 through £ is linearly proportional to £*. Correspondingly, the number of
dots in the classical Adams E-page in stems 1 through £ is linearly proportional to £*.
Thus, in extending from dimension 60 to dimension 90, the overall size of the computa-
tion more than doubles. Specifically, through dimension 60, the cumulative rank of the
Adams E-page 1s 199, and is 435 through dimension 90. Similarly, through dimension
60, the cumulative rank of the Adams Ey-page is 488, and is 1,461 through dimension 90.
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TaBLE 1. — Stable homotopy groups up to dimension 90. z stands for Z/n; n-m stands for Z/n @ Z/m; and # stands for

(Z/ny
k v;-torsion at the prime 2 v;-torsion at odd primes v;-periodic Group of smooth structures
1 2
2 2
3 83 :
4 . ?
5 .
6 2 : :
7 . 16-3-5 by
8 2 2 2
9 2 : 2? 222
10 . 3 2 2-3
11 . 8.9-7 bs
12 . . o
13 : 3 3
14 2-2 : : 2
15 2 32:35 by-2
16 2 2 2
17 2? 2? 2.2°
18 8 2 2-8
19 2 : 8:3-11 bs-2
20 8 3 . 83
21 2? : 292
22 2? : : 2?
23 2-8 3 16-9-5-7-13 bs-2-8-3
24 2 : 2 2
25 . . 22 22
26 2 3 2 2%.3
27 . . 83 by
28 2 : : 2
29 . 3 3
30 2 3 . 3
31 2? . 64-3-5-17 bg-2?
32 2 2 2
33 2% 2? 2.2
34 2%.4 2 2%.4
35 2? . 8:27-7-19 bo-2?
36 2 3 : 2-3
37 2?2 3 2.2%.3
38 2-4 35 . 2:4-35
39 2 3 16-3-25-11 b1p-2°-3
40 24 3 2 2443
41 28 . 2 2.2
42 2-8 3 2 2%.8-3
43 . . 8-3-23 by
44 8 . : 8
45 23.16 9-5 2-2%.16-9-5
46 2t 3 . 2".3
47 2%-4 3 32:9:5.7-13 byy-2°-4-3
48 2%.4 . 2 2.4
49 . 3 2?2 2:2.3
50 2?2 3 2 2%.3
51 2-8 . 8-3 b13-2-8
52 2% 3 : 2%.3
53 24 . 2.2
54 2-4 2-4
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k v;-torsion at the prime 2 v;-torsion at odd primes v;-periodic Group of smooth structures

55 3 16-3-5-29 b14-3

56 . 2 .

57 2 2?2 2:2?

58 2 2 2

59 2 89.7-11-31 by5-2?

60 4 : 4

61 .

62 2t 3 : 23.3

63 22.4 . 128-3-5-17 big-2%4

64 2.4 : 2 24

65 274 3 2?2 2:28.4.3

66 2°.8 . 2 26.8

67 23.4 . 83 by7-2%4

68 23 3 . 23.3

69 2! . 2:2*

70 25.42 . 25.42

71 26.4.8 . 16-27-5-7-13-19-37 big-2°-4-8

72 27 3 2 2.3

73 2 . 2?2 2.2

74 4 3 2 2:4%.3

75 2 9 83 b19-2:9

76 224 5 : 22.4.5

77 25.4 . 2.2°.4

78 2°.47 3 : 2%.4%.3

79 254 . 32-3-25-11-41 boo-2°+4

80 28 . 2 28

81 23.4.8 32 22 2.91.4.8.3?

82 2°-8 3.7 2 26.8-3-7 or 2*:4-8-3-7

83 23.8 5 8-9-49-43 by1-2°-85

84 20 or 2° 32 . 96,32 o 95.92

85 26.42 or 2°.4? or 32 26.42.3% or 25.42.3?
24.4% or 27.4 or 24.4%.3% or 27.4.3?

86 24.82 or 22.4.8? 3-5 . 2+.82.3.5 or 22.4-82.3.5

87 2°-4 . 16-3-5-23 boo-2+4

88 24 2 2F.4

89 23 - 2?2 2:2*

90 23.8 or 2%-8 3 2 24.8-3 or 2%.8-3

Comjecture 1.4. — Let f (k) be the product of the orders of the 2-primary stable homotopy groups
in dimensions 1 through k. There exists a non-zero constant C. such that
1 k
fim Lﬂ; ®_q

k— o0 k

One interpretation of this conjecture is that the expected value of the logarithm
of the order of the 2-primary component of m; grows linearly in £. We have only data
to support the conjecture, and we have not formulated a mathematical rationale. It is
possible that in higher stems, new phenomena occur that alter the growth rate of the
stable homotopy groups.
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FiG. 1. — 2-primary stable homotopy groups (Color figure online)

62 64

By comparison, data indicates that the growth rate of the Adams Ey-page is qual-
itatively greater than the growth rate of the Adams E..-page. This apparent mismatch
has implications for the frequency of Adams differentials.
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1.3. Remaining uncertainties

Some uncertainties remain in the analysis of the first 90 stable stems. All unde-
termined possible differentials in this range are mentioned within Table 9. All of these
uncertainties concern the Adams differentials d, for » > 9. This means that the orders of
some of the stable homotopy groups are known only up to factors of 2.

In addition, there are some possible hidden extensions by 2, 1, and v that remain
unresolved. Tables 17, 20, and 23 summarize these possibilities. The presence of un-
known hidden extensions by 2 means that the group structures of some stable homotopy
groups are not known, even though their orders are known.

1.4. Groups of homotopy spheres

An important application of stable homotopy group computations is to the work of
Kervaire and Milnor [36] on the classification of smooth structures on spheres in dimen-
sions at least 5. Let ®, be the group of /4-cobordism classes of homotopy n-spheres. This
group classifies the differential structures on S” for n > 5. It has a subgroup ©”, which
consists of homotopy spheres that bound parallelizable manifolds. The relation between
©®, and the stable homotopy group 7, is summarized in Theorem 1.5. See also [49] for a
survey on this subject.

Theorem 1.5 (Rervaire-Muilnor [36]). — Suppose that n> 5.
(1) The subgroup O is cyclic, and has the following order:

1, of n s even,
1©7 =41 or 2, if n="4k+1,
bk, y‘n=4k—l

Here by, is 2*72(2%=1 — 1) times the numerator of 8¢ (1 — 2k), where ¢ is the Riemann
zeta function.
(2) Forns£2 (mod 4), there is an exact sequence

0 e 0, /] 0.

Here 1,/] s the cokernel of the J-homomorphism.
(3) For n=2 (mod 4), there is an exact sequence

) @ bp
0 @nﬁ O, 7,/J Z/)2 — © — 0.

n—1

Here the map ® s the Kervaire invariant.
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The first few values, and then estimates, of the numbers &, (for £ > 2) are given by
the sequence

28, 992, 8128, 261632, 1.45 x 10%, 6.71 x 107,
1.94 x 10"%, 7.54 x 10", ....

Theorem 1.6. — The last column of Table 1 describes the groups ©,, for n < 90, with the
exception of n = 4. The underlined symbols denote the contributions from .

The cokernel of the J-homomorphism is slightly different than the v,-torsion part
of 7, at the prime 2. In dimensions 8m + 1 and 8m + 2, there are classes detected by P"/,
and P"4} in the Adams spectral sequence. These classes are v|-periodic, in the sense that
they are detected by the K(1)-local sphere. However, they are also in the cokernel of the
J-homomorphism.

We restate the following conjecture from [60], which is based on the current knowl-
edge of stable stems and a problem proposed by Milnor [49].

Comgecture 1.7. — In dimensions greater than 4, the only spheres with unique smooth structures
are S°, S®, S, S and SO

Uniqueness in dimensions 5, 6 and 12 was known to Kervaire and Milnor [36].
Uniqueness in dimension 56 is due to the first author [30], and uniqueness in dimension
61 1s due to the second and the third authors [60].

Conjecture 1.7 is equivalent to the claim that the group ®, is not of order 1 for
dimensions greater than 61. This conjecture has been confirmed in all odd dimensions by
the second and the third authors [60] based on the work of Hill, Hopkins, and Ravenel
[24], and in more than half of the even dimensions by Behrens, Hill, Hopkins, Mahowald

and Quigley [7, 8].

1.5. Notation

The cohomology of the Steenrod algebra is highly irregular, so consistent naming
systems for elements presents a challenge. A list of multiplicative generators appears in
Table 4. To a large extent, we rely on the traditional names for elements, as used in
[11, 30, 54], and elsewhere. However, we have adopted some new conventions in order
to partially systematize the names of elements.

First, we use the symbol Ax to indicate an element that is represented by vyx in
the May spectral sequence. This use of A is consistent with the role that v, plays in the
homotopy of tmf, where it detects the discriminant element A. For example, instead of
the traditional symbol 7, we use the name A/;.

Second, the symbol M indicates the Massey product operator (—, %, g). For ex-
ample, instead of the traditional symbol B, we use the name M#;.
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Similarly, the symbol g indicates the Massey product operator (—, 4, hy). For ex-
ample, we write Ayg for the indecomposable element (hy, A7, hy).

Eventually, we encounter elements that neither have traditional names, nor can be
named using symbols such as P, A; M, and g. In these cases, we use arbitrary names of
the form x, s, where s and /" are the stem and Adams filtration of the element.

The last column of Table 4 gives alternative names, if any, for each multiplicative
generator. These alternative names appear in at least one of [11, 30, 54].

Remark 1.8. — One specific element deserves further discussion. In the cohomol-
ogy of the motivic Steenrod algebra, we define TQ3 to be the unique non-zero element in
degree (67, 5, 35) such that /5 - T3 = 0. This choice is not compatible with the notation
of [30]. The element Qs from [30] equals the element T Q3 4 77, in this manuscript.

We shall also extensively study the Adams spectral sequence for the cofiber of 7.
See Section 3.1 for more discussion of the names of elements in this spectral sequence,
and how they relate to the Adams spectral sequence for the sphere.

Table 1 gives some notation for elements in m, .. Many of these names follow
standard usage, but we have introduced additional non-standard elements such as
and k9. These elements are defined by the classes in the Adams E-page that detect
them. In some cases, this style of definition leaves indeterminacy because of the presence
of elements in the Eo-page in higher filtration. In some of these cases, Table 1 provides
additional defining information. Beware that this additional defining information does
not completely specify a unique element in 7, , in all cases. For the purposes of our
computations, these remaining indeterminacies are not consequential.

Here is a list of the key notation that we use extensively:

— Because we have completed at 2, we have a map t : S®~! — S%0 [27,
Lemma 25]. We write Ct for its cofiber. We can also write S/t for this C-
motivic spectrum, but the latter notation is more cumbersome.

— Ext = Ext¢ 1s the cohomology of the G-motivic Steenrod algebra. It is graded
in the form (s, f, w), where s is the stem (i.e., the total degree minus the Adams
filtration), f is the Adams filtration (i.e., the homological degree), and w is the
motivic weight.

— Ext, is the cohomology of the classical Steenrod algebra. It is graded in the form
(s,.f), where s is the stem (i.e., the total degree minus the Adams filtration), and
f 1s the Adams filtration (i.e., the homological degree).

— 1, are the 2-completed C-motivic stable homotopy groups.

— H*(S; BP) 1s the Adams-Novikov Ey-page for the classical sphere spectrum, 1.e.,
Extgp,gp(BP,, BP,).

— H*(S/2; BP) 1s the Adams-Novikov Ey-page for the classical mod 2 Moore spec-
trum, i.C., EXtBP*BP(BP*, BP*/Q)



STABLE HOMOTOPY GROUPS OF SPHERES: FROM DIMENSION 0 TO 90*

1.6. How to use this manuscript

The manuscript is oriented around a series of tables to be found in Section 8. In
a sense, the rest of the manuscript consists of detailed arguments for establishing each
of the computations listed in the tables. We have attempted to give references and cross-
references within these tables, so that the reader can more easily find the specific argu-
ments pertaining to each computation.

We have attempted to make the arguments accessible to users who do not intend
to read the manuscript in its entirety. To some extent, with an understanding of how the
manuscript is structured, it is possible to extract information about a particular homotopy
class in isolation. A secondary goal is to offer a guide to the computational techniques in
use in stable homotopy theory today:

We assume that the reader is also referring to the Adams charts in [33] and [31].
These charts describe the same information as the tables, except in graphical form. Es-
pecially when there are multiple elements in a single degree, the charts can be somewhat
ambiguous. In such cases, we encourage readers to use the associated spreadsheets [33].
These spreadsheets are more cumbersome than charts, but they are entirely explicit.

The style of this manuscript is very much similar to [30]. We will frequently refer to
discussions in [30], rather than repeat that same material here in an essentially redundant
way. This is especially true for the first parts of Chapters 2, 3, and 4 of [30], which
discuss respectively the general properties of Ext, the May spectral sequence, and Massey
products; the Adams spectral sequence and Toda brackets; and hidden extensions.

Section 2 provides some additional miscellaneous background material not already
covered in [30]. Section 3 discusses the nature of the machine-generated data that we rely
on. In particular, it describes our data on the algebraic Novikov spectral sequence, which
1s equal to the Adams spectral sequence for the cofiber of 7. Section 4 provides some tools
for computing Massey products in Ext, and gives some specific computations. Section 5
carries out a detailed analysis of Adams differentials. Section 6 computes some miscella-
neous Toda brackets that are needed for various specific arguments elsewhere. Section 7
methodically studies hidden extensions by 7, 2, , and v in the E-page of the G-motivic
Adams spectral sequence. This section also gives some information about other miscella-
neous hidden extensions. Finally, Section 8 includes the tables that summarize the multi-
tude of specific computations that contribute to our study of stable homotopy groups.

2. Background

2.1. Associated graded objects
Defination 2.1. — A filtered abelian group A consists of a finite chain
A:F()AQF]AQFQAQ QF]),]AQFPA:O

of inclusions descending from A to 0.
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We will only consider finite chains because these are the examples that arise in
our Adams spectral sequences. Thus we do not need to refer to “exhaustive” and “Haus-
dorff” conditions on filtrations, and we avoid subtle convergence issues associated with
infinite filtrations.

Example 2.2. — The CG-motivic stable homotopy group w4 =Z/2 @ Z/2 is a
filtered abelian group under the Adams filtration. The generators of this group are o
and k. The subgroup Fj is zero, the subgroup s = I, 1s generated by «, and the subgroup
Fo =F, =F, is generated by 0 and «.

Defination 2.3. — Let A be a filtered abelian group. The associated graded object Gr A is the

sequence

FA )
{GI‘Z'A = : }
1=0

Fi A

of successive quotients.

If a is an element of one of the quotients Gr; A, then we say that : is the filtration
of a. We will frequently refer to elements in “higher filtration” and “lower filtration”.
These comparisons refer to the numerical values of filtrations in the sense described here.

Similarly, if @ is an element of ;A — F;; 1A, then we say that « has filtration ¢ or
that o is detected in filtration .

If a is an element of Gr; A, then we write {a} for the set of elements of A that are
detected by a. In general, {a} consists of more than one element of A, unless ¢ happens
to have highest filtration. In other words, the element « is a coset o + Fi | A for some o
in A, and {a} is another name for this coset. In this situation, we say that « detects «.

In this manuscript, the main example of a filtered abelian group is a G-motivic
homotopy group 7, ,, equipped with its Adams filtration.

Example 2.4. — Consider the G-motivic stable homotopy group 4 g with its
Adams filtration, as described in Example 2.2. The associated graded object is non-trivial
only in degrees 2 and 4, and it is generated by 43 and d, respectively.

Definition 2.5. — Let A and B be filtered abelian groups, perhaps with filtrations of different
lengths. A map f : A — B s filtration preserving if f (F;A) 1s contained in ¥';B _for all 1.

Let f : A — B be a filtration preserving map of filtered abelian groups. We write
Grf : GrA — GrB for the induced map on associated graded objects.

Definition 2.6. — Let a and b be elements of Gr; A and Gr; B respectively. The element b 1s
the (not hidden) value of a under f if Gr, f (a) = b.
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The element b is a hidden value of a under f* if:

(1) Grif(a) =0.
(2) there exists an element o of {a} in A such that:
(@) f(a) s contained in {b} in B, and
(b) there is no element y of A in filtration strictly higher than v such that f (y) is contained
i {b}.

Alternatively, condition (2b) can be restated to say that f(F;;;) does not intersect
{b}.

The motivation for condition (2b) may not be obvious. The point is to avoid sit-
uations in which condition (2a) is satisfied trivially. Suppose that there is an element y
such that /(y) is contained in {4}. Let a be any element of Gr A whose filtration is strictly
lower than the filtration of y. Now let o be any element of {a} such that f(«) = 0. (It
may not be possible to choose such an « in general, but sometimes it is possible.) Then
a + y 1s another element of {a} such that f (o 4+ y) is contained in {4}. Thus f takes some
element of {a} into {4}, but only because of the presence of y. Condition (2b) is designed
to exclude this situation.

Example 2.7. — We illustrate the role of condition (2b) in Definition 2.6 with a
specific example. Consider the map 1 : w143 — 7159. The associated graded map Gr(n)
takes /zg to 0 and takes d; to /;d,.

The coset {/zg} in 74 consists of two elements 0 and o> + k. One of these ele-
ments is non-zero after multiplying by 7. (In fact, no? equals zero, and n(o? + k) = nk
1s non-zero, but that is not relevant here.) Conditions (1) and (2a) of Definition 2.6 are
satisfied, but condition (2b) fails because of the presence of « in higher filtration.

Suppose that 4 is a hidden value of @ under f. It is typically the case that /(o)
is contained in {} for every @ in A. However, an even more complicated situation can
occur in which this is not true.

Suppose that b, is a hidden value of gy under f, and suppose that b, is a (hidden
or not hidden) value of ¢; under f. Moreover, suppose that the filtration of qy is strictly
lower than the filtration of ;, and the filtration of b is strictly higher than the filtration
of b,. In this situation, we say that the value of @y under f crosses the value of ¢; under /.

The terminology arises from the usual graphical calculus, in which elements of
higher filtration are drawn above elements of lower filtration, and values of maps are
indicated by line segments, as in Figure 2.

Example 2.8. — For any map X — Y of C-motivic spectra, naturality of the
Adams spectral sequence induces a filtration preserving map m,, X — m,,Y. We are
often interested in inclusion S™* — Ct of the bottom cell into Ct, and in projection
Ct — S ! from Ct to the top cell. We also consider the unit map S*° — mmf.
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bo
by
ay
ao
FiG. 2. — Crossing values

2.1.1. Indeterminacy in hidden values. — Definition 2.6 allows for the possibility that
a fixed element a could have more than one hidden value under /. In order to manage
this complication, we introduce indeterminacy into our definition.

Suppose, as in Definition 2.6, that b is a hidden value of a under f, so there exists
some o in {a} such that /(o) is contained in {}. Suppose also that there is another
element ¢ in GrA in filtration strictly higher than the filtration of @, such that f(&’) is
contained in {/'}, where ' is in {d'} and &’ has the same filtration as . Then b+ 4’ is also
a hidden value of ¢ under /| since @ 4+ ' is contained in {a} and /(@ 4+ ') is contained
in {6+ &'}. In this case, we say that & belongs to the target indeterminacy of the hidden
value.

Example 2.9. — Consider the map 7 : 743,33 — Tes.34. The element 4350, is a hid-
den value of 7/, H, under this map. This hidden value has target indeterminacy gener-

ated by T}Z1X2 = }ll . (TXQ + TC/).

2.1.2. Hidden extensions. — Let a be an element of m,;, with Adams filtration .
Then multiplication by « induces a map 7, , — 74,445 that takes elements of Adams
filtration f to elements of Adams filtration f + ¢ or higher. In other words, the map
Tpg —> Tpaq+s 18 filtration-preserving if we add 7 to all of the filtration values in 7, ,.
A hidden value of this map (with shifted filtration values on the source) is precisely the
same as a hidden extension by & in the sense of [30, Definition 4.2]. For clarity, we repeat
the definition here.

Defination 2.10. — Let oo be an element of 7., . that is detected by an element a of the Eo-page
of the G-motivic Adams spectral sequence. A hidden extension by o is a pair of elements b and ¢ of Fixo
such that:

(1) ab=0 wn the Eo-page.

(2) There exists an element B of {b} such that o is contained in {c}.

(3) If there exists an element B of {b'} such that af’ is contained in {c}, then the Adams
Sfiltration of b’ is lower than or equal to the Adams filtration of b.

A crossing value for the map « : 7, , — 74,45 18 precisely the same as a crossing
extension in the sense of [30, Examples 4.6 and 4.7].
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The discussion of target indeterminacy applies to the case of hidden extensions. For
example, the hidden 1 extension from /3Q, to T4 H; has target indeterminacy generated
by' T}l1X2.

In later sections, we will thoroughly explore hidden extensions by 2, n, and v.
We warn the reader that a complete understanding of such hidden extensions does not
necessarily lead to a complete understanding of multiplication by 2, n, and v in the G-
motivic stable homotopy groups.

For example, in the 45-stem, there exists an element 6, 5 that is detected by h§h5
such that 46, 5 1s detected by /5 dy. This is an example of a hidden 4 extension. However,
there is no hidden 2 extension from h0h§h5 to Ayhsdy; condition (2b) of Definition 2.6 is
not satisfied.

In fact, a complete understanding of @// hidden extensions leads to a complete
understanding of the multiplicative structure of the G-motivic stable homotopy groups,
but the process is perhaps more complicated than expected.

For example, we mentioned in Example 2.7 that either n(o? + k) or no? is non-
zero, but these cases cannot be distinguished by a study of hidden 7 extensions. However,
we can express that no? is zero by observing that there is no hidden o extension from
h]hg to h] d().

There are even further complications. For example, the equation %3 + Ajh; = 0
does not prove that v? + 7o equals zero because it could be detected in higher filtration.
In fact, this does occur. Toda’s relation [55] says that

1720 +1° = ne,

where ne is detected by £, ¢.

We can express Toda’s relation in terms of a “matric hidden extension”. We have
amap [V n]:mes @ mgs — 7. The associated graded map takes (hg, hih3) to zero,
but ;¢ is a hidden value of (%2, i 3) under this map, in the sense of Definition 2.6.

2.2. Motwic modular forms

Over G, a “motivic modular forms” spectrum mm/f has recently been constructed
[20]. From our computational perspective, mmfis a ring spectrum whose cohomology is
A//A(2), i.e., the quotient of the G-motivic Steenrod algebra by the subalgebra gener-
ated by Sq', Sq?, and Sq". By the usual change-of-rings isomorphism, this implies that
the homotopy groups of mmf are computed by an Adams spectral sequence whose E,-
page is the cohomology of G-motivic A(2) [28]. The Adams spectral sequence for mmf
has been completely computed [31].

By naturality, the unit map S® — mmfyields a map of Adams spectral sequences.
This map allows us to transport information from the thoroughly understood spectral
sequence for mmfto the less well understood spectral sequence for S*°. This comparison
technique is essential at many points throughout our computations.
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We rely on notation from [28] and [31] for the Adams spectral sequence for mmf,
except that we use ¢ and 7 instead of @ and v respectively.

For the most part, the map 7, ., — 7, .mmfis detected on Adams E-pages. How-
ever, this map does have some hidden values.

T heorem 2.11. — Through dimension 90, Table 2 lists all hidden values of the map 7, ,, —
Ty M-

Progf. — Most of these hidden values follow from hidden 7 extensions in the
Adams spectral sequences for S and for mm/f. For example, for S*°, there is a hidden
T extension from A ksg to d3. For mmf; there is a hidden T extension from ¢g to *. This
implies that ¢g is a hidden value of 4 f3g.

A few cases are slightly more difficult. The hidden values of Ak hs and Ayhsi follow
from the Adams-Novikov spectral sequences for S*” and for mmf. These two values are
detected on Adams-Novikov E.,-pages in filtration 2.

Next, the hidden value on Phyks; follows from multiplying the hidden value on
hohst by dy. Finally, the hidden values on A/Z?hg, hohahst, and Phsj follow from already
established hidden values, relying on #; extensions and /4, extensions. 0J

Remark 2.12. — Through the 90-stem, there are no crossing values for the map
e« — Ty mmf. Moreover, in this range, there is only one hidden value that has target
indeterminacy. Namely, A?/yd is the hidden value of Phsj, with target indeterminacy
generated by T° Ak g°.

2.3. The cohomology of the C-motivic Steenrod algebra

We have implemented machine computations of Ext, i.e., the cohomology of the
C-motivic Steenrod algebra, in detail through the 110-stem. We take this computational
data for granted. It is depicted graphically in the chart of the Eg-page shown in [33]; the
data 1s also available there. See [59] for a discussion of the implementation.

In addition to the additive structure of Ext, we also have complete information
about multiplications by /g, 4, k9, and 3. We do not have complete multiplicative in-
formation. Occasionally we must deduce some multiplicative information on an ad hoc
basis.

Similarly, we do not have systematic machine-generated Massey product informa-
tion about Ext. We deduce some of the necessary information about Massey products in
Section 4.

In the classical situation, Bruner has carried out extensive machine computations
of the cohomology of the classical Steenrod algebra [11]. More recently, Bruner and
Rognes have extended these computations to total degree 184 [13]. This data includes
complete primary multiplicative information, but no higher Massey product structure.
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We rely heavily on this information. Our reliance on this data is so ubiquitous that we
will not give repeated citations. Very recent work of Joey Beauvais-Feisthauer, Hood
Chatham, and Dexter Chua [6] and of Weinan Lin [42] [43] extends these machine
computations of classical Ext to significantly higher stems.

The May spectral sequence is the key tool for a conceptual computation of Ext.
See [30] for full details. In this manuscript, we use the May spectral sequence to compute
some Massey products that we need for various specific purposes; see Remark 2.26 for
more details.

For convenience, we restate the following structural theorem about a portion of
Extc [30, Theorem 2.19].

Theorem 2.13. — There is a highly structured isomorphism from Ext, to the subalgebra of
Ext consisting of elements in degrees (s, f, w) with s +f — 2w = 0. This tsomorphism takes classical
elements of degree (s, f) to motivic elements of degree (2s + [, f, s +[).

2.4. Toda brackets

Toda brackets are an essential computational tool for understanding stable homo-
topy groups [38, Chapter 2] [55].

Brackets appear throughout the various stages of the computations, including in
the analysis of Adams differentials and in the resolution of hidden extensions.

It 1s well-known that the stable homotopy groups form a ring under the composi-
tion product. The higher Toda bracket structure is an extension of this ring structure that
1s much deeper and more intricate. Our philosophy is that the stable homotopy groups
are not really understood until the Toda bracket structure is revealed.

A complete analysis of all Toda brackets (even in a range) is not a practical goal.
There are simply too many possibilities to take into account methodically, especially when
including matric Toda brackets (and possibly other more exotic non-linear types of brack-
ets). In practice, we compute only the Toda brackets that we need for our specific com-
putational purposes.

2.4.1. The Moss Convergence Theorem. — We next discuss the Moss Convergence
Theorem [50], which is the essential tool for computing Toda brackets in stable homo-
topy groups. See also [9] for a modern proof of the Moss Convergence Theorem that
applies not only in classical stable homotopy theory but also to a wide variety of stable
homotopy theories including G-motivic stable homotopy theory.

In order to state the Moss Convergence Theorem precisely, we must clarify the var-
1ous types of bracket operations that arise. First, the Adams Es-page has Massey products
arising from the fact that it is the homology of the cobar complex, which is a differential
graded algebra. We typically refer to these simply as “Massey products”, although we
write “Massey products in the Ey-page” for clarification when necessary.
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Next, each higher E,-page also has Massey products, since it is the homology of
the E,_,-page, which is a differential graded algebra. We always refer to these as “Massey
products in the E,-page” to avoid confusion with the more familiar Massey products in
the Ey-page. This type of bracket appears only occasionally throughout the manuscript.

Beware that the higher E,-pages do not inherit Massey products from the pre-
ceding pages. For example, T/} equals the Massey product (k, /i, k) in the Ep-page.
However, in the Ej-page, the bracket (Ao, &1, k) equals zero, since the product Ak, is
already equal to zero in the Eo-page before taking homology to obtain the E;-page.

On the other hand, the Massey product {4y, A, k3) is not a well-defined Massey
product in the Ey-page since hy/kj is non-zero, while (A, hy, £3) in the Eg-page equals ;4
because of the differential dy(A4) = /zohg.

Finally, we have Toda brackets in the stable homotopy groups 7, .. The point of
the Moss Convergence Theorem is to relate these various kinds of brackets.

Definition 2.14. — Given r and a degree (s, f, W), a crossing differential is a nonzero differen-
tial d,,(x) =y in the G-motivic Adams spectral sequence such that y has degree (s, f', w) with f" > f
and x has degree (s + 1, f", w) with [ < f —r.

Here is the idea behind Definition 2.14. Consider the 4, differential restricted to
source degree (s + 1,/ — r, w) and target degree (s, f, w). A crossing differential is a
longer differential whose source degree lies strictly “below” (s + 1,/ — r, w) and whose
target degree lies strictly “above” (s, f, w).

Remark 2.15. — In practice, we will never use Definition 2.14. Rather, we will
consider elements ¢ and 4 in the E,-page of the G-motivic Adams spectral sequence such
that ab = 0. We informally call a nonzero differential

dr+nx =)

a crossing differential for the product ab if it satisfies Definition 2.14 for the degree of ab.

Figure 3 depicts the situation of a crossing differential in a chart for the E,-page.
Typically, the product ab is zero in the E,-page because it was hit by a d,_, differential, as
shown by the dashed arrow in the figure. However, it may very well be the case that the

product ab 1s already zero in the E,_;-page (or even in an earlier page), in which case the
dashed d,_, differential is actually 4, (0) = 0.

Theorem 2.16 (Moss Convergence Theorem). — Suppose that a, b, and ¢ are permanent cycles
in the E.,-page of the C-motivic Adams spectral sequence that detect homotopy classes o, B, and y in
Ty« Tespectively. Suppose further that

(1) the Massey product {a, b, ¢) is defined in the E,-page, i.e., ab =0 and bc = 0 wn the
E,-page.



STABLE HOMOTOPY GROUPS OF SPHERES: FROM DIMENSION 0 TO 90*

F1c. 3. — Crossing differentials

(2) the Toda bracket (o, B, y) is defined in 7, 4, 1.e., @ =0 and By = 0.
(3) there are no crossing differentials for the products ab and be in the E,-page.

Then there exists an element e contained in the Massey product (a, b, ¢) in the E,-page, such that

(1) the element e is a permanent cycle.
(2) the element e detects a homotopy class in the Toda bracket (o, B, y).

Remark 2.17. — 'The homotopy classes a, B, and y are usually not unique. The
presence of elements in higher Adams filtration implies that @, b, and ¢ detect more than
one homotopy class. Moreover, it may be the case that («, £, y) is defined for only some
choices of &, 8, and y, while the Toda bracket is not defined for other choices.

Remark 2.18. — The Moss Convergence Theorem 2.16 says that a certain Massey
product (a, b, ¢) in the E,-page contains an element with certain properties. The theorem
does not claim that every element of (g, 4, ¢) has these properties. In the presence of
indeterminacies, there can be elements in (a, b, ¢) that do not satisfy the given properties.

Remark 2.19. — Beware that the Toda bracket (, B, ) may have non-zero in-
determinacy. In this case, we only know that ¢ detects one element of the Toda bracket.
Other elements of the Toda bracket could possibly be detected by other elements of the
Adams E.-page; these occurrences must be determined by inspection.

Remark 2.20. — In practice, one computes a Toda bracket (c, B, y) by first study-
ing its corresponding Massey product (a, 4, ¢) in a certain page of the Adams spectral se-
quence. In the case that the Massey product (a, b, ¢) equals zero in the E,-page in Adams
filtration f, the Moss Convergence Theorem 2.16 does not imply that the Toda bracket
(a, B, y) contains zero. Rather, the Toda bracket contains an element (possibly zero) that
is detected in Adams filtration at least / 4 1.

Example 2.21. — Consider the Toda bracket (v, n, v). The elements #; and Ay are
permanent cycles that detect n and v, and the product nv is zero. We have that (A, £y, h9)
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equals /)43, with no indeterminacy, in the Eo-page. There are no crossing differentials for
the product 44y = 0 in the Eg-page, so the Moss Convergence Theorem 2.16 implies
that 4, /3 detects a homotopy class in (v, n, v).

Note that 445 detects the homotopy class no because /3 1s a permanent cycle that
detects 0. However, we cannot conclude that no is contained in (v, 17, v). The presence of
the permanent cycle ¢ in higher filtration means that 4,45 detects both no and no + €,
where € is the unique homotopy class that is detected by ¢y. The Moss Convergence
Theorem 2.16 implies that either no or no + € is contained in the Toda bracket (v, n, v).
In fact, no + € is contained in the Toda bracket, but determining this requires further
analysis.

Example 2.22. — Consider the Toda bracket (o2, 2, ). The elements 43, &, and
hy are permanent cycles that detect 02, 2, and 7 respectively, and the products 20% and 27
are both zero. Due to the Adams differential dy(%4) = hohg, the Massey product (/z%, ho, hy)
equals ;44 in the Es-page, with zero indeterminacy. There are no crossing differentials for
the products /zohg = 0 and i/ = 0 in the Es-page. The Moss Convergence Theorem 2.16
implies that /4,44 detects a homotopy class in the Toda bracket (0%, 2, ).

The element /43 also detects o2 + «, where k is the unique homotopy class that is
detected by dy, and the product 2(c + k) is zero. The Moss Convergence Theorem 2.16
also implies that 4,4, detects a homotopy class in the Toda bracket (0% + &, 2, ).

Example 2.23. — Consider the Toda bracket (k, 2, ). The elements d, A, and &,
are permanent cycles that detect «, 2, and 1 respectively, and the products 2« and 27 are
both zero. Due to the Adams differential d;(hohy) = hody, the Massey product (dy, A, /1)
equals fiphy - hy = 0 in Adams filtration 3 in the E4-page, with zero indeterminacy. There
are no crossing differentials for the products 4ydy = 0 and /yh; = 0 in the E4-page. The
Moss Convergence Theorem 2.16 implies that the Toda bracket (k, 2, n) either contains
zero, or it contains a non-zero element detected in Adams filtration higher than 3.

The only possible detecting element is P¢y. There is a hidden n extension from
hg/u, to Pcy, so P¢y detects an element in the indeterminacy of (k, 2, ). Consequently, the
Toda bracket is {0, 115}, where p5 is detected by /) As.

Example 2.24. — The Massey product (hy, /3, h3) equals {fy, fo + hihghs} in the
Ey-page. The elements hy, /3, and 4] are permanent cycles that detect v, 0%, and 4 re-
spectively, and the products vo? and 40% are both zero. However, the product /4343 has a
crossing differential d5(hohy) = hody. The Moss Convergence Theorem 2.16 does not ap-
ply, and we cannot conclude anything about the Toda bracket (v, 0%, 4). In particular, we
cannot conclude that {f;, o + }Z(Q)/ZQ}Z4} contains a permanent cycle. In fact, both elements
support Adams d, differentials.
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Remark 2.25. — There is a version of the Moss Convergence Theorem 2.16
for computing fourfold Toda brackets (c, B, ¥, §) in terms of fourfold Massey products
(a, b, ¢, d) in the E,-page. In this case, the crossing differential condition applies not only
to the products ab, be, and ¢d, but also to the subbrackets (a, b, ¢) and (b, ¢, d).

Remark 2.26. — Just as the Moss Convergence Theorem 2.16 is the key tool for
computing Toda brackets with the Adams spectral sequence, the May Convergence The-
orem is the key tool for computing Massey products with the May spectral sequence. The
statement of the May Convergence Theorem is entirely analogous to the statement of
the Moss Convergence Theorem, with Adams differentials replaced by May differentials;
Adams E,-pages replaced by May E,-pages; 7, . replaced by Ext; and Toda brackets
replaced by Massey products. An analogous crossing differential condition applies. See
[30, Section 2.2] [46] for more details. We will use the May Convergence Theorem to
compute various Massey products that we need for specific purposes.

2.4.2. Moss’s higher Leibniz rule. — Occasionally, we will use Moss’s higher Leibniz
rule [50], which describes how Massey products in the E,-page interact with the Adams
d, differential. This theorem is a direct generalization of the usual Leibniz rule d,(ab) =
d,(a)b + ad,(b) for twofold products.

Theorem 2.27 (/50]). — Suppose that a, b, and ¢ are elements in the E,-page of the G-motivic
Adams spectral sequence such that ab =0, b¢ =0, d,(b)a= 0, and d,(b)c = 0. Then

d{a, b, c) S (d,(a), b, c) + (a, d,(b), c) + (a, b, d.(0)),

where all brackets are computed in the E.,-page.

Remark 2.28. — By the Leibniz rule, the conditions 4,(b)a =0 and &,(b)c = 0 im-
ply that d,(a)b = 0 and d,(¢)b = 0. Therefore, all of the Massey products in Theorem 2.27
are well-defined.

Remark 2.29. — The Massey products in Moss’s higher Leibniz rule 2.27 may

have indeterminacies, so the statement involves an inclusion of sets, rather than an equal-

1ty.

Remark 2.30. — Beware that Moss’s higher Leibniz rule 2.27 cannot be applied
to Massey products in the E,-page to study differentials in higher pages. For example,
we cannot use it to compute the ds differential on a Massey product in the Eo-page. In
fact, there are versions of the higher Leibniz rule that apply to higher differentials [37,
Theorem 8.2] [46, Theorem 4.3], but these results have strong vanishing conditions that
often do not hold in practice.
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Example 2.31. — Consider the element T A4, which was called G in [54]. Ta-
ble 4 shows that there is an Adams differential dg(rAlh%) = M#A, hs, which follows by
comparison to Gt. To illustrate Moss’s higher Leibniz rule 2.27, we shall give an inde-
pendent derivation of this differential.

Table 3 shows that TAlh% equals the Massey product (%, 4y, D), with no indeter-
minacy. By Moss’s higher Leibiz rule 2.27, the element dy(t A 4}) is contained in

(0, Ao, Dy) + (41, 0,Dy) + (A, ko, dy(Dy)).

By inspection, the first two terms vanish. Also, Table 4 shows that dy (D) equals /z%/zggQ.

