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ABSTRACT

Using techniques in motivic homotopy theory, especially the theorem of Gheorghe, the second and the third
author on the isomorphism between motivic Adams spectral sequence for Cτ and the algebraic Novikov spectral sequence
for BP∗, we compute the classical and motivic stable homotopy groups of spheres from dimension 0 to 90, except for some
carefully enumerated uncertainties.
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1. Introduction

The computation of stable homotopy groups of spheres is one of the most fun-
damental and important problems in homotopy theory. It informs on many topics in
topology, such as the cobordism theory of framed manifolds, the classification of smooth
structures on spheres, obstruction theory, the theory of topological modular forms, alge-
braic K-theory, motivic homotopy theory, and equivariant homotopy theory.

Despite their simple definition, which was available eighty years ago, these groups
are notoriously hard to compute. All known methods only give a complete answer
through a range, but they eventually stall. Further progress requires the introduction
of a new method. The standard approach to computing stable stems is to use an Adams
spectral sequence (based on a generalized cohomology theory E) that converges from
algebra to homotopy. In turn, to identify the algebraic E2-pages, one needs algebraic
spectral sequences that converge from simpler algebra to more complicated algebra. For
any spectral sequence, difficulties arise in computing differentials and in solving extension
problems. Different methods lead to trade-offs. One method may compute some types
of differentials and extension problems efficiently, but leave other types unanswered, per-
haps even unsolvable by that technique. To obtain complete computations, one must be
eclectic, applying and combining different methodologies. Even so, combining all known
methods, there are eventually some problems that have not been solved. Mahowald’s un-
certainty principle states that no finite collection of methods can completely compute the
stable homotopy groups of spheres.

Because stable stems are finite abelian groups (except for the 0-stem), the compu-
tation is most easily accomplished by working one prime at a time. At odd primes, the
Adams-Novikov spectral sequence and the chromatic spectral sequence, which are based
on complex cobordism and formal groups, have yielded a wealth of data [53]. As the
prime grows, so does the range of computation. For example, at the primes 3 and 5, we
have complete knowledge up to around 100 and 1000 stems respectively [53].

The prime 2, being the smallest prime, remains the most difficult part of the
computation. This entire manuscript considers exclusively the 2-completed stable ho-
motopy groups. In this case, the Adams spectral sequence is the most effective tool. The
manuscript [30] presents a careful analysis of the Adams spectral sequence, in both the
classical and C-motivic contexts, that is essentially complete through the 59-stem. This
includes a verification of the details in the classical literature [2, 3, 10, 45]. Subsequently,
the second and third authors computed the 60-stem and 61-stem [60].

We also mention [38, 40], which take an entirely different approach to comput-
ing stable homotopy groups. However, the computations in [38, 40] are now known to
contain several errors. See [60, Section 2] for a more detailed discussion.

The goal of this manuscript is to continue the analysis of the Adams spectral se-
quence into higher stems at the prime 2. We will present information up to the 90-stem.
While we have not been able to resolve all of the possible differentials in this range, we
enumerate the handful of uncertainties explicitly within Table 9.
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The charts in [33] and [34] are an essential companion to this manuscript. They
present the same information in an easily interpretable graphical format.

Our analysis uses various methods and techniques, including machine-generated
homological algebra computations, a deformation of homotopy theories that connects C-
motivic and classical stable homotopy theory, and the theory of motivic modular forms.
Here is a quick summary of our approach:

(1) Compute the cohomology of the C-motivic Steenrod algebra by machine.
These groups serve as the input to the C-motivic Adams spectral sequence.

(2) Compute by machine the algebraic Novikov spectral sequence that converges
to the cohomology of the Hopf algebroid (BP∗,BP∗BP). This includes all dif-
ferentials, and the multiplicative structure of the cohomology of (BP∗,BP∗BP).

(3) Identify the C-motivic Adams spectral sequence for the cofiber of τ with the
algebraic Novikov spectral sequence [21]. This includes an identification of the
cohomology of (BP∗,BP∗BP) with the homotopy groups of the cofiber of τ .

(4) Pull back and push forward Adams differentials for the cofiber of τ to Adams
differentials for the C-motivic sphere, along the inclusion of the bottom cell
and the projection to the top cell.

(5) Deduce additional Adams differentials for the C-motivic sphere with a variety
of ad hoc arguments. The most important methods are Toda bracket shuffles
and comparison to the motivic modular forms spectrum mmf [20].

(6) Deduce hidden τ extensions in the C-motivic Adams spectral sequence for the
sphere, using a long exact sequence in homotopy groups.

(7) Obtain the classical Adams spectral sequence and the classical stable homotopy
groups by inverting τ .

The machine-generated data that we obtain in steps (1) and (2) are available at
[33] and [34]. See also [59] for a discussion of the implementation of the machine com-
putation.

Much of this process is essentially automatic. The exception occurs in step (5)
where ad hoc arguments come into play.

This document describes the results of this systematic program through the 90-
stem. We anticipate that our approach will allow us to compute into even higher stems,
especially towards the last unsolved Kervaire invariant problem in dimension 126. How-
ever, we have not yet carried out a careful analysis.

1.1. New ingredients

We discuss in more detail several new ingredients that allow us to carry out this
program.

1.1.1. Machine-generated algebraic data. — The Adams-Novikov spectral sequence
has been used very successfully to carry out computations at odd primes. However, at the
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prime 2, its usage has not been fully exploited in stemwise computations. This is due to
the difficulty of computing its E2-page. The first author predicted in [30] that “the next
major breakthrough in computing stable stems will involve machine computation of the
Adams-Novikov E2-page.”

The second author achieved this machine computation; the resulting data is avail-
able at [34]. The process goes roughly like this. Start with a minimal resolution that
computes the cohomology of the Steenrod algebra. Lift this resolution to a resolution of
BP∗BP. Finally, use the Curtis algorithm to compute the homology of the resulting com-
plex, and to compute differentials in the associated algebraic spectral sequences, such as
the algebraic Novikov spectral sequence and the Bockstein spectral sequence. See [59]
for further details.

1.1.2. Motivic homotopy theory. — The C-motivic stable homotopy category gives
rise to new methods to compute stable stems. These ideas are used in a critical way in
[30] to compute stable stems up to the 59-stem.

The key insight of this article that distinguishes it significantly from [30] is that
C-motivic cellular stable homotopy theory is a deformation of classical stable homotopy
theory [21]. From this perspective, the “generic fiber” of C-motivic stable homotopy
theory is classical stable homotopy theory, and the “special fiber” has an entirely algebraic
description. The special fiber is Hovey’s stable derived category of BP∗BP-comodules
[26], or equivalently, the stable derived category of quasicoherent sheaves on the moduli
stack of 1-dimensional formal groups.

In more concrete terms, let Cτ be the cofiber of the C-motivic stable map τ . The
cofiber sequence S0,0 → Cτ → S1,−1 induces maps

E2(S0,0) E2(Cτ) E2(S1,−1)

π∗,∗(S0,0) π∗,∗(Cτ) π∗,∗(S1,−1)

of spectral sequences, in which each vertical column represents a C-motivic Adams spec-
tral sequence.

The homotopy category of Cτ -modules has an algebraic structure [21]. In par-
ticular, the C-motivic Adams spectral sequence for Cτ is isomorphic to the algebraic
Novikov spectral sequence that computes the E2-page of the Adams-Novikov spectral se-
quence for BP∗. This means that the middle spectral sequence in the above diagram can
be computed by machine. Naturality then yields information about the C-motivic Adams
spectral sequence for the C-motivic sphere spectrum in two different ways, since the lat-
ter spectral sequence appears on both the left and right side of the diagram. Finally, the
Betti realization functor produces differentials in the classical Adams spectral sequence.
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Our use of C-motivic stable homotopy theory appears to rely on the fundamental
computations, due to Voevodsky [56] [57], of the motivic cohomology of a point and
of the motivic Steenrod algebra. In fact, recent progress has determined that our re-
sults do not depend on this deep and difficult work. There are now purely topological
constructions of homotopy categories that have identical computational properties to the
cellular stable C-motivic homotopy category [20, 52]. In these homotopy categories, one
can obtain from first principles the fundamental computations of the cohomology of a
point and of the Steenrod algebra, using only well-known classical computations. There-
fore, the material in this manuscript does not logically depend on Voevodsky’s work, even
though the methods were very much inspired by his groundbreaking computations.

1.1.3. Motivic modular forms. — In classical chromatic homotopy theory, the theory
of topological modular forms, introduced by Hopkins and Mahowald [18], plays a central
role in the computations of the K(2)-local sphere.

Using a topological model of the cellular stable C-motivic homotopy category,
one can construct a “motivic modular forms” spectrum mmf [20], whose motivic F2-
cohomology is the quotient of the C-motivic Steenrod algebra by its subalgebra gener-
ated by Sq1, Sq2, and Sq4. Just as tmf plays an essential role in studies of the classical
Adams spectral sequence [5, 8], mmf is an essential tool for motivic computations. The
C-motivic Adams spectral sequence for mmf can be analyzed completely [31], and natu-
rality of Adams spectral sequences along the unit map of mmf provides much information
about the behavior of the C-motivic Adams spectral sequence for the C-motivic sphere
spectrum.

1.2. Main results

We summarize our main results in the following theorem and corollaries.

Theorem 1.1. — The C-motivic Adams spectral sequence for the C-motivic sphere spectrum is

displayed in the charts in [33], up to the 90-stem.

The proof of Theorem 1.1 consists of a series of specific computational facts, which
are verified throughout this manuscript.

Corollary 1.2. — The classical Adams spectral sequence for the sphere spectrum is displayed in

the charts in [33], up to the 90-stem.

Corollary 1.2 follows immediately from Theorem 1.1. One simply inverts τ , or
equivalently ignores τ -torsion.

Theorem 1.1 could also be used to completely determine the E2-page and all dif-
ferentials of the Adams-Novikov spectral sequence for the sphere spectrum. As described
in [30, Chapter 6], the Adams-Novikov spectral sequence can be reverse-engineered from
information about C-motivic stable homotopy groups.



DANIEL C. ISAKSEN, GUOZHEN WANG, ZHOULI XU

Corollary 1.3. — Table 1 describes the stable homotopy groups πk for all values of k up to 90.

We adopt the following notation in Table 1. An integer n stands for the cyclic
abelian group Z/n; the symbol · by itself stands for the trivial group; the expression n·m
stands for the direct sum Z/n ⊕ Z/m; and nj stands for the direct sum of j copies of Z/n.
The horizontal line after dimension 61 indicates the range in which our computations
are new information.

Table 1 describes each group πk as the direct sum of three subgroups: the 2-
primary v1-torsion, the odd primary v1-torsion, and the v1-periodic subgroups.

The last column of Table 1 describes the groups of homotopy spheres that classify
smooth structures on spheres in dimensions at least 5. See Section 1.4 and Theorem 1.6
for more details.

Starting in dimension 84, there remain some uncertainties in the 2-primary v1-
torsion. In most cases, these uncertainties mean that the order of some stable homotopy
groups are known only up to factors of 2. In a few cases, the additive group structures are
also undetermined.

These uncertainties have two causes. First, there are a handful of differentials that
remain unresolved; they are listed in Table 9. Second, there are some possible hidden 2
extensions that remain unresolved.

Figure 1 displays the 2-primary stable homotopy groups in a graphical format
that is a modification by Allen Hatcher of Adams spectral sequence charts [23] (color
figure online). Vertical chains of n dots indicate Z/2n. The non-vertical lines indicate
multiplications by η and ν. The blue dots represent the v1-periodic subgroups. The green
dots are associated to the topological modular forms spectrum tmf. These elements are
detected by the unit map from the sphere spectrum to tmf, either in homotopy or in the
algebraic Ext groups that serve as Adams E2-pages.

Finally, the red dots indicate uncertainties. In addition, in higher stems, there are
possible extensions by 2, η, and ν that are not indicated in Figure 1. See Tables 17, 20,
and 23 for more details about these possible extensions.

The orders of individual 2-primary stable homotopy groups do not follow a clear
pattern, with large increases and decreases seemingly at random. However, an empir-
ically observed pattern emerges if we consider the cumulative size of the groups, i.e.,
the product of the orders of all 2-primary stable homotopy groups from dimension 1 to
dimension k.

Our data strongly suggest that asymptotically, there is a linear relationship between
k2 and the logarithm of this product of orders. In other words, the number of dots in Fig-
ure 1 in stems 1 through k is linearly proportional to k2. Correspondingly, the number of
dots in the classical Adams E∞-page in stems 1 through k is linearly proportional to k2.
Thus, in extending from dimension 60 to dimension 90, the overall size of the computa-
tion more than doubles. Specifically, through dimension 60, the cumulative rank of the
Adams E∞-page is 199, and is 435 through dimension 90. Similarly, through dimension
60, the cumulative rank of the Adams E2-page is 488, and is 1,461 through dimension 90.
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TABLE 1. — Stable homotopy groups up to dimension 90. n stands for Z/n; n·m stands for Z/n ⊕ Z/m; and nj stands for
(Z/n)j

k v1-torsion at the prime 2 v1-torsion at odd primes v1-periodic Group of smooth structures

1 · · 2 ·
2 · · 2 ·
3 · · 8·3 ·
4 · · · ?
5 · · · ·
6 2 · · ·
7 · · 16·3·5 b2

8 2 · 2 2
9 2 · 22 2·22

10 · 3 2 2·3
11 · · 8·9·7 b3

12 · · · ·
13 · 3 · 3
14 2·2 · · 2
15 2 · 32·3·5 b4·2
16 2 · 2 2
17 22 · 22 2·23

18 8 · 2 2·8
19 2 · 8·3·11 b5·2
20 8 3 · 8·3
21 22 · · 2·22

22 22 · · 22

23 2·8 3 16·9·5·7·13 b6·2·8·3
24 2 · 2 2
25 · · 22 2·2
26 2 3 2 22·3
27 · · 8·3 b7

28 2 · · 2
29 · 3 · 3
30 2 3 · 3
31 22 · 64·3·5·17 b8·22

32 23 · 2 23

33 23 · 22 2·24

34 22·4 · 2 23·4
35 22 · 8·27·7·19 b9·22

36 2 3 · 2·3
37 22 3 · 2·22·3
38 2·4 3·5 · 2·4·3·5
39 25 3 16·3·25·11 b10·25·3
40 24·4 3 2 24·4·3
41 23 · 22 2·24

42 2·8 3 2 22·8·3
43 · · 8·3·23 b11

44 8 · · 8
45 23·16 9·5 · 2·23·16·9·5
46 24 3 · 24·3
47 23·4 3 32·9·5·7·13 b12·23·4·3
48 23·4 · 2 23·4
49 · 3 22 2·2·3
50 22 3 2 23·3
51 2·8 · 8·3 b13·2·8
52 23 3 · 23·3
53 24 · · 2·24

54 2·4 · · 2·4
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k v1-torsion at the prime 2 v1-torsion at odd primes v1-periodic Group of smooth structures

55 · 3 16·3·5·29 b14·3
56 · · 2 ·
57 2 · 22 2·22

58 2 · 2 22

59 22 · 8·9·7·11·31 b15·22

60 4 · · 4
61 · · · ·
62 24 3 · 23·3
63 22·4 · 128·3·5·17 b16·22·4
64 25·4 · 2 25·4
65 27·4 3 22 2·28·4·3
66 25·8 · 2 26·8
67 23·4 · 8·3 b17·23·4
68 23 3 · 23·3
69 24 · · 2·24

70 25·42 · · 25·42

71 26·4·8 · 16·27·5·7·13·19·37 b18·26·4·8
72 27 3 2 27·3
73 25 · 22 2·26

74 43 3 2 2·43·3
75 2 9 8·3 b19·2·9
76 22·4 5 · 22·4·5
77 25·4 · · 2·25·4
78 23·42 3 · 23·42·3
79 26·4 · 32·3·25·11·41 b20·26·4
80 28 · 2 28

81 23·4·8 32 22 2·24·4·8·32

82 25·8 3·7 2 26·8·3·7 or 24·4·8·3·7
83 23·8 5 8·9·49·43 b21·23·8·5
84 26 or 25 32 · 26·32 or 25·32

85 26·42 or 25·42 or 32 · 26·42·32 or 25·42·32

24·43 or 27·4 or 24·43·32 or 27·4·32

86 24·82 or 22·4·82 3·5 · 24·82·3·5 or 22·4·82·3·5
87 25·4 · 16·3·5·23 b22·25·4
88 24·4 · 2 24·4
89 23 · 22 2·24

90 23·8 or 22·8 3 2 24·8·3 or 23·8·3

Conjecture 1.4. — Let f (k) be the product of the orders of the 2-primary stable homotopy groups

in dimensions 1 through k. There exists a non-zero constant C such that

lim
k→∞

log2 f (k)

k2
= C.

One interpretation of this conjecture is that the expected value of the logarithm
of the order of the 2-primary component of πk grows linearly in k. We have only data
to support the conjecture, and we have not formulated a mathematical rationale. It is
possible that in higher stems, new phenomena occur that alter the growth rate of the
stable homotopy groups.
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FIG. 1. — 2-primary stable homotopy groups (Color figure online)

By comparison, data indicates that the growth rate of the Adams E2-page is qual-
itatively greater than the growth rate of the Adams E∞-page. This apparent mismatch
has implications for the frequency of Adams differentials.
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1.3. Remaining uncertainties

Some uncertainties remain in the analysis of the first 90 stable stems. All unde-
termined possible differentials in this range are mentioned within Table 9. All of these
uncertainties concern the Adams differentials dr for r ≥ 9. This means that the orders of
some of the stable homotopy groups are known only up to factors of 2.

In addition, there are some possible hidden extensions by 2, η, and ν that remain
unresolved. Tables 17, 20, and 23 summarize these possibilities. The presence of un-
known hidden extensions by 2 means that the group structures of some stable homotopy
groups are not known, even though their orders are known.

1.4. Groups of homotopy spheres

An important application of stable homotopy group computations is to the work of
Kervaire and Milnor [36] on the classification of smooth structures on spheres in dimen-
sions at least 5. Let �n be the group of h-cobordism classes of homotopy n-spheres. This
group classifies the differential structures on Sn for n ≥ 5. It has a subgroup �bp

n , which
consists of homotopy spheres that bound parallelizable manifolds. The relation between
�n and the stable homotopy group πn is summarized in Theorem 1.5. See also [49] for a
survey on this subject.

Theorem 1.5 (Kervaire-Milnor [36]). — Suppose that n ≥ 5.

(1) The subgroup �bp
n is cyclic, and has the following order:

|�bp
n | =

⎧
⎨

⎩

1, if n is even,

1 or 2, if n = 4k + 1,

bk, if n = 4k − 1.

Here bk is 22k−2(22k−1 − 1) times the numerator of 8ζ(1 − 2k), where ζ is the Riemann

zeta function.

(2) For n �≡ 2 (mod 4), there is an exact sequence

0 �bp
n �n πn/J 0.

Here πn/J is the cokernel of the J-homomorphism.

(3) For n ≡ 2 (mod 4), there is an exact sequence

0 �bp
n �n πn/J

	

Z/2 �
bp

n−1 0.

Here the map 	 is the Kervaire invariant.
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The first few values, and then estimates, of the numbers bk (for k ≥ 2) are given by
the sequence

28, 992, 8128, 261632, 1.45 × 109, 6.71 × 107,

1.94 × 1012, 7.54 × 1014, . . . .

Theorem 1.6. — The last column of Table 1 describes the groups �n for n ≤ 90, with the

exception of n = 4. The underlined symbols denote the contributions from �bp
n .

The cokernel of the J-homomorphism is slightly different than the v1-torsion part
of πn at the prime 2. In dimensions 8m + 1 and 8m + 2, there are classes detected by Pmh1

and Pmh2
1 in the Adams spectral sequence. These classes are v1-periodic, in the sense that

they are detected by the K(1)-local sphere. However, they are also in the cokernel of the
J-homomorphism.

We restate the following conjecture from [60], which is based on the current knowl-
edge of stable stems and a problem proposed by Milnor [49].

Conjecture 1.7. — In dimensions greater than 4, the only spheres with unique smooth structures

are S5, S6, S12, S56, and S61.

Uniqueness in dimensions 5, 6 and 12 was known to Kervaire and Milnor [36].
Uniqueness in dimension 56 is due to the first author [30], and uniqueness in dimension
61 is due to the second and the third authors [60].

Conjecture 1.7 is equivalent to the claim that the group �n is not of order 1 for
dimensions greater than 61. This conjecture has been confirmed in all odd dimensions by
the second and the third authors [60] based on the work of Hill, Hopkins, and Ravenel
[24], and in more than half of the even dimensions by Behrens, Hill, Hopkins, Mahowald
and Quigley [7, 8].

1.5. Notation

The cohomology of the Steenrod algebra is highly irregular, so consistent naming
systems for elements presents a challenge. A list of multiplicative generators appears in
Table 4. To a large extent, we rely on the traditional names for elements, as used in
[11, 30, 54], and elsewhere. However, we have adopted some new conventions in order
to partially systematize the names of elements.

First, we use the symbol 
x to indicate an element that is represented by v4
2x in

the May spectral sequence. This use of 
 is consistent with the role that v4
2 plays in the

homotopy of tmf, where it detects the discriminant element 
. For example, instead of
the traditional symbol r, we use the name 
h2

2.
Second, the symbol M indicates the Massey product operator 〈−, h3

0, g2〉. For ex-
ample, instead of the traditional symbol B1, we use the name Mh1.
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Similarly, the symbol g indicates the Massey product operator 〈−, h4
1, h4〉. For ex-

ample, we write h2g for the indecomposable element 〈h2, h4
1, h4〉.

Eventually, we encounter elements that neither have traditional names, nor can be
named using symbols such as P, 
, M, and g. In these cases, we use arbitrary names of
the form xs,f , where s and f are the stem and Adams filtration of the element.

The last column of Table 4 gives alternative names, if any, for each multiplicative
generator. These alternative names appear in at least one of [11, 30, 54].

Remark 1.8. — One specific element deserves further discussion. In the cohomol-
ogy of the motivic Steenrod algebra, we define τQ3 to be the unique non-zero element in
degree (67,5,35) such that h3 · τQ3 = 0. This choice is not compatible with the notation
of [30]. The element τQ3 from [30] equals the element τQ3 + τn1 in this manuscript.

We shall also extensively study the Adams spectral sequence for the cofiber of τ .
See Section 3.1 for more discussion of the names of elements in this spectral sequence,
and how they relate to the Adams spectral sequence for the sphere.

Table 1 gives some notation for elements in π∗,∗. Many of these names follow
standard usage, but we have introduced additional non-standard elements such as κ1

and κ2. These elements are defined by the classes in the Adams E∞-page that detect
them. In some cases, this style of definition leaves indeterminacy because of the presence
of elements in the E∞-page in higher filtration. In some of these cases, Table 1 provides
additional defining information. Beware that this additional defining information does
not completely specify a unique element in π∗,∗ in all cases. For the purposes of our
computations, these remaining indeterminacies are not consequential.

Here is a list of the key notation that we use extensively:

– Because we have completed at 2, we have a map τ : S0,−1 → S0,0 [27,
Lemma 25]. We write Cτ for its cofiber. We can also write S/τ for this C-
motivic spectrum, but the latter notation is more cumbersome.

– Ext = ExtC is the cohomology of the C-motivic Steenrod algebra. It is graded
in the form (s, f ,w), where s is the stem (i.e., the total degree minus the Adams
filtration), f is the Adams filtration (i.e., the homological degree), and w is the
motivic weight.

– Extcl is the cohomology of the classical Steenrod algebra. It is graded in the form
(s, f ), where s is the stem (i.e., the total degree minus the Adams filtration), and
f is the Adams filtration (i.e., the homological degree).

– π∗,∗ are the 2-completed C-motivic stable homotopy groups.
– H∗(S;BP) is the Adams-Novikov E2-page for the classical sphere spectrum, i.e.,

ExtBP∗BP(BP∗,BP∗).
– H∗(S/2;BP) is the Adams-Novikov E2-page for the classical mod 2 Moore spec-

trum, i.e., ExtBP∗BP(BP∗,BP∗/2).
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1.6. How to use this manuscript

The manuscript is oriented around a series of tables to be found in Section 8. In
a sense, the rest of the manuscript consists of detailed arguments for establishing each
of the computations listed in the tables. We have attempted to give references and cross-
references within these tables, so that the reader can more easily find the specific argu-
ments pertaining to each computation.

We have attempted to make the arguments accessible to users who do not intend
to read the manuscript in its entirety. To some extent, with an understanding of how the
manuscript is structured, it is possible to extract information about a particular homotopy
class in isolation. A secondary goal is to offer a guide to the computational techniques in
use in stable homotopy theory today.

We assume that the reader is also referring to the Adams charts in [33] and [31].
These charts describe the same information as the tables, except in graphical form. Es-
pecially when there are multiple elements in a single degree, the charts can be somewhat
ambiguous. In such cases, we encourage readers to use the associated spreadsheets [33].
These spreadsheets are more cumbersome than charts, but they are entirely explicit.

The style of this manuscript is very much similar to [30]. We will frequently refer to
discussions in [30], rather than repeat that same material here in an essentially redundant
way. This is especially true for the first parts of Chapters 2, 3, and 4 of [30], which
discuss respectively the general properties of Ext, the May spectral sequence, and Massey
products; the Adams spectral sequence and Toda brackets; and hidden extensions.

Section 2 provides some additional miscellaneous background material not already
covered in [30]. Section 3 discusses the nature of the machine-generated data that we rely
on. In particular, it describes our data on the algebraic Novikov spectral sequence, which
is equal to the Adams spectral sequence for the cofiber of τ . Section 4 provides some tools
for computing Massey products in Ext, and gives some specific computations. Section 5
carries out a detailed analysis of Adams differentials. Section 6 computes some miscella-
neous Toda brackets that are needed for various specific arguments elsewhere. Section 7
methodically studies hidden extensions by τ , 2, η, and ν in the E∞-page of the C-motivic
Adams spectral sequence. This section also gives some information about other miscella-
neous hidden extensions. Finally, Section 8 includes the tables that summarize the multi-
tude of specific computations that contribute to our study of stable homotopy groups.

2. Background

2.1. Associated graded objects

Definition 2.1. — A filtered abelian group A consists of a finite chain

A = F0A ⊇ F1A ⊇ F2A ⊇ · · · ⊇ Fp−1A ⊇ FpA = 0

of inclusions descending from A to 0.
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We will only consider finite chains because these are the examples that arise in
our Adams spectral sequences. Thus we do not need to refer to “exhaustive” and “Haus-
dorff ” conditions on filtrations, and we avoid subtle convergence issues associated with
infinite filtrations.

Example 2.2. — The C-motivic stable homotopy group π14,8 = Z/2 ⊕ Z/2 is a
filtered abelian group under the Adams filtration. The generators of this group are σ 2

and κ . The subgroup F5 is zero, the subgroup F3 = F4 is generated by κ , and the subgroup
F0 = F1 = F2 is generated by σ 2 and κ .

Definition 2.3. — Let A be a filtered abelian group. The associated graded object Gr A is the

sequence

{

Gri A = FiA
Fi+1A

}p−1

i=0

of successive quotients.

If a is an element of one of the quotients Gri A, then we say that i is the filtration
of a. We will frequently refer to elements in “higher filtration” and “lower filtration”.
These comparisons refer to the numerical values of filtrations in the sense described here.

Similarly, if α is an element of FiA − Fi+1A, then we say that α has filtration i or
that α is detected in filtration i.

If a is an element of Gri A, then we write {a} for the set of elements of A that are
detected by a. In general, {a} consists of more than one element of A, unless a happens
to have highest filtration. In other words, the element a is a coset α + Fi+1A for some α

in A, and {a} is another name for this coset. In this situation, we say that a detects α.
In this manuscript, the main example of a filtered abelian group is a C-motivic

homotopy group πp,q, equipped with its Adams filtration.

Example 2.4. — Consider the C-motivic stable homotopy group π14,8 with its
Adams filtration, as described in Example 2.2. The associated graded object is non-trivial
only in degrees 2 and 4, and it is generated by h2

3 and d0 respectively.

Definition 2.5. — Let A and B be filtered abelian groups, perhaps with filtrations of different

lengths. A map f : A → B is filtration preserving if f (FiA) is contained in FiB for all i.

Let f : A → B be a filtration preserving map of filtered abelian groups. We write
Gr f : Gr A → Gr B for the induced map on associated graded objects.

Definition 2.6. — Let a and b be elements of Gri A and Grj B respectively. The element b is

the (not hidden) value of a under f if Gri f (a) = b.
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The element b is a hidden value of a under f if:

(1) Gri f (a) = 0.

(2) there exists an element α of {a} in A such that:

(a) f (α) is contained in {b} in B, and

(b) there is no element γ of A in filtration strictly higher than i such that f (γ ) is contained

in {b}.
Alternatively, condition (2b) can be restated to say that f (Fi+1) does not intersect

{b}.
The motivation for condition (2b) may not be obvious. The point is to avoid sit-

uations in which condition (2a) is satisfied trivially. Suppose that there is an element γ

such that f (γ ) is contained in {b}. Let a be any element of Gr A whose filtration is strictly
lower than the filtration of γ . Now let α be any element of {a} such that f (α) = 0. (It
may not be possible to choose such an α in general, but sometimes it is possible.) Then
α + γ is another element of {a} such that f (α + γ ) is contained in {b}. Thus f takes some
element of {a} into {b}, but only because of the presence of γ . Condition (2b) is designed
to exclude this situation.

Example 2.7. — We illustrate the role of condition (2b) in Definition 2.6 with a
specific example. Consider the map η : π14,8 → π15,9. The associated graded map Gr(η)

takes h2
3 to 0 and takes d0 to h1d0.
The coset {h2

3} in π14,8 consists of two elements σ 2 and σ 2 + κ . One of these ele-
ments is non-zero after multiplying by η. (In fact, ησ 2 equals zero, and η(σ 2 + κ) = ηκ

is non-zero, but that is not relevant here.) Conditions (1) and (2a) of Definition 2.6 are
satisfied, but condition (2b) fails because of the presence of κ in higher filtration.

Suppose that b is a hidden value of a under f . It is typically the case that f (α)

is contained in {b} for every α in A. However, an even more complicated situation can
occur in which this is not true.

Suppose that b0 is a hidden value of a0 under f , and suppose that b1 is a (hidden
or not hidden) value of a1 under f . Moreover, suppose that the filtration of a0 is strictly
lower than the filtration of a1, and the filtration of b0 is strictly higher than the filtration
of b1. In this situation, we say that the value of a0 under f crosses the value of a1 under f .

The terminology arises from the usual graphical calculus, in which elements of
higher filtration are drawn above elements of lower filtration, and values of maps are
indicated by line segments, as in Figure 2.

Example 2.8. — For any map X → Y of C-motivic spectra, naturality of the
Adams spectral sequence induces a filtration preserving map πp,qX → πp,qY. We are
often interested in inclusion S0,0 → Cτ of the bottom cell into Cτ , and in projection
Cτ → S1,−1 from Cτ to the top cell. We also consider the unit map S0,0 → mmf.
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FIG. 2. — Crossing values

2.1.1. Indeterminacy in hidden values. — Definition 2.6 allows for the possibility that
a fixed element a could have more than one hidden value under f . In order to manage
this complication, we introduce indeterminacy into our definition.

Suppose, as in Definition 2.6, that b is a hidden value of a under f , so there exists
some α in {a} such that f (α) is contained in {b}. Suppose also that there is another
element a′ in Gr A in filtration strictly higher than the filtration of a, such that f (α′) is
contained in {b′}, where α′ is in {a′} and b′ has the same filtration as b. Then b + b′ is also
a hidden value of a under f , since α + α′ is contained in {a} and f (α + α′) is contained
in {b + b′}. In this case, we say that b′ belongs to the target indeterminacy of the hidden
value.

Example 2.9. — Consider the map η : π63,33 → π64,34. The element h3Q2 is a hid-
den value of τh1H1 under this map. This hidden value has target indeterminacy gener-
ated by τh1X2 = h1 · (τX2 + τC′).

2.1.2. Hidden extensions. — Let α be an element of πa,b with Adams filtration i.
Then multiplication by α induces a map πp,q → πp+a,q+b that takes elements of Adams
filtration f to elements of Adams filtration f + i or higher. In other words, the map
πp,q → πp+a,q+b is filtration-preserving if we add i to all of the filtration values in πp,q.
A hidden value of this map (with shifted filtration values on the source) is precisely the
same as a hidden extension by α in the sense of [30, Definition 4.2]. For clarity, we repeat
the definition here.

Definition 2.10. — Let α be an element of π∗,∗ that is detected by an element a of the E∞-page

of the C-motivic Adams spectral sequence. A hidden extension by α is a pair of elements b and c of E∞
such that:

(1) ab = 0 in the E∞-page.

(2) There exists an element β of {b} such that αβ is contained in {c}.
(3) If there exists an element β ′ of {b′} such that αβ ′ is contained in {c}, then the Adams

filtration of b′ is lower than or equal to the Adams filtration of b.

A crossing value for the map α : πp,q → πp+a,q+b is precisely the same as a crossing
extension in the sense of [30, Examples 4.6 and 4.7].
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The discussion of target indeterminacy applies to the case of hidden extensions. For
example, the hidden η extension from h3Q2 to τh1H1 has target indeterminacy generated
by τh1X2.

In later sections, we will thoroughly explore hidden extensions by 2, η, and ν.
We warn the reader that a complete understanding of such hidden extensions does not
necessarily lead to a complete understanding of multiplication by 2, η, and ν in the C-
motivic stable homotopy groups.

For example, in the 45-stem, there exists an element θ4.5 that is detected by h2
3h5

such that 4θ4.5 is detected by h0h5d0. This is an example of a hidden 4 extension. However,
there is no hidden 2 extension from h0h2

3h5 to h0h5d0; condition (2b) of Definition 2.6 is
not satisfied.

In fact, a complete understanding of all hidden extensions leads to a complete
understanding of the multiplicative structure of the C-motivic stable homotopy groups,
but the process is perhaps more complicated than expected.

For example, we mentioned in Example 2.7 that either η(σ 2 + κ) or ησ 2 is non-
zero, but these cases cannot be distinguished by a study of hidden η extensions. However,
we can express that ησ 2 is zero by observing that there is no hidden σ extension from
h1h3 to h1d0.

There are even further complications. For example, the equation h3
2 + h2

1h3 = 0
does not prove that ν3 + η2σ equals zero because it could be detected in higher filtration.
In fact, this does occur. Toda’s relation [55] says that

η2σ + ν3 = ηε,

where ηε is detected by h1c0.
We can express Toda’s relation in terms of a “matric hidden extension”. We have

a map [ν η] : π6,4 ⊕ π8,5 → π9,6. The associated graded map takes (h2
2, h1h3) to zero,

but h1c0 is a hidden value of (h2
2, h1h3) under this map, in the sense of Definition 2.6.

2.2. Motivic modular forms

Over C, a “motivic modular forms” spectrum mmf has recently been constructed
[20]. From our computational perspective, mmf is a ring spectrum whose cohomology is
A//A(2), i.e., the quotient of the C-motivic Steenrod algebra by the subalgebra gener-
ated by Sq1, Sq2, and Sq4. By the usual change-of-rings isomorphism, this implies that
the homotopy groups of mmf are computed by an Adams spectral sequence whose E2-
page is the cohomology of C-motivic A(2) [28]. The Adams spectral sequence for mmf

has been completely computed [31].
By naturality, the unit map S0,0 → mmf yields a map of Adams spectral sequences.

This map allows us to transport information from the thoroughly understood spectral
sequence for mmf to the less well understood spectral sequence for S0,0. This comparison
technique is essential at many points throughout our computations.



DANIEL C. ISAKSEN, GUOZHEN WANG, ZHOULI XU

We rely on notation from [28] and [31] for the Adams spectral sequence for mmf,
except that we use a and n instead of α and ν respectively.

For the most part, the map π∗,∗ → π∗,∗mmf is detected on Adams E∞-pages. How-
ever, this map does have some hidden values.

Theorem 2.11. — Through dimension 90, Table 2 lists all hidden values of the map π∗,∗ →
π∗,∗mmf.

Proof. — Most of these hidden values follow from hidden τ extensions in the
Adams spectral sequences for S0,0 and for mmf. For example, for S0,0, there is a hidden
τ extension from h1h3g to d2

0 . For mmf, there is a hidden τ extension from cg to d2. This
implies that cg is a hidden value of h1h3g.

A few cases are slightly more difficult. The hidden values of 
h1h3 and h0h5i follow
from the Adams-Novikov spectral sequences for S0,0 and for mmf. These two values are
detected on Adams-Novikov E∞-pages in filtration 2.

Next, the hidden value on Ph2h5j follows from multiplying the hidden value on
h0h5i by d0. Finally, the hidden values on 
h2

1h3, h0h2h5i, and Ph5j follow from already
established hidden values, relying on h1 extensions and h2 extensions. �

Remark 2.12. — Through the 90-stem, there are no crossing values for the map
π∗,∗ → π∗,∗mmf. Moreover, in this range, there is only one hidden value that has target
indeterminacy. Namely, 
2h2d is the hidden value of Ph5j, with target indeterminacy
generated by τ 3
h1g2.

2.3. The cohomology of the C-motivic Steenrod algebra

We have implemented machine computations of Ext, i.e., the cohomology of the
C-motivic Steenrod algebra, in detail through the 110-stem. We take this computational
data for granted. It is depicted graphically in the chart of the E2-page shown in [33]; the
data is also available there. See [59] for a discussion of the implementation.

In addition to the additive structure of Ext, we also have complete information
about multiplications by h0, h1, h2, and h3. We do not have complete multiplicative in-
formation. Occasionally we must deduce some multiplicative information on an ad hoc
basis.

Similarly, we do not have systematic machine-generated Massey product informa-
tion about Ext. We deduce some of the necessary information about Massey products in
Section 4.

In the classical situation, Bruner has carried out extensive machine computations
of the cohomology of the classical Steenrod algebra [11]. More recently, Bruner and
Rognes have extended these computations to total degree 184 [13]. This data includes
complete primary multiplicative information, but no higher Massey product structure.
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We rely heavily on this information. Our reliance on this data is so ubiquitous that we
will not give repeated citations. Very recent work of Joey Beauvais-Feisthauer, Hood
Chatham, and Dexter Chua [6] and of Weinan Lin [42] [43] extends these machine
computations of classical Ext to significantly higher stems.

The May spectral sequence is the key tool for a conceptual computation of Ext.
See [30] for full details. In this manuscript, we use the May spectral sequence to compute
some Massey products that we need for various specific purposes; see Remark 2.26 for
more details.

For convenience, we restate the following structural theorem about a portion of
ExtC [30, Theorem 2.19].

Theorem 2.13. — There is a highly structured isomorphism from Extcl to the subalgebra of

Ext consisting of elements in degrees (s, f ,w) with s + f − 2w = 0. This isomorphism takes classical

elements of degree (s, f ) to motivic elements of degree (2s + f , f , s + f ).

2.4. Toda brackets

Toda brackets are an essential computational tool for understanding stable homo-
topy groups [38, Chapter 2] [55].

Brackets appear throughout the various stages of the computations, including in
the analysis of Adams differentials and in the resolution of hidden extensions.

It is well-known that the stable homotopy groups form a ring under the composi-
tion product. The higher Toda bracket structure is an extension of this ring structure that
is much deeper and more intricate. Our philosophy is that the stable homotopy groups
are not really understood until the Toda bracket structure is revealed.

A complete analysis of all Toda brackets (even in a range) is not a practical goal.
There are simply too many possibilities to take into account methodically, especially when
including matric Toda brackets (and possibly other more exotic non-linear types of brack-
ets). In practice, we compute only the Toda brackets that we need for our specific com-
putational purposes.

2.4.1. The Moss Convergence Theorem. — We next discuss the Moss Convergence
Theorem [50], which is the essential tool for computing Toda brackets in stable homo-
topy groups. See also [9] for a modern proof of the Moss Convergence Theorem that
applies not only in classical stable homotopy theory but also to a wide variety of stable
homotopy theories including C-motivic stable homotopy theory.

In order to state the Moss Convergence Theorem precisely, we must clarify the var-
ious types of bracket operations that arise. First, the Adams E2-page has Massey products
arising from the fact that it is the homology of the cobar complex, which is a differential
graded algebra. We typically refer to these simply as “Massey products”, although we
write “Massey products in the E2-page” for clarification when necessary.
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Next, each higher Er-page also has Massey products, since it is the homology of
the Er−1-page, which is a differential graded algebra. We always refer to these as “Massey
products in the Er-page” to avoid confusion with the more familiar Massey products in
the E2-page. This type of bracket appears only occasionally throughout the manuscript.

Beware that the higher Er-pages do not inherit Massey products from the pre-
ceding pages. For example, τh2

1 equals the Massey product 〈h0, h1, h0〉 in the E2-page.
However, in the E3-page, the bracket 〈h0, h1, h0〉 equals zero, since the product h0h1 is
already equal to zero in the E2-page before taking homology to obtain the E3-page.

On the other hand, the Massey product 〈h1, h0, h2
3〉 is not a well-defined Massey

product in the E2-page since h0h2
3 is non-zero, while 〈h1, h0, h2

3〉 in the E3-page equals h1h4

because of the differential d2(h4) = h0h2
3.

Finally, we have Toda brackets in the stable homotopy groups π∗,∗. The point of
the Moss Convergence Theorem is to relate these various kinds of brackets.

Definition 2.14. — Given r and a degree (s, f ,w), a crossing differential is a nonzero differen-

tial dr+n(x) = y in the C-motivic Adams spectral sequence such that y has degree (s, f ′,w) with f ′ > f

and x has degree (s + 1, f ′′,w) with f ′′ < f − r.

Here is the idea behind Definition 2.14. Consider the dr differential restricted to
source degree (s + 1, f − r,w) and target degree (s, f ,w). A crossing differential is a
longer differential whose source degree lies strictly “below” (s + 1, f − r,w) and whose
target degree lies strictly “above” (s, f ,w).

Remark 2.15. — In practice, we will never use Definition 2.14. Rather, we will
consider elements a and b in the Er-page of the C-motivic Adams spectral sequence such
that ab = 0. We informally call a nonzero differential

dr+nx = y

a crossing differential for the product ab if it satisfies Definition 2.14 for the degree of ab.

Figure 3 depicts the situation of a crossing differential in a chart for the Er-page.
Typically, the product ab is zero in the Er-page because it was hit by a dr−1 differential, as
shown by the dashed arrow in the figure. However, it may very well be the case that the
product ab is already zero in the Er−1-page (or even in an earlier page), in which case the
dashed dr−1 differential is actually dr−1(0) = 0.