Therefore, do(TAA}) is contained in the bracket <}ll,/20,ll(2)}l3g2>, which equals
<}ll,}l(),}l§g2>}l3. Finally, Table 3 shows that (hl,}lo,}lgg2> equals M#A;. This shows that
dQ(TAl}l%) equals M}llhg

Example 2.32. — Consider the element T¢yg in the Adams Es-page. Because of
the Adams differential d>(¢)) = h%do, we have that teyg equals (d, h?, 7g) in the Adams
Es-page. The higher Leibniz rule 2.27 implies that d;(Teyg) 13 contained in

<0a h%’ tg) + <d07 0’ Tg) + (d()’ hga 0)7

which equals {0, cody}. In this case, the higher Leibniz rule 2.27 does not help to deter-
mine the value of d5(te¢yg) because the indeterminacy is too large. (In fact, ds(reyg) does
equal ¢yd3, but we need a different argument.)

Example 2.33. — Lemma 5.32 shows that dg(Ahg}ZG) equals hlh(;dg. This argument
uses that Ahshs equals (Ahy, i3, hy) in the Es-page, because of the Adams differential
dQ(/Z6) - /Zoh%

2.4.3. Shuffling formulas for Toda brackets. — Toda brackets satisfy various types of
formal relations that we will use extensively. The most important example of such a rela-
tion is the shuffle formula

alB,y,d) =(a,B,v)é,

which holds whenever both Toda brackets are defined. Note the equality of sets here; the
indeterminacies of both expressions are the same.

The following theorem states some formal properties of threefold Toda brackets
that we will use later. We apply these results so frequently that we typically use them
without further mention.

Theorem 2.34 (/55, p. 33]). — Leta, o', B, v, and & be homotopy classes in 7, .. Each of
the following relations involving threefold Toda brackets holds up to signs, whenever the Toda brackets are
defined:
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(1) {a+a',B,y) S{a,B,y)+ (o, B, y).

(2) (o, B,y)=(y.B,a).

(3) a(B,y,8) S (ap,y,d).

4) (aB,y,8) < (a, By, ).

(5) a(B,y,8) = (a, B, v)s.

6) 0efa,B,y)+ (B, y,a) +(y,a,B).

(7) 0€ {{a,B,y),0,€) + (o, (B, v, 8),€) + {a, B, (y.8,¢€)).

Part (7) of Theorem 2.34 requires some further explanation. In the expression
({(a, B,y), 98, €), we have a set («, B, y) as the first input to a threefold Toda bracket.
The expression ({a, B, y), d, €) is defined to be the union of all sets of the form (¢, 8, €),
where ¢ ranges over all elements of (¢, 8, y) such that £§ = 0. Similar remarks apply to
the other terms in Part (7).

We next turn our attention to fourfold Toda brackets. New complications arise in
this context. If ¢ =0, By =0, y6 =0, («, B, ¥) contains zero, and (8, y, §) contains
zero, then the fourfold bracket («, B, v, §) is not necessarily defined. Problems can arise
when both threefold subbrackets have indeterminacy. See [29] for a careful analysis of
this problem in the analogous context of Massey products.

However, when at least one of the threefold subbrackets is strictly zero, then these
difficulties vanish. Every fourfold bracket that we use has at least one threefold subbracket
that is strictly zero.

Another complication with fourfold Toda brackets lies in the description of the
indeterminacy. If at least one threefold subbracket is strictly zero, then the indeterminacy
of (a, B, y, 8) is the linear span of the sets («, B, €), (o, €, 8), and (€, ¥, §), where € ranges
over all possible values in the appropriate degree for which the Toda bracket is defined.

The following theorem states some formal properties of fourfold Toda brackets that
we will use later. We apply these results so frequently that we typically use them without
further mention.

Theorem 2.35 (/38, Chapter 2]). — Let o, o', B, v, 8, and € be homotopy classes in T, .
Each of the following relations involving fourfold Toda brackets holds up to sign, whenever the Toda
brackets are defined:

(1) (@+a',B,y.8) C(a, B,y,8) + (., B,y,8).
2) {a,B,v,8)=1(8,v,B,a).

(3) a(B,y.0,€) S (ap,y,d,¢€).

4) (aB,y.8,€) S{a,By.d,¢€).

(5) a{B,y,6,€)=(a, B,y,d)e.

<6> a(ﬂ’ )/’896> g <<a9 ﬂ’ y>’5’€>

As in Part (7) of Theorem 2.34, Part (6) of Theorem 2.35 requires some further
explanation. The expression ({a, B, ¥), d, €) is defined to be the union of all sets of the
form (¢, 8, €), where ¢ ranges over all elements of («, B, y) such that ¢§ = 0.
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We will make occasional use of matric Toda brackets. We will not describe their
shuffling properties in detail, except to observe that they obey analogous matric versions
of the properties in Theorems 2.34 and 2.35. These properties can be proved with the
same techniques that apply to matric Massey product [46]; see [37, 39] for examples of
this style of argument.

3. The algebraic Novikov spectral sequence

Consider the cofiber sequence

T i b4
SO,—I S0,0 CT SI’_I,

where Ct is the cofiber of 7. The inclusion ¢ of the bottom cell and projection p to
the top cell are tools for comparing the G-motivic Adams spectral sequence for S™° to
the G-motivic Adams spectral sequence for Ct. In [30], the first author analyzed both
spectral sequences simultaneously, playing the structure of each against the other in order
to obtain more detailed information about both. Then the structure of the homotopy of
Ct was used to reverse-engineer the structure of the classical Adams-Novikov spectral
sequence.

In this manuscript, we use Ct in a different, much more powerful way, because
we have a deeper understanding of the connection between the homotopy of Ct and
the structure of the classical Adams-Novikov spectral sequence. Namely, the G-motivic
spectrum C7 is an Es-ring spectrum [19]. Here we are referring to the classical Ey-
operad that parametrizes homotopy-coherent commutative multiplications.

Moreover, the homotopy category of Ct-modules is equivalent to Hovey’s stable
derived category of BP,BP-comodules [21, 41]. By considering endomorphisms of unit
objects, this comparison of homotopy categories gives a structured explanation for the
identification of the homotopy of Ct and the classical Adams-Novikov Eo-page.

From a computational perspective, there is an even better connection. Namely, the
algebraic Novikov spectral sequence for computing the Adams-Novikov Eo-page [48, 51]
is identical to the G-motivic Adams spectral sequence for computing the homotopy of Ct
[21]. This rather shocking, and incredibly powerful, identification of spectral sequences
allows us to transform purely algebraic computations directly into information about
Adams differentials for Ct. Finally, naturality along the inclusion ¢ of the bottom cell
and along the projection p to the top cell allows us to deduce information about Adams
differentials for S*°.

Due to the large quantity of data, we do not explicitly describe the structure of the
Adams spectral sequence for Gt in this manuscript. We refer the interested reader to the
charts in [34], which provide details in a graphical form.
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3.1. Naming conventions

Our naming convention for elements of the algebraic Novikov spectral sequence
(and for elements of the Adams-Novikov spectral sequence) differs from previous ap-
proaches. Our names are chosen to respect the inclusion z of the bottom cell and the pro-
jection p to the top cell. Specifically, if x is an element of the G-motivic Adams Ey-page
for S*°, then we use the same letter x to indicate its image z,(x) in the Adams Eq-page for
Cr. It 18 certainly possible that z,(x) is zero, but we will only use this convention in cases
where ,(x) is non-zero, i.e., when x is not a multiple of 7.

On the other hand, if x is an element of the CG-motivic Adams Ey-page for S™°
such that tx is zero, then we use the symbol ¥ to indicate an element of p_'(x) in the
Adams Eg-page for Ct. There is often more than one possible choice for ¥, and the
indeterminacy in this choice equals the image of 7, in the appropriate degree. We will
not usually be explicit about these choices. However, potential confusion can arise in this
context. For example, it may be the case that one choice of ¥ supports an /4, extension,
while another choice of ¥ supports an #y extension, but there is no possible choice of ¥
that simultaneously supports both extensions. (The authors dwell on this point because
this precise issue has generated confusion about specific computations.)

3.2. Machine computations

We have analyzed the algebraic Novikov spectral sequence by computer in a large
range. Roughly speaking, our algorithm computes a Curtis table for a minimal resolu-
tion. Significant effort went into optimizing the linear algebra algorithms to complete the
computation in a reasonable amount of time. The data is available at [34]. See [59] for a
discussion of the implementation.

Our machine computations give us a full description of the additive structure of
the algebraic Novikov Es-page, together with all ¢, differentials for » > 2. It thus yields a
full description of the additive structure of the algebraic Novikov E-page.

Moreover, the data also gives full information about multiplication by 2, 4, and
hy in the Adams-Novikov Eq-page for the classical sphere spectrum, which we denote by
H*(S; BP).

We have also conducted machine computations of the Adams-Novikov Ey-page
for the classical cofiber of 2, which we denote by H*(S/2; BP). Note that H*(S; BP) is
the homology of a differential graded algebra (i.e., the cobar complex) that is free as a
Z,-module. Therefore, H*(S/2; BP) is the homology of this differential graded algebra
modulo 2. We have computed this homology by machine, including full information
about multiplication by /4, &y, and £3;. These computations are related by a long exact
sequence

o H*(S; BP)—~H*(S/2; BP)—H*(S; BP)—— - -
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Because hg, i, k3, and k2 are anmhllated by 2 in H*(S; BP), there are classes /zg ,
h%, hi, and hz in H*(S/2; BP) such that g(hQ) equals h2 for 2 <1 < 5. We also have full

information about multiplication by }z 5, b3, B, and /12 in H*(S5/2; BP).

This multiplicative information allows use to determine some of the Massey prod-
uct structure in the Adams-Novikov Ey-page for the sphere spectrum. There are several
cases to consider.

First, let x and y be elements of H*(S; BP). If the product j(x);(») is non-zero in
H*(S/2; BP), then xy must also be non-zero in H*(S; BP).

In the second case, let x be an element of H*(S; BP), and let y be an element of
H*(S/2; BP) such that ¢(y) = y. If the product x -y is non-zero in H*(S/2; BP) and equals
J(2) for some z in H*(S; BP), then z belongs to the Massey product (2, », x). This fol-
lows immediately from the relationship between Massey products and the multiplicative
structure of a cofiber, as discussed in [30, Section 3.1.1].

Third, let ¥ and 5 be elements of H*(S/2; BP) such that ¢(x) = x, ¢(y) =, and
q(x -y) = z. Then z belongs to the Massey product (x, 2, y) in H*(S; BP). This follows
immediately from the multiplicative snake lemma 3.3.

Example 3.1. — Computer data shows that the product }Z . }2 does not equal zero
in H*(S/2; BP). This implies that the Massey product (£}, 2, 42) does not contain zero in
H*(S; BP), which in turn implies that the Toda bracket (6, 2, 85) does not contain zero
N o3 45.

Remark 3.2. — let X and y be elements of H*(S/2; BP) such that ¢(¥) and ¢(»)
equal x and y, and such that ¥ -7 equals j(z) for some z in H*(S; BP). It appears that z
has some relationship to the fourfold Massey product (2, x, 2, y), but we have not made
this precise.

Lemma 3.3 (Multiplicative snake lemma). — Let A be a differential graded algebra that has
no 2-torsion, and let H(A) be its homology. Also let H(A/2) be the homology of AJ2, and let & :
H(A/2) — H(A) be the boundary map associated to the short exact sequence

2
0— A=A =A/2 0.

Suppose that a and b are elements of H(A/2) such that 26(a) = 0 and 26(b) = 0 i H(A). Then
the Massey product (6(a), 2, 6(b)) in H(A) contains 5(ab).

Proof. — We carry out a diagram chase in the spirit of the snake lemma. Write 0
for the boundary operators in A and A/2.

Let x and » be cycles in A/2 that represent a and b respectively. Let ' and )" be
elements in A that reduce to x and y. Then dx” and 9y’ reduce to zero in A/2 because x
and y are cycles. Therefore, dx' = 2x and 3y = 2y for some ¥ andy in A.
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By definition of the boundary map, 8(a) and §(b) are represented by ¥ and y. By
the definition of Massey products, the cycle ¥y + x’y is contained in (§(a), 2, §(b)).
Now we compute §(ab). Note that 'y is an element of A that reduces to ab. Then

(Y)Y =0y +x90") =2Rx) + 7).

This shows that §(ab) is represented by ¥ + x'y. O

3.3. hy-Bocksten spectral sequence

The charts in [34] show graphically the algebraic Novikov spectral sequence, i.e.,
the Adams spectral sequence for Ct. Essentially all of the information in the charts can be
read off from machine-generated data. This includes hidden extensions in the E.,-page.

One aspect of these charts requires further explanation. The G-motivic Adams Eo-
page for Gt contains a large number of %;-periodic elements, i.e., elements that support
infinitely many %, multiplications. The behavior of these elements is entirely understood
[22], at least up to many multiplications by 4, 1.e., in an 4, -periodic sense.

On the other hand, it takes some work to “delocalize” this information. For exam-
ple, we can immediately deduce from [22] that dy(he,) = K+ d, for large values of &, but
that does not necessarily determine the behavior of Adams differentials for small values
of k.

The behavior of these elements is a bit subtle in another sense, as illustrated by
Example 3.4.

Example 3.4. — Consider the /;-periodic element ¢ye in the algebraic Novikov
spectral sequence. Machine computations tell us that this element supports a ds differen-
tial, but there is more than one possible value for d;(¢oey) because of the presence of both
/1%% and Pe.

In fact, dy(cody) equals Pdy, and dy(Pey) equals Phldy. Therefore, Pey + K ayd, is the
only non-zero d, cycle, and it follows that &y (¢yéy) must equal Pey + /ﬁﬁ

The careful reader will note that dy(¢pey) 1s not shown on the algebraic Novikov
chart in [34]. As discussed in [34, Section 4], the /;-periodic differentials are not shown
for legibility. Instead, the differential is shown in the £;-Bockstein spectral sequence chart
of [34], up to higher powers of #;.

In higher stems, it becomes more and more difficult to determine the exact val-
ues of the Adams &, differentials on /;-periodic classes. Eventually, these complications
become unmanageable because they involve sums of many monomials.

Fortunately, we only need concern ourselves with the Adams d, differential in this
context. The #;-periodic Es-page equals the %;-periodic Eo-page, and the only non-zero
classes are well-understood v, -periodic families running along the top of the Adams chart.
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Our solution to this problem, as usual, is to introduce a filtration that hides the
higher order terms. In this case, we filter by powers of 4;. The effect is that terms involving
higher powers of /; are ignored, and the formulas become much more manageable.

This /;-Bockstein spectral sequence starts with an Ej-page, because there are some
differentials that do not increase #; divisibility. For example, we have Bockstein differen-
tials dy(keo) = hidy and dy (cody) = Pdy, reflecting the Adams differentials ds(/iey) = hid,
and dy(cody) = Pd.

There are also plenty of higher £,-Bockstein differentials, such as dy(¢y) = }l%d(), and
d; (egg) = Mh?.

Remark 3.5. — Beware that filtering by powers of 4, changes the multiplicative
structure in perhaps unexpected ways. For example, P4, and 4, are not &;-multiples, so
their #;-Bockstein filtration is zero. One might expect their product to be P4, d,, but the
hi-Bockstein filtration of this element is 1. Therefore, P#; - dy equals O in the £,-Bockstein
spectral sequence.

But not all P#; multiplications are trivial in the 4;-Bockstein spectral sequence.
For example, we have P# - ¢ody = Phycody because the ki -Bockstein filtrations of all three
elements are zero.

In Example 3.4, we explained that there is an Adams differential d(cyey) = Pey +
I ¢ody. When we throw out higher powers of 4, we obtain the /;-Bockstein differential
do(%oe0) = Pey. We also have an £,-Bockstein differential dy(cody) = Pd.

The first four charts in [34] show graphically how this 4;-Bockstein spectral se-
quence plays out in practice. The main point is that the £;-Bockstein Ey-page reveals
which (formerly) %;-periodic classes contribute to the Adams Es-page for Cr.

4. Massey products

The purpose of this section is to provide some general tools, and to give some
specific computations, of Massey products in Ext. This material contributes to Table 3,
which lists a number of Massey products in Ext that we need for various specific purposes.
Most commonly, these Massey products yield information about Toda brackets via the
Moss Convergence Theorem 2.16.

We begin with a G-motivic version of a classical theorem of Adams about symmet-
ric Massey products.

Theorem 4.1.

(1) If hox 1s zero, then (ho, x, hy) contains Thx.
(2) Ifn>1 and h,x 1s zero, then (h,, x, h,) contains h,,x.
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Proof. — The element Sqo(/zn)x is contained in (A, x, #,) [25], where Sq0 is an al-
gebraic Steenrod operation [47]. We compute that Sq” (k) equals T4, and Sq°(k,) equals

hyt1 for n > 1. These motivic computations follow from the analogous classical computa-
tions [1, Lemma 2.5.4]. ([l

Remark 4.2. — The two parts of Theorem 4.1 are less different than they appear.
Because of the specific values of the motivic weights, we have a factor of 7 in Sq0 (hy),
while no t appears in Sq"(,) for n> 1.

4.1. The operator g

The projection map p: A, = A(2), induces a map p, : Extc — Exta). Because
Exta(9) 1s completely known [28], this map is useful for detecting structure in Ext¢. Propo-
sition 4.3 provides a tool for using p, to compute certain types of Massey products.

Proposition 4.3. — Let x be an element of Exte such that ijx = 0. Then p, ((/14, Iy, x))
equals the element gp,.(x) 1 Extag).

Progf: — The 1dea of the proof is essentially the same as in [32, Proposition 3.1].
The Exte-module Exty ) 1s a ““Toda module”, in the sense that Massey products (x, a, b)
are defined for all x in Exta) and all ¢ and 4 in Extg such that x - ¢ =0 and ab = 0. In
particular, the bracket (1, Ay, 4}) is defined in Extac). We wish to compute this bracket.

We use the May Convergence Theorem in order to compute the bracket. The
crossing differentials condition on the theorem is satisfied because there are no possible
differentials that could interfere.

The key point is the May differential d,(53,) = /thy. This shows that g is contained
in (1, Ay, k7). Also, the bracket has no indeterminacy by inspection.

Now suppose that x is an element of Extc such that £jx = 0. Then

P (Chay B 2)) = 1+ Gy, i %) = (1, b, ) - 6= g (). O

Example 4.4. — We illustrate the practical usefulness of Proposition 4.3 with a
specific example. Consider the Massey product (/}hy, k1, hy). The proposition says that

y. ((h‘?/u, s hQ)) = lyg

in Exty9). This implies that (/l:f}h;, hy, ho) equals hog in Extg.

Remark 4.5. — The Massey product computation in Example 4.4 is in relatively
low dimension, and it can be computed using other more direct methods. Table 3 lists
additional examples, including some that cannot be determined by more elementary
methods.
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4.2. The Mahowald operator

We recall some results from [32] about the Mahowald operator. The Mahowald
operator is defined to be Mx = (x, /), go) for all x such that Ajx equals zero. As always,
one must be cautious about indeterminacy in Mx.

There exists a subalgebra B of the G-motivic Steenrod algebra whose cohomology
Extg(My, My) equals My[v3] @m, Exty9). The inclusion of B into the G-motivic Steenrod
algebra induces a map p, : Extg — Extp.

Proposition 4.6 (32, Theorem 1.1]). — Themap p,. : Extc — Extg takes Mx to the product
(e U?Q, + /z‘? v;;l‘) 0 (X), whenever Mx s defined.

Proposition 4.6 is useful in practice for detecting certain Massey products of the
form (x, /), g&). For example, if x is an element of Extg such that /4x equals zero and
¢op«(x) 13 non-zero in Exty(), then (x, /Zg, g») 1s non-zero.

Example 4.7. — Proposition 4.6 shows that (A, h, hig,) is non-zero. There is only
one non-zero element in the appropriate degree, so we have identified the Massey prod-
uct. We give this element the name M#,.

Example 4.8. — Expanding on Example 4.7, Proposition 4.6 also shows that
(Mhy, hy, h2g) is non-zero. Again, there is only one non-zero element in the appropri-
ate degree, so we have identified the Massey product. We give this element the name
M?A,.

4.3. Additional computations
Lemma 4.9. — (66, 6,36) The Massey product (i}, b3, kY, b3) equals A K3

Proof. — Table 3 shows that A% equals the Massey product (4, /3, A, h3). Re-
call the isomorphism between classical Ext groups and G-motivic Ext groups in degrees
satisfying s + f/ — 2w = 0, as described in Theorem 2.13. This shows that A /3 equals
R, I, L ), 0

Lemma 4.10. — (66, 7, 35) The Massey product (A', hy, hy) equals T Gy.

Progf. — Consider the shuffle
A/<hl’ th hl) = <A/a }Zl’ ;l2>;l1'

Table 3 shows that the left side equals th/ , which equals #; - TGy. This implies that
(A, hy, hy) contains TGy.
The indeterminacy is zero by inspection. UJ
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Lemma 4.11. — (71, 13, 40) The Massey product (ki hy, hy, Tgn) equals Tg*n, with inde-
terminacy generated by Mhohg.

Progf. — We start by analyzing the indeterminacy. The product M¢ - /7 k4 equals
(g2, b3, coVI hy = (go, By B haco) = (g, b3, hohy - hag) = (go, hiy hog) hoha,

which equals M/ghsg. The equalities hold because the indeterminacies are zero, and the
first and last brackets in this computation are given by Table 3. This shows that MAksg
belongs to the indeterminacy.

Table 3 shows that

(o, by, ) = (hy, B, B ha)

equals f9g. Then
ho (izf/@, hy, tgn) = (hy, /z?/zgr, hi)tgn = than.

This implies that (A4, b1, Tgn) contains either Tg’n or Ahsg®. However, the shuffle
I (B, by, Tgn) = (hy, by, ) Tgn =10

eliminates A/sg”. UJ

Lemma 4.12. — (80, 5, 42) The Massey product (hs, ', ho) equals hyes, with no indeter-
minacy.

Proof. — We have

<}l37p/’ /l2>}l42} = h% (]7/’ ll?a hi} :p/</l25 /Zia h%)'

Table 3 shows that the last Massey product equals ¢;. Observe that p'c; equals Aykies.

Since 4] - hgey is zero (as usual, we rely on complete information about classical
products in a large range [11, 13]), this shows that (%3, #/, k) equals either Ayey or hyes +
heeo. However, shuffle to obtain

(ha, s ho)ly = s (P, ho, ),

which must equal zero because multiplication by /3 1s zero in the appropriate degree.
Since % (hoea + hsep) 1s non-zero, it cannot equal (A3, p', ko).
The indeterminacy is zero by inspection. O

Remark 4.13. — The Massey product of Lemma 4.11 cannot be established with
Proposition 4.3 because p.(tgn) = 0 in Exty().
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Lemma 4.14. — (82, 12, 45) The Massey product (Aey + Co, I, hihy) equals (Ae; +
Co)g, with no indeterminacy.

Proof. — Consider the Massey product (t(Ae; + Cy), A, iy). By inspection, this
Massey product has no indeterminacy. Therefore,

(T(Aey + Co), b, hy) = (Aey + Co) (T, by, hy).

Table 3 shows that the latter bracket equals tg, so the expression equals 7 (Ae; + Cy)g.
On the other hand, it also equals 7(Ae¢ + C, /z?, hihy). Therefore, the bracket

(Ae; + G, h?, hihy) must contain (Ae; 4+ Cp)g. Finally, the indeterminacy can be com-

puted by inspection. O

Lemma 4.15. — (93,13, 49) The Massey product (t°gG, hoho, hy) has indeterminacy
generated by TMP hy, and it either contains zero or Teyxze.9. In particular, it does not contain any linear
combination of A*hy g, with other elements.

Progf. — The indeterminacy can be computed by inspection.
The only possible elements in the Massey product (t%gGy, fohy, hy) are linear com-
binations of ¢yx76 9 and M2Ay. The inclusion

T(TQgGo, hohy, hy) € (ngGo, hohga, ho)

gives the desired result. 0J

5. Adams differentials

The goal of this section is to describe the values of the Adams differentials in the
motivic Adams spectral sequence. These values are given in Tables 4, 6, 7, 8, and 9. See
also the Adams charts in [33] for a graphical representation of the computations. For
easy reference, the many lemmas in this section are labelled with degrees that match the
degrees given in the tables.

5.1. The Adams dy differential

Table 4 lists all of the multiplicative generators of the Adams Ey-page through
the 95-stem. The third column indicates the value of the dy differential, if it is non-zero.
A blank entry in the third column indicates that the dy differential is zero. The fourth
column indicates the proof. A blank entry in the fourth column indicates that there are

no possible values for the differential. The fifth column gives alternative names for the
element, as used in [11, 54], and [30].
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Theorem 5.1. — Table 4 lists the values of the Adams dy differential on all multiplicative
generators through the 95-stem.

Remark 5.2. — A previous version of this manuscript left uncertain the value of
dy on three multiplicative generators. These three values have since been determined by
Dexter Chua [17]. We have included those values here, but we defer to [17] and [4] for
their proofs. Also, we are grateful to Joey Beauvais-Feisthauer [4] for discovering an error
in our previous calculation of dy(xg5¢).

Progf. — 'The fourth column of Table 4 gives information on the proof of each
differential. Most follow immediately by comparison to the Adams spectral sequence
for Ct [34]. A few additional differentials follow by comparison to the classical Adams
spectral sequence for tmf [14].

If an element is listed in the fourth column of Table 4, then the corresponding dif-
ferential can be deduced from a straightforward argument using a multiplicative relation.
For example, it is possible that dy(Ah hs) equals Tdyey. However, hy - Ahyhs is zero, while
hy - Tdyey 1s non-zero. Therefore, dy(Ah hs) must equal zero.

In some cases, it is necessary to combine these different techniques to establish the
differential.

The remaining more difficult computations are carried out in the following lem-
mas. We refer to [17] and [4] in a few cases. U

Lemma 5.3. — (61,9, 32) dy(Ax) = By + tMAd.

Progf — We have a differential dy(Ax) = /3B, in the Adams spectral sequence for
Crt. Therefore, dy(Ax) equals either /z(Q)B4 or /z(Q)B4 + tMhdy.

We have the relation 42 - Ax = Ph; - TA A} (as usual, we rely on complete infor-
mation about classical products in a large range [11, 13]), so Aidy(Ax) = Phidy(T A1) =
Phyhs - Mhy = tMA}dy. Therefore, dy(Ax) must equal }Z(Q]B./l. + tMAh dy. ]

Remark 5.4. — The proof of [30, Lemma 3.50] is incorrect. We claimed that /7 -
Ax equals £ - A?hihy, when in fact /zf - Ax equals Ths - A%l hs.

Lemma 5.5. — (77,7, 40) dy(x77.7) = tTMh 1.
The following proof was suggested to us by Dexter Chua.

Proof. — 'This follows from the interaction between algebraic squaring operations
and classical Adams differentials [10, Theorem 2.2], applied to the element x in the 37-
stem. The theorem says that

d, Sq* x = Sq° dox + o S x.
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The notation means that there is an Adams differential on Sq” x hitting either Sq® dox = 0
or /y Sq” x, depending on which element has lower Adams filtration. Therefore dy Sq” x =
ho Sq x.

Next, observe from [12] that Sq° ¥ = A} x76.6 + T2d1g, 50

}lQ ng X = }ZSX76’6 = TM}llhi

Therefore, there is a dy differential whose value is TM#A 43, and the possibility is that
do(x77,7) equals ‘L'M/zlhi. O

Lemma 5.6. — (86, 14, 47) dy(tBsg) = tMAlg”.

Progf. — We use the Mahowald operator methods of Section 4.2. According to
[32, Table 1], the map p, : Extg — Extg takes dy - TBsg to Thyag®vi, which is non-zero.
We deduce that the product d; - TBsg is non-zero in Ext. By inspection of motivic weights,
the only possibility is that it equals TMg - Aym.

Now dy(tMg - hym) equals TMg - h3es, which we also know is non-zero since it maps
to the non-zero element t/42deg’v3 of Exty by [32, Theorem 1]. It follows that dy(TBsg) is
non-zero. By inspection of motivic weights, the only possibility is TM/A2g?. 0J

5.2. The Adams ds differential
Table 6 lists the multiplicative generators of the Adams Es-page through the 95-

stem whose d3 differentials are non-zero, or whose ds differentials are zero for non-obvious
reasons.

Theorem 3.'1. — Table 6 lists some values of the Adams ds differential on multiplicative gener-
ators. Through the 95-stem, the Adams ds differential is zero on all multiplicative generators not listed in
the table.

Remark 5.8. — A previous version of this manuscript left uncertain the value of d;
on several multiplicative generators. These values have since been determined by Dexter
Chua [17]. We have included those values here, but we defer to [17] for their proofs.
We are also grateful to Dexter Chua for correcting a few mistakes in the values of the ds
differential.

Progf: — The ds differential on many multiplicative generators is zero. A few of
these multiplicative generators appear in Table 6 because their proofs require further
explanation. For the remaining majority of such multiplicative generators, the ds differ-
ential is zero because there are no possible non-zero values, because of comparison to
the Adams spectral sequence for Ct, or because the element is already known to be a
permanent cycle as shown in Table 5. These cases do not appear in Table 6.
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The last column of Table 6 gives information on the proof of each differential.
Most follow immediately by comparison to the Adams spectral sequence for Ct. A few
additional differentials follow by comparison to the classical Adams spectral sequence for
tmf, or by comparison to the G-motivic Adams spectral sequence for mmf.

If an element is listed in the last column of Table 6, then the corresponding differ-
ential can be deduced from a straightforward argument using a multiplicative relation.
For example,

ds(hy - TPdyey) = Phy - ds(Tdyey) = PQ}londo,

so d3(tPdyey) must equal P?cydy.

If a d, differential is listed in the last column of Table 6, then the corresponding
differential is forced by consistency with that later differential. In each case, a @5 differen-
tial on an element x is forced by the existence of a later &, differential on 7. For example,
Table 7 shows that there is a differential d,(t%eg) = PdOQ. Therefore, T¢yg cannot survive
to the E4-page. It follows that ds(teyg) = coa,’g.

In some cases, it is necessary to combine these different techniques to establish the
differential.

The remaining more difficult computations are carried out in the following lem-
mas. We refer to [17] in a few cases. UJ

Proposition 5.9. — Some permanent cycles in the G-motivic Adams spectral sequence are shown
in lable 5.

Progf. — 'The third column of the table gives information on the proof for each
element. If a Toda bracket is given in the third column, then the Moss Convergence
Theorem 2.16 implies that the element must survive to detect that Toda bracket (see
Table 10 for more information on how each Toda bracket is computed). If a product
is given in the third column, then the element must survive to detect that product (see
Table 24 for more information on how each product is computed). In a few cases, the
third column refers to a specific lemma that gives a more detailed argument. O

Lemma 5.10.

(1) (34, 2,18) d5(hohs) = thid,.
(2) (74,6, 38) d;(Phohs) = Thi 7 Qy.

Progf. — In the Adams spectral sequence for Ct, there is an 1 extension from /y/;
to h2d;. The element k?d; maps to 4}d, under projection from Ct to the top cell, so Ayhs
must also map non-trivially under projection from Ct to the top cell. The only possibility
1s that fghs maps to hyd,. Therefore, T/ d; must be hit by a differential. This establishes
the first differential.
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The proof for the second differential is identical, using that there is an 7 extension
from Phykg to h2hyQy in the Adams spectral sequence for Ct. 0J

Lemma 5.11. — (54, 6, 28) dg(TQAll’l%) = M.

Proof. — The element MP maps to zero under inclusion of the bottom cell into Cz.
Therefore, MP is either hit by a differential, or it is the target of a hidden 7 extension. If
it is the target of a hidden 7 extension, then the only possibility is that TMg is zero in the
E-page, and that there is a hidden 7 extension from Mg, to MP.

It remains to show that MP cannot be hit by a differential. The only possibility is
that d4(t2A1hf) might equal MP. Note that P#, - ‘L’QAI}Z% equals 2, (t/h; - Ax) in the E4-
page. This means that dy(Ph, - T>AA?) cannot equal MP?/; since MP?A, is not divisible
by 4. In turn, dy(t?AA}) cannot equal MP. 0J

Lemma 5.12. — (68,11, 35) ds(th? - Agy) = 7° Ahideng.

Progf. — Table 2 shows that the element /ksi maps to A%A3 in the Adams spectral
sequence for mf.

Now Athdo is not zero and not divisible by 2 in tmf. Therefore, « {hh5:} must be
non-zero and not divisible by 2 in 743 36. The only possibility is that « {Ayhs:} 13 detected
by Phohsj = dy - hohst, and that Phyksj is not an £y multiple in the Eo-page. Therefore,
TAgy - k) cannot survive to the Eq-page. U

Lemma 5.13. — (69, 8, 36) d;(tD};) = t*Mhyg.

Proof. — Table 10 shows that the Toda bracket (2, 80, 2, 0'%) contains T vk, which
is detected by T%hyg. Table 21 shows that M#, detects va for some @ in 745,94 detected by
h3hs. (Beware that there is a crossing extension, MA; does not detect va for every o that
is detected by hgh;,.) It follows that T>Mhyg detects (2, 80, 2, 0%)a.

This expression is contained in (2, 8a, (2, o2, a)). Lemma 6.15 shows that the
inner bracket equals {0, 21K’}

The Toda bracket (2, 80, 0) in msg 36 consists entirely of multiples of 2. The Toda
bracket (2, 8c, 2tk°) contains (2, 80, 2)tk°. This last expression equals zero because

(2,80,2) =1tn-80 =0

by Corollary 6.2. Therefore, (2, 80, 2t%") equals its indeterminacy, which consists en-
tirely of multiples of 2 in 743 36.

We conclude that T°M#yg is either hit by a differential, or is the target of a hidden
2 extension. Lemma 7.23 shows that there is no hidden 2 extension from /A’ to T*Mbhyg,
and there are no other possible extensions to T*M#yg.

Therefore, T2Mhyg must be hit by a differential, and the only possible source of this
differential is TDy. 0J
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Lemma 5.14. — (77, 14, 40) d5(1>Mhol) = A2hyd?.

Proof — Table 7 shows that d,(t%dyey + /zz)h5) equals P*dy, so dy(t*Mh,dyey) equals
tMP?hdy. We have the relation Ay - T>?M#hyl = t°Mh,dyey, but the element TMP?4,d, is
not divisible by 4. Therefore, T>M#Ayl cannot survive to the E,-page.

By comparison to the Adams spectral sequence for myf, the value of ds(t>M#hyl)
cannot be ‘rgAhleg + AQkodg or ‘L’gAkleg. The only remaining possibility is that ds(t*Mbhgl)
equals A2hydz. UJ

Lemma 5.15. — (78, 13, 40) dg(/lgﬁﬁgylo) = 'L'Geogg.

Progf. — Suppose that /x75 19 were a permanent cycle. Then it would map under
inclusion of the bottom cell to the element /zgxm,lo in the Adams E-page for Ct.

There 1s a hidden v extension from hgxm,m to Ag/l%}lg in the Adams E.-page for
Ct. Then A%#?hs would also have to be in the image of inclusion of the bottom cell. The
only possible pre-image is the element A%4jh; in the Adams spectral sequence for the
sphere, but this element does not survive by Lemma 5.47.

By contradiction, we have shown that & x75 1o must support a differential. The only
possibility is that ds (hgxm,m) equals t¢g°. O

Lemma 5.16. — (79,5, 42) ds;(x;)) = thym,.

Proof. — 'This follows from the interaction between algebraic squaring operations
and classical Adams differentials [10, Theorem 2.2]. The theorem says that

d, Sq1 e = Sq3 dse; + Iy ng er.

The notation means that there i1s an Adams differential on Sq1 e; hitting either Sq3 dse, or
h Sq’ e1, depending on which element has lower Adams filtration. Therefore d5 Sq' ¢; =
}ll Sq3 e].

Finally, we observe from [12] that Sq1 e; = x; and ng e =m. O

Lemma 5.17. — (80, 12, 42) The element A*d, is a permanent cycle.

Progf — The element A%d; in the Adams E,-page for Gt must map to zero under
the projection from Ct to the top cell. The only possible value in sufficiently high filtra-
tion is T2 Ahyesg. However, comparison to mmf shows that this element is not annihilated
by 7, and therefore cannot be in the image of projection to the top cell.

Therefore, A%d; must be in the image of the inclusion of the bottom cell into Cr.
The element A%d; is the only possible pre-image in the Adams E,-page for the sphere in
sufficiently low filtration. UJ



DANIEL C. ISAKSEN, GUOZHEN WANG, ZHOULI XU

Lemma 5.18. — (80,14, 41) ds(A%hihs) equals either 1:4A/zle(2)g, T A% hydyey, or
‘L’A‘Ahlegg + T A%hydyey; and it is not equal to ds(t>dyBs).

Proof. — There is a relation Phy - A%hhs =T Agh?do in the Adams Ey-page. Because
of the differential dy(A3hie)) = Agh?do + t5e§gm, we have the relation Pk - A3k hy =
t%2gm in the Eg-page.

There is a differential d;(t°¢gm) = t'd}l. But t'd}[ is not divisible by Pk, so
t%3gm cannot be divisible by Pk, in the E4-page. Therefore, d5(A*h h3) must be non-
ZEero.

The same argument shows that ds(A3hyhs + 13dyB5;) must also be non-zero. O

Remark 5.19. — In fact, Chua has determined that d3(A%k;43) equals 1'4Ahlegg
[17].

Lemma 5.20. — (80,14, 42) ds(tdyBs) equals either A*hodoey or A*hodpey +
T8 Ahdlg.

Proof. — The element A*kydye, is a permanent cycle because there are no possible
differentials that it could support. Moreover, it must map to zero under the inclusion of
the bottom cell into Gt because there are no elements in the Adams E-page for Ct of
sufficiently high filtration. Therefore, A?hydyey is either hit by a differential, or it is the
target of a hidden 7 extension, or it is the target of a non-hidden 7 extension.

The only possible hidden 7 extension has source h?x76,6. However, Table 13 shows
that /4x766 is in the image of projection from Ct to the top cell. Therefore, it cannot
support a hidden extension.