Theorem 2.16 (Moss Convergence Theorem). — Suppose that a, b, and c are permanent cycles

in the Er -page of the C-motivic Adams spectral sequence that detect homotopy classes α, β , and γ in

π∗,∗ respectively. Suppose further that

(1) the Massey product 〈a, b, c〉 is defined in the Er -page, i.e., ab = 0 and bc = 0 in the

Er -page.
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FIG. 3. — Crossing differentials

(2) the Toda bracket 〈α,β, γ 〉 is defined in π∗,∗, i.e., αβ = 0 and βγ = 0.

(3) there are no crossing differentials for the products ab and bc in the Er -page.

Then there exists an element e contained in the Massey product 〈a, b, c〉 in the Er -page, such that

(1) the element e is a permanent cycle.

(2) the element e detects a homotopy class in the Toda bracket 〈α,β, γ 〉.

Remark 2.17. — The homotopy classes α, β , and γ are usually not unique. The
presence of elements in higher Adams filtration implies that a, b, and c detect more than
one homotopy class. Moreover, it may be the case that 〈α,β, γ 〉 is defined for only some
choices of α, β , and γ , while the Toda bracket is not defined for other choices.

Remark 2.18. — The Moss Convergence Theorem 2.16 says that a certain Massey
product 〈a, b, c〉 in the Er-page contains an element with certain properties. The theorem
does not claim that every element of 〈a, b, c〉 has these properties. In the presence of
indeterminacies, there can be elements in 〈a, b, c〉 that do not satisfy the given properties.

Remark 2.19. — Beware that the Toda bracket 〈α,β, γ 〉 may have non-zero in-
determinacy. In this case, we only know that e detects one element of the Toda bracket.
Other elements of the Toda bracket could possibly be detected by other elements of the
Adams E∞-page; these occurrences must be determined by inspection.

Remark 2.20. — In practice, one computes a Toda bracket 〈α,β, γ 〉 by first study-
ing its corresponding Massey product 〈a, b, c〉 in a certain page of the Adams spectral se-
quence. In the case that the Massey product 〈a, b, c〉 equals zero in the Er-page in Adams
filtration f , the Moss Convergence Theorem 2.16 does not imply that the Toda bracket
〈α,β, γ 〉 contains zero. Rather, the Toda bracket contains an element (possibly zero) that
is detected in Adams filtration at least f + 1.

Example 2.21. — Consider the Toda bracket 〈ν, η, ν〉. The elements h1 and h2 are
permanent cycles that detect η and ν, and the product ην is zero. We have that 〈h2, h1, h2〉
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equals h1h3, with no indeterminacy, in the E2-page. There are no crossing differentials for
the product h1h2 = 0 in the E2-page, so the Moss Convergence Theorem 2.16 implies
that h1h3 detects a homotopy class in 〈ν, η, ν〉.

Note that h1h3 detects the homotopy class ησ because h3 is a permanent cycle that
detects σ . However, we cannot conclude that ησ is contained in 〈ν, η, ν〉. The presence of
the permanent cycle c0 in higher filtration means that h1h3 detects both ησ and ησ + ε,
where ε is the unique homotopy class that is detected by c0. The Moss Convergence
Theorem 2.16 implies that either ησ or ησ +ε is contained in the Toda bracket 〈ν, η, ν〉.
In fact, ησ + ε is contained in the Toda bracket, but determining this requires further
analysis.

Example 2.22. — Consider the Toda bracket 〈σ 2,2, η〉. The elements h2
3, h0, and

h1 are permanent cycles that detect σ 2, 2, and η respectively, and the products 2σ 2 and 2η

are both zero. Due to the Adams differential d2(h4) = h0h2
3, the Massey product 〈h2

3, h0, h1〉
equals h1h4 in the E3-page, with zero indeterminacy. There are no crossing differentials for
the products h0h2

3 = 0 and h0h1 = 0 in the E3-page. The Moss Convergence Theorem 2.16
implies that h1h4 detects a homotopy class in the Toda bracket 〈σ 2,2, η〉.

The element h2
3 also detects σ 2 + κ , where κ is the unique homotopy class that is

detected by d0, and the product 2(σ 2 + κ) is zero. The Moss Convergence Theorem 2.16
also implies that h1h4 detects a homotopy class in the Toda bracket 〈σ 2 + κ,2, η〉.

Example 2.23. — Consider the Toda bracket 〈κ,2, η〉. The elements d0, h0, and h1

are permanent cycles that detect κ , 2, and η respectively, and the products 2κ and 2η are
both zero. Due to the Adams differential d3(h0h4) = h0d0, the Massey product 〈d0, h0, h1〉
equals h0h4 · h1 = 0 in Adams filtration 3 in the E4-page, with zero indeterminacy. There
are no crossing differentials for the products h0d0 = 0 and h0h1 = 0 in the E4-page. The
Moss Convergence Theorem 2.16 implies that the Toda bracket 〈κ,2, η〉 either contains
zero, or it contains a non-zero element detected in Adams filtration higher than 3.

The only possible detecting element is Pc0. There is a hidden η extension from
h3

0h4 to Pc0, so Pc0 detects an element in the indeterminacy of 〈κ,2, η〉. Consequently, the
Toda bracket is {0, ηρ15}, where ρ15 is detected by h3

0h4.

Example 2.24. — The Massey product 〈h2, h2
3, h2

0〉 equals {f0, f0 + h2
0h2h4} in the

E2-page. The elements h2, h2
3, and h2

0 are permanent cycles that detect ν, σ 2, and 4 re-
spectively, and the products νσ 2 and 4σ 2 are both zero. However, the product h2

0h2
3 has a

crossing differential d3(h0h4) = h0d0. The Moss Convergence Theorem 2.16 does not ap-
ply, and we cannot conclude anything about the Toda bracket 〈ν,σ 2,4〉. In particular, we
cannot conclude that {f0, f0 + h2

0h2h4} contains a permanent cycle. In fact, both elements
support Adams d2 differentials.
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Remark 2.25. — There is a version of the Moss Convergence Theorem 2.16
for computing fourfold Toda brackets 〈α,β, γ, δ〉 in terms of fourfold Massey products
〈a, b, c, d〉 in the Er-page. In this case, the crossing differential condition applies not only
to the products ab, bc, and cd , but also to the subbrackets 〈a, b, c〉 and 〈b, c, d〉.

Remark 2.26. — Just as the Moss Convergence Theorem 2.16 is the key tool for
computing Toda brackets with the Adams spectral sequence, the May Convergence The-
orem is the key tool for computing Massey products with the May spectral sequence. The
statement of the May Convergence Theorem is entirely analogous to the statement of
the Moss Convergence Theorem, with Adams differentials replaced by May differentials;
Adams Er-pages replaced by May Er-pages; π∗,∗ replaced by Ext; and Toda brackets
replaced by Massey products. An analogous crossing differential condition applies. See
[30, Section 2.2] [46] for more details. We will use the May Convergence Theorem to
compute various Massey products that we need for specific purposes.

2.4.2. Moss’s higher Leibniz rule. — Occasionally, we will use Moss’s higher Leibniz
rule [50], which describes how Massey products in the Er-page interact with the Adams
dr differential. This theorem is a direct generalization of the usual Leibniz rule dr(ab) =
dr(a)b + adr(b) for twofold products.

Theorem 2.27 ([50]). — Suppose that a, b, and c are elements in the Er -page of the C-motivic

Adams spectral sequence such that ab = 0, bc = 0, dr(b)a = 0, and dr(b)c = 0. Then

dr〈a, b, c〉 ⊆ 〈dr(a), b, c〉 + 〈a, dr(b), c〉 + 〈a, b, dr(c)〉,
where all brackets are computed in the Er -page.

Remark 2.28. — By the Leibniz rule, the conditions dr(b)a = 0 and dr(b)c = 0 im-
ply that dr(a)b = 0 and dr(c)b = 0. Therefore, all of the Massey products in Theorem 2.27
are well-defined.

Remark 2.29. — The Massey products in Moss’s higher Leibniz rule 2.27 may
have indeterminacies, so the statement involves an inclusion of sets, rather than an equal-
ity.

Remark 2.30. — Beware that Moss’s higher Leibniz rule 2.27 cannot be applied
to Massey products in the Er-page to study differentials in higher pages. For example,
we cannot use it to compute the d3 differential on a Massey product in the E2-page. In
fact, there are versions of the higher Leibniz rule that apply to higher differentials [37,
Theorem 8.2] [46, Theorem 4.3], but these results have strong vanishing conditions that
often do not hold in practice.
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Example 2.31. — Consider the element τ
1h2
1, which was called G in [54]. Ta-

ble 4 shows that there is an Adams differential d2(τ
1h2
1) = Mh1h3, which follows by

comparison to Cτ . To illustrate Moss’s higher Leibniz rule 2.27, we shall give an inde-
pendent derivation of this differential.

Table 3 shows that τ
1h2
1 equals the Massey product 〈h1, h0,D1〉, with no indeter-

minacy. By Moss’s higher Leibiz rule 2.27, the element d2(τ
1h2
1) is contained in

〈0, h0,D1〉 + 〈h1,0,D1〉 + 〈h1, h0, d2(D1)〉.
By inspection, the first two terms vanish. Also, Table 4 shows that d2(D1) equals h2

0h3g2.
Therefore, d2(τ
1h2

1) is contained in the bracket 〈h1, h0, h2
0h3g2〉, which equals

〈h1, h0, h2
0g2〉h3. Finally, Table 3 shows that 〈h1, h0, h2

0g2〉 equals Mh1. This shows that
d2(τ
1h2

1) equals Mh1h3.

Example 2.32. — Consider the element τ e0g in the Adams E3-page. Because of
the Adams differential d2(e0) = h2

1d0, we have that τ e0g equals 〈d0, h2
1, τ g〉 in the Adams

E3-page. The higher Leibniz rule 2.27 implies that d3(τ e0g) is contained in

〈0, h2
1, τ g〉 + 〈d0,0, τ g〉 + 〈d0, h2

2,0〉,
which equals {0, c0d2

0 }. In this case, the higher Leibniz rule 2.27 does not help to deter-
mine the value of d3(τ e0g) because the indeterminacy is too large. (In fact, d3(τ e0g) does
equal c0d2

0 , but we need a different argument.)

Example 2.33. — Lemma 5.32 shows that d3(
h2
2h6) equals h1h6d2

0 . This argument
uses that 
h2

2h6 equals 〈
h2
2, h2

5, h0〉 in the E3-page, because of the Adams differential
d2(h6) = h0h2

5.

2.4.3. Shuffling formulas for Toda brackets. — Toda brackets satisfy various types of
formal relations that we will use extensively. The most important example of such a rela-
tion is the shuffle formula

α〈β,γ, δ〉 = 〈α,β, γ 〉δ,
which holds whenever both Toda brackets are defined. Note the equality of sets here; the
indeterminacies of both expressions are the same.

The following theorem states some formal properties of threefold Toda brackets
that we will use later. We apply these results so frequently that we typically use them
without further mention.

Theorem 2.34 ([55, p. 33]). — Let α, α′, β , γ , and δ be homotopy classes in π∗,∗. Each of

the following relations involving threefold Toda brackets holds up to signs, whenever the Toda brackets are

defined:
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(1) 〈α + α′, β, γ 〉 ⊆ 〈α,β, γ 〉 + 〈α′, β, γ 〉.
(2) 〈α,β, γ 〉 = 〈γ,β,α〉.
(3) α〈β,γ, δ〉 ⊆ 〈αβ,γ, δ〉.
(4) 〈αβ,γ, δ〉 ⊆ 〈α,βγ, δ〉.
(5) α〈β,γ, δ〉 = 〈α,β, γ 〉δ.

(6) 0 ∈ 〈α,β, γ 〉 + 〈β,γ,α〉 + 〈γ,α,β〉.
(7) 0 ∈ 〈〈α,β, γ 〉, δ, ε〉 + 〈α, 〈β,γ, δ〉, ε〉 + 〈α,β, 〈γ, δ, ε〉〉.
Part (7) of Theorem 2.34 requires some further explanation. In the expression

〈〈α,β, γ 〉, δ, ε〉, we have a set 〈α,β, γ 〉 as the first input to a threefold Toda bracket.
The expression 〈〈α,β, γ 〉, δ, ε〉 is defined to be the union of all sets of the form 〈ζ, δ, ε〉,
where ζ ranges over all elements of 〈α,β, γ 〉 such that ζδ = 0. Similar remarks apply to
the other terms in Part (7).

We next turn our attention to fourfold Toda brackets. New complications arise in
this context. If αβ = 0, βγ = 0, γ δ = 0, 〈α,β, γ 〉 contains zero, and 〈β,γ, δ〉 contains
zero, then the fourfold bracket 〈α,β, γ, δ〉 is not necessarily defined. Problems can arise
when both threefold subbrackets have indeterminacy. See [29] for a careful analysis of
this problem in the analogous context of Massey products.

However, when at least one of the threefold subbrackets is strictly zero, then these
difficulties vanish. Every fourfold bracket that we use has at least one threefold subbracket
that is strictly zero.

Another complication with fourfold Toda brackets lies in the description of the
indeterminacy. If at least one threefold subbracket is strictly zero, then the indeterminacy
of 〈α,β, γ, δ〉 is the linear span of the sets 〈α,β, ε〉, 〈α, ε, δ〉, and 〈ε, γ, δ〉, where ε ranges
over all possible values in the appropriate degree for which the Toda bracket is defined.

The following theorem states some formal properties of fourfold Toda brackets that
we will use later. We apply these results so frequently that we typically use them without
further mention.

Theorem 2.35 ([38, Chapter 2]). — Let α, α′, β , γ , δ, and ε be homotopy classes in π∗,∗.

Each of the following relations involving fourfold Toda brackets holds up to sign, whenever the Toda

brackets are defined:

(1) 〈α + α′, β, γ, δ〉 ⊆ 〈α,β, γ, δ〉 + 〈α′, β, γ, δ〉.
(2) 〈α,β, γ, δ〉 = 〈δ, γ,β,α〉.
(3) α〈β,γ, δ, ε〉 ⊆ 〈αβ,γ, δ, ε〉.
(4) 〈αβ,γ, δ, ε〉 ⊆ 〈α,βγ, δ, ε〉.
(5) α〈β,γ, δ, ε〉 = 〈α,β, γ, δ〉ε.

(6) α〈β,γ, δ, ε〉 ⊆ 〈〈α,β, γ 〉, δ, ε〉.
As in Part (7) of Theorem 2.34, Part (6) of Theorem 2.35 requires some further

explanation. The expression 〈〈α,β, γ 〉, δ, ε〉 is defined to be the union of all sets of the
form 〈ζ, δ, ε〉, where ζ ranges over all elements of 〈α,β, γ 〉 such that ζδ = 0.
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We will make occasional use of matric Toda brackets. We will not describe their
shuffling properties in detail, except to observe that they obey analogous matric versions
of the properties in Theorems 2.34 and 2.35. These properties can be proved with the
same techniques that apply to matric Massey product [46]; see [37, 39] for examples of
this style of argument.

3. The algebraic Novikov spectral sequence

Consider the cofiber sequence

S0,−1
τ

S0,0
i

Cτ
p

S1,−1,

where Cτ is the cofiber of τ . The inclusion i of the bottom cell and projection p to
the top cell are tools for comparing the C-motivic Adams spectral sequence for S0,0 to
the C-motivic Adams spectral sequence for Cτ . In [30], the first author analyzed both
spectral sequences simultaneously, playing the structure of each against the other in order
to obtain more detailed information about both. Then the structure of the homotopy of
Cτ was used to reverse-engineer the structure of the classical Adams-Novikov spectral
sequence.

In this manuscript, we use Cτ in a different, much more powerful way, because
we have a deeper understanding of the connection between the homotopy of Cτ and
the structure of the classical Adams-Novikov spectral sequence. Namely, the C-motivic
spectrum Cτ is an E∞-ring spectrum [19]. Here we are referring to the classical E∞-
operad that parametrizes homotopy-coherent commutative multiplications.

Moreover, the homotopy category of Cτ -modules is equivalent to Hovey’s stable
derived category of BP∗BP-comodules [21, 41]. By considering endomorphisms of unit
objects, this comparison of homotopy categories gives a structured explanation for the
identification of the homotopy of Cτ and the classical Adams-Novikov E2-page.

From a computational perspective, there is an even better connection. Namely, the
algebraic Novikov spectral sequence for computing the Adams-Novikov E2-page [48, 51]
is identical to the C-motivic Adams spectral sequence for computing the homotopy of Cτ

[21]. This rather shocking, and incredibly powerful, identification of spectral sequences
allows us to transform purely algebraic computations directly into information about
Adams differentials for Cτ . Finally, naturality along the inclusion i of the bottom cell
and along the projection p to the top cell allows us to deduce information about Adams
differentials for S0,0.

Due to the large quantity of data, we do not explicitly describe the structure of the
Adams spectral sequence for Cτ in this manuscript. We refer the interested reader to the
charts in [34], which provide details in a graphical form.
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3.1. Naming conventions

Our naming convention for elements of the algebraic Novikov spectral sequence
(and for elements of the Adams-Novikov spectral sequence) differs from previous ap-
proaches. Our names are chosen to respect the inclusion i of the bottom cell and the pro-
jection p to the top cell. Specifically, if x is an element of the C-motivic Adams E2-page
for S0,0, then we use the same letter x to indicate its image i∗(x) in the Adams E2-page for
Cτ . It is certainly possible that i∗(x) is zero, but we will only use this convention in cases
where i∗(x) is non-zero, i.e., when x is not a multiple of τ .

On the other hand, if x is an element of the C-motivic Adams E2-page for S0,0

such that τx is zero, then we use the symbol x to indicate an element of p−1
∗ (x) in the

Adams E2-page for Cτ . There is often more than one possible choice for x, and the
indeterminacy in this choice equals the image of i∗ in the appropriate degree. We will
not usually be explicit about these choices. However, potential confusion can arise in this
context. For example, it may be the case that one choice of x supports an h1 extension,
while another choice of x supports an h2 extension, but there is no possible choice of x

that simultaneously supports both extensions. (The authors dwell on this point because
this precise issue has generated confusion about specific computations.)

3.2. Machine computations

We have analyzed the algebraic Novikov spectral sequence by computer in a large
range. Roughly speaking, our algorithm computes a Curtis table for a minimal resolu-
tion. Significant effort went into optimizing the linear algebra algorithms to complete the
computation in a reasonable amount of time. The data is available at [34]. See [59] for a
discussion of the implementation.

Our machine computations give us a full description of the additive structure of
the algebraic Novikov E2-page, together with all dr differentials for r ≥ 2. It thus yields a
full description of the additive structure of the algebraic Novikov E∞-page.

Moreover, the data also gives full information about multiplication by 2, h1, and
h2 in the Adams-Novikov E2-page for the classical sphere spectrum, which we denote by
H∗(S;BP).

We have also conducted machine computations of the Adams-Novikov E2-page
for the classical cofiber of 2, which we denote by H∗(S/2;BP). Note that H∗(S;BP) is
the homology of a differential graded algebra (i.e., the cobar complex) that is free as a
Z2-module. Therefore, H∗(S/2;BP) is the homology of this differential graded algebra
modulo 2. We have computed this homology by machine, including full information
about multiplication by h1, h2, and h3. These computations are related by a long exact
sequence

· · · H∗(S;BP)
j

H∗(S/2;BP)
q

H∗(S;BP) · · ·
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Because h2
2, h2

3, h2
4, and h2

5 are annihilated by 2 in H∗(S;BP), there are classes h̃2
2,

h̃2
3, h̃2

4, and h̃2
5 in H∗(S/2;BP) such that q(h̃2

i ) equals h2
i for 2 ≤ i ≤ 5. We also have full

information about multiplication by h̃2
2, h̃2

3, h̃2
4, and h̃2

5 in H∗(S/2;BP).
This multiplicative information allows use to determine some of the Massey prod-

uct structure in the Adams-Novikov E2-page for the sphere spectrum. There are several
cases to consider.

First, let x and y be elements of H∗(S;BP). If the product j(x)j(y) is non-zero in
H∗(S/2;BP), then xy must also be non-zero in H∗(S;BP).

In the second case, let x be an element of H∗(S;BP), and let ỹ be an element of
H∗(S/2;BP) such that q(̃y) = y. If the product x ·̃ y is non-zero in H∗(S/2;BP) and equals
j(z) for some z in H∗(S;BP), then z belongs to the Massey product 〈2, y, x〉. This fol-
lows immediately from the relationship between Massey products and the multiplicative
structure of a cofiber, as discussed in [30, Section 3.1.1].

Third, let x̃ and ỹ be elements of H∗(S/2;BP) such that q(̃x) = x, q(̃y) = y, and
q(̃x · ỹ) = z. Then z belongs to the Massey product 〈x,2, y〉 in H∗(S;BP). This follows
immediately from the multiplicative snake lemma 3.3.

Example 3.1. — Computer data shows that the product h̃2
4 · h̃2

5 does not equal zero
in H∗(S/2;BP). This implies that the Massey product 〈h2

4,2, h2
5〉 does not contain zero in

H∗(S;BP), which in turn implies that the Toda bracket 〈θ4,2, θ5〉 does not contain zero
in π93,48.

Remark 3.2. — let x̃ and ỹ be elements of H∗(S/2;BP) such that q(̃x) and q(̃y)

equal x and y, and such that x̃ · ỹ equals j(z) for some z in H∗(S;BP). It appears that z

has some relationship to the fourfold Massey product 〈2, x,2, y〉, but we have not made
this precise.

Lemma 3.3 (Multiplicative snake lemma). — Let A be a differential graded algebra that has

no 2-torsion, and let H(A) be its homology. Also let H(A/2) be the homology of A/2, and let δ :
H(A/2) → H(A) be the boundary map associated to the short exact sequence

0 A
2

A A/2 0.

Suppose that a and b are elements of H(A/2) such that 2δ(a) = 0 and 2δ(b) = 0 in H(A). Then

the Massey product 〈δ(a),2, δ(b)〉 in H(A) contains δ(ab).

Proof. — We carry out a diagram chase in the spirit of the snake lemma. Write ∂

for the boundary operators in A and A/2.
Let x and y be cycles in A/2 that represent a and b respectively. Let x′ and y′ be

elements in A that reduce to x and y. Then ∂x′ and ∂y′ reduce to zero in A/2 because x

and y are cycles. Therefore, ∂x′ = 2̃x and ∂y′ = 2̃y for some x̃ and ỹ in A.
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By definition of the boundary map, δ(a) and δ(b) are represented by x̃ and ỹ. By
the definition of Massey products, the cycle x̃y′ + x′̃y is contained in 〈δ(a),2, δ(b)〉.

Now we compute δ(ab). Note that x′y′ is an element of A that reduces to ab. Then

∂(x′y′) = ∂(x′)y′ + x′∂(y′) = 2(̃xy′ + x′̃y).

This shows that δ(ab) is represented by x̃y′ + x′̃y. �

3.3. h1-Bockstein spectral sequence

The charts in [34] show graphically the algebraic Novikov spectral sequence, i.e.,
the Adams spectral sequence for Cτ . Essentially all of the information in the charts can be
read off from machine-generated data. This includes hidden extensions in the E∞-page.

One aspect of these charts requires further explanation. The C-motivic Adams E2-
page for Cτ contains a large number of h1-periodic elements, i.e., elements that support
infinitely many h1 multiplications. The behavior of these elements is entirely understood
[22], at least up to many multiplications by h1, i.e., in an h1-periodic sense.

On the other hand, it takes some work to “delocalize” this information. For exam-
ple, we can immediately deduce from [22] that d2(h

k
1e0) = hk+2

1 d0 for large values of k, but
that does not necessarily determine the behavior of Adams differentials for small values
of k.

The behavior of these elements is a bit subtle in another sense, as illustrated by
Example 3.4.

Example 3.4. — Consider the h1-periodic element c0e0 in the algebraic Novikov
spectral sequence. Machine computations tell us that this element supports a d2 differen-
tial, but there is more than one possible value for d2(c0e0) because of the presence of both
h2

1c0d0 and Pe0.
In fact, d2(c0d0) equals Pd0, and d2(Pe0) equals Ph2

1d0. Therefore, Pe0 + h2
1c0d0 is the

only non-zero d2 cycle, and it follows that d2(c0e0) must equal Pe0 + h2
1c0d0.

The careful reader will note that d2(c0e0) is not shown on the algebraic Novikov
chart in [34]. As discussed in [34, Section 4], the h1-periodic differentials are not shown
for legibility. Instead, the differential is shown in the h1-Bockstein spectral sequence chart
of [34], up to higher powers of h1.

In higher stems, it becomes more and more difficult to determine the exact val-
ues of the Adams d2 differentials on h1-periodic classes. Eventually, these complications
become unmanageable because they involve sums of many monomials.

Fortunately, we only need concern ourselves with the Adams d2 differential in this
context. The h1-periodic E3-page equals the h1-periodic E∞-page, and the only non-zero
classes are well-understood v1-periodic families running along the top of the Adams chart.
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Our solution to this problem, as usual, is to introduce a filtration that hides the
higher order terms. In this case, we filter by powers of h1. The effect is that terms involving
higher powers of h1 are ignored, and the formulas become much more manageable.

This h1-Bockstein spectral sequence starts with an E0-page, because there are some
differentials that do not increase h1 divisibility. For example, we have Bockstein differen-
tials d0(h

2
1e0) = h4

1d0 and d0(c0d0) = Pd0, reflecting the Adams differentials d2(h
2
1e0) = h4

1d0

and d2(c0d0) = Pd0.
There are also plenty of higher h1-Bockstein differentials, such as d2(e0) = h2

1d0, and
d7(e

2
0g) = Mh8

1.

Remark 3.5. — Beware that filtering by powers of h1 changes the multiplicative
structure in perhaps unexpected ways. For example, Ph1 and d0 are not h1-multiples, so
their h1-Bockstein filtration is zero. One might expect their product to be Ph1d0, but the
h1-Bockstein filtration of this element is 1. Therefore, Ph1 · d0 equals 0 in the h1-Bockstein
spectral sequence.

But not all Ph1 multiplications are trivial in the h1-Bockstein spectral sequence.
For example, we have Ph1 · c0d0 = Ph1c0d0 because the h1-Bockstein filtrations of all three
elements are zero.

In Example 3.4, we explained that there is an Adams differential d2(c0e0) = Pe0 +
h2

1c0d0. When we throw out higher powers of h1, we obtain the h1-Bockstein differential
d0(c0e0) = Pe0. We also have an h1-Bockstein differential d0(c0d0) = Pd0.

The first four charts in [34] show graphically how this h1-Bockstein spectral se-
quence plays out in practice. The main point is that the h1-Bockstein E∞-page reveals
which (formerly) h1-periodic classes contribute to the Adams E3-page for Cτ .

4. Massey products

The purpose of this section is to provide some general tools, and to give some
specific computations, of Massey products in Ext. This material contributes to Table 3,
which lists a number of Massey products in Ext that we need for various specific purposes.
Most commonly, these Massey products yield information about Toda brackets via the
Moss Convergence Theorem 2.16.

We begin with a C-motivic version of a classical theorem of Adams about symmet-
ric Massey products.

Theorem 4.1.

(1) If h0x is zero, then 〈h0, x, h0〉 contains τh1x.

(2) If n ≥ 1 and hnx is zero, then 〈hn, x, hn〉 contains hn+1x.
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Proof. — The element Sq0(hn)x is contained in 〈hn, x, hn〉 [25], where Sq0 is an al-
gebraic Steenrod operation [47]. We compute that Sq0(h0) equals τh1 and Sq0(hn) equals
hn+1 for n ≥ 1. These motivic computations follow from the analogous classical computa-
tions [1, Lemma 2.5.4]. �

Remark 4.2. — The two parts of Theorem 4.1 are less different than they appear.
Because of the specific values of the motivic weights, we have a factor of τ in Sq0(h0),
while no τ appears in Sq0(hn) for n ≥ 1.

4.1. The operator g

The projection map p : A∗ → A(2)∗ induces a map p∗ : ExtC → ExtA(2). Because
ExtA(2) is completely known [28], this map is useful for detecting structure in ExtC. Propo-
sition 4.3 provides a tool for using p∗ to compute certain types of Massey products.

Proposition 4.3. — Let x be an element of ExtC such that h4
1x = 0. Then p∗

(〈h4, h4
1, x〉)

equals the element gp∗(x) in ExtA(2).

Proof. — The idea of the proof is essentially the same as in [32, Proposition 3.1].
The ExtC-module ExtA(2) is a “Toda module”, in the sense that Massey products 〈x, a, b〉
are defined for all x in ExtA(2) and all a and b in ExtC such that x · a = 0 and ab = 0. In
particular, the bracket 〈1, h4, h4

1〉 is defined in ExtA(2). We wish to compute this bracket.
We use the May Convergence Theorem in order to compute the bracket. The

crossing differentials condition on the theorem is satisfied because there are no possible
differentials that could interfere.

The key point is the May differential d4(b
2
21) = h4

1h4. This shows that g is contained
in 〈1, h4, h4

1〉. Also, the bracket has no indeterminacy by inspection.
Now suppose that x is an element of ExtC such that h4

1x = 0. Then

p∗
(〈h4, h4

1, x〉) = 1 · 〈h4, h4
1, x〉 = 〈1, h4, h4

1〉 · x = gp∗(x). �

Example 4.4. — We illustrate the practical usefulness of Proposition 4.3 with a
specific example. Consider the Massey product 〈h3

1h4, h1, h2〉. The proposition says that

p∗
(〈h3

1h4, h1, h2〉
) = h2g

in ExtA(2). This implies that 〈h3
1h4, h1, h2〉 equals h2g in ExtC.

Remark 4.5. — The Massey product computation in Example 4.4 is in relatively
low dimension, and it can be computed using other more direct methods. Table 3 lists
additional examples, including some that cannot be determined by more elementary
methods.
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4.2. The Mahowald operator

We recall some results from [32] about the Mahowald operator. The Mahowald
operator is defined to be Mx = 〈x, h3

0, g2〉 for all x such that h3
0x equals zero. As always,

one must be cautious about indeterminacy in Mx.
There exists a subalgebra B of the C-motivic Steenrod algebra whose cohomology

ExtB(M2,M2) equals M2[v3]⊗M2 ExtA(2). The inclusion of B into the C-motivic Steenrod
algebra induces a map p∗ : ExtC → ExtB.

Proposition 4.6 ([32, Theorem 1.1]). — The map p∗ : ExtC → ExtB takes Mx to the product

(e0v
2
3 + h3

1v
3
3)p∗(x), whenever Mx is defined.

Proposition 4.6 is useful in practice for detecting certain Massey products of the
form 〈x, h3

0, g2〉. For example, if x is an element of ExtC such that h3
0x equals zero and

e0p∗(x) is non-zero in ExtA(2), then 〈x, h3
0, g2〉 is non-zero.

Example 4.7. — Proposition 4.6 shows that 〈h1, h0, h2
0g2〉 is non-zero. There is only

one non-zero element in the appropriate degree, so we have identified the Massey prod-
uct. We give this element the name Mh1.

Example 4.8. — Expanding on Example 4.7, Proposition 4.6 also shows that
〈Mh1, h0, h2

0g2〉 is non-zero. Again, there is only one non-zero element in the appropri-
ate degree, so we have identified the Massey product. We give this element the name
M2h1.

4.3. Additional computations

Lemma 4.9. — (66,6,36) The Massey product 〈h2
1, h2

4, h2
1, h2

4〉 equals 
1h2
3.

Proof. — Table 3 shows that 
h2
2 equals the Massey product 〈h2

0, h2
3, h2

0, h2
3〉. Re-

call the isomorphism between classical Ext groups and C-motivic Ext groups in degrees
satisfying s + f − 2w = 0, as described in Theorem 2.13. This shows that 
1h2

3 equals
〈h2

1, h2
4, h2

1, h2
4〉. �

Lemma 4.10. — (66,7,35) The Massey product 〈A′, h1, h2〉 equals τG0.

Proof. — Consider the shuffle

A′〈h1, h2, h1〉 = 〈A′, h1, h2〉h1.

Table 3 shows that the left side equals h2
2A′, which equals h1 · τG0. This implies that

〈A′, h1, h2〉 contains τG0.
The indeterminacy is zero by inspection. �
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Lemma 4.11. — (71,13,40) The Massey product 〈h3
1h4, h1, τ gn〉 equals τ g2n, with inde-

terminacy generated by Mh0h2
2g.

Proof. — We start by analyzing the indeterminacy. The product Mc0 · h3
1h4 equals

〈g2, h3
0, c0〉h3

1h4 = 〈g2, h3
0, h3

1h4c0〉 = 〈g2, h3
0, h0h2 · h2g〉 = 〈g2, h3

0, h2g〉h0h2,

which equals Mh0h2
2g. The equalities hold because the indeterminacies are zero, and the

first and last brackets in this computation are given by Table 3. This shows that Mh0h2
2g

belongs to the indeterminacy.
Table 3 shows that

〈h2, h3
1h4, h1〉 = 〈h2, h1, h3

1h4〉
equals h2g. Then

h2〈h3
1h4, h1, τ gn〉 = 〈h2, h3

1h4, h1〉τ gn = τh2g2n.

This implies that 〈h3
1h4, h1, τ gn〉 contains either τ g2n or 
h3g2. However, the shuffle

h1〈h3
1h4, h1, τ gn〉 = 〈h1, h3

1h4, h1〉τ gn = 0

eliminates 
h3g2. �

Lemma 4.12. — (80,5,42) The Massey product 〈h3, p′, h2〉 equals h0e2, with no indeter-

minacy.

Proof. — We have

〈h3, p′, h2〉h2
4 = h3〈p′, h2, h2

4〉 = p′〈h2, h2
4, h3〉.

Table 3 shows that the last Massey product equals c2. Observe that p′c2 equals h0h2
4e2.

Since h2
4 · h6e0 is zero (as usual, we rely on complete information about classical

products in a large range [11, 13]), this shows that 〈h3, p′, h2〉 equals either h0e2 or h0e2 +
h6e0. However, shuffle to obtain

〈h3, p′, h2〉h1 = h3〈p′, h2, h1〉,
which must equal zero because multiplication by h3 is zero in the appropriate degree.
Since h1(h0e2 + h6e0) is non-zero, it cannot equal 〈h3, p′, h2〉.

The indeterminacy is zero by inspection. �

Remark 4.13. — The Massey product of Lemma 4.11 cannot be established with
Proposition 4.3 because p∗(τ gn) = 0 in ExtA(2).
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Lemma 4.14. — (82,12,45) The Massey product 〈
e1 + C0, h3
1, h1h4〉 equals (
e1 +

C0)g, with no indeterminacy.

Proof. — Consider the Massey product 〈τ(
e1 + C0), h4
1, h4〉. By inspection, this

Massey product has no indeterminacy. Therefore,

〈τ(
e1 + C0), h4
1, h4〉 = (
e1 + C0)〈τ, h4

1, h4〉.
Table 3 shows that the latter bracket equals τ g, so the expression equals τ(
e1 + C0)g.

On the other hand, it also equals τ 〈
e1 + C0, h3
1, h1h4〉. Therefore, the bracket

〈
e1 + C0, h3
1, h1h4〉 must contain (
e1 + C0)g. Finally, the indeterminacy can be com-

puted by inspection. �

Lemma 4.15. — (93,13,49) The Massey product 〈τ 3gG0, h0h2, h2〉 has indeterminacy

generated by τM2h2, and it either contains zero or τ e0x76,9. In particular, it does not contain any linear

combination of 
2h1g2 with other elements.

Proof. — The indeterminacy can be computed by inspection.
The only possible elements in the Massey product 〈τ 2gG0, h0h2, h2〉 are linear com-

binations of e0x76,9 and M2h2. The inclusion

τ 〈τ 2gG0, h0h2, h2〉 ⊆ 〈τ 3gG0, h0h2, h2〉
gives the desired result. �

5. Adams differentials

The goal of this section is to describe the values of the Adams differentials in the
motivic Adams spectral sequence. These values are given in Tables 4, 6, 7, 8, and 9. See
also the Adams charts in [33] for a graphical representation of the computations. For
easy reference, the many lemmas in this section are labelled with degrees that match the
degrees given in the tables.

5.1. The Adams d2 differential

Table 4 lists all of the multiplicative generators of the Adams E2-page through
the 95-stem. The third column indicates the value of the d2 differential, if it is non-zero.
A blank entry in the third column indicates that the d2 differential is zero. The fourth
column indicates the proof. A blank entry in the fourth column indicates that there are
no possible values for the differential. The fifth column gives alternative names for the
element, as used in [11, 54], and [30].
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Theorem 5.1. — Table 4 lists the values of the Adams d2 differential on all multiplicative

generators through the 95-stem.

Remark 5.2. — A previous version of this manuscript left uncertain the value of
d2 on three multiplicative generators. These three values have since been determined by
Dexter Chua [17]. We have included those values here, but we defer to [17] and [4] for
their proofs. Also, we are grateful to Joey Beauvais-Feisthauer [4] for discovering an error
in our previous calculation of d2(x85,6).

Proof. — The fourth column of Table 4 gives information on the proof of each
differential. Most follow immediately by comparison to the Adams spectral sequence
for Cτ [34]. A few additional differentials follow by comparison to the classical Adams
spectral sequence for tmf [14].

If an element is listed in the fourth column of Table 4, then the corresponding dif-
ferential can be deduced from a straightforward argument using a multiplicative relation.
For example, it is possible that d2(
h1h3) equals τd0e0. However, h0 · 
h1h3 is zero, while
h0 · τd0e0 is non-zero. Therefore, d2(
h1h3) must equal zero.

In some cases, it is necessary to combine these different techniques to establish the
differential.

The remaining more difficult computations are carried out in the following lem-
mas. We refer to [17] and [4] in a few cases. �

Lemma 5.3. — (61,9,32) d2(
x) = h2
0B4 + τMh1d0.

Proof. — We have a differential d2(
x) = h2
0B4 in the Adams spectral sequence for

Cτ . Therefore, d2(
x) equals either h2
0B4 or h2

0B4 + τMh1d0.
We have the relation h2

1 · 
x = Ph1 · τ
1h2
1 (as usual, we rely on complete infor-

mation about classical products in a large range [11, 13]), so h2
1d2(
x) = Ph1d2(τ
1h2

1) =
Ph1h3 · Mh1 = τMh3

1d0. Therefore, d2(
x) must equal h2
0B4 + τMh1d0. �

Remark 5.4. — The proof of [30, Lemma 3.50] is incorrect. We claimed that h2
1 ·


x equals h3 · 
2h1h3, when in fact h2
1 · 
x equals τh3 · 
2h1h3.

Lemma 5.5. — (77,7,40) d2(x77,7) = τMh1h2
4.

The following proof was suggested to us by Dexter Chua.

Proof. — This follows from the interaction between algebraic squaring operations
and classical Adams differentials [10, Theorem 2.2], applied to the element x in the 37-
stem. The theorem says that

d∗ Sq2 x = Sq3 d2x � h0 Sq3 x.
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The notation means that there is an Adams differential on Sq2 x hitting either Sq3 d2x = 0
or h0 Sq3 x, depending on which element has lower Adams filtration. Therefore d2 Sq2 x =
h0 Sq3 x.

Next, observe from [12] that Sq3 x = h2
0x76,6 + τ 2d1g2, so

h0 Sq3 x = h3
0x76,6 = τMh1h2

4.

Therefore, there is a d2 differential whose value is τMh1h2
4, and the possibility is that

d2(x77,7) equals τMh1h2
4. �

Lemma 5.6. — (86,14,47) d2(τB5g) = τMh2
0g2.

Proof. — We use the Mahowald operator methods of Section 4.2. According to
[32, Table 1], the map p∗ : ExtC → ExtB takes d0 · τB5g to τh0ag3v2

3 , which is non-zero.
We deduce that the product d0 · τB5g is non-zero in Ext. By inspection of motivic weights,
the only possibility is that it equals τMg · h0m.

Now d2(τMg · h0m) equals τMg · h2
0e2

0, which we also know is non-zero since it maps
to the non-zero element τh2

0deg2v2
3 of ExtB by [32, Theorem 1]. It follows that d2(τB5g) is

non-zero. By inspection of motivic weights, the only possibility is τMh2
0g2. �

5.2. The Adams d3 differential

Table 6 lists the multiplicative generators of the Adams E3-page through the 95-
stem whose d3 differentials are non-zero, or whose d3 differentials are zero for non-obvious
reasons.

Theorem 5.7. — Table 6 lists some values of the Adams d3 differential on multiplicative gener-

ators. Through the 95-stem, the Adams d3 differential is zero on all multiplicative generators not listed in

the table.

Remark 5.8. — A previous version of this manuscript left uncertain the value of d3

on several multiplicative generators. These values have since been determined by Dexter
Chua [17]. We have included those values here, but we defer to [17] for their proofs.
We are also grateful to Dexter Chua for correcting a few mistakes in the values of the d3

differential.

Proof. — The d3 differential on many multiplicative generators is zero. A few of
these multiplicative generators appear in Table 6 because their proofs require further
explanation. For the remaining majority of such multiplicative generators, the d3 differ-
ential is zero because there are no possible non-zero values, because of comparison to
the Adams spectral sequence for Cτ , or because the element is already known to be a
permanent cycle as shown in Table 5. These cases do not appear in Table 6.
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The last column of Table 6 gives information on the proof of each differential.
Most follow immediately by comparison to the Adams spectral sequence for Cτ . A few
additional differentials follow by comparison to the classical Adams spectral sequence for
tmf, or by comparison to the C-motivic Adams spectral sequence for mmf.

If an element is listed in the last column of Table 6, then the corresponding differ-
ential can be deduced from a straightforward argument using a multiplicative relation.
For example,

d3(h1 · τPd0e0) = Ph1 · d3(τd0e0) = P2h1c0d0,

so d3(τPd0e0) must equal P2c0d0.
If a d4 differential is listed in the last column of Table 6, then the corresponding

differential is forced by consistency with that later differential. In each case, a d3 differen-
tial on an element x is forced by the existence of a later d4 differential on τx. For example,
Table 7 shows that there is a differential d4(τ

2e0g) = Pd2
0 . Therefore, τ e0g cannot survive

to the E4-page. It follows that d3(τ e0g) = c0d2
0 .

In some cases, it is necessary to combine these different techniques to establish the
differential.

The remaining more difficult computations are carried out in the following lem-
mas. We refer to [17] in a few cases. �

Proposition 5.9. — Some permanent cycles in the C-motivic Adams spectral sequence are shown

in Table 5.