We now know that A?kydye, must be hit by a differential, or it is t-divisible in
the Ey-page. Lemma 5.17 rules out one possible source for the differential. The only
remaining possibilities are that ds(t%dyBs) equals A%hydyey or A>hydyey + TSAhle(Q)g. O

Remark 5.21. — We are grateful to Dexter Chua for pointing out an error in a pre-
vious version of Lemma 5.20. In fact, Chua has determined that the value of ds(72d,B;5)
is AQ}Z()CZIQ@O + TSAhleég [17]

Lemma 5.22.

(1) (81,3, 42) ds(hyhyhg) = 0.
2) (82,10, 42) d5(P2hyhs) = 0.

Proof. — The value of ds(hohshs) 1s not hohedy nor hohedy + Thix) by comparison to
the Adams spectral sequence for Cr.

It remains to show that ds(hohiuhs) cannot equal T4, x,. Suppose that the differential
did occur. Then there would be no possible targets for a hidden 7 extension on A;x;, so
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the 1 extension from A, x; to 4jx; would be detected by projection from Ct to the top cell.
But there is no such 7 extension in the homotopy groups of Ct. This establishes the first
formula.

The proof of the second formula is essentially the same, using that the n extension
from A%k d; to A’} d, cannot be detected by projection from Ct to the top cell. U

Lemma 5.23. — (81, 12, 42) d;(A?p) = 0.

Proof — Suppose that ds(A*p) were equal to t3h1Me§. In the Adams E,-page,
the Massey product (Mg, Thidy, dy) would equal T2MA/ksg, with no indeterminacy,
because of the Adams differential dg(A}lg) = t/zldg and because dy - A’p = 0. By Moss’s
higher Leibniz rule 2.27, dy(t?MAh3g) would be a linear combination of multiples of
7°Mg and dy. But Table 7 shows that d,(t>MA/Ayg) equals MPAZje), which is not such a
linear combination in the Adams E,-page. UJ

Lemma 5.24. — (83,5, 43) dy(Theg + Thoes) = 0.

Proof. — In the Adams Es-page, we have the matric Massey product

i
T}lﬁg + T/lQEQ = <[Tg T}ZQ] , |:X?i| s }lo>

because of the Adams differentials dy(f5) = hoh?) and dy(e9) = hyx, as well as the rela-
tion Tg - k2 4+ Thyx; in the Adams Ey-page. Moss’s higher Leibniz rule 2.27 implies that
ds(Thsg 4 Thoey) belongs to

<[O 0], [iﬂ ,ho>+<[rg Thy], [Th?ml] Jlo>+<[tg Thy], [ﬁ?] ’0>

since ds(x;) = Thym;, where the Massey products are formed in the Adams Es-page using
the dy differential. This expression simplifies to <[tg Thyl, |:‘1,' /zom ] ,/zo>, which equals
1my

{0, T}I(Q)/Z4Qg}.

Table 21 shows that there is a hidden v extension from A24,Qs to Phixzs6. The
element TPk x76 6 is non-zero in the Adams E,-page. Therefore, 4h,Qj supports a (hid-
den or not hidden) t extension whose target is in Adams filtration at most 10. The only
possibility is that T/424,Q3 is non-zero in the Adams E.,-page. U

Lemma 5.25. — (84,4, 44) d; () = Th 1, Q;.

Proof — Table 21 shows that Th; Qg detects v?05, and Table 10 shows that t/;/4,Qs3
detects (V?05, 2, 0%), with indeterminacy in strictly higher Adams filtration. This bracket
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contains v?(6s,2,0), so ThhQ; detects a multiple of v%. The only possibility is that
Thhy Qs 1s a multiple of /zg in the Ey-page. This implies that ds5(f;) equals t/,4,Q3 or
ThihyQs + hheg. The latter possibility is ruled out by comparison to Ct. 0J

Lemma 5.26. — (85, 6,45) ds(Txg5 6 + /ics) = 0.

Proof — Let a be an element of g 35 that is detected by 74yC’. Then va is de-
tected by T43C/, and Tva is zero.

Let @ be an element of 77 3Ct that is detected by }lg}lgk(;. Projection from Ct to
the top cell takes @ to va. Moreover, in the homotopy of Ct, the Toda bracket (2, 0%, @)
is detected by /) cs.

Now projection from Ct to the top cell takes (2, 02, @) to (2, 0%, var), which equals
zero by Lemma 6.28. Therefore, /j¢; maps to zero under projection to the top cell of Ct,
so it must be in the image of inclusion of the bottom cell.

There are two possibilities. First, Txg; ¢ + hSCg could survive, and it could map
to hgcg under inclusion of the bottom cell of Ct. Second, 7/ f; could map to /1863 un-
der inclusion of the bottom cell. This could only occur if d,0(%f2) equaled MA#A,dy and
do(Tx35,6 + M cs) equaled TM AL dj.

In either case, d5(Txg5,6 + kgcg) 1S zero. O

Remark 5.27. — In the proof of Lemma 5.26, we have used that d5(tp, + h§h3h6)
equals T243C” in order to conclude that Tve is zero. This differential depends on work in
preparation [16].

However, we can also prove Lemma 5.26 independently of [16]. Lemma 5.61
shows that the other possible value of d;(tp, + }lgllghG) is rthc/ + th3(Ae; + Cp). In
this case, let B be an element of 74 33 that is detected by Ae; + Cy. Then va + o8 1s
detected by ‘L'/zg(]’ + h3(Aey + Cp), and T (v 4+ 0 B) is zero.

Projection from Ct to the top cell takes @ to va + o, and takes (2,02, @) to
(2,0, va + oB), which equals zero by Lemmas 6.28 and 6.29. As in the proof of
Lemma 5.26, /}c; maps to zero under projection to the top cell of Ct, so it must be
in the image of inclusion of the bottom cell.

Lemma 5.28. — (88, 18, 46) d5(t>Mhydok) = PA hodoey + T° Ahyd2e.

Proof. — Table 7 shows that dy(t*Mh;e)) = MP?A,. Multiply by rdg to see that
d4(1'3M}z1d0260) = ‘L’MPthdg. We have the relation 4y - T>Mbhydok = rthldgeo, but
TMP?hd; is not divisible by hy. Therefore, T2M#hydyk cannot survive to the Ey-page.
By comparison to mmf; there is only one possible value for ds(t*M#ydok). O

Remark 5.29. — We are grateful to Dexter Chua for pointing out a small error in
a previous version of Lemma 5.28.
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Lemma 5.30. — (89, 15, 50) d;(hsBsg) = My coe.

Proof — We will first establish the relation d; - hyBsg = TM#A e0g”. We use the map
P« of [32, Theorem 1.1]. We have that p,(dy - hsBsg) = p(t Mhyeg?). Therefore, dy - hyBsg
equals tM#h,eyg*, modulo a possible error term P/z{h(;coeo in the kernel of p,. However,
multiplication by /4, eliminates the error term.

Table 6 shows that ds(Teyg”) = codoeg. Therefore, ds(tMheyg”) equals Mhlcodoeg.
Observing that MAcydyeg is in fact non-zero in the Adams Es-page, we conclude that
ds(hyBsg) must equal M/Llcoeg. ]

Lemma 5.31. — (90, 8, 48) The element M? is a permanent cycle.

Progf — Table 3 shows that the Massey product (M#y, kg, hig,) equals M?A,.
Therefore, M?4, detects the Toda bracket (10,5, 2, 626,). The indeterminacy consists en-
tirely of multiples of 76, 5. The Toda bracket contains 6,(n6, 5, 2, 0%). Now (76,5, 2, 0?)
1s zero because 1) 33 18 zero.

We have now shown that M?4; detects a multiple of 1. In fact, it detects a non-zero
multiple of  because M*4; cannot be hit by a differential by comparison to the Adams
spectral sequence for Ct.

Therefore, there exists a non-zero element of 7 45 that is detected in Adams fil-
tration at most 12. The only possibility is that M? survives. U

Lemma 5.32. — (93,7, 48) ds(Ah2hg) = Thihgd?.

Progf. — In the Adams Es-page, Ahghﬁ equals (A/zg, h;z), ho), with no indetermi-
nacy, because of the Adams differential dy (%) = hohg. Using that dg(A/lg) = t/zldg, Moss’s
higher Leibniz rule 2.27 implies that ds(Ak3/s) is contained in

(Thidg, 5, ho) + (AR5, 0, ho) + (Ak3, 15, 0).

All of these brackets have no indeterminacy, and the last two equal zero. The first bracket
equals t/zlh6d§, using the Adams differential dy(4s) = /zohg. [

Lemma 5.33. — (93, 13, 48) ds(P?hed,y) = 0.

Proof. — In the Adams Es-page, the element P?/sd, equals the Massey product
(P%d,, /zg, ho), with no indeterminacy, because of the Adams differential dy(%) = /zohg.
Moss’s higher Leibniz rule 2.27 implies that ds (P?hgd,) is a linear combination of multi-

ples of Ay and of P?dy. The only possibility is that ds(P*Agdy) is zero. ]

Lemma 5.34. — (93,22, 48) ds(t°MPhodyj) = P2A%hyd2 + TP A dle,.
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Proof. — Table 7 shows that dy(t*Pdye;) = Pdy. Multiplication by TMP/4; shows
that dy(t*MP?hidyey) equals TMP*Aydy. But T°MP2hidyey equals kg - T>°MPhydyj, while
TMP*4,d, is not divisible by 4. Therefore, T?MPhydyj cannot survive to the E4-page.

The possible values for ds(7*MPhydy)) are the non-zero linear combinations of
P?A’hydy and T°PAhd3e). The map to the Adams spectral sequence for mf takes
both t?MPhydyj and PQAQhodg + T°PAldjey to zero, but it takes each of PQAQhOdg
and T°PAXdjey to the unique non-zero element in the appropriate degree. Therefore,
ds(t*MPhydy) cannot equal either P2 A%hyd3 or T’PAL e O

Lemma 5.35. — (95, 16, 49) The element P’ hgcy is a permanent cycle.

Proof: — Table 18 shows that P?¢y detects the product 7p3;. Using the Moss Con-
vergence Theorem 2.16 and the Adams differential dy (%) = hohg, the element P3¢,
must survive to detect the Toda bracket (nps;, 2, 65). O

Remark 5.36. — We suspect that P*hs¢, detects the product ngps. However, the
argument of Lemma 7.148 cannot be completed because the Toda bracket (nps;, 2, 65)
might have indeterminacy in lower Adams filtration.

5.3. The Adams d, differential

Table 7 lists the multiplicative generators of the Adams E,-page through the 95-
stem whose d, differentials are non-zero, or whose d; differentials are zero for non-obvious
reasons.

Theorem 5.37. — Table 7 lists some values of the Adams dy differential on multiplicative
generators. Through the 95-stem, the Adams dy differential is zero on all multiplicative generators not
listed 1n the table.

Proof. — The d, differential on many multiplicative generators is zero. A few of
these multiplicative generators appear in Table 7 because their proofs require further ex-
planation. For the remaining majority of such multiplicative generators, the d; differential
is zero because there are no possible non-zero values, or because of comparison to the
Adams spectral sequences for Ct, tmf, or mmf. In a few cases, the multiplicative generator
is already known to be a permanent cycle as shown in Table 5. These cases do not appear
in Table 7.

The last column of Table 7 gives information on the proof of each differential.
Most follow immediately by comparison to the Adams spectral sequence for Ct, or by
comparison to the classical Adams spectral sequence for mf, or by comparison to the
C-motivic Adams spectral sequence for mmf.
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If an element s listed in the last column of Table 7, then the corresponding differ-
ential can be deduced from a straightforward argument using a multiplicative relation.
For example,

dy(dy - ‘L'Qe()gQ) = d4(e§ . ‘L’Qe()g) = eg . Pdg = dg,

so di(t%eg?) must equal dé‘ .
The remaining more difficult computations are carried out in the following lem-
mas. -

Lemma 5.38. — (62,10, 32) dy(th, - Ax) = % Ahjdye.

This differential was previously proved in [60, Remark 11.2]. We repeat the argu-

ment here for completeness.

Proof. — Table 7 shows that T8 Akyg* supports a d; differential, and Table 5 shows
that T A%Alg + 13 Ah3g® is a permanent cycle. Therefore, T A%A}g also supports a d; differ-
ential.

On the other hand, we have

hy - T A hyg = Phy - Ax = Ax(hy, hihs, ho).

This expression equals (A - Ax, hhs, hy) by inspection of indeterminacies. Therefore,
the Toda bracket ({t/; - Ax}, 80, 2) cannot be well-formed, since otherwise it would be
detected by T A%A%g. The only possibility is that T4, - Ax is not a permanent cycle, and
the only possible differential is that d;(t 4, - Ax) equals T2 Ahidyep. UJ

Lemma 5.39. — (62,10, 32) dy(A%42) = 0.

Progf — Table 8 shows that d5(th} - Ax) equals t°d;e;. The element T3d5¢; is not
divisible by 4, in the Es-page, so A% - Ax cannot be divisible by /; in the E4-page.

If d4(A2h§) equaled TQAhgdoeo, then A%% + thy - Ax would survive to the Es-page,
and 724} - Ax would be divisible by #; in the Es-page. 0

Lemma 5.40. — (63,7, 33) di(1Xy) = tMhody.

Proof. — Table 7 shows that ,(C’) equals MAydy. Therefore, either tX, or tX, +
7C’ is non-zero on the Ey-page. The inclusion of the bottom cell into Ct takes this
element to /5 dye.

In the homotopy of Ct, there is a v extension from hsdyeo to 7B5, and inclusion of
the bottom cell into Ct takes thyC’ to TB;.

It follows that there must be a v extension with target T4, C’. The only possibility is
that TXy + 7’ is non-zero on the Ey-page, and therefore d;,(tXy) equals dy(rC"). U
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Lemma 5.41. — (68,5, 36) dy(hydy) = Xs.

Progf. — The element X3 is a permanent cycle. The only possible target for a
differential is T°dyeom, but this is ruled out by comparison to #mf.

In the Adams E-page for Ct, there are several elements in stem 67 and weight
36. However, they all have filtration lower than 9. Since X3 has filtration 9, it must map
to zero under inclusion of the bottom cell into Ct. Therefore, X3 is the target of a hidden
T extension, or it is hit by a differential.

The only possible hidden T extension would have source 4, - AA3. In Cr, there
is an 7 extension from /ydy to ki - A1k Since A} - Ajh; maps non-trivially (to £ - A k)
under projection to the top cell of Ct, it follows that /ydy also maps non-trivially under
projection. For degree reasons, the only possibility is that hydy maps to A - AA3, and
therefore 4, - A1/ does not support a hidden t extension.

Therefore, X3 must be hit by a differential, and there is just one possibility. O

Lemma 5.42. — (68,11, 38) d,(M#yg) = 0.

Progf — Table 3 shows that the Massey product (hyg, 3, g9) equals Mhyg. The
Moss Convergence Theorem 2.16 shows that MAyg must survive to detect the Toda
bracket ({Ag}, 8, k). [

Lemma 5.43. — (72,9, 40) d4(/z§G0) = Ian.

Progff — Table 15 shows that there is a hidden 2 extension from #yksgy to Tgn.
Therefore, Tgn detects 40k5.

Table 3 shows that (k}hy, by, Tgn) consists of the two elements Tg’n and tg°n +
Mbhyg - hohy. Then the Toda bracket (n?ny, 17, 40K,) is detected by either tg’n or Tg’n +
Mbyg - hohy. But Mhog - hohy is hit by an Adams dy differential, so Tg’n detects the Toda
bracket.

The Toda bracket has no indeterminacy, so it equals (n?ny, 17, 2)20K,. This last
expression must be zero.

We have shown that tg?z must be hit by some differential. The only possibility is
that d4(/z§G0) =1g°n. ]

Lemma 5.44. — (75, 11, 40) dy(Ahjhsg) = TMhd;.

Progf — Table 8 shows that d5(A") = tM/dy. Now dyA is zero in the Es-page, so
TM#A;d3 must also be zero in the Es-page. 0J

Lemma 5.45. — (76, 14, 41) dy(A%h hsg) = T AR2d e
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Progf. — Table 10 shows that the element Ahjdje, detects the Toda bracket
(tnkk>, 0, n°ns). Now shuffle to obtain

t(TnKic®, 0, n'ne) = (T, Tneic”, n)n’n,.

Table 10 shows that (r, Tnkk?, ) is detected by hohohsi. It follows that the expression

(T, Tnkk?, n)n’n, is zero, so IAhgdgeo must be hit by some differential. The only possi-
bility is that dy(A%h hsg) equals tA/zgdgeo. O

Lemma 5.46. — (80, 5, 4:2) d4(/20€2) = T}Z?X76’6.

Proof. — Table 24 shows that 0%6; is detected by hyhyA or hyhyA + T2d) 8. Note
that both Ay - hghyA and hy(hohyA + t°d,g5) equal ‘r/z‘?xmﬁ.

Since vo = 0, the element T/} x76 ¢ must be hit by a differential. The only possibility
1s that d(hpey) equals t/z?xm,g,. ]

Lemma 5.47. — (81,15, 42) dy(Ah2hs) = T*dye2l.

Proof. — Table 18 shows that there is a hidden n extension from 7?Ahkg” to
t2dyeym. Multiply by d; to see that there is also a hidden 1 extension from T2Ahkeig
to T2dyell.

Also, TQAhle(Q)g detects an element in 779 43 that is annihilated by 72. Therefore,
t'dy¢}l must be hit by some differential. Moreover, comparison to mmf shows that t3dyea/
is not hit by a differential.

The hidden 7 extension from t?Ah g to T3dye)l is detected by projection from
Crt to the top cell. The only possibility is that this hidden 1 extension is the image of the
hy extension from A%k ks to Agh%/lg in the Adams E-page for Ct.

Therefore, A%hih; maps non-trivially under projection from Ct to the top cell.
Consequently, A%A7h; cannot be a permanent cycle in the Adams spectral sequence for
the sphere. U

Lemma 5.48. — (83,11, 45) d,(Aj)) = tMApeng.

Proof. — Otherwise, both Aj; and t1gC’" would survive to the Eo-page, and neither
could be the target of a hidden 7 extension. They would both map non-trivially under
inclusion of the bottom cell into Ct. But there are not enough elements in g3 45Ct for
this to occur. U

Lemma 5.49. — (85,5, 45) d,(hf3) = 0.

Progf: — Table 21 shows that there 1s a hidden v extension from fygDs to Bed,. If
di(hif2) equaled ThygDs, then this v extension would be in the image of projection from
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Ct to the top cell, since fygD3 cannot support a hidden 7 extension. However, there is
no such v extension in the homotopy of Ct. UJ

Lemma 5.50. — (85,6, 44) dy(Txg5.6 + hics) = 0.

Progf — We showed in Lemma 5.26 that /)cs is in the image of inclusion of the
bottom cell of Ct. Therefore, Pxs5 ¢ cannot be in the image of projection from Ct to the
top cell. Since Px746 cannot support a hidden 7 extension, there can be no differential
whose value 1s 7Px76 6. O

Lemma 5.51. — (86, 4, 45) dy(hics) = Thohahy Qs

Proof — Lemma 7.152 shows that there exists an element o in 77 36 that is de-
tected by /Qs + hon; such that Tva equals (no + €)0;.

Table 10 shows that the Toda bracket (v, o, 207) 1s detected by A /4, so the element
Thohohy Qs detects Ta (v, o, 20), which is contained in (Tva, 0, 20). The indeterminacy
in these expressions is zero because Tva - 1y5 g and 20 - w75 41 are both zero.

We now know that t/yhh, Q5 detects the Toda bracket ((e + no)6s, o, 20). This
bracket contains 65(€¢ + no, g, 20). Lemma 6.6 shows that the bracket (¢ 4+ no, o, 20)
contains 0, so 6;(e 4+ no, o, 20) equals zero.

Finally, we have shown that t/ko/Q3 detects zero, so it must be hit by some
differential. O

Lemma 5.52. — (87,7, 45) di(xg7.7) = 0.

Progf. — Consider the exact sequence
Tg7,45 = Tg7,45GT —> TTgg 46-

The middle term 7g; 45C7 1s isomorphic to (Z/ 2)*. The elements of 7g; 45 that are not
divisible by 7 are detected by P?hgcy, and possibly xg7 ; and T A% H,. On the other hand,
the elements of 7gg 46 that are annihilated by 7 are detected by 7°A¢erg and possibly
MAZe.

In order for the possibility MA}Z%@Q to occur, either xg; ; or T As H; would have to
support a differential hitting TMA/2¢y, in which case one of those possibilities could not
occur.

If dy(xg7.7) equaled T°gGy, then there would not be enough elements to make the
above sequence exact. O

Lemma 5.53. — (87,1045) d,(t AhH,) =0.
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Progf — The element A%h3d; is a permanent cycle that cannot be hit by any dif-
ferential because Ay - A?h3d, cannot be hit by a differential. The element A%k3d, cannot
be in the image of projection from Ct to the top cell, and it cannot support a hidden
extension. Therefore, T A%k3d, cannot be hit by a differential. O

Lemma 5.54. — (89, 15, 49) dy(thyBsg) = Mhd;.

Proof. — Table 24 shows that Md, detects k6, 5. Therefore, Mdg detects k30,5,
which equals n2E204_5 because Table 18 shows that there i1s a hidden 1 extension from
g” to dj.

Now n2E294.5 is zero because %6, 5 is zero. Therefore, Mdg and M}zldg must both
be hit by differentials.

There are several possible differentials that can hit Mhldg . The element /;xgg 10
cannot be the source of this differential because Table 5 shows that xgg 19 1s a perma-
nent cycle. The element 7/5gC’ cannot be the source of the differential because /;gC’
is a permanent cycle by comparison to mmf. The element Af;gg cannot be the source
because it equals /3(Ae; + Cp)g. The only remaining possibility is that d;(t/9Bsg) equals
M d; . O

Lemma 5.55. — (91,12, 48) d,(ARA') = 0.

Proof. — In the Adams E,-page, the element AkA’ equals the Massey product
(A, by, Td3), with no indeterminacy because of the Adams differential ds(Ah3) = Thyd;.
Moss’s higher Leibniz rule 2.27 implies that d,(A/A3A’) is contained in

(0, by, Tdy) + (A, 0, Td]) + (A, by, 0),

so it is a linear combination of multiples of A’ and td;. The only possibility is that
d4(A/ng’) 1S zero. ]

Lemma 5.56. — (93, 3, 48) d,(hjhs) = higs.

Proof — By comparison to the Adams spectral sequence for Ct, the value of
d4(/zih6) 1s either kggg or /zggg + r/zthDg.

Table 24 shows that /g; detects the product 6,65. Since 260,05 equals zero, hlgs
must be hit by a differential. 0

Lemma 5.57. — (95, 16, 50) d;(MA2h}) = MPARe.

Progf — Table 10 shows that MA%Z + 1 MA/Ayg detects the Toda bracket
(n, Tk?, 10, 5x). Therefore, dg,(MAQ/z%) equals d4(‘L'2MA/l§g). ]
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5.4. The Adams ds differential

Table 8 lists the multiplicative generators of the Adams E;-page through the 92-
stem whose d5 differentials are non-zero, or whose d5 differentials are zero for non-obvious
reasons.

Theorem 5.38. — Table 8 lists some values of the Adams ds differential on multiplicative
generators. Through the 92-stem, the Adams ds differential is zero on all multiplicative generators not
listed in the table.

Progf: — The d5 differential on many multiplicative generators is zero. For the ma-
jority of such multiplicative generators, the d5 differential is zero because there are no
possible non-zero values, or by comparison to the Adams spectral sequence for Ct, or by
comparison to ¢mfor mmf. In a few cases, the multiplicative generator is already known to
be a permanent cycle; %,/ is one such example. A few additional cases appear in Table 8
because their proofs require further explanation.

The last column of Table 8 gives information on the proof of each differential.
Many computations follow immediately by comparison to the Adams spectral sequence
for Cr.

If an element is listed in the last column of Table 8, then the corresponding differ-
ential can be deduced from a straightforward argument using a multiplicative relation.
For example,

ds(t - gA) = ds(tg- A) = Tg- tMhydy = T°Mhy €,

so d5(gA’) must equal ‘L’M/zleg.
A few of the more difficult computations appear in [16]. The remaining more
difficult computations are carried out in the following lemmas. U

Lemma 5.59. — (63, 11,33) ds(th? - Ax) = 13d26].

Progf — The element t%dje; cannot be hit by a differential. There is a hidden
n extension from T Akydyey to T2d5e; because of the hidden T extensions from thg® +
/1?1256060 to Ahgdoeo and from h?hg)coeo to dgeg . This shows that T3d§g§ must be hit by some
differential.

This hidden 7 extension is detected by projection from Czt to the top cell. Since
Phscody in Ct maps to tA/zga’oeo under projection to the top cell, it follows that Pk, %5¢ydy
in Ct maps to t2d; ¢, under projection to the top cell.

If T4} - Ax survived, then it could not be the target of a hidden 7 extension and
it could not be hit by a differential. Also, it could not map non-trivially under inclusion
of the bottom cell into Cz, since the only possible value Pk /s5¢ydy has already been ac-
counted for in the previous paragraph. U
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Lemma 5.60. — (68,12, 36) ds(hsdyi) = T Ahyd’.

Proof. — We showed in Lemma 5.12 that Phy/hy) cannot be divisible by %, in the
Es-page. Therefore, /5dy: must support a differential. U

Lemma 5.61. — (70,4,36) ds(tp + hihshs) equals either 7:2}130/ or 1:2/13(]/ +
T}lg(Ael + Co)

Proof. — Projection to the top cell of Ct takes £4Ds to t3d,g°. Moreover, there is a
v extension in the homotopy of Ct from }Z(Q)hghﬁ to i;Dy. Therefore, this v extension must
be in the image of projection to the top cell.

Table 21 shows that there is a hidden v extension from t/43C’ to 7°4,g*. Therefore,
either Th3C’ or Th3C + h3(Ae; + Co) is in the image of projection to the top cell, so
IQhﬁC/ or t2/z§C/ + thy(Ae; 4+ Cy) 1s hit by a differential. The element Tp, + }léhg}l(} is the
only possible source for this differential. UJ

Lemma 5.62. — (72,7, 39) d5(hx7,6) = 0.

Progf. — Table 14 shows that there is a hidden T extension from M#} hsg to MA, d3.
Therefore, M/;g must also support a T extension. This shows that TMAjg cannot be the
target of a differential. 0J

Lemma 5.63. — (73,7, 38) d;(h,D,) = td,g".

Proof. — Suppose for sake of contradiction that /,Ds survived, and let & be an el-
ement of 773 35 that is detected by it. Table 14 shows that there is a hidden 7 extension
from A3hsco to hohyDy. Therefore, hyhy Dy detects both 2o and Tnens. However, it is possi-
ble that the difference between these two elements is detected by T2Md; or by 3 Ak dyel.
We will handle of each of these cases.

First, suppose that 2« equals Tnens. Then the Toda bracket

e 2]

1s well-defined. Inclusion of the bottom cell into Ct takes this bracket to

<n,[2 0],[;"6]>=<n,2,a>,

so (n, 2, «) 1s in the image of inclusion of the bottom cell.
On the other hand, in the homotopy of Ct, the bracket (n, 2, «) is detected by

I3 hsco, with indeterminacy generated by 474,Q,. These elements map non-trivially under
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projection to the top cell, which contradicts that they are in the image of inclusion of the
bottom cell.
Next, suppose that 2o + tnens is detected by T° Ak dyes. Then the Toda bracket

is well-defined, where B is an element of 73399 that is detected by Ahjdy. The same
argument involving inclusion of the bottom cell into Ct applies to this Toda bracket.

Finally, assume that 2o + tnen; is detected by T2Md3. Table 24 shows that Md,
detects k6,5, so TQMdg detects 7%k, 5. Then 20 + Tnens equals either T%k?0,5 or
7%k%0, 5 + T2 BK. We can apply the same argument to the Toda bracket

o
<’7,[2 Tne TQK94.5], Ul >,

K

or to the Toda bracket

<n,[2 e tikbys  TB],

xS K
—~—

We have now shown by contradiction that £,Dy does not survive. After ruling out
other possibilities by comparison to Ct and to mmf, the only remaining possibility is that
ds(hyDy) equals ttd;g°. O

Lemma 5.64. — (86, 11,45) d;(t°¢G,) = TM A/ dy.

Proof. — Suppose for sake of contradiction that the element 7°gG survived. It can-
not be the target of a hidden t extension, and it cannot be hit by a differential. Therefore,
it maps non-trivially under inclusion of the bottom cell into Ct, and the only possible im-
age is A%¢; + T Ahye,g.

Let o be an element of 7y, 45 that is detected by t°sGy. Consider the Toda bracket
(o, 2v, v). Lemma 4.15 implies that this Toda bracket is detected by ¢yx76 9, or 1s detected
in higher Adams filtration.

On the other hand, under inclusion of the bottom cell into Ct, the Toda bracket
is detected by A%kg,. This is inconsistent with the conclusion of the previous paragraph,
since inclusion of the bottom cell can only increase Adams filtrations.

We now know that t°gG, does not survive. After eliminating other possibilities by
comparison to mmf, the only remaining possibility is that d; (t°¢Go) equals TMAA dy. [
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Lemma 5.65. — (92,4, 48) ds(g;) = hgd?.

Progf. — 'Table 10 shows that £, /4¢ detects the Toda bracket (n, 2, 85). Therefore,
hiheds detects k2(n, 2, 05). Now consider the shuffle

TKQ(’% Qv 95) = <TK2, n, 2>95

Lemma 6.7 shows that the last bracket is zero. Therefore, & ksdy does not support a
hidden 7 extension, so it is either hit by a differential or in the image of projection from
Crt to the top cell.

In the Adams spectral sequence for Ct, the element /AAjk; detects the Toda
bracket (0,, 2, 05). Therefore, hghzhe must be in the image of inclusion of the bottom
cell into Ct. In particular, £34;hs cannot map to k hsd; under projection from Ct to the
top cell.

Now A1 hgd3 cannot be in the image of projection from C7 to the top cell, so it must
be hit by some differential. The only possibility is that ds(/,g3) equals A, ksds. U

Lemma 5.66. — (92, 12, 48) d5(A%g,) = 0.

Proof — The only possible values for do(A%g,) are the linear combinations of
TMAcydy + T*Mdyl and T° Ahyg”. The possibilities TMAcody + T°Mdpl and TM Acody +
2Mdyl + T2A%hyg® are ruled out by dj extensions. More specifically, dy(tMAc¢ydy +
?Mdyl) and dy(tMAcydy + T°Mdyl + 12A%hyg”) equal the non-zero element T2Md3[
in the E;-page, while d; - A%g is zero already in the E;-page.

If T2 A”hyg* were the value of a differential, then the 2 extension from T A%hyg” to
T A%hyhog® would be detected by the top cell of Ct. However, there is no such 2 extension
in the homotopy of Cr. O

Lemma 5.67. — (93,13, 50) d5(¢ox76.0) = M A cody.

Proof. — If M AR, cydy were a permanent non-zero cycle, then it could not support a
hidden 7 extension because Lemma 5.87 shows that MPA#, dj 1s hit by some differential.
Therefore, it would lie in the image of projection from Cz to the top cell, and the only
possible pre-image is the element A%/ g in the Ey-page of the Adams spectral sequence
for Cr.

There is a o extension from A%¢; + T Ahyeig to Ahyg in the Adams spectral se-
quence for Ct. Then MA#Z ¢ydy would also have to be the target of a o extension. The
only possible source for this extension would be M A/} dj.

Table 18 shows that M/, detects 6, 5, so MAh%do detects N6y 5{Ah dy}. The prod-
uct no 0y 5{Ahydy} equals zero because o {Ahdy} is zero. Therefore, MAh?dg cannot sup-
port a hidden o extension to MAZ, ¢ydj.

We have now shown that M A%, ¢ydy must be hit by some differential, and the only
possibility 1s that equals d5(eyx76.9). ]
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5.5. Higher differentials

Table 9 lists the multiplicative generators of the Adams E,-page, for » > 6, through
the 90-stem whose d, differentials are non-zero, or whose d, differentials are zero for non-
obvious reasons.

Theorem 5.68. — Table 9 lists some values of the Adams d, differential on multiplicative
generators of the E,-page, for r > 6. For r > 6, the Adams d, differential is zero on all multiplicative
generators of the E.,-page not listed in the table. The list is complete through the 90-stem, except that:

(1) dyo(hyfo) mught equal M AR, dj.
(2) do(Txg5.6 + hiycs) might equal TM AR, dj.
(3) do(K3Ds) might equal TM Ahyg.

Proof. — The d, differential on many multiplicative generators is zero. For the ma-
jority of such multiplicative generators, the 4, differential is zero because there are no
possible non-zero values, or by comparison to the Adams spectral sequence for Ct, or by
comparison to ¢mf or mmf. In a few cases, the multiplicative generator is already known
to be a permanent cycle, as shown in Table 5. A few additional cases appear in Table 9
because their proofs require further explanation.

Some of the more difficult computations appear in [16]. The remaining more
difficult computations are carried out in the following lemmas. U

Lemma 5.69.

(1) (67,5,35) ds(tQ; + i) =0.
2) (87,9,48) ds(¢Q) = 0.

Progf- — Several possible differentials on these elements are eliminated by compar-
ison to the Adams spectral sequences for Ct and for ¢mf. The only remaining possibility
is that d5(t Qs + Tn;) might equal T?M#, g, and that ds(¢Q3) might equal TM#;g*.

The element MA/je is not hit by any differential because Table 5 shows that /¢
is a permanent cycle, and Table 10 shows that T%gQ3 = £2Q, must survive to detect the
Toda bracket {6, T, {t}).

Lemma 6.30 shows that MAhgeo detects the Toda bracket (tnk?, 2, 4Ks), which
contains Tk>(n, 2, 4K,). Lemma 6.12 shows that this expression contains zero. We now
know that MA/2¢, detects an element in the indeterminacy of the bracket (t nK>, 4, 2cy).
In fact, it must detect a multiple of TNk since 2K - TT49.99 1S ZerO.

The only possibility is that MA/2¢, detects ¥ times an element detected by T2M#g.
Therefore, T2M#h,g cannot be hit by a differential. This shows that TQs + t#; is a perma-
nent cycle.

We also know that MAZje, is the target of a hidden T extension, since it detects a
multiple of 7. The element 7?M#,g? is the only possible source of this hidden t extension,
so it cannot be hit by a differential. This shows that ds(¢Q3) cannot equal t™M#hg>. O
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Lemma 5.70.

(1) (68,7,37) ds(A2H,) = Meydp.
(2) (68,7,36) d;(t/2H,) = MPd,.

Progf — Table 3 shows that MPd, equals the Massey product (Pdy, 4], g). This
implies that MPd, detects the Toda bracket (7n’k, 8, ;). Lemma 6.19 shows that this
Toda bracket consists entirely of multiples of Tn?*x.

We now know that MPd, detects a multiple of tn?k. The only possibility is that
MPd, detects 1 times an element detected by T>M#,g.

We will show in Lemma 7.105 that T>M#,g is the target of a v extension, so T*M# g
cannot support a hidden 1 extension. Therefore, MPd, must be hit by some differential.
The only possibility is that &;(thH;) equals MPd,. Then A3H; cannot survive to the
E;-page, so dg(}lng) equals Mcodj. ]

Lemma 5.71. — (71,5, 37) The element Th,p; is a permanent cycle.

Progff — Lemma 5.61, together with results of [16], show that /4,4, survives to the
Eg-page. We must eliminate possible higher differentials.

Table 14 shows that there is a hidden T extension from t43C” to A%khsc). This
means that ThyC” 4 hy3(Ae; + Co) must also support a hidden 7 extension.

The two possible targets for this hidden T extension are A%hye; and TA%kg +
T3 Ahsg®. The second possibility is ruled out by comparison to #mf; so A%hyc; cannot be
hit by a differential. U

Lemma 3.72. — (74,7, 38) The element Phohohg is a permanent cycle.

Progf. — First note that projection from Ct to the top cell takes Phy/ to a non-
zero element. If Phyhohs were not a permanent cycle in the Adams spectral sequence for
the sphere, then projection from Ct to the top cell would also take Phyhyfi to a non-zero
element. Then the 2 extension from Phyhgs to Phohohg in 174 33CT would project to a 2
extension in 773 39. However, there are no possible 2 extensions in 7773 39. O

Lemma 5.73. — (77,7, 42) d;(m)) = 0.

Progf — The only other possibility is that ¢; (m;) equals T2g*¢. If that were the case,
then the v extension from tg’t to T2¢;g° would be detected by projection from Ct to the
top cell. However, the homotopy groups of Ct have no such v extension. UJ

Lemma 5.74. — (80, 6,43) ds(hx;) = 0.

Progf. — Table 5 shows that T/A;x, is a permanent cycle. Then dg(7/x;) cannot
equal tQMe(Q,, and dg(hyx)) cannot equal TMeg. ]
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Lemma 5.75. — (81,3, 42) ds(hyhuhs) = 0.

Progf — Table 5 shows that h3/uhs is a permanent cycle. Therefore, the Adams
differential dg(/zghdle) does not equal thyc; A, and ds(hohshs) does not equal ¢ A O

Lemma 5.76. — (86, 6, 46) d\(hyheg + 12f5) = 0.

Proof — 1t dyo(hoheg + hfﬁz) equaled MA/z%do, then the v extension from thgg +
Thoey to Thohsg + ‘L'/LQLfQ would be detected by the bottom cell of Ct. However, there is no
such v extension in the homotopy of Crt. UJ

Lemma 5.77. — (87, 7, 45) d7(X8777) =0.

Proof. — If T A’h3d, were hit by a differential, then the v extension from A%k3d, to
A*Rhsd; would be detected by projection from Ct to the top cell. But the homotopy of
Ct has no such v extension. 0J

Lemma 5.78. — (87,10, 45) ds(t A H;) = tMAR2e.

Proof. — Suppose for sake of contradiction that T Ak H, survives. This element
cannot be hit, nor can it be the target of a hidden 7 extension. Therefore, it would have
non-zero image under inclusion of the bottom cell into Ct, and it would map to A%, B;.