Proof. — The third column of the table gives information on the proof for each
element. If a Toda bracket is given in the third column, then the Moss Convergence
Theorem 2.16 implies that the element must survive to detect that Toda bracket (see
Table 10 for more information on how each Toda bracket is computed). If a product
is given in the third column, then the element must survive to detect that product (see
Table 24 for more information on how each product is computed). In a few cases, the
third column refers to a specific lemma that gives a more detailed argument. �

Lemma 5.10.

(1) (34,2,18) d3(h2h5) = τh1d1.

(2) (74,6,38) d3(Ph2h6) = τh1h4Q2.

Proof. — In the Adams spectral sequence for Cτ , there is an η extension from h2h5

to h2
1d1. The element h2

1d1 maps to h2
1d1 under projection from Cτ to the top cell, so h2h5

must also map non-trivially under projection from Cτ to the top cell. The only possibility
is that h2h5 maps to h1d1. Therefore, τh1d1 must be hit by a differential. This establishes
the first differential.
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The proof for the second differential is identical, using that there is an η extension
from Ph2h6 to h2

1h4Q2 in the Adams spectral sequence for Cτ . �

Lemma 5.11. — (54,6,28) d3(τ
2
1h2

1) = τMc0.

Proof. — The element MP maps to zero under inclusion of the bottom cell into Cτ .
Therefore, MP is either hit by a differential, or it is the target of a hidden τ extension. If
it is the target of a hidden τ extension, then the only possibility is that τMc0 is zero in the
E∞-page, and that there is a hidden τ extension from Mc0 to MP.

It remains to show that MP cannot be hit by a differential. The only possibility is
that d4(τ

2
1h2
1) might equal MP. Note that Ph1 · τ 2
1h2

1 equals h1(τh1 · 
x) in the E4-
page. This means that d4(Ph1 · τ 2
1h2

1) cannot equal MP2h1 since MP2h1 is not divisible
by h1. In turn, d4(τ

2
1h2
1) cannot equal MP. �

Lemma 5.12. — (68,11,35) d3(τh3
0 · 
g2) = τ 3
h2

2e0g.

Proof. — Table 2 shows that the element h0h5i maps to 
2h2
2 in the Adams spectral

sequence for tmf.
Now 
2h2

2d0 is not zero and not divisible by 2 in tmf. Therefore, κ{h0h5i} must be
non-zero and not divisible by 2 in π68,36. The only possibility is that κ{h0h5i} is detected
by Ph2h5j = d0 · h0h5i, and that Ph2h5j is not an h0 multiple in the E∞-page. Therefore,
τ
g2 · h3

0 cannot survive to the E∞-page. �

Lemma 5.13. — (69,8,36) d3(τD′
3) = τ 2Mh2g.

Proof. — Table 10 shows that the Toda bracket 〈2,8σ,2, σ 2〉 contains τνκ , which
is detected by τ 2h2g. Table 21 shows that Mh2 detects να for some α in π45,24 detected by
h2

3h5. (Beware that there is a crossing extension, Mh2 does not detect να for every α that
is detected by h2

3h5.) It follows that τ 2Mh2g detects 〈2,8σ,2, σ 2〉α.
This expression is contained in 〈2,8σ, 〈2, σ 2, α〉〉. Lemma 6.15 shows that the

inner bracket equals {0,2τκ3}.
The Toda bracket 〈2,8σ,0〉 in π68,36 consists entirely of multiples of 2. The Toda

bracket 〈2,8σ,2τκ3〉 contains 〈2,8σ,2〉τκ3. This last expression equals zero because

〈2,8σ,2〉 = τη · 8σ = 0

by Corollary 6.2. Therefore, 〈2,8σ,2τκ3〉 equals its indeterminacy, which consists en-
tirely of multiples of 2 in π68,36.

We conclude that τ 2Mh2g is either hit by a differential, or is the target of a hidden
2 extension. Lemma 7.23 shows that there is no hidden 2 extension from h3A′ to τ 2Mh2g,
and there are no other possible extensions to τ 2Mh2g.

Therefore, τ 2Mh2g must be hit by a differential, and the only possible source of this
differential is τD′

3. �
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Lemma 5.14. — (77,14,40) d3(τ
2Mh0l) = 
2h0d2

0 .

Proof. — Table 7 shows that d4(τ
2d0e0 + h7

0h5) equals P2d0, so d4(τ
3Mh1d0e0) equals

τMP2h1d0. We have the relation h0 · τ 2Mh0l = τ 3Mh1d0e0, but the element τMP2h1d0 is
not divisible by h0. Therefore, τ 2Mh0l cannot survive to the E4-page.

By comparison to the Adams spectral sequence for tmf, the value of d3(τ
2Mh0l)

cannot be τ 3
h1e3
0 +
2h0d2

0 or τ 3
h1e3
0. The only remaining possibility is that d3(τ

2Mh0l)

equals 
2h0d2
0 . �

Lemma 5.15. — (78,13,40) d3(h
3
0x78,10) = τ 6e0g3.

Proof. — Suppose that h3
0x78,10 were a permanent cycle. Then it would map under

inclusion of the bottom cell to the element h3
0x78,10 in the Adams E∞-page for Cτ .

There is a hidden ν extension from h3
0x78,10 to 
3h2

1h3 in the Adams E∞-page for
Cτ . Then 
3h2

1h3 would also have to be in the image of inclusion of the bottom cell. The
only possible pre-image is the element 
3h2

1h3 in the Adams spectral sequence for the
sphere, but this element does not survive by Lemma 5.47.

By contradiction, we have shown that h3
0x78,10 must support a differential. The only

possibility is that d3(h
3
0x78,10) equals τ 6e0g3. �

Lemma 5.16. — (79,5,42) d3(x1) = τh1m1.

Proof. — This follows from the interaction between algebraic squaring operations
and classical Adams differentials [10, Theorem 2.2]. The theorem says that

d∗ Sq1 e1 = Sq3 d3e1 � h1 Sq3 e1.

The notation means that there is an Adams differential on Sq1 e1 hitting either Sq3 d3e1 or
h1 Sq3 e1, depending on which element has lower Adams filtration. Therefore d3 Sq1 e1 =
h1 Sq3 e1.

Finally, we observe from [12] that Sq1 e1 = x1 and Sq3 e1 = m1. �

Lemma 5.17. — (80,12,42) The element 
2d1 is a permanent cycle.

Proof. — The element 
2d1 in the Adams E∞-page for Cτ must map to zero under
the projection from Cτ to the top cell. The only possible value in sufficiently high filtra-
tion is τ 2
h1e2

0g. However, comparison to mmf shows that this element is not annihilated
by τ , and therefore cannot be in the image of projection to the top cell.

Therefore, 
2d1 must be in the image of the inclusion of the bottom cell into Cτ .
The element 
2d1 is the only possible pre-image in the Adams E∞-page for the sphere in
sufficiently low filtration. �
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Lemma 5.18. — (80,14,41) d3(

3h1h3) equals either τ 4
h1e2

0g, τ
2h0d0e0, or

τ 4
h1e2
0g + τ
2h0d0e0; and it is not equal to d3(τ

2d0B5).

Proof. — There is a relation Ph1 ·
3h1h3 = τ
3h3
1d0 in the Adams E2-page. Because

of the differential d2(

3h1e0) = 
3h3

1d0 + τ 5e2
0gm, we have the relation Ph1 · 
3h1h3 =

τ 6e2
0gm in the E3-page.

There is a differential d4(τ
6e2

0gm) = τ 4d4
0 l. But τ 4d4

0 l is not divisible by Ph1, so
τ 6e2

0gm cannot be divisible by Ph1 in the E4-page. Therefore, d3(

3h1h3) must be non-

zero.
The same argument shows that d3(


3h1h3 + τ 3d0B5) must also be non-zero. �

Remark 5.19. — In fact, Chua has determined that d3(

3h1h3) equals τ 4
h1e2

0g

[17].

Lemma 5.20. — (80,14,42) d3(τ
2d0B5) equals either 
2h0d0e0 or 
2h0d0e0 +

τ 3
h1e2
0g.

Proof. — The element 
2h0d0e0 is a permanent cycle because there are no possible
differentials that it could support. Moreover, it must map to zero under the inclusion of
the bottom cell into Cτ because there are no elements in the Adams E∞-page for Cτ of
sufficiently high filtration. Therefore, 
2h0d0e0 is either hit by a differential, or it is the
target of a hidden τ extension, or it is the target of a non-hidden τ extension.

The only possible hidden τ extension has source h3
1x76,6. However, Table 13 shows

that h3
1x76,6 is in the image of projection from Cτ to the top cell. Therefore, it cannot

support a hidden extension.
We now know that 
2h0d0e0 must be hit by a differential, or it is τ -divisible in

the E∞-page. Lemma 5.17 rules out one possible source for the differential. The only
remaining possibilities are that d3(τ

2d0B5) equals 
2h0d0e0 or 
2h0d0e0 + τ 3
h1e2
0g. �

Remark 5.21. — We are grateful to Dexter Chua for pointing out an error in a pre-
vious version of Lemma 5.20. In fact, Chua has determined that the value of d3(τ

2d0B5)

is 
2h0d0e0 + τ 3
h1e2
0g [17].

Lemma 5.22.

(1) (81,3,42) d3(h2h4h6) = 0.

(2) (82,10,42) d3(P2h2h6) = 0.

Proof. — The value of d3(h2h4h6) is not h2h6d0 nor h2h6d0 + τh1x1 by comparison to
the Adams spectral sequence for Cτ .

It remains to show that d3(h2h4h6) cannot equal τh1x1. Suppose that the differential
did occur. Then there would be no possible targets for a hidden τ extension on h1x1, so
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the η extension from h1x1 to h2
1x1 would be detected by projection from Cτ to the top cell.

But there is no such η extension in the homotopy groups of Cτ . This establishes the first
formula.

The proof of the second formula is essentially the same, using that the η extension
from 
2h1d1 to 
2h2

1d1 cannot be detected by projection from Cτ to the top cell. �

Lemma 5.23. — (81,12,42) d3(

2p) = 0.

Proof. — Suppose that d3(

2p) were equal to τ 3h1Me2

0. In the Adams E4-page,
the Massey product 〈τ 2Mg, τh1d0, d0〉 would equal τ 2M
h2

2g, with no indeterminacy,
because of the Adams differential d3(
h2

2) = τh1d2
0 and because d0 · 
2p = 0. By Moss’s

higher Leibniz rule 2.27, d4(τ
2M
h2

2g) would be a linear combination of multiples of
τ 2Mg and d0. But Table 7 shows that d4(τ

2M
h2
2g) equals MP
h2

0e0, which is not such a
linear combination in the Adams E4-page. �

Lemma 5.24. — (83,5,43) d3(τh6g + τh2e2) = 0.

Proof. — In the Adams E3-page, we have the matric Massey product

τh6g + τh2e2 =
〈
[
τ g τh2

]
,

[
h2

5
x1

]

, h0

〉

because of the Adams differentials d2(h6) = h0h2
5 and d2(e2) = h0x1, as well as the rela-

tion τ g · h2
5 + τh2x1 in the Adams E2-page. Moss’s higher Leibniz rule 2.27 implies that

d3(τh6g + τh2e2) belongs to
〈

[0 0] ,

[
h2

5
x1

]

, h0

〉

+
〈

[τ g τh2] ,

[
0

τh1m1

]

, h0

〉

+
〈

[τ g τh2] ,

[
h2

5
x1

]

,0
〉

since d3(x1) = τh1m1, where the Massey products are formed in the Adams E3-page using

the d2 differential. This expression simplifies to
〈

[τ g τh2] ,

[
0

τh1m1

]

, h0

〉

, which equals

{0, τh2
0h4Q3}.
Table 21 shows that there is a hidden ν extension from h2

0h4Q3 to Ph1x76,6. The
element τPh1x76,6 is non-zero in the Adams E∞-page. Therefore, h2

0h4Q3 supports a (hid-
den or not hidden) τ extension whose target is in Adams filtration at most 10. The only
possibility is that τh2

0h4Q3 is non-zero in the Adams E∞-page. �

Lemma 5.25. — (84,4,44) d3(f2) = τh1h4Q3.

Proof. — Table 21 shows that τh1Q3 detects ν2θ5, and Table 10 shows that τh1h4Q3

detects 〈ν2θ5,2, σ 2〉, with indeterminacy in strictly higher Adams filtration. This bracket
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contains ν2〈θ5,2, σ 〉, so τh1h4Q3 detects a multiple of ν2. The only possibility is that
τh1h4Q3 is a multiple of h2

2 in the E∞-page. This implies that d3(f2) equals τh1h4Q3 or
τh1h4Q3 + h2

0h6g. The latter possibility is ruled out by comparison to Cτ . �

Lemma 5.26. — (85,6,45) d3(τx85,6 + h3
0c3) = 0.

Proof. — Let α be an element of π66,35 that is detected by τh2C′. Then να is de-
tected by τh2

2C′, and τνα is zero.
Let α be an element of π70,36Cτ that is detected by h2

0h3h6. Projection from Cτ to
the top cell takes α to να. Moreover, in the homotopy of Cτ , the Toda bracket 〈2, σ 2, α〉
is detected by h3

0c3.
Now projection from Cτ to the top cell takes 〈2, σ 2, α〉 to 〈2, σ 2, να〉, which equals

zero by Lemma 6.28. Therefore, h3
0c3 maps to zero under projection to the top cell of Cτ ,

so it must be in the image of inclusion of the bottom cell.
There are two possibilities. First, τx85,6 + h3

0c3 could survive, and it could map
to h3

0c3 under inclusion of the bottom cell of Cτ . Second, τh1f2 could map to h3
0c3 un-

der inclusion of the bottom cell. This could only occur if d10(h1f2) equaled M
h1d0 and
d9(τx85,6 + h3

0c3) equaled τM
h1d0.
In either case, d3(τx85,6 + h3

0c3) is zero. �

Remark 5.27. — In the proof of Lemma 5.26, we have used that d5(τp1 + h2
0h3h6)

equals τ 2h2
2C′ in order to conclude that τνα is zero. This differential depends on work in

preparation [16].
However, we can also prove Lemma 5.26 independently of [16]. Lemma 5.61

shows that the other possible value of d5(τp1 + h2
0h3h6) is τ 2h2

2C′ + τh3(
e1 + C0). In
this case, let β be an element of π62,33 that is detected by 
e1 + C0. Then να + σβ is
detected by τh2

2C′ + h3(
e1 + C0), and τ(να + σβ) is zero.
Projection from Cτ to the top cell takes α to να + σβ , and takes 〈2, σ 2, α〉 to

〈2, σ 2, να + σβ〉, which equals zero by Lemmas 6.28 and 6.29. As in the proof of
Lemma 5.26, h3

0c3 maps to zero under projection to the top cell of Cτ , so it must be
in the image of inclusion of the bottom cell.

Lemma 5.28. — (88,18,46) d3(τ
2Mh0d0k) = P
2h0d0e0 + τ 3
h1d2

0 e2
0 .

Proof. — Table 7 shows that d4(τ
2Mh1e0) = MP2h1. Multiply by τd2

0 to see that
d4(τ

3Mh1d2
0 e0) = τMP2h1d2

0 . We have the relation h2 · τ 2Mh0d0k = τ 3Mh1d2
0 e0, but

τMP2h1d2
0 is not divisible by h2. Therefore, τ 2Mh0d0k cannot survive to the E4-page.

By comparison to mmf, there is only one possible value for d3(τ
2Mh0d0k). �

Remark 5.29. — We are grateful to Dexter Chua for pointing out a small error in
a previous version of Lemma 5.28.
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Lemma 5.30. — (89,15,50) d3(h2B5g) = Mh1c0e2
0 .

Proof. — We will first establish the relation d0 · h2B5g = τMh1e0g2. We use the map
p∗ of [32, Theorem 1.1]. We have that p∗(d0 · h2B5g) = p∗(τMh1e0g2). Therefore, d0 · h2B5g

equals τMh1e0g2, modulo a possible error term Ph7
1h6c0e0 in the kernel of p∗. However,

multiplication by h1 eliminates the error term.
Table 6 shows that d3(τ e0g2) = c0d0e2

0. Therefore, d3(τMh1e0g2) equals Mh1c0d0e2
0.

Observing that Mh1c0d0e2
0 is in fact non-zero in the Adams E3-page, we conclude that

d3(h2B5g) must equal Mh1c0e2
0. �

Lemma 5.31. — (90,8,48) The element M2 is a permanent cycle.

Proof. — Table 3 shows that the Massey product 〈Mh1, h0, h2
0g2〉 equals M2h1.

Therefore, M2h1 detects the Toda bracket 〈ηθ4.5,2, σ 2θ4〉. The indeterminacy consists en-
tirely of multiples of ηθ4.5. The Toda bracket contains θ4〈ηθ4.5,2, σ 2〉. Now 〈ηθ4.5,2, σ 2〉
is zero because π61,33 is zero.

We have now shown that M2h1 detects a multiple of η. In fact, it detects a non-zero
multiple of η because M2h1 cannot be hit by a differential by comparison to the Adams
spectral sequence for Cτ .

Therefore, there exists a non-zero element of π90,48 that is detected in Adams fil-
tration at most 12. The only possibility is that M2 survives. �

Lemma 5.32. — (93,7,48) d3(
h2
2h6) = τh1h6d2

0 .

Proof. — In the Adams E3-page, 
h2
2h6 equals 〈
h2

2, h2
5, h0〉, with no indetermi-

nacy, because of the Adams differential d2(h6) = h0h2
5. Using that d3(
h2

2) = τh1d2
0 , Moss’s

higher Leibniz rule 2.27 implies that d3(
h2
2h6) is contained in

〈τh1d2
0 , h2

5, h0〉 + 〈
h2
2,0, h0〉 + 〈
h2

2, h2
5,0〉.

All of these brackets have no indeterminacy, and the last two equal zero. The first bracket
equals τh1h6d2

0 , using the Adams differential d2(h6) = h0h2
5. �

Lemma 5.33. — (93,13,48) d3(P2h6d0) = 0.

Proof. — In the Adams E3-page, the element P2h6d0 equals the Massey product
〈P2d0, h2

5, h0〉, with no indeterminacy, because of the Adams differential d2(h6) = h0h2
5.

Moss’s higher Leibniz rule 2.27 implies that d3(P2h6d0) is a linear combination of multi-
ples of h0 and of P2d0. The only possibility is that d3(P2h6d0) is zero. �

Lemma 5.34. — (93,22,48) d3(τ
2MPh0d0j) = P2
2h0d2

0 + τ 3P
h1d3
0 e0.
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Proof. — Table 7 shows that d4(τ
2Pd0e0) = P3d0. Multiplication by τMPh1 shows

that d4(τ
3MP2h1d0e0) equals τMP4h1d0. But τ 3MP2h1d0e0 equals h0 · τ 2MPh0d0j, while

τMP4h1d0 is not divisible by h0. Therefore, τ 2MPh0d0j cannot survive to the E4-page.
The possible values for d3(τ

2MPh0d0j) are the non-zero linear combinations of
P2
2h0d2

0 and τ 3P
h1d3
0 e0. The map to the Adams spectral sequence for tmf takes

both τ 2MPh0d0j and P2
2h0d2
0 + τ 3P
h1d3

0 e0 to zero, but it takes each of P2
2h0d2
0

and τ 3P
h1d3
0 e0 to the unique non-zero element in the appropriate degree. Therefore,

d3(τ
2MPh0d0j) cannot equal either P2
2h0d2

0 or τ 3P
h1d3
0 e0. �

Lemma 5.35. — (95,16,49) The element P3h6c0 is a permanent cycle.

Proof. — Table 18 shows that P3c0 detects the product ηρ31. Using the Moss Con-
vergence Theorem 2.16 and the Adams differential d2(h6) = h0h2

5, the element P3h6c0

must survive to detect the Toda bracket 〈ηρ31,2, θ5〉. �

Remark 5.36. — We suspect that P3h6c0 detects the product η6ρ31. However, the
argument of Lemma 7.148 cannot be completed because the Toda bracket 〈ηρ31,2, θ5〉
might have indeterminacy in lower Adams filtration.

5.3. The Adams d4 differential

Table 7 lists the multiplicative generators of the Adams E4-page through the 95-
stem whose d4 differentials are non-zero, or whose d4 differentials are zero for non-obvious
reasons.

Theorem 5.37. — Table 7 lists some values of the Adams d4 differential on multiplicative

generators. Through the 95-stem, the Adams d4 differential is zero on all multiplicative generators not

listed in the table.

Proof. — The d4 differential on many multiplicative generators is zero. A few of
these multiplicative generators appear in Table 7 because their proofs require further ex-
planation. For the remaining majority of such multiplicative generators, the d4 differential
is zero because there are no possible non-zero values, or because of comparison to the
Adams spectral sequences for Cτ , tmf, or mmf. In a few cases, the multiplicative generator
is already known to be a permanent cycle as shown in Table 5. These cases do not appear
in Table 7.

The last column of Table 7 gives information on the proof of each differential.
Most follow immediately by comparison to the Adams spectral sequence for Cτ , or by
comparison to the classical Adams spectral sequence for tmf, or by comparison to the
C-motivic Adams spectral sequence for mmf.
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If an element is listed in the last column of Table 7, then the corresponding differ-
ential can be deduced from a straightforward argument using a multiplicative relation.
For example,

d4(d0 · τ 2e0g2) = d4(e
2
0 · τ 2e0g) = e2

0 · Pd2
0 = d5

0 ,

so d4(τ
2e0g2) must equal d4

0 .
The remaining more difficult computations are carried out in the following lem-

mas. �

Lemma 5.38. — (62,10,32) d4(τh1 · 
x) = τ 2
h2
2d0e0.

This differential was previously proved in [60, Remark 11.2]. We repeat the argu-
ment here for completeness.

Proof. — Table 7 shows that τ 3
h2
2g2 supports a d4 differential, and Table 5 shows

that τ
2h2
1g + τ 3
h2

2g2 is a permanent cycle. Therefore, τ
2h2
1g also supports a d4 differ-

ential.
On the other hand, we have

h1 · τ
2h1g = Ph1 · 
x = 
x〈h1, h3
0h3, h0〉.

This expression equals 〈h1 · 
x, h3
0h3, h0〉 by inspection of indeterminacies. Therefore,

the Toda bracket 〈{τh1 · 
x},8σ,2〉 cannot be well-formed, since otherwise it would be
detected by τ
2h2

1g. The only possibility is that τh1 · 
x is not a permanent cycle, and
the only possible differential is that d4(τh1 · 
x) equals τ 2
h2

2d0e0. �

Lemma 5.39. — (62,10,32) d4(

2h2

3) = 0.

Proof. — Table 8 shows that d5(τh2
1 · 
x) equals τ 3d2

0 e2
0. The element τ 3d2

0 e2
0 is not

divisible by h1 in the E5-page, so τh2
1 · 
x cannot be divisible by h1 in the E4-page.

If d4(

2h2

3) equaled τ 2
h2
2d0e0, then 
2h2

3 + τh1 ·
x would survive to the E5-page,
and τ 2h2

1 · 
x would be divisible by h1 in the E5-page. �

Lemma 5.40. — (63,7,33) d4(τX2) = τMh2d0.

Proof. — Table 7 shows that d4(C′) equals Mh2d0. Therefore, either τX2 or τX2 +
τC′ is non-zero on the E∞-page. The inclusion of the bottom cell into Cτ takes this
element to h5d0e0.

In the homotopy of Cτ , there is a ν extension from h5d0e0 to τB5, and inclusion of
the bottom cell into Cτ takes τh2C′ to τB5.

It follows that there must be a ν extension with target τh2C′. The only possibility is
that τX2 + τC′ is non-zero on the E∞-page, and therefore d4(τX2) equals d4(τC′). �
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Lemma 5.41. — (68,5,36) d4(h0d2) = X3.

Proof. — The element X3 is a permanent cycle. The only possible target for a
differential is τ 2d0e0m, but this is ruled out by comparison to tmf.

In the Adams E∞-page for Cτ , there are several elements in stem 67 and weight
36. However, they all have filtration lower than 9. Since X3 has filtration 9, it must map
to zero under inclusion of the bottom cell into Cτ . Therefore, X3 is the target of a hidden
τ extension, or it is hit by a differential.

The only possible hidden τ extension would have source h1 · 
1h2
3. In Cτ , there

is an η extension from h0d2 to h2
1 · 
1h2

3. Since h2
1 · 
1h2

3 maps non-trivially (to h2
1 · 
1h2

3)
under projection to the top cell of Cτ , it follows that h0d2 also maps non-trivially under
projection. For degree reasons, the only possibility is that h0d2 maps to h1 · 
1h2

3, and
therefore h1 · 
1h2

3 does not support a hidden τ extension.
Therefore, X3 must be hit by a differential, and there is just one possibility. �

Lemma 5.42. — (68,11,38) d4(Mh2g) = 0.

Proof. — Table 3 shows that the Massey product 〈h2g, h3
0, g2〉 equals Mh2g. The

Moss Convergence Theorem 2.16 shows that Mh2g must survive to detect the Toda
bracket 〈{h2g},8, κ2〉. �

Lemma 5.43. — (72,9,40) d4(h
2
2G0) = τ g2n.

Proof. — Table 15 shows that there is a hidden 2 extension from h0h3g2 to τ gn.
Therefore, τ gn detects 4σκ2.

Table 3 shows that 〈h3
1h4, h1, τ gn〉 consists of the two elements τ g2n and τ g2n +

Mh2g · h0h2. Then the Toda bracket 〈η2η4, η,4σκ2〉 is detected by either τ g2n or τ g2n +
Mh2g · h0h2. But Mh2g · h0h2 is hit by an Adams d2 differential, so τ g2n detects the Toda
bracket.

The Toda bracket has no indeterminacy, so it equals 〈η2η4, η,2〉2σκ2. This last
expression must be zero.

We have shown that τ g2n must be hit by some differential. The only possibility is
that d4(h

2
2G0) = τ g2n. �

Lemma 5.44. — (75,11,40) d4(
h2
0h3g2) = τMh1d2

0 .

Proof. — Table 8 shows that d5(A′) = τMh1d0. Now d0A′ is zero in the E5-page, so
τMh1d2

0 must also be zero in the E5-page. �

Lemma 5.45. — (76,14,41) d4(

2h1h3g) = τ
h2

2d2
0 e0.
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Proof. — Table 10 shows that the element 
h2
2d2

0 e0 detects the Toda bracket
〈τηκκ2, η, η2η4〉. Now shuffle to obtain

τ 〈τηκκ2, η, η2η4〉 = 〈τ, τηκκ2, η〉η2η4.

Table 10 shows that 〈τ, τηκκ2, η〉 is detected by h0h2h5i. It follows that the expression
〈τ, τηκκ2, η〉η2η4 is zero, so τ
h2

2d2
0 e0 must be hit by some differential. The only possi-

bility is that d4(

2h1h3g) equals τ
h2

2d2
0 e0. �

Lemma 5.46. — (80,5,42) d4(h0e2) = τh3
1x76,6.

Proof. — Table 24 shows that σ 2θ5 is detected by h0h4A or h0h4A + τ 2d1g2. Note
that both h2 · h0h4A and h2(h0h4A + τ 2d1g2) equal τh3

1x76,6.
Since νσ = 0, the element τh3

1x76,6 must be hit by a differential. The only possibility
is that d4(h0e2) equals τh3

1x76,6. �

Lemma 5.47. — (81,15,42) d4(

3h2

1h3) = τ 4d0e2
0l.

Proof. — Table 18 shows that there is a hidden η extension from τ 2
h1g2 to
τ 2d0e0m. Multiply by d0 to see that there is also a hidden η extension from τ 2
h1e2

0g

to τ 2d0e2
0l.

Also, τ 2
h1e2
0g detects an element in π79,43 that is annihilated by τ 2. Therefore,

τ 4d0e2
0l must be hit by some differential. Moreover, comparison to mmf shows that τ 3d0e2

0l

is not hit by a differential.
The hidden η extension from τ 3
h1e2

0g to τ 3d0e2
0l is detected by projection from

Cτ to the top cell. The only possibility is that this hidden η extension is the image of the
h1 extension from 
3h1h3 to 
3h2

1h3 in the Adams E∞-page for Cτ .
Therefore, 
3h2

1h3 maps non-trivially under projection from Cτ to the top cell.
Consequently, 
3h2

1h3 cannot be a permanent cycle in the Adams spectral sequence for
the sphere. �

Lemma 5.48. — (83,11,45) d4(
j1) = τMh0e0g.

Proof. — Otherwise, both 
j1 and τ gC′ would survive to the E∞-page, and neither
could be the target of a hidden τ extension. They would both map non-trivially under
inclusion of the bottom cell into Cτ . But there are not enough elements in π83,45Cτ for
this to occur. �

Lemma 5.49. — (85,5,45) d4(h1f2) = 0.

Proof. — Table 21 shows that there is a hidden ν extension from h2gD3 to B6d1. If
d4(h1f2) equaled τh2gD3, then this ν extension would be in the image of projection from
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Cτ to the top cell, since h2gD3 cannot support a hidden τ extension. However, there is
no such ν extension in the homotopy of Cτ . �

Lemma 5.50. — (85,6,44) d4(τx85,6 + h3
0c3) = 0.

Proof. — We showed in Lemma 5.26 that h3
0c3 is in the image of inclusion of the

bottom cell of Cτ . Therefore, Px76,6 cannot be in the image of projection from Cτ to the
top cell. Since Px76,6 cannot support a hidden τ extension, there can be no differential
whose value is τPx76,6. �

Lemma 5.51. — (86,4,45) d4(h1c3) = τh0h2h4Q3.

Proof. — Lemma 7.152 shows that there exists an element α in π67,36 that is de-
tected by h0Q3 + h0n1 such that τνα equals (ησ + ε)θ5.

Table 10 shows that the Toda bracket 〈ν,σ,2σ 〉 is detected by h2h4, so the element
τh0h2h4Q3 detects τα〈ν,σ,2σ 〉, which is contained in 〈τνα,σ,2σ 〉. The indeterminacy
in these expressions is zero because τνα · π15,8 and 2σ · π78,41 are both zero.

We now know that τh0h2h4Q3 detects the Toda bracket 〈(ε + ησ)θ5, σ,2σ 〉. This
bracket contains θ5〈ε + ησ,σ,2σ 〉. Lemma 6.6 shows that the bracket 〈ε + ησ,σ,2σ 〉
contains 0, so θ5〈ε + ησ,σ,2σ 〉 equals zero.

Finally, we have shown that τh0h2h4Q3 detects zero, so it must be hit by some
differential. �

Lemma 5.52. — (87,7,45) d4(x87,7) = 0.

Proof. — Consider the exact sequence

π87,45 → π87,45Cτ → π86,46.

The middle term π87,45Cτ is isomorphic to (Z/2)4. The elements of π87,45 that are not
divisible by τ are detected by P2h6c0, and possibly x87,7 and τ
h1H1. On the other hand,
the elements of π86,46 that are annihilated by τ are detected by τ 3
c0e2

0g and possibly
M
h2

0e0.
In order for the possibility M
h2

0e0 to occur, either x87,7 or τ
h1H1 would have to
support a differential hitting τM
h2

0e0, in which case one of those possibilities could not
occur.

If d4(x87,7) equaled τ 3gG0, then there would not be enough elements to make the
above sequence exact. �

Lemma 5.53. — (87,1045) d4(τ
h1H1) = 0.
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Proof. — The element 
2h2
2d1 is a permanent cycle that cannot be hit by any dif-

ferential because h2 · 
2h2
2d1 cannot be hit by a differential. The element 
2h2

2d1 cannot
be in the image of projection from Cτ to the top cell, and it cannot support a hidden τ

extension. Therefore, τ
2h2
2d1 cannot be hit by a differential. �

Lemma 5.54. — (89,15,49) d4(τh2B5g) = Mh1d3
0 .

Proof. — Table 24 shows that Md0 detects κθ4.5. Therefore, Md3
0 detects κ3θ4.5,

which equals η2κ2θ4.5 because Table 18 shows that there is a hidden η extension from
τ 2h1g2 to d3

0 .
Now η2κ2θ4.5 is zero because η2κθ4.5 is zero. Therefore, Md3

0 and Mh1d3
0 must both

be hit by differentials.
There are several possible differentials that can hit Mh1d3

0 . The element h1x88,10

cannot be the source of this differential because Table 5 shows that x88,10 is a perma-
nent cycle. The element τh2

2gC′ cannot be the source of the differential because h2
2gC′

is a permanent cycle by comparison to mmf. The element 
h1g2g cannot be the source
because it equals h3(
e1 + C0)g. The only remaining possibility is that d4(τh2B5g) equals
Mh1d3

0 . �

Lemma 5.55. — (91,12,48) d4(
h2
2A′) = 0.

Proof. — In the Adams E4-page, the element 
h2
2A′ equals the Massey product

〈A′, h1, τd2
0 〉, with no indeterminacy because of the Adams differential d3(
h2

2) = τh1d2
0 .

Moss’s higher Leibniz rule 2.27 implies that d4(
h2
2A′) is contained in

〈0, h1, τd2
0 〉 + 〈A′,0, τd2

0 〉 + 〈A′, h1,0〉,
so it is a linear combination of multiples of A′ and τd2

0 . The only possibility is that
d4(
h2

2A′) is zero. �

Lemma 5.56. — (93,3,48) d4(h
2
4h6) = h3

0g3.

Proof. — By comparison to the Adams spectral sequence for Cτ , the value of
d4(h

2
4h6) is either h3

0g3 or h3
0g3 + τh1h2

4D3.
Table 24 shows that h2

0g3 detects the product θ4θ5. Since 2θ4θ5 equals zero, h3
0g3

must be hit by a differential. �

Lemma 5.57. — (95,16,50) d4(M
2h2
1) = MP
h2

0e0.

Proof. — Table 10 shows that M
2h2
1 + τ 2M
h2

2g detects the Toda bracket
〈η, τκ2, τθ4.5κ〉. Therefore, d4(M
2h2

1) equals d4(τ
2M
h2

2g). �
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5.4. The Adams d5 differential

Table 8 lists the multiplicative generators of the Adams E5-page through the 92-
stem whose d5 differentials are non-zero, or whose d5 differentials are zero for non-obvious
reasons.

Theorem 5.58. — Table 8 lists some values of the Adams d5 differential on multiplicative

generators. Through the 92-stem, the Adams d5 differential is zero on all multiplicative generators not

listed in the table.

Proof. — The d5 differential on many multiplicative generators is zero. For the ma-
jority of such multiplicative generators, the d5 differential is zero because there are no
possible non-zero values, or by comparison to the Adams spectral sequence for Cτ , or by
comparison to tmf or mmf. In a few cases, the multiplicative generator is already known to
be a permanent cycle; h1h6 is one such example. A few additional cases appear in Table 8
because their proofs require further explanation.

The last column of Table 8 gives information on the proof of each differential.
Many computations follow immediately by comparison to the Adams spectral sequence
for Cτ .

If an element is listed in the last column of Table 8, then the corresponding differ-
ential can be deduced from a straightforward argument using a multiplicative relation.
For example,

d5(τ · gA′) = d5(τ g · A′) = τ g · τMh1d0 = τ 2Mh1e2
0,

so d5(gA′) must equal τMh1e2
0.

A few of the more difficult computations appear in [16]. The remaining more
difficult computations are carried out in the following lemmas. �

Lemma 5.59. — (63,11,33) d5(τh2
1 · 
x) = τ 3d2

0 e2
0 .

Proof. — The element τ 2d2
0 e2

0 cannot be hit by a differential. There is a hidden
η extension from τ
h2

2d0e0 to τ 2d2
0 e2

0 because of the hidden τ extensions from τh1g3 +
h5

1h5c0e0 to 
h2
2d0e0 and from h6

1h5c0e0 to d2
0 e2

0. This shows that τ 3d2
0 e2

0 must be hit by some
differential.

This hidden η extension is detected by projection from Cτ to the top cell. Since
Ph5c0d0 in Cτ maps to τ
h2

2d0e0 under projection to the top cell, it follows that Ph1h5c0d0

in Cτ maps to τ 2d2
0 e2

0 under projection to the top cell.
If τh2

1 · 
x survived, then it could not be the target of a hidden τ extension and
it could not be hit by a differential. Also, it could not map non-trivially under inclusion
of the bottom cell into Cτ , since the only possible value Ph1h5c0d0 has already been ac-
counted for in the previous paragraph. �
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Lemma 5.60. — (68,12,36) d5(h5d0i) = τ
h1d3
0 .

Proof. — We showed in Lemma 5.12 that Ph2h5j cannot be divisible by h0 in the
E∞-page. Therefore, h5d0i must support a differential. �

Lemma 5.61. — (70,4,36) d5(τp1 + h2
0h3h6) equals either τ 2h2

2C′ or τ 2h2
2C′ +

τh3(
e1 + C0).

Proof. — Projection to the top cell of Cτ takes h4D2 to τ 3d1g2. Moreover, there is a
ν extension in the homotopy of Cτ from h2

0h3h6 to h4D2. Therefore, this ν extension must
be in the image of projection to the top cell.

Table 21 shows that there is a hidden ν extension from τh2
2C′ to τ 3d1g2. Therefore,

either τh2
2C′ or τh2

2C′ + h3(
e1 + C0) is in the image of projection to the top cell, so
τ 2h2

2C′ or τ 2h2
2C′ + τh2(
e1 + C0) is hit by a differential. The element τp1 + h2

0h3h6 is the
only possible source for this differential. �

Lemma 5.62. — (72,7,39) d5(h1x71,6) = 0.

Proof. — Table 14 shows that there is a hidden τ extension from Mh2
1h3g to Mh1d2

0 .
Therefore, Mh2

2g must also support a τ extension. This shows that τMh2
2g cannot be the

target of a differential. �

Lemma 5.63. — (73,7,38) d5(h4D2) = τ 4d1g2.

Proof. — Suppose for sake of contradiction that h4D2 survived, and let α be an el-
ement of π73,38 that is detected by it. Table 14 shows that there is a hidden τ extension
from h2

1h6c0 to h0h4D2. Therefore, h0h4D2 detects both 2α and τηεη6. However, it is possi-
ble that the difference between these two elements is detected by τ 2Md2

0 or by τ 3
h1d0e2
0.

We will handle of each of these cases.
First, suppose that 2α equals τηεη6. Then the Toda bracket

〈

η,
[
2 τηε

]
,

[
α

η6

]〉

is well-defined. Inclusion of the bottom cell into Cτ takes this bracket to
〈

η,
[
2 0

]
,

[
α

η6

]〉

= 〈η,2, α〉,

so 〈η,2, α〉 is in the image of inclusion of the bottom cell.
On the other hand, in the homotopy of Cτ , the bracket 〈η,2, α〉 is detected by

h3
1h6c0, with indeterminacy generated by h2

1h4Q2. These elements map non-trivially under
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projection to the top cell, which contradicts that they are in the image of inclusion of the
bottom cell.

Next, suppose that 2α + τηεη6 is detected by τ 3
h1d0e2
0. Then the Toda bracket

〈

η,
[
2 τηε τ 2β

]
,

⎡

⎣
α

η6

κ

⎤

⎦

〉

is well-defined, where β is an element of π53,29 that is detected by 
h1d2
0 . The same

argument involving inclusion of the bottom cell into Cτ applies to this Toda bracket.
Finally, assume that 2α + τηεη6 is detected by τ 2Md2

0 . Table 24 shows that Md0

detects κθ4.5, so τ 2Md2
0 detects τ 2κ2θ4.5. Then 2α + τηεη6 equals either τ 2κ2θ4.5 or

τ 2κ2θ4.5 + τ 2βκ . We can apply the same argument to the Toda bracket

〈

η,
[
2 τηε τ 2κθ4.5

]
,

⎡

⎣
α

η6

κ

⎤

⎦

〉

,

or to the Toda bracket

〈

η,
[
2 τηε τ 2κθ4.5 τ 2β

]
,

⎡

⎢
⎢
⎣

α

η6

κ

κ

⎤

⎥
⎥
⎦

〉

.

We have now shown by contradiction that h4D2 does not survive. After ruling out
other possibilities by comparison to Cτ and to mmf, the only remaining possibility is that
d5(h4D2) equals τ 4d1g2. �

Lemma 5.64. — (86,11,45) d5(τ
3gG0) = τM
h2

1d0.

Proof. — Suppose for sake of contradiction that the element τ 3gG0 survived. It can-
not be the target of a hidden τ extension, and it cannot be hit by a differential. Therefore,
it maps non-trivially under inclusion of the bottom cell into Cτ , and the only possible im-
age is 
2e1 + τ
h2e1g.

Let α be an element of π86,45 that is detected by τ 3gG0. Consider the Toda bracket
〈α,2ν, ν〉. Lemma 4.15 implies that this Toda bracket is detected by e0x76,9, or is detected
in higher Adams filtration.

On the other hand, under inclusion of the bottom cell into Cτ , the Toda bracket
is detected by 
2h1g2. This is inconsistent with the conclusion of the previous paragraph,
since inclusion of the bottom cell can only increase Adams filtrations.

We now know that τ 3gG0 does not survive. After eliminating other possibilities by
comparison to mmf, the only remaining possibility is that d5(τ

3gG0) equals τM
h2
1d0. �
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Lemma 5.65. — (92,4,48) d5(g3) = h6d2
0 .

Proof. — Table 10 shows that h1h6 detects the Toda bracket 〈η,2, θ5〉. Therefore,
h1h6d2

0 detects κ2〈η,2, θ5〉. Now consider the shuffle

τκ2〈η,2, θ5〉 = 〈τκ2, η,2〉θ5.

Lemma 6.7 shows that the last bracket is zero. Therefore, h1h6d2
0 does not support a

hidden τ extension, so it is either hit by a differential or in the image of projection from
Cτ to the top cell.

In the Adams spectral sequence for Cτ , the element h3
0h2

4h6 detects the Toda
bracket 〈θ4,2, θ5〉. Therefore, h3

0h2
4h6 must be in the image of inclusion of the bottom

cell into Cτ . In particular, h3
0h2

4h6 cannot map to h1h6d2
0 under projection from Cτ to the

top cell.
Now h1h6d2

0 cannot be in the image of projection from Cτ to the top cell, so it must
be hit by some differential. The only possibility is that d5(h1g3) equals h1h6d2

0 . �

Lemma 5.66. — (92,12,48) d5(

2g2) = 0.