In the homotopy of Ct, the Toda bracket (A%, B, A, hg) is detected by the element
MAZ?h,. Beware that this bracket has indeterminacy in lower filtration since 3 - AfB; =
}l%x91,11-

This implies that the Toda bracket ({t Ak H,}, 2, v?) would be non-zero in gy 49,
and all of its elements would be detected in Adams filtration at most 15. (Beware that this
Toda bracket would have indeterminacy detected by T Ak hsH, )

On the other hand, the Moss Convergence Theorem 2.16 would imply that the
Toda bracket is detected in filtration at least 12. However, there are no possible elements
in filtrations 12 through 15.

We have now shown that T A4 H, cannot survive. There is only one possible value
for a differential on Tt A/ H;.

The previous argument assumed that 2{t AsH,} is zero in order to form the
Toda bracket ({t Ak H;},2,v%). However, it is possible that T Ak H; supports a hid-
den 2 extension to T A?hsd, or to T2A’%¢;g. Therefore, 2{t Ak H,} might equal To {A%d,},
Tv{A%#}, or their sum. In those cases, we would need to consider the matric Toda brackets

<[{rAh1H1} t{Ale}],[i],v2>,
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<[{TA/’£1H1} V],|:T{§2t}i|’v2>’

or

2
<[{TA}£1H1} t{A%d)} V], o ,v2>
T{A%)}

respectively. Under inclusion of the bottom cell into Ct, these three brackets would map

(zmm: o].[ 0] ).
<[Ah1B7 ], [%0] ,h§>,

or

ho
<[Ah1B7 0 hl,|hs ,/z§>
0

respectively. All three of these brackets in Ct equal (A B;, Aq, }zg ). Beware that the last
two could have larger indeterminacy, but in fact do not. 0

Lemma 5.79. — (88, 10, 48) The element xgg 1 1s a permanent cycle.

Progf. — In the Adams spectral sequence for Cr, there is a hidden 1 extension
from /z%xgg)ﬁ to xgg,10- Therefore, xgg 1o lies in the image of inclusion of the bottom cell into
Cz. The only possible pre-image is the element xg5 19 in the Adams spectral sequence in
the sphere, so xg3 19 must survive. ]

Lemma 5.80.

(1) (88,11, 49) ds(h2gH,) = Mcyel.
(2) (88,11, 48) d;(thigH,) =0.

Proof — 1f Mcyeg is non-zero in the Eo-page, then it detects an element that is
annihilated by 7 because Lemma 5.81 shows that the only possible target of such an
extension is hit by a differential. Then Mee; would be in the image of projection from
Crt to the top cell. The only possible pre-image would be the element Agyg of the Adams
spectral sequence for Ct.



DANIEL C. ISAKSEN, GUOZHEN WANG, ZHOULI XU

In the Adams spectral sequence for Ct, there is a o extension from gA’ to Agyg.
Projection from C7 to the top cell would imply that there is a hidden o extension in the
homotopy groups of the sphere, from M#A, ¢} to Meye, because gA’ maps to MA,e2 under
projection from Ct to the top cell.

But M#A,e? detects n6,.5{¢}}, which cannot support a o extension. This establishes
the first formula.

For the second formula, if & (thigH,) were equal to T>Akjeg’, then the same
argument would apply, with T A%eng” substituted for Meye. O

Lemma 5.81. — (88,12, 48) ds(Agyg) = Md; .

Progf — The proof of Lemma 5.54 shows that Md; must be hit by a differential.
The only possibility is that ds(Agyg) equals Md;.

Alternatively, Lemma 5.70 shows that &; (rthl) = MPd,. Note that tg- ‘L’thl =0
in the E;-page. Therefore, tMd; = tg - MPd; must already be zero in the E;-page. The
only possibility is that ds(t Agg) = TMd;, and then ds(Agg) = Md;. 0J

Remark 5.82. — Table 9 shows that ds(A*f) equals ‘L'QMdg. The proof relies on
de(tARH)) = rMAhgeQ and uses techniques similar to the ones in [17].

Lemma 5.83. — (92,5, 48) The element hogs is a permanent cycle.

Progf. — In the homotopy of Ct, the product 8,65 is detected by /2gs. In the sphere,
the product 6,65 is therefore non-zero and detected in Adams filtration at most 6.

Table 10 shows that the Toda bracket (2, 6,,6,, 2) contains 5. Therefore, the
product 6,65 1s contained in

01(2, 04, 04,2) = (04,2, 04,0,)2.

(Note that the sub-bracket (64, 04, 2) is zero because 74 39 1s zero.) Therefore, 6,65 is
divisible by 2. It follows that 6,05 is detected by /lgs, and hygs is a permanent cycle that
detects (84, 2, 0,4, 0,). ]

Lemma 5.84. — (92,10, 51) ds(Ah?e;) = 0.

Progf — Consider the element TM#k3g? in the Adams spectral sequence for Cr.
This element cannot be in the image of inclusion of the bottom cell into Ct. Therefore,
it must map non-trivially under projection from Ct to the top cell. The only possibility is
that TMA3g” is the image. Therefore, TM/jg® cannot be the target of a differential. [

Lemma 5.85. — (92, 10, 48) d;(xo9.10) does not equal T>A*hyg*.
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Proof. — If T> A%hyg® were hit by a differential, then the 2 extension from t A%Ayg>
to T A%hyhyg® would be detected by projection from Ct to the top cell. But the homotopy
of Ct has no such 2 extension. 0

Lemma 5.86. — (92,10, 51) dy(A hye;) = 0.

Progf. — Consider the element ¢yx76 9 in the Adams E-page for Ct. It cannot be
in the image of inclusion of the bottom cell into Ct, so it must project to a non-zero
element in the top cell. The only possible image is MA/%}g. Therefore, MA/’g cannot be
the target of a differential. O

Lemma 3.87. — The element MPAhydy s hit by some differential.

Progf. — Table 14 shows that there is a hidden t extension from A#cydy to
PA#Rdy. Therefore, PAhdy detects Te{Ahdy}. On the other hand, Tables 18 and 24
show that PA/%,dy also detects Tk {Ah hs}. Since there are no elements in higher Adams
filtration, we have that te{Ah dy} equals Tnx{Ah hs}.

Table 24 shows that MP detects t€6, 5, so MPARdy detects te{Ah;dy}6, 5, which
equals Tk {Ah hs}6, 5. But Tnk 6,5 is zero because all elements of 74 39 are detected by
tmf. This shows that MPA#, dj detects zero, so it must be hit by a differential. ]

Remark 5.88. — Lemma 5.87 does not specify the differential that hits the element
MPAh]dg In fact, d6(T€0X76’9) equals MPAh]dg [16]

6. Toda brackets

The purpose of this section is to establish various Toda brackets that are used
elsewhere in this manuscript. Tables 10 and 11 collect all of this information in one place.
Many Toda brackets can be easily computed from the Moss Convergence Theorem 2.16.
These are summarized in the tables without further discussion. However, some brackets
require more complicated arguments. Those arguments are collected in this section. For
easy reference, the lemmas in this section are labelled with degrees that match the degrees
given in the tables.

We will need the following G-motivic version of a theorem of Toda [55, Theo-
rem 3.6] that applies to symmetric Toda brackets.

Theorem 6.1. — Let o be an element of 7, with s even. There exists an element o n
Tos+1.0w Such that (e, B, o) contains the product Bor* for all B such that af equals zero.

Corollary 6.2. — If 2B = 0, then (2, B, 2) contains Tnp.
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Proof. — Apply Theorem 6.1 to o = 2. We need to find the value of a*. Table 3
shows that the Massey product (f, /1, hy) equals T/4?. The Moss Convergence Theo-
rem 2.16 then shows that (2, n, 2) equals 7n?. It follows that o* equals 7. 0J

Theorem 6.3. — Tables 10 and 11 list some Toda brackets in the G-motivic stable homotopy
groups.

Progf. — The fourth column of the table gives information about the proof of each
Toda bracket.

If the fourth column shows a Massey product, then the Toda bracket follows from
the Moss Convergence Theorem 2.16. If the fourth column shows an Adams differential,
then the Toda bracket follows from the Moss Convergence Theorem 2.16, using the
mentioned differential.

A few Toda brackets are established elsewhere in the literature; specific citations
are given in these cases.

Additional more difficult cases are established in the following lemmas. U

Tables 10 lists information about some Toda brackets that do not contain zero,
while Table 11 lists information about some Toda brackets that do contain zero. The
third columns of the tables give elements of the Adams E.,-page that detect elements
of the Toda brackets. The fourth columns of the tables give partial information about
indeterminacies, again by giving detecting elements of the Adams E-page. We have
not completely analyzed the indeterminacies of all brackets when the details are incon-
sequential for our purposes. The fifth columns indicate the proofs of the Toda brackets,
and the sixth columns shows where each specific Toda bracket is used in the manuscript.

Lemma 6.4. — (16,9) The Toda bracket (k, 2, n) contains zero, with indeterminacy gener-
ated by nps.

Progoff — Using the Adams differential d5(hohy) = hody, the Moss Convergence
Theorem 2.16 shows that the Toda bracket is detected in filtration at least 3. The only
element in sufficiently high filtration is P¢y, which detects the product np;s. This product
lies in the indeterminacy, so the bracket must contain zero. 0J

Lemma 6.5. — (20, 11) The Toda bracket (k, 2, 1, v) s detected by Tg.

Progf. — The subbracket (2, n, v) is strictly zero, since 75 5 1s zero. The subbracket
(k, 2, n) contains zero by Lemma 6.4. Therefore, the fourfold bracket (x, 2, n, v) is well-
defined.

Shuffle to obtain

(Ky 2, n, U)’?Q :K<29 n,v, 772)
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Table 10 shows that € is contained in the Toda bracket (n*, v, 17, 2), so the latter expres-
sion equals €k, which is detected by ¢ydp. It follows that («, 2, , v) must be detected by
Tg. U

Lemma 6.6. — (23, 13) The Toda bracket (¢ + no, o, 20) contains zero, with indetermi-
nacy generated by 4vik i {Ph,dy}.

Progf. — Consider the shuffle
(€ +no,0,20)n = (e +no){o, 20, 7).

Table 10 shows that 44 detects (o, 20, 1), so hyhycy detects the product € (o, 20, n). On
the other hand, Table 24 shows that there is a hidden o extension from £Ay to Ayc.
Therefore, i hycy also detects no (o, 20, n). It follows that (¢ 4+ no){o, 20, ) is detected
in filtration higher than 5.

Consider the shuffle

2(e +no,0,20)=(2,€ + no, o)2o.

The latter expression is zero since 20 annihilates all elements of 74 9.
This shows that no elements of the Toda bracket can be detected by t/yg or Thyhag.
The element 4vk generates the indeterminacy because it equals Tnx (e +no). U

Lemma 6.7. — (30, 16) The Toda bracket (tic*, 1, 2) equals zero, with no indeterminacy.

Progf — The Adams differential d;(Ak3) = Thid; implies that the bracket is de-
tected by g - Akj, which equals zero in the Eq-page. Therefore, the Toda bracket is
detected in Adams filtration at least 7, but there are no elements in the Adams E..-page
in sufficiently high filtration.

The indeterminacy can be computed by inspection. O

Lemma 6.8. — (35,20) The Toda bracket (n*, 0,4, n*) contains zero, with indeterminacy
generated by n°ns.

Proof. — 1f the bracket were detected by %yd;, then
V<772, 94’ 772> = <V, 772, 94>’72

would be detected by A3d;. However, 43d, does not detect a multiple of n*.

The bracket cannot be detected by /62 by comparison to imf.

By inspection, the only remaining possibility is that the bracket contains zero. The
indeterminacy can be computed by inspection. UJ
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Lemma 6.9. — (36, 20) The Toda bracket (T, n’kc\, n) is detected by t, with indeterminacy
generated by 1° ;.

Progf — There is a relation 4, - £2d) = ¢ in the homotopy of Ct. Using the connec-
tion between Toda brackets and cofibers as described in [30, Section 3.1.1], this shows
that ¢ detects the Toda bracket.

The indeterminacy is computed by inspection. UJ

The third author presents the following Lemma 6.10 as a correction to [62, The-
orem 2.1], where it states that the said Toda bracket contains 0.

Lemma 6.10. — (45) The classical Toda bracket (6., 2,02 + k) contains O or nicy. Iis
indeterminacy is generated by py50y, which is detected by hyhsdj.

Proof. — The gap originated in [62, Remark 3.3], where it was claimed that
(64,2, 07) contains an order 2 element of the form 2« + B, where « is detected by £}
and B is detected by /Asdj. In fact, since Asdy and A, g, are in the same filtration, we can
only conclude that B is detected by 5dy or Asdy + g2, therefore the missed possibility in
the statement of the lemma. ]

Remark 6.11. — In fact, we have evidence that this classical Toda bracket
(04,2,0% + k) contains nky. However, the argument depends on computations as far
as the 110-stem.

Lemma 6.12. — (46, 25) The Toda bracket (n, 2, 4Kk o) contains zero.

Progf. — The Massey product MAhy = (%, hy, hggg) shows that M4, detects the Toda
bracket. Table 18 shows that M/, Akgey, and tdyl 4 Acydy are all targets of hidden 71 ex-
tensions. (Beware that the hidden 71 extension from k345 to M, is a crossing extension in
the sense of Section 2.1, but that does not matter.) Therefore, M4, detects only multiples
of n, so the Toda bracket contains a multiple of n. This implies that it contains zero, since
multiples of 1 belong to the indeterminacy. 0J

Lemma 6.13. — (59, 31) The Toda bracket (T%y, 0%, 2) equals zero.

Proof. — No elements of the bracket can be detected by 72Ah dyg by comparison
to tmf.
Consider the shuffle

(K9, 0%, 2k = TK»(07, 2, k).

The bracket (o2, 2, k) is zero because it is contained in 799 15 = 0. On the other hand,
{tMdp}« is non-zero and detected by TMd3. Therefore, no elements of (t%s, 0%, 2) can
be can be detected by tMd,. 0J
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The third author presents the following Lemma 6.14, which is needed in the proof
of Lemma 7.137.

Lemma 6.14. — (60) The classical Toda bracket (nk o, 20, o) equals zero.

Progf. — Due to ds(e)) = /zén and that /8 = hse;, we have the following Massey
product in the E4-page

/l1g2 = (hy, hon, hs)

with zero indeterminacy. Since there are no crossing differentials, we conclude that %,

detects a homotopy class in the Toda bracket (v, v{n}, o). We claim that nk, is contained

in this bracket. In fact, they might differ by classes detected in filtration 6 or higher:

hohsdy, h§h5 dy, w. The first two detect o-multiples so they are in the indeterminacy. The

homotopy class {w} is detected by tmf, but ks and {} are not, so w can be ruled out too.
Therefore, we have

(nkq, 20,0) C ((v,v{n},o),20,0) Dv{v{n}, o, 20,0)=0.

Here (0, 20,0) =0, and (v{n}, 0, 20) contains O since coker J in 749 is 0. So the 4-fold
bracket (v{n}, 0,20, 0) in 75; 1s well-defined. By comparison with 75;tmf, we know it
1s 0.

We remain to show the indeterminacy of ((v, v{n}, o), 20, o) is 0. In fact,

— 15 - (v, v{n}, o) = (5, v, v{n})o S oms3 = 0. (Lemma 2.3 in [62].)
— (V- myg,20,0) =(0,20,0) 4+ (p1564, 20,0) = 0. (Lemmas 2.3 and 2.4 in [62].)
— (0 -138,20,0) Dmsg - (0,20,0) =0.

This completes the proof. UJ

Lemma 6.13. — (60, 32) For every o that is detected by h§h5, the Toda bracket (2, 02, o)
contains zero. The indeterminacy is generated by 2Tic” , which is detected by T>d21.

Proof — Let a be detected by /3hs. For degree reasons, the only elements that
could detect o2 either support 7 extensions or are detected by #mf. Therefore, o is
zero. Hence the bracket is defined.

By comparison to #mf; the bracket cannot be detected by T*g®. Table 15 shows that
72431 is the target of a hidden 2 extension, so it detects an element in the indeterminacy.

Since there are no other possibilities, the bracket must contain zero. UJ

Remark 6.16. — 'This result is consistent with Table 23 of [30], which claims that
the bracket (2, 0%, 0, 5) contains an element that is detected by Bs. The element B is now
known to be zero in the Adams E.-page, so this just means that the bracket contains an
element detected in Adams filtration strictly higher than the filtration of Bs.
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Lemma 6.17. — deg63, 34 The Toda bracket (0, n°, 04) equals zero.

Proof. — Theorem 6.1 says that there exists an element 6 in 7 39 such that
(64, %, 04) contains n?0;. The group 7 39 is zero, so O must be zero, and the bracket
must contain zero.

In order to compute the indeterminacy of (6,, n?, 8,), we must consider the prod-
uct of 6 with elements of 733 5. There are several cases to consider.

First consider {A/}hs}. The product 6,{Ak}hs} is detected in Adams filtration at
least 10, but there are no elements in sufficiently high filtration.

Next consider v, detected by p. The product 67 is zero [62], so v6? is also zero.

Finally, consider nns detected by /£*h;. Table 10 shows that (1, 2, 6,) detects 1s.
Shuffle to obtain

nns0s = n(n, 2, 0,05 = n*(2, 64, 64).

The bracket (2, 04, 64) is zero because it is contained in 74 30 = 0. O
Lemma 6.18. — (66, 36) The Toda bracket (n*, 0,4, n*, 04) is detected by Alhg.

Progf — Table 3 shows that A 43 equals (k7, k3, &, i}). Therefore, A k3 detects
(n?,0,,n% 0,), if the Toda bracket is well-defined.
In order to show that the Toda bracket is well-defined, we need to know that the

subbrackets (n?, 8, n*) and (04, n*, 0,) contain zero. These are handled by Lemmas 6.8
and 6.17. ]

Lemma 6.19. — (67, 36) The Toda bracket (tn’k, 8,K5) contains zero, and its indetermi-
nacy is generated by multiples of Tn’.

Proof. — The bracket (tn’c, 8,%5) contains TnK(n, 2, 4k,). Lemma 6.12 shows
that this expression contains zero.

It remains to show that ks - 793 19 equals zero. There are several cases to consider.

First, the product To 14K in 760,39 could only be detected by t*g® or T2d3/. Com-
parison to ¢mf rules out both possibilities. Therefore, Ton,k5 1s zero.

Second, the product Kk in ey 35 must be detected in filtration at least 9, since
g9, equals zero, so it could only be detected by 4(Ae; + Cg). This implies that TvkKs is
Zero.

Third, we must consider the product pysicy. Table 10 shows that the Toda bracket
(0, 16, 2p;5) detects po3. Then pgos3ks 1s contained in

(0,16,2p15)Kky =0 (16,205, K9).

The latter bracket is contained in g 39. As above, comparison to mf shows that the
expression Is zero. O
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Lemma 6.20. — (70, 37) The Toda bracket (n, v, T045K) is detected by Th D5,

Progf — Table 6 shows that d;(tDj) equals 7°M#hyg. The Moss Convergence The-
orem 2.16 implies that T/ D5 detects the Toda bracket. 0

Lemma 6.21. — (71, 37) There exists an element o in 766,34 detected by T>hyC! such that
the Toda bracket (n, v, o) is defined and detected by Thp; .

Progf. — The differential ds(tp, + hghghﬁ) = T%%C’ and the Moss Convergence
Theorem 2.16 establish that the Toda bracket is detected by th;p,, provided that the
Toda bracket is well-defined.

Let a be an element of g6 34 that is detected by 724,C’. Then va does not neces-
sarily equal zero; it could be detected in higher filtration by T2k B5 4 D). Then we can
adjust our choice of & by an element detected by 7°B; + D), to ensure that ve is zero. [

Lemma 6.22. — (72, 38) The Toda bracket (0%, 2, {t}, TK) is detected by hyQy + h3Ds.

Proof. — The subbracket (0%, 2, {¢}) contains zero by comparison to Ct, and its
indeterminacy is generated by 0%0, = 40k, detected by Tgn. The subbracket (2, {¢}, Tk)
1s strictly zero because it cannot be detected by Ay/ohs: by comparison to tmf. This shows
that the desired four-fold Toda bracket is well-defined.

Consider the relation
n(c?,2,{t}, t%) C ((n, 0>, 2), {1}, 7).

Let & be any element of (n, 0%, 2). Table 10 shows that « is detected by 4,4, and equals
either ny or ny 4+ np;5. By inspection, the indeterminacy of («, {¢}, Tk) equals Tk - 353 99,
which is detected in Adams filtration at least 14. (In fact, the indeterminacy is non-zero,
since it contains both t& - {Mc} detected by TMd; and also Tk - {Ahd}} detected by
T2 Ahidyel.)

Table 10 shows that (o, {¢}, Tk) is detected by £4,Qy. Together with the partial
analysis of the indeterminacy in the previous paragraph, this shows that («, {¢}, k) does
not contain zero.

Then n{o?, 2, {t}, k) also does not contain zero, and the only possibility is that
(02,2, {1}, TKc) is detected by £,Qy + A3 Ds. ]

Lemma 6.23. — (75, 40) The Toda bracket (64, 04, k) equals zero.

Proof — The Massey product (k2, k3, dy) equals zero, since

/Z% (hia }Zis dO) = <}l¥7 hia /l;21.>d0 = Oa
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while %jx;5; is not zero. The Moss Convergence Theorem 2.16 then implies that
(04, 04, k) 1s detected in Adams filtration at least 8.
The only element in sufficiently high filtration is PA}4s. However,

0% (04, 04, k) = (0%, 64, 04)k =0,

while hf . P/zdl‘hﬁ is not zero. Then (6, 6, k) must contain zero because there are no re-
maining possibilities.

The indeterminacy can be computed by inspection, using that 6,6, 5 is zero by
comparison to Crt. 0J

Lemma 6.24. — (77, 40) The Toda bracket (k, 2, 05) 1s detected by hedy.

Proof. — The differential ds(hphy) = hody implies that («, 2, 65) is detected by /Ay -
#% = 0 in filtration 4. In other words, the Toda bracket is detected in Adam:s filtration at
least 5.

The element 4 Ady detects (nk, 2, 65), using the Adams differential dy (%) = /zofzg.
This expression contains 1n(k, 2, 85), which shows that («, 2, 65) 1s detected in filtration at
most 5.

The only possibility is that the Toda bracket is detected by /gd. O

Lemma 6.25. — (79, 42) There exists an element |4 in 777,41 that s detected by Tm, such
that niL s zero and L s not divisible by v. Moreover, the Toda bracket (ju, n, 2) contains zero or is
detected by T*Meé}, and its indeterminacy is detected by hohgxz.6.

Proof. — Let (’ be an element of 777 49 that is detected by m,. Then T’ is detected
by Tm;, and nu' is detected by Aym;. Table 14 shows that there is a hidden t extension
from f;m; to MA}Z%}lg. Therefore, Tnu’ is detected by MAIZ%}Z?,.

Now let 1" be an element of 777 4; that is detected by MAA As. Then nu” is also
detected by MA/2hs. This shows that n(tu’ + 1”) is zero because there are no possible
detecting elements in higher filtration.

Choose  to be T’ 4+ ”. Note that u” is not divisible by 7 because inclusion
of the bottom cell of Ct takes MA# A3 to a non-zero element. Therefore, w is also not
divisible by 7.

Now that p is defined, it remains to study the Toda bracket. We begin with an
analysis of its indeterminacy, which is generated by t5* - u and the multiples of 2 in
779.49. The first expression is zero by the construction of p. Let o be an element of 779 49
that is detected by Ayx76 6, s0 20 1s detected by /hox76 6. Tables 15 and 17 show that there
are no hidden 2 extensions in the 79-stem with weight 42. Therefore, the indeterminacy
1s generated by 2c.

Inclusion of the bottom cell of Ct takes the bracket to (M A&, ks, k1, hy). Machine-
generated data [58] shows that this bracket equals {0, Ayhx76 6} in Ct.
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Let B be any element of (i, n, 2). It is possible that B maps to fyhox766 under
inclusion of the bottom cell of Ct. In that case, f + 2« also belongs to (u, 17, 2) and must
map to zero under inclusion of the bottom cell of Cz.

In either case, the original Toda bracket contains an element that maps to zero
under inclusion of the bottom cell of Ct, and that element is therefore divisible by .
By inspection, the only possible detecting elements are T2Mg¢; and 7°A#k ¢)g. The latter
option is ruled out by comparison to mm/. U

Lemma 6.26. — (80, 42) The Toda bracket (2, n, Tn{hix766}) ts detected by Thx,.

Progf. — Let a be an element of 7774, that is detected by £ x74 . First we must
show that the Toda bracket is well-defined.

Note that 2« 1s zero because there are no 2 extensions in 777 4; in sufficiently high
Adamis filtration. Now consider the shuffle

mla = (2,0, 2a =2(n, 2, a).

Table 10 shows that (1, 2, @) is detected by /Ahyx766, but this element does not support
a hidden 2 extension. This shows that Tn’a is zero and that the Toda bracket is well-
defined.

Finally, use the Adams differential d,(hpey) = T}l?x76’6 and the relation fg - hges =
Thx; to compute the Toda bracket. O

Lemma 6.27. — (81, 43) There exists an element o in 779 49 that is detected by hoxz6 6 such
that no is zero. Moreover, the Toda bracket (2, 1, &) 1s zero, with no indeterminacy.

Progf. — There is no hidden n extension on /x5 because the possible targets
t3dyeil and T2g* are ruled out by comparison to mmf. Therefore, o exists.

The Massey product (A, &y, hox76.6) has no indeterminacy by inspection. Conse-
quently,

(ho, Iy, h2x76,6> = (ho, h, /ZQ)X76,6 =0.

The Moss Convergence Theorem 2.16 implies that the Toda bracket (2, n, o) 1s detected
in filtration 9 or higher. The possible detecting elements are PhAscy and A2k d,. In either
of these cases, the Toda bracket would be detected by inclusion of the bottom cell of Cz,
but the corresponding bracket is zero in Crt.

The indeterminacy is generated by T« and the multiples of 2 in 7g; 45. The first
expression is zero by the choice of . Tables 15 and 17 show that there are no multiples
of 2 in 7y 43. [

Lemma 6.28. — (84, 45) The Toda bracket (2, 0, {‘Eth’}) equals zero, with no indeter-
minacy.
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Proof. — Let a be an element of g 35 that is detected by t4,C’, so va is the
unique element that is detected by t/43C’. We consider the Toda bracket (2,02, va).
By inspection, the indeterminacy is zero, so the bracket equals (2, 0%, v)a, which equals
(a,2,0%)v.

Apply the Moss Convergence Theorem 2.16 with the Adams d, differential to see
that the Toda bracket (o, 2, 0%) is detected by 0 in Adams filtration 9, but it could be
detected by a non-zero element in higher filtration. However, this shows that (e, 2, o%)v
is zero by inspection. 0

Lemma 6.29. — (84, 45) The Toda bracket (2, 0°, {hs(Aey + Co)}) equals zero, with no
indeterminacy.

Proof. — Let B be an element of mg 35 that is detected by Ae¢; + Cy, so of is
the unique element that is detected by /A3(Ae; 4+ Cy). We consider the Toda bracket
(2,02, o). By inspection, the indeterminacy is zero, so the bracket equals (2, 0%, B)o.

Apply the Moss Convergence Theorem 2.16 with the Adams d; differential to see
that the Toda bracket (2, 0%, B) is detected by 0 in Adams filtration 9, but it could be
detected by a non-zero element in higher filtration. Then the only possible non-zero
value for (2, 02, B)o is {MAh hs}o. Table 24 shows that MAA, hg detects { Ak h3}0, 5, so
o {MA#h hs} equals o {Ahyhs}0, 5, which equals zero. O

Lemma 6.30. — (86, 46) The Toda bracket (Tnk?, 2, 4Ky) is detected by MA/I%EO.

Progf. — Table 3 shows that the Massey product (Akle, k2, hog) equals the ele-
ment MAAey. Now apply the Moss Convergence Theorem 2.16, using that Table 18
shows that Akle, detects Tnic”. 0J

Lemma 6.31. — (87, 46) There exists an element o in 747 56 that is detected by hoQs =+ hon,
such that ¢ detects the Toda bracket (e, vy, 7).

Proof. — A consequence of the proof of Lemma 5.51 1s that there exists o in 77,36
that is detected by /,Qs + Ayn; such that the product Tv,o is zero. Therefore, }Z%Ug detects
the Toda bracket (ta, vy, n) because of the Adams differential dy(ky¢3) = Thyhohs Q5. U

7. Hidden extensions

In this section, we will discuss hidden extensions in the Ey-page of the Adams
spectral sequence. We methodically explore hidden extensions by 7, 2, n, and v, and
we study other miscellaneous hidden extensions that are relevant for specific purposes.
For easy reference, the lemmas in this section are labelled with degrees that match the
degrees given in the tables.
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7.1. Hidden T extensions
In order to study hidden 7 extensions, we will use the long exact sequence

T T

(7.1) o TTpg+1 TTpq 70, CT——>T) 1411 TTp—1.q

extensively. This sequence governs hidden 7 extensions in the following sense. An element
a in 7, , is divisible by 7 if and only if it maps to zero in 7, ,C7, and an element « in
T)—1,4+1 supports a T extension if and only if it is not in the image of 7, ,Ct. Therefore,
we need to study the maps m, , — m,,Ct and 7, ,Ct — m,_| .4 induced by inclusion
of the bottom cell into Ct and by projection from Cz to the top cell.

The En-pages of the Adams spectral sequences for S*? and Ct give associated
graded objects for the homotopy groups that are the sources and targets of these maps.
Naturality of the Adams spectral sequence induces maps on associated graded objects.

These maps on associated graded objects often detect the values of the maps on
homotopy groups. For example, the element %, in the Adams spectral sequence for the
sphere is mapped to the element % in the Adams spectral sequence for Ct. In homotopy
groups, this means that inclusion of the bottom cell into Ct takes the element 2 in 7 o to
the element 2 in 7 (Crt.

On the other side, the element 4} in the Adams spectral sequence for Ct is mapped
to the element 4} in Adams spectral sequence for the sphere. In homotopy groups, this

means that projection from Ct to the top cell takes the element {4} in 753Ct to the
element n* in 7y 4.

However, some values of the maps on homotopy groups can be hidden in the
map of associated graded objects. This situation is rare in low stems but becomes more
and more common in higher stems. The first such example occurs in the 30-stem. The
element Ahg is a permanent cycle in the Adams spectral sequence for Ct, so {A/lg }is
an element in 7r3,,6CT. Now A/3 maps to zero in the Eo-page of the Adams spectral
sequence for the sphere, but {A}zg} does not map to zero in 7y ;7. In fact {Ahg} maps to
nic?, which is detected by /;dZ. This demonstrates that projection from Ct to the top cell
has a hidden value.

We refer the reader to Section 2.1 for a precise discussion of these issues.

Theorem 7.1.

(1) Through the 90-stem, Table 12 lists all hidden values of inclusion of the bottom cell into
Cr, except that:
(@) Ifhyfy does not survive but Thyfy does survive, then Thyfy maps to Iiics.
(b) If K f does not survive, then Th:f maps to Th>hyQs or Ae; + T Ahyerg.
(c) Thixgs.¢ maps to T}l?/h}Q‘g or A%e) + T Ahgeyg.

(2) Through the 90-stem, Table 13 lists all hidden values of projection from Gt to the top cell,
except that:
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(@) If hyfy does not survive, then hyfy maps to hih,Qs or Ahyy.

(b) xg5.6 maps to BihyQs or Ahyj.

(c) Ifklfy does not survive, then hify maps to h>hyQs or TMhgg*.

(d) hyxgs. maps to b hyQs or TMhgg®.

(e) IfIify survives, then Th>hyQs or A’ey + T Ahyerg maps to MAK: ;.

Progf: — The values of inclusion of the bottom cell and projection to the top cell
are almost entirely determined by inspection of Adams E.-pages. Taking into account
the multiplicative structure, there are no other combinatorial possibilities. For example,
consider the exact sequence

730,16 —> T30,16GT — 99,17.

In the Adams E.-page for Ct, /] and A/; are the only two elements in the 30-stem with
weight 16. In the Adams E.-page for the sphere, £} is the only element in the 30-stem
with weight 16, and A,d; is the only element in the 29-stem with weight 17. The only
possibility is that /] maps to 4} under inclusion of the bottom cell, and Ak} maps to & d;
under projection to the top cell.

One case, given below in Lemma 7.6, requires a more complicated argument. [J

Remark 7.2. — Through the 90-stem, inclusion of the bottom cell into Ct has only
one hidden value with target indeterminacy. Namely, 4y¢; A’ is the hidden value of /,gB;,
with target indeterminacy generated by Aj;. Through the 90-stem, projection from Ct
to the top cell has no hidden values with target indeterminacy.

Remark 7.3. — Through the 90-stem, inclusion of the bottom cell into Ct has no
crossing values. On the other hand, projection from Cz to the top cell does have crossing
values in this range. These occurrences are described in the fourth column of Table 13.
Each can be verified by direct inspection.

Theorem 1.4. — Through the 90-stem, Table 14 lists all hidden T extensions in G-motivic
stable homotopy groups, except that:

(1) of MAhydy 1s not hit by a differential, then there is a hidden T extension from Ahyy, to

MAh, dy.
(2) if MARKdy is not hit by a differential, then there is a hidden T extension_from TMhyg® to
MAZK dy.

In this range, the only crossing extension s:

(1) the hidden T extension from hihgco to hohs Dy, and the not hidden T extension on Th3Qs.

Progf. — Almost all of these hidden 7 extensions follow immediately from the val-
ues of the maps in the long exact sequence (7.1) given in Tables 12 and 13.
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For example, consider the element Pdj in the Adams E-page for the sphere, which
belongs to the 22-stem with weight 12. Now 799 19C7 is zero because there are no ele-
ments in that degree in the Adams E.-page for Ct, so inclusion of the bottom cell takes
{Pdy} to zero. Therefore, {Pdy} must be in the image of multiplication by 7. The only
possibility is that there is a hidden 7 extension from ¢ydj to Pd. [

Remark 7.5. — If M AR dy and MAhfdo are not hit by differentials, then a straight-
forward analysis of the sequence (7.1) shows that the possible T extensions on A/, and
TM/hyg® must occur. Thus these uncertainties are entirely determined by corresponding
uncertainties in values of the Adams differentials.

Lemma 7.6.

(1) (70,10, 38) The element hyhs(Aey + Co) + ThyC" maps to hicoQy under inclusion of
the bottom cell into Cr.
(2) (70,8, 39) There is a hidden T extension from dye; to hihs(Ae; + Cy).

Progf. — Consider the exact sequence 77 33 = 770.38CT — 749.39. For combina-
torial reasons, one of the following two possibilities must occur:

(a) the element /h5(Ae; + Co) + ThyC” maps to AfcyQy under inclusion of the
bottom cell into Ct, and there is a hidden T extension from d,¢; to h hs(Ae +
Ch).

(b) the element /;/43(Ae; + Cg) maps to /icyQs under inclusion of the bottom cell
into Ct, and there is a hidden 7 extension from d; ¢, to /i1is(Ae; + Cy) + ThyC”.

We will show that there cannot be a hidden t extension from d,¢; to h1hs(Ae; + Cy) +
T/ZQC//.

Lemma 7.154 shows that tv{d,e;} equals tno{k}. Since there is no hidden t
extension on £k, there must exist an element « in {£;} such that tna = 0. Therefore,
tv{d;e;} must be zero.

If there were a T extension from die; to Ahs(Ae + Cy) + ThC”, then tv{die}
would be detected by

}lg . (}llhg(Ael + C()) + ThQC//) = ‘L’héC”,

and in particular would be non-zero. O

7.2. Hidden 2 extensions
Theorem 7.7, — Tables 15 and 16 list some hidden extensions by 2.
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Proof. — Many of the hidden extensions follow by comparison to Ct. For example,
there 1s a hidden 2 extension from /Ayheg to hcydy in the Adams spectral sequence for Ct.
Pulling back along inclusion of the bottom cell into Ct, there must also be a hidden 2
extension from /yhyg to hjcydy in the Adams spectral sequence for the sphere. This type
of argument is indicated by the notation Ct in the fourth column of Table 15.

Next, Table 14 shows a hidden t extension from £, ¢ydy to Phidy. Therefore, there
is also a hidden 2 extension from t/yhog to Phidy. This type of argument is indicated by
the notation 7 in the fourth column of Table 15.

Many cases require more complicated arguments. In stems up to approximately
dimension 62, see [30, Section 4.2.2 and Tables 27-28] [61], and [62]. The higher-
dimensional cases are handled in the following lemmas. U

Remark 7.8. — Through the 90-stem, there are no crossing 2 extensions.

Remark 7.9. — The hidden 2 extension from /yksgs to Tgn is proved in [61], which
uses on the “RP*-method” to establish a hidden o extension from t/h3d, to Ahyc; and
a hidden n extension from 749, to Akyc;. We now have easier proofs for these n and o
extensions, using the hidden T extension from £g, to Ahye; given in Table 14, as well as
the relation 43d, = h'g,.

Remark 7.10. — Comparison to synthetic homotopy gives additional information
about some possible hidden 2 extensions, including:

(1) there is a hidden 2 extension from fohsi to T*e2g.
(2) there is no hidden 2 extension from Px76 ¢ to M A/ d.

See [15] and [16] for more details. We are grateful to John Rognes for pointing out a
mistake in [30, Lemma 4.56 and Table 27] concerning the hidden 2 extension on /g/s:.
Lemma 7.18 shows that the extension occurs but does not determine its target precisely.

Remark 7.11. — The first correct proof of the relation 205 = 0 appeared in [62].
Earlier claims in [44] and [38] were based upon a mistaken understanding of the Toda
bracket (0%, 2, 6,). See [30, Table 23] for the correct value of this bracket.

Remark 71.12. — 1f MARd, is non-zero in the E,-page, then there is a hidden t

extension from TM#yg? to MAA dy. This implies that there must be a hidden 2 extension
from 2Mg* to MAA .

Remark 7.13. — Table 15 shows that there is a hidden 2 extension from xg; 7 to
73¢Q)3. This follows from data recently produced by Dexter Chua on the d; differentials
in the Adams spectral sequence for the cofiber of 2.