Proof. — The only possible values for d2(

2g2) are the linear combinations of

τM
c0d0 + τ 2Md0l and τ 2
2h2g2. The possibilities τM
c0d0 + τ 2Md0l and τM
c0d0 +
τ 2Md0l + τ 2
2h2g2 are ruled out by d0 extensions. More specifically, d0(τM
c0d0 +
τ 2Md0l) and d0(τM
c0d0 + τ 2Md0l + τ 2
2h2g2) equal the non-zero element τ 2Md2

0 l

in the E5-page, while d0 · 
2g2 is zero already in the E2-page.
If τ 2
2h2g2 were the value of a differential, then the 2 extension from τ
2h2g2 to

τ
2h0h2g2 would be detected by the top cell of Cτ . However, there is no such 2 extension
in the homotopy of Cτ . �

Lemma 5.67. — (93,13,50) d5(e0x76,9) = M
h1c0d0.

Proof. — If M
h1c0d0 were a permanent non-zero cycle, then it could not support a
hidden τ extension because Lemma 5.87 shows that MP
h1d0 is hit by some differential.
Therefore, it would lie in the image of projection from Cτ to the top cell, and the only
possible pre-image is the element 
2h1g2 in the E∞-page of the Adams spectral sequence
for Cτ .

There is a σ extension from 
2e1 + τ
h2e1g to 
2h1g2 in the Adams spectral se-
quence for Cτ . Then M
h1c0d0 would also have to be the target of a σ extension. The
only possible source for this extension would be M
h2

1d0.
Table 18 shows that Mh1 detects ηθ4.5, so M
h2

1d0 detects ηθ4.5{
h1d0}. The prod-
uct ησθ4.5{
h1d0} equals zero because σ {
h1d0} is zero. Therefore, M
h2

1d0 cannot sup-
port a hidden σ extension to M
h1c0d0.

We have now shown that M
h1c0d0 must be hit by some differential, and the only
possibility is that equals d5(e0x76,9). �
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5.5. Higher differentials

Table 9 lists the multiplicative generators of the Adams Er-page, for r ≥ 6, through
the 90-stem whose dr differentials are non-zero, or whose dr differentials are zero for non-
obvious reasons.

Theorem 5.68. — Table 9 lists some values of the Adams dr differential on multiplicative

generators of the Er -page, for r ≥ 6. For r ≥ 6, the Adams dr differential is zero on all multiplicative

generators of the Er -page not listed in the table. The list is complete through the 90-stem, except that:

(1) d10(h1f2) might equal M
h1d0.

(2) d9(τx85,6 + h3
0c3) might equal τM
h1d0.

(3) d9(h
2
4D3) might equal τM
h1g.

Proof. — The dr differential on many multiplicative generators is zero. For the ma-
jority of such multiplicative generators, the dr differential is zero because there are no
possible non-zero values, or by comparison to the Adams spectral sequence for Cτ , or by
comparison to tmf or mmf. In a few cases, the multiplicative generator is already known
to be a permanent cycle, as shown in Table 5. A few additional cases appear in Table 9
because their proofs require further explanation.

Some of the more difficult computations appear in [16]. The remaining more
difficult computations are carried out in the following lemmas. �

Lemma 5.69.

(1) (67,5,35) d6(τQ3 + τn1) = 0.

(2) (87,9,48) d6(gQ3) = 0.

Proof. — Several possible differentials on these elements are eliminated by compar-
ison to the Adams spectral sequences for Cτ and for tmf. The only remaining possibility
is that d6(τQ3 + τn1) might equal τ 2Mh1g, and that d6(gQ3) might equal τMh1g2.

The element M
h2
0e0 is not hit by any differential because Table 5 shows that h2

1c3

is a permanent cycle, and Table 10 shows that τ 2gQ3 = h2
4Q2 must survive to detect the

Toda bracket 〈θ4, τκ, {t}〉.
Lemma 6.30 shows that M
h2

0e0 detects the Toda bracket 〈τηκ2,2,4κ2〉, which
contains τκ2〈η,2,4κ2〉. Lemma 6.12 shows that this expression contains zero. We now
know that M
h2

0e0 detects an element in the indeterminacy of the bracket 〈τηκ2,4,2κ2〉.
In fact, it must detect a multiple of τηκ2 since 2κ2 · π42,22 is zero.

The only possibility is that M
h2
0e0 detects κ times an element detected by τ 2Mh1g.

Therefore, τ 2Mh1g cannot be hit by a differential. This shows that τQ3 + τn1 is a perma-
nent cycle.

We also know that M
h2
0e0 is the target of a hidden τ extension, since it detects a

multiple of τ . The element τ 2Mh1g2 is the only possible source of this hidden τ extension,
so it cannot be hit by a differential. This shows that d6(gQ3) cannot equal τMh1g2. �
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Lemma 5.70.

(1) (68,7,37) d6(h
2
2H1) = Mc0d0.

(2) (68,7,36) d7(τh2
2H1) = MPd0.

Proof. — Table 3 shows that MPd0 equals the Massey product 〈Pd0, h3
0, g2〉. This

implies that MPd0 detects the Toda bracket 〈τη2κ,8, κ2〉. Lemma 6.19 shows that this
Toda bracket consists entirely of multiples of τη2κ .

We now know that MPd0 detects a multiple of τη2κ . The only possibility is that
MPd0 detects η times an element detected by τ 2Mh1g.

We will show in Lemma 7.105 that τ 2Mh1g is the target of a ν extension, so τ 2Mh1g

cannot support a hidden η extension. Therefore, MPd0 must be hit by some differential.
The only possibility is that d7(τh2

2H1) equals MPd0. Then h2
2H1 cannot survive to the

E7-page, so d6(h
2
2H1) equals Mc0d0. �

Lemma 5.71. — (71,5,37) The element τh1p1 is a permanent cycle.

Proof. — Lemma 5.61, together with results of [16], show that τh1p1 survives to the
E6-page. We must eliminate possible higher differentials.

Table 14 shows that there is a hidden τ extension from τh2
2C′′ to 
2h2

1h4c0. This
means that τh2C′′ + h1h3(
e1 + C0) must also support a hidden τ extension.

The two possible targets for this hidden τ extension are 
2h2c1 and τ
2h2
1g +

τ 3
h2
2g2. The second possibility is ruled out by comparison to tmf, so 
2h2c1 cannot be

hit by a differential. �

Lemma 5.72. — (74,7,38) The element Ph0h2h6 is a permanent cycle.

Proof. — First note that projection from Cτ to the top cell takes Ph2h6 to a non-
zero element. If Ph0h2h6 were not a permanent cycle in the Adams spectral sequence for
the sphere, then projection from Cτ to the top cell would also take Ph0h2h6 to a non-zero
element. Then the 2 extension from Ph2h6 to Ph0h2h6 in π74,38Cτ would project to a 2
extension in π73,39. However, there are no possible 2 extensions in π73,39. �

Lemma 5.73. — (77,7,42) d7(m1) = 0.

Proof. — The only other possibility is that d7(m1) equals τ 2g2t. If that were the case,
then the ν extension from τ g2t to τ 2c1g3 would be detected by projection from Cτ to the
top cell. However, the homotopy groups of Cτ have no such ν extension. �

Lemma 5.74. — (80,6,43) d8(h1x1) = 0.

Proof. — Table 5 shows that τh1x1 is a permanent cycle. Then d8(τh1x1) cannot
equal τ 2Me2

0, and d8(h1x1) cannot equal τMe2
0. �
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Lemma 5.75. — (81,3,42) d6(h2h4h6) = 0.

Proof. — Table 5 shows that h2
2h4h6 is a permanent cycle. Therefore, the Adams

differential d6(h
2
2h4h6) does not equal τh2c1A′, and d6(h2h4h6) does not equal τ c1A′. �

Lemma 5.76. — (86,6,46) d10(h2h6g + h2
1f2) = 0.

Proof. — If d10(h2h6g + h2
1f2) equaled M
h2

1d0, then the ν extension from τh6g +
τh2e2 to τh2h6g + τh2

1f2 would be detected by the bottom cell of Cτ . However, there is no
such ν extension in the homotopy of Cτ . �

Lemma 5.77. — (87,7,45) d7(x87,7) = 0.

Proof. — If τ
2h2
2d1 were hit by a differential, then the ν extension from 
2h2

2d1 to

2h2

1h3d1 would be detected by projection from Cτ to the top cell. But the homotopy of
Cτ has no such ν extension. �

Lemma 5.78. — (87,10,45) d6(τ
h1H1) = τM
h2
0e0.

Proof. — Suppose for sake of contradiction that τ
h1H1 survives. This element
cannot be hit, nor can it be the target of a hidden τ extension. Therefore, it would have
non-zero image under inclusion of the bottom cell into Cτ , and it would map to 
h1B7.

In the homotopy of Cτ , the Toda bracket 〈
h1B7, h0, h2
2〉 is detected by the element

M
2h1. Beware that this bracket has indeterminacy in lower filtration since h3 · 
h1B7 =
h2

1x91,11.
This implies that the Toda bracket 〈{τ
h1H1},2, ν2〉 would be non-zero in π94,49,

and all of its elements would be detected in Adams filtration at most 15. (Beware that this
Toda bracket would have indeterminacy detected by τ
h1h3H1.)

On the other hand, the Moss Convergence Theorem 2.16 would imply that the
Toda bracket is detected in filtration at least 12. However, there are no possible elements
in filtrations 12 through 15.

We have now shown that τ
h1H1 cannot survive. There is only one possible value
for a differential on τ
h1H1.

The previous argument assumed that 2{τ
h1H1} is zero in order to form the
Toda bracket 〈{τ
h1H1},2, ν2〉. However, it is possible that τ
h1H1 supports a hid-
den 2 extension to τ
2h3d1 or to τ 2
2c1g. Therefore, 2{τ
h1H1} might equal τσ {
2d1},
τν{
2t}, or their sum. In those cases, we would need to consider the matric Toda brackets

〈
[{τ
h1H1} τ {
2d1}

]
,

[
2
σ

]

, ν2

〉

,
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〈
[{τ
h1H1} ν

]
,

[
2

τ {
2t}
]

, ν2

〉

,

or
〈
[{τ
h1H1} τ {
2d1} ν

]
,

⎡

⎣
2
σ

τ {
2t}

⎤

⎦ , ν2

〉

respectively. Under inclusion of the bottom cell into Cτ , these three brackets would map
to

〈
[

h1B7 0

]
,

[
h0

h3

]

, h2
2

〉

,

〈
[

h1B7 h2

]
,

[
h0

0

]

, h2
2

〉

,

or
〈
[

h1B7 0 h2

]
,

⎡

⎣
h0

h3

0

⎤

⎦ , h2
2

〉

respectively. All three of these brackets in Cτ equal 〈
h1B7, h0, h2
2〉. Beware that the last

two could have larger indeterminacy, but in fact do not. �

Lemma 5.79. — (88,10,48) The element x88,10 is a permanent cycle.

Proof. — In the Adams spectral sequence for Cτ , there is a hidden η extension
from h2

1x85,6 to x88,10. Therefore, x88,10 lies in the image of inclusion of the bottom cell into
Cτ . The only possible pre-image is the element x88,10 in the Adams spectral sequence in
the sphere, so x88,10 must survive. �

Lemma 5.80.

(1) (88,11,49) d6(h
2
2gH1) = Mc0e2

0 .

(2) (88,11,48) d7(τh2
2gH1) = 0.

Proof. — If Mc0e2
0 is non-zero in the E∞-page, then it detects an element that is

annihilated by τ because Lemma 5.81 shows that the only possible target of such an
extension is hit by a differential. Then Mc0e2

0 would be in the image of projection from
Cτ to the top cell. The only possible pre-image would be the element 
g2g of the Adams
spectral sequence for Cτ .
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In the Adams spectral sequence for Cτ , there is a σ extension from gA′ to 
g2g.
Projection from Cτ to the top cell would imply that there is a hidden σ extension in the
homotopy groups of the sphere, from Mh1e2

0 to Mc0e2
0, because gA′ maps to Mh1e2

0 under
projection from Cτ to the top cell.

But Mh1e2
0 detects ηθ4.5{e2

0}, which cannot support a σ extension. This establishes
the first formula.

For the second formula, if d7(τh2
2gH1) were equal to τ 2
h2

2e0g2, then the same
argument would apply, with τ
h2

2e0g2 substituted for Mc0e2
0. �

Lemma 5.81. — (88,12,48) d6(
g2g) = Md3
0 .

Proof. — The proof of Lemma 5.54 shows that Md3
0 must be hit by a differential.

The only possibility is that d6(
g2g) equals Md3
0 .

Alternatively, Lemma 5.70 shows that d7(τh2
2H1) = MPd0. Note that τ g ·τh2

2H1 = 0
in the E7-page. Therefore, τMd3

0 = τ g · MPd0 must already be zero in the E7-page. The
only possibility is that d6(τ
g2g) = τMd3

0 , and then d6(
g2g) = Md3
0 . �

Remark 5.82. — Table 9 shows that d6(

2f1) equals τ 2Md3

0 . The proof relies on
d6(τ
h1H1) = τM
h2

0e0 and uses techniques similar to the ones in [17].

Lemma 5.83. — (92,5,48) The element h0g3 is a permanent cycle.

Proof. — In the homotopy of Cτ , the product θ4θ5 is detected by h2
0g3. In the sphere,

the product θ4θ5 is therefore non-zero and detected in Adams filtration at most 6.
Table 10 shows that the Toda bracket 〈2, θ4, θ4,2〉 contains θ5. Therefore, the

product θ4θ5 is contained in

θ4〈2, θ4, θ4,2〉 = 〈θ4,2, θ4, θ4〉2.

(Note that the sub-bracket 〈θ4, θ4,2〉 is zero because π61,32 is zero.) Therefore, θ4θ5 is
divisible by 2. It follows that θ4θ5 is detected by h2

0g3, and h0g3 is a permanent cycle that
detects 〈θ4,2, θ4, θ4〉. �

Lemma 5.84. — (92,10,51) d6(
1h2
1e1) = 0.

Proof. — Consider the element τMh2
2g2 in the Adams spectral sequence for Cτ .

This element cannot be in the image of inclusion of the bottom cell into Cτ . Therefore,
it must map non-trivially under projection from Cτ to the top cell. The only possibility is
that τMh2

2g2 is the image. Therefore, τMh2
2g2 cannot be the target of a differential. �

Lemma 5.85. — (92,10,48) d7(x92,10) does not equal τ 2
2h2g2.
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Proof. — If τ 2
2h2g2 were hit by a differential, then the 2 extension from τ
2h2g2

to τ
2h0h2g2 would be detected by projection from Cτ to the top cell. But the homotopy
of Cτ has no such 2 extension. �

Lemma 5.86. — (92,10,51) d8(
1h2e1) = 0.

Proof. — Consider the element e0x76,9 in the Adams E∞-page for Cτ . It cannot be
in the image of inclusion of the bottom cell into Cτ , so it must project to a non-zero
element in the top cell. The only possible image is M
h3

1g. Therefore, M
h3
1g cannot be

the target of a differential. �

Lemma 5.87. — The element MP
h1d0 is hit by some differential.

Proof. — Table 14 shows that there is a hidden τ extension from 
h1c0d0 to
P
h1d0. Therefore, P
h1d0 detects τε{
h1d0}. On the other hand, Tables 18 and 24
show that P
h1d0 also detects τηκ{
h1h3}. Since there are no elements in higher Adams
filtration, we have that τε{
h1d0} equals τηκ{
h1h3}.

Table 24 shows that MP detects τεθ4.5, so MP
h1d0 detects τε{
h1d0}θ4.5, which
equals τηκ{
h1h3}θ4.5. But τηκθ4.5 is zero because all elements of π60,32 are detected by
tmf. This shows that MP
h1d0 detects zero, so it must be hit by a differential. �

Remark 5.88. — Lemma 5.87 does not specify the differential that hits the element
MP
h1d0. In fact, d6(τ e0x76,9) equals MP
h1d0 [16].

6. Toda brackets

The purpose of this section is to establish various Toda brackets that are used
elsewhere in this manuscript. Tables 10 and 11 collect all of this information in one place.
Many Toda brackets can be easily computed from the Moss Convergence Theorem 2.16.
These are summarized in the tables without further discussion. However, some brackets
require more complicated arguments. Those arguments are collected in this section. For
easy reference, the lemmas in this section are labelled with degrees that match the degrees
given in the tables.

We will need the following C-motivic version of a theorem of Toda [55, Theo-
rem 3.6] that applies to symmetric Toda brackets.

Theorem 6.1. — Let α be an element of πs,w, with s even. There exists an element α∗ in

π2s+1,2w such that 〈α,β,α〉 contains the product βα∗ for all β such that αβ equals zero.

Corollary 6.2. — If 2β = 0, then 〈2, β,2〉 contains τηβ .
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Proof. — Apply Theorem 6.1 to α = 2. We need to find the value of α∗. Table 3
shows that the Massey product 〈h0, h1, h0〉 equals τh2

1. The Moss Convergence Theo-
rem 2.16 then shows that 〈2, η,2〉 equals τη2. It follows that α∗ equals τη. �

Theorem 6.3. — Tables 10 and 11 list some Toda brackets in the C-motivic stable homotopy

groups.

Proof. — The fourth column of the table gives information about the proof of each
Toda bracket.

If the fourth column shows a Massey product, then the Toda bracket follows from
the Moss Convergence Theorem 2.16. If the fourth column shows an Adams differential,
then the Toda bracket follows from the Moss Convergence Theorem 2.16, using the
mentioned differential.

A few Toda brackets are established elsewhere in the literature; specific citations
are given in these cases.

Additional more difficult cases are established in the following lemmas. �

Tables 10 lists information about some Toda brackets that do not contain zero,
while Table 11 lists information about some Toda brackets that do contain zero. The
third columns of the tables give elements of the Adams E∞-page that detect elements
of the Toda brackets. The fourth columns of the tables give partial information about
indeterminacies, again by giving detecting elements of the Adams E∞-page. We have
not completely analyzed the indeterminacies of all brackets when the details are incon-
sequential for our purposes. The fifth columns indicate the proofs of the Toda brackets,
and the sixth columns shows where each specific Toda bracket is used in the manuscript.

Lemma 6.4. — (16,9) The Toda bracket 〈κ,2, η〉 contains zero, with indeterminacy gener-

ated by ηρ15.

Proof. — Using the Adams differential d3(h0h4) = h0d0, the Moss Convergence
Theorem 2.16 shows that the Toda bracket is detected in filtration at least 3. The only
element in sufficiently high filtration is Pc0, which detects the product ηρ15. This product
lies in the indeterminacy, so the bracket must contain zero. �

Lemma 6.5. — (20,11) The Toda bracket 〈κ,2, η, ν〉 is detected by τ g.

Proof. — The subbracket 〈2, η, ν〉 is strictly zero, since π5,3 is zero. The subbracket
〈κ,2, η〉 contains zero by Lemma 6.4. Therefore, the fourfold bracket 〈κ,2, η, ν〉 is well-
defined.

Shuffle to obtain

〈κ,2, η, ν〉η2 = κ〈2, η, ν, η2〉.
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Table 10 shows that ε is contained in the Toda bracket 〈η2, ν, η,2〉, so the latter expres-
sion equals εκ , which is detected by c0d0. It follows that 〈κ,2, η, ν〉 must be detected by
τ g. �

Lemma 6.6. — (23,13) The Toda bracket 〈ε + ησ,σ,2σ 〉 contains zero, with indetermi-

nacy generated by 4νκ in {Ph1d0}.

Proof. — Consider the shuffle

〈ε + ησ,σ,2σ 〉η = (ε + ησ)〈σ,2σ,η〉.
Table 10 shows that h1h4 detects 〈σ,2σ,η〉, so h1h4c0 detects the product ε〈σ,2σ,η〉. On
the other hand, Table 24 shows that there is a hidden σ extension from h1h4 to h4c0.
Therefore, h1h4c0 also detects ησ 〈σ,2σ,η〉. It follows that (ε + ησ)〈σ,2σ,η〉 is detected
in filtration higher than 5.

Consider the shuffle

2〈ε + ησ,σ,2σ 〉 = 〈2, ε + ησ,σ 〉2σ.

The latter expression is zero since 2σ annihilates all elements of π16,9.
This shows that no elements of the Toda bracket can be detected by τh2g or τh0h2g.
The element 4νκ generates the indeterminacy because it equals τηκ(ε +ησ). �

Lemma 6.7. — (30,16) The Toda bracket 〈τκ2, η,2〉 equals zero, with no indeterminacy.

Proof. — The Adams differential d3(
h2
2) = τh1d2

0 implies that the bracket is de-
tected by h0 · 
h2

2, which equals zero in the E∞-page. Therefore, the Toda bracket is
detected in Adams filtration at least 7, but there are no elements in the Adams E∞-page
in sufficiently high filtration.

The indeterminacy can be computed by inspection. �

Lemma 6.8. — (35,20) The Toda bracket 〈η2, θ4, η
2〉 contains zero, with indeterminacy

generated by η3η5.

Proof. — If the bracket were detected by h2d1, then

ν〈η2, θ4, η
2〉 = 〈ν, η2, θ4〉η2

would be detected by h2
2d1. However, h2

2d1 does not detect a multiple of η2.
The bracket cannot be detected by τh1e2

0 by comparison to tmf.
By inspection, the only remaining possibility is that the bracket contains zero. The

indeterminacy can be computed by inspection. �
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Lemma 6.9. — (36,20) The Toda bracket 〈τ, η2κ1, η〉 is detected by t, with indeterminacy

generated by η3μ33.

Proof. — There is a relation h1 · h2
1d1 = t in the homotopy of Cτ . Using the connec-

tion between Toda brackets and cofibers as described in [30, Section 3.1.1], this shows
that t detects the Toda bracket.

The indeterminacy is computed by inspection. �

The third author presents the following Lemma 6.10 as a correction to [62, The-
orem 2.1], where it states that the said Toda bracket contains 0.

Lemma 6.10. — (45) The classical Toda bracket 〈θ4,2, σ 2 + κ〉 contains 0 or ηκ2. Its

indeterminacy is generated by ρ15θ4, which is detected by h2
0h5d0.

Proof. — The gap originated in [62, Remark 3.3], where it was claimed that
〈θ4,2, σ 2〉 contains an order 2 element of the form 2α + β , where α is detected by h3

4
and β is detected by h5d0. In fact, since h5d0 and h1g2 are in the same filtration, we can
only conclude that β is detected by h5d0 or h5d0 + h1g2, therefore the missed possibility in
the statement of the lemma. �

Remark 6.11. — In fact, we have evidence that this classical Toda bracket
〈θ4,2, σ 2 + κ〉 contains ηκ2. However, the argument depends on computations as far
as the 110-stem.

Lemma 6.12. — (46,25) The Toda bracket 〈η,2,4κ2〉 contains zero.

Proof. — The Massey product Mh1 = 〈h1, h0, h2
0g2〉 shows that Mh1 detects the Toda

bracket. Table 18 shows that Mh1, 
h2c1, and τd0l +
c0d0 are all targets of hidden η ex-
tensions. (Beware that the hidden η extension from h2

3h5 to Mh1 is a crossing extension in
the sense of Section 2.1, but that does not matter.) Therefore, Mh1 detects only multiples
of η, so the Toda bracket contains a multiple of η. This implies that it contains zero, since
multiples of η belong to the indeterminacy. �

Lemma 6.13. — (59,31) The Toda bracket 〈τκ2, σ
2,2〉 equals zero.

Proof. — No elements of the bracket can be detected by τ 2
h1d0g by comparison
to tmf.

Consider the shuffle

〈τκ2, σ
2,2〉κ = τκ2〈σ 2,2, κ〉.

The bracket 〈σ 2,2, κ〉 is zero because it is contained in π29,16 = 0. On the other hand,
{τMd0}κ is non-zero and detected by τMd2

0 . Therefore, no elements of 〈τκ2, σ
2,2〉 can

be can be detected by τMd0. �
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The third author presents the following Lemma 6.14, which is needed in the proof
of Lemma 7.137.

Lemma 6.14. — (60) The classical Toda bracket 〈ηκ2,2σ,σ 〉 equals zero.

Proof. — Due to d3(e1) = h2
2n and that h1g2 = h3e1, we have the following Massey

product in the E4-page

h1g2 = 〈h2, h2n, h3〉
with zero indeterminacy. Since there are no crossing differentials, we conclude that h1g2

detects a homotopy class in the Toda bracket 〈ν, ν{n}, σ 〉. We claim that ηκ2 is contained
in this bracket. In fact, they might differ by classes detected in filtration 6 or higher:
h0h5d0, h2

0h5d0, w. The first two detect σ -multiples so they are in the indeterminacy. The
homotopy class {w} is detected by tmf, but κ2 and {n} are not, so w can be ruled out too.

Therefore, we have

〈ηκ2,2σ,σ 〉 ⊆ 〈〈ν, ν{n}, σ 〉,2σ,σ 〉 ⊇ ν〈ν{n}, σ,2σ,σ 〉 = 0.

Here 〈σ,2σ,σ 〉 = 0, and 〈ν{n}, σ,2σ 〉 contains 0 since coker J in π49 is 0. So the 4-fold
bracket 〈ν{n}, σ,2σ,σ 〉 in π57 is well-defined. By comparison with π57tmf , we know it
is 0.

We remain to show the indeterminacy of 〈〈ν, ν{n}, σ 〉,2σ,σ 〉 is 0. In fact,

– π15 · 〈ν, ν{n}, σ 〉 = 〈π15, ν, ν{n}〉σ ⊆ σπ53 = 0. (Lemma 2.3 in [62].)
– 〈ν · π42,2σ,σ 〉 = 〈0,2σ,σ 〉 + 〈ρ15θ4,2σ,σ 〉 = 0. (Lemmas 2.3 and 2.4 in [62].)
– 〈σ · π38,2σ,σ 〉 ⊇ π38 · 〈σ,2σ,σ 〉 = 0.

This completes the proof. �

Lemma 6.15. — (60,32) For every α that is detected by h2
3h5, the Toda bracket 〈2, σ 2, α〉

contains zero. The indeterminacy is generated by 2τκ3, which is detected by τ 2d2
0 l.

Proof. — Let α be detected by h2
3h5. For degree reasons, the only elements that

could detect σ 2α either support η extensions or are detected by tmf. Therefore, σ 2α is
zero. Hence the bracket is defined.

By comparison to tmf, the bracket cannot be detected by τ 4g3. Table 15 shows that
τ 2d2

0 l is the target of a hidden 2 extension, so it detects an element in the indeterminacy.
Since there are no other possibilities, the bracket must contain zero. �

Remark 6.16. — This result is consistent with Table 23 of [30], which claims that
the bracket 〈2, σ 2, θ4.5〉 contains an element that is detected by B3. The element B3 is now
known to be zero in the Adams E∞-page, so this just means that the bracket contains an
element detected in Adams filtration strictly higher than the filtration of B3.
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Lemma 6.17. — deg63, 34 The Toda bracket 〈θ4, η
2, θ4〉 equals zero.

Proof. — Theorem 6.1 says that there exists an element θ∗
4 in π61,32 such that

〈θ4, η
2, θ4〉 contains η2θ∗

4 . The group π61,32 is zero, so θ∗
4 must be zero, and the bracket

must contain zero.
In order to compute the indeterminacy of 〈θ4, η

2, θ4〉, we must consider the prod-
uct of θ4 with elements of π33,18. There are several cases to consider.

First consider {
h2
1h3}. The product θ4{
h2

1h3} is detected in Adams filtration at
least 10, but there are no elements in sufficiently high filtration.

Next consider νθ4 detected by p. The product θ 2
4 is zero [62], so νθ 2

4 is also zero.
Finally, consider ηη5 detected by h2

1h5. Table 10 shows that 〈η,2, θ4〉 detects η5.
Shuffle to obtain

ηη5θ4 = η〈η,2, θ4〉θ4 = η2〈2, θ4, θ4〉.
The bracket 〈2, θ4, θ4〉 is zero because it is contained in π61,32 = 0. �

Lemma 6.18. — (66,36) The Toda bracket 〈η2, θ4, η
2, θ4〉 is detected by 
1h2

3.

Proof. — Table 3 shows that 
1h2
3 equals 〈h2

1, h2
4, h2

1, h2
4〉. Therefore, 
1h2

3 detects
〈η2, θ4, η

2, θ4〉, if the Toda bracket is well-defined.
In order to show that the Toda bracket is well-defined, we need to know that the

subbrackets 〈η2, θ4, η
2〉 and 〈θ4, η

2, θ4〉 contain zero. These are handled by Lemmas 6.8
and 6.17. �

Lemma 6.19. — (67,36) The Toda bracket 〈τη2κ,8, κ2〉 contains zero, and its indetermi-

nacy is generated by multiples of τη2κ .

Proof. — The bracket 〈τη2κ,8, κ2〉 contains τηκ〈η,2,4κ2〉. Lemma 6.12 shows
that this expression contains zero.

It remains to show that κ2 · π23,12 equals zero. There are several cases to consider.
First, the product τση4κ2 in π60,32 could only be detected by τ 4g3 or τ 2d2

0 l. Com-
parison to tmf rules out both possibilities. Therefore, τση4κ2 is zero.

Second, the product κκ2 in π64,35 must be detected in filtration at least 9, since
τ gg2 equals zero, so it could only be detected by h2

1(
e1 + C0). This implies that τνκκ2 is
zero.

Third, we must consider the product ρ23κ2. Table 10 shows that the Toda bracket
〈σ,16,2ρ15〉 detects ρ23. Then ρ23κ2 is contained in

〈σ,16,2ρ15〉κ2 = σ 〈16,2ρ15, κ2〉.
The latter bracket is contained in π60,32. As above, comparison to tmf shows that the
expression is zero. �
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Lemma 6.20. — (70,37) The Toda bracket 〈η, ν, τθ4.5κ〉 is detected by τh1D′
3.

Proof. — Table 6 shows that d3(τD′
3) equals τ 2Mh2g. The Moss Convergence The-

orem 2.16 implies that τh1D′
3 detects the Toda bracket. �

Lemma 6.21. — (71,37) There exists an element α in π66,34 detected by τ 2h2C′ such that

the Toda bracket 〈η, ν,α〉 is defined and detected by τh1p1.

Proof. — The differential d5(τp1 + h2
0h3h6) = τ 2h2

2C′ and the Moss Convergence
Theorem 2.16 establish that the Toda bracket is detected by τh1p1, provided that the
Toda bracket is well-defined.

Let α be an element of π66,34 that is detected by τ 2h2C′. Then να does not neces-
sarily equal zero; it could be detected in higher filtration by τ 2h2B5 + h2D′

2. Then we can
adjust our choice of α by an element detected by τ 2B5 +D′

2 to ensure that να is zero. �

Lemma 6.22. — (72,38) The Toda bracket 〈σ 2,2, {t}, τκ〉 is detected by h4Q2 + h2
3D2.

Proof. — The subbracket 〈σ 2,2, {t}〉 contains zero by comparison to Cτ , and its
indeterminacy is generated by σ 3θ4 = 4σκ2 detected by τ gn. The subbracket 〈2, {t}, τκ〉
is strictly zero because it cannot be detected by h0h2h5i by comparison to tmf. This shows
that the desired four-fold Toda bracket is well-defined.

Consider the relation

η〈σ 2,2, {t}, τκ〉 ⊆ 〈〈η,σ 2,2〉, {t}, τκ〉.
Let α be any element of 〈η,σ 2,2〉. Table 10 shows that α is detected by h1h4 and equals
either η4 or η4 + ηρ15. By inspection, the indeterminacy of 〈α, {t}, τκ〉 equals τκ · π53,29,
which is detected in Adams filtration at least 14. (In fact, the indeterminacy is non-zero,
since it contains both τκ · {Mc0} detected by τMd2

0 and also τκ · {
h1d2
0 } detected by

τ 2
h1d0e2
0.)

Table 10 shows that 〈α, {t}, τκ〉 is detected by h1h4Q2. Together with the partial
analysis of the indeterminacy in the previous paragraph, this shows that 〈α, {t}, τκ〉 does
not contain zero.

Then η〈σ 2,2, {t}, τκ〉 also does not contain zero, and the only possibility is that
〈σ 2,2, {t}, τκ〉 is detected by h4Q2 + h2

3D2. �

Lemma 6.23. — (75,40) The Toda bracket 〈θ4, θ4, κ〉 equals zero.

Proof. — The Massey product 〈h2
4, h2

4, d0〉 equals zero, since

h2
1〈h2

4, h2
4, d0〉 = 〈h2

1, h2
4, h2

4〉d0 = 0,
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while h2
1x75,7 is not zero. The Moss Convergence Theorem 2.16 then implies that

〈θ4, θ4, κ〉 is detected in Adams filtration at least 8.
The only element in sufficiently high filtration is Ph4

1h6. However,

η2〈θ4, θ4, κ〉 = 〈η2, θ4, θ4〉κ = 0,

while h2
1 · Ph4

1h6 is not zero. Then 〈θ4, θ4, κ〉 must contain zero because there are no re-
maining possibilities.

The indeterminacy can be computed by inspection, using that θ4θ4.5 is zero by
comparison to Cτ . �

Lemma 6.24. — (77,40) The Toda bracket 〈κ,2, θ5〉 is detected by h6d0.

Proof. — The differential d3(h0h4) = h0d0 implies that 〈κ,2, θ5〉 is detected by h0h4 ·
h2

5 = 0 in filtration 4. In other words, the Toda bracket is detected in Adams filtration at
least 5.

The element h1h6d0 detects 〈ηκ,2, θ5〉, using the Adams differential d2(h6) = h0h2
5.

This expression contains η〈κ,2, θ5〉, which shows that 〈κ,2, θ5〉 is detected in filtration at
most 5.

The only possibility is that the Toda bracket is detected by h6d0. �

Lemma 6.25. — (79,42) There exists an element μ in π77,41 that is detected by τm1 such

that ημ is zero and μ is not divisible by τ . Moreover, the Toda bracket 〈μ,η,2〉 contains zero or is

detected by τ 2Me2
0 , and its indeterminacy is detected by h0h2x76,6.

Proof. — Let μ′ be an element of π77,42 that is detected by m1. Then τμ′ is detected
by τm1, and ημ′ is detected by h1m1. Table 14 shows that there is a hidden τ extension
from h1m1 to M
h2

1h3. Therefore, τημ′ is detected by M
h2
1h3.

Now let μ′′ be an element of π77,41 that is detected by M
h1h3. Then ημ′′ is also
detected by M
h2

1h3. This shows that η(τμ′ + μ′′) is zero because there are no possible
detecting elements in higher filtration.

Choose μ to be τμ′ + μ′′. Note that μ′′ is not divisible by τ because inclusion
of the bottom cell of Cτ takes M
h1h3 to a non-zero element. Therefore, μ is also not
divisible by τ .

Now that μ is defined, it remains to study the Toda bracket. We begin with an
analysis of its indeterminacy, which is generated by τη2 · μ and the multiples of 2 in
π79,42. The first expression is zero by the construction of μ. Let α be an element of π79,42

that is detected by h2x76,6, so 2α is detected by h0h2x76,6. Tables 15 and 17 show that there
are no hidden 2 extensions in the 79-stem with weight 42. Therefore, the indeterminacy
is generated by 2α.

Inclusion of the bottom cell of Cτ takes the bracket to 〈M
h1h3, h1, h0〉. Machine-
generated data [58] shows that this bracket equals {0, h0h2x76,6} in Cτ .
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Let β be any element of 〈μ,η,2〉. It is possible that β maps to h0h2x76,6 under
inclusion of the bottom cell of Cτ . In that case, β + 2α also belongs to 〈μ,η,2〉 and must
map to zero under inclusion of the bottom cell of Cτ .

In either case, the original Toda bracket contains an element that maps to zero
under inclusion of the bottom cell of Cτ , and that element is therefore divisible by τ .
By inspection, the only possible detecting elements are τ 2Me2

0 and τ 3
h1e2
0g. The latter

option is ruled out by comparison to mmf. �

Lemma 6.26. — (80,42) The Toda bracket 〈2, η, τη{h1x76,6}〉 is detected by τh1x1.

Proof. — Let α be an element of π77,41 that is detected by h1x76,6. First we must
show that the Toda bracket is well-defined.

Note that 2α is zero because there are no 2 extensions in π77,41 in sufficiently high
Adams filtration. Now consider the shuffle

τη2α = 〈2, η,2〉α = 2〈η,2, α〉.
Table 10 shows that 〈η,2, α〉 is detected by h0h2x76,6, but this element does not support
a hidden 2 extension. This shows that τη2α is zero and that the Toda bracket is well-
defined.

Finally, use the Adams differential d4(h0e2) = τh3
1x76,6 and the relation h0 · h0e2 =

τh1x1 to compute the Toda bracket. �

Lemma 6.27. — (81,43) There exists an element α in π79,42 that is detected by h2x76,6 such

that ηα is zero. Moreover, the Toda bracket 〈2, η,α〉 is zero, with no indeterminacy.

Proof. — There is no hidden η extension on h2x76,6 because the possible targets
τ 3d0e2

0l and τ 5g4 are ruled out by comparison to mmf. Therefore, α exists.
The Massey product 〈h0, h1, h2x76,6〉 has no indeterminacy by inspection. Conse-

quently,

〈h0, h1, h2x76,6〉 = 〈h0, h1, h2〉x76,6 = 0.

The Moss Convergence Theorem 2.16 implies that the Toda bracket 〈2, η,α〉 is detected
in filtration 9 or higher. The possible detecting elements are Ph2

1h6c0 and 
2h1d1. In either
of these cases, the Toda bracket would be detected by inclusion of the bottom cell of Cτ ,
but the corresponding bracket is zero in Cτ .

The indeterminacy is generated by τη2α and the multiples of 2 in π81,43. The first
expression is zero by the choice of α. Tables 15 and 17 show that there are no multiples
of 2 in π81,43. �

Lemma 6.28. — (84,45) The Toda bracket 〈2, σ 2, {τh2
2C′}〉 equals zero, with no indeter-

minacy.
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Proof. — Let α be an element of π66,35 that is detected by τh2C′, so να is the
unique element that is detected by τh2

2C′. We consider the Toda bracket 〈2, σ 2, να〉.
By inspection, the indeterminacy is zero, so the bracket equals 〈2, σ 2, ν〉α, which equals
〈α,2, σ 2〉ν.

Apply the Moss Convergence Theorem 2.16 with the Adams d2 differential to see
that the Toda bracket 〈α,2, σ 2〉 is detected by 0 in Adams filtration 9, but it could be
detected by a non-zero element in higher filtration. However, this shows that 〈α,2, σ 2〉ν
is zero by inspection. �

Lemma 6.29. — (84,45) The Toda bracket 〈2, σ 2, {h3(
e1 + C0)}〉 equals zero, with no

indeterminacy.

Proof. — Let β be an element of π62,33 that is detected by 
e1 + C0, so σβ is
the unique element that is detected by h3(
e1 + C0). We consider the Toda bracket
〈2, σ 2, σβ〉. By inspection, the indeterminacy is zero, so the bracket equals 〈2, σ 2, β〉σ .

Apply the Moss Convergence Theorem 2.16 with the Adams d2 differential to see
that the Toda bracket 〈2, σ 2, β〉 is detected by 0 in Adams filtration 9, but it could be
detected by a non-zero element in higher filtration. Then the only possible non-zero
value for 〈2, σ 2, β〉σ is {M
h1h3}σ . Table 24 shows that M
h1h3 detects {
h1h3}θ4.5, so
σ {M
h1h3} equals σ {
h1h3}θ4.5, which equals zero. �

Lemma 6.30. — (86,46) The Toda bracket 〈τηκ2,2,4κ2〉 is detected by M
h2
0e0.

Proof. — Table 3 shows that the Massey product 〈
h2
0e0, h2

0, h0g2〉 equals the ele-
ment M
h2

0e0. Now apply the Moss Convergence Theorem 2.16, using that Table 18
shows that 
h2

0e0 detects τηκ2. �

Lemma 6.31. — (87,46) There exists an element α in π67,36 that is detected by h0Q3 +h0n1

such that h2
1c3 detects the Toda bracket 〈τα, ν4, η〉.

Proof. — A consequence of the proof of Lemma 5.51 is that there exists α in π67,36

that is detected by h0Q3 + h0n1 such that the product τν4α is zero. Therefore, h2
1c3 detects

the Toda bracket 〈τα, ν4, η〉 because of the Adams differential d4(h1c3) = τh0h2h4Q3. �

7. Hidden extensions

In this section, we will discuss hidden extensions in the E∞-page of the Adams
spectral sequence. We methodically explore hidden extensions by τ , 2, η, and ν, and
we study other miscellaneous hidden extensions that are relevant for specific purposes.
For easy reference, the lemmas in this section are labelled with degrees that match the
degrees given in the tables.
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7.1. Hidden τ extensions

In order to study hidden τ extensions, we will use the long exact sequence

(7.1) · · · πp,q+1
τ

πp,q πp,qCτ πp−1,q+1
τ

πp−1,q · · ·
extensively. This sequence governs hidden τ extensions in the following sense. An element
α in πp,q is divisible by τ if and only if it maps to zero in πp,qCτ , and an element α in
πp−1,q+1 supports a τ extension if and only if it is not in the image of πp,qCτ . Therefore,
we need to study the maps π∗,∗ → π∗,∗Cτ and π∗,∗Cτ → π∗−1,∗+1 induced by inclusion
of the bottom cell into Cτ and by projection from Cτ to the top cell.

The E∞-pages of the Adams spectral sequences for S0,0 and Cτ give associated
graded objects for the homotopy groups that are the sources and targets of these maps.
Naturality of the Adams spectral sequence induces maps on associated graded objects.

These maps on associated graded objects often detect the values of the maps on
homotopy groups. For example, the element h0 in the Adams spectral sequence for the
sphere is mapped to the element h0 in the Adams spectral sequence for Cτ . In homotopy
groups, this means that inclusion of the bottom cell into Cτ takes the element 2 in π0,0 to
the element 2 in π0,0Cτ .

On the other side, the element h4
1 in the Adams spectral sequence for Cτ is mapped

to the element h4
1 in Adams spectral sequence for the sphere. In homotopy groups, this

means that projection from Cτ to the top cell takes the element {h4
1} in π5,3Cτ to the

element η4 in π4,4.
However, some values of the maps on homotopy groups can be hidden in the

map of associated graded objects. This situation is rare in low stems but becomes more
and more common in higher stems. The first such example occurs in the 30-stem. The
element 
h2

2 is a permanent cycle in the Adams spectral sequence for Cτ , so {
h2
2} is

an element in π30,16Cτ . Now 
h2
2 maps to zero in the E∞-page of the Adams spectral

sequence for the sphere, but {
h2
2} does not map to zero in π29,17. In fact {
h2

2} maps to
ηκ2, which is detected by h1d2

0 . This demonstrates that projection from Cτ to the top cell
has a hidden value.

We refer the reader to Section 2.1 for a precise discussion of these issues.

Theorem 7.1.

(1) Through the 90-stem, Table 12 lists all hidden values of inclusion of the bottom cell into

Cτ , except that:

(a) If h1f2 does not survive but τh1f2 does survive, then τh1f2 maps to h3
0c3.

(b) If h2
1f2 does not survive, then τh2

1f2 maps to τh3
1h4Q3 or 
2e1 + τ
h2e1g.

(c) τh1x85,6 maps to τh3
1h4Q3 or 
2e1 + τ
h2e1g.

(2) Through the 90-stem, Table 13 lists all hidden values of projection from Cτ to the top cell,

except that:
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(a) If h1f2 does not survive, then h1f2 maps to h2
1h4Q3 or 
h1j1.

(b) x85,6 maps to h2
1h4Q3 or 
h1j1.

(c) If h2
1f2 does not survive, then h2

1f2 maps to h3
1h4Q3 or τMh0g2.

(d) h1x85,6 maps to h3
1h4Q3 or τMh0g2.

(e) If h2
1f2 survives, then τh3

1h4Q3 or 
2e1 + τ
h2e1g maps to M
h2
1d0.

Proof. — The values of inclusion of the bottom cell and projection to the top cell
are almost entirely determined by inspection of Adams E∞-pages. Taking into account
the multiplicative structure, there are no other combinatorial possibilities. For example,
consider the exact sequence

π30,16 → π30,16Cτ → π29,17.

In the Adams E∞-page for Cτ , h2
4 and 
h2

2 are the only two elements in the 30-stem with
weight 16. In the Adams E∞-page for the sphere, h2

4 is the only element in the 30-stem
with weight 16, and h1d2

0 is the only element in the 29-stem with weight 17. The only
possibility is that h2

4 maps to h2
4 under inclusion of the bottom cell, and 
h2

2 maps to h1d2
0

under projection to the top cell.
One case, given below in Lemma 7.6, requires a more complicated argument. �

Remark 7.2. — Through the 90-stem, inclusion of the bottom cell into Cτ has only
one hidden value with target indeterminacy. Namely, h2c1A′ is the hidden value of h1gB7,
with target indeterminacy generated by 
j1. Through the 90-stem, projection from Cτ

to the top cell has no hidden values with target indeterminacy.

Remark 7.3. — Through the 90-stem, inclusion of the bottom cell into Cτ has no
crossing values. On the other hand, projection from Cτ to the top cell does have crossing
values in this range. These occurrences are described in the fourth column of Table 13.
Each can be verified by direct inspection.

Theorem 7.4. — Through the 90-stem, Table 14 lists all hidden τ extensions in C-motivic

stable homotopy groups, except that:

(1) if M
h1d0 is not hit by a differential, then there is a hidden τ extension from 
h1j1 to

M
h1d0.

(2) if M
h2
1d0 is not hit by a differential, then there is a hidden τ extension from τMh0g2 to

M
h2
1d0.

In this range, the only crossing extension is:

(1) the hidden τ extension from h2
1h6c0 to h0h4D2, and the not hidden τ extension on τh2

2Q3.

Proof. — Almost all of these hidden τ extensions follow immediately from the val-
ues of the maps in the long exact sequence (7.1) given in Tables 12 and 13.
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For example, consider the element Pd0 in the Adams E∞-page for the sphere, which
belongs to the 22-stem with weight 12. Now π22,12Cτ is zero because there are no ele-
ments in that degree in the Adams E∞-page for Cτ , so inclusion of the bottom cell takes
{Pd0} to zero. Therefore, {Pd0} must be in the image of multiplication by τ . The only
possibility is that there is a hidden τ extension from c0d0 to Pd0. �

Remark 7.5. — If M
h1d0 and M
h2
1d0 are not hit by differentials, then a straight-

forward analysis of the sequence (7.1) shows that the possible τ extensions on 
h1j1 and
τMh0g2 must occur. Thus these uncertainties are entirely determined by corresponding
uncertainties in values of the Adams differentials.

Lemma 7.6.

(1) (70,10,38) The element h1h3(
e1 + C0) + τh2C′′ maps to h4
1c0Q2 under inclusion of

the bottom cell into Cτ .

(2) (70,8,39) There is a hidden τ extension from d1e1 to h1h3(
e1 + C0).

Proof. — Consider the exact sequence π70,38 → π70,38Cτ → π69,39. For combina-
torial reasons, one of the following two possibilities must occur:

(a) the element h1h3(
e1 + C0) + τh2C′′ maps to h4
1c0Q2 under inclusion of the

bottom cell into Cτ , and there is a hidden τ extension from d1e1 to h1h3(
e1 +
C0).

(b) the element h1h3(
e1 + C0) maps to h4
1c0Q2 under inclusion of the bottom cell

into Cτ , and there is a hidden τ extension from d1e1 to h1h3(
e1 +C0)+τh2C′′.

We will show that there cannot be a hidden τ extension from d1e1 to h1h3(
e1 + C0) +
τh2C′′.

Lemma 7.154 shows that τν{d1e1} equals τησ {k1}. Since there is no hidden τ

extension on h1k1, there must exist an element α in {k1} such that τηα = 0. Therefore,
τν{d1e1} must be zero.

If there were a τ extension from d1e1 to h1h3(
e1 + C0) + τh2C′′, then τν{d1e1}
would be detected by

h2 · (h1h3(
e1 + C0) + τh2C′′) = τh2
2C′′,

and in particular would be non-zero. �

7.2. Hidden 2 extensions

Theorem 7.7. — Tables 15 and 16 list some hidden extensions by 2.
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Proof. — Many of the hidden extensions follow by comparison to Cτ . For example,
there is a hidden 2 extension from h0h2g to h1c0d0 in the Adams spectral sequence for Cτ .
Pulling back along inclusion of the bottom cell into Cτ , there must also be a hidden 2
extension from h0h2g to h1c0d0 in the Adams spectral sequence for the sphere. This type
of argument is indicated by the notation Cτ in the fourth column of Table 15.

Next, Table 14 shows a hidden τ extension from h1c0d0 to Ph1d0. Therefore, there
is also a hidden 2 extension from τh0h2g to Ph1d0. This type of argument is indicated by
the notation τ in the fourth column of Table 15.

Many cases require more complicated arguments. In stems up to approximately
dimension 62, see [30, Section 4.2.2 and Tables 27–28] [61], and [62]. The higher-
dimensional cases are handled in the following lemmas. �

Remark 7.8. — Through the 90-stem, there are no crossing 2 extensions.

Remark 7.9. — The hidden 2 extension from h0h3g2 to τ gn is proved in [61], which
uses on the “RP∞-method” to establish a hidden σ extension from τh3d1 to 
h2c1 and
a hidden η extension from τh1g2 to 
h2c1. We now have easier proofs for these η and σ

extensions, using the hidden τ extension from h2
1g2 to 
h2c1 given in Table 14, as well as

the relation h2
3d1 = h2

1g2.

Remark 7.10. — Comparison to synthetic homotopy gives additional information
about some possible hidden 2 extensions, including:

(1) there is a hidden 2 extension from h0h5i to τ 4e2
0g.

(2) there is no hidden 2 extension from Px76,6 to M
h1d0.

See [15] and [16] for more details. We are grateful to John Rognes for pointing out a
mistake in [30, Lemma 4.56 and Table 27] concerning the hidden 2 extension on h0h5i.
Lemma 7.18 shows that the extension occurs but does not determine its target precisely.

Remark 7.11. — The first correct proof of the relation 2θ5 = 0 appeared in [62].
Earlier claims in [44] and [38] were based upon a mistaken understanding of the Toda
bracket 〈σ 2,2, θ4〉. See [30, Table 23] for the correct value of this bracket.

Remark 7.12. — If M
h2
1d0 is non-zero in the E∞-page, then there is a hidden τ

extension from τMh0g2 to M
h2
1d0. This implies that there must be a hidden 2 extension

from τ 2Mg2 to M
h2
1d0.

Remark 7.13. — Table 15 shows that there is a hidden 2 extension from x87,7 to
τ 3gQ3. This follows from data recently produced by Dexter Chua on the d2 differentials
in the Adams spectral sequence for the cofiber of 2.

Theorem 7.14. — Table 17 lists all unknown hidden 2 extensions, through the 90-stem.
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Proof. — Many possibilities are eliminated by comparison to Cτ , to tmf, or to mmf.
For example, there cannot be a hidden 2 extension from h2

2h4 to τh1g by comparison to
Cτ .

Many additional possibilities are eliminated by consideration of other parts of the
multiplicative structure. For example, there cannot be a hidden 2 extension from Ph1h5 to
τ 3g2 because τ 3g2 supports an h1 extension and 2η equals zero.

Several cases are a direct consequence of Proposition 7.16.
Some possibilities are eliminated by more complicated arguments. These cases are

handled in the following lemmas. �

Remark 7.15. — If M
h2
1d0 is not zero in the E∞-page, then M
h1d0 supports an

h1 multiplication, and there cannot be a hidden 2 extension from Px76,6 to M
h1d0.

Proposition 7.16. — Suppose that 2α and τηα are both zero. Then 2〈α,2, θ5〉 is zero.

Proof. — Consider the shuffle

2〈α,2, θ5〉 = 〈2, α,2〉θ5.

Since 2θ5 is zero, this expression has no indeterminacy. Corollary 6.2 implies that it equals
τηαθ5, which is zero by assumption. �

Remark 7.17. — Proposition 7.16 eliminates possible hidden 2 extensions on sev-
eral elements, including h2

2h6, h3
0h3h6, h2

3h6, h6c1, h2
2h4h6, h5

0h6i, and h2
2h6g.

Lemma 7.18. — (54,9,28) There is a hidden 2 extension from h0h5i to either τMPh1 or to

τ 4e2
0g.

Proof. — Table 2 shows that h0h5i maps to 
2h2
2 in the homotopy of tmf. The ele-

ment 
2h2
2 supports a hidden 2 extension, so h0h5i must support a hidden 2 extension as

well. �

Lemma 7.19.

(1) (63,6,33) There is a hidden 2 extension from τh1H1 to τh1(
e1 + C0).

(2) (63,7,33) There is no hidden 2 extension on τX2 + τC′.
(3) (70,7,37) There is a hidden 2 extension from τh1h3H1 to τh1h3(
e1 + C0).

Proof. — Table 18 shows that there is an η extension from τh1H1 to h3Q2. Let α be
any element of π63,33 that is detected by τh1H1. Then τη2α is non-zero and detected by
τh1h3Q2. Note that τh1h3Q2 cannot be the target of a hidden 2 extension because there
are no possibilities.
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If 2α were zero, then we would have the shuffling relation

τη2α = 〈2, η,2〉α = 2〈η,2, α〉.
But this would contradict the previous paragraph.

We now know that 2α must be non-zero for every possible choice of α. The only
possibility is that there is a hidden 2 extension from τh1H1 to τh1(
e1 + C0), and that
there is no hidden 2 extension on τX2 + τC′. This establishes the first two parts.

The third part follows immediately from the first part by multiplication by h3. �

Lemma 7.20. — (64,2,33) There is a hidden 2 extension from h1h6 to τh2
1h2

5.

Proof. — Table 10 shows that h1h6 detects 〈η,2, θ5〉. Now shuffle to obtain

2〈η,2, θ5〉 = 〈2, η,2〉θ5 = τη2θ5. �

Lemma 7.21. — (66,6,36) There is no hidden 2 extension on 
1h2
3.

Proof. — Table 10 shows that 
1h2
3 detects the Toda bracket 〈η2, θ4, η

2, θ4〉. We
have

2〈η2, θ4, η
2, θ4〉 ⊆ 〈〈2, η2, θ4〉, η2, θ4〉.

Table 10 shows that

νθ4 = 〈2, η, ηθ4〉 = 〈2, η2, θ4〉,
so we must compute 〈νθ4, η

2, θ4〉.
This bracket contains ν〈θ4, η

2, θ4〉, which equals zero by Lemma 6.17. Therefore,
we only need to compute the indeterminacy of 〈νθ4, η

2, θ4〉.
The only possible non-zero element in the indeterminacy is the product θ4{t}. Ta-

ble 10 shows that {t} = 〈ν, η, ηθ4〉. Now

θ4{t} = 〈ν, η, ηθ4〉θ4 = ν〈η,ηθ4, θ4〉.
This last expression is well-defined because θ 2

4 is zero [62], and it must be zero because
π63,34 consists entirely of multiples of η. �

Lemma 7.22. — (67,6,36) There is no hidden 2 extension on h0Q3 + h2
2D3.

Proof. — By comparison to the homotopy of Cτ , there is no hidden extension with
value h2

2A′. Table 18 shows that τ 2
h2
2e0g supports a hidden η extension. Therefore, it

cannot be the target of a 2 extension. �
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Lemma 7.23. — (68,7,36) There is no hidden 2 extension on h3A′.

Proof. — Table 10 shows that h3A′ detects the Toda bracket 〈σ,κ, τηθ4.5〉. Shuffle
to obtain

〈σ,κ, τηθ4.5〉2 = σ 〈κ, τηθ4.5,2〉.
The bracket 〈κ, τηθ4.5,2〉 is zero because it is contained in π61,32 = 0. �

Lemma 7.24. — (69,4,36) There is no hidden 2 extension on p′.

Proof. — Table 24 shows that p′ detects the product σθ5, and 2θ5 is already known
to be zero [62]. �

Lemma 7.25. — (70,9,37) There is no hidden 2 extension on τh1D′
3.

Proof. — Table 10 shows that τh1D′
3 detects the Toda bracket 〈η, ν, τθ4.5κ〉. Now

shuffle to obtain

2〈η, ν, τθ4.5κ〉 = 〈2, η, ν〉τθ4.5κ,

which equals zero because 〈2, η, ν〉 is contained in π5,3 = 0. �

Lemma 7.26. — (71,3,37) There is no hidden 2 extension on h1h3h6.

Proof. — Table 10 shows that h1h6 detects the Toda bracket 〈η,2, θ5〉. Let α be an
element of this bracket. Then h1h3h6 detects σα, and

2σα = 2σ 〈η,2, θ5〉 = σ 〈2, η,2〉θ5 = τη2σθ5.

Table 10 also shows that h6c0 detects the Toda bracket 〈ε,2, θ5〉. Let β be an ele-
ment of this bracket. As in the proof of Lemma 7.27, we compute that 2β equals τηεθ5.

Now consider the element σα + β , which is also detected by h1h3h6. Then

2(σα + β) = τη2σθ5 + τηεθ5 = τν3θ5,

using Toda’s relation η2σ + ν3 = ηε [55].
Table 21 shows that there is a hidden ν extension from h2h2

5 to τh1Q3. Therefore,
τh1Q3 detects ν2θ5.

This does not yet imply that ν3θ5 is zero, because ν2θ5 + η{τQ3 + τn1} might be
detected h3A′ or Ph2h5j in higher filtration. However, h3A′ does not support a hidden ν

extension by Lemma 7.110. Also, Table 2 shows that Ph2h5j maps non-trivially to tmf,
while ν2θ5 + η{τQ3 + τn1} maps to zero. This is enough to conclude that ν3θ5 is zero.

We have now shown that 2(σα + β) is zero in π71,37. Since h1h3h6 detects σα + β ,
it follows that h1h3h6 does not support a hidden 2 extension. �
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Lemma 7.27. — (71,4,37) There is a hidden 2 extension from h6c0 to τh2
1p′.

Proof. — Table 10 shows that h6c0 detects the Toda bracket 〈ε,2, θ5〉. Now shuffle
to obtain

2〈ε,2, θ5〉 = 〈2, ε,2〉θ5 = τηεθ5.

Finally, τηεθ5 is detected by τh2
1p′ because of the relation h2

1p′ = h1h2
5c0. �

Lemma 7.28. — (71,5,37) There is no hidden 2 extension on τh1p1.

Proof. — Lemma 6.21 shows that τh1p1 detects 〈η, ν,α〉 for some α detected by
τ 2h2C′. Now shuffle to obtain

2〈η, ν,α〉 = 〈2, η, ν〉α,

which is zero because 〈2, η, ν〉 is contained in π5,3 = 0. �

Lemma 7.29. — (71,8,39) There is a hidden 2 extension from h3
2H1 to τMh2

2g.

Proof. — Table 21 shows that there are hidden ν extensions from h3
2H1 to h3C′′,

and from τMh2
2g to Mh1d2

0 . Table 15 shows that there is also a hidden 2 extension from
h3C′′ to Mh1d2

0 . The only possibility is that there must also be a hidden 2 extension on
h2

1h3H1. �

Lemma 7.30. — (72,6,37) There is no hidden 2 extension on Ph1h6.

Proof. — Table 10 shows that Ph1h6 detects the Toda bracket 〈μ9,2, θ5〉. Shuffle to
obtain

2〈μ9,2, θ5〉 = 〈2,μ9,2〉θ5 = τημ9θ5.

Table 10 also shows that μ9 is contained in the Toda bracket 〈η,2,8σ 〉. Shuffle again to
obtain

τημ9θ5 = 〈η,2,8σ 〉τηθ5 = τη2〈2,8σ, θ5〉.
Table 10 shows that h3

0h3h6 detects 〈2,8σ, θ5〉.
By inspection, the product η2{h3

0h3h6} can only be detected by 
2h1h4c0. However,
this cannot occur by comparison to Cτ . Therefore, η2{h3

0h3h6}, and also τη2{h3
0h3h6}, must

be zero. �

Lemma 7.31. — (72,8,38) There is no hidden 2 extension on h4Q2 + h2
3D2.
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Proof. — Table 10 shows that the element h4Q2 + h2
3D2 detects the Toda bracket

〈σ 2,2, {t}, τκ〉. Consider the relation

2〈σ 2,2, {t}, τκ〉 ⊆ 〈〈2, σ 2,2〉, {t}, τκ〉.
Corollary 6.2 shows that the Toda bracket 〈2, σ 2,2〉 contains zero since ησ 2 is zero.
Therefore, it consists of even multiples of ρ15; let 2kρ15 be any such element in π15,8.

The Toda bracket 〈2kρ15, {t}, τκ〉 contains kρ15〈2, {t}, τκ〉, which equals zero as
discussed in the proof of Lemma 6.22. Moreover, its indeterminacy is equal to τκ ·π52,28,
which is detected in Adams filtration at least 12. This implies that 〈2kρ15, {t}, τκ〉 is de-
tected in Adams filtration at least 12, and that the target of a hidden 2 extension on
h4Q2 + h2

3D2 must have Adams filtration at least 12.
The remaining possible targets with Adams filtration at least 12 are eliminated by

comparison to Cτ or to mmf. �

Remark 7.32. — The proof of Lemma 7.31 might be simplified by considering the
shuffle

2〈σ 2,2, {t}, τκ〉 = 〈2, σ 2,2, {t}〉τκ.

However, the latter four-fold bracket may not exist, since both three-fold subbrackets have
indeterminacy. See [29] for a discussion of the analogous difficulty with Massey products.

Lemma 7.33. — (73,7,40) There is no hidden 2 extension on h2
2Q3.

Proof. — The element τh2
2Q3 detects ν2{τQ3 + τn1}, so it cannot support a hidden

2 extension. This rules out all possible 2 extensions on h2
2Q3. �

Lemma 7.34. — (73,8,38) There is no hidden 2 extension on h0h4D2.

Proof. — Table 14 shows that there is a hidden τ extension from h2
1h6c0 to h0h4D2.

Therefore, h0h4D2 detects either τηεη6 or τηεη6 + ν2{τQ3 + τn1}, because of the pres-
ence of τh2

2Q3 in higher filtration. In either case, h0h4D2 cannot support a hidden 2 ex-
tension. �

Lemma 7.35. — (74,6,39) There is a hidden 2 extension from h3(τQ3 + τn1) to τx74,8.

Proof. — Table 24 shows that τx74,8 detects τκ2θ4. Table 10 shows that θ4 equals
the Toda bracket 〈σ 2,2, σ 2,2〉.

Now consider the shuffle

τκ2θ4 = τκ2〈σ 2,2, σ 2,2〉 = 〈τκ2, σ
2,2, σ 2〉2.

Lemma 6.13 shows that the latter bracket is well-defined. This implies that τx74,8 is the
target of a hidden 2 extension, and h3(τQ1 + τn1) is the only possible source. �
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Lemma 7.36. — (77,5,40) There is no hidden 2 extension on h6d0.

Proof. — Table 10 shows that h6d0 detects the Toda bracket 〈κ,2, θ5〉. Now shuffle
to obtain

2〈κ,2, θ5〉 = 〈2, κ,2〉θ5 = τηκθ5.

Lemma 7.153 shows that this product equals either τησ 2θ5 or τησ 2θ5 + τ 3ηκ1κ2. Both
possibilities are zero because ησ 2 and τηκ1 are zero. �

Lemma 7.37. — (78,10,42) There is a hidden 2 extension from e0A′ to M
h2
1h3.

Proof. — Let α be an element of π76,40 that is detected by x76,9. Table 18 shows
that there is a hidden η extension from x76,9 to M
h1h3, so τη2α is detected by τM
h2

1h3.
Now shuffle to obtain

τη2α = 〈2, η,2〉α = 2〈η,2, α〉.
This shows that τM
h2

1h3 must be the target of a hidden 2 extension.
Moreover, the source of this hidden 2 extension must be in Adams filtration at least

10, since the Adams differential d2(τx77,8) = h0x76,9 implies that 〈η,2, α〉 is detected by
h1x77,8 = 0 in filtration 9. The only possible source is e0A′. �

Lemma 7.38. — (79,3,41) There is no hidden 2 extension on h1h4h6.

Proof. — Table 10 shows that h1h4h6 detects the Toda bracket 〈η4,2, θ5〉. Now shuf-
fle to obtain

2〈η4,2, θ5〉 = 〈2, η4,2〉θ5,

which equals τηη4θ5 by Table 10. We will show that this product is zero.
There are several elements in the Adams E∞-page that might detect η4θ5. The

possibilities h1h6d0 and x78,9 are ruled out by comparison to Cτ . The possibility τ e0A′ is
ruled out because Table 15 shows that e0A′ supports a hidden 2 extension.

Two possibilities remain. If η4θ5 is detected by τM
h2
1h3, then τηη4θ5 must be zero

because there are no elements in sufficiently high Adams filtration.
Finally, suppose that η4θ5 is detected by τh2

1x76,6. Let α be an element of π77,41 that
is detected by h1x76,6. If η4θ5 + τηα is not zero, then it is detected in higher filtration.
It cannot be detected by x78,9 by comparison to Cτ , and it cannot be detected by τ e0A′

because of the hidden 2 extension on e0A′. If it is detected by τM
h2
1h3, then we may

change the choice of α to ensure that η4θ5 + τηα is zero.
We have now shown that τηη4θ5 equals τ 2η2α. Shuffle to obtain

τ 2η2α = τα〈2, η,2〉 = 〈α,2, η〉2τ.
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Here we are using that 2α is zero; the possible 2 extensions on h1x76,6 are easily eliminated
by the presence of η extensions and by comparison to mmf.

Table 10 shows that 〈α,2, η〉 is detected by h0h2x76,6, and Lemma 7.39 shows that
this element does not support a hidden 2 extension. Therefore, 〈α,2, η〉2τ is zero. �

Lemma 7.39. — (79,8,42) There is no hidden 2 extension on h0h2x76,6.

Proof. — Let α be an element of π76,40 that is detected by h4A. Then να is detected
by h0h2x76,6, and 2α is detected by h0h4A. We will show that 2να is zero.

Table 24 shows that h0h4A also detects either σ 2θ5 or σ 2θ5 + τ 2κ1κ2. Then 2α +
σ 2θ5 or 2α + σ 2θ5 + τ 2κ1κ2 could be detected in higher filtration. However, only x76,9

could detect this error term, and inclusion of the bottom cell into Cτ rules it out.
We now know that σ 2θ5 + 2α is either zero or τ 2κ1κ2. Multiply by ν to conclude

that 2να is either zero or τ 2νκ1κ2. As in the proof of Lemma 7.80, this last expression is
also zero. �

Lemma 7.40. — (79,8,41) There is no hidden 2 extension on Ph6c0.

Proof. — Table 24 shows that Ph6c0 detects the product ρ15η6. Table 10 shows that
η6 is contained in the Toda bracket 〈η,2, θ5〉. Now shuffle to obtain

2ρ15η6 = 2ρ15〈η,2, θ5〉 = ρ15θ5〈2, η,2〉,
which equals τη2ρ15θ5 by Table 10.

Table 24 shows that ρ15θ5 is detected by either h0x77,7 or τ 2m1. First suppose that
it is detected by h0x77,7. Table 15 shows that h0x77,7 is the target of a 2 extension. Then
ρ15θ5 equals 2α modulo higher filtration. In any case, τη2ρ15θ5 is zero.

Next suppose that ρ15θ5 is detected by τ 2m1. Then ρ15θ5 equals τ 2α modulo higher
filtration for some element α detected by m1. Table 14 shows that there is a hidden τ

extension from h1m1 to M
h2
1h3. This implies that τηα is detected by M
h2

1h3. Finally,
τ 3η2α = τη2ρ15θ5 must be zero. �

Lemma 7.41. — (79,11,42) There is no hidden 2 extension on 
B6.

Proof. — Table 18 shows that there is a hidden η extension from h6
0h4h6 to τ
B6.

Therefore, τ
B6 cannot be the source of a hidden 2 extension, so there cannot be a
hidden 2 extension from 
B6 to τ 2Me2

0. �

Lemma 7.42. — (82,6,44) There is no hidden 2 extension on h2
5g.

Proof. — The element τh2
5g detects the product κθ5, so it cannot support a hidden

2 extension since 2θ5 is zero.
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If there were a hidden 2 extension from h2
5g to τ(
e1 + C0)g, then the hidden τ

extension from τ(
e1 + C0)g to 
2h2n would imply that there is a hidden 2 extension
from τh2

5g to 
2h2n. �

Lemma 7.43. — (82,8,44) There is no hidden 2 extension on h2
2x76,6.

Proof. — As in the proof of Lemma 6.27, let α be an element in π79,42 that is
detected by h2x76,6 such that ηα is zero. Then να is detected by h2

2x76,6, and we wish to
show that 2να is zero.

Table 10 shows that 2ν is contained in 〈η,2, η〉. Consider the shuffle

2να = 〈η,2, η〉α = η〈2, η,α〉.
Table 10 shows that the last Toda bracket is zero. �

Lemma 7.44. — (83,7,44) There is no hidden 2 extension on h2
0h6g.

Proof. — The element h2
0h6g equals h2

2h6d0, so it detects ν2{h6d0}. �

Lemma 7.45. — (85,7,45) There is no hidden 2 extension on τh2h4Q3.

Proof. — There cannot be a hidden 2 extension from τh2h4Q3 to τPh1x76,6 because
there is no hidden τ extension from h0h2h4Q3 to Ph1x76,6.

Table 18 shows that τ 3Mg2 supports a hidden η extension. Therefore, it cannot be
the target of a hidden 2 extension. �

Lemma 7.46.

(1) (85,8,45) There is no hidden 2 extension on h6c0d0.

(2) (85,9,44) There is no hidden 2 extension on Ph6d0.

Proof. — Table 18 shows that both elements are targets of hidden η extensions. �

Lemma 7.47. — (86,5,45) There is no hidden 2 extension on h4h6c0.

Proof. — Table 24 shows that h4h6c0 detects the product σ {h1h4h6}, and the element
h1h4h6 does not support a hidden 2 extension by Lemma 7.38. �

Lemma 7.48. — (86,12,47) There is no hidden 2 extension on τh2gC′.

Proof. — The possible target τ 3e3
0m is ruled out by comparison to mmf. The possible

target Ph7
1h6 is ruled out by comparison to Cτ .
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It remains to eliminate the possible target τ 2Mh1g2. Table 14 shows that there
are hidden τ extensions from τh2gC′ and τ 2Mh1g2 to 
2h2

2d1 and M
h2
0e0 respectively.

However, there is no hidden 2 extension from 
2h2
2d1 to M
h2

0e0, so there cannot be a 2
extension from τh2gC′ to τ 2Mh1g2. �

Lemma 7.49. — (87,5,46) There is no hidden 2 extension on h2
1c3.

Proof. — Table 10 shows that the Toda bracket 〈τ {h0Q3 + h0n1}, ν4, η〉 is detected
by h2

1c3. Shuffle to obtain

〈τ {h0Q3 + h0n1}, ν4, η〉2 = τ {h0Q3 + h0n1}〈ν4, η,2〉.
These expressions have no indeterminacy because τ {h0Q3 + h0n1} does not support a 2
extension. Finally, the bracket 〈ν4, η,2〉 contains zero by comparison to tmf. �

Lemma 7.50. — (87,12,45) There is no hidden 2 extension on P2h6c0.

Proof. — Table 24 shows that P2h6c0 detects the product ρ23η6. Table 10 shows that
η6 is contained in the Toda bracket 〈η,2, θ5〉. Shuffle to obtain

2ρ23η6 = 2ρ23〈η,2, θ5〉 = 〈2, η,2〉ρ23θ5 = τη2ρ23θ5.

The product ρ23θ5 is detected in Adams filtration at least 13, and then τη2ρ23θ5 is de-
tected in filtration at least 16. This rules out all possible targets for a hidden 2 extension
on P2h6c0. �

Lemma 7.51. — (90,12,48) There is no hidden 2 extension on M2.

Proof. — Table 24 shows that M2 detects θ 2
4.5. Graded commutativity implies that

2θ 2
4.5 is zero. �

7.3. Hidden η extensions

Theorem 7.52. — Tables 18 and 19 list some hidden extensions by η.

Proof. — Many of the hidden extensions follow by comparison to Cτ . For example,
there is a hidden η extension from τh1g to c0d0 in the Adams spectral sequence for Cτ .
Pulling back along inclusion of the bottom cell into Cτ , there must also be a hidden η

extension from τh1g to c0d0 in the Adams spectral sequence for the sphere. This type of
argument is indicated by the notation Cτ in the fourth column of Table 18.

Next, Table 14 shows a hidden τ extension from c0d0 to Pd0. Therefore, there is
also a hidden η extension from τ 2h1g to Pd0. This type of argument is indicated by the
notation τ in the fourth column of Table 18.



DANIEL C. ISAKSEN, GUOZHEN WANG, ZHOULI XU

The proofs of several of the extensions in Table 18 rely on analogous extensions
in mmf. Extensions in mmf have not been rigorously analyzed [31]. However, the specific
extensions from mmf that we need are easily deduced from extensions in tmf, together with
the multiplicative structure. For example, there is a hidden η extension in tmf from an to
τd2

0 . Therefore, there is a hidden η extension in mmf from ang to τd2
0 g, and also a hidden

η extension from 
h2
2e0 to τd0e2

0 in the homotopy groups of the sphere spectrum. Note
that mmf really is required here, since ang and d2

0 g equal zero in the homotopy of tmf.
Many cases require more complicated arguments. In stems up to approximately di-

mension 62, see [30, Section 4.2.3 and Tables 29–30] and [61]. The higher-dimensional
cases are handled in the following lemmas. �

Remark 7.53. — The hidden η extension from τC to τ 2gn is proved in [61], which
uses on the “RP∞-method” to establish a hidden σ extension from τh3d1 to 
h2c1 and
a hidden η extension from τh1g2 to 
h2c1. We now have easier proofs for these η and σ

extensions, using the hidden τ extension from h2
1g2 to 
h2c1 given in Table 14, as well as

the relation h2
3d1 = h2

1g2.

Remark 7.54. — If h1f2 survives, then there is a hidden τ extension from 
h1j1
to M
h1d0. It follows that there must be a hidden η extension from τ
j1 + τ 2gC′ to
M
h1d0.

Remark 7.55. — The last column of Table 18 indicates the crossing η extensions.

Theorem 7.56. — Table 20 lists all unknown hidden η extensions, through the 90-stem.

Proof. — Many possible extensions can be eliminated by comparison to Cτ , to tmf,
or to mmf. For example, there cannot be a hidden η extension from τMd0 to τ 4g3 because
τ 4g3 maps to a non-zero element in π60tmf that is not divisible by η.

Other possibilities are eliminated by consideration of other parts of the multiplica-
tive structure. For example, there cannot be a hidden η extension whose target supports
a multiplication by 2, since 2η equals zero.

Many cases are eliminated by more complicated arguments. These are handled in
the following lemmas. �

Remark 7.57. — There is no hidden η extension on h2D3. The possible target τ k1

is eliminated by computer data recently produced by Dexter Chua on d2 differentials the
Adams spectral sequence for the cofiber of η.

Remark 7.58. — There is a hidden τ extension from τ(
e1 + C0)g to 
2h2n. The
possible extension from τ gD3 to τ(
e1 + C0)g occurs if and only if the possible extension
from τ 2gD3 to 
2h2n occurs.
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Remark 7.59. — Computer data recently produced by Dexter Chua on d2 differen-
tials in the Adams spectral sequence for the cofiber of η shows that the classical element
gQ3 must be the target of a hidden η extension. Therefore, there is either a hidden η

extension from h2
1f2 to τ gQ3, or from τh1x85,6 to τ 2gQ3.

Lemma 7.60. — (58,8,30) There is no hidden η extension on τh1Q2.

Proof. — There cannot be a hidden η extension from τh1Q2 to τ 2
h1d0g by com-
parison to tmf. It remains to show that there cannot be a hidden η extension from τh1Q2

to τMd0.
Note that h1d0Q2 = τ 3d1g2, so κ{h1Q2} is detected by τ 3d1g2. Therefore, κ{h1Q2}+

τκ1κ
2 is detected in higher filtration. The only possibility is τ 3e0gm, but that cannot occur

by comparison to mmf. Therefore, κ{h1Q2} + τκ1κ
2 is zero.

Now τηκ1κ
2 is zero because τηκ1κ cannot be detected by 
h1d2

0 by comparison
to tmf. Therefore, ηκ{h1Q2} is zero, so τηκ{h1Q2} is also zero.

On the other hand, τκ{Md0} is non-zero because it is detected by τMd2
0 . Therefore

τη{h1Q2} cannot be detected by τMd0. �

Lemma 7.61. — (64,4,33) There is no hidden η extension on τh2
1h2

5.

Proof. — Table 15 shows that τh2
1h2

5 is the target of a hidden 2 extension. �

Lemma 7.62. — (64,8,33) There is a hidden η extension from τ 2h1X2 to τ 2Mh0g.

Proof. — Table 18 shows that there is a hidden η extension from τh1X2 to c0Q2.
Since c0Q2 does not support a hidden τ extension, there exists an element β in π65,35 that
is detected by c0Q2 such that τβ = 0.

Projection from Cτ to the top cell takes c0Q2 and P(A + A′) to c0Q2 and τMh0h2g

respectively. Since h2 · c0Q2 = P(A+A′) in the Adams spectral sequence for Cτ , it follows
that νβ is non-zero and detected by τMh0h2g.

Let α be an element of π63,33 that is detected by τX2 + τC′, and consider the
sum η2α + β . Both terms are detected by c0Q2, but the sum could be detected in higher
filtration. In fact, the sum is non-zero because ν(η2α + β) is non-zero.

It follows that η2α +β is detected by τMh0g, and that τη2α is detected by τ 2Mh0g.
�

Lemma 7.63. — (66,4,34) There is no hidden η extension on τh3
1h6.

Proof. — The element τη2η6 is detected by τh3
1h6. Table 10 shows that η6 is con-

tained in the Toda bracket 〈η,2, θ5〉 Now shuffle to obtain

η · τη2η6 = 4νη6 = 4ν〈η,2, θ5〉 = 4〈ν, η,2〉θ5,

which equals zero because 2θ5 is zero. �
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Lemma 7.64. — (66,6,35) There is no hidden η extension from τ
1h2
3 to h2

2A′.

Proof. — Table 21 shows that h2
2A′ supports a hidden ν extension, so it cannot be

the target of a hidden η extension. �

Lemma 7.65. — (68,6,36) There is no hidden η extension on τh1Q3.

Proof. — Table 21 shows that τh1Q3 is the target of a hidden ν extension. There-
fore, it cannot be the source of a hidden η extension. �

Lemma 7.66. — (68,7,36) There is a hidden η extension from h3A′ to h3(
e1 + C0).

Proof. — Comparison to Cτ shows that there is a hidden η extension from h3A′

to either τh2
2C′ + h3(
e1 + C0) or h3(
e1 + C0). Table 21 shows that τh2

2C′ + h3(
e1 +
C0) supports a hidden ν extension. Therefore, it cannot be the target of a hidden η

extension. �

Lemma 7.67. — (69,3,36) There is a hidden η extension from h2
2h6 to τh0h2Q3.

Proof. — Table 3 gives the Massey product h0h2 = 〈h1, h0, h1〉. Therefore,

〈τh1Q3, h0, h1〉 = {τh0h2Q3, τh0h2Q3 + τh1h3H1}.
Table 21 shows that there is a hidden ν extension from h2h2

5 to τh1Q3, so ν2θ5 is de-
tected by τh1Q3. Therefore, the Toda bracket 〈ν2θ5,2, η〉 is detected by τh0h2Q3 or by
τh0h2Q3 + τh1h3H1.

Now 〈ν2θ5,2, η〉 contains ν2〈θ5,2, η〉. This expression equals νθ5〈2, η, ν〉, which
equals zero because 〈2, η, ν〉 is contained in π5,3 = 0.

We now know that 〈ν2θ5,2, η〉 equals its own determinacy, so τh0h2Q3 or
τh0h2Q3 + τh1h3H1 detects a multiple of η. The only possibility is that there is a hid-
den η extension on h2

2h6.
The target of this extension cannot be τh0h2Q3 + τh1h3H1 by comparison to Cτ .

�

Lemma 7.68. — (70,5,36) There is no hidden η extension on h3
0h3h6.

Proof. — There are several possible targets for a hidden η extension on h3
0h3h6. The

element τ
2h2g is ruled out because it supports an h2 extension. The element 
2h4c0 is
ruled out by comparison to Cτ . The elements τh2

3Q2 and τd0Q2 are ruled out because
Table 18 shows that they are targets of hidden η extensions from τ 2h1h3H1 and τ 2h1D′

3
respectively.

The only remaining possibility is τ 2l1. This case is more complicated.
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Table 10 shows that h3
0h3h6 detects the Toda bracket 〈8σ,2, θ5〉. Now shuffle to

obtain

η〈8σ,2, θ5〉 = 〈η,8σ,2〉θ5.

Table 10 shows that 〈η,8σ,2〉 contains μ9 and has indeterminacy generated by τη2σ

and τηε. Thus the expression 〈η,8σ,2〉θ5 contains at most four elements.
The product μ9θ5 is detected in filtration at least 8, so it is not detected by τ 2l1. The

product (μ9 + τη2σ)θ5 is detected by τh2
1p′ because Table 24 shows that there is a hidden

σ extension from h2
5 to p′. The product (μ9 + τηε)θ5 is also detected by τh2

1p′ = τh1h2
5c0.

Finally, the product (μ9 + +τη2σ + τηε)θ5 equals (μ9 + τν3)θ5, which also must be
detected in filtration at least 8. �

Lemma 7.69. — (70,6,38) There is no hidden η extension on h2Q3.

Proof. — There cannot be a hidden η extension on τh2Q3 because it is a multiple
of h2. Therefore, the possible targets for an η extension on h2Q3 must be annihilated by τ .

The element h3
1h3H1 cannot be the target because Table 14 shows that it supports

a hidden τ extension. The element τMh2
2g cannot be the target because Table 21 shows

that it supports a hidden ν extension to Mh1d2
0 . �

Lemma 7.70. — (70,7,37) There is a hidden η extension from τh1h3H1 to h2
3Q2.

Proof. — Table 18 shows that there is a hidden η extension from τh1H1 to h3Q2.
Now multiply by h3. �

Lemma 7.71.

(1) (70,10,38) There is no hidden η extension on h1h3(
e1 + C0).

(2) (70,10,38) There is no hidden η extension on τh2C′′ + h1h3(
e1 + C0).

Proof. — The element τMh2
2g is the only possible target for such hidden η ex-

tensions. However, Table 21 shows that there is a hidden ν extension from τMh2
2g to

Mh1d2
0 . �

Lemma 7.72. — (71,6,37) There is no hidden η extension on τh2
1p′.

Proof. — The element τh2
1p′ detects τη2σθ5 because Table 24 shows that there is a

hidden σ extension from h2
5 to p′. Then τη3σθ5 is zero since τη3σ is zero. �

Lemma 7.73. — (71,8,39) There is no hidden η extension on h3
2H1.



DANIEL C. ISAKSEN, GUOZHEN WANG, ZHOULI XU

Proof. — Table 24 shows that Md0 detects the product κθ4.5. Then Table 10 shows
that h3

2H1 detects the Toda bracket 〈ν, ε, κθ4.5〉. Now shuffle to obtain

η〈ν, ε, κθ4.5〉 = 〈η, ν, ε〉κθ4.5,

which is zero because 〈η, ν, ε〉 is contained in π13,8 = 0. �

Lemma 7.74. — (72,5,37) There is a hidden η extension from τh1h6c0 to τ 2h2
2Q3.

Proof. — The hidden τ extension from h2
1h6c0 to h0d0D2 implies that τh1h6c0 must

support a hidden η extension. However, this hidden τ extension crosses the τ extension
from τh2

2Q3 to τ 2h2
2Q3. Therefore, the target of the hidden η extension is either τ 2h2

2Q3

or h0d0D2.
The element τh1h6c0 detects the product τη6ε, so we want to compute τηη6ε.

Table 10 shows that η6 belongs to 〈θ5,2, η〉. Shuffle to obtain

τηη6ε = 〈θ5,2, η〉τηε = θ5〈2, η, τηε〉.
Table 10 shows that 〈2, η, τηε〉 contains ζ11. Finally, θ5ζ11 is detected by τ 2h2

2Q3 = h2
5 ·

Ph2. �

Lemma 7.75. — (72,7,39) There is no hidden η extension on h3
1p′.

Proof. — The element h3
1p′ does not support a hidden τ extension, while Table 14

shows that there is a hidden τ extension from τh2
2C′′ to 
2h2

1h4c0. Therefore, there cannot
be a hidden η extension from h3

1p′ to τh2
2C′′. �

Lemma 7.76. — (72,11,38) There is a hidden η extension from h0d0D2 to τMd2
0 .