Theorem 7.14. — Table 17 lists all unknown hidden 2 extensions, through the 90-stem.
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Proof. — Many possibilities are eliminated by comparison to Ct, to mf; or to mm/.
For example, there cannot be a hidden 2 extension from 4hy to Thig by comparison to
Cr.

Many additional possibilities are eliminated by consideration of other parts of the
multiplicative structure. For example, there cannot be a hidden 2 extension from Pk, /45 to
73¢% because T°g* supports an /; extension and 27 equals zero.

Several cases are a direct consequence of Proposition 7.16.

Some possibilities are eliminated by more complicated arguments. These cases are
handled in the following lemmas. O

Remark 7.15. — If MAK}dy is not zero in the E.-page, then MA/ dy supports an
hy multiplication, and there cannot be a hidden 2 extension from Px76 6 to MAA, d.

Proposition 7.16. — Suppose that 2ac and Tnoe are both zero. Then 2{ct, 2, 05) 1s zero.

Progf. — Consider the shuffle
2, 2,05) = (2, a, 2)05.

Since 265 1s zero, this expression has no indeterminacy. Corollary 6.2 implies that it equals
tnabs, which is zero by assumption. O

Remark 7.17. — Proposition 7.16 eliminates possible hidden 2 extensions on sev-
eral elements, including /lg;lg, }lghgh(;, h§h6, hscy, h§h4/z6, hgh6i, and hghgg.

Lemma 7.18. — (54,9, 28) There is a hidden 2 extension_from hohst to either tTMPhy or to
thelg.

Progf. — Table 2 shows that Ahsi maps to A%k in the homotopy of #mf. The ele-
ment A%h3 supports a hidden 2 extension, so fk;i must support a hidden 2 extension as
well. 0

Lemma 7.19.

(1) (63,6,33) Thereis a hudden 2 extension from thiHy to Thy(Aey + Cy).
(2) (63,7,33) There is no hidden 2 extension on tXo + vC'.
(3) (70,7,37) There s a hidden 2 extension _from ThihsH, to Thihs(Aey 4 Cy).

Progf. — Table 18 shows that there is an n extension from v/, H, to 235Q,. Let o be
any element of 743 33 that is detected by th H;. Then tna is non-zero and detected by
ThihsQy. Note that Th;h5Qy cannot be the target of a hidden 2 extension because there
are no possibilities.
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If 2a0 were zero, then we would have the shuffling relation
Tt = (2,1, 2)a =2(n, 2, ).

But this would contradict the previous paragraph.

We now know that 2o must be non-zero for every possible choice of a. The only
possibility is that there is a hidden 2 extension from 74, H, to th (Ae; + Cy), and that
there is no hidden 2 extension on Xy, + tC’. This establishes the first two parts.

The third part follows immediately from the first part by multiplication by £5. [

Lemma 7.20. — (64, 2, 33) There is a hidden 2 extension from hy hg to ‘L’/z%h?).

Proof. — 'Table 10 shows that %,/ detects (n, 2, 65). Now shuffle to obtain
2(’77 2,05> = (25 n, 2>95:'”7295- O
Lemma 7.21. — (66, 6, 36) There is no hidden 2 extension on Alhg.

Progf — Table 10 shows that Alhg detects the Toda bracket (n?, 0,, n%, 6,). We
have

2(’72’ 94, 772, 94) g <<27 772, 94—)7 an 64)
Table 10 shows that
V0, = (2,1, n6s) = (2,1, 64),

so we must compute (v8y, 5%, 6,).

This bracket contains v {6y, n?, 8;), which equals zero by Lemma 6.17. Therefore,
we only need to compute the indeterminacy of (v8y, n?, 6,).

The only possible non-zero element in the indeterminacy is the product 8,{¢}. Ta-
ble 10 shows that {¢} = (v, n, n6,). Now

0.t} = (v, 1, n04)0, = v(n, N0y, 04).

This last expression is well-defined because 6} is zero [62], and it must be zero because
3,34 consists entirely of multiples of 7. ]

Lemma 7.22. — (67, 6, 36) There is no hudden 2 extension on hyQs + }lng.

Proof. — By comparison to the homotopy of Ct, there is no hidden extension with
value A5A’. Table 18 shows that T2Ah3eg supports a hidden 1 extension. Therefore, it
cannot be the target of a 2 extension. 0J
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Lemma 7.23. — (68,7, 36) There is no hidden 2 extension on hsA.

Proof. — Table 10 shows that ;A" detects the Toda bracket (o, k, 776, 5). Shuffle
to obtain

(0,k,TN045)2 =0 (K, TNy 5, 2).

The bracket (k, Tn0, 5, 2) is zero because it is contained in 774 50 = 0. ]

Lemma 7.24. — (69, 4, 36) There is no hidden 2 extension on p'.

Proof. — Table 24 shows that p" detects the product 065, and 205 is already known
to be zero [62]. ([l

Lemma 7.25. — (70,9, 37) There is no hidden 2 extension on th,Ds.

Progf: — Table 10 shows that T/, D} detects the Toda bracket (n, v, 76, 5k). Now
shuffle to obtain

2<777 v, 194.5E> = <29 n, U>T94—.5Ea

which equals zero because (2, 1, v) is contained in 775 5 = 0. ]
Lemma 7.26. — (71,3, 37) There is no hidden 2 extension on hyhshe.

Progf. — 'Table 10 shows that £, 4¢ detects the Toda bracket (n, 2, 65). Let a be an
element of this bracket. Then A A3k detects oo, and

20a =20 (n,2,05) =0 (2,1, 2)0; =000

Table 10 also shows that /¢y detects the Toda bracket (€, 2, 05). Let 8 be an ele-
ment of this bracket. As in the proof of Lemma 7.27, we compute that 28 equals Tne6s.
Now consider the element o« + B, which is also detected by %,/34s. Then

2o+ B) = tn’c s + tnebds = tv6;,

using Toda’s relation n*c + v® = ne [55].

Table 21 shows that there is a hidden v extension from /y/4? to Th Qs. Therefore,
Th Qs detects v>0;.

This does not yet imply that v*65 is zero, because v?0; + n{t Qs + T} might be
detected /3A" or Phyhsj in higher filtration. However, #3A” does not support a hidden v
extension by Lemma 7.110. Also, Table 2 shows that Phyksj maps non-trivially to #mf,
while v205 + n{t Q3 + Tn;} maps to zero. This is enough to conclude that v365 is zero.

We have now shown that 2(oa + B) is zero in 77 37. Since h hshs detects oo + B,
it follows that /; i3h¢ does not support a hidden 2 extension. ]
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Lemma 7.27. — (71,4, 37) There is a hidden 2 extension_from heco to THp .

Progff — Table 10 shows that /¢y detects the Toda bracket (e, 2, 65). Now shuffle
to obtain

2(€,2,05) = (2, €,2)05 = tnebs.

Finally, tnes is detected by Th7p’ because of the relation A}y = hhic. 0J
Lemma 7.28. — (71,5, 37) There is no hidden 2 extension on Thyp,.

Progf. — Lemma 6.21 shows that thp, detects (n, v, a) for some o detected by
12hyC’. Now shuffle to obtain

2(n,v,a) = {2, n,v)a,

which is zero because (2, 1, v) is contained in 775 5 = 0. O
Lemma1.29. — (71,8, 39) There is a hidden 2 extension_from h3H, to TMh3g.

Progf — Table 21 shows that there are hidden v extensions from thl to hsC”,
and from Mg to MAd;. Table 15 shows that there is also a hidden 2 extension from
hsC” to Mhd3. The only possibility is that there must also be a hidden 2 extension on
ihsH, . O

Lemma 7.30. — (72,6, 37) There is no hidden 2 extension on Ph hg.

Progof — Table 10 shows that Pk A detects the Toda bracket (9, 2, 65). Shuffle to
obtain

2(/-'1“9’ 2’ 05) = (2’ Mo, 2>05 = Tnlu“‘395

Table 10 also shows that pg is contained in the Toda bracket (1, 2, 80). Shuffle again to
obtain

Tnels = (n, 2, 80)Tnbs = tn*(2, 80, 05).

Table 10 shows that hg/lgh(, detects (2, 80, 65).

By inspection, the product 772{}13}13}16} can only be detected by A%hhuco. However,
this cannot occur by comparison to Ct. Therefore, n*{Aii3hs}, and also Tn*{Ahshs}, must
be zero. ]

Lemma 7.31. — (72,8, 38) There is no hidden 2 extension on hyQq + h3D,.
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Progf — Table 10 shows that the element £,Qy + k3D, detects the Toda bracket
(62,2, {1}, &). Consider the relation

2%, 2, {1}, k) C ((2, 02, 2), {1}, TK).

Corollary 6.2 shows that the Toda bracket (2,02, 2) contains zero since no? is zero.
Therefore, it consists of even multiples of p;5; let 2kp,5 be any such element in 775 g.

The Toda bracket (2kp;5, {¢}, Tk) contains kp,5(2, {¢}, Tk), which equals zero as
discussed in the proof of Lemma 6.22. Moreover, its indeterminacy is equal to Tk - 59,93,
which is detected in Adams filtration at least 12. This implies that (2kpy5, {¢}, Tk) 1s de-
tected in Adams filtration at least 12, and that the target of a hidden 2 extension on
7 Qs + KDy must have Adams filtration at least 12.

The remaining possible targets with Adams filtration at least 12 are eliminated by
comparison to Gt or to mmf. O

Remark 7.32. — 'The proof of Lemma 7.31 might be simplified by considering the
shuffle

2002, 2, {t}, ) = (2,0%, 2, {t}) TK.

However, the latter four-fold bracket may not exist, since both three-fold subbrackets have
indeterminacy. See [29] for a discussion of the analogous difficulty with Massey products.

Lemma 7.33. — (73,7, 40) There is no hidden 2 extension on hg%

Proof. — The element Th5Q; detects v*{t Qs + T}, so it cannot support a hidden
2 extension. This rules out all possible 2 extensions on /;Q3. O

Lemma 7.34. — (73, 8, 38) There is no hidden 2 extension on hyh,Ds.

Progf. — 'Table 14 shows that there i1s a hidden t extension from /thm) to hohyDo.
Therefore, hyhyDy detects either Tnens or Tnens + v*{t Qs + Tn1}, because of the pres-
ence of Th3Q; in higher filtration. In either case, £yhsDy cannot support a hidden 2 ex-
tension. O

Lemma 7.35. — (74, 6, 39) There is a hidden 2 extension_from hs(t Qs + Tny) to Txzsg.

Progf. — Table 24 shows that x4 g detects Tk60;. Table 10 shows that 8, equals
the Toda bracket (o2, 2, 02, 2).
Now consider the shuffle

IOy = TK»(0%, 2,02, 2) = (Tks, 02,2, 0%)2.

Lemma 6.13 shows that the latter bracket is well-defined. This implies that Tx74 5 is the
target of a hidden 2 extension, and /5(7Q; 4 7#) is the only possible source. UJ
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Lemma 7.36. — (77,5, 40) There is no hidden 2 extension on hgdy.

Progff — Table 10 shows that /gd, detects the Toda bracket (k, 2, 65). Now shuffle
to obtain

2(k,2,05) = (2,K,2)05 = Tnkbs.

Lemma 7.153 shows that this product equals either Tno?0; or tno?0; + 0k k,. Both
possibilities are zero because no? and tnk, are zero. O

Lemma 7.37. — (78, 10, 42) There is a hidden 2 extension_from egA’ to MAh}hs.

Progf. — Let a be an element of 77449 that is detected by x769. Table 18 shows
that there is a hidden 7 extension from x75.9 to M A/ /3, so Tn’a is detected by TMA/z]th.
Now shuffle to obtain

mla=(2,n, 2a=2(n, 2, a).

This shows that TMA/}As must be the target of a hidden 2 extension.

Moreover, the source of this hidden 2 extension must be in Adams filtration at least
10, since the Adams differential dy(Tx77.5) = hox76,9 Implies that (n, 2, «) is detected by
hyx77 3 = 0 in filtration 9. The only possible source is ¢A’. O

Lemma 7.38. — (79, 3, 41) There is no hidden 2 extension on hyhyhe.

Progof — Table 10 shows that ;44 detects the Toda bracket (14, 2, 85). Now shuf-
fle to obtain

2(”47 2’ 95) = (2’ N4, 2>95’

which equals T7n4605 by Table 10. We will show that this product is zero.

There are several elements in the Adams E.-page that might detect 1465. The
possibilities //sdy and x7g 9 are ruled out by comparison to Ct. The possibility TeyA’ is
ruled out because Table 15 shows that ¢yA’ supports a hidden 2 extension.

Two possibilities remain. If 17,65 1s detected by tMAh%hg, then T7nn40; must be zero
because there are no elements in sufficiently high Adams filtration.

Finally, suppose that 1465 is detected by Thfxm,@. Let @ be an element of 777 4, that
1s detected by Ax76,6. If 7465 + Tna is not zero, then it is detected in higher filtration.
It cannot be detected by x75 9 by comparison to Ct, and it cannot be detected by teyA’
because of the hidden 2 extension on eA’. If it is detected by TMAk}hs, then we may
change the choice of « to ensure that 7,65 4+ Tna is zero.

We have now shown that 71,65 equals 7?n?a. Shuffle to obtain

e =ta(2,1,2) = (@, 2,n)2t.
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Here we are using that 2« is zero; the possible 2 extensions on /;x76 ¢ are easily eliminated
by the presence of n extensions and by comparison to mmf.

Table 10 shows that (, 2, 1) is detected by Ahyx76 6, and Lemma 7.39 shows that
this element does not support a hidden 2 extension. Therefore, (o, 2, n)27 1s zero. 0

Lemma 7.39. — (79, 8, 42) There is no hidden 2 extension on hohox76 6.

Progf. — Let o be an element of 774 49 that 1s detected by 24A. Then v 1s detected
by hyhox76.6, and 2a 1s detected by Aok A. We will show that 2ve 1s zero.

Table 24 shows that Ak A also detects either 0205 or 0205 + T2k 1Ko. Then 20 +
0205 or 20 + 005 + t%K,Ky could be detected in higher filtration. However, only 74 9
could detect this error term, and inclusion of the bottom cell into Ct rules it out.

We now know that 6265 + 2« is either zero or T%k;K,. Multiply by v to conclude
that 2va is either zero or T?vk K. As in the proof of Lemma 7.80, this last expression is
also zero. ]

Lemma 7.40. — (79, 8, 41) There is no hidden 2 extension on Phgcg.

Progf. — Table 24 shows that Phgcy detects the product p;516. Table 10 shows that
ng 1s contained in the Toda bracket (n, 2, 85). Now shuffle to obtain

2015Mm6 = 2015(n, 2, 05) = p1505(2, 1, 2),

which equals 70?p;505 by Table 10.

Table 24 shows that p505 is detected by either /x;7.; or T2m,. First suppose that
it is detected by /Ayx77 7. Table 15 shows that Ax77 7 is the target of a 2 extension. Then
p1505 equals 2o modulo higher filtration. In any case, 1% 01505 is zero.

Next suppose that p;5605 is detected by T Zm,. Then p,50; equals T 2o modulo higher
filtration for some element o detected by m,. Table 14 shows that there 1s a hidden t
extension from /;m; to MAA hs. This implies that Tna is detected by MAA?As. Finally,
3n%a = 1% p1505 must be zero. O

Lemma 7.41. — (79, 11, 42) There is no hidden 2 extension on ABg.

Progf. — 'Table 18 shows that there is a hidden 1 extension from h8h4}z6 to TABg.
Therefore, T ABg cannot be the source of a hidden 2 extension, so there cannot be a
hidden 2 extension from ABg to T2Me. U

Lemma 7.42. — (82, 6, 44) There is no hidden 2 extension on /zgg.

Progf: — The element T/2g detects the product k6, so it cannot support a hidden
2 extension since 26; is zero.
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If there were a hidden 2 extension from /2g to T(Ae; + Cy)g, then the hidden t

extension from 7(Ae; + Co)g to A?hyn would imply that there is a hidden 2 extension
from thig to A?hyn. 0J

Lemma 7.43. — (82, 8, 44) There is no hidden 2 extension on h§x76y6.

Progf. — As in the proof of Lemma 6.27, let o be an element in 77949 that is
detected by hgx766 such that na is zero. Then va is detected by /Lgxmﬁ, and we wish to
show that 2va is zero.

Table 10 shows that 2v is contained in (1, 2, ). Consider the shuffle

2va = (n, 2, n)a=n(2,n,a).
Table 10 shows that the last Toda bracket is zero. O
Lemma 7.44. — (83,7, 44) There is no hidden 2 extension on hihsg.
Progf. — The element h%h(;g equals hgkﬁd@, so it detects v {/gd))}. ]

Lemma 7.45. — (85,7, 435) There is no hidden 2 extension on Thyhy Q5.

Progf. — There cannot be a hidden 2 extension from 794 Qs to TPh x76 ¢ because
there is no hidden t extension from fy/9h, Q3 to Phyx76.6.

Table 18 shows that T°Mg” supports a hidden 1 extension. Therefore, it cannot be
the target of a hidden 2 extension. UJ

Lemma 7.46.

(1) (85,8, 45) There ts no hudden 2 extension on hecod.
(2) (85,9,44) There is no hidden 2 extension on Phgd,.

Proof. — Table 18 shows that both elements are targets of hidden 1 extensions. [
Lemma 7.47. — (86,5, 45) There is no hidden 2 extension on hyheco.

Progf. — Table 24 shows that /4/6¢y detects the product o {£ 44}, and the element
hihshe does not support a hidden 2 extension by Lemma 7.38. 0J

Lemma 7.48. — (86, 12, 47) There is no hidden 2 extension on T hygC'.

Progf: — The possible target T°¢m is ruled out by comparison to mm/. The possible
target Pk kg is ruled out by comparison to Ct.
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It remains to eliminate the possible target T°M#Ag>. Table 14 shows that there
are hidden 7 extensions from thygC’ and t*M#hg* to A’hyd; and MAkZe, respectively.
However, there is no hidden 2 extension from A?k3d, to MA/je, so there cannot be a 2
extension from thygC’ to T*Mhyg°. U

Lemma 7.49. — (87,5, 46) There is no hidden 2 extension on I cs.

Progf. — Table 10 shows that the Toda bracket (t{/Qs + Aon,}, v4, n) 1s detected
by % ¢s. Shuffle to obtain

<T{IZ0% + hOnl}’ Vg, n)Q = T{llo% + h0n1}<v4’ n, 2)

These expressions have no indeterminacy because t{k Qs + hyn;} does not support a 2
extension. Finally, the bracket (v4, n, 2) contains zero by comparison to /mf. O

Lemma 7.50. — (87,12, 45) There is no hidden 2 extension on P?hgco.

Proof. — Table 24 shows that P?/¢, detects the product pg31. Table 10 shows that
16 1s contained in the Toda bracket (n, 2, 65). Shuffle to obtain

2p93M6 = 2023(1, 2, 05) = (2,1, 2) p2365 = TN*P305.

The product pg38; is detected in Adams filtration at least 13, and then t5?pg30; is de-

tected in filtration at least 16. This rules out all possible targets for a hidden 2 extension
on P?kscy. O

Lemma 7.51. — (90, 12, 48) There is no hidden 2 extension on M?2.

Progf — Table 24 shows that M? detects 0} ;. Graded commutativity implies that
207 5 is zero. O

7.3. Hidden n extensions
Theorem 7.52. — Tables 18 and 19 list some hidden extensions by 1.

Proof. — Many of the hidden extensions follow by comparison to Ct. For example,
there is a hidden 71 extension from t/,g to ¢ydy in the Adams spectral sequence for Ct.
Pulling back along inclusion of the bottom cell into Ct, there must also be a hidden
extension from t/ g to cydy in the Adams spectral sequence for the sphere. This type of
argument is indicated by the notation Ct in the fourth column of Table 18.

Next, Table 14 shows a hidden 7 extension from ¢ydy to Pdy. Therefore, there is
also a hidden 71 extension from 72k, g to Pdy. This type of argument is indicated by the
notation 7 in the fourth column of Table 18.
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The proofs of several of the extensions in Table 18 rely on analogous extensions
in mmf. Extensions in mmf have not been rigorously analyzed [31]. However, the specific
extensions from mmfthat we need are easily deduced from extensions in /mf, together with
the multiplicative structure. For example, there is a hidden 7 extension in ¢mf from an to
tdy. Therefore, there is a hidden 7 extension in mmf from ang to td3g, and also a hidden
1 extension from Akl to Tdyes in the homotopy groups of the sphere spectrum. Note
that mmfreally is required here, since ang and dg equal zero in the homotopy of tmf.

Many cases require more complicated arguments. In stems up to approximately di-
mension 62, see [30, Section 4.2.3 and Tables 29-30] and [61]. The higher-dimensional
cases are handled in the following lemmas. UJ

Remark 7.53. — The hidden 7 extension from tC to t2gn is proved in [61], which
uses on the “RP*-method” to establish a hidden o extension from t/hs3d, to Ahyc; and
a hidden n extension from t/,g, to Ahyc,. We now have easier proofs for these n and o
extensions, using the hidden T extension from A’g, to Ahye; given in Table 14, as well as
the relation iid, = hlg.

Remark 71.54. — 1If hyf; survives, then there is a hidden 7 extension from A#yy,
to MAhdy. It follows that there must be a hidden 7 extension from tAj; + t2gC’ to
MAQ, .

Remark 7.55. — The last column of Table 18 indicates the crossing n extensions.
T heorem 7.56. — Table 20 lists all unknown hidden n extensions, through the 90-stem.

Progf. — Many possible extensions can be eliminated by comparison to Ct, to tmf,
or to mmf. For example, there cannot be a hidden 7 extension from TMd, to T*g* because
7*g® maps to a non-zero element in 74 #mf that is not divisible by 7.

Other possibilities are eliminated by consideration of other parts of the multiplica-
tive structure. For example, there cannot be a hidden 71 extension whose target supports
a multiplication by 2, since 21 equals zero.

Many cases are eliminated by more complicated arguments. These are handled in
the following lemmas. O

Remark 7.57. — There 1s no hidden n extension on £;Ds. The possible target T4,
is eliminated by computer data recently produced by Dexter Chua on d, differentials the
Adams spectral sequence for the cofiber of 7.

Remark 7.58. — There is a hidden t extension from 7(Ae; + Co)g to A?hyn. The
possible extension from tgDs to T(Ae; + Cy)g occurs if and only if the possible extension
from t2gD;3 to A%hyn occurs.
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Remark 7.59. — Computer data recently produced by Dexter Chua on d, differen-
tials in the Adams spectral sequence for the cofiber of 1 shows that the classical element
gQs must be the target of a hidden 1 extension. Therefore, there is either a hidden 7
extension from A}f; to TgQs, or from T/ xgs.6 to T2gQs.

Lemma 7.60. — (58, 8, 30) There is no hidden 1 extension on Th Q.

Proof. — There cannot be a hidden 7 extension from 7/, Q, to T>Ah dyg by com-
parison to ¢mf. It remains to show that there cannot be a hidden 1 extension from t/,Q,
to TMdQ.

Note that 1 dyQy = td\ g%, so k{7 Qy} is detected by T°d;g°. Therefore, k {7 Qy} +
Ti,%2 is detected in higher filtration. The only possibility is T3¢gm, but that cannot occur
by comparison to mmf. Therefore, k {7 Qy} + Tk K is zero.

Now tnk,k” is zero because Tnk,k cannot be detected by Ak d2 by comparison
to tmf. Therefore, nk{h; Qy} is zero, so Tnk{h Qy} is also zero.

On the other hand, Tk {Md}} is non-zero because it is detected by ‘EMa’g. Therefore
™n{h Qy} cannot be detected by TMd,. U

Lemma 7.61. — (64,4, 33) There is no hidden n extension on t/z%}zg.
Progf. — Table 15 shows that TA;4? is the target of a hidden 2 extension. U
Lemma 7.62. — (64, 8, 33) There is a hidden 1 extension from > Xy to T>Mhgg.

Progf. — Table 18 shows that there is a hidden 1 extension from 7/, Xy to ¢;Q.
Since ¢yQ)y does not support a hidden 7 extension, there exists an element f8 in 7gs 35 that
1s detected by ¢yQy such that T8 = 0.

Projection from Ct to the top cell takes ¢cQy and P(A + A’) to ¢cQy and tM/yhyg
respectively. Since /g - ¢¢Qy = P(A+A’) in the Adams spectral sequence for Cr, it follows
that vB is non-zero and detected by T M/Ayhyg.

Let o be an element of 743 33 that is detected by Xy 4+ tC’, and consider the
sum n?a + B. Both terms are detected by ¢;Q,, but the sum could be detected in higher
filtration. In fact, the sum is non-zero because v(n’a + B) is non-zero.

It follows that n*« + B is detected by tMAgyg, and that Tn?a is detected by T2M#hg.

O

Lemma 7.63. — (66, 4, 34) There is no hidden n extension on Th hg.

Progf. — The element tnn; is detected by T/} k. Table 10 shows that 7 is con-
tained in the Toda bracket (1, 2, 6;) Now shuffle to obtain

n-Tn*ne =4vns =4v(n, 2,65) = 4(v, n, 2)65,

which equals zero because 265 is zero. UJ
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Lemma 7.64. — (66, 6,35) There is no hidden ) extension_from T Ak to th’.

Progf — Table 21 shows that A A’ supports a hidden v extension, so it cannot be
the target of a hidden 1 extension. 0J

Lemma 7.65. — (68, 6,36) There is no hidden 1 extension on Th) Q.

Progf. — Table 21 shows that 7/,Qj3 is the target of a hidden v extension. There-
fore, it cannot be the source of a hidden n extension. U

Lemma 7.66. — (68,7, 36) There is a hidden n extension from hsA” to hs(Ae; + Co).

Proof. — Comparison to Ct shows that there is a hidden 71 extension from /A;A’
to either rhg(]’ + h3(Ae; + Cy) or hs(Ae; + Cy). Table 21 shows that Thg(]/ + hy(Ae +
Cy) supports a hidden v extension. Therefore, it cannot be the target of a hidden 7
extension. O

Lemma 7.67. — (69, 3, 36) There is a hidden n extension_from }lg}lf} 10 Thoho Q5.

Progff — Table 3 gives the Massey product /phy = (hy, ho, h1). Therefore,

(thiQg, ho, ) = {ThohoQs, Thohy Qs + ThihsH, ).

Table 21 shows that there is a hidden v extension from }lghg to T4 Qs, so V205 is de-
tected by 74 Qs. Therefore, the Toda bracket (v265, 2, n) is detected by thyhy Q3 or by
T}ZQ}lQQg + 'L'/Zlflng.

Now (v%65, 2, 1) contains v?(65, 2, ). This expression equals v85(2, n, v), which
equals zero because (2, n, v) is contained in 75 3 = 0.

We now know that (v?65,2,7n) equals its own determinacy, so ThyhyQs or
ThohoQs + thihsH, detects a multiple of . The only possibility is that there is a hid-
den 7 extension on hghg.

The target of this extension cannot be t/hyhyQ3 + thihsH; by comparison to Cr.

OJ

Lemma 7.68. — (70,5, 36) There is no hidden n extension on h)hshe.

Progf — There are several possible targets for a hidden 1 extension on /3hshs. The
element T A%hyg is ruled out because it supports an 4y extension. The element A%hyc is
ruled out by comparison to Ct. The elements T/2Q, and td,Qy are ruled out because
Table 18 shows that they are targets of hidden 7 extensions from 2k hsH; and ‘L'Q}llD/B
respectively.

The only remaining possibility is t2/;. This case is more complicated.
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Table 10 shows that }lghg/le detects the Toda bracket (8c, 2, 65). Now shuflle to
obtain

n(8o, 2, 05) = (n, 80, 2)05.

Table 10 shows that (1, 80, 2) contains iy and has indeterminacy generated by tn’c
and tne. Thus the expression (1, 80, 2)0; contains at most four elements.

The product ¢85 is detected in filtration at least 8, so it is not detected by © 2l,. The
product (Lo + t1?0)0s is detected by T43p because Table 24 shows that there is a hidden
o extension from /2 to . The product (i + Tn€)65 is also detected by thy = Thihc.
Finally, the product (g + +tn’c + tne)bs equals (g + Tv?)05, which also must be
detected in filtration at least 8. O

Lemma 7.69. — (70, 6, 38) There is no hidden n extension on hyQ)5.

Proof. — There cannot be a hidden n extension on t4yQ)3 because it is a multiple
of /. Therefore, the possible targets for an 1 extension on 4,3 must be annihilated by 7.
The element £’ i3H; cannot be the target because Table 14 shows that it supports
a hidden 7 extension. The element TM/;g cannot be the target because Table 21 shows
that it supports a hidden v extension to M#k,d;. 0

Lemma 7.70. — (70,7, 37) There is a hidden n extension_from thihsH, to /zéQz

Progf. — 'Table 18 shows that there i1s a hidden 1 extension from A H; to /5Q,.
Now multiply by #;. UJ

Lemma 7.71.

(1) (70,10, 38) There ts no hidden n extension on hyhs(Aey + Cop).
(2) (70,10, 38) There is no hidden n extension on ThoC" + hyhs(Ae; + Co).

Progf — The element /g is the only possible target for such hidden 7 ex-
tensions. However, Table 21 shows that there is a hidden v extension from TM/Ag to
Mbh, d3. UJ

Lemma 7.72. — (71, 6,37) There is no hidden ) extension on Thip'.

Proof — The element T42p detects 1’065 because Table 24 shows that there is a
hidden o extension from /42 to p'. Then tn’c 65 is zero since tn’o is zero. 0

Lemma 7.73. — (71, 8, 39) There is no hidden 1 extension on /ngl.
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Proof. — Table 24 shows that Md), detects the product k6, 5. Then Table 10 shows
that thl detects the Toda bracket (v, €, k0, 5). Now shuffle to obtain

n{v, €, k60s5) = (N, v, €)k 0,5,
which is zero because (1, v, €) is contained in 75 ¢ = 0. O

Lemma 7.74. — (72,5, 37) There is a hidden n extension_from Thyheey to 1’2/23%.

Progff — The hidden t extension from /zf/zf;co to hodyDy 1mplies that T4 hgep must
support a hidden 1 extension. However, this hidden 7 extension crosses the T extension
from th3Qs to T2h3Qs. Therefore, the target of the hidden 1 extension is either T245Q;
or /l()d()DQ.

The element th hscy detects the product 1€, so we want to compute Tnng€.
Table 10 shows that ng belongs to (65, 2, ). Shuffle to obtain

tnnee = (05, 2, n)tne = 05(2, n, TNE).

Table 10 shows that (2, n, Tne) contains ¢;,. Finally, 65¢,, 1s detected by 1’2/25% = /lg .
Phs. ]

Lemma 7.75. — (72,7, 39) There is no hidden n extension on I}p'.

Progf — The element 4}’ does not support a hidden 7 extension, while Table 14
shows that there is a hidden T extension from t/4;C” to A%khycy. Therefore, there cannot
be a hidden 7 extension from A2p' to Th3C". 0J

Lemma 7.76. — (72,11, 38) There is a hidden n extension_from hodyDy to erg.

Proof. — 'Table 10 shows that AydyD, detects the Toda bracket (tk 6,5, 2v, v). Now
shuffle to obtain

(tK0y5,2v, V)0 =TKO,5(2v, v, n).

Table 10 shows that the Toda bracket (2v, v, ) contains €. Finally, k0, s€ is detected by
TMd; because Table 24 shows that there is a hidden € extension from TMg to Mdz. [

Lemma 7.777. — (75, 6, 40) There is a hidden n extension_from hohsdy to Td,go.

Progf. — 'Table 10 shows that the Toda bracket (n, o n,o?% equals k. We would
like to consider the shuffle

(’7» 029 n, 0'2>TE2 = 77(02’ n, 02’ TK3),
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but we must show that the Toda bracket (1, o2, Tk,) is well-defined and contains zero. It
is well-defined because o K5 is detected by h§g2 In 7753 30, and there are no T extensions on
this group. The bracket contains zero by comparison to /mf, since all non-zero elements
of 10 30 are detected by tm/f-

We have now shown that Tk ,x is divisible by 1. The only possibility is that there

1s a hidden 7 extension from fyhsds to Td,gs. ]

Lemma 7.78.
(1) (77,3, 40) There is no hidden ) extension on hhe.
(2) (77,7, 41) There ts no hidden 1 extension on Tm;.

Proof. — Table 15 shows that ¢yA” and T¢yA’ support hidden 2 extensions, so they
cannot be the targets of hidden 71 extensions. UJ

Lemma 7.79. — (77, 8, 40) There is no hudden 1 extension on hyx7 7.
Progf: — Table 15 shows that /yx;7 7 1s the target of a hidden 2 extension. ]
Lemma 7.80. — (78, 6, 41) There is no hidden n extension on by hgd,.

Proof. — Table 10 shows that A4 detects the Toda bracket (65, 2, n), so hhsd
detects (65, 2, n)k. Now shuffle to obtain

(05,2, mnk = 05(2, n, ni).

Table 10 shows that the Toda bracket (2, n, n«) equals vk. Thus we need to compute
the product vk8s. Lemma 7.153 shows that this product equals either vo265 or v(o205 +
7%K,K5). These expressions equal 0 and T2vk Ky respectively since vo = 0.

It remains to show that T%vk k5 is zero. The proof of Lemma 7.77 shows that
Tk Ko is divisible by 1. Therefore, T?vi k5 is zero since nv = 0. [

Lemma 7.81. — (78,8, 41) There is no hidden 1 extension on Th?x;6.6.

Progf. — Let a be an element of w774, that is detected by /;x766. Then Thfxmﬁ
detects tna. Now consider the shuffle

e = (2,1, 2)a =2(n, 2, a).

Note that 2« is zero because there are no 2 extensions in 777 41, so the second bracket is
well-defined.

Fially, 2(n, 2, o) must be zero because there are no 2 extensions in 779 49 in suffi-
ciently high filtration. U
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Lemma 7.82. — (78, 8, 40) There is a hidden 1 extension_from /zgiz4h6 o T ABg.

Progf — In the homotopy of Ct, there is a hidden 7 extension from Ak to A?n.
Therefore, 45/ must support a hidden 71 extension whose target lies in Adams filtration
13 or lower. However, A%n is not the target because it supports an %, extension. The only
remaining possible target is T ABg. 0J

Lemma 7.83. — (78, 10, 42) There is a hidden 0 extension fiom egA’ to TMe?.

Proof. — The classical relation gC’ = ¢,G( implies the G-motivic relation tg- C' =
¢ - TGy modulo the possible error term Aj;. The error term does not appear because of
h} extensions.

Table 3 shows that TG equals (A’ %, hy). Therefore, we have
TgC/ =& (A/a hla h?) = <€OA/’ }lh h?)

The second equality holds because there is no indeterminacy by inspection.

Let  be an element of 775 44 that is detected by ¢A’. If the product no were zero,
then the Moss Convergence Theorem would imply that 7gC’ is a permanent cycle that
detects the Toda bracket («, 17, v). However, TgC’ supports a d, differential and does not

survive.
We now know that A’ supports a hidden 7 extension. After ruling out T2 A/, ¢ig
by comparison to mmf, the only remaining possible target is TMe;. 0J

Lemma 7.84. — (81, 3, 42) If hohyh supports a hidden n extension, then its target is not
'L'}ngmﬁ.

Proof. — Table 21 shows that Thjx6 ¢ supports a hidden v extension, so it cannot
be the target of a hidden n extension. O

Lemma 7.85. — (81, 5, 43) There is no hidden n extension on I hyhg.

Progf — The element T/’ hyhg is a multiple of /4, so it cannot support a hidden 5
extension. This eliminates all possible targets except for T(Ae; 4+ Cy)g.

However, t(Ae; + Co)g supports a hidden t extension. As in the previous para-
graph, this eliminates 7 (Ae¢; + Cy)g as a possible target. 0J

Lemma 7.86. — (81,7, 44) There is no hidden ) extension on hin, .

Proof — The element thin, = h3(tQs + tny) detects 02{tQs + tn}. Then
no?{t Qs + tn} is zero because no? is zero. 0
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Lemma 7.87. — (81, 12, 42) There is no hidden 1 extension on A*p.

Proof. — Table 21 shows that A?p is the target of a hidden v extension, so it cannot
be the source of an 1 extension. O

Lemma 7.88. — (82,4, 43) There is no hidden 1 extension on hgc; .

Progf. — Table 10 shows that /g¢; detects the Toda bracket (o, 2, 85). By inspec-
tion, all possible indeterminacy is in higher Adams filtration, so /¢, detects every element

of the Toda bracket.
Shuffle to obtain

77(5, 2’ 95) = <77’ Ev 2>85

The Toda bracket (n,0,2) is detected in filtration at least 5 since the Massey product
(hy, c1, ho) 1s zero. Therefore, the Toda bracket equals {0, nk}.

We now know that (o, 2, 65) contains zero, and therefore /s¢; does not support a
hidden 7 extension. O

Lemma 7.89. — (83, 6, 44) There is no hudden 1 extension on hohgg.

Progf. — Table 10 shows that 4yhsg detects the Toda bracket (v, n, negk). Shuffle to
obtain

(v, 0, N6k ) = (1, v, N)16K.
Table 10 shows that (n, v, n) equals v>. Finally,
V2776K - VQK(n’ 25 05) == V05K<V, 77, 2>’

which equals zero because (v, 1, 2) is contained in 775 5 = 0. O
Lemma 7.90. — (85, 7, 46) There is no hidden 1 extension on hohy Q5.

Proof. — We must eliminate 7/ygC’ as a possible target. One might hope to use the
homotopy of Ct in order to do this, but the homotopy of Ct has an 1 extension in the
relevant degree that could possibly detect a hidden extension from //, Q3 to ThygC'.

If there were a hidden n extension from A/, Q5 to Thyg(C’, then the hidden T exten-
sion from ThygC’ to A’h3dy would imply that there is a hidden 7 extension from Ak Qs
to Athdl. However, t/h9/,Q3 detects the product v4{t Qs + 77}, and nvy is zero. There-
fore, ThyhyQQ5 cannot support a hidden 1 extension. UJ
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Lemma 7.91.
(1) (86,9, 46) There ts no hidden n extension on hy hecody.
(2) (86,10, 45) There ts no hudden n extension on Phyhgd.