Proof. — Table 10 shows that h0d0D2 detects the Toda bracket 〈τκθ4.5,2ν, ν〉. Now
shuffle to obtain

〈τκθ4.5,2ν, ν〉η = τκθ4.5〈2ν, ν, η〉.
Table 10 shows that the Toda bracket 〈2ν, ν, η〉 contains ε. Finally, τκθ4.5ε is detected by
τMd2

0 because Table 24 shows that there is a hidden ε extension from τMg to Md2
0 . �

Lemma 7.77. — (75,6,40) There is a hidden η extension from h0h3d2 to τd1g2.

Proof. — Table 10 shows that the Toda bracket 〈η,σ 2, η, σ 2〉 equals κ1. We would
like to consider the shuffle

〈η,σ 2, η, σ 2〉τκ2 = η〈σ 2, η, σ 2, τκ2〉,
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but we must show that the Toda bracket 〈η,σ 2, τκ2〉 is well-defined and contains zero. It
is well-defined because σ 2κ2 is detected by h2

3g2 in π58,32, and there are no τ extensions on
this group. The bracket contains zero by comparison to tmf, since all non-zero elements
of π60,32 are detected by tmf.

We have now shown that τκ1κ2 is divisible by η. The only possibility is that there
is a hidden η extension from h0h3d2 to τd1g2. �

Lemma 7.78.

(1) (77,3,40) There is no hidden η extension on h2
3h6.

(2) (77,7,41) There is no hidden η extension on τm1.

Proof. — Table 15 shows that e0A′ and τ e0A′ support hidden 2 extensions, so they
cannot be the targets of hidden η extensions. �

Lemma 7.79. — (77,8,40) There is no hidden η extension on h0x77,7.

Proof. — Table 15 shows that h0x77,7 is the target of a hidden 2 extension. �

Lemma 7.80. — (78,6,41) There is no hidden η extension on h1h6d0.

Proof. — Table 10 shows that h1h6 detects the Toda bracket 〈θ5,2, η〉, so h1h6d0

detects 〈θ5,2, η〉κ . Now shuffle to obtain

〈θ5,2, η〉ηκ = θ5〈2, η, ηκ〉.
Table 10 shows that the Toda bracket 〈2, η, ηκ〉 equals νκ . Thus we need to compute
the product νκθ5. Lemma 7.153 shows that this product equals either νσ 2θ5 or ν(σ 2θ5 +
τ 2κ1κ2). These expressions equal 0 and τ 2νκ1κ2 respectively since νσ = 0.

It remains to show that τ 2νκ1κ2 is zero. The proof of Lemma 7.77 shows that
τκ1κ2 is divisible by η. Therefore, τ 2νκ1κ2 is zero since ην = 0. �

Lemma 7.81. — (78,8,41) There is no hidden η extension on τh2
1x76,6.

Proof. — Let α be an element of π77,41 that is detected by h1x76,6. Then τh2
1x76,6

detects τηα. Now consider the shuffle

τη2α = 〈2, η,2〉α = 2〈η,2, α〉.
Note that 2α is zero because there are no 2 extensions in π77,41, so the second bracket is
well-defined.

Finally, 2〈η,2, α〉 must be zero because there are no 2 extensions in π79,42 in suffi-
ciently high filtration. �
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Lemma 7.82. — (78,8,40) There is a hidden η extension from h6
0h4h6 to τ
B6.

Proof. — In the homotopy of Cτ , there is a hidden η extension from h6
0h4h6 to 
2n.

Therefore, h6
0h4h6 must support a hidden η extension whose target lies in Adams filtration

13 or lower. However, 
2n is not the target because it supports an h2 extension. The only
remaining possible target is τ
B6. �

Lemma 7.83. — (78,10,42) There is a hidden η extension from e0A′ to τMe2
0 .

Proof. — The classical relation gC′ = e0G0 implies the C-motivic relation τ g · C′ =
e0 · τG0 modulo the possible error term 
j1. The error term does not appear because of
h2

1 extensions.
Table 3 shows that τG0 equals 〈A′, h1, h2〉. Therefore, we have

τ gC′ = e0〈A′, h1, h2〉 = 〈e0A′, h1, h2〉.
The second equality holds because there is no indeterminacy by inspection.

Let α be an element of π78,44 that is detected by e0A′. If the product ηα were zero,
then the Moss Convergence Theorem would imply that τ gC′ is a permanent cycle that
detects the Toda bracket 〈α,η, ν〉. However, τ gC′ supports a d4 differential and does not
survive.

We now know that e0A′ supports a hidden η extension. After ruling out τ 2
h1e2
0g

by comparison to mmf, the only remaining possible target is τMe2
0. �

Lemma 7.84. — (81,3,42) If h2h4h6 supports a hidden η extension, then its target is not

τh2
2x76,6.

Proof. — Table 21 shows that τh2
2x76,6 supports a hidden ν extension, so it cannot

be the target of a hidden η extension. �

Lemma 7.85. — (81,5,43) There is no hidden η extension on h3
1h4h6.

Proof. — The element τh3
1h4h6 is a multiple of h0, so it cannot support a hidden η

extension. This eliminates all possible targets except for τ(
e1 + C0)g.
However, τ(
e1 + C0)g supports a hidden τ extension. As in the previous para-

graph, this eliminates τ(
e1 + C0)g as a possible target. �

Lemma 7.86. — (81,7,44) There is no hidden η extension on h2
3n1.

Proof. — The element τh2
3n1 = h2

3(τQ3 + τn1) detects σ 2{τQ3 + τn1}. Then
ησ 2{τQ3 + τn1} is zero because ησ 2 is zero. �
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Lemma 7.87. — (81,12,42) There is no hidden η extension on 
2p.

Proof. — Table 21 shows that 
2p is the target of a hidden ν extension, so it cannot
be the source of an η extension. �

Lemma 7.88. — (82,4,43) There is no hidden η extension on h6c1.

Proof. — Table 10 shows that h6c1 detects the Toda bracket 〈σ ,2, θ5〉. By inspec-
tion, all possible indeterminacy is in higher Adams filtration, so h6c1 detects every element
of the Toda bracket.

Shuffle to obtain

η〈σ,2, θ5〉 = 〈η,σ ,2〉θ5.

The Toda bracket 〈η,σ ,2〉 is detected in filtration at least 5 since the Massey product
〈h1, c1, h0〉 is zero. Therefore, the Toda bracket equals {0, ηκ}.

We now know that η〈σ,2, θ5〉 contains zero, and therefore h6c1 does not support a
hidden η extension. �

Lemma 7.89. — (83,6,44) There is no hidden η extension on h0h6g.

Proof. — Table 10 shows that h0h6g detects the Toda bracket 〈ν, η, η6κ〉. Shuffle to
obtain

η〈ν, η, η6κ〉 = 〈η, ν, η〉η6κ.

Table 10 shows that 〈η, ν, η〉 equals ν2. Finally,

ν2η6κ = ν2κ〈η,2, θ5〉 = νθ5κ〈ν, η,2〉,
which equals zero because 〈ν, η,2〉 is contained in π5,3 = 0. �

Lemma 7.90. — (85,7,46) There is no hidden η extension on h2h4Q3.

Proof. — We must eliminate τh2gC′ as a possible target. One might hope to use the
homotopy of Cτ in order to do this, but the homotopy of Cτ has an η extension in the
relevant degree that could possibly detect a hidden extension from h2h4Q3 to τh2gC′.

If there were a hidden η extension from h2h4Q3 to τh2gC′, then the hidden τ exten-
sion from τh2gC′ to 
2h2

2d1 would imply that there is a hidden η extension from τh2h4Q3

to 
2h2
2d1. However, τh2h4Q3 detects the product ν4{τQ3 + τn1}, and ην4 is zero. There-

fore, τh2h4Q3 cannot support a hidden η extension. �
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Lemma 7.91.

(1) (86,9,46) There is no hidden η extension on h1h6c0d0.

(2) (86,10,45) There is no hidden η extension on Ph1h6d0.

Proof. — Table 15 shows that h1h6c0d0 and Ph1h6d0 are targets of hidden 2 exten-
sions, so they cannot be the sources of hidden η extensions. �

Lemma 7.92. — (86,11,44) There is a hidden η extension from h3
0h6i to τ 2
2c1g.

Proof. — The Adams differential d2(

3h2

3) = 
2h3
0x implies that τ 2
2c1g = h1 ·


3h2
3 detects the Toda bracket 〈η,2, {
2h2

0x}〉. However, the later Adams differential
d5(h

2
0h6i) = 
2h2

0x implies that 0 belongs to {
2h2
0x}. Therefore, τ 2
2c1g detects 〈η,2,0〉,

so τ 2
2c1g detects a multiple of η. The only possibility is that there is a hidden η extension
from h3

0h6i to τ 2
2c1g. �

Lemma 7.93. — (87,11,48) There is no hidden η extension on B6d1.

Proof. — Table 15 shows that B6d1 is the target of a hidden 2 extension, so it cannot
be the source of a hidden η extension. �

Lemma 7.94. — (88,7,47) There is no hidden η extension on h2
1h4h6c0.

Proof. — Table 21 shows that h2
1h6h6c0 is the target of a hidden ν extension, so it

cannot support a hidden η extension. �

Lemma 7.95. — (89,13,47) There is a hidden η extension from 
2h1f1 to the element

τ
2h2c1g.

Proof. — The element τ
2h2c1g detects the product ν2{
2t}. Table 10 shows that
ν2 equals the Toda bracket 〈η, ν, η〉. Shuffle to obtain

〈η, ν, η〉{
2t} = η〈ν, η, {
2t}〉.
This shows that τ
2h2c1g is the target of a hidden η extension. The only possible source
for this extension is 
2h1f1. �

7.4. Hidden ν extensions

Theorem 7.96. — Tables 21 and 22 list some hidden extensions by ν.
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Proof. — Many of the hidden extensions follow by comparison to Cτ . For example,
there is a hidden ν extension from h2

0g to h1c0d0 in the Adams spectral sequence for Cτ .
Pulling back along inclusion of the bottom cell into Cτ , there must also be a hidden ν

extension from h2
0g to h1c0d0 in the Adams spectral sequence for the sphere. This type of

argument is indicated by the notation Cτ in the fourth column of Table 18.
Next, Table 14 shows a hidden τ extension from h1c0d0 to Ph1d0. Therefore, there

is also a hidden ν extension from τh2
0g to Ph1d0. This type of argument is indicated by the

notation τ in the fourth column of Table 18.
Some extensions can be resolved by comparison to tmf or to mmf. For example,

Table 2 shows that the classical unit map S → tmf takes {
h1h3} in π32 to a non-zero
element α of π32tmf such that να = ηκκ in π35tmf. Therefore, there must be a hidden ν

extension from 
h1h3 to τh1e2
0.

The proofs of several of the extensions in Table 21 rely on analogous extensions
in mmf. Extensions in mmf have not been rigorously analyzed [31]. However, the specific
extensions from mmf that we need are easily deduced from extensions in tmf, together with
the multiplicative structure. For example, there is a hidden ν extension in tmf from 
h1 to
τd2

0 . Therefore, there is a hidden ν extension in mmf from 
h1g to τd2
0 g, and also a hidden

ν extension from τ
h1g to τ 2d0e2
0 in the homotopy groups of the sphere spectrum. Note

that mmf really is required here, since d2
0 g equals zero in the homotopy of tmf.

Many cases require more complicated arguments. In stems up to approximately di-
mension 62, see [30, Section 4.2.4 and Tables 31–32] and [61]. The higher-dimensional
cases are handled in the following lemmas. �

Remark 7.97. — The last column of Table 21 indicates which ν extensions are
crossing, as well as which extensions have indeterminacy in the sense of Section 2.1.1.

Remark 7.98. — The hidden ν extension from h2h5d0 to τ gn is proved in [61],
which relies on the “RP∞-method” to establish a hidden σ extension from τh3d1 to 
h2c1

and a hidden η extension from τh1g2 to 
h2c1. We now have easier proofs for these η and
σ extensions, using the hidden τ extension from h2

1g2 to 
h2c1 given in Table 14, as well
as the relation h2

3d1 = h2
1g2.

Remark 7.99. — If M
h2
1d0 is not hit by a differential, then there is a hidden

τ extension from τMh0g2 from M
h2
1d0. This implies that there must be a hidden ν

extension from τ(
e1 + C0)g to M
h2
1d0.

Theorem 7.100. — Table 23 lists all unknown hidden ν extensions, through the 90-stem.

Proof. — Many possible extensions can be eliminated by comparison to Cτ , to tmf,
or to mmf. For example, there cannot be a hidden ν extension from h0h2h4 to τh1g by
comparison to Cτ .
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Other possibilities are eliminated by consideration of other parts of the multiplica-
tive structure. For example, there cannot be a hidden ν extension whose target supports
a multiplication by η, since ην equals zero.

Many cases are eliminated by more complicated arguments. These are handled in
the following lemmas. �

Remark 7.101. — Comparison to synthetic homotopy eliminates several possible
hidden ν extensions, including:

(1) from τh1p1 to τx74,8.
(2) from 
2p to τM
h1d0.

See [16] for more details.

Remark 7.102. — If M
h2
1d0 is not hit by a differential, then M
h1d0 supports an

h1 extension, and there cannot be a hidden ν extension from h0h2h4h6 to M
h1d0.

Lemma 7.103. — (62,8,33) There is a hidden ν extension from 
e1 + C0 to τMh0g.

Proof. — Table 10 shows that 2κ is contained in τ 〈ν, η, ηκ〉. Shuffle to obtain that

ν〈η,ηκ, τθ4.5〉 = 〈ν, η, ηκ〉τθ4.5,

so 2κθ4.5 is divisible by ν.
Table 24 shows that τMg detects κθ4.5, so τMh0g detects 2κθ4.5. Now we know

that there is a hidden ν extension whose target is τMh0g, and the only possible source is

e1 + C0. �

Remark 7.104. — One consequence of the proof of Lemma 7.103 is that 
e1 +C0

detects the Toda bracket 〈η,ηκ, τθ4.5〉.

Lemma 7.105. — (63,6,33) There is a hidden ν extension from τh1H1 to τ 2Mh1g.

Proof. — Lemma 6.4 shows that the bracket 〈κ,2, η〉 contains zero with indeter-
minacy generated by ηρ15. The bracket 〈τηθ4.5, κ,2〉 equals zero since π61,32 is zero.
Therefore, the Toda bracket 〈τηθ4.5, κ,2, η〉 is well-defined.

Table 10 shows that τ g detects 〈κ,2, η, ν〉. Therefore, τ 2Mh1g detects

τηθ4.5〈κ,2, η, ν〉 = 〈τηθ4.5, κ,2, η〉ν.

This shows that τ 2Mh1g is the target of a ν extension, and the only possible source is
τh1H1. �
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Remark 7.106. — The proof of Lemma 7.105 shows that τh1H1 detects the Toda
bracket 〈τηθ4.5, κ,2, η〉.

Lemma 7.107. — (64,2,33) There is no hidden ν extension on h1h6.

Proof. — Table 10 shows that h1h6 detects the Toda bracket 〈η,2, θ5〉. Shuffle to
obtain

ν〈η,2, θ5〉 = 〈ν, η,2〉θ5 = 0,

since 〈ν, η,2〉 is contained in π5,3 = 0. �

Lemma 7.108. — (64,8,34) There is no hidden ν extension on h3Q2.

Proof. — Table 18 shows that τ 2
h2
2e0g supports a hidden η extension. Therefore,

it cannot be the target of a ν extension. �

Lemma 7.109. — (67,8,36) There is a hidden ν extension from the element h2
2A′ to

h1h3(
e1 + C0).

Proof. — By comparison to Cτ , There cannot be a hidden ν extension from h2
2A′

to τh2C′′ + h1h3(
e1 + C0)

Table 10 shows that 
e1 + C0 detects the Toda bracket 〈η,ηκ, τθ4.5〉, and h2A′

detects the Toda bracket 〈ν, η, τκθ4.5〉. Note that h2A′ also detects 〈ν, ηκ, τθ4.5〉.
Now shuffle to obtain

(ησ + ε)〈η,ηκ, τθ4.5〉 + ν2〈ν, ηκ, τθ4.5〉

=
〈
[
ησ + ε ν2

]
,

[
η

ν

]

, ηκ

〉

τθ4.5.

The matric Toda bracket
〈
[
ησ + ε ν2

]
,

[
η

ν

]

, ηκ

〉

must equal {0, ν2σ }, since ν2σ =
{h2

1h4c0} is the only non-zero element of π25,15, and that element belongs to the indeter-
minacy because it is a multiple of ν2.

Next observe that τν2σθ4.5 is zero because all possible values of σθ4.5 are multiples
of η. This shows that

(ησ + ε)α + ν2β = 0,

for some α and β detected by 
e1 + C0 and h2A′ respectively. The product (ησ + ε)α is
detected by h1h3(
e1 +C0), so there must be a hidden ν extension from h2

2A′ to h1h3(
e1 +
C0). �
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Lemma 7.110. — (68,7,36) There is no hidden ν extension on h3A′.

Proof. — Table 10 shows that h3A′ detects the Toda bracket 〈σ,κ, τηθ4.5〉. Now
shuffle to obtain

ν〈σ,κ, τηθ4.5〉 = 〈ν,σ, κ〉τηθ4.5 = 〈η, ν,σ 〉τκθ4.5.

The Toda bracket 〈η, ν,σ 〉 is zero because it is contained in π12,7 = 0. �

Lemma 7.111. — (69,4,36) There is no hidden ν extension on p′.

Proof. — Table 24 shows that p′ detects the product σθ5. Therefore, it cannot sup-
port a hidden ν extension. �

Lemma 7.112. — (69,9,38) There is a hidden ν extension from h2
2C′ to τ 2d1g2.

Proof. — Let α be an element of π63,33 that is detected by τX2 + τC′. Table 24
shows that εα is detected by d0Q2, so ηεα is detected by τ 3d1g2. On the other hand, ησα

is zero by comparison to Cτ .
Now consider the relation η2σ + ν3 = ηε. This shows that ν3α is detected by

τ 3d1g2. Since ν2α is detected by τh2
2C′, there must be a hidden ν extension from h2

2C′ to
τ 2d1g2. �

Lemma 7.113. — (70,9,37) There is a hidden ν extension from τh1D′
3 to τMd2

0 .

Proof. — Table 10 shows that τh1D′
3 detects the Toda bracket 〈η, ν, τκθ4.5〉. Now

shuffle to obtain

ν〈η, ν, τκθ4.5〉 = 〈ν, η, ν〉τκθ4.5.

The bracket 〈ν, η, ν〉 equals ησ + ε [55].
Now we must compute (ησ + ε)τκθ4.5. The product σκ is zero, and Table 24

shows that εκθ4.5 is detected by Md2
0 . These two observations imply that (ησ + ε)τκθ4.5

is detected by τMd2
0 . �

Lemma 7.114. — (71,4,37) There is no hidden ν extension on h6c0.

Proof. — Table 10 shows that h6c0 detects the Toda bracket 〈ε,2, θ5〉. Now shuffle
to obtain

ν〈ε,2, θ5〉 = 〈ν, ε,2〉θ5.

Finally, the Toda bracket 〈ν, ε,2〉 is zero because it is contained in π12,7 = 0. �
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Lemma 7.115. — (73,11,41) There is a hidden ν extension from h2
2C′′ to τ g2t.

Proof. — Let α be an element of π53,30 that is detected by i1. Table 21 shows gt

detects να. Therefore τ g2t detects νκα, so τ g2t must be the target of a hidden ν extension.
The element h2

2C′′ is the only possible source for this extension. �

Lemma 7.116. — (73,12,41) There is no hidden ν extension on Mh1h3g.

Proof. — If there were a hidden ν extension from Mh1h3g to τ g2t, then there would
also be a hidden ν extension with target τ 2g2t. But there is no possible source for such an
extension. �

Lemma 7.117. — (75,6,40) If there is a hidden ν extension on h0h3d2, then its target is

M
h2
1h3.

Proof. — The only other possible target is e0A′. However, Table 15 shows that e0A′

supports a hidden 2 extension, while h0h3d2 does not. �

Lemma 7.118. — (76,8,41) There is no hidden ν extension on τd1g2.

Proof. — Table 18 shows that τd1g2 is the target of a hidden η extension. Therefore,
it cannot be the source of a hidden ν extension. �

Lemma 7.119. — (76,8,40) There is no hidden ν extension on h0h4A.

Proof. — Table 24 shows that h0h4A detects either σ 2θ5 or σ 2θ5 + τ 2κ1κ2. As in the
proof of Lemma 7.80, both possibilities are annihilated by ν. �

Lemma 7.120. — (77,3,40) There is a hidden ν extension from h2
3h6 to τh1x1.

Proof. — Table 10 shows that h2
3h6 detects 〈θ5,2, σ 2〉. Let α be an element of π77,40

that is contained in this Toda bracket. Then να is an element of

〈θ5,2, σ 2〉ν = 〈θ5,2σ,σ 〉ν = θ5〈2σ,σ, ν〉 ⊆ 〈2σ,σθ5, ν〉.
Table 24 shows that p′ detects σθ5. Therefore, the Toda bracket 〈2σ,σθ5, ν〉 is

detected by an element of the Massey product 〈h0h3, p′, h2〉. Table 3 shows that h0e2

equals the Massey product 〈h3, p′, h2〉. By inspection of indeterminacy, the Massey prod-
uct 〈h0h3, p′, h2〉 contains h2

0e2 = τh1x1 with indeterminacy generated by h0h6e0.
We have now shown that να is detected by either τh1x1 or τh1x1 + h0h6e0. But

h0h6e0 = h2h6d0 is a multiple of h2, so we may add an element in higher Adams filtration
to α, if necessary, to conclude that να is detected by τh1x1. �
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Lemma 7.121. — (78,9,40) There is a hidden ν extension from the element h7
0h4h6 to

τ
2h1d1.

Proof. — Table 21 shows that there is a hidden ν extension from h6
0h4h6 to 
2p.

Therefore, there is also a hidden ν extension from h7
0h4h6 to h0 · 
2p = τ
2h1d1. �

Lemma 7.122. — (78,10,42) There is no hidden ν extension on e0A′.

Proof. — A possible hidden ν extension from e0A′ to 
h2
1B6 would be detected by

Cτ , but we have to be careful with the analysis of the homotopy of Cτ because of the h2

extension from 
h1d1g to 
h2
1B6 in the Adams E∞-page for Cτ .

Let α be an element of π75,40Cτ that is detected by h3C′. Then να is detected by
e0A′, and να maps to zero under projection to the top cell because h3C′ does not support
a ν extension in the homotopy of the sphere.

Therefore, να lies in the image of e0A′ under inclusion of the bottom cell. Since
ν2α is zero, e0A′ cannot support a hidden ν extension to 
h2

1B6. �

Lemma 7.123. — (79,3,41) There is no hidden ν extension on h1h4h6.

Proof. — Table 10 shows that h1h4h6 detects the Toda bracket 〈η4,2, θ5〉. Shuffle to
obtain

ν〈η4,2, θ5〉 = 〈ν, η4,2〉θ5.

Finally, 〈ν, η4,2〉 must contain zero in π20,11 because tmf detects every element of π20,11.
�

Lemma 7.124. — (81,7,44) There is no hidden ν extension on h2
3n1.

Proof. — The element h2gD3 cannot be the target of a hidden ν extension by com-
parison to Cτ .

The element τh2
3n1 = h3 ·h3(τQ3 +τn1) detects a multiple of σ , so it cannot support

a hidden ν extension. This rules out h2gA′ as a possible target. �

Lemma 7.125. — (82,8,44) There is no hidden ν extension on τ e1g2.

Proof. — After eliminating other possibilities by comparison to tmf, comparison
to mmf, and by inspection of h1 multiplications, the only possible target for a hidden ν

extension is Ph1x76,6.
Let α be an element of π82,45 that is detected by e1g2. Then να is detected by

h2e1g2 = h3
1h4Q3. Choose an element β of π83,45 that is detected by h1h4Q3 such that τβ

is zero. Then η2β is also detected by h3
1h4Q3. However, να + η2β is not necessarily zero;
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it could be detected in Adams filtration at least 13. In any case, τνα equals τη2β = 0
modulo filtration 13. In particular, τνα cannot be detected by Ph1x76,6 in filtration 11.

�

Lemma 7.126. — (82,11,42) There is no hidden ν extension on P2h0h2h6.

Proof. — Table 21 shows that there is a hidden ν extension from P2h2h6 to 
2h0x.
The target of a hidden ν extension on P2h0h2h6 must have Adams filtration higher than
the filtration of 
2h0x. The only possibilities are ruled out by comparison to tmf. �

Lemma 7.127. — (82,12,45) There is a hidden ν extension from (
e1 + C0)g to

τMh0g2.

Proof. — Let α be an element of π62,33 that is detected by 
e1 +C0. Table 10 shows
that (
e1 + C0)g detects 〈α,η3, η4〉. Then

ν〈α,η3, η4〉 = 〈να,η3, η4〉
by inspection of indeterminacies. Table 21 shows that τMh0g detects να. The Toda
bracket 〈να,η3, η4〉 is detected by the Massey product

〈τMh0g, h3
1, h1h4〉 = 〈τMh0g, h4

1, h4〉 = Mh0g〈τ, h4
1, h4〉 = τMh0g2. �

Lemma 7.128. — (83,10,45) There is no hidden ν extension on h2c1A′.

Proof. — Table 10 shows that τh2c1A′ detects 〈τθ4.5κ,η, ν〉τσ . Shuffle to obtain

〈τθ4.5κ,η, ν〉τσν = τθ4.5κ〈η, ν, τνσ 〉.
The Toda bracket 〈η, ν, τνσ 〉 is zero because π27,15 contains only a v1-periodic element
detected by P3h3

1.
We now know that τh2c1A′ does not support a hidden ν extension. In particular,

there cannot be a hidden ν extension from τh2c1A′ to M
h2
0e0. The hidden τ extension

from τ 2Mh1g2 to M
h2
0e0 implies that there cannot be a hidden ν extension from h2c1A′

to τ 2Mh1g2.
Additional cases are ruled out by comparison to Cτ and to mmf. �

Lemma 7.129.

(1) (83,11,45) There is a hidden ν extension from 
j1 + τ gC′ to τ 2Mh1g2.

(2) (83,11,44) There is a hidden ν extension from τ 2gC′ to M
h2
0e0.
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Proof. — Table 21 shows that there exists an element α in π63,33 detected by τh1H1

such that ν is detected by τ 2Mh1g. (Beware that there is a crossing extension here, so not
every element detected by τh1H1 has the desired property.) Table 24 shows that τ 2Mh1g

also detects τθ4.5ηκ . However, να does not necessarily equal τθ4.5ηκ because the differ-
ence could be detected in higher filtration by 
2h3

1h4. In any case, νκα equals τθ4.5ηκ2.
The product θ4.5ηκ2 is detected by τ 2Mh1g2. The hidden τ extension from τ 2Mh1g2

to M
h2
0e0 then implies that νκα = τθ4.5ηκ2 is detected by M
h2

0e0.
We now know that M
h2

0e0 is the target of a hidden ν extension. The only possible
source is τ 2gC′. (Lemma 7.128 eliminates another possible source.) This establishes the
second extension. The first extension follows from onsideration of τ extensions. �

Remark 7.130. — The proof of Lemma 7.129 shows that νκα is detected by
M
h2

0e0, where α is detected by τh1H1. Note that κα is detected by τ 2h1H1g = τh2c1A′.
But this does not show that τh2c1A′ supports a hidden ν extension. Rather, it shows that
the source of the hidden ν extension is either τh2c1A′, or a non-zero element in higher
filtration.

Lemma 7.131. — (84,4,44) There is no hidden ν extension on h2
2h4h6.

Proof. — Table 10 shows that h2
2h4h6 detects the Toda bracket 〈νν4,2, θ5〉. Shuffle

to obtain

ν〈νν4,2, θ5〉 = 〈ν, νν4,2〉θ5.

The Toda bracket 〈ν, νν4,2〉 is zero because π25,14 consists only of a v1-periodic element
detected by P2h1c0. �

Lemma 7.132. — (85,6,44) If τx85,6 + h3
0c3 survives, then it supports a hidden ν extension

to h1x87,7 + τ 2g2
2 .

Proof. — By comparison to Cτ , there must be a hidden ν extension whose target
is either h1x87,7 or h1x87,7 + τ 2g2

2 .
Table 21 shows that there is a hidden ν extension from τ 2h2h4Q3 to τ 2h0g2

2 . This
implies that the target of the ν extension on τx85,6 + h3

0c3 must be h1x87,7 + τ 2g2
2 . �

Lemma 7.133. — (87,12,45) There is no hidden ν extension on P2h6c0.

Proof. — Table 24 shows that P2h6c0 detects the product ρ23η6, and νρ23η6 is zero.
�

Lemma 7.134. — (87,12,48) There is a hidden ν extension from h2
2gA′ to 
h2

1g2g.
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Proof. — Comparison to Cτ shows that h2
2gA′ supports a hidden ν extension whose

target is either 
h2
1g2g or 
h2

1g2g + τh2gC′′.
Let α be an element of π84,46 that is detected by h2gA′. Since h2gA′ does not support

a hidden η extension, we may choose α such that ηα is zero. Note that h2
2gA′ detects να.

Shuffle to obtain

ν2α = 〈η, ν, η〉α = η〈ν, η,α〉.
This shows that ν2α must be divisible by η. Consequently, the hidden ν extension on
h2

2gA′ must have target 
h2
1g2g. �

Remark 7.135. — The proof of Lemma 7.134 shows that 
h1g2g detects the Toda
bracket 〈ν, η, {h2gA′}〉.

7.5. Miscellaneous hidden extensions

Theorem 7.136. — Tables 24 and 25 list some miscellaneous hidden extensions.

Proof. — Similarly to Theorems 7.7, 7.52, and 7.96, some of the extensions follow
by comparison to Cτ or to tmf. The more difficult cases are handled in the following
lemmas. �

Based on the corrected statement of Lemma 6.10 ([62, Theorem 2.1]) and
Lemma 6.14, the third author presents the proof of the following Lemma 7.137 ([62,
Theorem 1.2]), fixing a gap in its original proof. Note that as in the original proof, it only
uses classical knowledge back then up to the 60-stem.

Lemma 7.137. — (30,2) Classically, there is no hidden θ4 extension on h2
4. In other words

θ 2
4 is zero in π60.

Proof. — We have

θ 2
4 = θ4〈2, σ 2 + κ,2σ,σ 〉 ⊆ 〈〈θ4,2, σ 2 + κ〉,2σ,σ 〉.

Using [62, Theorem 2.2] and Lemma 6.10, the last expression is contained in the union
of

〈0,2σ,σ 〉, 〈ηκ2,2σ,σ 〉, 〈ρ15θ4,2σ,σ 〉.
By [62, Lemmas 2.3 and 2.4] and Lemma 6.14, all three brackets contain a single ele-
ment 0. Therefore, θ 2

4 = 0. �
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Lemma 7.138.

(1) (45,3,24) There is a hidden ε extension from h2
3h5 to Mc0.

(2) (45,3,23) There is a hidden ε extension from τh2
3h5 to MP.

Proof. — Table 18 shows that Mh1 detects the product ηθ4.5. Then Mh1c0 detects
ηεθ4.5. This implies that Mc0 detects εθ4.5.

This only shows that Mc0 is the target of a hidden ε extension, whose source could
be h2

3h5 or h5d0. However, Lemma 7.145 rules out the latter case. This establishes the first
hidden extension.

Table 14 shows that there is a hidden τ extension from Mc0 to MP. Then the first
hidden extension implies the second one. �

Remark 7.139. — We claimed in [30, Table 33] that there is a hidden ε extension
from h2

3h5 to Mc0. However, the argument given in [30, Lemma 4.108] only implies that
Mc0 is the target of a hidden extension from either h2

3h5 or h5d0.

Lemma 7.140. — (45,3,24) There is a hidden κ extension from h2
3h5 to Md0.

Proof. — Table 18 shows that Mh1 detects the product ηθ4.5. Then Mh1d0 detects
the product ηκθ4.5, so Md0 must detect the product κθ4.5. This shows that Md0 is the
target of a hidden κ extension whose source is either h2

3h5 or h5d0.
We showed in Lemma 7.145 that εα is zero for some element α of π45,24 that is

detected by h5d0. Then εκα is also zero. Table 24 shows that εκ equals κ2. Therefore,
κ2α is zero. If κα were detected by Md0, then κ2α would be detected by Md2

0 . It follows
that there is no hidden κ extension from h5d0 to Md0. �

Remark 7.141. — We showed in [30, Table 33] that there is a hidden κ extension
from either h2

3h5 or h5d0 to Md0. Lemma 7.140 settles this uncertainty.

Lemma 7.142. — (45,3,24) There is a hidden κ extension from h2
3h5 to τMg.

Proof. — Table 18 shows that Mh1 detects the product ηθ4.5. Then τMh1g detects
the product ηκθ4.5, so τMg must detect the product κθ4.5. This shows that τMg is the
target of a hidden κ extension whose source is either h2

3h5 or h5d0.
We showed in Lemma 7.145 that εα is zero for some element α of π45,24 that

is detected by h5d0. If κα were detected by τMg, then εκα would be detected by Md2
0

because Table 24 shows that there is a hidden ε extension from τMg to Md2
0 . Therefore,

there is no hidden κ extension from h5d0 to τMg. �

Lemma 7.143. — (45,3,24) There is a hidden {
h1h3} extension from h2
3h5 to M
h1h3.
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Proof. — Table 18 shows that Mh1 detects the product ηθ4.5. Therefore, the ele-
ment M
h2

1h3 detects η{
h1h3}θ4.5. This shows that M
h1h3 is the target of a hidden
{
h1h3} extension. Lemma 7.146 rules out h5d0 as a possible source. The only remaining
possible source is h2

3h5. �

Lemma 7.144. — (45,3,24) There is a hidden θ4.5 extension from h2
3h5 to M2.

Proof. — The proof of Lemma 5.31 shows that M2h1 detects a multiple of ηθ4.5.
Therefore, it detects either ηθ 2

4.5 or ηθ4.5{h5d0}.
Now h1h5d0 detects η{h5d0}, which also detects η4θ4 by Table 24. In fact, the proof

of [30, Lemma 4.112] shows that these two products are equal. Then ηθ4.5{h5d0} equals
η4θ4θ4.5. Next, η4θ4.5 lies in π61,33. The only non-zero element of π61,33 is detected by mmf,
so the product η4θ4.5 must be zero.

We have now shown that M2h1 detects ηθ 2
4.5. This implies that M2 detects θ 2

4.5. �

Lemma 7.145. — (45,5,24) There is no hidden ε extension on h5d0.

Proof. — Table 10 shows that h5d0 detects the Toda bracket 〈2, θ4, κ〉. Now shuffle
to obtain

ε〈2, θ4, κ〉 = 〈ε,2, θ4〉κ.

Table 10 shows that h5c0 detects the Toda bracket 〈ε,2, θ4〉, and there is no indetermi-
nacy. Let α in π39,21 be the unique element of this Toda bracket. We wish to compute
ακ .

Table 10 shows that h5c0 also detects the Toda bracket 〈η5, ν,2ν〉, with indetermi-
nacy generated by ση5. Let β in π39,21 be an element of this Toda bracket. Then α and
β are equal, modulo ση5 and modulo elements in higher filtration. Both τh3d1 and τ 2c1g

detect multiples of σ . Also, the difference between α and β cannot be detected by 
h1d0

by comparison to tmf.
This implies that α equals β + σγ for some element γ in π31,17. Then

ακ = (β + σγ )κ = βκ

because σκ is zero.
Now shuffle to obtain

βκ = 〈η5, ν,2ν〉κ = η5〈ν,2ν, κ〉.
Table 10 shows that 〈ν,2ν, κ〉 contains ηκ , and its indeterminacy is generated by νν4.
We now need to compute η5ηκ .

The product η5κ is detected by τh1h3g2 = τh1h5g, so η5κ equals τησκ2, modulo
elements of higher filtration. But these elements of higher filtration are either annihi-
lated by η or detected by tmf, so η5ηκ equals τη2σκ2. By comparison to tmf, this latter
expression must be zero. �
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Lemma 7.146. — (45,5,24) There is no hidden {
h1h3} extension on h5d0.

Proof. — Table 10 shows that h5d0 detects the Toda bracket 〈κ, θ4,2〉. By inspection
of indeterminacies, we have

{
h1h3}〈κ, θ4,2〉 = 〈{
h1h3}κ, θ4,2〉.
Table 24 shows that τd0l + 
c0d0 detects the product {
h1h3}κ . Now apply the Moss
Convergence Theorem 2.16 with the Adams differential d2(h5) = h0h2

4 to determine that
the Toda bracket 〈{
h1h3}κ, θ4,2〉 is detected in Adams filtration at least 13.

The only element in sufficiently high filtration is τ 5e0g3, but comparison to mmf

rules this out. Thus the Toda bracket 〈{
h1h3}κ, θ4,2〉 contains zero. �

Lemma 7.147. — (62,2,32) There is a hidden ρ15 extension from h2
5 to either h0x77,7 or

τ 2m1.

Proof. — Table 10 shows that the Toda bracket 〈8,2σ,σ 〉 contains ρ15. Then ρ15

is also contained in 〈2,8σ,σ 〉, although the indeterminacy increases.
Now shuffle to obtain

ρ15θ5 = θ5〈2,8σ,σ 〉 = 〈θ5,2,8σ 〉σ.

Table 10 shows that h3
0h3h6 detects 〈θ5,2,8σ 〉. Also, there is a σ extension from h3

0h3h6 to
h0x77,7 in the homotopy of Cτ .

This implies that ρ15θ5 is non-zero in π77,40, and that it is detected in filtration at
most 8. Moreover, it is detected in filtration at least 7, since ρ15 and θ5 are detected in
filtrations 4 and 2 respectively.

There are several elements in filtration 7 that could detect ρ15θ5. The element x77,7

(if it survives to the E∞-page) is ruled out by comparison to Cτ . The element τh1x76,6

is ruled out because ηρ15θ5 is detected in filtration at least 10, since ηρ15 is detected in
filtration 7.

The only remaining possibilities are h0x77,7 and τ 2m1. �

Lemma 7.148.

(1) (64,2,33) There is a hidden ρ15 extension from h1h6 to Ph6c0.

(2) (64,2,33) There is a hidden ρ23 extension from h1h6 to P2h6c0.

Proof. — Table 10 shows that h1h6 detects 〈η,2, θ5〉. Then

ρ15〈η,2, θ5〉 ⊆ 〈ηρ15,2, θ5〉.
The last bracket is detected by Ph6c0 because d2(h6) = h0h2

5 and because Pc0 detects ηρ15.
Also, its indeterminacy is in Adams filtration higher than 8. This establishes the first
hidden extension.
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The proof for the second extension is essentially the same, using that P2c0 detects
ηρ23 and that the indeterminacy of 〈ηρ23,2, θ5〉 is in Adams filtration higher than 12. �

Lemma 7.149. — (65,10,35) There is a hidden ε extension from τMg to Md2
0 .

Proof. — First, we have the relation c0 · h2
1X2 = Mh1h3g in the Adams E2-page,

which is detected in the homotopy of Cτ . Table 14 shows that there are hidden τ exten-
sions from h2

1X2 and Mh1h3g to τMg and Md2
0 respectively. �

Lemma 7.150. — (77,12,41) If M
h2
1d0 is non-zero in the E∞-page, then there is a

hidden ε extension from M
h1h3 to M
h2
1d0.

Proof. — Table 18 shows that Mh1 detects the product ηθ4.5. Since M
h2
1d0 equals


h1d0 · Mh1, it detects η{
h1d0}θ4.5.
Table 24 shows that η{
h1d0} equals ε{
h1h3}, since they are both detected by


h2
1d0 and there are no elements in higher Adams filtration. Therefore, the product

ε{
h1h3}θ4.5 is detected by M
h2
1d0. In particular, {
h1h3}θ4.5 is non-zero, and it can

only be detected by M
h1h3. �

7.6. Additional relations

Lemma 7.151. — The product (ησ + ε)θ5 is detected by τh0h2Q3.

Proof. — Table 10 indicates a hidden η extension from h2
2h6 to τh0h2Q3. Therefore,

there exists an element α in π69,36 such that τh0h2Q3 detects ηα. (Beware of the crossing
extension from p′ to h1p′. This means that it is possible to choose such an α, but not any
element detected by h2

2h6 will suffice.)
Table 10 shows that h2

2h6 detects the Toda bracket 〈ν2,2, θ5〉. Let β be an element
of this Toda bracket. Since α and β are both detected by h2

2h6, the difference α − β is
detected in Adams filtration at least 4.

Table 24 shows that p′ detects σθ5, which belongs to the indeterminacy of
〈ν2,2, θ5〉. Therefore, we may choose β such that the difference α − β is detected in
filtration at least 9. Since ηα is detected by τh0h2Q3 in filtration 7, it follows that ηβ is
also detected by τh0h2Q3.

We now have an element β contained in 〈ν2,2, θ5〉 such that ηβ is detected by
τh0h2Q3. Now consider the shuffle

η〈ν2,2, θ5〉 = 〈η, ν2,2〉θ5.

Table 10 shows that the last bracket equals {ε, ε + ησ }. Therefore, either εθ5 or (ε +
ησ)θ5 is detected by τh0h2Q3. But εθ5 is detected by h1p′ = h2

5c0. �
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Lemma 7.152. — There exists an element α of π67,36 that is detected by h0Q3 + h0n1 such

that τνα equals (ησ + ε)θ5.

Proof. — Lemma 7.151 shows that τh0h2Q3 detects (ε + ησ)θ5. The element
τh0h2Q3 also detects τνα. Let β be the difference τνα − (ε + ησ)θ5, which is detected
in higher Adams filtration. We will show that β must equal zero.

First, τh1D′
3 cannot detect β because η2β is zero, while Table 18 shows that τ 3d1g2

detects η2{τh1D′
3}. Second, Table 21 shows that τh1h3(
e1 + C0) is the target of a hidden

ν extension. Therefore, we may alter the choice of α to ensure that β is not detected by
τh1h3(
e1 + C0). Third, 
2h2c1 is also the target of a ν extension. Therefore, we may
alter the choice of α to ensure that β is not detected by 
2h2c1. Finally, comparison to tmf

implies that β is not detected by τ
2h2
1g + τ 3
h2

2g2. �

Lemma 7.153. — The product (σ 2 +κ)θ5 is zero, or it is equal to τ 2κ1κ2 detected by τ 2d1g2.

Proof. — The product (σ 2 + κ)θ5 maps to zero under inclusion of the bottom cell
of Cτ . Therefore, (σ 2 +κ)θ5 is divisible by τ . The only two possibilities are 0 and τ 2κ1κ2.

�

Lemma 7.154. — ησ {k1} + ν{d1e1} = 0 in π73,41.

Proof. — We have the relation h1h3k1 + h2d1e1 = 0 in the Adams E∞-page, but
ησ {k1} + ν{d1e1} could possibly be detected in higher Adams filtration. However, it can-
not be detected by h2

2C′′ or Mh1h3g by comparison to Cτ . Also, it cannot be detected by

h1d0e2

0 by comparison to mmf. �

8. Tables

Table 1 gives some notation for elements in π∗,∗. The fourth column gives partial
information that reduces the indeterminacies in the definitions, but does not completely
specify a unique element in all cases. See Section 1.5 for further discussion.

Table 2 gives hidden values of the unit map π∗,∗ → π∗,∗mmf. The elements in the
third column belong to the Adams E∞-page for mmf [28, 31]. See Section 2.2 for further
discussion.

Table 3 lists information about some Massey products. The fifth column indicates
the proof. When a differential appears in this column, it indicates the May differential
that can be used with the May Convergence Theorem (see Remark 2.26) to compute
the bracket. The sixth column shows where each specific Massey product is used in the
manuscript. See Section 4 for more discussion.

Table 4 lists all of the multiplicative generators of the Adams E2-page through
the 95-stem. The third column indicates the value of the d2 differential, if it is non-zero.
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A blank entry in the third column indicates that the d2 differential is zero. The fourth
column indicates the proof. A blank entry in the fourth column indicates that there are
no possible values for the differential. The fifth column gives alternative names for the
element, as used in [11, 30], or [54]. See Sections 1.5 and 5.1 for further discussion.

Table 5 lists some elements in the Adams spectral sequence that are known to be
permanent cycles. The third column indicates the proof. When a Toda bracket appears
in the third column, the Moss Convergence Theorem 2.16 applied to that Toda bracket
implies that the element is a permanent cycle (see Table 10 for more information). When
a product appears in the third column, the element must survive to detect that product.

Table 6 lists the multiplicative generators of the Adams E3-page through the 95-
stem whose d3 differentials are non-zero, or whose d3 differentials are zero for non-obvious
reasons. See Section 5.2 for further discussion.

Table 7 lists the multiplicative generators of the Adams E4-page through the 95-
stem whose d4 differentials are non-zero, or whose d4 differentials are zero for non-obvious
reasons. See Section 5.3 for further discussion.

Table 8 lists the multiplicative generators of the Adams E5-page through the 95-
stem whose d5 differentials are non-zero, or whose d5 differentials are zero for non-obvious
reasons. See Section 5.4 for further discussion.

Table 9 lists the multiplicative generators of the Adams Er-page, for r ≥ 6, through
the 90-stem whose dr differentials are non-zero, or whose dr differentials are zero for non-
obvious reasons. See Section 5.5 for further discussion.

Table 10 lists information about some Toda brackets. Whenever possible, we use
Greek letter names to refer to specific homotopy elements. An expression of the form
{x} means that the Toda bracket computation applies to any homotopy element detected
by the element x of the Adams E∞-page. An expression of the form [x] means that the
Toda bracket computation applies to at least one homotopy element that is detected by x.
The third column of Table 10 gives an element of the Adams E∞-page that detects an
element of the Toda bracket. The fourth column of Table 10 gives partial information
about indeterminacies, again by giving detecting elements of the Adams E∞-page. We
have not completely analyzed the indeterminacies of some brackets when the details are
inconsequential for our purposes; this is indicated by a blank entry in the fourth column.
The fifth column indicates the proof of the Toda bracket, and the sixth column shows
where each specific Toda bracket is used in the manuscript. See Section 6 for further
discussion.

Tables 12 and 13 gives hidden values of the inclusion π∗,∗ → π∗,∗Cτ of the bottom
cell, and of the projection π∗,∗Cτ → π∗−1,∗+1 to the top cell. See Section 7.1 for further
discussion.

Table 14 lists hidden τ extensions in the E∞-page of the C-motivic Adams spectral
sequence. See Section 7.1 for further discussion.

Tables 15, 18, and 21 list hidden extensions by 2, η, and ν. The fourth column in-
dicates the proof of each extension. The fifth column gives additional information about
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each extension, including whether it is a crossing extension and whether it has indeter-
minacy in the sense of Section 2.1.1. See Sections 7.2, 7.3, and 7.4 for further discussion.

Tables 17, 20, and 23 list possible hidden extensions by 2, η, and ν that we have
not yet resolved.

Finally, Table 24 gives some various hidden extensions by elements other than 2,
η, and ν. See Section 7.5 for further discussion.

TABLE 1. — Notation for π∗,∗

(s,w) Element Detected by Definition

(0,−1) τ τ

(0,0) 2 h0

(1,1) η h1

(3,2) ν h2

(7,4) σ h3

(8,5) ε c0

(9,5) μ9 Ph1

(14,8) κ d0

(15,8) ρ15 h3
0h4

(16,9) η4 h1h4

(17,9) μ17 P2h1

(19,11) σ c1

(20,11) κ τ g 〈κ,2, η, ν〉
(23,12) ρ23 h2

0i + τPh1d0

(25,13) μ25 P3h1

(30,16) θ4 h2
4

(32,17) η5 h1h5 in 〈η,2, θ4〉
(32,18) κ1 d1

(44,24) κ2 g2

(45,24) θ4.5 h3
4 ηθ4.5 ∈ {Mh1}

(62,32) θ5 h2
5

(63,32) η6 h1h6 in 〈η,2, θ5〉

TABLE 2. — Some hidden values of the unit map of mmf

(s, f ,w) Element Image

(28,6,17) h1h3g cg

(29,7,18) h2
1h3g h1cg

(32,6,17) 
h1h3 
c + τag

(33,7,18) 
h2
1h3 
h1c

(35,8,18) τ 3h1e2
0 Pan

(40,10,21) τ
h2
1d0 P(
c + τag)

(48,10,29) h1h3g2 cg2

(49,11,30) h2
1h3g2 h1cg2

(52,10,29) 
h1h3g (
c + τag)g

(53,11,30) 
h2
1h3g 
h1cg

(54,9,28) h0h5i 
2h2
2

(54,11,32) h6
1h5e0 dg2

(55,12,33) h7
1h5e0 h1dg2
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TABLE 2. — (Continued )

(s, f ,w) Element Image

(57,10,30) h0h2h5i 
h1(
c + τag)

(59,12,33) Ph3
1h5e0 
h1dg

(60,13,34) τ 2h0g3 
h2
1dg

(62,14,37) h6
1h5c0e0 cdg2

(63,15,38) h7
1h5c0e0 h1cdg2

(65,12,34) Ph5j 
2h2d

(66,14,37) Ph2
1h5c0e0 (
c + τag)dg

(67,15,38) Ph3
1h5c0e0 
h1cdg

(68,13,37) Ph2h5j 
2h2
2d

(68,14,41) h1h3g3 cg3

(69,15,42) h2
1h3g3 h1cg3

(71,15,38) 
2h2
0h2g 
h1(
c + τag)d

(72,14,41) 
h1h3g2 (
c + τag)g2

(73,15,42) 
h2
1h3g2 
h1cg2

(77,15,42) 
2h3
2g 
h1(
c + τag)g

(88,18,53) h1h3g4 cg4

(89,19,54) h2
1h3g4 h1cg4

TABLE 3. — Some Massey products in ExtC

(s, f ,w) Bracket Contains Indeterminacy Proof Used for

(2,2,1) 〈h0, h1, h0〉 τh2
1 0 Theorem 4.1 〈2, η,2〉

(3,2,2) 〈h1, h0, h1〉 h0h2 0 Theorem 4.1 〈η,2, η〉, 7.67
〈{h1x76,6},2, η〉

(6,2,4) 〈h1, h2, h1〉 h2
2 0 Theorem 4.1 〈η, ν, η〉

(8,2,5) 〈h2, h1, h2〉 h1h3 0 Theorem 4.1 〈ν, η, ν〉
(8,3,5) 〈h2

1, h0, h1, h2〉 c0 0 d1(h20) = h0h1 〈η2,2, η, ν〉
d1(h21) = h1h2

(8,3,5) 〈h1, h2, h0h2〉 c0 0 d2(h0(1) = h0h2
2 〈η, ν,2ν〉, 〈η5, ν,2ν〉

(9,5,5) 〈h1, h0, h3
0h3〉 Ph1 0 d4(b

2
20) = h4

0h3 〈η,2,8σ 〉
(11,5,6) 〈h0, h1, τh1c0〉 Ph2 0 d2(b20h0(1)) = τh2

1c0 〈2, η, τηε〉
(20,4,11) 〈τ, h4

1, h4〉 τ g 0 d4(g) = h4
1h4 7.127

(23,5,14) 〈h2, h1, h3
1h4〉 h2g 0 d4(g) = h4

1h4 4.11
(23,9,12) 〈h3, h4

0, h4
0h4〉 h2

0i + τPh1d0 0 d8(b
4
20) = h8

0h4 〈σ,16,2ρ15〉
(30,6,16) 〈h2

0, h2
3, h2

0, h2
3〉 
h2

2 0 d4(h2b30) = h2
0h2

3 4.9
(32,4,18) 〈h1, h2

3, h1, h2
3〉 d1 0 d2(h1(1)) = h1h2

3 〈η,σ 2, η, σ 2〉
(33,4,18) 〈h1h2

4, h1, h0〉 p 0 d4(h3b31) = h2
1h2

4 〈ηθ4, η,2〉
(41,3,22) 〈h2h4, h4, h3〉 c2 0 d2(h2(1)) = h2h2

4 4.12
(46,7,25) 〈h1, h0, h2

0g2〉 Mh1 0 M 6.12
(54,6,29) 〈h1, h0,D1〉 τ
1h2

1 0 [35] Example 2.31
(66,6,36) 〈h2

1, h2
4, h2

1, h2
4〉 
1h2

3 0 Lemma 4.9 6.18
(66,7,35) 〈A′, h1, h2〉 τG0 0 Lemma 4.10 7.83
(67,14,36) 〈Pd0, h3

0, g2〉 MPd0 0 M 5.70
(68,11,38) 〈h2g, h3

0, g2〉 Mh2g 0 M 5.42
(71,13,40) 〈h3

1h4, h1, τ gn〉 τ g2n Mh0h2
2g Lemma 4.11 5.43

(75,18,42) 〈
h2
0d0e0, h1, h3

1h4〉 
h2
2d2

0 e0 0 Proposition 4.3 〈τηκκ2, η, η2η4〉
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TABLE 3. — (Continued )

(s, f ,w) Bracket Contains Indeterminacy Proof Used for

(80,5,42) 〈h3, p′, h2〉 h0e2 0 Lemma 4.12 7.120
(82,12,45) 〈
e1 + C0, h3

1, h1h4〉 (
e1 + C0)g 0 Lemma 4.14 〈{
e1 + C0}, η3, η4〉
(86,16,46) 〈
h2

0e0, h2
0, h0g2〉 M
h2

0e0 0 M 6.30
(91,13,49) 〈Mh1, h0, h2

0g2〉 M2h1 0 M 5.31
(93,13,49) 〈τ 3gG0, h0h2, h2〉 ?τ e0x76,9 τM2h2 Lemma 4.15 5.64

TABLE 4. — Generators of the C-motivic Adams E2-page

(s, f ,w) Element d2 Proof Other names

(0,1,0) h0

(1,1,1) h1

(3,1,2) h2

(7,1,4) h3

(8,3,5) c0

(9,5,5) Ph1

(11,5,6) Ph2

(14,4,8) d0

(15,1,8) h4 h0h2
3 Cτ

(16,7,9) Pc0

(17,4,10) e0 h2
1d0 Cτ

(17,9,9) P2h1

(18,4,10) f0 h2
0e0 Cτ

(19,3,11) c1 Cτ

(19,9,10) P2h2

(20,4,11) τ g

(22,8,12) Pd0

(23,5,14) h2g

(23,7,12) i Ph0d0 Cτ

(24,11,13) P2c0

(25,8,14) Pe0 Ph2
1d0 Cτ

(25,13,13) P3h1

(26,7,14) j Ph0e0 Cτ

(27,5,16) h3g h0h2
2g Cτ

(27,13,14) P3h2

(29,7,16) k h0d2
0 Cτ

(30,6,16) 
h2
2 Cτ r

(30,12,16) P2d0

(31,1,16) h5 h0h2
4 Cτ

(31,5,17) n

(32,4,18) d1

(32,6,17) 
h1h3 h0 q

(32,7,18) l h0d0e0 Cτ

(32,15,17) P3c0

(33,4,18) p

(33,12,18) P2e0 P2h2
1d0 Cτ

(33,17,17) P4h1

(34,11,18) Pj P2h0e0 Cτ

(35,7,20) m h0e2
0 Cτ
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TABLE 4. — (Continued )

(s, f ,w) Element d2 Proof Other names

(35,17,18) P4h2

(36,6,20) t Cτ

(37,5,20) x

(37,8,22) e0g h2
1e2

0 Cτ

(38,4,21) e1

(38,6,20) 
h2
3 h3

0x Cτ y+?h2
2d1

(38,16,20) P3d0

(39,7,23) c1g Cτ

(39,9,21) 
h1d0 u

(39,15,20) P2i P3h0d0 Cτ

(40,4,22) f1
(40,8,23) τ g2

(40,19,21) P4c0

(41,3,22) c2 h0f1 Cτ

(41,10,22) 
h2
0e0 Cτ z

(41,16,22) P3e0 P3h2
1d0 Cτ

(41,21,21) P5h1

(42,9,23) 
h1e0 
h3
1d0 Cτ v

(42,15,22) P2j P3h0e0 Cτ

(43,9,26) h2g2

(43,21,22) P5h2

(44,4,24) g2

(45,9,24) τ
h1g w

(46,7,25) Mh1 B1

(46,8,25) 
h2c1 N
(46,11,25) 
c0d0 τh0d2

0 e0 Cτ u′

(46,20,24) P4d0

(47,9,28) h3g2 h0h2
2g2 Cτ

(47,13,24) 
h2
0i h0i2 Cτ Q′, Q + Pu

(47,13,25) P
h1d0

(48,7,26) Mh2 B2+?h2
0h5e0

(48,23,25) P5c0

(49,11,27) 
c0e0 
h2
1c0d0 + τh0d0e2

0 Cτ v′

(49,20,26) P4e0 P4h2
1d0 Cτ

(49,25,25) P6h1

(50,6,27) C
(50,10,28) 
h2

2g Cτ

(50,13,27) P
h1e0 P
h3
1d0 Cτ

(50,19,26) P3j P4h0e0 Cτ

(51,9,28) 
h3g 
h0h2
2g Cτ G3

(51,9,29) gn

(51,25,26) P6h2

(52,5,28) D1 h2
0h3g2 Cτ

(52,8,30) d1g

(53,7,30) i1 Cτ

(53,9,29) Mc0 h0 B8, Ph5d0

(53,10,28) MP x′

(54,6,29) τ
1h2
1 Mh1h3 Cτ G

(54,10,28) 
2h2
2 MPh2

0 Cτ R1+?h2
0h5i

(54,15,29) P
c0d0 τPh0d2
0 e0 Cτ
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TABLE 4. — (Continued )

(s, f ,w) Element d2 Proof Other names

(54,24,28) P5d0

(55,7,30) B6 Cτ

(55,11,32) gm h0e2
0g Cτ

(55,17,29) P2
h1d0

(55,23,28) P4i P5h0d0 Cτ

(56,10,29) 
2h1h3 τMPh2
1 h1 Q1+?gt

(56,10,32) gt Cτ

(56,27,29) P6c0

(57,6,31) D4 h1B6 Cτ

(57,7,30) Q2 Cτ

(57,9,31) 
h1d1 D11

(57,15,31) P
c0e0 P
h2
1c0d0 + τh0d4

0 Cτ

(57,24,30) P5e0 P5h2
1d0 Cτ

(57,29,29) P7h1

(58,6,30) D2 h0Q2 Cτ

(58,8,33) e1g

(58,17,31) P2
h1e0 P2
h3
1d0 Cτ

(58,23,30) P4j P5h0e0 Cτ

(59,7,33) j1
(59,10,32) Md0 B21

(59,11,35) c1g2

(59,29,30) P7h2

(60,7,32) Mh4 Cτ B3

(60,9,32) B4 Mh0d0 Cτ

(60,12,35) τ g3

(60,13,36) h0g3

(61,4,32) D3

(61,6,32) A′ Cτ

(61,6,32) A + A′ Mh0h4 Cτ

(61,7,33) B7

(61,9,32) 
x h2
0B4 + τMh1d0 Lemma 5.3 X1

or Cτ , h2
1

(62,5,33) H1 B7 Cτ

(62,8,33) C0 x8,33 + h6
0h2

5

(62,8,33) 
e1 E1, x8,32 + x8,33

(62,10,32) 
2h2
3 Cτ x10,27 + x10,28+

+h1X1, R
(62,10,34) Me0 Mh2

1d0 Cτ B22, x10,28

(62,19,33) P2
c0d0 τP2h0d2
0 e0 Cτ

(62,28,32) P6d0

(63,1,32) h6 h0h2
5 Cτ

(63,7,34) C′ Cτ x7,33 + x7,34

(63,7,34) X2 Mh2
1h4 Cτ x7,33

(63,13,38) h2g3

(63,21,33) P3
h1d0

(64,6,34) A′′ h0X2 Cτ

(64,10,33) 
2h1h4 x10,32+?h2
0h3Q2,

q1

(64,14,34) 
2h2
1d0 MP2h2

1 Cτ U, PQ1+?km

(64,31,33) P7c0
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TABLE 4. — (Continued )

(s, f ,w) Element d2 Proof Other names

(65,7,36) k1

(65,10,35) τMg Cτ B23

(65,13,34) 
2h0e0 h0 · 
2h2
1d0 Cτ R2+?gw

(65,19,35) P2
c0e0 P2
h2
1c0d0+ Cτ

+τPh0d4
0

(65,28,34) P6e0 P6h2
1d0 Cτ

(65,33,33) P8h1

(66,6,36) 
1h2
3 r1

(66,7,35) τG0 h2C0 + h1h3Q2 Cτ x7,40+?h0r1

(66,10,34) D′
2 τ 2Mh2

0g Cτ , i PD2

(66,10,35) τB5 τMh2
0g i

(66,21,35) P3
h1e0 P3
h3
1d0 Cτ

(66,27,34) P5j P6h0e0 Cτ

(67,5,35) τQ3 τ
1h0h2
3 g2

(67,5,36) n1 
1h0h2
3 Cτ

(67,6,36) h0Q3+h2
2D3 Cτ

(67,9,36) X3 Cτ x9,40

(67,9,37) C′′ x9,39

(67,11,35) 
2c1 x11,35 + h2
0x9,40

(67,13,40) h3g3 h0h2
2g3 Cτ

(67,33,34) P8h2

(68,4,36) d2 Cτ

(68,8,36) 
g2 h0X3 Cτ G21+?h0h3A′

(68,11,38) Mh2g

(68,13,36) 
2h0g MPh0d0 Cτ P2D1+?h5
0G21,

G11

(69,4,36) p′ Cτ

(69,8,37) D′
3 h1X3 Cτ , [17] PD3

(69,8,38) h2G0 h1C′′ Cτ

(69,10,36) P(A + A′) τ 2Mh0h2g Cτ , i

(69,11,38) h2B5 Cτ

(69,13,36) τ
2h1g d0 W1

(69,18,36) MP3 x18,20+?d0il

(70,4,37) p1 Cτ

(70,6,38) h2Q3 Cτ

(70,17,36) P
2h0d0 MP3h0 Cτ R′
1, R1+?d2

0 v

(70,23,37) P3
c0d0 τP3h0d2
0 e0 Cτ

(70,32,36) P7d0

(71,6,38) x71,6 τd1e1 h3 x6,47+?h2
1p′

(71,7,39) l1
(71,12,37) 
2h4c0 Cτ , tmf, h0 x12,37+?h0d0Q2

(71,13,38) 
2h2g Cτ x13,34

(71,13,38) Mj MPh0e0 Cτ x13,35

(71,13,40) 
h3g2 h0m2 Cτ

(71,13,41) g2n

(71,25,37) P4
h1d0

(71,31,36) P6i P7h0d0 Cτ

(72,12,42) d1g2

(72,17,39) 
2h2
1c0d0 MP2h2

1c0 Cτ

(72,18,38) P
2h2
1d0 MP3h2

1 Cτ
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TABLE 4. — (Continued )

(s, f ,w) Element d2 Proof Other names

(72,35,37) P8c0

(73,17,38) P
2h0e0 MP3h2 Cτ

(73,23,39) P3
c0e0 P3
h2
1c0d0+ Cτ

+τP2h0d4
0

(73,32,38) P7e0 P7h2
1d0 Cτ

(73,37,37) P9h1

(74,8,40) x74,8 x8,51+?Ph2
0h2h6

(74,25,39) P4
h1e0 P4
h3
1d0 Cτ

(74,31,38) P6j P7h0e0 Cτ

(75,7,40) x75,7 Cτ x7,53

(75,11,42) gB6 Cτ

(75,13,40) 
2h3g 
2h0h2
2g Cτ

(75,15,44) g2m h0e2
0g2 Cτ

(75,37,38) P9h2

(76,6,40) x76,6 h0x75,7 Cτ x6,53

(76,9,40) x76,9 Cτ x9,51+?h1h4B3

(76,14,44) g2t Cτ

(76,16,40) 
2d2
0 τ 2d0jm Cτ , tmf x16,32

(77,7,40) x77,7 τMh1h2
4 Lemma 5.5 x7,57 + m1

(77,7,42) m1 Cτ

(77,8,41) x77,8 
h1h3g2 Cτ x8,57

(77,12,41) M
h1h3 Cτ , h0, τ g P2D3

(77,13,43) 
h1d1g

(77,16,40) 
2h0k 
2h2
0d2

0 Cτ x16,33+?e0g3

(77,16,46) e0g3 h2
1e2

0g2 Cτ

(78,6,42) t1 h0m1 Cτ

(78,9,41) x78,9 Cτ x9,55+?h7
0h4h6

(78,10,40) x78,10 h5
0x77,7 Cτ , h1 P2h2

5

(78,12,45) e1g2

(78,27,41) P4
c0d0 τP4h0d2
0 e0 Cτ

(78,36,40) P8d0

(79,5,42) x1 Cτ

(79,11,42) 
B6 Cτ

(79,11,45) gj1
(79,13,41) 
2n x13,42

(79,15,47) c1g3 Cτ

(79,16,42) 
2d0e0 
2h2
1d2

0 + τ 2d0km Cτ , tmf x16,35

(79,29,40) P4
h2
0i P4h0i2 Cτ

(79,29,41) P5
h1d0 Cτ

(80,4,42) e2 h0x1 Cτ

(80,12,42) 
2d1 h0 x12,44

(80,13,44) gB4 Mh0e2
0 Cτ

(80,14,41) 
3h1h3 h0 x14,42

(80,16,42) 
2h0l 
2h2
0d0e0 Cτ x16,37+?g4

(80,16,47) τ g4

(80,22,42) P2
2h2
1d0 MP4h2

1 Cτ

(80,39,41) P9c0

(81,10,44) gA′

(81,11,45) gB7

(81,12,42) 
2p h0 x12,45
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TABLE 4. — (Continued )

(s, f ,w) Element d2 Proof Other names

(81,21,42) P2
2h0e0 h0 · P2
2h2
1d0 Cτ

(81,27,43) P4
c0e0 P4
h2
1c0d0+ Cτ

+τP3h0d4
0

(81,36,42) P8e0 P8h2
1d0 Cτ

(81,41,41) P10h1

(82,6,44) h4Q3

(82,9,45) gH1 gB7 Cτ

(82,12,45) (
e1+C0)g

(82,12,45) gC0

(82,14,46) Me0g Mh2
1e2

0 Cτ

(82,16,44) 
2e2
0 τ 2
h2

2e3
0 Cτ , tmf x16,38

(82,17,47) 
h1e0g2 
h3
1e2

0g + Mh5
1d0e0 Cτ

(82,29,43) P5
h1e0 P5
h3
1d0 Cτ

(82,35,42) P7j P8h0e0 Cτ

(83,11,45) 
j1
(83,11,46) gC′

(83,15,44) 
2m 
2h0e2
0+ Cτ , tmf x15,41

+τ 3
h1e0g2

(83,17,50) h2g4

(83,41,42) P10h2

(84,4,44) f2 Cτ

(84,10,45) Px76,6 Cτ

(84,14,44) 
2t Cτ x14,46

(84,15,44) 
h2
0B4 
2h2

0m + τ
2h1e2
0 Cτ , mmf x15,42 + x15,43

(84,15,45) M
h1d0 Cτ x15,43

(85,3,44) c3 h0f2 Cτ

(85,6,45) x85,6 τh2
1h4Q3 h1 x6,68 + h3

0c3

(85,13,44) 
2x Cτ , h2
1 x13,46

(85,14,48) Mg2 Cτ

(85,16,46) 
2e0g 
2h2
1e2

0 + τ 2d0m2 tmf x16,42 + h3
0x13,46

(85,26,44) MP5

(86,11,47) τ gG0 h2(
e1 + C0)g Cτ

(86,12,45) 
2e1 d0 x12,48

(86,12,46) 
h1B7

(86,14,44) 
3h2
3 
2h3

0x Cτ , h1 P3h2
5+?gB5

(86,14,47) τB5g τMh2
0g2 Lemma 5.6

(86,25,44) 
2P3h0d0 MP5h0 Cτ x25,24+?P2d2
0 v

(86,31,45) P5
c0d0 τP5h0d2
0 e0 h0

(86,40,44) P9d0

(87,7,45) x87,7 x7,74

(87,9,48) gQ3 Cτ

(87,10,46) 
h1H1 
h1B7 Cτ x10,60

(87,13,49) gC′′ Cτ

(87,15,47) 
2c1g Cτ

(87,15,47) M
h1e0 M
h3
1d0 Cτ x15,47+?h2x14,46

(87,17,45) 
3h1d0 τ 5e3
0m tmf x17,50

(87,17,52) h3g4 h0h2
2g4 Cτ

(87,20,46) P
2d0e0 P
2h2
1d2

0 + Cτ , tmf

+τ 2
h2
2d4

0

(87,33,45) P6
h1d0 Cτ
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(s, f ,w) Element d2 Proof Other names

(87,39,36) P8i P9h0d0 Cτ

(88,10,48) x88,10

(88,12,46) 
2f1 x12,51+?gG21+
+?Ph3

0h6e0

(88,12,48) 
g2g

(88,16,47) τ
2g2 τ 3
h2
2e0g2 tmf, h0 x16,48

(88,26,46) P3
2h2
1d0 MP5h2

1 Cτ

(88,43,45) P10c0

(89,11,46) 
2c2 
2h0f1 Cτ x11,59

(89,12,50) h2gG0 h1gC′′ Cτ

(89,15,50) h2B5g Cτ

(89,18,46) 
3h2
0e0 τ 6e4

0g Cτ , tmf x18,50

(89,19,51) 
c0e0g2 
h2
1c0e2

0g + τh0e4
0g Cτ , h0

+Mh4
1c0d0e0

(89,25,46) P3
2h0e0 MP5h2 Cτ

(89,31,47) P5
c0e0 P5
h2
1c0d0+ Cτ

+τP4h0d4
0

(89,40,46) P9e0 P9h2
1d0 Cτ

(89,45,45) P11h1

(90,10,48) x90,10 x10,63

(90,12,48) M2 x12,55

(90,15,49) M
h1g Cτ rB4

(90,17,47) 
3h1e0 
3h3
1d0 + τ 5e2

0gm Cτ , tmf x17,52

(90,33,47) P6
h1e0 P6
h3
1d0 Cτ

(90,39,46) P8j P9h0e0 Cτ

(91,8,48) x91,8 x90,10 Cτ x8,75

(91,11,48) x91,11 M2h0 Cτ x11,61+?h2
0h6d2

0

(91,17,49) M
c0d0 τMh0d2
0 e0 Cτ , h0

(91,17,50) 
2h2g2

(91,17,52) 
h3g3 h0gm2 Cτ

(91,17,53) g3n

(91,45,46) P11h2

(92,4,48) g3 Cτ

(92,10,48) x92,10 Cτ x10,65+?h2
0h6k

(92,10,51) 
1h2
1e1 Cτ

(92,12,48) 
2g2 Cτ x12,58+?h2
0x10,65

(92,16,54) d1g3

(92,18,48) 
3h2
2d0 τ 6d0e0g3 Cτ , tmf x18,55

(92,24,48) P2
2d2
0 τ 2d3

0 ij Cτ , tmf

(93,8,49) x93,8 Cτ x8,78 + h0h6r

(93,9,51) 
1h2e1

(93,10,49) 
h3H1 h1x91,11 Cτ x10,67 + h4
0h6r

(93,12,50) 

1e0 M2h2
1 Cτ x12,60+?Ph6c0d0

(93,15,54) g2i1 Cτ

(93,17,48) τ
3h1g τ 6e2
0gm tmf, h1 x17,57

(94,8,49) x94,8 [17] x8,80

(94,9,50) x94,9 Cτ

(94,10,50) y94,10 Cτ x10,70+?h2
0x8,80

(94,10,51) x94,10

(94,15,49) M
2h1 x15,56
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TABLE 4. — (Continued )

(s, f ,w) Element d2 Proof Other names

(94,16,49) 
3h2c1 d0 x16,54

(94,17,51) M
c0e0 M
h2
1c0d0+ Cτ , h0

+τMh0d0e2
0

(94,19,49) 
3c0d0 τ
2h0d2
0 e0 h0

(94,19,50) 
2d0l 
2h0d2
0 e0+ Cτ , tmf x19,49

+τ 3
h1e4
0

(94,22,48) 
2i2 τ 6d3
0 e3

0 tmf x22,39

(94,35,49) P6
c0d0 τP6h0d2
0 e0 Cτ

(94,44,48) P10d0

(95,7,50) x95,7 x94,9 Cτ , [4] x7,79

(95,8,51) x95,8 x94,10 Cτ

(95,10,50) 
x71,6 τ
d1e1 Cτ , h3 x10,73+?h2
0h6l

(95,11,51) x95,11 Cτ

(95,15,54) g2B6

(95,16,52) M
h2
2g Cτ

(95,17,52) 
2h3g2 P2h7
1h6c0 Cτ

(95,18,50) 
3h2
2e0 τ 6e2

0g3 Cτ , tmf x18,57

(95,19,56) g3m h0e2
0g3 Cτ

(95,21,48) 
3h2
0i 
2h0i2 + τ 6d3

0 e0m Cτ , tmf x21,43+?Px17,50

(95,21,49) P
3h1d0 τ 5d3
0 e0m tmf

(95,24,50) P2
2d0e0 P2
2h2
1d2

0 + τ 2d3
0 ik Cτ , tmf

(95,37,49) P7
h1d0 Cτ

TABLE 5. — Some C-motivic permanent cycles

(s, f ,w) Element Proof

(36,6,20) t 〈τ, η2κ1, η〉
(64,2,33) h1h6 〈η,2, θ5〉
(68,7,36) h3A′ 〈σ, κ, τηθ4.5〉
(69,3,36) h2

2h6 〈ν2,2, θ5〉
(69,4,36) p′ σθ5

(70,5,36) h3
0h3h6 〈8σ,2, θ5〉

(70,14,37) τ
2h2
1g + τ 3
h2

2g2 〈η, τκ2, τκ2〉
(71,4,37) h6c0 〈ε,2, θ5〉
(71,5,37) τh1p1 Lemma 5.71
(72,6,37) Ph1h6 〈μ9,2, θ5〉
(74,7,38) Ph0h2h6 Lemma 5.72
(74,8,40) x74,8 θ4κ2

(77,3,40) h2
3h6 〈σ 2,2, θ5〉

(77,5,40) h6d0 〈κ,2, θ5〉
(79,3,41) h1h4h6 〈η4,2, θ5〉
(79,8,41) Ph6c0 ρ15η6

(80,6,42) τh1x1 〈2, η, τη{h1x76,6}〉
(80,10,41) P2h1h6 〈μ17,2, θ5〉
(80,12,42) 
2d1 Lemma 5.17
(82,4,43) h6c1 〈σ,2, θ5〉
(83,6,44) h0h6g 〈κη6, η, ν〉
(84,4,44) h2

2h4h6 〈νν4,2, θ5〉
(85,9,44) Ph6d0 〈τη2κ,2, θ5〉
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TABLE 5. — (Continued )

(s, f ,w) Element Proof

(86,5,45) h4h6c0 σ {h1h4h6}
(87,5,46) h2

1c3 〈τ {h0Q3 + h0n1}, ν4, η〉
(87,8,47) h1h4x71,6 〈{h1x71,6},2, σ 2〉
(87,12,45) P2h6c0 ρ23η6

(88,10,48) x88,10 Lemma 5.79
(88,14,45) P3h1h6 〈μ25,2, θ5〉
(90,12,48) M2 Lemma 5.31
(91,7,49) h1h3h6g 〈{h1h3g},2, θ5〉
(92,5,48) h0g3 Lemma 5.83
(93,10,50) h2

1x91,8 〈κ1, κ, τηθ4.5〉
(94,6,49) h6n 〈{n},2, θ5〉
(95,5,50) h6d1 〈κ1,2, θ5〉
(95,7,49) 
h1h3h6 〈{
h1h3},2, θ5〉
(95,16,49) P3h6c0 Lemma 5.35

TABLE 6. — C-motivic Adams d3 differentials

(s, f ,w) Element d3 Proof

(15,2,8) h0h4 h0d0 Cτ

(30,6,16) 
h2
2 τh1d2

0 tmf

(31,4,16) h3
0h5 h0 · 
h2

2 Cτ

(31,8,17) τd0e0 Pc0d0 d4(τ
2d0e0 + h7

0h5)

(34,2,18) h2h5 τh1d1 Lemma 5.10
(37,8,21) τ e0g c0d2

0 d4(τ
2e0g)

(38,4,21) e1 h1t Cτ

(39,12,21) τPd0e0 P2c0d0 h1

(40,4,22) f1 0 h2

(46,14,24) i2 τP2h1d2
0 tmf

(47,16,25) τP2d0e0 P3c0d0 h1

(47,18,24) h5
0Q′ P4h0d0 Cτ

(49,6,27) h1h5e0 Mh3
1 Cτ

(49,11,26) τ 2d0m P
h2
1d0 mmf

(50,10,28) 
h2
2g τh1d0e2

0 τ

(54,8,28) h5i MPh0 Cτ

(54,6,28) τ 2
1h2
1 τMc0 Lemma 5.11

(55,11,30) τ 2gm 
h2
1d2

0 d4(τ
3gm)

(55,20,29) τP3d0e0 P4c0d0 h1

(55,7,30) B6 τh2gn Cτ

(56,8,31) h5c0e0 Mh2
1c0 Cτ

(56,9,30) Ph5e0 MPh2
1 Cτ

(56,10,32) gt 0 τ

(56,13,30) τ
h1d0e0 P
h1c0d0 d4(τ
2
h1d0e0)

(57,12,33) τ e0g2 c0d0e2
0 Cτ

(57,8,30) h5j MPh2 Cτ

(57,15,30) τ 2Pd0m P2
h2
1d0 mmf

(57,7,30) Q2 τ 2gt τ
h1g

(58,8,33) e1g h1gt Cτ

(60,12,35) τ g3 Mh6
1c0 Cτ

(61,4,32) D3 Mh4 Cτ
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TABLE 6. — (Continued )

(s, f ,w) Element d3 Proof

(62,13,34) τ
h1e0g 
h1c0d2
0 Cτ

(62,8,33) 
e1 
h2
2n Cτ

(62,8,33) C0 
h2
2n Cτ

(62,10,33) h1 · 
x + τMe0 MPc0 Cτ

(62,10,32) τh1 · 
x 0 
h2
2

(62,10,32) 
2h2
3 0 
h2

2

(62,22,32) P2i2 τP4h1d2
0 tmf

(63,8,32) h7
0h6 
2h0h2

3 Cτ , [17]
(63,24,33) τP4d0e0 P5c0d0 h1

(64,17,34) τP
h1d0e0 P2
h1c0d0 d4(τ
2P
h1d0e0)

(65,13,36) 
h2
2m MPh3

1c0 Cτ

(65,19,34) τ 2P2d0m P3
h2
1d0 mmf

(67,5,35) τQ3 + τn1 0 h2

(67,9,37) C′′ nm Cτ

(67,9,36) X3 0 τ g

(68,4,36) d2 h2
0Q3 Cτ

(68,11,35) τh3
0 · 
g2 τ 3
h2

2e0g Lemma 5.12
(68,11,38) Mh2g 0 τ

(69,8,36) τD′
3 τ 2Mh2g Lemma 5.13

(69,11,38) h2B5 Mh1c0d0 Cτ

(69,13,36) τ
2h1g τ 4e4
0 tmf

(70,2,36) h3h6 h0p′ Cτ

(70,4,37) p1 τh2
1Q3 Cτ

(70,14,37) τMPe0 MP2c0 d4(τ
2MPe0)

(70,14,40) m2 τh1e4
0 τ

(71,28,37) τP5d0e0 P6c0d0 h1

(72,21,39) τP2
h1d0e0 P3
h1c0d0 d4(τ
2P2
h1d0e0)

(73,23,38) τ 2P3d0m P4
h2
1d0 mmf

(74,6,38) Ph2h6 τh1h4Q2 Lemma 5.10
(75,7,40) x75,7 h2

0x74,8 Cτ

(75,11,42) gB6 τh2g2n h2

(75,15,42) τ 2g2m 
h2
1d0e2

0 d4(τ
3g2m)

(76,5,40) h4D3 d0D3 Cτ

(76,14,41) 
2h1h3g 0 h1

(76,14,44) g2t 0 τ

(77,14,40) τ 2Mh0l 
2h0d2
0 Lemma 5.14

(77,16,45) τ e0g3 c0e4
0 d4(τ

2e0g3)

(77,17,41) 
2h1d2
0 τ 3d3

0 e2
0 tmf

(78,3,40) h0h4h6 h0h6d0 Cτ

(78,12,45) e1g2 h1g2t Cτ

(78,13,40) h3
0x78,10 τ 6e0g3 Lemma 5.15

(78,18,41) τMP2e0 MP3c0 h1

(78,30,40) P4i2 τP6h1d2
0 tmf

(79,5,42) x1 τh1m1 Lemma 5.16
(79,32,41) τP6d0e0 P7c0d0 h1

(79,34,40) P4h5
0Q′ P8h0d0 Cτ

(80,14,41) 
3h1h3 τ 4
h1e2
0g Lemma 5.18, [17]

(80,14,42) τ 2d0B5 
2h0d0e0 + τ 3
h1e2
0g Lemma 5.20, [17]

(80,25,42) τP3
h1d0e0 P4
h1c0d0 d4(τ
2P3
h1d0e0)

(81,3,42) h2h4h6 0 Lemma 5.22
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TABLE 6. — (Continued )

(s, f ,w) Element d3 Proof

(81,12,42) 
2p 0 Lemma 5.23
(81,27,42) τ 2P4d0m P5
h2

1d0 mmf

(82,6,44) h4Q3 h3x74,8 Cτ

(82,10,42) P2h2h6 0 Lemma 5.22
(82,12,45) gC0 
h2

2gn Cτ

(82,14,45) τMe0g Mc0d2
0 h1

(82,17,46) τ
h1e0g2 
h1c0d0e2
0 d4(τ

2
h1e0g2)

(83,5,43) τh6g + τh2e2 0 Lemma 5.24
(83,17,45) 
2h1e2

0 τ 3d0e4
0 τ

(84,4,44) f2 τh1h4Q3 Lemma 5.25
(84,19,45) 
2c0d2

0 τ
h2
0d3

0 e0 mmf

(85,6,45) τx85,6 + h3
0c3 0 Lemma 5.26

(85,21,45) P
2h1d2
0 τ 3d6

0 tmf

(86,4,45) h1c3 0 h0

(86,11,45) τ 3gG0 0 d0

(86,12,45) 
2e1 
2h1t Cτ

(86,17,46) τ
2h1e0g 
2h1c0d2
0 + τ 4e5

0 mmf

(86,22,45) τMP3e0 MP4c0 h1

(87,7,45) x87,7 0 d0

(87,13,49) gC′′ gnm Cτ

(87,36,45) τP7d0e0 P8c0d0 h1

(88,12,46) 
2f1 0 h2

(88,18,46) τ 2Mh0d0k P
2h0d0e0 + τ 3
h1d2
0 e2

0 Lemma 5.28
(88,18,46) 
3h2

1d0 τ 3
h1d2
0 e2

0 mmf, [17]
(88,29,46) τP4
h1d0e0 P5
h1c0d0 d4(τ

2P4
h1d0e0)

(89,14,51) h9
1h6e0 Mh3

1g2 Cτ

(89,15,50) h2B5g Mh1c0e2
0 Lemma 5.30

(89,17,48) τ
2h1g2 τ 4e4
0g τ

(89,31,46) τ 2P5d0m P6
h2
1d0 mmf

(90,18,52) gm2 τh1e4
0g τ

(90,19,49) 
2c0e2
0 τ
h2

2d3
0 e0 mmf

(92,10,48) x92,10 0 d0

(92,14,50) mQ2 τ 3g3n Cτ , τ

(92,23,49) P
2c0d2
0 τP2
h2

2d2
0 e0 mmf

(93,7,48) 
h2
2h6 τh1h6d2

0 Lemma 5.32
(93,8,49) x93,8 
h2

2H1 Cτ

(93,13,48) P2h6d0 0 Lemma 5.33
(93,22,48) τ 2MPh0d0j P2
2h0d2

0 + τ 3P
h1d3
0 e0 Lemma 5.34

(93,25,49) P2
2h1d2
0 τ 3Pd6

0 tmf

(94,8,49) x94,8 h1x92,10 Cτ

(94,9,49) τh6d0e0 Ph6c0d0 h1

(94,15,49) M
2h1 τ 3Md0e2
0 Pd2

0

(94,15,52) Ph6
1h6e0 M
h4

1g Cτ

(94,17,50) τ 2Md0m MP
h2
1d0 d0

(94,21,50) τ
2h1d2
0 e0 P
2h1c0d2

0 + τ 4d3
0 e3

0 mmf

(94,26,49) τMP4e0+ MP5c0 h1

+τP2
2h2
1d2

0

(94,38,48) P6i2 τP8h1d2
0 tmf

(95,15,54) g2B6 τh2g3n Cτ

(95,16,52) M
h2
2g τMh1d0e2

0 τ
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TABLE 6. — (Continued )