Progf. — Table 15 shows that £ /scody and Phyhedy are targets of hidden 2 exten-
sions, so they cannot be the sources of hidden 71 extensions. O

Lemma 7.92. — (86, 11, 44) There is a hidden 1 extension fiom hjhsi to T° A% g.

Proof — The Adams differential dy(A%43) = A’hlx implies that t2Acg = A -
A3h§ detects the Toda bracket (n, 2, {AQth}). However, the later Adams differential
ds (}zghGi) = AQ}zgx implies that 0 belongs to {AQth}. Therefore, T2 A%cg detects (1, 2, 0),
so T2 A%cg detects a multiple of . The only possibility is that there is a hidden 7 extension
from 73kt to T2 A%cig. UJ

Lemma 7.93. — (87, 11, 48) There is no hidden n extension on Bgd, .

Progf. — Table 15 shows that Bsd, 1s the target of a hidden 2 extension, so it cannot
be the source of a hidden 5 extension. O

Lemma 7.94. — (88,7, 47) There is no hidden n extension on }l%}l;}}lﬁ(f@.

Progf — Table 21 shows that Ahghsco is the target of a hidden v extension, so it
cannot support a hidden 7 extension. 0J

Lemma 7.95. — (89, 13,47) There is a hidden 0 extension from A*h\f; to the element
TAQ}lQClg.

Proof. — The element T A%hycig detects the product v?{A?¢}. Table 10 shows that
v? equals the Toda bracket (17, v, ). Shuffle to obtain

(m, v, (A =n(v, n, {A).

This shows that T A%y, g is the target of a hidden 7 extension. The only possible source
for this extension is A%Af;. 0J

7.4. Hidden v extensions

T heorem 7.96. — Tables 21 and 22 list some hidden extensions by v.
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Proof. — Many of the hidden extensions follow by comparison to Ct. For example,
there is a hidden v extension from /g to /;cody in the Adams spectral sequence for Ct.
Pulling back along inclusion of the bottom cell into Ct, there must also be a hidden v
extension from /g to kicody in the Adams spectral sequence for the sphere. This type of
argument is indicated by the notation Ct in the fourth column of Table 18.

Next, Table 14 shows a hidden t extension from #A;¢ydy to Phidy. Therefore, there
is also a hidden v extension from /g to Pk dy. This type of argument is indicated by the
notation 7 in the fourth column of Table 18.

Some extensions can be resolved by comparison to #mf or to mmf. For example,
Table 2 shows that the classical unit map S — imf takes {Ah ks} in 739 to a non-zero
element o of 75y tmf such that va = nkk in ms5tmf. Therefore, there must be a hidden v
extension from A# kg to ‘L'/zle%.

The proofs of several of the extensions in Table 21 rely on analogous extensions
in mmf. Extensions in mmfhave not been rigorously analyzed [31]. However, the specific
extensions from mmjfthat we need are easily deduced from extensions in tmf, together with
the multiplicative structure. For example, there is a hidden v extension in mf from A#; to
td?. Therefore, there is a hidden v extension in mmffrom Ahg to Tdag, and also a hidden
v extension from T Akg to T2dye; in the homotopy groups of the sphere spectrum. Note
that mmf really is required here, since dig equals zero in the homotopy of im/.

Many cases require more complicated arguments. In stems up to approximately di-
mension 62, see [30, Section 4.2.4 and Tables 31-32] and [61]. The higher-dimensional
cases are handled in the following lemmas. U

Remark 7.97. — 'The last column of Table 21 indicates which v extensions are
crossing, as well as which extensions have indeterminacy in the sense of Section 2.1.1.

Remark 7.98. — The hidden v extension from hyksdy to Tgn is proved in [61],
which relies on the “RP*>-method” to establish a hidden o extension from t/3d; to Ahyc
and a hidden 7 extension from 74,8, to Ahgc;. We now have easier proofs for these n and
o extensions, using the hidden 7 extension from A%g, to Akye, given in Table 14, as well
as the relation £3d, = hlg,.

Remark 7.99. — If MAAd, is not hit by a differential, then there is a hidden
T extension from TMAyg® from MAZA}dy. This implies that there must be a hidden v
extension from 7 (Ae¢; + Cy)g to MAhfdo.

Theorem 7.100. — Table 23 lists all unknown hidden v extensions, through the 90-stem.
Progf. — Many possible extensions can be eliminated by comparison to Ct, to mf,

or to mmf. For example, there cannot be a hidden v extension from /#yhohy to Thig by
comparison to Cr.
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Other possibilities are eliminated by consideration of other parts of the multiplica-
tive structure. For example, there cannot be a hidden v extension whose target supports
a multiplication by 7, since nv equals zero.

Many cases are eliminated by more complicated arguments. These are handled in
the following lemmas. O

Remark 7.101. — Comparison to synthetic homotopy eliminates several possible
hidden v extensions, including:

(1) from thp) to Tx74 .
(2) from A®p to TMAhdp.

See [16] for more details.

Remark 7.102. — If MA/;d, is not hit by a differential, then M A/, d, supports an
hy extension, and there cannot be a hidden v extension from /fghofiyhg to M AR, d.

Lemma 7.103. — (62, 8, 33) There is a udden v extension from Aey + Cy to TMhg.

Progf — Table 10 shows that 2k is contained in 7 (v, , nk). Shuffle to obtain that

v(n, nK, T0y5) = (v, n, NK)T045,

so 2k 6, 5 1s divisible by v.
Table 24 shows that TMg detects k0,5, so TM#hyg detects 2k6; 5. Now we know
that there 1s a hidden v extension whose target is TM#g, and the only possible source is

Ael +C() |:|

Remark 7.104. — One consequence of the proof of Lemma 7.103 is that Ae; + Gy
detects the Toda bracket (1, nk, T6,5).

Lemma 7.105. — (63, 6, 33) There is a hidden v extension_from ThyH, to T>°Mh, g.

Proof — Lemma 6.4 shows that the bracket (k, 2, n) contains zero with indeter-
minacy generated by np;s. The bracket (tn6,;, k,2) equals zero since g 39 1S zero.
Therefore, the Toda bracket (tnf,s, k, 2, n) is well-defined.

Table 10 shows that tg detects (k, 2, n, v). Therefore, ‘L'QMhlg detects

”704.5(’(, 2a 77, U) = ('”794.5, K, 29 77)”

This shows that T>M#,g is the target of a v extension, and the only possible source is
T}ll H1 . O
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Remark 7.106. — The proof of Lemma 7.105 shows that 7/, H, detects the Toda
bracket (tn0ys, &k, 2, n).
Lemma 7.107. — (64, 2, 33) There is no hidden v extension on hyhg.

Progf — Table 10 shows that %,/ detects the Toda bracket (n, 2, 65). Shuffle to
obtain

U(na 2’ 05) = (Uv n, 2>95 - 09

since (v, 1, 2) 1s contained in 775 53 = 0. 0
Lemma 7.108. — (64, 8, 34) There is no hidden v extension on h3Q,.

Progf. — Table 18 shows that 7> Akjeyg supports a hidden 1 extension. Therefore,
it cannot be the target of a v extension. UJ

Lemma 7.109. — (67,8,36) There is a hidden v extension from the element th’ fo
}llhg(Ael + C())

Proof. — By comparison to Ct, There cannot be a hidden v extension from /A’
to T}ZQCN + }llhg(Ael + Co)

Table 10 shows that Ae; + Cj detects the Toda bracket (n, n«, t6y5), and fyA’
detects the Toda bracket (v, n, Tk0,5). Note that A’ also detects (v, nk, T0y5).

Now shuffle to obtain

(o +€)(n, nic, T6y.5) + v (v, Nk, T6y5)

:<[no +e v, [ﬂ : 77K>79445-

The matric Toda bracket <[T]O’ + € VQ], [Z] , 17/(> must equal {0, V?G}, since V’g =

{hf/urco} is the only non-zero element of 795 15, and that element belongs to the indeter-
minacy because it is a multiple of v

Next observe that Tv*G 0, 5 is zero because all possible values of G0 5 are multiples
of . This shows that

(no +e)a+ v’ =0,

for some « and B detected by Ae; + Cy and £y A’ respectively. The product (no + €)a 1s
detected by 4 /5(Ae; +Cy), so there must be a hidden v extension from /ng/ to hihs(Ae +
Co). U
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Lemma 7.110. — (68, 7,36) There is no hidden v extension on hsAA’.

Progf. — Table 10 shows that 43A” detects the Toda bracket (o, k, Tnf,5). Now
shuffle to obtain

v(o, Kk, TN045) = (v, 0,k)TN05 = (1, v, 0)TkO, 5.

The Toda bracket (n, v, o) is zero because it is contained in 79 ; = 0. ]
Lemma 7.111. — (69, 4, 36) There is no hudden v extension on p'.

Proof. — Table 24 shows that p’ detects the product 085. Therefore, it cannot sup-
port a hidden v extension. 0

Lemma 7.112. — (69,9, 38) There is a hidden v extension_from hyC' to t2dyg*.

Proof. — Let o be an element of g3 35 that is detected by Xy + 7C'. Table 24
shows that ea is detected by dyQy, so nea is detected by t°dg*. On the other hand, no«
is zero by comparison to Ct.

Now consider the relation 7’0 + v? = ne. This shows that v« is detected by
t%d,g%. Since v?a is detected by T/43C’, there must be a hidden v extension from 45C’ to

T2d1g2. O
Lemma 7.113. — (70,9, 37) There is a hidden v extension_from th Dy to T™Md;.

Proof: — Table 10 shows that T/, D} detects the Toda bracket (n, v, Tk6,5). Now
shuffle to obtain

V(n» v, T794—.5> = (V, n, v>rE94—.5-

The bracket (v, n, v) equals no 4 € [53].

Now we must compute (no + €)tk0,5. The product ok is zero, and Table 24
shows that €k, 5 is detected by Mdg. These two observations imply that (no + €)1tk 6,5
is detected by TMd2. U

Lemma 7.114. — (71,4, 37) There s no hidden v extension on hgcy.

Proof. — 'Table 10 shows that /¢y detects the Toda bracket (e, 2, 65). Now shuffle
to obtain

v(e, 2,05) = (v, €,2)05.

Finally, the Toda bracket (v, €, 2) is zero because it is contained in 7,9 ;7 = 0. O
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Lemma 7.115. — (73, 11, 41) There is a hidden v extension from hyC" to Tg*t.

Progf. — Let a be an element of 753 39 that is detected by 7;. Table 21 shows gt
detects va. Therefore tg°¢ detects vk, so Tg*t must be the target of a hidden v extension.
The element 43C” is the only possible source for this extension. 0

Lemma 7.116. — (73,12, 41) There is no hidden v extension on Mh, hsg.

Proof. — If there were a hidden v extension from M#, hsg to Tg*t, then there would
also be a hidden v extension with target t2g*¢. But there is no possible source for such an
extension. U

Lemma 7.117. — (75, 6, 40) If there is a hidden v extension on hohsdy, then its target is
MAZR hs.

Proof. — The only other possible target is ¢gA’. However, Table 15 shows that ¢yA’
supports a hidden 2 extension, while /y/3d; does not. U

Lemma 7.118. — (76, 8, 41) There is no hudden v extension on Tdgy.

Progf. — Table 18 shows that 7d, g, is the target of a hidden n extension. Therefore,
it cannot be the source of a hidden v extension. UJ

Lemma 7.119. — (76, 8, 40) There ts no hidden v extension on hohsA.

Proof — Table 24 shows that hyh,A detects either 6%0; or 0205 + 7%k K. As in the
proof of Lemma 7.80, both possibilities are annihilated by v. UJ

Lemma 7.120. — (77, 3, 40) There is a hidden v extension_from h§h6 lo Thyx.

Progf. — Table 10 shows that h§k6 detects (65, 2, 0%). Let a be an element of 777 49
that is contained in this Toda bracket. Then va 1s an element of

(959 2’ 02>U = (059 209 U)U = 05<269 o, U) g (20, 0.95a V).

Table 24 shows that p" detects 065. Therefore, the Toda bracket (20, 065, v) is
detected by an element of the Massey product (Agks, p', hy). Table 3 shows that ke,
equals the Massey product (43, p', h9). By inspection of indeterminacy, the Massey prod-
uct (hohs, p, ho) contains }Z(Q)KQ = Thyx; with indeterminacy generated by fp/ge.

We have now shown that va is detected by either Th;x; or thx; + hohgey. But
hohseo = hohgdy 1s a multiple of 4y, so we may add an element in higher Adams filtration
to o, if necessary, to conclude that va is detected by T/ ;. UJ
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Lemma 7.121. — (78,9, 40) There is a hidden v extension from the element hjhshs to
'L'AQIZldl.

Progf — Table 21 shows that there is a hidden v extension from Ajhihs to A%p.
Therefore, there is also a hidden v extension from hé/z4/z6 to hy - A*p =t A’hyd,. O

Lemma 7.122. — (78, 10, 42) There is no hidden v extension on ey A’

Progf — A possible hidden v extension from ¢A’ to A#iBg would be detected by
Ct, but we have to be careful with the analysis of the homotopy of Ct because of the /9
extension from Ahdg to Ah%BG in the Adams E-page for Ct.

Let @ be an element of 775 49C7 that is detected by 7;C’. Then va is detected by
e/, and v maps to zero under projection to the top cell because 43C’ does not support
a v extension in the homotopy of the sphere.

Therefore, va lies in the image of ¢yA” under inclusion of the bottom cell. Since
v2a is zero, eyA’ cannot support a hidden v extension to A/’ Bg. U

Lemma 7.123. — (79, 3, 41) There is no hidden v extension on hy hyhg.

Proof: — Table 10 shows that /; 24hg detects the Toda bracket (n4, 2, 65). Shuffle to
obtain

V(’M, 27 95) = <\), N4, 2>05

Finally, (v, n4, 2) must contain zero in 7y, 1, because tmf detects every element of 7y 1.

O
Lemma 7.124. — (81, 7, 44) There is no hidden v extension on hgnl.

Progff — The element 4ygD5 cannot be the target of a hidden v extension by com-
parison to Cr.

The element t/zgnl = h3 - h3(t Qs+ Tny) detects a multiple of o, so it cannot support
a hidden v extension. This rules out 4ygA’ as a possible target. 0J

Lemma 7.125. — (82, 8, 44) There is no hidden v extension on Te,g,.

Proof. — After eliminating other possibilities by comparison to #mf, comparison
to mmf, and by inspection of /4; multiplications, the only possible target for a hidden v
extension is P/ x76.6.

Let o be an element of gy 45 that is detected by ¢g. Then va is detected by
hyergy = h}hyQs. Choose an element B of mgs 45 that is detected by /;4,Qs such that 7
is zero. Then n?B is also detected by #°2,Q3. However, va + 1?8 is not necessarily zero;
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it could be detected in Adams filtration at least 13. In any case, Tva equals Tn*8 =0
modulo filtration 13. In particular, Tva cannot be detected by Phx6 6 in filtration 11.

O
Lemma 7.126. — (82, 11, 42) There is no hidden v extension on P>hohohs.

Proof. — Table 21 shows that there is a hidden v extension from P*/yhs to A®hgx.
The target of a hidden v extension on P?Ayhy/ks must have Adams filtration higher than
the filtration of A?kx. The only possibilities are ruled out by comparison to #mf. U

Lemma 7.127. — (82,12,45) There is a hdden v extension from (Aey + Co)g to
TM}ZQgQ.

Progf. — Let o be an element of 7rg9 33 that is detected by Ae; + C. Table 10 shows
that (Ae; + Co)g detects {a, n°, n4). Then

v, n°, m) = (v, n°, ny)

by inspection of indeterminacies. Table 21 shows that tM/yg detects va. The Toda
bracket (va, n?, 1,) is detected by the Massey product

(tMhog, i, nhy) = (TMhog, by, hy) = Mhog(T, b}, hy) = T™Mhog". O
Lemma 7.128. — (83, 10, 45) There is no hidden v extension on hoci A’

Proof. — 'Table 10 shows that Thyc; A’ detects (t645k, 0, v)To. Shuffle to obtain
(0456, m,V)TOV = TO,5k(n, vV, TVO ).

The Toda bracket (n, v, Tvo) is zero because 797 15 contains only a v;-periodic element
detected by P*/.

We now know that t/hyc; A’ does not support a hidden v extension. In particular,
there cannot be a hidden v extension from t/sc; A’ to MA/z%eo. The hidden T extension
from t2M#h g% to MAK e, implies that there cannot be a hidden v extension from Aye; A’
to T*Mh g%

Additional cases are ruled out by comparison to Ct and to mmf. U

Lemma 7.129.

(1) (83,11, 45) There is a hidden v extension_from Aj; + t1gC’ to T*Mh,g>.
(2) (83, 11,44) There is a hidden v extension fiom T>3C’ 1o MAh2e.
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Proof. — 'Table 21 shows that there exists an element o in 73 35 detected by T4, H;
such that v is detected by T2M#;g. (Beware that there is a crossing extension here, so not
every element detected by T/, H; has the desired property.) Table 24 shows that T°M#h,g
also detects 76, 5nk. However, va does not necessarily equal 76, 5nk because the differ-
ence could be detected in higher filtration by A2/43h,. In any case, vica equals 76, 51Kk

The product 0, 5 nEQ is detected by T2M#A,g°. The hidden T extension from 7*M#, g*
to MA/2e, then implies that vica = 76, 5nic” is detected by MA/2e,.

We now know that MAZAe is the target of a hidden v extension. The only possible
source is T2¢C’. (Lemma 7.128 eliminates another possible source.) This establishes the
second extension. The first extension follows from onsideration of T extensions. UJ

Remark 7.130. — The proof of Lemma 7.129 shows that vka is detected by
MAhgeo, where o is detected by T4, H,. Note that kK« is detected by T’ H, g = thy A
But this does not show that tAy¢; A’ supports a hidden v extension. Rather, it shows that
the source of the hidden v extension is either T/yc;A’, or a non-zero element in higher
filtration.

Lemma 7.131. — (84, 4, 44) There is no hidden v extension on hghdzﬁ.

Proof. — Table 10 shows that hg/u,/zg detects the Toda bracket (vvy, 2, 05). Shuffle
to obtain

V{vvy, 2,05) = (v, vy, 2)0s.

The Toda bracket (v, vvy, 2) is zero because 75,14 consists only of a v;-periodic element
detected by P?A . ]

Lemma7.132. — (85, 6, 44) If Txgs  + hiycs survives, then it supports a hidden v extension
to h1X87,7 + 'L'Qgg.

Proof. — By comparison to Ct, there must be a hidden v extension whose target
is either Ay xg7 7 or hyxgs 7 + f2g§.

Table 21 shows that there is a hidden v extension from 724, Q3 to ‘L’Q}logg. This
implies that the target of the v extension on Txgs 6 + }1863 must be hyxg; 7 + T Qgg. ]

Lemma 7.133. — (87,12, 45) There is no hidden v extension on P?hgeq.

Proof. — Table 24 shows that P*/5¢, detects the product pg3ng, and vpg3ng 18 zero.
O

Lemma 7.134. — (87,12, 48) There is a hidden v extension fiom hygA’ to Ahigyg.
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Progf. — Comparison to Ct shows that 4;gA’ supports a hidden v extension whose
target is either AKjgyg or Ahlgyg + ThygCl.

Let o be an element of mg4 46 that is detected by /ygA’. Since fygA” does not support
a hidden 71 extension, we may choose « such that ne is zero. Note that hggA’ detects va.

Shuffle to obtain

via = (n, v, n)a =n{v,n, a).

This shows that v2& must be divisible by 7. Consequently, the hidden v extension on
hgA’ must have target Ahgg. U

Remark 7.135. — The proof of Lemma 7.134 shows that A% gyg detects the Toda
bracket (v, n, {hogA'}).

7.5. Miscellaneous hidden extensions
Theorem 71.136. — Tables 24 and 25 list some miscellaneous hidden extensions.
Progf. — Similarly to Theorems 7.7, 7.52, and 7.96, some of the extensions follow

by comparison to Ct or to ¢mf. The more difficult cases are handled in the following
lemmas. O

Based on the corrected statement of Lemma 6.10 ([62, Theorem 2.1]) and
Lemma 6.14, the third author presents the proof of the following Lemma 7.137 ([62,
Theorem 1.2]), fixing a gap in its original proof. Note that as in the original proof; it only
uses classical knowledge back then up to the 60-stem.

Lemma 71.137. — (30, 2) Classically, there is no hidden 0, extension on h;. In other words
Qf 1S Zero i Tg.

Proof. — We have
07 =0,(2,0" +k,20,0) C ((6),2,0° + k), 20, 0).

Using [62, Theorem 2.2] and Lemma 6.10, the last expression is contained in the union
of

(0,20, 0), (nKy,20,0), {01504, 20,0).

By [62, Lemmas 2.3 and 2.4] and Lemma 6.14, all three brackets contain a single ele-
ment 0. Therefore, 67 = 0. H
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Lemma 7.138.

(1) (45,3, 24) There is a hidden € extension_from hihs to M.
(2) (45,3,23) There is a hudden € extension from T/Z%;lg) to MP.

Progf: — Table 18 shows that M#; detects the product 76, 5. Then M#, ¢, detects
neb, 5. This implies that Me, detects €6, 5.

This only shows that Mg 1s the target of a hidden € extension, whose source could
be h§h5 or h5dy. However, Lemma 7.145 rules out the latter case. This establishes the first
hidden extension.

Table 14 shows that there is a hidden T extension from Mc¢, to MP. Then the first
hidden extension implies the second one. U

Remark 7.139. — We claimed in [30, Table 33] that there is a hidden € extension
from /3hs to Mcy. However, the argument given in [30, Lemma 4.108] only implies that
Mgy 1s the target of a hidden extension from either h§h5 or fhsdj.

Lemma 7.140. — (45, 3, 24) There is a hidden k extension_from h§h5 to Md,.

Progf: — Table 18 shows that M4, detects the product 16, 5. Then M#,d, detects
the product nk6y 5, so Mdy, must detect the product «6, 5. This shows that Md is the
target of a hidden « extension whose source is either h§h5 or fisdj.

We showed in Lemma 7.145 that ea is zero for some element o of 745 94 that 1s
detected by /Asdy. Then eka is also zero. Table 24 shows that ek equals k2. Therefore,
i2a is zero. If ko were detected by Mdj, then k%o would be detected by Md3. It follows
that there is no hidden k extension from /5d, to Mdj. O

Remark 7.141. — We showed in [30, Table 33] that there is a hidden k extension
from either /2hs or hsdy to Mdy. Lemma 7.140 settles this uncertainty.

Lemma 7.142. — (45,3, 24) There is a hidden K¢ extension_from hihs to TMg.

Progf. — Table 18 shows that Mk, detects the product 16, ;. Then TM#A,g detects
the product nk6, 5, so TMg must detect the product k6, 5. This shows that TMg is the
target of a hidden x extension whose source is either h§h5 or hsdy.

We showed in Lemma 7.145 that ea is zero for some element o of 74594 that
is detected by ksdy. If Ko were detected by TMg, then eka would be detected by Mdj
because Table 24 shows that there is a hidden € extension from TMg to Md, . Therefore,
there is no hidden k extension from /4sd, to TMg. ]

Lemma 7.143. — (45, 3, 24) There is a hidden { Ahyhs} extension_from /z%hg, fo MAh hs.
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Proof. — Table 18 shows that M/, detects the product 16, 5. Therefore, the ele-
ment MA}Z%}lg detects n{Ah h3}6, 5. This shows that MA# k5 is the target of a hidden
{Ahhs} extension. Lemma 7.146 rules out /5d, as a possible source. The only remaining
possible source is A3/;. U

Lemma 7.144. — (45, 3, 24) There is a hidden 0, 5 extension from h§h5 {o M2,

Proof — The proof of Lemma 5.31 shows that M?4; detects a multiple of né, ;.
Therefore, it detects either n@f_5 or Ny 5{hsdy}.

Now hyhsdy detects n{hsdy}, which also detects 146, by Table 24. In fact, the proof
of [30, Lemma 4.112] shows that these two products are equal. Then 16, 5{/;dy} equals
14040, 5. Next, 0460, 5 lies in 1) 33. The only non-zero element of 74 35 1s detected by mmf,
so the product 146, 5 must be zero.

We have now shown that M2/, detects 67 ;. This implies that M? detects 67,. [

Lemma 7.145. — (45,5, 24) There is no hidden € extension on hsdy.

Progff — Table 10 shows that /5d, detects the Toda bracket (2, 64, k). Now shuffle
to obtain

6(2,94,/() = (E, 2,04)/(.

Table 10 shows that /5¢, detects the Toda bracket (€, 2, 6,), and there is no indetermi-
nacy. Let @ in 739 9; be the unique element of this Toda bracket. We wish to compute
oK.

Table 10 shows that %5¢y also detects the Toda bracket (15, v, 2v), with indetermi-
nacy generated by ons. Let B in 739 9; be an element of this Toda bracket. Then « and
B are equal, modulo 015 and modulo elements in higher filtration. Both t/3d; and t%¢;g
detect multiples of 0. Also, the difference between o and B cannot be detected by A, dy
by comparison to mf.

This implies that @ equals B 4+ oy for some element y in 73 ;7. Then

ak =(B+oy)k =Bk

because o« 1s zero.
Now shulflfle to obtain

Bk = (15, v, 2v)k = n5(v, 2v, k).

Table 10 shows that (v, 2v, k) contains 1k, and its indeterminacy is generated by vvy.
We now need to compute 751k .

The product nsk is detected by th hsgy = Thihsg, so nsk equals Tnoks, modulo
elements of higher filtration. But these elements of higher filtration are either annihi-
lated by 1 or detected by tmf, so nsnk equals Tn?0Ks. By comparison to fmf, this latter
expression must be zero. O
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Lemma 7.146. — (45,5, 24) There is no hidden { Ahyhs} extension on hsd.

Progf. — Table 10 shows that 45d, detects the Toda bracket (x, 8,, 2). By inspection

of indeterminacies, we have
{Ahlh?)}(Ka 049 2) = <{A/ll}l3}K7 94’ 2)

Table 24 shows that tdy/ 4+ Acydy detects the product {Akhs}c. Now apply the Moss
Convergence Theorem 2.16 with the Adams differential dy(h5) = hoh? to determine that
the Toda bracket ({A#h s}k, 04, 2) is detected in Adams filtration at least 13.

The only element in sufficiently high filtration is t°eyg®, but comparison to mmf
rules this out. Thus the Toda bracket ({Ah A3}k, 04, 2) contains zero. O

Lemma 7.147. — (62,2, 32) There is a hidden py5 extension fiom b3 to either hox7;.7 or
2

T°m;.

Progf: — Table 10 shows that the Toda bracket (8, 20, o) contains p;5. Then p;;
1s also contained in (2, 8o, o), although the indeterminacy increases.

Now shuffle to obtain

p1365 =05(2,80,0) = (65, 2, 80)0o.

Table 10 shows that }Zg}lg}lG detects (65, 2, 80). Also, there is a o extension from }lghghG to
hox77,7 in the homotopy of Cr.

This implies that p,505 is non-zero in 777 49, and that it is detected in filtration at
most 8. Moreover, it is detected in filtration at least 7, since p;5 and 65 are detected in
filtrations 4 and 2 respectively.

There are several elements in filtration 7 that could detect p;565. The element x77 ;
(if it survives to the E-page) is ruled out by comparison to Ct. The element /A x76 6
1s ruled out because 1701565 1s detected in filtration at least 10, since 1p;5 1s detected in
filtration 7.

The only remaining possibilities are /ix77,; and 72m;. O

Lemma 7.148.

(1) (64,2,33) There s a hidden p,5 extension from hyhg to Phgcy.
(2) (64,2,33) There is a hidden pys3 extension from hyhg to P*hgcy.
Progof — Table 10 shows that /¢ detects (n, 2, 65). Then

P15, 2,05) S (npis, 2, 05).

The last bracket is detected by Phgcy because do(h) = /zolzg and because Pc, detects np;s.
Also, its indeterminacy is in Adams filtration higher than 8. This establishes the first
hidden extension.
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The proof for the second extension is essentially the same, using that P*¢y detects
np93 and that the indeterminacy of (1093, 2, 65) 1s in Adams filtration higher than 12. [

Lemma 7.149. — (65, 10, 35) There is a hudden € extension_from TMg to Mdg.

Progf — First, we have the relation ¢, - #7Xy = M#h hsg in the Adams Ey-page,
which is detected in the homotopy of Ct. Table 14 shows that there are hidden 7 exten-
sions from 4{ Xy and M#h, hi3g to TMg and Md; respectively. O

Lemma 7.150. — (77,12, 41) If MAK dy is non-zero in the Eoo-page, then there is a
hidden € extension_from M A, hs to MAh%dD.

Proof. — Table 18 shows that M#; detects the product 16, 5. Since MAh?do equals
Ahidy - Mhy, it detects n{Ah;dy}045.

Table 24 shows that n{Akdy} equals €{Ah hs}, since they are both detected by
Ahidy and there are no elements in higher Adams filtration. Therefore, the product
e{Ah h3}0,5 1s detected by MA/z%do. In particular, {A% h3}6,5 1s non-zero, and it can
only be detected by MA#, /5. U

7.6. Additional relations
Lemma 7.151. — The product (no + €)05 s detected by ThohyQs.

Progff — Table 10 indicates a hidden 1 extension from }lgh(j to ThohyQs. Therefore,
there exists an element o in 7gg 36 such that T/, Q3 detects no. (Beware of the crossing
extension from p’ to /. This means that it is possible to choose such an o, but not any
clement detected by /3h will suffice.)

Table 10 shows that }lghﬁ detects the Toda bracket (v%, 2, 65). Let B be an element
of this Toda bracket. Since « and B are both detected by Ak, the difference a — B is
detected in Adams filtration at least 4.

Table 24 shows that p' detects 065, which belongs to the indeterminacy of
(v%,2,05). Therefore, we may choose B such that the difference o — B is detected in
filtration at least 9. Since na is detected by t/hyhyQ3 in filtration 7, it follows that nB is
also detected by t/phy Q5.

We now have an element B contained in (v?, 2, 6;) such that 5B is detected by
Thohy Q3. Now consider the shuffle

n(VQ, 29 95) = (779 UQa 2>95

Table 10 shows that the last bracket equals {€, € + no}. Therefore, either €65 or (e +
no)6s is detected by Thohy Q3. But €65 is detected by A1p = }zgco. ]
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Lemma 7.152. — There exists an element o of 767 36 that is detected by hoQs + hony such
that Tva equals (no 4+ €)6s.

Progf. — Lemma 7.151 shows that thyhyQs detects (¢ + no)fs. The element
Thyhy Q3 also detects Tva. Let B be the difference Tva — (e + no )65, which is detected
in higher Adams filtration. We will show that 8 must equal zero.

First, T/ D cannot detect B because 1B is zero, while Table 18 shows that 77d; g
detects n*{th Dj}. Second, Table 21 shows that T/ h3(Ae; + Cy) is the target of a hidden
v extension. Therefore, we may alter the choice of @ to ensure that B is not detected by
Thihs(Aey + Cp). Third, A?hye; is also the target of a v extension. Therefore, we may
alter the choice of « to ensure that f is not detected by A%hyc;. Finally, comparison to tmf
implies that B is not detected by T Ahjg + T° Ahyg>. 0

Lemma 1.153. — The product (o> + k)05 is zero, or it is equal to T*k\KCy detected by T>d\g,.

Progf. — The product (6% + k)65 maps to zero under inclusion of the bottom cell
of Ct. Therefore, (62 + k)85 is divisible by 7. The only two possibilities are 0 and 7%k, i5.
O

Lemma 7.154. — 770’{/{1} + V{d1€1} =0m TT73,41-

Progf: — We have the relation fhsk; 4 hodiey = 0 in the Adams E-page, but
no{k '} + v{die;} could possibly be detected in higher Adams filtration. However, it can-
not be detected by A5C” or Mk hsg by comparison to Ct. Also, it cannot be detected by
Ahydye} by comparison to mmjf. O

8. Tables

Table 1 gives some notation for elements in 7, .. The fourth column gives partial
information that reduces the indeterminacies in the definitions, but does not completely
specify a unique element in all cases. See Section 1.5 for further discussion.

Table 2 gives hidden values of the unit map m, , — m, ,mmf. The elements in the
third column belong to the Adams E.-page for mmf[28, 31]. See Section 2.2 for further
discussion.

Table 3 lists information about some Massey products. The fifth column indicates
the proof. When a differential appears in this column, it indicates the May differential
that can be used with the May Convergence Theorem (see Remark 2.26) to compute
the bracket. The sixth column shows where each specific Massey product is used in the
manuscript. See Section 4 for more discussion.

Table 4 lists all of the multiplicative generators of the Adams Ey-page through
the 95-stem. The third column indicates the value of the dy differential, if it is non-zero.
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A blank entry in the third column indicates that the dy differential is zero. The fourth
column indicates the proof. A blank entry in the fourth column indicates that there are
no possible values for the differential. The fifth column gives alternative names for the
element, as used in [11, 30], or [54]. See Sections 1.5 and 5.1 for further discussion.

Table 5 lists some elements in the Adams spectral sequence that are known to be
permanent cycles. The third column indicates the proof. When a Toda bracket appears
in the third column, the Moss Convergence Theorem 2.16 applied to that Toda bracket
implies that the element is a permanent cycle (see Table 10 for more information). When
a product appears in the third column, the element must survive to detect that product.

Table 6 lists the multiplicative generators of the Adams Es-page through the 95-
stem whose d3 differentials are non-zero, or whose ds differentials are zero for non-obvious
reasons. See Section 5.2 for further discussion.

Table 7 lists the multiplicative generators of the Adams E,4-page through the 95-
stem whose d, differentials are non-zero, or whose d; differentials are zero for non-obvious
reasons. See Section 5.3 for further discussion.

Table 8 lists the multiplicative generators of the Adams E;-page through the 95-
stem whose d; differentials are non-zero, or whose d5 differentials are zero for non-obvious
reasons. See Section 5.4 for further discussion.

Table 9 lists the multiplicative generators of the Adams E,-page, for r > 6, through
the 90-stem whose d, differentials are non-zero, or whose d, differentials are zero for non-
obvious reasons. See Section 5.5 for further discussion.

Table 10 lists information about some Toda brackets. Whenever possible, we use
Greek letter names to refer to specific homotopy elements. An expression of the form
{x} means that the Toda bracket computation applies to any homotopy element detected
by the element x of the Adams Ey-page. An expression of the form [x] means that the
Toda bracket computation applies to at least one homotopy element that is detected by x.
The third column of Table 10 gives an element of the Adams E.-page that detects an
element of the Toda bracket. The fourth column of Table 10 gives partial information
about indeterminacies, again by giving detecting elements of the Adams E..-page. We
have not completely analyzed the indeterminacies of some brackets when the details are
inconsequential for our purposes; this is indicated by a blank entry in the fourth column.
The fifth column indicates the proof of the Toda bracket, and the sixth column shows
where each specific Toda bracket is used in the manuscript. See Section 6 for further
discussion.

Tables 12 and 13 gives hidden values of the inclusion 7, , — 7, .Gt of the bottom
cell, and of the projection m, ,Ct — m,_) .4 to the top cell. See Section 7.1 for further
discussion.

Table 14 lists hidden 7 extensions in the E,-page of the G-motivic Adams spectral
sequence. See Section 7.1 for further discussion.

Tables 15, 18, and 21 list hidden extensions by 2, n, and v. The fourth column in-
dicates the proof of each extension. The fifth column gives additional information about
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each extension, including whether it is a crossing extension and whether it has indeter-
minacy in the sense of Section 2.1.1. See Sections 7.2, 7.3, and 7.4 for further discussion.
Tables 17, 20, and 23 list possible hidden extensions by 2, 1, and v that we have
not yet resolved.
Finally, Table 24 gives some various hidden extensions by elements other than 2,
n, and v. See Section 7.5 for further discussion.

TasLE 1. — Notation for m,
(s, w) Element Detected by Definition
©,-1) T T
(0,0) 2 ho
(1,1 n I
(3,2) v hy
(7,4) o h3
8,5) € o
9,5) M9 Phy
(14, 8) K dy
(15, 8) P15 h%/u
(16,9) N4 hyhy
(17,9) Mz P*h
(19,11) o Il
(20,11) K Tg (k,2,m,v)
(23,12) P23 h§i+ tPhdy
(25,13) Mas Phy
(30, 16) 0, /zi
(32,17) 15 ks in (1, 2, 6,)
(32, 18) K1 d,
@429 & o
(45, 24) 045 hf, n0s5 € {Mh}
(62, 32) 0 hg
(63, 32) 76 frh in (, 2,6;)

TaBLE 2. — Some hidden values of the unit map of mmyf

(s,.f,w) Element Image
(28,6, 17) hihsg g
(29,7,18) /thgg hyeg
(32,6,17) Ahyhs Ac+tag
(33,7,18) AR kg Ahye

(35,8, 18) o he Pan

(40, 10, 21) T AR d, P(Ac+ tag)
(48,10, 29) h1113g2 ch

(49, 11, 30) K hsg? hiog?

(52, 10, 29) Ahyhsg (Ac+Tag)g
(53, 11, 30) ARthsg Ahycg
(54,9, 28) hohsi AR
(54,11, 32) ihseq dg*

(55,12, 33) ] hseq hydg?
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TaBLE 2. — (Continued)

(s, [, w) Element Image

(57, 10, 30) hohshsi Al (Ac + Tag)
(59, 12, 33) Pi hse Ahydg

(60, 13, 34) 2 hyg? AR dg

(62, 14, 37) /l?/tf)é‘[]en cdg®

(63,15, 38) W hseoen hy edg®

(65,12, 34) Phsyj A2hyd

(66, 14, 37) P}Z?/I5E0€g (Ac+tag)dg
(67,15, 38) Pihscoeo Ahyedg

(68,13, 37) Phyhsj A*h3d

(68, 14,41) hihsg® g

(69, 15, 42) hf/zgg3 hieg®

(71, 15, 38) AR hyg Ahy(Ac+ Tag)d
(72,14, 41) Ahyhsg? (Ac+ Tag)d
(73,15, 42) Al hsg? Ahyog?
(77,15,42) A’hig Al (Ac+ Tag)g
(88,18, 53) hhsgt gt

(89, 19, 54) Khsg* hiog*

TaBLE 3. — Some Massey products in Extg

(s,.f,w) Bracket Contains Indeterminacy Proof Used for

(2,2,1) (ho, Iy, o) T 0 Theorem 4.1 (2,n,2)

3,2,2) (h1, ko, ) hoho 0 Theorem 4.1 (n,2,n),7.67

({hx76.6}, 2, M)

(6,2,4) (h1, hoy 1) /zg 0 Theorem 4.1 (n,v,n)

8,2,5) (ho, hy,\ ho) hyhs 0 Theorem 4.1 (v, n,v)

(8,3,5) (I hos s ho) G 0 di (hgo) = ol (n*,2,7m,v)
di(hor) = hihy

(8,3,5) (i, ho, hohy) Co 0 dy(ho(1) = hohg (n,v,2v), (n5,v,2v)

9,5,5) (hy, ho, B3hs) Phy 0 d4(b§0) = lighs (n,2,80)

(11,5,6) {hos by, Thyco) Phy 0 dy (boho (1)) =T/l|260 (2,1, Tne)

(20,4, 11) (T, ki, hy) Tg 0 di(g) = hithy 7.127

(23,5, 14) (ha, by, Bohy) hog 0 di(9) = hthy 4.11

(23,9, 12) (hs, b, h" hy) ki + tPhd, 0 dy(b3) = hShy (0,16,2p15)

(30, 6, 16) (n, }zﬁ, }zé, ) A/zg 0 dy(hobso) = I3l 4.9

(32,4, 18) (b, 13, by, 3) d 0 dy(hy (1)) = I (n,0% 1,07

(33,4,18)  (Ihi, by, k) P 0 dy(hsbsy) = ik} (n64, 7, 2)

(41, 3,22) (hohy, hy, hs) o 0 dy (hy (1)) = holi? 4.12

(46, 7, 25) (hy, ho, I3g2) M#n, 0 M 6.12

(54, 6,29) (h1, ko, Dy) TA 0 [35] Example 2.31

(66, 6, 36) NN ) AR 0 Lemma 4.9 6.18

(66, 7, 35) (A, hy, hy) Gy 0 Lemma 4.10 7.83

(67, 14, 36) (Pdy, b3, @) MPd, 0 M 5.70

(68,11, 38) (hog, I}, g2) Mbhyg 0 M 5.42

(71, 13, 40) (B3 hy, by, Tan) t¢’n Mhyhig Lemma 4.11 5.43

(75, 18,42) N 1ha) Ahgdgeo 0 Proposition 4.3 (T2, 1, nns)
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TaBLE 3. — (Continued)

(s, f,w) Bracket Contains Indeterminacy Proof Used for

(80, 5,42) (hs, p', ho) hoes 0 Lemma 4.12 7.120

(82,12,45) (Aey + Co, hl, hihy) (Aey +Co)g 0 Lemma 4.14 ({Ae +Co}, 0%, ny)
(86, 16, 46) (AWey, 12, hogs) MA# e 0 M 6.30

(91, 13,49) (Mby, ho, K2g2) M?p 0 M 5.31

(93, 13, 4'9) (T QG(J, }lo}lz, }ZQ> ?T€0X76Vg TI\IQ}ZQ Lemma 4.15 5.64

TasLE 4. — Generators of the G-motivic Adams Ey-page

(s.f,w) Element dy Proof Other names
0,1,0) ho

(1,1,1) h

3,1,2) hy

(7,1,4) hy

(8,3,5) ¢

9,5,5) Ph,

(11,5, 6) Phy

(14,4, 8) dy

(15,1, 8) hy hoh Ct
(16,7,9) Pc,

(17,4, 10) ¢ R dy Cr
(17,9,9) P?h,

(18, 4, 10) 5 He Cr
(19,3,11) ¢ Cr
(19,9, 10) P2k,

(20,4, 11) Tg

(22,8,12) Pd,

(23,5, 14) hyg

(23,7,12) i Phyd, Cr
(24,11, 13) P2¢,

(25,8, 14) Pe, Prd, Cr
(25,13, 13) P3hy

(26,7, 14) Jj Phyeq Cr
(27,5, 16) hsg hoh3g Cr
(27,13, 14) P3h,

(29,7, 16) k hod3 Cr
(30, 6, 16) AR Cr r
(30,12, 16) P2d,

(31,1, 16) hs hohl Cr
(31,5,17) n

(32,4, 18) d

(32,6,17) Ahyhg ho q
(32,7,18) [ hodyeq Cr
(32,15, 17) P3¢

(33,4, 18) )

(33,12, 18) P2e, P/ d, Cr
(33,17,17) P*hy

(34,11, 18) P; P2hoey Cr

(35,7,20) m oy Cr
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TaBLE 4. — (Continued)

(s, [, w) Element dy Proof Other names
(35,17,18) P*hy

(36, 6, 20) t Cr

(37,5, 20) x

(37, 8,22) g i Crt

(38,4, 21) e

(38, 6, 20) AR x Cr Y+
(38, 16, 20) P3d,

(39, 7,23) 0g Cr

(39, 9, 21) A/l[dn u

(39, 15, 20) P% P’hyd, Cr

(40, 4, 22) A

(40, 8, 23) g

(40, 19, 21) Pt

(41, 3,22) ¢ hof; Cr

(41, 10,22) Aley Cr 2
(41,16, 22) Ple, PR d, Cr

(41,21,21) P’k

(42,9, 23) Ahyjeg AR dy Cr v

(42, 15, 22) P% P3hoey Cr

(43,9, 26) hyg?

(43,21,22) P’hy

(44, 4,24) @

(45,9, 24) TAhg w
(46,7, 25) Mh, B,

(4’6, 8, 25) Ahzﬁl N

(46, 11, 25) Acody Thydae Cr v

(46, 20, 24) P*d,

(47,9, 28) hsg? holi3g’ Cr

(47,183, 24) AR hot? Cr Q, Q-+ Pu
(47,13, 25) PAhd,

(48,7, 26) Mbhy Bo+243 ks e
(48, 23, 25) P’

(49,11, 27) Acoep AR cody + Thydyed Cr v

(49, 20, 26) P'e P72 d, Cr

(49, 25, 25) P°h,

(50, 6, 27) C

(50, 10, 28) Alg Cr

(50, 13, 27) PARy ¢ PAKd, Cr

(50, 19, 26) P P'hyey Cr

(51,9, 28) Ahsg Ahyhig Cr G
(51,9, 29) an

(51,25, 26) P°hy

(52, 5, 28) D, W3 hsg Cr

(52,8, 30) dig

(53,7, 30) i Cr

(53,9, 29) M, ho By, Phsd,
(53, 10, 28) MP ¥

(54, 6, 29) TAR My hs Cr G

(54, 10, 28) AR MP/] Cr R, +2#2hsi
(54, 15, 29) PAcydy tPhyd3e Cr
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TaBLE 4. — (Continued)

(s,f,w) Element dy Proof Other names
(54, 24, 28) P°d,
(55,7, 30) Bg Crt
(55,11, 32) gm h[]egg Ct
(55,17,29) P2 Ak dy
(55, 23, 28) Pt P’ hyd, Crt
(56, 10, 29) AR by IMP/Lf hy Q;+2gt
(56, 10, 32) gt Ct
(56, 27,29) PP
(57, 6, 31) D.l. /LIB() Crt
(57,7, 30) Qy Crt
(57,9, 31) Ahyd, D,
(57,15, 31) PAcye PAR ydy + Thody Cr
(57,24, 30) Pe Pjhfdu Crt
(57,29, 29) P'hy
(58, 6, 30) D, ho Qs Ct
(58, 8, 33) eg
(58,17,31) P2 Ak e PQA/r?dO Ct
(58, 23, 30) P’1j Plgeq Crt
(59,7,33) W
(59, 10, 32) Md, Bo;
(59,11, 35) cng
(59, 29, 30) P’y
(60, 7, 32) My Crt B;
(60,9, 32) B, M/ydy Ct
(60, 12, 35) rg3
(60, 13, 36) /ng3
(61,4, 32) D;
(61,6,32) A Ct
(61,6, 32) A+ A Mghy Ct
(61,7,33) B,
(61,9,32) Ax th,l + tMhdy Lemma 5.3 Xy
or Ct, i
(62, 5, 33) H[ B7 Crt
(62,8, 33) Co Xg,33 + h8h§
(62, 8, 33) Ae Ey, xg.30 + X533
(62, 10, 32) AQ/ZE Ct X10,27 + X104Qg+
+X;, R
(62,10, 34) Me, MF d, Cr Byo, X10.98
(62,19, 33) P?Acyd, TPQhUdgeU Crt
(62, 28, 32) Pod,
(63,1, 32) he hgh§ Ct
(6?), 7, 34’) C’ Ct X7,33 + X734
(63, 7, 34‘) XQ M/Z?}L.l. Crt X7,33
(63,13, 38) /zzg3
(63,21, 33) P2 Ahdy
(64, 6, 34) A" hoXo Ct
(64, 10, 33) A2hhy xw,gg-i-?hghg@,
qQ
(64, 14, 34) AR d, MP?4? Cr U, PQ, +?km
(64, 31, 33) P¢




STABLE HOMOTOPY GROUPS OF SPHERES: FROM DIMENSION 0 TO 90*

TaBLE 4. — (Continued)

(s, [, w) Element dy Proof Other names

(65,7, 36) ky

(65,10, 35) TMg Crt By

(65,13, 34) A?hye ho - Athdo Cr Ry+2gw

(65, 19, 35) P2 Acyey P2 Al cody+ Cr

+tP/z0dg

(65, 28, 34) Pbe, Pthdo Cr

(65, 33, 33) P8h,

(66, 6, 36) Alhg Il

(66, 7, 35) TGQ /ZQC() + hlhqo\2 Crt )C7_40+?/L(]7’1

(66, 10, 34) D TQI\/Ith Cr,1 PD,

(66, 10, 35) B; 'L'I\Utgg i

(66, 21, 35) P2 Ahyey P3 Ah?dg Crt

(66,27, 34) PSj PShgey Crt

(67,5, 35) Qs TA ok @

(67,5, 36) n Alholzg Crt

(67,6, 36) ho%—l-/ngg Cr

(67, 9, 36) Xq Ct X940

(67,9, 37) (04 X9,39

(67,11, 35) A x11,35 + }l%x9,40

(67,13, 40) hsg® hoh3g® Cr

(67, 33, 34) P8k,

(68, 4, 36) dy Crt

(68, 8, 36) Agz hoX3 Crt G21+?}Zoh3A/

(68,11, 38) Mhyg

(68,13, 36) AQhog MPhyd, Crt P2D1+?h{’,G21,
Gn

(69, 4, 36) Vi Cr

(69, 8,37) D; mXs Cr, [17] PD;

(69, 8, 38) hyGo na” Cr

(69, 10, 36) P(A+A) rthn/ng Crt,1

(69, 11, 38) hyBs Crt

(69, 13, 36) rA2/z1g dy W,

(69, 18, 36) MP% X13120+?d01'[

(70,4, 37) YAl Crt

(70, 6, 38) hy Qs Cr

(70,17, 36) PA?hyd, MP3#, Crt Rf, Rﬁ-?dgv

(70,23, 37) P3 Acydy rP%odgeo Cr

(70, 32, 36) P’d,

(71, 6, 38) X71,6 le 4] }13 X6,47+?}Z$Ib/

(71,7,39) A

(71,12,37) A2hycy Cr, tmf, hy X19.37+2hody Qg

(71, 1?), 38) Azhgg Ct X13,34

(71, 13, 38) IVI] MP/ZOE[] Crt X13,35

(71,13, 40) Ah3g2 hom?® Crt

(71,13, 41) n

(71,25,37) P*Ahdy

(71, 31, 36) PS; P’ hydy Crt

(72,12,42) d1g2

(72,17, 39) AR cody MP?A ¢, Cr

(72,18, 38) PAQh%do MPShf Crt
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TaBLE 4. — (Continued)

(s,f,w) Element dy Proof Other names
(72,35, 37) Pé¢,
(73,17, 38) PA?hyey MP3%, Crt
(73,23, 39) P? Acoeo PSA}I%Q]d[)"‘ Ct
+‘EP2h0d(j‘
(73, 32, 38) Pe P7h%d0 Crt
(73,37,37) Phy
(74, 8, 40) X748 xg,51+ 2Pl ho g
(74,25, 39) P*Ahye PJ‘Ahfdo Crt
(74, 31, 38) PGj P hyey Ct
(75,7, 40) X75,7 Ct X7.53
(75,11,42) gBg Ct
(75,13, 40) A’hyg A’holig Cr
(75,15, 44) &m /zueggQ Crt
(75,37, 38) Pohy
(76, 6, 40) X76,6 hoxzs 7 Ct X6,53
(76,9, 40) X76.9 Ct X951 4+Ph hyBs
(76, 14, 44) th Ct
(76, 16, 40) Ang TQdujm Crt, mf X16,39
(77, 7, 40) X77.7 fM}L]h;f Lemma 5.5 X757 =+ m
(77,7,42) my Ct
(77,8, 41) X77.8 Ahyhsgy Ct Xg,57
(77,12,41) MAR &g Cr, by, Tg P’Ds
(77,13,43) Alyd\g
(77,16, 40) A hok A%ﬁdg Ct x15_33+?30g3
(77, 16, 46) 0g’ KBeg’ Cr
(78,6,42) t homy Crt
(78, 9, 41) X78.9 Ct X9155+?/l(7)h4.h6
(78, 10, 4’0) X78,10 }ZS)C77V7 CT, }Z] P2h§
(78,12, 45) eng
(78,27, 41) P*Acyd, P*hydle Ct
(78, 36, 40) P84,
(79,5,42) X1 Ct
(79,11, 42) ABg Ct
(79,11, 45) g1
(79, 1?), 4‘1) AQI'L X13.42
(79, 15,47) c|g3 Crt
(79, 16, 42) A?dye, AQh?dg + T2dokm Cr, tmf X16.35
(79, 29, 40) P*ARL Pthys? Ct
(79, 29, 41) P’ Ahdy Ct
(80, 4’, 42) (5] /Z[])C1 Crt
(80, 12,42) A?d, ho X194
(80,13,44)  gBy M#hyed Ct
(80, 14’, 41) A%/Zlhg /Z[] X14,42
(80, 16, 4’2) AQ}ZOZ AQh[Q]doE() Ct x16,37+?g4
(80, 16, 47) tg"‘
(80, 22,42) PQAQ/L%dQ MPJ‘/L% Ct
(80, 39, 41) P
(81,10, 44) oA
(81, 11,45) 9B
(81, 12, 4'2) AQﬁ }ZU X12,45




STABLE HOMOTOPY GROUPS OF SPHERES: FROM DIMENSION 0 TO 90*

TaBLE 4. — (Continued)

(s, [, w) Element dy Proof Other names
(81,21,42)  P2A%hye ho - PPA2 R} dy Cr
(81,27, 43) Pt Acyey P* AR} cydy+ Cr
+7P%hod}
(81,36,42) P Peild, Cr
(81,41,41) Py
(82,6, 44) 7 Qs
(82,9, 45) gH, B, Cr
(82,12,45)  (Ae+Co)g
(82,12,45)  ¢C,
(82,14,46)  Meyg M#re Cr
(82,16,44) A% T2 Akel Cr, mf X16.38
(82,17,47)  Ahjeg® Aldg+Mildye,  Ct
(82,29,43) P Ahe PP AR, Cr
(82,35,42) P’} P?hyeq Cr
(83,11,45)  Aj,
(83,11,46)  gC’
(83,15,44)  A’m A’hyi+ Cr, tmf X15.41
+‘E3Ahleug2
(83,17,50)  hygt
(83,41,42) P
(84, 4, 44) 5 Cr
(84‘, 10, 4‘5) Px?ﬁ,ﬁ Crt
(84, 14,44) A% Cr X144
(84,15,44)  ARBy ABm+TAhe Cr,mmf X15.49 + X15.43
(84', 15, 45) NIAIL] do CT X15,43
(85, 3, 44) ¢ hofs Ct
(85,6, 45) X85.,6 fh?/MQ% hy X6,68 + 12303
(85,13,44) A% Ct, i} X13.46
(85,14,48)  Mg? Cr
(85, 16, 4‘6) A2€ng AQ/l?ES + TZd()ﬂZQ me X16,42 + /Lgxlg_.q.(,
(85,26,44)  MP°
(86,11,47) 149Gy hy(Aey + Co)g Cr
(86,12,45) A dy X19.48
(86,12,46)  AmB;
(86, 14,44) A% A%h3x Ct, Iy P*h2+2¢B;
(86,14,47)  1Bsg MR Lemma 5.6
(86,25,44)  A?P’hyd, MP° ki Cr 95,944+ 2P2d2v
(86,31,45)  P>Acydy P hydze ho
(86,40,44)  P%,
(87,7,45) X87,7 X7,74
(87,9, 48) Qs Cr
(87,10,46)  AmH, Al B, Cr 10,60
(87,13,49)  gC” Cr
(87,15,47)  A2cg Cr
(87,15,47)  MAhe MARK Cr X15.47FPho X 1446
(87, 17,4’5) Aghld() T5€3m me X17,50
(87,17,52)  Iyg' hohigt Cr
(87,20,46)  PA2dye PA2R} 3+ Cr, mf
+T2 ARRdy
(87,33,45)  P°Ahd, Cr
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TaBLE 4. — (Continued)

(s,f,w) Element dy Proof Other names
(87, 39, 36) P8 Phyd, Crt
(88, 10, 4’8) X88,10
(88, 12, 46) A*f ¥19,51+2¢Gor +
-‘r?PhS}lﬁeg
(88,12, 48) Agog
(88, 16, 47) 'L'A2g2 T3A}L§€0g2 lmj; }LU X16,48
(88, 26, 46) PZAthd(. MP5/Z% Crt
(88,43, 45) P!
(89, 11, 46) A2y A hfy Cr X11,59
(89, 12, 50) hogGo IngC” Crt
(89, 15, 50) hoBsg Crt
(89, 18, 46) N g Crz, tmf X18.50
(89,19,51) N AR coelg + Thoetg Ct, ko
+M/l]l'€nd0€0
(89, 25, 46) P3A?hye MP°jy Crt
(89, 31,47) P> Acyen P5Ahfcodg+ Crt
+TP4/LodJ
(89, 40, 46) P¢, Pgh?do Crt
(89, 45, 45) P''p
(90, 10, 48) X90,10 X10,63
(90, 12, 48) M? X192.55
(90, 15, 49) MAg Crt 7By
(90, 17,47) A3hye Aa/zfdo + Ijeggm Cr, tmf X17.52
(90, 33, 47) PSAhyey PﬁA}l?dg Crt
(90, 39, 46) ng Phyey Crt
(91, 8, 48) X91,8 X90,10 Cr X8,75
(91, 11,4‘8) Xo1,11 M2/l(] Crt X11Y61+?}l?)/l5dg
(91,17, 49) MAcyd, t™Mhydie Crt, hy
91,17, 50) A2h2g2
91,17,52) Ahsg® hogm? Ct
91,17,53) g3n
(91, 45, 46) P4y
(92, 4, 48) g Crt
(92, 10, 4'8) X92.10 Crt X10,65+?}l(2)}l6/€
(92,10,51) Al/zfel Crt
(92, 12, 4’8) A2g2 Ct X[ng"‘?/lg?cmyﬁa
(92, 16, 54) d1g3
(92,18, 48) A3h3dy %dyerg® Cz, tmf X18.55
(92, 24, 48) P2A%d} 243y Cr, tmf
(93, 8, 49) X93.8 Crt Xg,78 + }lo/l(;r
(93, 9, 51) Alhzel
(93, 10, 49) AhsH, hyxo1 11 Crt X10,67 + hg}zﬁr
(93, 12, 50) AA g M?/ﬁ Crt x19.60+"Phgeody
(93, 15, 54) g2i| Crt
(93, 17, 4‘8) TABhlg tﬁeggm l‘mf; /Z] X17.57
(94, 8,49) X94.8 [17] 8,80
(94', 9, 50) X94.,9 Crt
(94, 10, 50) Da4.10 Cr X10,70+?}l?)xs,30
(94’, 10, 51) X94,10
(94, 15, 49) MA%h X15.56




STABLE HOMOTOPY GROUPS OF SPHERES: FROM DIMENSION 0 TO 90*

TaBLE 4. — (Continued)
(s, [/, w) Element dy Proof Other names
(94‘, 16, 4’9) A3h261 do X16,54
(94,17,51) MAcye MA/# qydy+ Cr, hy
+1’M/zud0e%
(94‘, 19, 4‘9) Agﬂod() TAQIZ(]dg&] }L()
(94, 19, 50) A2dyl A2h0d§e0+ Crt, tmf X19.49
+7°Ahye}
(94,22, 48) A?? rﬁdgeg imf X99.39
(94, 35,49) P Acyd, TPﬁhodgeo Crt
(94, 44, 48) P4,
(95,7, 50) X95,7 X94,9 Cr, [4] X7,79
(95,8,51) X95,8 X94,10 Cr
(95, 10, 50) AXH,G 'L'Ad]el CT, /lg Xm]g"‘?hgh()[
(95, 11,51) X95.11 Ct
(95, 15, 54) gQB(;
(95, 16, 52) MAkg Cr
(95,17,52) Ahyg? P*hl ks Cr
(95, 18, 50) Aghgﬁ] 'L'Ge%g‘% Cf, lmf X18,57
(95, 19, 56) ggm hoeggS Ct
(95, 21, 48) Aghgi A2hot® + Tﬁdg(fgm Cr, mf X91.45+2Px17.50
(95, 21,49) PA%hld(] T5d3€0m lmf
(95, 24, 50) P2 A%dye, PQAthdg + Tngik Crt, tmf
(95,37,49) P’ Ahdy Cr
TaBLE 5. — Some G-motivic permanent cycles

(s, f,w) Element Proof

(36, 6, 20) ¢ (T, n’k1,n)

(64,2, 33) hy b (n,2,65)

(68,7, 36) hs A (0, k, TNO,5)

(69, 3, 36) hg/zﬁ (v?,2,05)

(69, 4, 36) Vi a0

(70, 5, 36) h8h3h6 (80,2, 65)

(70, 14, 37) tAzlzfg + I3Ah§g2 n, T, IEQ)

(71,4, 37) hgco (€,2,05)

(71,5, 37) Thip Lemma 5.71

(72,6, 37) Phy kg (g, 2,65)

(74’, 7, 38) P}ZU}lQ}Zﬁ Lemma 5.72

(74, 8, 40) X74.8 O4ico

(77, 3, 40) 3 hg (02,2,05)

(77, 5, 40) hedy (k,2,05)

(79, 3,4’1) /llll.q.h(, (1’)4,2,95)

(79, 8,41) Phgco L1576

(80, 6,42) Thix (2,n, tn{hixe6})

(80, 10,41) P2/L1/l6 (/L17,2,65>

(80, 12,42) A?d, Lemma 5.17

(82,4,43) e (0,2,05)

(835 67 4'4) hohﬁg (K%, m, V)

(84,4, 44) I3 hahe (vvy, 2,65)

(85,9, 44) Phgd, (tn’K, 2,05)
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TABLE 5. — (Continued)
(s,.f,w) Element Proof
(86, 5, 4’5) /l4/l(;€[] O'{/l]h;l.}l()}
(87,5, 46) /1%53 (t{hoQs + homi }, vy, 1)
(87,8,47) hihyxgy 6 ({}11?571,6},202)
(87, 12, 4‘5) P2h6€0 P23M6
(88,10, 48) Xgg,10 Lemma 5.79
(88, 14, 43) PPl (s, 2, 05)
(90, 12, 48) M? Lemma 5.31
(91, 7,49) hyhsheg ({hhsg}, 2, 05)
(92,5, 48) hogs Lemma 5.83
(93, 10, 50) /zfxghg (K1, K, TNOy5)
(94, 6, 49) hen ({n}, 2, 65)
(95,5,50) /l(,dl (K1,2,95>
(95,7,49) Ahyhshg ({Akh3}, 2, 05)
(95, 16, 49) Phgcq Lemma 5.35

TaBLE 6. — C-motivic Adams d5 differentials

(s.f,w) Element d3 Proof

(15, 2, 8) /lofl.; }lodo Ct

(30, 6, 16) Ahg r/zldg tmf

(31,4, 16) hihs ho - ARE Cr
(81,8,17) Tdyey Peydy dy (T2 dyey + hs)
(34‘, 2, 18) /Lgh5 T/lldl Lemma 5.10
(37,8,21) Teg codg dy(t2e0g)
(38,4, 21) 2 it Cr

(39, 12,21) tPdyey P2cydy hy

(40, 4, 22) N 0 hy

(46, 14, 24) i rPZhldﬁ tmf

(47, 16, 25) P2dyey P3cydy hy

(47,18, 24) BQ P'hyd, Crt

(49, 6,27) hyhs ey M/} Crt

(49, 11, 26) 2dym PAR d, mmf

(50, 10, 28) Ahgg r/zld()eg T

(54, 8,28) hs1 MPhy Crt

(54, 6, 28) AR 127 Lemma 5.11
(55,11, 30) 2gm AR di(t3gm)
(55,20, 29) tP3dyey Peydy hy

(55,7, 30) Bg Thogn Cr

(56, 8, 31) hscoeo MF ¢ Cr

(56,9, 30) Phse MPsz Crt

(56, 10, 32) gt 0 T

(56, 1?), 30) TAh]doEo PAh160d0 d4(T2Ah|d0€0)
(57,12, 33) Tog’ cudoe% Ct

(57, 8, 30) hyy MPhy Crt

(57,15, 30) 2Pdym PQA/zfa’o mmf

(57,7, 30) Qy gt TAhg
(58,8, 33) eg gt Ct

(60, 12, 35) g M/z‘fco Crt

(61,4, 32) Ds Mbhy Cr




STABLE HOMOTOPY GROUPS OF SPHERES: FROM DIMENSION 0 TO 90*

TaBLE 6. — (Continued)

(s, [, w) Element ds Proof

(62,13, 34) TAheg Ahyeod? Cr

(62,8, 33) Ag Akdn Cr

(62,8, 33) Co Aln Cr

(62, 10, 33) hy - Ax 4+ e MPc¢, Crt

(62, 10, 32) Thy - Ax 0 AR

(62,10, 32) AR 0 AR

(62,22, 32) P2 P*hd} imf

(63, 8,32) hihs A’hohd Ct, [17]

(63, 24, 33) PYdye, Poeyd, hy

(64', 17, 34) 'EPA/Z]d()EO PQA/ZIL'odO dq(f2PA}lldU€0)
(65, 13, 36) A3m MP/ ¢, Cr

(65, 19, 34) 2P2dym PPAKd, mmf

(67,5, 35) Qs+ 0 hy

(67,9, 37) (ol nm Cr

(67,9, 36) X, 0 g

(68, 4, 36) dy Qs Cr

(68,11, 35) th - Ag TS Aheng Lemma 5.12
(68,11, 38) Mhyg 0 T

(69, 8, 36) D, *Mhyg Lemma 5.13
(69,11, 38) hyBs M, cody Crt

(69, 13, 36) TA%hg the! imf

(70, 2, 36) hshg hopf Cr

(70, 4, 37) 1 ThQ; Cr

(70, 14, 37) TMPe, MP?¢, d(t?MPey)
(70, 14, 40) m? Thyét T

(71,28, 37) Pdye, PScody h

(72,21, 39) P2 Ahydyey P3 Ahycody di(T?P? Ahy dyey)
(73,23, 38) 2P dym P*AKd, mmf

(74, 6, 38) Phohg ThhQ, Lemma 5.10
(75, 7, 4’0) X75,7 /Zg)ﬁ{g Crt

(75, 1 1, 42) ng Th2g2n }ZQ

(75, 15,42) ’m Ahfdoeg di(t3g*m)

(76, 5, 4’0) /14Dg d(]Dg Ct

(76, 14,41) A’hyhsg 0 Iy

(76, 14, 44) &t 0 T

(77, 14, 40) 2 Mhyl A?hyd} Lemma 5.14
(77,16, 45) ‘L'egg3 coet d4(1260g5)
(77,17, 41) A?hyd2 de imf

(78, 3, 4’0) /ZO}Q/ZG }lohﬁdo Crt

(78,12, 45) e gt Cr

(78, 13, 40) /1'39473,10 005> Lemma 5.15
(78,18, 41) TMP?¢, MP3¢, I

(78, 30, 40) P2 TP°hd} imf

(79, 5,42) X Thym, Lemma 5.16
(79,32, 41) P%dyep P’ ¢od, h

(79, 34, 40) PRQ P8 hyd, Cr

(80, 14,41) Ahyhy ttAheg Lemma 5.18, [17]
(80, 14, 42) 72dyBs A’hodyey + T3 Ahyelg Lemma 5.20, [17]
(80, 25, 42) TP Ahydyey Pt Ahycody Ay (T2P Al dyey)

(81, 3,42) hohahg 0 Lemma 5.22
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TaBLE 6. — (Continued)

(s,f,w) Element s Proof

(81,12,42) A%p 0 Lemma 5.23

(81,27,42) ?Ptdym PjAhfdo mmf

(82,6,44) h Qs hsxgyg Ct

(82, 10,42) P2hyh 0 Lemma 5.22

(82,12, 45) f{on Ahggn Crt

(82, 14, 45) T™eg Mcod('f hy

(82,17, 46) T Aheyg? A/zlcod“eg dy (T2 Ahyegg?)

(83,5, 43) Theg + Thoey 0 Lemma 5.24

(83,17, 45) A’hé odyel T

(84, 4, 44) ¥ Thih Qs Lemma 5.25

(84,19, 45) A%dg rAhgdge[] mmf

(85, 6,45) Txgs.6 + hS@ 0 Lemma 5.26

(85,21, 45) PAthdg rsdg tmf

(86, 4, 45) }Llfg 0 /l()

(86,11, 45) 3Gy 0 dy

(86, 12, 45) A2 A2hyt Cr

(86,17, 46) TAheg A’hycody + Tte) mmf

(86, 22, 45) TMP¢ MP*¢, y

(87, 7, 45) Xg7,7 0 d()

(87,13,49) F{o gnm Crt

(87, 36, 45) TP dyey Pleody hl

(88, 12, 46) A%f 0 hy

(88, 18, 46) > Mbhydyk PA2hydyey + raAhldgeg Lemma 5.28

(88, 18, 46) A%fdo IBAhldgeg mmf, [17]

(88, 29, 4‘6) 'L'P4Ah1d0€n PﬁAhlf()dn d4(T2P4Ah1dn€ﬂ)

(89, 14,51) /z?hﬁeo M}z:fg2 Crt

(89, 15, 50) hoBsg M/zlcoeg Lemma 5.30

(89,17, 48) T A g t4egg T

(89, 31, 46) 2P dym PGA/z?do mmf

(90, 18, 52) am? Thetg T

(90, 19, 49) AQCOeg TA/Z%dSBU mmf

(92, 10, 4‘8) X992,10 0 do

(92, 14, 50) mQy 3gn Crt,t

(92, 23, 49) PA%Odg TPQA/zgdgeo mmf

(93,7,48) Ahghﬁ rhllzﬁdg Lemma 5.32

(93, 8, 4’9) X938 A}lgH| Ct

(93, 13, 48) P2hd, 0 Lemma 5.33

(93, 22, 48) 2 MPhydyj PQAQ/zodg + ‘[HPAhldgeO Lemma 5.34

(93, 25, 49) P2A2lz1d§ TSPdS tmf

(94, 8,49) X948 f1 %9210 Cr

(94‘, 9, 49) T/l@doeﬂ P}l6L'0dn /21

(94, 15, 49) MA?%h Myl Pd2

(94, 15,52) Ph?h(,eo MA/LJ]’g Cr

(94, 17, 50) >Mdym MPARdy dy

(94, 21, 50) TAthdgeU PA2hlcod§ + t‘*dgeg mmf

(94‘, 26, 4‘9) TMP4€0+ MPSCQ hl
+IP2A2hfd§

(94, 38, 48) PO rP"/zldg tmf

(95, 15, 54) 2B Thog®n Ct

(95, 16, 52) MA#g ™M, dyé} T




STABLE HOMOTOPY GROUPS OF SPHERES: FROM DIMENSION 0 TO 90*

TaBLE 6. — (Continued)

(s, [/, w) Element ds Proof
(95, 19, 54) ’m ARt + Mhtdie mmf
(95, 20, 50) A%}h L’()do T4d3€0m mmf
(95, 36, 48) h(lf . Aghgi POhgi? Ct
(95, 40, 4‘9) TP8d060 Pgt'[]d[] /Zl

TaBLE 7. — C-motivic Adams d, differentials
(s, [, w) Element d, Proof
(3 1 N 8, 16) T2d0€0 + /L(—/)hs Pgd(] Crt
(37, 8,20) a8 Pdg tmf
(38,2,20) hshs, hox Cr
(39, 12,20) ©2Pdyey P3d, tmf
(42,6,22) Phyks 0 doy
(47,16, 24) 2P2dyey P'd, tmf
(50, 6, 27) C Ph%hgo Ct
(50, 10, 26) IQAhgg y tmf
(55,11, 29) 3am PAcydy + td3j imf
(55,20, 28) 2P3dye, Pd, tmf
(56, 13, 29) 'L'QA/lld[]t’() P2A/lld0 tmf
(57,12,32) 2o g d()‘ dy
(58, 14, 30) rzAhgdg Py tmf
(62,10, 32) Thy - Ax rQA/zgdoeo Lemma 5.38
(62,10, 32) A2h§ 0 Lemma 5.39
(62,13, 33) 2 Ahyeg PAhldg tmf
(63,7, 34) (04 Mbhyd, Crt
(63,7,33) Xy tMhydy Lemma 5.40
(63,11, 33) 2Mbhy MP?A, dy
(63,15, 33) o dm P?Acody + tPd}j imf
(63,19, 32) /1(1)8}:6 P2 byt Crt
(64,17, 33) T2 Aldog P2 Ahydy imf
(66, 18, 34) IQPAhgdg PQﬁ tmf
(68,5, 36) hods X3 Lemma 5.41
(68,11, 38) Mhyg 0 Lemma 5.42
(69, 11, 37) ThyBs MPh, dy doy
(70, 10, 39) hyC" hﬁl‘coQQ Cr
(70, 14, 38) ‘EQAhggQ Ahgdgeo T
(70, 14, 36) 72MPe, MP? doy
(71,19, 37) Pdim P2 Acydy + TP2d%j imf
(71,28, 36) 2P5dye P’d, tmf
(72,9, 40) h%GO tg2n Lemma 5.43
(72,21,37) 2P2 Ahydye P*Ahd, tmf
(74,22, 38) IQPQA/zgdg P3y' tmf
(75, 5, 4’0) hng h0X74'g Crt
(75, 11, 40) Al hsg T™Mh d} Lemma 5.44
(75, 15, 41) 3g%m Acod} + ‘L’dgl tmf
(76, 14“, 4‘0) TQMd()E() 1\/1P2d0 /Ll
(76, 14,41) A’hyhsg TARd3 e Lemma 5.45
(77,16, 44) 2og° dge}'; T
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TABLE 7. — (Continued)

(s,.f,w) Element dy Proof

(78, 5, 4’0) }lg}hl.h(, /lﬁ)C77y7 Crt

(79,23, 41) P2d2m P*Acody + TP3d3; imf

(79, 32, 40) 72P5dye, Pid, tmf

(80, 5,42) hoeo f}l??ﬁ(}_g Lemma 5.46
(80, 25,41) 2P Al dyey P> Ahyd, imf

(81, 8,43) TgDs 0 h

(81,15, 42) AR hy e}l Lemma 5.47
(82, 14, 44) ?Maeyg MPd? I

(82,17, 45) T2 Ahyeog? Ahyd} T

(82, 26, 42) 2P AR} P mf

(83,11, 46) el Mhyeog Cr

(83,11, 45) Aj T™Mhyeng Lemma 5.48
(85, 5, 45) s 0 Lemma 5.49
(85, 6, 44) TXgs.6 + /1(3]03 0 Lemma 5.50
(86, 4, 45) /11 C3 Th0h2h4Q3 Lemma 5.51
(86, 10, 44) B hsi 0 dy, Ct

(86, 22, 44) 2MP3¢, MP? h

(87,7,45) Xg7.7 0 Lemma 5.52
(87, 10, 45) TAlH, 0 Lemma 5.53
(87, 15,47) Acg 0 T

(87,27, 45) P dm P> Acydy + TP d3j mf

(87, 36, 44) 2P dye, P4, imf

(88,17, 48) A% hyg? TAhdied mmf

(88,29, 45) 2P Ahydyeq PSAhydy tmf

(89, 15,49) ThyBsg M/lldg Lemma 5.54
(90, 14, 51) hygC" Phl%hseo Crt

(90, 18, 50) 2gm’ ARd3e mmf

(90, 30, 46) T2 AP*R3d} P imf

(91,12, 48) ARN 0 Lemma 5.55
(91, 20, 50) Athcoeé t2d§e§ mmf
(92,13, 52) 135Gy tgin T

(93, 3, 48) }li/l(j hggg Lemma 5.56
(95, 16, 50) MA2j? MPA# e Lemma 5.57
(95, 16, 50) T’ MAkg MPA/#e dy

(95,19, 53) *em Acydiel + Tdieym T

(95, 31, 49) PEm P°Acody + TP°d3; tmf

(95, 40, 48) PCARY i + TP dye P4, imf

TaBLE 8. — CG-motivic Adams d; differentials

(s,f s w) Element ds Proof

(56,9, 29) T Phse T AR dye [30, Lemma 3.92]
(61,6, 32) A’ TMhd, [60, Theorem 12.1]
(63,11, 33) th? - Ax ‘rgdgeg Lemma 5.59

(63, 23,32) 2k Pbd, Cr

(67,6, 36) 7 Qs + 13D 0 Crt, 1

(68,12, 36) hsdyt ‘[Aﬁldg Lemma 5.60

(70, 4, 36) T+ Khshs 2R3 Lemma 5.61, [16]

(72,7, 39) hix716 0 Lemma 5.62




STABLE HOMOTOPY GROUPS OF SPHERES: FROM DIMENSION 0 TO 90*

TaBLE 8. — (Continued)

(s, [/, w) Element ds Proof

(73,7, 38) Dy d, g Lemma 5.63

(81, 10, 44) N t™Mhé T

(85, 6, 4’5) X85.6 0 /Zg

(86, 10, 44) I hsi A%R2x Ct

(86, 11,45) 3Gy tMAR, Lemma 5.64

92, 4, 48) g5 h6d§ Lemma 5.65

(92,12,48) A’g 0 Lemma 5.66, [17]

(93, 8, 4'8) }Z(J . Ahéhb Azhogg Ct

(93, 13, 50) €0X76,9 NIA}I] C()d(] Lemma 5.67

TaBLE 9. — C-motivic higher Adams differentials

(s, /[, w) Element r d, Proof

(67,5, 35) Qs+ Ty 6 0 Lemma 5.69

(68,7,37) RH, 6 Meydy Lemma 5.70

(68, 7, 36) rthl 7 MPd, Lemma 5.70

(77,7,42) my 7 0 Lemma 5.73

(80, 6,43) hyx 8 0 Lemma 5.74

(81,3,42) hohyhg 6 0 Lemma 5.75

(83, 5,43) Theg + Theeo 9 0 [16]

(85, 5,45) hfo 10 *MAR dy

(85, 6, 4’4’) TXg5.6 + hgﬁg 9 pfl\/IAhldo

(86, 6, 46) hohsg + Hifs 10 0 Lemma 5.76

(87,7,45) Xg7.7 7 0 Lemma 5.77

(87,9, 48) 205 6 0 Lemma 5.69

(87,10, 45) TAlH, 6 TMAR e Lemma 5.78

(88,11, 49) hgng 6 l\lcoeg Lemma 5.80

(88,11, 48) thigH, 7 0 Lemma 5.80

(88,12, 46) A% 6 2 Md; Remark 5.82

(88,12, 48) Agg 6 Nldg Lemma 5.81

(91,6, 48) 13Dy 9 PTMAR g

(92,10,51) Alhfel 6 0 Lemma 5.84

(92, 10, 4‘8) X992,10 7 ?Tl\lAé‘nd{) + TQNId()[ Lemma 5.85

(95,9,51) A hye 8 0 Lemma 5.86

(93, 13, 4’9) TeyX76,9 6 I\/IPA/lld[] Lemma 587, [16]

TaBLE 10. — Some Toda brackets
(s, w) Bracket Contains Indeterminacy Proof Used in
2,1) (2,n,2) e 0 (ho, ks o) 6.26, 7.19, 7.20, 7.26, 7.37
7.88, 7.40, 7.50, 7.81

(3,2) (n,2,n) hohy ™ (i, hoy ) 7.43
(6,4) (n,v,n) h§ 0 (h1y hoy by) 7.89, 7.95
(8,5) (v, n,v) hyhs 0 (hg, hy\ ho) 7.113
(8,5) <7],U,2V> Cp }11}23 <}l|,}lg,}loll2> 776, 7.151
(8,5) % v,n,2) o 0 (R, by, by ho) 6.5
9,5) (2,€,2) Thic 0 Corollary 6.2 7.27
9,5) (n,2,80) Phy Thhg, Thic (hy, ho, B3hs) 7.30, 7.68
(10, 5) (2, o, 2) TPh? 0 Corollary 6.2 7.30
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TaBLE 10. — (Continued)

(s, w) Bracket Contains Indeterminacy Proof Used in
(11,6)  (2,n, tne) Phy Phohy, TPH (ho, by, Thyco) 7.74
(15,8) (8,20,0) 3y Kby, B hy dy(hy) = holtl 7.147
(15,8)  (2,k,2) Thydy lighay iy Corollary 6.2 7.36, 7.153

B3hy, by
(16,9 (n,02%,2) hyhy Pey dy(hy) = holt3 6.22
(16,9 (n,2,0%) hyhy Pey dy(hy) = holt} 6.6
(17,9)  (2,n4,2) thh 0 Corollary 6.2 7.38
(17,10) (2,7n,nk) hydy 0 dy(ey) = Fdy 7.80
(18,10) (v,o0,20) hohy 0 dy (hy) = holt} 5.51
(20,11) («,2,n,v) Tg Thgg Lemma 6.5 7.105
(20,12) (v, n, nk) hog kg dy(e0) = K2 dy 7.103
(21,12) (v, 2v,k) Thig Bhy dy (f0) = hley 7.145
(23,12) (0,16, 2p0;5) Bi+tPhidy Thic (hs, b, hiyhy) 6.19
(30,16) (0%,2,0%,2) 5 0 dy(hy) = holt} 7.35
(32,17) (n,2,6y) Iy b 0 dy(hs) = holi3 6.17
(32,18) (n,0%,n,0%) d, 0 (hy, 12, o, B2) 7.77
(33,18) (nBs,n,2) p 0 (M 13, by, ho) 7.21
(86,20) (T, n%k1,n) t Ph? Lemma 6.9 Table 5
(36,20) (v, n,nb,) t 0 [10, Corollary 4.3] 7.21
(39,21) (ns,v,2v) hsco hyhshs (hi ks, o, hohy) = 7.145

= hs (1, ha, hohy)

(39,21) (€,2,6,) hsco 0 dy(hs) = hoh 7.145
(45,24) (04,2,0% + k) 0orthg h§h5d0 Lemma 6.10
(45,24) (2,04, k) hsdy holdhs, hohsdy — dy(hs) = hoh? 7.145,7.146

Bhsdy
(57,30) (t, tykk>, ) hohohst Pohyco ds(TPhsey) = T AR doey 5.45
(62,32) (2,04,64,2) 72 hsn dy(hs) = hoh 5.83,7.153
(62,33) (n,nk, t6y5) Ae; + Cy 0 Remark 7.104 7.103
(63,33) (tnbys,k,2,nm) thH; Remark 7.106 7.105
(64,33) (1n,2,05) I TR, T Xy dy(hg) = holk2 5.65, 7.20, 7.26, 7.40, 7.50, 7.63

ThsQq, P’y 7.74,7.80, 7.107, 7.148, Table 5
(64,34) (v, n, TK6O45) hy A 0 d5(A") = tMhy dy 7.109, 7.128
(66,36) (12, 6,,10%,6,) ALK Lemma 6.18 7.21
(68,36) (o, K, Tnby5) hs A 0 ds(A') = tMh dy 7.23,7.110, Table 5
(69, 36) (v?,2,65) hhs dy(he) = holi 7.151, Table 5
(70,36) (80,2,05) hihshg Thy dy(he) = hol 7.30, 7.68, 7.147, Table 5
(70,37) (n, v, 10,5K) Th D} Lemma 6.20 7.25,7.113
(70,37) (n, &%, TK?) TA g+ (AR = thd} Table 5

+T3Ah§g2 d(tA’hig) =T eg
(71,37) (€,2,65) heco dy(he) = hol2 7.26,7.27,7.114, Table 5
(71,37) (0, v, [2hC'l)  thip Lemma 6.21 7.28
(71,39) (v, €,k0,5) B3H, T™ihg ds(h3H)) = Maydy 7.73
(72,37) (19,2, 65) Phy kg dy (he) = hol 7.30, Table 5
(72, 38) <T70.1_5, 21), V) llodoDQ }thgflb dz(P(A"‘A/)) = TQM}ZUhgg 7.76
(72,38) (0%,2,{t}, t%) 7hQy + KD, Lemma 6.22 7.31
(75,42) (tnek?, n,n’ny)  Akldle 0 (AR doey, by, 13hy) 5.45
(77,40) (02,2,65) Ihg dy(he) = holl 7.120, Table 5
do(hy) = hoh3

(77,40) (k,2,0;) hedy Lemma 6.24 7.36, Table 5
(79,41) (n4, 2, 65) Iy byt dy(he) = hol? 7.38, 7.123, Table 5




STABLE HOMOTOPY GROUPS OF SPHERES: FROM DIMENSION 0 TO 90*

TaBLE 10. — (Continued)

(s, w) Bracket Contains Indeterminacy Proof Used in
(79, 42) ({tm},n,2) 0 or ‘L’QIVIQ% hohox76.6 Lemma 6.25 [16]
(79, 42) ({Mmx66}, 2, m) hohoxze.6 <h1x76,67 hoy ) = 7.38
= x76.6{/1, ho, hy)

(80,41) (17,2, 05) P2h b dy(hs) = holt? Table 5
(80, 42) (2, n, Tn{hixs6.6}) Thix Lemma 6.26 Table 5
(82,43) (0,2,05) hec dy(hs) = holt? 7.88, Table 5
(82,4’5) <{A81 +C(]} 773,7]4> (AE[ +C(])g /Z?XI <A€1 +Co,h?,/[1h4> 7.127
(83, 4’4) <T]6K n, ) }Z[)/l(;g dg(}l‘;&)) = }Z?}lbdg Table 5, 7.89
(83, 44) (v%05,2,02) Thhy Qs dy(hy) = holtl 5.25
(84’, 44) <VU4, 2 95) hghﬁrhﬁ dg(h(;) = /l[]hg 7131, Table 5
(85, 44) (tn’x,2,65) Phgd, dy(he) = hol? Table 5
(86, 46) (TnK?, 2, 4%5) MAZ# e Lemma 6.30 5.69
(87, 46) 0y, Tk, {1}) 24Q); 0 d3(Qy) = T2gt 5.69
(87, 46) (t{h Qs + /zonl} Vg, N /zf63 Lemma 6.31 7.49, Table 5
(87, 4’7) <{/21X/1 (,} 2 o > /L1h49€71_5 dg(/l4) = /l[]/l§ Table 5
(88, 45) (o3, 2, 65) P3hy kg dy(he) = hol Table 5
(89,49) (v, n, {hogA’}) Ahgog thgC Remark 7.135 7.134
91, 49) ({h1hsg}, 2, 05) hihsheg dy(he) = holi Table 5
(92, 48) (64, 64,2, 0,) hogs Lemma 5.83
(93, 50) (Kl, K, T?’]e.l. )) /L?Xgl‘g df,(A/) = Tlv[/tldo Table 5
(94, 49) ({n}, 2, 05) hen dy(he) = hol Table 5
(95,49) ({A/z 115} 2,05) Ahyhshg dy(hs) = holt? Table 5
(95, 50) (K1,2,65) hed, dy (he) = hol Table 5
(95, 50) (n, TK?, TO45K) MA?R+ dg(A}lg) =thd} 5.57

+1*MARg & (MA?h) = t*Mdye]

TaBLE 11. — Some null Toda brackets
(s, w) Bracket Contains Indeterminacy Proof Used in
(16,9) (k,2,1m) 0 Pey Lemma 6.4 6.5, 7.105
(23, 13) (e +no,0,20) 0 Ph dy Lemma 6.6 5.51
(30, 16) (tx?,1,2) 0 0 Lemma 6.7 5.65
(35, 20) (%, 64, 1%) 0 liths Lemma 6.8 6.18
(46, 25) (n, 2, 4K5) 0 hyhsdy, Mhy, Ahgey, Tdyl + Acody Lemma 6.12 5.69, 6.19
(59, 31) (tk9,02,2) 0 0 Lemma 6.13 7.35
(60, 33) (nky, 20, 0) 0 0 Lemma 6.14
(60, 32) (2,02, {i3hs}) 0 2d3l Lemma 6.15 5.13
(63, 34) (04, %, 6,) 0 0 Lemma 6.17 6.18,7.21
(67, 36) (tn’K, 8,%5) 0 Lemma 6.19 5.70
(81,43) (2,n, {/ZzXﬂ) 6}) 0 0 Lemma 6.27 7.43
(84, 45) (2,02, {ThC'}) 0 0 Lemma 6.28 5.26
(84, 45) (2,02, {hs(Aey + Co)) 0 0 Lemma 6.29 5.26

TasLE 12. — Hidden values of inclusion of the bottom cell into Ct

(s, /[, w) Source Value Proof
(50, 6, 26) C Pi3hsco

(57, 10, 30) hohohsi A2 hs

(63,6, 33) i H, B,
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TaBLE 12. — (Continued)

(s.f,w) Source Value Proof
(63,7, 33) Xy +7C/ hsdoe
(64, 8, 34) X, hyhsdyen
(66, 8, 35) ThyC' B;
(70,7,37) ThihsH, hyhs B,
(70,8, 37) Th Dy X,
(70, 10, 38) hihs(Aey 4+ Co) 4 Thy C” FeoQy Lemma 7.6
(71,5, 37) Thip, 7 Qs
(74, 6, 39) by (x Qs + Toy) iy
(75,11,41) 1 Qy Thyg’n
(77,6, 40) ThihyDs X777
(81,8,43) TgD; hix76.6
(83, 10, 45) hoci A/ hgB;
(85,5, 44) Thifs 2hics
(86, 6, 45) hf T Qs
A% + TAhyerg
(86, 7,45) Thyxgs.6 2T Qs
PA%e; + TAhyerg

(86, 12,47) ThygC/ B¢
(88,11, 48) thigH, Agg
(90, 14, 50) ThygC” Phi%hsa,
(90, 19, 49) 3gm® A%qe

TasLE 13. — Hidden values of projection from Ct to the top cell
(s.f,w) Source Value Crossing source
(30,6, 16) Ahg hd?
(34,2,18) hohs hydy
(38,7,20) hoy Thoeog
(41, 4,22) hoco hyhsd,
(44, 10, 24) AR d, hd}
(50, 10, 28) Aldg hdyel
(55,7, 30) Bg hogn
(56, 10, 29) A?hyhs AR} dyey
(57,7, 30) Q, Tgt
(58,7, 30) hoDg Ahyd,
(58,11, 32) Phihse thyelg
(59, 8, 33) BD, hgdlg
(61,6,32) A My dy PQ,
(62,11, 32) Phscody T AR} dye
(63,12, 33) Phyhseody 2d3e]
(64, 14, 36) km hd3e
(65,6, 35) hoH, A
(65, 8, 34) hohsDy i (Aey + Cy)
(66, 3, 34) hohohg IR
(68,5, 36) hody hy - AR
(68, 7,37) /l%H1 Xy hyhg
(68,12, 35) tMeydy T2 ARdeng
(68, 12, 36) hsdot Al d}
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TaBLE 13. — (Continued)

(s, /[, w) Source Value Crossing source
(69, 9, 36) hXs TMhyg
(69, 10, 36) P(A+A) T™hyhyg
(69, 13, 36) TA%hg el
(70, 4, 36) R hshg hC
(70, 14, 40) m’ /zleg
(72,9, 40) "Gy &n
(72,10, 38) dyDy T™Mhlg
(73,7, 38) =D, ’d\ g
(74, 6, 38) Phohg I hiQy
(75, 11, 40) hydy Dy M#h, d?
(75,11,42) gBs hog’n
(76, 14,41) A%hyhsg Ald3e
(77,11, 41) 12Q, g%t
(78,7,42) hsx716 /lldlgz
(78, 13, 40) B3 x78.10 oeg’
(80, 5,42) hoey Kxzes
(80, 14, 41) A3hyhg Al g
(81,10, 44) N M#h e Phhg
(81, 15,42) AR hy dyell
(82, 16, 44) A% TARe
(83,17, 45) Ahye} 2dye}
(84, 4, 44) 5 mh Qs
(84, 18, 48) dom? hydyel
(85, 5, 45) hifs 2R h, Qs
2Ahy)
(85, 6, 44) Fes MAK dy
(85,6, 45) Xg5.6 2R, Q;
2Ahy)
(85,10,47) hogH, dg
(86, 4, 4’5) }Z| C3 }10}12/2/1%
(86, 6, 46) 1 2 hy Qs
2T Mg
(86,7, 46) I Xg5.6 2h3 Qs
2T Mg
(86,8, 45) ThhQy PMAKd, P2/ hg
(86, 12, 45) A’e) + T Ahyerg PMAR dy P2/ hg
(86, 15, 44) Ahoh T A%hyeng
(87,11, 45) AhB; MAR e
(87,17, 45) A*hyd, thedm
(88,11, 49) hgH, M#g?
(88,16, 47) TA%g T2 Ahderg®
(88,17, 48) A hyg? Ahd3e
(89, 12, 46) A2hge, A2hy hsd,
(89,17, 48) TA’h g’ ietg
(90, 18, 52) gm:) hlegg
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TaBLE 14. — Hidden 7 extensions

(s.f,w) From To Proof
(22,7,13) cody Pd,
(23,8, 14) hycody Ph,d,
(28,6, 17) hihsg d2
(29,7, 18) i hsg hd3
(40,9, 23) Thog? ARd,
(41,9, 23) 2h g ARe
(42,11, 25) e a3
(43,12, 26) by ol hd}
(46, 6, 26) g N
(47,12, 26) Ahycody PAh d,
(48, 10, 29) hhsg® dod

(49, 11, 30) i hsg® hdye;
(52,10, 29) Ahyhsg 2eym
(53,9, 29) M, MP
(53,11, 30) Al3hsg Ahd3
(54,8, 31) hydy M, ¢
(54, 10, 30) My ¢ MPh,
(54,11, 32) i hseq Tg
(55,12, 33) I hseq theg
(55,13, 31) 2hiedg AR dyes
(59,7, 33) Ji Md,
(59,12, 33) Pihseq T Ahydyg
(60,9, 34) Dy Mb, dy
(60, 13, 34) 2hyg’ Acyd3 + td3l
(61,13, 35) 2h g’ Addyey
(62, 14, 37) S hscoen dié
(63,15, 38) h§h2g3 hd3e
(65,9, 36) X, Mg
(66, 10, 37) X, tMhg
(66, 14, 37) Pithscoe 2 dyeym
(67, 15, 38) Phdhscoen Ahd3
(68, 14, 41) hihsg® e

(69, 15, 42) i hsg’ he}

(70, 8, 39) d1€1 /Zlhg(Agl + Cn) Lemma 7.6
(70, 10, 38) T}ZQC// + }llhg(Ael + Co) AQ}lQCl
(71, 8, 39) hH, Q,
(72, 7, 39) hlx71,6 hOdUDQ
(72, 14, 41) Ah1113g2 'CQ(ngm
(73,6, 39) B hgco hohy Dy
(73, 11, 40) ThC” AR hye
(73,12,41) M, hsg Md3
(73,15, 42) AR hsg? Ahydyed
(74, 13,42) M7 hsg M#h,d}
(75,17, 43) 2h g Ahyd3e
(77,15,42) A’hig eg’
(78, 8, 43) hym, MA/# b
(79, 11, 45) g M}

(80, 12, 46) g M#h,é}
(80, 17,47) Thog* A ég
(80, 18, 46) ARég Acodydd + tdyedl
(81,17,47) 2h gt Ahé
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TaBLE 14. — (Continued)

(s, [, w) From To Proof
(82,12, 44) 7(Ae; + Co)g Ahon
(82, 19, 49) g’ doey
(83, 20, 50) h]ﬁoeggz }Z1d0€3
(84,12, 46) Ahyy MA dy
(85, 8, 4’5) hGCQdQ Phﬁdﬂ
(85, 15, 47) TMhyg? PMAR dy
(86,9, 46) Ty hcody Ph hsdy
(86, 12,47) ThygC A*h3d,
(86, 15, 47) 2Mh g MAZe
(87,20, 50) A/zlfoegg Ahldgeg
(88, 18,53) hyhsg g+ Mileog
(89, 13, 49) ThgC A’ hyd,
(89, 19, 54) I hsgt hietg + Mhleng
(90, 14, 50) ThygC" A’hyorg

TaBLE 15. — Hidden 2 extensions
(s, [, w) Source Target Proof Notes
(23,6,13)  thyhog Phd, T
(23,6,14)  hohyg hicody Cr
(40, 8, 22) T2 AR d, T
(43,10,25)  thyhyg? hnds T
(43,10,26)  hohyg® hicyed Cr
(47,10,25)  tAke PAhd, T
(47,10,26)  Alkle Ahycody Cr
(51, 6, 28) }Zgh3gg Tan [61]
(54,9,28)  hohsi g Lemma 7.18, [15]
(60,12,33) 3¢ Aqyd? +td3l T
(63,6,33)  thH, thi(Ae + Co) Lemma 7.19
(63, 14,37)  Thohyg® hde T
(64,2,33) ks Tk Lemma 7.20
(65,9,36) KX, Mhyg T
(67,14,37)  tAheg N T
(70,7,37)  thihH, Thihs(Ae; + Co) Lemma 7.19
(71,4, 37) heco thfﬁ’ Lemma 7.27
(71,8,39)  KH, T™hig Lemma 7.29
(74,6,39)  hy(tQs+1Tn)  Tang Lemma 7.35 indet
(74,10,41)  hC" M#h, d? Cr
(74, 14,40)  A’hig ttelg? mmf
(77, 6, 4’1) Th]}qug }loX7747 Ct
(78,10,42) oA’ MA/# b Lemma 7.37
(80,16,45)  t3g* Acodydd + tdpeil T
(80, 16,46)  t2g* AR &g+ MR dyey T
(83,18,49)  Thohyg* hydye} T
(83,18,50)  hohyg* heoerg Cr
(85, 14,46) Mg’ PMARd, T
(86, 7, 4’5) Tho/lg}lﬁg P/llhﬁdo T
(86,7,46)  hohyhsg Iy hscody Cr
(87,7,45) Xg7,7 %gQ; Remark 7.13
(87,9,48)  gQ; Bgd, Cr
(87,18,49)  tARag’ Ahyd3é Cr
(87,18,50)  Akeng’ Aheig+Mhadyey  Cr
(90, 10, 50) /ZQng Idlelg Ct
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TABLE 16. — Some null hidden 2 extensions
(s,.f,w) Source Proof
(63,7,33) Xy +7C Lemma 7.19
(66, 6, 36) AR Lemma 7.21
(67,6, 36) hQs + h3Ds Lemma 7.22
(68, 7, 36) hs A Lemma 7.23
(69, 4, 36) A Lemma 7.24
(70,9, 37) Dy Lemma 7.25
(71, 3,37) hyhshg Lemma 7.26
(71,5, 37) Thip Lemma 7.28
(72,6, 37) Phy kg Lemma 7.30
(72,8, 38) hQy + KDy Lemma 7.31
(73,7, 40) h§Q3 Lemma 7.33
(73, 8, 38) hohyDy Lemma 7.34
(77,5, 40) hedy Lemma 7.36
(79, 3,41) hyhyhg Lemma 7.38
(79, 8, 4‘2) /l[]}LQxﬂ‘)y(‘) Lemma 7.39
(79, 8,41) Phgeo Lemma 7.40
(79, 11,42) ABg Lemma 7.41
(82,6, 44) /zgg Lemma 7.42
(82,8, 44) B3 x76.6 Lemma 7.43
(83,7, 44) /l%}l(;g Lemma 7.44
(85,7,45) Thohy Qs Lemma 7.45
(85, 8,45) hecody Lemma 7.46
(85,9, 44) Phed, Lemma 7.46
(86, 5, 45) hahgco Lemma 7.47
(86,12,47) ThygC! Lemma 7.48
(87,5, 46) }L%Cg Lemma 7.49
(87,12,45) P?hgco Lemma 7.50
(90, 12, 48) M? Lemma 7.51

TaBLE 17. — Possible hidden 2 extensions

(s,.f,w) Source Target
(59,7,33) N ?r251g2
(72,7, 39) hix716 *idig?
(79,11, 45) g ?12€1g3
(859 5, 45) hl}@ ?T/ZQ}L4Q3
?TPh1X76Y6
(85,5, 44) Thifs 272hyhs Qs
22Phy X766
P Mg?
(86, 6, 46) Bf PA K d,
(86, 6, 45) hf PTA%hd)
(86, 7, 4’5) T/l]X85_6 ?TA2h§d|

?Phy hedy
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TapLE 18. — Hidden 7 extensions

(s, [, w) Source Target Proof Notes
(15,4, 8) 3 hy Pe Crt

(21,5,11) ?hg Pd, T

(21,5,12) Thg cody Crt

(23,9,12) B P2¢, Crt

(31,11, 16) 730hs P3¢, Cr

(38,4, 20) B hahs g [30, Table 29]

(39,17, 20) P2 i3 Ptey Crt

(40, 8,21) ig’ ARe T

(41,5,23) hfi Thycg [30, Table 29] crossing
(41,9,23) g’ 4 T

(41,9, 24) thg’ Cg@g Crt

(41,10, 22) ARe Td} T

(45, 3,24) W3hs M#h, [30, Table 29] crossing
(4’5, 5, 24’) T/Zlgg AhQC[ T

(45, 9, 24) TA}llg 'Edgl + Aﬁgdo Ct

(46, 11,24) 2dyl PAh dy T

(47,10, 26) Ale Tdyél mmf

(47,20, 24) BQ Pq Crt

(50, 6, 26) C ’an [61]

(52,11,28) 2eym Ahyd} T

(54,12,29) g AR3dyeo T

(55,25,28) Pidi PS¢, Crt

(59, 13,31) TAhydyg Acod3 + td3l T

(60, 12, 33) i AR dyey T

(61,9, 35) /1%]’1 Thye g Crt crossing
(61,13, 35) g die T

(61, 14, 34) A3dyey Tdie T

(63,6, 33) thH, hs Qo Crt indet
(63, 26, 32) B3 kg P¢, Crt

(64’, 8, 34’) ThIXQ C(]Q2 Ct

(64, 8, 33) 2 X, TzM/zog Lemma 7.62 indet
(65, 13, 35) 7:2A}L1g2 Tzd()éom T

(66, 15, 36) 2 dyeym Ay d} T

(67, 14, 38) Ahdeng Té) Crt

(68,7, 36) hsA' hs(Ae; + Cp) Lemma 7.66

(69, 3, 36) hghg Thohy Qs Lemma 7.67 crossing
(70,7, 37) ThhsH, BQy Lemma 7.70

(70,9, 37) i D} do Qs Crt

(71,5, 37) Thip 71 Qo Crt

(71,13, 38) A’hyg o gm mmf

(71, 33, 36) Poidi P8¢, Crt

(72,5, 37) Thyhgey '52/!§Q3 Lemma 7.74 indet
(72,11, 38) hodyDy ™43 Lemma 7.76 indet
(72, 15, 40) 2egm Ahldueg T

(74, 16, 41) ielg? Akydse T

(75, 6, 40) hohsds Tdig Lemma 7.77

(75, 10, 42) lix71 6 hgBg Crt

(75, 11,41) 1 Qy 2t Crt

(76, 9, 4’0) X76,9 MAh] }13 Ct

(77, 6, 40) ThihyDy X78.9 Crt crossing




DANIEL C. ISAKSEN, GUOZHEN WANG, ZHOULI XU

TaBLE 18. — (Continued)

(s,f,w) Source Target Proof Notes
(78, 8, 40) K hyhe TABg Lemma 7.82
(78,10, 42) oA ™™ Lemma 7.83
(79,17,44)  tAhdg Acodyé} + tdyedl T
(79, 36, 40) PR QY P Crt
(80, 16, 45) gt Ahe T
(81,13,47) K g Thyog® Cr crossing
(81,17,47) gt does T
(81,17,48) Thg' cUeggQ Ct
(81,18, 46) Ahgeg Tdpe} T
(83,11, 44) TAf + 12gC PMAR dy T crossing
(84', 6, 43) Tth/Zgg Phﬁdg T
(84,6, 44) Thiheg hecody Cr
(85, 14, 45) °Mg? MA/#e T
(85,17,48) TAR g Acoeag + M cydyey Crt
+1:egm
(86,11, 44) hghﬁi 2A% g Lemma 7.92
(86,16, 47) P2h] kg T2 AR eng? Cr
(86, 19, 48) gm Ahydie T
(87,8,47) hihyxay 6 X88,10 Cr
(87,18, 50) Aheng? Toig Cr
(87,41, 44) PeRgi P, Ct
(88,11,48)  thigH, Ahgog + thigC! Cr
(89,13,47) A’y fy TA%hyerg Lemma 7.95 crossing

TaBLE 19. — Some null hidden 7 extensions

(s,f,w) Source Proof

(58, 8, 30) Th Qg Lemma 7.60
(64, 4, 33) r/thg Lemma 7.61
(66, 4, 34) Thhg Lemma 7.63
(68, 6, 36) Qs Lemma 7.65
(70, 5, 36) /Lgllgh[; Lemma 7.68
(70, 6, 38) ho Qs Lemma 7.69
(70, 10, 38) hihs(Ae; + Co) Lemma 7.71
(70, 10, 38) T}ZQC// + }lelg(Ael + Co) Lemma 7.71
(71,6, 37) 177/ Lemma 7.72
(71,8, 39) /Lng Lemma 7.73
(72,7, 39) /L?p’ Lemma 7.75
(77, 3, 40) K Lemma 7.78
(77,7,41) Tm Lemma 7.78
(77, 8, 40) hox77.7 Lemma 7.79
(78,6,41) hy hedy Lemma 7.80
(78, 8, 41) Th X766 Lemma 7.81
(81,5,43) I hahg Lemma 7.85
(81, 7, 44) h§n1 Lemma 7.86
(81,12,42) A% Lemma 7.87
(82,4,43) hscy Lemma 7.88
(83, 6, 44) hoheg Lemma 7.89
(85,7, 46) hohy Qs Lemma 7.90
(86,9, 46) hyhecody Lemma 7.91
(86, 10, 45) Phyhsdy Lemma 7.91
(87,11,48) Bsd, Lemma 7.93
(88,7,47) R hyhgao Lemma 7.94
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TasLE 20. — Possible hidden 1 extensions

(s, f,w) Source Target Proof
(66, 6, 35) rA1h§ ?‘L’QAhgeog Lemma 7.64
(66,12,35) AR hy P12 Ah3eng
(67,6, 36) hoQs + thg PTMhohog
(81, 3,42) hohyhg PThig Lemma 7.84
?T2€1g2
?AZhQﬂ
(81,5, 39) 1 hyhg ?T(Ae 4+ Cy)g Lemma 7.85
(81,8,42) 7%gD; PA%hon
(81,8,43) TgD; ?T(Ae 4 Co)g
(86,6,45)  thify 27250,
PA%hsd,
(86, 6, 46) 1 Phihaxye
?7gQ3
PThigA
(86,6,46)  hohgg +Efy  Phihuxsig
PThigA
(86, 7, 4’5) T/l1X35,6 ?f2gQg
PA’hsd,
(87,5, 46) Fes ?t/zog22
(87,6,45) Thyhyhgeo ?‘L’Q}lug%
(87,9,48)  ¢Qs 2T Mhghy g
(88,8,48) g PTheCY
PAhgg
TaBLE 21. — Hidden v extensions
(s, f,w) Source Target Proof Notes
(20,6, 11) thig Phydy T
(20,6,12) kg hycody Ct
(22,4, 13) hyc 1 hycq Ct
(26,6, 15) ‘rhgg hd? T
(30,2, 16) I Crt
(32,6,17) Ahyhy 2héd tmf
(39,9,21) Ahdy T} tmf
(40, 10, 23) thg’ nd} T
(40, 10, 24) hg? hicoé} Cr
(4’2, 8, 25) }LQClg /I?}L;,CO Crt
(45, 3, 24) h§h5 Mhy Crt crossing
(45, 4, 24) h0h§h5 Mhy Crt crossing
(45,9, 24) TAlg TQdoeg mmf
(46, 10, 27) Thg’ Iy doé T
(48,6, 26) hohsdy Tgn [61] crossing
(51,8,27) ™A} MPH, T
(51,8,28) M/zg M#h ¢y [30, Table 31]
(52,10, 29) Ahyhsg 2k edg T
(52,11, 28) 2eom Ahgdoeo mmf
(53,7, 30) 7 gl Ct
(54,11, 32) Khse hyelg T
(57, 10, 30) hohghst 2d31 tmf




TaBLE 21. — (Continued)
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(s,.f, w) Source Target Proof Notes
(59, 12, 33) P hse tdie T

(59, 13, 32) T AR dyg 2d2é mmf

(60, 14, 35) thig hd3é T

(62,8, 33) Ae; + Gy t™hog Lemma 7.103
(62,12,37)  hyerg? KDy Crt

(63,6, 33) hH, *Mhg Lemma 7.105 crossing
(65, 3, 34) hol? ™hQs Crt

(65,9, 36) X, Mhyg T

(65, 13, 36) T Al g + Phihscoe e} mmf

(66, 6, 36) AR mBC! Cr
(66,14,39)  thid et T

(67,8, 36) BA hihs(Aey +Cy)  Lemma 7.109
(68, 13, 36) Phohyy AR hyg Cr

(69,9, 38) B 2d, g Lemma 7.112
(70,9, 37) Th D; T™d} Lemma 7.113 indet
(70,12, 37) A?hye, N T

(70, 14, 37) TAg+ Tom? 2 Ahydoél mmyf

(71,8, 39) h3H, ek Crt
(71,12,39)  t™hig M#h,d} T

(71,14,38)  A’hyhyg g mmf’
(72,14,41)  Ahhsg® 2h g T

(72, 15, 40) 2o gm Ahgdgeo mmf
(73,11,41) B¢ Tt Lemma 7.115
(74, 14, 39) TA%hg ag’ T

(77,3, 40) hg/zg Thix Lemma 7.120 indet
(77, 7, 4’1) hlx76.6 C]A/ Ct
(77,15,42)  A’ljg 2dye}l T

(77,16,41)  Toeg’ odye)l mmf

(78, 8, 40) Fohyhg A%p Cr

(78,9, 40) I hahg TA’hyd, Lemma 7.121
(79,17, 45) AhlegngM/zfder Tdoeg mmf

(80, 18,47) thig! hdyey T

(80, 18,48) At e Cr

(82,6, 44) hig hohohy Qs Crt

(82, 8, 4’4‘) /ngmﬁ Ph[?ﬁﬁﬁ Crt

(82, 10,42) P2hyhg A2hyx Crt

(82,12, 44) T(Ae + Cy)g PMAR dy T

(82,12, 45) (Aey + Co)g TMhg? Lemma 7.127
(82, 16, 4’9) }ZQL’IgS }111}1660 Crt

(83, 7, 4’3) T}Zé}lgg P}l[}lﬁdo T

(83,7,44) hheg hy hgeody Cr
(83,11,44) 2gC’ NIAhﬁeo Lemma 7.129 crossing
(83,11,45)  Aj + tgC’ oMb g Lemma 7.129
(84,9, 46) hogDs Bed, Crt

(85, 6, 44) Txgs.6 + e Phixgr; + T8 Lemma 7.132
(85, 5, 4’5) }12}1661 }l%h;;/l(,é’() Ct

(85,7,46)  hohsQ; hog Ct
(85,17,48)  tAlg® tlelg mmf

(86, 18,51) ‘r/zggﬁ‘ /lleﬁg + M/lfeog T

(87,12,48) KA A gz Lemma 7.134
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TaBLE 22. — Some null hidden v extensions

(s,.f,w) Source Proof

(64, 2, 33) hy hg Lemma 7.107
(64, 8, 34) h3 Qg Lemma 7.108
(68,7, 36) hs A/ Lemma 7.110
(69, 4, 36) Y Lemma 7.111
(71,4, 37) hsco Lemma 7.114
(71,5, 37) Thip [16]
(73,12,41) My hsg Lemma 7.116
(76,8, 41) Tdi gy Lemma 7.118
(76, 8, 40) hohyA Lemma 7.119
(78, 10, 42) oA Lemma 7.122
(79, 3,41) iy hyhg Lemma 7.123
(81,7,44) W Lemma 7.124
(82,8, 44) Te1 g Lemma 7.125
(82,11,42) P2 hohohg Lemma 7.126
(83, 10, 45) hoci A Lemma 7.128
(84, 4, 44) R hyhg Lemma 7.131
(87,12, 45) P?hcq Lemma 7.133

TaBLE 23. — Possible hidden v extensions

(s, [/, w) Source Target Proof
(70, 5, 36) I3 hshe hohyDy
(75, 6, 40) hohsdy PMAR Iy Lemma 7.117
(81,12,42) A% PTMA dy
(85,5, 45) hfs 1)
(85, 5, 4’4’) T/Zlfg ?h]X37v7 or
Phixgg 7+ T8
(86,11,44)  Ihst PTA%hf
(87, 5, 46) hies TMAhg
(87,7,45) Xg7.7 T2MAg

TaBLE 24. — Miscellaneous hidden extensions

(s, f,w) Type Source Target Proof
(16,2,9) o hihy hyco Cr

(20,4, 11) € g d2 [30, Table 33]
(30,2, 16) o i X Cr

(30,2, 16) 04 5 i hsd, [30, Table 33]
(32,6,17) € Ahyhy AR dy imf
(32,6,17) K Ahihy tdyl + Acody imf

(4’4, 4’, 24’) 94 2 X74.8 Ct

(45, 3,23) € Thihs MP Lemma 7.138
(45, 3,24) € 3hs Mg, Lemma 7.138
(45, 3, 24) K ks Md, Lemma 7.140
(45, 3, 24) K I3 hs ™™g Lemma 7.142
(45, 3, 24) (Al hs) 3hs MAR g Lemma 7.143
(45, 3,24) 045 3hs M? Lemma 7.144
(62,2,32) o 2 / Cr

(62,2, 32) 015 I hox77.7 Lemma 7.147

?‘[2m1
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TaBLE 24. — (Continued)

(s.f, w) Type Source Target Proof
(62,2,32) 0y I Kgs Crt
(63,7,33) € Xy +1C/ Qs Crt
(63,7,33) K Xy +7C’ MAR fg Crt
(63, 7, 33) N 'L'Xg + TC’ /11X73,9 Crt
(64,2, 33) P15 g Phgeo Lemma 7.148
(64‘, 2, 33) P23 h[}lﬁ PQILQC() Lemma 7.148
(65, 10, 35) € Mg Md} Lemma 7.149
(69, 4, 36) o Y hohyA or Ct
/lgh4A + 12d|g2
(77,12,41) € MAA by PMARKd, Lemma 7.150
(79, 3,41) o iy hyhg hyhsco Crt
TaBLE 25. — Some miscellaneous null hidden extensions

(s,f,w) Type Source Proof

(30, 2, 16) 04 7 Lemma 7.137

(45, 5, 24) € hsd, Lemma 7.145

(45, 5, 24) {Ahyhs} hsdy Lemma 7.146
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