(s, f ,w) Element d3 Proof

(95,19,54) τ 2g3m 
h2
1e4

0 + Mh4
1d2

0 e0 mmf

(95,20,50) 
3h1c0d0 τ 4d3
0 e0m mmf

(95,36,48) h15
0 · 
3h2

0i P6h0i2 Cτ

(95,40,49) τP8d0e0 P9c0d0 h1

TABLE 7. — C-motivic Adams d4 differentials

(s, f ,w) Element d4 Proof

(31,8,16) τ 2d0e0 + h7
0h5 P2d0 Cτ

(37,8,20) τ 2e0g Pd2
0 tmf

(38,2,20) h3h5 h0x Cτ

(39,12,20) τ 2Pd0e0 P3d0 tmf

(42,6,22) Ph2h5 0 d0

(47,16,24) τ 2P2d0e0 P4d0 tmf

(50,6,27) C Ph2
1h5c0 Cτ

(50,10,26) τ 2
h2
2g ij tmf

(55,11,29) τ 3gm P
c0d0 + τd2
0 j tmf

(55,20,28) τ 2P3d0e0 P5d0 tmf

(56,13,29) τ 2
h1d0e0 P2
h1d0 tmf

(57,12,32) τ 2e0g2 d4
0 d0

(58,14,30) τ 2
h2
2d2

0 Pij tmf

(62,10,32) τh1 · 
x τ 2
h2
2d0e0 Lemma 5.38

(62,10,32) 
2h2
3 0 Lemma 5.39

(62,13,33) τ 2
h1e0g P
h1d2
0 tmf

(63,7,34) C′ Mh2d0 Cτ

(63,7,33) τX2 τMh2d0 Lemma 5.40
(63,11,33) τ 2Mh1e0 MP2h1 d0

(63,15,33) τ 3d2
0 m P2
c0d0 + τPd2

0 j tmf

(63,19,32) h18
0 h6 P2h0i2 Cτ

(64,17,33) τ 2
h2
2d0g P3
h1d0 tmf

(66,18,34) τ 2P
h2
2d2

0 P2ij tmf

(68,5,36) h0d2 X3 Lemma 5.41
(68,11,38) Mh2g 0 Lemma 5.42
(69,11,37) τh2B5 MPh1d0 d0

(70,10,39) h2C′′ h4
1c0Q2 Cτ

(70,14,38) τ 2
h2
2g2 
h2

0d2
0 e0 τ

(70,14,36) τ 2MPe0 MP3 d0

(71,19,37) τ 3Pd2
0 m P3
c0d0 + τP2d2

0 j tmf

(71,28,36) τ 2P5d0e0 P7d0 tmf

(72,9,40) h2
2G0 τ g2n Lemma 5.43

(72,21,37) τ 2P2
h1d0e0 P4
h1d0 tmf

(74,22,38) τ 2P2
h2
2d2

0 P3ij tmf

(75,5,40) h3d2 h0x74,8 Cτ

(75,11,40) 
h2
0h3g2 τMh1d2

0 Lemma 5.44
(75,15,41) τ 3g2m 
c0d3

0 + τd3
0 l tmf

(76,14,40) τ 2Md0e0 MP2d0 h1

(76,14,41) 
2h1h3g τ
h2
2d2

0 e0 Lemma 5.45
(77,16,44) τ 2e0g3 d3

0 e2
0 τ
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TABLE 7. — (Continued )

(s, f ,w) Element d4 Proof

(78,5,40) h3
0h4h6 h2

0x77,7 Cτ

(79,23,41) τ 3P2d2
0 m P4
c0d0 + τP3d2

0 j tmf

(79,32,40) τ 2P6d0e0 P8d0 tmf

(80,5,42) h0e2 τh3
1x76,6 Lemma 5.46

(80,25,41) τ 2P3
h1d0e0 P5
h1d0 tmf

(81,8,43) τ gD3 0 h1

(81,15,42) 
3h2
1h3 τ 4d0e2

0 l Lemma 5.47
(82,14,44) τ 2Me0g MPd2

0 h1

(82,17,45) τ 2
h1e0g2 
h1d4
0 τ

(82,26,42) τ 2P3
h2
2d2

0 P4ij tmf

(83,11,46) gC′ Mh0e0g Cτ

(83,11,45) 
j1 τMh0e0g Lemma 5.48
(85,5,45) h1f2 0 Lemma 5.49
(85,6,44) τx85,6 + h3

0c3 0 Lemma 5.50
(86,4,45) h1c3 τh0h2h4Q3 Lemma 5.51
(86,10,44) h2

0h6i 0 d0, Cτ

(86,22,44) τ 2MP3e0 MP5 h1

(87,7,45) x87,7 0 Lemma 5.52
(87,10,45) τ
h1H1 0 Lemma 5.53
(87,15,47) 
2c1g 0 τ

(87,27,45) τ 3P3d2
0 m P5
c0d0 + τP4d2

0 j tmf

(87,36,44) τ 2P7d0e0 P9d0 tmf

(88,17,48) 
2h0g2 τ
h1d2
0 e2

0 mmf

(88,29,45) τ 2P4
h1d0e0 P6
h1d0 tmf

(89,15,49) τh2B5g Mh1d3
0 Lemma 5.54

(90,14,51) h2gC′′ Ph10
1 h6c0 Cτ

(90,18,50) τ 2gm2 
h2
2d3

0 e0 mmf

(90,30,46) τ 2
P4h2
2d2

0 P5ij tmf

(91,12,48) 
h2
2A′ 0 Lemma 5.55

(91,20,50) 
2h1c0e2
0 τ 2d4

0 e2
0 mmf

(92,13,52) h2
2gG0 τ g3n τ

(93,3,48) h2
4h6 h3

0g3 Lemma 5.56
(95,16,50) M
2h2

1 MP
h2
0e0 Lemma 5.57

(95,16,50) τ 2M
h2
2g MP
h2

0e0 d0

(95,19,53) τ 3g3m 
c0d2
0 e2

0 + τd3
0 e0m τ

(95,31,49) τ 3P4d2
0 m P6
c0d0 + τP5d2

0 j tmf

(95,40,48) P6
h5
0i + τ 2P8d0e0 P10d0 tmf

TABLE 8. — C-motivic Adams d5 differentials

(s, f ,w) Element d5 Proof

(56,9,29) τPh5e0 τ
h2
0d0e0 [30, Lemma 3.92]

(61,6,32) A′ τMh1d0 [60, Theorem 12.1]
(63,11,33) τh2

1 · 
x τ 3d2
0 e2

0 Lemma 5.59
(63,23,32) h22

0 h6 P6d0 Cτ

(67,6,36) h0Q3 + h2
2D3 0 Cτ , τ

(68,12,36) h5d0i τ
h1d3
0 Lemma 5.60

(70,4,36) τp1 + h2
0h3h6 τ 2h2

2C′ Lemma 5.61, [16]
(72,7,39) h1x71,6 0 Lemma 5.62
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TABLE 8. — (Continued )

(s, f ,w) Element d5 Proof

(73,7,38) h4D2 τ 4d1g2 Lemma 5.63
(81,10,44) gA′ τMh1e2

0 τ

(85,6,45) x85,6 0 h2

(86,10,44) h2
0h6i 
2h2

0x Cτ

(86,11,45) τ 3gG0 τM
h2
1d0 Lemma 5.64

(92,4,48) g3 h6d2
0 Lemma 5.65

(92,12,48) 
2g2 0 Lemma 5.66, [17]
(93,8,48) h0 · 
h2

2h6 
2h0g2 Cτ

(93,13,50) e0x76,9 M
h1c0d0 Lemma 5.67

TABLE 9. — C-motivic higher Adams differentials

(s, f ,w) Element r dr Proof

(67,5,35) τQ3 + τn1 6 0 Lemma 5.69
(68,7,37) h2

2H1 6 Mc0d0 Lemma 5.70
(68,7,36) τh2

2H1 7 MPd0 Lemma 5.70
(77,7,42) m1 7 0 Lemma 5.73
(80,6,43) h1x1 8 0 Lemma 5.74
(81,3,42) h2h4h6 6 0 Lemma 5.75
(83,5,43) τh6g + τh2e2 9 0 [16]
(85,5,45) h1f2 10 ?M
h1d0

(85,6,44) τx85,6 + h3
0c3 9 ?τM
h1d0

(86,6,46) h2h6g + h2
1f2 10 0 Lemma 5.76

(87,7,45) x87,7 7 0 Lemma 5.77
(87,9,48) gQ3 6 0 Lemma 5.69
(87,10,45) τ
h1H1 6 τM
h2

0e0 Lemma 5.78
(88,11,49) h2

2gH1 6 Mc0e2
0 Lemma 5.80

(88,11,48) τh2
2gH1 7 0 Lemma 5.80

(88,12,46) 
2f1 6 τ 2Md3
0 Remark 5.82

(88,12,48) 
g2g 6 Md3
0 Lemma 5.81

(91,6,48) h2
4D3 9 ?τM
h1g

(92,10,51) 
1h2
1e1 6 0 Lemma 5.84

(92,10,48) x92,10 7 ?τM
c0d0 + τ 2Md0l Lemma 5.85
(93,9,51) 
1h2e1 8 0 Lemma 5.86
(93,13,49) τ e0x76,9 6 MP
h1d0 Lemma 5.87, [16]

TABLE 10. — Some Toda brackets

(s,w) Bracket Contains Indeterminacy Proof Used in

(2,1) 〈2, η,2〉 τh2
1 0 〈h0, h1, h0〉 6.26, 7.19, 7.20, 7.26, 7.37

7.38, 7.40, 7.50, 7.81
(3,2) 〈η,2, η〉 h0h2 τh3

1 〈h1, h0, h1〉 7.43
(6,4) 〈η, ν, η〉 h2

2 0 〈h1, h2, h1〉 7.89, 7.95
(8,5) 〈ν, η, ν〉 h1h3 0 〈h2, h1, h2〉 7.113
(8,5) 〈η, ν,2ν〉 c0 h1h3 〈h1, h2, h0h2〉 7.76, 7.151
(8,5) 〈η2, ν, η,2〉 c0 0 〈h2

1, h2, h1, h0〉 6.5
(9,5) 〈2, ε,2〉 τh1c0 0 Corollary 6.2 7.27
(9,5) 〈η,2,8σ 〉 Ph1 τh2

1h3, τh1c0 〈h1, h0, h3
0h3〉 7.30, 7.68

(10,5) 〈2,μ9,2〉 τPh2
1 0 Corollary 6.2 7.30
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TABLE 10. — (Continued )

(s,w) Bracket Contains Indeterminacy Proof Used in

(11,6) 〈2, η, τηε〉 Ph2 Ph0h2, τPh3
1 〈h0, h1, τh1c0〉 7.74

(15,8) 〈8,2σ,σ 〉 h3
0h4 h6

0h4, h7
0h4 d2(h4) = h0h2

3 7.147
(15,8) 〈2, κ,2〉 τh1d0 h4

0h4, h5
0h4 Corollary 6.2 7.36, 7.153

h6
0h4, h7

0h4

(16,9) 〈η,σ 2,2〉 h1h4 Pc0 d2(h4) = h0h2
3 6.22

(16,9) 〈η,2, σ 2〉 h1h4 Pc0 d2(h4) = h0h2
3 6.6

(17,9) 〈2, η4,2〉 τh2
1h4 0 Corollary 6.2 7.38

(17,10) 〈2, η, ηκ〉 h2d0 0 d2(e0) = h2
1d0 7.80

(18,10) 〈ν,σ,2σ 〉 h2h4 0 d2(h4) = h0h2
3 5.51

(20,11) 〈κ,2, η, ν〉 τ g τh2
0g Lemma 6.5 7.105

(20,12) 〈ν, η, ηκ〉 h0g h2
0g d2(e0) = h2

1d0 7.103
(21,12) 〈ν,2ν, κ〉 τh1g h2

2h4 d2(f 0) = h2
0e0 7.145

(23,12) 〈σ,16,2ρ15〉 h2
0i + τPh1d0 τh4c0 〈h3, h4

0, h4
0h4〉 6.19

(30,16) 〈σ 2,2, σ 2,2〉 h2
4 0 d2(h4) = h0h2

3 7.35
(32,17) 〈η,2, θ4〉 h1h5 0 d2(h5) = h0h2

4 6.17
(32,18) 〈η,σ 2, η, σ 2〉 d1 0 〈h1, h2

3, h1, h2
3〉 7.77

(33,18) 〈ηθ4, η,2〉 p 0 〈h1h2
4, h1, h0〉 7.21

(36,20) 〈τ, η2κ1, η〉 t Ph4
1 Lemma 6.9 Table 5

(36,20) 〈ν, η, ηθ4〉 t 0 [10, Corollary 4.3] 7.21
(39,21) 〈η5, ν,2ν〉 h5c0 h1h3h5 〈h1h5, h2, h0h2〉 = 7.145

= h5〈h1, h2, h0h2〉
(39,21) 〈ε,2, θ4〉 h5c0 0 d2(h5) = h0h2

4 7.145
(45,24) 〈θ4,2, σ 2 + κ〉 0 or τh1g2 h2

0h5d0 Lemma 6.10
(45,24) 〈2, θ4, κ〉 h5d0 h0h2

3h5, h0h5d0 d2(h5) = h0h2
4 7.145, 7.146

h2
0h5d0

(57,30) 〈τ, τηκκ2, η〉 h0h2h5i P6h1c0 d5(τPh5e0) = τ
h2
0d0e0 5.45

(62,32) 〈2, θ4, θ4,2〉 h2
5 h5n d2(h5) = h0h2

4 5.83, 7.153
(62,33) 〈η,ηκ, τθ4.5〉 
e1 + C0 0 Remark 7.104 7.103
(63,33) 〈τηθ4.5, κ,2, η〉 τh1H1 Remark 7.106 7.105
(64,33) 〈η,2, θ5〉 h1h6 τh2

1h2
5, τ

2h1X2 d2(h6) = h0h2
5 5.65, 7.20, 7.26, 7.40, 7.50, 7.63

τh3Q2,P7c0 7.74, 7.80, 7.107, 7.148, Table 5
(64,34) 〈ν, η, τκθ4.5〉 h2A′ 0 d5(A′) = τMh1d0 7.109, 7.128
(66,36) 〈η2, θ4, η

2, θ4〉 
1h2
3 Lemma 6.18 7.21

(68,36) 〈σ, κ, τηθ4.5〉 h3A′ 0 d5(A′) = τMh1d0 7.23, 7.110, Table 5
(69,36) 〈ν2,2, θ5〉 h2

2h6 d2(h6) = h0h2
5 7.151, Table 5

(70,36) 〈8σ,2, θ5〉 h3
0h3h6 τh1p′ d2(h6) = h0h2

5 7.30, 7.68, 7.147, Table 5
(70,37) 〈η, ν, τθ4.5κ〉 τh1D′

3 Lemma 6.20 7.25, 7.113
(70,37) 〈η, τκ2, τκ2〉 τ
2h2

1g+ d3(
h2
2) = τh1d2

0 Table 5
+τ 3
h2

2g2 d3(τ
2h1g) = τ 4e4
0

(71,37) 〈ε,2, θ5〉 h6c0 d2(h6) = h0h2
5 7.26, 7.27, 7.114, Table 5

(71,37) 〈η, ν, [τ 2h2C′]〉 τh1p1 Lemma 6.21 7.28
(71,39) 〈ν, ε, κθ4.5〉 h3

2H1 τMh2
2g d6(h

2
2H1) = Mc0d0 7.73

(72,37) 〈μ9,2, θ5〉 Ph1h6 d2(h6) = h0h2
5 7.30, Table 5

(72,38) 〈τκθ4.5,2ν, ν〉 h0d0D2 h2
1h3h6 d2(P(A+A′)) = τ 2Mh0h2g 7.76

(72,38) 〈σ 2,2, {t}, τκ〉 h4Q2 + h2
3D2 Lemma 6.22 7.31

(75,42) 〈τηκκ2, η, η2η4〉 
h2
2d2

0 e0 0 〈
h2
0d0e0, h1, h3

1h4〉 5.45
(77,40) 〈σ 2,2, θ5〉 h2

3h6 d2(h6) = h0h2
5 7.120, Table 5

d2(h4) = h0h2
3

(77,40) 〈κ,2, θ5〉 h6d0 Lemma 6.24 7.36, Table 5
(79,41) 〈η4,2, θ5〉 h1h4h6 d2(h6) = h0h2

5 7.38, 7.123, Table 5
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TABLE 10. — (Continued )

(s,w) Bracket Contains Indeterminacy Proof Used in

(79,42) 〈{τm1}, η,2〉 0 or τ 2Me2
0 h0h2x76,6 Lemma 6.25 [16]

(79,42) 〈{h1x76,6},2, η〉 h0h2x76,6 〈h1x76,6, h0, h1〉 = 7.38
= x76,6〈h1, h0, h1〉

(80,41) 〈μ17,2, θ5〉 P2h1h6 d2(h6) = h0h2
5 Table 5

(80,42) 〈2, η, τη{h1x76,6}〉 τh1x1 Lemma 6.26 Table 5
(82,43) 〈σ,2, θ5〉 h6c1 d2(h6) = h0h2

5 7.88, Table 5
(82,45) 〈{
e1 + C0}, η3, η4〉 (
e1 + C0)g h3

1x1 〈
e1 + C0, h3
1, h1h4〉 7.127

(83,44) 〈η6κ,η, ν〉 h0h6g d2(h6e0) = h2
1h6d0 Table 5, 7.89

(83,44) 〈ν2θ5,2, σ 2〉 τh1h4Q3 d2(h4) = h0h2
3 5.25

(84,44) 〈νν4,2, θ5〉 h2
2h4h6 d2(h6) = h0h2

5 7.131, Table 5
(85,44) 〈τη2κ,2, θ5〉 Ph6d0 d2(h6) = h0h2

5 Table 5
(86,46) 〈τηκ2,2,4κ2〉 M
h2

0e0 Lemma 6.30 5.69
(87,46) 〈θ4, τκ, {t}〉 τ 2gQ3 0 d3(Q2) = τ 2gt 5.69
(87,46) 〈τ {h0Q3 + h0n1}, ν4, η〉 h2

1c3 Lemma 6.31 7.49, Table 5
(87,47) 〈{h1x71,6},2, σ 2〉 h1h4x71,6 d2(h4) = h0h2

3 Table 5
(88,45) 〈μ25,2, θ5〉 P3h1h6 d2(h6) = h0h2

5 Table 5
(89,49) 〈ν, η, {h2gA′}〉 
h1g2g τh2

2gC′ Remark 7.135 7.134
(91,49) 〈{h1h3g},2, θ5〉 h1h3h6g d2(h6) = h0h2

5 Table 5
(92,48) 〈θ4, θ4,2, θ4〉 h0g3 Lemma 5.83
(93,50) 〈κ1, κ, τηθ4.5〉 h2

1x91,8 d5(A′) = τMh1d0 Table 5
(94,49) 〈{n},2, θ5〉 h6n d2(h6) = h0h2

5 Table 5
(95,49) 〈{
h1h3},2, θ5〉 
h1h3h6 d2(h6) = h0h2

5 Table 5
(95,50) 〈κ1,2, θ5〉 h6d1 d2(h6) = h0h2

5 Table 5
(95,50) 〈η, τκ2, τθ4.5κ〉 M
2h2

1+ d3(
h2
2) = τh1d2

0 5.57
+τ 2M
h2

2g d3(M
2h1) = τ 3Md0e2
0

TABLE 11. — Some null Toda brackets

(s,w) Bracket Contains Indeterminacy Proof Used in

(16,9) 〈κ,2, η〉 0 Pc0 Lemma 6.4 6.5, 7.105
(23,13) 〈ε + ησ,σ,2σ 〉 0 Ph1d0 Lemma 6.6 5.51
(30,16) 〈τκ2, η,2〉 0 0 Lemma 6.7 5.65
(35,20) 〈η2, θ4, η

2〉 0 h4
1h5 Lemma 6.8 6.18

(46,25) 〈η,2,4κ2〉 0 h1h5d0, Mh1, 
h2c1, τd0l + 
c0d0 Lemma 6.12 5.69, 6.19
(59,31) 〈τκ2, σ

2,2〉 0 0 Lemma 6.13 7.35
(60,33) 〈ηκ2,2σ,σ 〉 0 0 Lemma 6.14
(60,32) 〈2, σ 2, {h2

3h5}〉 0 τ 2d2
0 l Lemma 6.15 5.13

(63,34) 〈θ4, η
2, θ4〉 0 0 Lemma 6.17 6.18, 7.21

(67,36) 〈τη2κ,8, κ2〉 0 Lemma 6.19 5.70
(81,43) 〈2, η, {h2x76,6}〉 0 0 Lemma 6.27 7.43
(84,45) 〈2, σ 2, {τh2

2C′}〉 0 0 Lemma 6.28 5.26
(84,45) 〈2, σ 2, {h3(
e1 + C0)}〉 0 0 Lemma 6.29 5.26

TABLE 12. — Hidden values of inclusion of the bottom cell into Cτ

(s, f ,w) Source Value Proof

(50,6,26) τC Ph2
1h5c0

(57,10,30) h0h2h5i 
2h2
1h3

(63,6,33) τh1H1 h1B7
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TABLE 12. — (Continued )

(s, f ,w) Source Value Proof

(63,7,33) τX2 + τC′ h5d0e0

(64,8,34) τh1X2 h1h5d0e0

(66,8,35) τh2C′ τB5

(70,7,37) τh1h3H1 h1h3B7

(70,8,37) τh1D′
3 h2

1X3

(70,10,38) h1h3(
e1 + C0) + τh2C′′ h4
1c0Q2 Lemma 7.6

(71,5,37) τh1p1 h2
0h2Q3

(74,6,39) h3(τQ3 + τn1) h4
1p′

(75,11,41) h3
1h4Q2 τh2g2n

(77,6,40) τh1h4D3 x77,7

(81,8,43) τ gD3 h4
1x76,6

(83,10,45) h2c1A′ h1gB7

(85,5,44) τh1f2 ?h3
0c3

(86,6,45) τh2
1f2 ?τh3

1h4Q3

?
2e1 + τ
h2e1g

(86,7,45) τh1x85,6 ?τh3
1h4Q3

?
2e1 + τ
h2e1g

(86,12,47) τh2gC′ τB5g

(88,11,48) τh2
2gH1 
g2g

(90,14,50) τh2gC′′ Ph10
1 h6c0

(90,19,49) τ 3gm2 
2c0e2
0

TABLE 13. — Hidden values of projection from Cτ to the top cell

(s, f ,w) Source Value Crossing source

(30,6,16) 
h2
2 h1d2

0

(34,2,18) h2h5 h1d1

(38,7,20) h0y τh0e0g

(41,4,22) h0c2 h1h3d1

(44,10,24) 
h2
2d0 h1d3

0

(50,10,28) 
h2
2g h1d0e2

0

(55,7,30) B6 h2gn

(56,10,29) 
2h1h3 
h2
0d0e0

(57,7,30) Q2 τ gt

(58,7,30) h0D2 
h1d1

(58,11,32) Ph2
1h5e0 τh2e2

0g

(59,8,33) h2
1D4 h2

2d1g

(61,6,32) A′ Mh1d0 h3
1Q2

(62,11,32) Ph5c0d0 τ
h2
2d0e0

(63,12,33) Ph1h5c0d0 τ 2d2
0 e2

0

(64,14,36) km h1d2
0 e2

0

(65,6,35) h2H1 d2
1

(65,8,34) h0h3D2 h2
1(
e1 + C0)

(66,3,34) h0h2h6 h3
1h2

5

(68,5,36) h0d2 h1 · 
1h2
3

(68,7,37) h2
2H1 h4

1X2 h1h3j1
(68,12,35) τMc0d0 τ 2
h2

2e0g

(68,12,36) h5d0i 
h1d3
0
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TABLE 13. — (Continued )

(s, f ,w) Source Value Crossing source

(69,9,36) h1X3 τMh2g

(69,10,36) P(A + A′) τMh0h2g

(69,13,36) τ
2h1g τ 3e4
0

(70,4,36) h2
0h3h6 τh2

2C′

(70,14,40) m2 h1e4
0

(72,9,40) h2
2G0 g2n

(72,10,38) d0D2 τMh2
2g

(73,7,38) h4D2 τ 3d1g2

(74,6,38) Ph2h6 h1h4Q2

(75,11,40) h2d0D2 Mh1d2
0

(75,11,42) gB6 h2g2n

(76,14,41) 
2h1h3g 
h2
2d2

0 e0

(77,11,41) τ gQ2 τ 2g2t

(78,7,42) h3x71,6 h1d1g2

(78,13,40) h3
0x78,10 τ 5e0g3

(80,5,42) h0e2 h3
1x76,6

(80,14,41) 
3h1h3 τ 3
h1e2
0g

(81,10,44) gA′ Mh1e2
0 Ph9

1h6

(81,15,42) 
3h2
1h3 τ 3d0e2

0 l

(82,16,44) 
2e2
0 τ
h2

2e3
0

(83,17,45) 
2h1e2
0 τ 2d0e4

0

(84,4,44) f2 h1h4Q3

(84,18,48) d0m2 h1d0e4
0

(85,5,45) h1f2 ?h2
1h4Q3

?
h1j1
(85,6,44) h3

0c3 ?M
h1d0

(85,6,45) x85,6 ?h2
1h4Q3

?
h1j1
(85,10,47) h2gH1 d2

1 g

(86,4,45) h1c3 h0h2h4Q3

(86,6,46) h2
1f2 ?h3

1h4Q3

?τMh0g2

(86,7,46) h1x85,6 ?h3
1h4Q3

?τMh0g2

(86,8,45) τh3
1h4Q3 ?M
h2

1d0 P2h6
1h6

(86,12,45) 
2e1 + τ
h2e1g ?M
h2
1d0 P2h6

1h6

(86,15,44) 
3h0h2
3 τ
2h0e0g

(87,11,45) 
h1B7 M
h2
0e0

(87,17,45) 
3h1d0 τ 4e3
0m

(88,11,49) h2
2gH1 Mh2

1g2

(88,16,47) τ
2g2 τ 2
h2
2e0g2

(88,17,48) 
2h0g2 
h1d2
0 e2

0

(89,12,46) 
2h0c2 
2h1h3d1

(89,17,48) τ
2h1g2 τ 3e4
0g

(90,18,52) gm2 h1e4
0g
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TABLE 14. — Hidden τ extensions

(s, f ,w) From To Proof

(22,7,13) c0d0 Pd0

(23,8,14) h1c0d0 Ph1d0

(28,6,17) h1h3g d2
0

(29,7,18) h2
1h3g h1d2

0

(40,9,23) τh0g2 
h2
1d0

(41,9,23) τ 2h1g2 
h2
0e0

(42,11,25) c0e2
0 d3

0

(43,12,26) h1c0e2
0 h1d3

0

(46,6,26) h2
1g2 
h2c1

(47,12,26) 
h1c0d0 P
h1d0

(48,10,29) h1h3g2 d0e2
0

(49,11,30) h2
1h3g2 h1d0e2

0

(52,10,29) 
h1h3g τ 2e0m

(53,9,29) Mc0 MP
(53,11,30) 
h2

1h3g 
h1d2
0

(54,8,31) h1i1 Mh1c0

(54,10,30) Mh1c0 MPh1

(54,11,32) h6
1h5e0 τ e2

0g

(55,12,33) h7
1h5e0 τh1e2

0g

(55,13,31) τ 2h1e2
0g 
h2

0d0e0

(59,7,33) j1 Md0

(59,12,33) Ph3
1h5e0 τ
h1d0g

(60,9,34) h3
1D4 Mh1d0

(60,13,34) τ 2h0g3 
c0d2
0 + τd2

0 l

(61,13,35) τ 2h1g3 
h2
2d0e0

(62,14,37) h6
1h5c0e0 d2

0 e2
0

(63,15,38) h2
0h2g3 h1d2

0 e2
0

(65,9,36) h2
1X2 τMg

(66,10,37) h3
1X2 τMh1g

(66,14,37) Ph2
1h5c0e0 τ 2d0e0m

(67,15,38) Ph3
1h5c0e0 
h1d3

0

(68,14,41) h1h3g3 e4
0

(69,15,42) h2
1h3g3 h1e4

0

(70,8,39) d1e1 h1h3(
e1 + C0) Lemma 7.6
(70,10,38) τh2C′′ + h1h3(
e1 + C0) 
2h2c1

(71,8,39) h3
2H1 h2

3Q2

(72,7,39) h1x71,6 h0d0D2

(72,14,41) 
h1h3g2 τ 2e0gm

(73,6,39) h2
1h6c0 h0h4D2

(73,11,40) τh2
2C′′ 
2h2

1h4c0

(73,12,41) Mh1h3g Md2
0

(73,15,42) 
h2
1h3g2 
h1d0e2

0

(74,13,42) Mh2
1h3g Mh1d2

0

(75,17,43) τ 2h1e2
0g2 
h2

2d2
0 e0

(77,15,42) 
2h3
2g τ 5e0g3

(78,8,43) h1m1 M
h2
1h3

(79,11,45) gj1 Me2
0

(80,12,46) h1gj1 Mh1e2
0

(80,17,47) τh0g4 
h2
1e2

0g

(80,18,46) 
h2
1e2

0g 
c0d0e2
0 + τd0e2

0 l

(81,17,47) τ 2h1g4 
h2
2e3

0
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TABLE 14. — (Continued )

(s, f ,w) From To Proof

(82,12,44) τ (
e1 + C0)g 
2h2n

(82,19,49) c0e2
0g2 d0e4

0
(83,20,50) h1c0e2

0g2 h1d0e4
0

(84,12,46) 
h1j1 ?M
h1d0

(85,8,45) h6c0d0 Ph6d0

(85,15,47) τMh0g2 ?M
h2
1d0

(86,9,46) h1h6c0d0 Ph1h6d0

(86,12,47) τh2gC′ 
2h2
2d1

(86,15,47) τ 2Mh1g2 M
h2
0e0

(87,20,50) 
h1c0e2
0g 
h1d2

0 e2
0

(88,18,53) h1h3g4 e4
0g + Mh6

1e0g

(89,13,49) τh2
2gC′ 
2h2

1h3d1

(89,19,54) h2
1h3g4 h1e4

0g + Mh7
1e0g

(90,14,50) τh2gC′′ 
2h2c1g

TABLE 15. — Hidden 2 extensions

(s, f ,w) Source Target Proof Notes

(23,6,13) τh0h2g Ph1d0 τ

(23,6,14) h0h2g h1c0d0 Cτ

(40,8,22) τ 2g2 
h2
1d0 τ

(43,10,25) τh0h2g2 h1d3
0 τ

(43,10,26) h0h2g2 h1c0e2
0 Cτ

(47,10,25) τ
h2
2e0 P
h1d0 τ

(47,10,26) 
h2
2e0 
h1c0d0 Cτ

(51,6,28) h0h3g2 τ gn [61]
(54,9,28) h0h5i τ 4e2

0g Lemma 7.18, [15]
(60,12,33) τ 3g3 
c0d2

0 + τd2
0 l τ

(63,6,33) τh1H1 τh1(
e1 + C0) Lemma 7.19
(63,14,37) τh0h2g3 h1d2

0 e2
0 τ

(64,2,33) h1h6 τh2
1h2

5 Lemma 7.20
(65,9,36) h2

1X2 Mh0g τ

(67,14,37) τ
h2
2e0g 
h1d3

0 τ

(70,7,37) τh1h3H1 τh1h3(
e1 + C0) Lemma 7.19
(71,4,37) h6c0 τh2

1p′ Lemma 7.27
(71,8,39) h3

2H1 τMh2
2g Lemma 7.29

(74,6,39) h3(τQ3 + τn1) τx74,8 Lemma 7.35 indet
(74,10,41) h3C′′ Mh1d2

0 Cτ

(74,14,40) 
2h2
2g τ 4e2

0g2 mmf
(77,6,41) τh1h4D3 h0x77,7 Cτ

(78,10,42) e0A′ M
h2
1h3 Lemma 7.37

(80,16,45) τ 3g4 
c0d0e2
0 + τd0e2

0 l τ

(80,16,46) τ 2g4 
h2
1e2

0g + Mh3
1d0e0 τ

(83,18,49) τh0h2g4 h1d0e4
0 τ

(83,18,50) h0h2g4 h1c0e2
0g2 Cτ

(85,14,46) τ 2Mg2 ?M
h2
1d0 τ

(86,7,45) τh0h2h6g Ph1h6d0 τ
(86,7,46) h0h2h6g h1h6c0d0 Cτ

(87,7,45) x87,7 τ 3gQ3 Remark 7.13
(87,9,48) gQ3 B6d1 Cτ

(87,18,49) τ
h2
2e0g2 
h1d2

0 e2
0 Cτ

(87,18,50) 
h2
2e0g2 
h1c0e2

0g+Mh3
1c0d0e0 Cτ

(90,10,50) h2gQ3 τd1e1g Cτ
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TABLE 16. — Some null hidden 2 extensions

(s, f ,w) Source Proof

(63,7,33) τX2 + τC′ Lemma 7.19
(66,6,36) 
1h2

3 Lemma 7.21
(67,6,36) h0Q3 + h2

2D3 Lemma 7.22
(68,7,36) h3A′ Lemma 7.23
(69,4,36) p′ Lemma 7.24
(70,9,37) τh1D′

3 Lemma 7.25
(71,3,37) h1h3h6 Lemma 7.26
(71,5,37) τh1p1 Lemma 7.28
(72,6,37) Ph1h6 Lemma 7.30
(72,8,38) h4Q2 + h2

3D2 Lemma 7.31
(73,7,40) h2

2Q3 Lemma 7.33
(73,8,38) h0h4D2 Lemma 7.34
(77,5,40) h6d0 Lemma 7.36
(79,3,41) h1h4h6 Lemma 7.38
(79,8,42) h0h2x76,6 Lemma 7.39
(79,8,41) Ph6c0 Lemma 7.40
(79,11,42) 
B6 Lemma 7.41
(82,6,44) h2

5g Lemma 7.42
(82,8,44) h2

2x76,6 Lemma 7.43
(83,7,44) h2

0h6g Lemma 7.44
(85,7,45) τh2h4Q3 Lemma 7.45
(85,8,45) h6c0d0 Lemma 7.46
(85,9,44) Ph6d0 Lemma 7.46
(86,5,45) h4h6c0 Lemma 7.47
(86,12,47) τh2gC′ Lemma 7.48
(87,5,46) h2

1c3 Lemma 7.49
(87,12,45) P2h6c0 Lemma 7.50
(90,12,48) M2 Lemma 7.51

TABLE 17. — Possible hidden 2 extensions

(s, f ,w) Source Target

(59,7,33) j1 ?τ 2c1g2

(72,7,39) h1x71,6 ?τ 3d1g2

(79,11,45) gj1 ?τ 2c1g3

(85,5,45) h1f2 ?τh2h4Q3

?τPh1x76,6

(85,5,44) τh1f2 ?τ 2h2h4Q3

?τ 2Ph1x76,6

?τ 4Mg2

(86,6,46) h2
1f2 ?
2h2

2d1

(86,6,45) τh2
1f2 ?τ
2h2

2d1

(86,7,45) τh1x85,6 ?τ
2h2
2d1

?Ph1h6d0
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TABLE 18. — Hidden η extensions

(s, f ,w) Source Target Proof Notes

(15,4,8) h3
0h4 Pc0 Cτ

(21,5,11) τ 2h1g Pd0 τ

(21,5,12) τh1g c0d0 Cτ

(23,9,12) h2
0i P2c0 Cτ

(31,11,16) h10
0 h5 P3c0 Cτ

(38,4,20) h2
0h3h5 τ 2c1g [30, Table 29]

(39,17,20) P2h2
0i P4c0 Cτ

(40,8,21) τ 3g2 
h2
0e0 τ

(41,5,23) h1f1 τh2c1g [30, Table 29] crossing
(41,9,23) τ 2h1g2 d3

0 τ

(41,9,24) τh1g2 c0e2
0 Cτ

(41,10,22) 
h2
0e0 τd3

0 τ

(45,3,24) h2
3h5 Mh1 [30, Table 29] crossing

(45,5,24) τh1g2 
h2c1 τ

(45,9,24) τ
h1g τd0l + 
c0d0 Cτ

(46,11,24) τ 2d0l P
h1d0 τ

(47,10,26) 
h2
2e0 τd0e2

0 mmf

(47,20,24) h7
0Q′ P5c0 Cτ

(50,6,26) τC τ 2gn [61]
(52,11,28) τ 2e0m 
h1d2

0 τ

(54,12,29) τ 3e2
0g 
h2

0d0e0 τ

(55,25,28) P4h2
0i P6c0 Cτ

(59,13,31) τ
h1d0g 
c0d2
0 + τd2

0 l τ

(60,12,33) τ 3g3 
h2
2d0e0 τ

(61,9,35) h2
1 j1 τh2c1g2 Cτ crossing

(61,13,35) τ 2h1g3 d2
0 e2

0 τ

(61,14,34) 
h2
2d0e0 τd2

0 e2
0 τ

(63,6,33) τh1H1 h3Q2 Cτ indet
(63,26,32) h25

0 h6 P7c0 Cτ

(64,8,34) τh1X2 c0Q2 Cτ

(64,8,33) τ 2h1X2 τ 2Mh0g Lemma 7.62 indet
(65,13,35) τ 2
h1g2 τ 2d0e0m τ

(66,15,36) τ 2d0e0m 
h1d3
0 τ

(67,14,38) 
h2
2e0g τ e4

0 Cτ

(68,7,36) h3A′ h3(
e1 + C0) Lemma 7.66
(69,3,36) h2

2h6 τh0h2Q3 Lemma 7.67 crossing
(70,7,37) τh1h3H1 h2

3Q2 Lemma 7.70
(70,9,37) τh1D′

3 d0Q2 Cτ

(71,5,37) τh1p1 h4Q2 Cτ

(71,13,38) 
2h2g τ 3e0gm mmf

(71,33,36) P6h2
0i P8c0 Cτ

(72,5,37) τh1h6c0 τ 2h2
2Q3 Lemma 7.74 indet

(72,11,38) h0d0D2 τMd2
0 Lemma 7.76 indet

(72,15,40) τ 2e0gm 
h1d0e2
0 τ

(74,16,41) τ 3e2
0g2 
h2

2d2
0 e0 τ

(75,6,40) h0h3d2 τd1g2 Lemma 7.77
(75,10,42) h4

1x71,6 h1gB6 Cτ

(75,11,41) h3
1h4Q2 τ 2g2t Cτ

(76,9,40) x76,9 M
h1h3 Cτ

(77,6,40) τh1h4D3 x78,9 Cτ crossing
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TABLE 18. — (Continued )

(s, f ,w) Source Target Proof Notes

(78,8,40) h6
0h4h6 τ
B6 Lemma 7.82

(78,10,42) e0A′ τMe2
0 Lemma 7.83

(79,17,44) τ
h1e2
0g 
c0d0e2

0 + τd0e2
0 l τ

(79,36,40) P4h7
0Q′ P9c0 Cτ

(80,16,45) τ 3g4 
h2
2e3

0 τ

(81,13,47) h2
1gj1 τh2c1g3 Cτ crossing

(81,17,47) τ 2h1g4 d0e4
0 τ

(81,17,48) τh1g4 c0e2
0g2 Cτ

(81,18,46) 
h2
2e3

0 τd0e4
0 τ

(83,11,44) τ
j1 + τ 2gC′ ?M
h1d0 τ crossing
(84,6,43) τ 2h1h6g Ph6d0 τ

(84,6,44) τh1h6g h6c0d0 Cτ

(85,14,45) τ 3Mg2 M
h2
0e0 τ

(85,17,48) τ
h1g3 
c0e2
0g + Mh2

1c0d0e0 Cτ

+τ e3
0m

(86,11,44) h3
0h6i τ 2
2c1g Lemma 7.92

(86,16,47) P2h7
1h6 τ 2
h2

2e0g2 Cτ

(86,19,48) τ 2e3
0m 
h1d2

0 e2
0 τ

(87,8,47) h1h4x71,6 x88,10 Cτ

(87,18,50) 
h2
2e0g2 τ e4

0g Cτ

(87,41,44) P8h2
0i P10c0 Cτ

(88,11,48) τh2
2gH1 
h1g2g + τh2

2gC′ Cτ

(89,13,47) 
2h1f1 τ
2h2c1g Lemma 7.95 crossing

TABLE 19. — Some null hidden η extensions

(s, f ,w) Source Proof

(58,8,30) τh1Q2 Lemma 7.60
(64,4,33) τh2

1h2
5 Lemma 7.61

(66,4,34) τh3
1h6 Lemma 7.63

(68,6,36) τh1Q3 Lemma 7.65
(70,5,36) h3

0h3h6 Lemma 7.68
(70,6,38) h2Q3 Lemma 7.69
(70,10,38) h1h3(
e1 + C0) Lemma 7.71
(70,10,38) τh2C′′ + h1h3(
e1 + C0) Lemma 7.71
(71,6,37) τh2

1p′ Lemma 7.72
(71,8,39) h3

2H1 Lemma 7.73
(72,7,39) h3

1p′ Lemma 7.75
(77,3,40) h2

3h6 Lemma 7.78
(77,7,41) τm1 Lemma 7.78
(77,8,40) h0x77,7 Lemma 7.79
(78,6,41) h1h6d0 Lemma 7.80
(78,8,41) τh2

1x76,6 Lemma 7.81
(81,5,43) h3

1h4h6 Lemma 7.85
(81,7,44) h2

3n1 Lemma 7.86
(81,12,42) 
2p Lemma 7.87
(82,4,43) h6c1 Lemma 7.88
(83,6,44) h0h6g Lemma 7.89
(85,7,46) h2h4Q3 Lemma 7.90
(86,9,46) h1h6c0d0 Lemma 7.91
(86,10,45) Ph1h6d0 Lemma 7.91
(87,11,48) B6d1 Lemma 7.93
(88,7,47) h2

1h4h6c0 Lemma 7.94
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TABLE 20. — Possible hidden η extensions

(s, f ,w) Source Target Proof

(66,6,35) τ
1h2
3 ?τ 2
h2

2e0g Lemma 7.64
(66,12,35) 
2h3

1h4 ?τ 2
h2
2e0g

(67,6,36) h0Q3 + h2
2D3 ?τMh0h2g

(81,3,42) h2h4h6 ?τh2
5g Lemma 7.84

?τ 2e1g2

?
2h2n

(81,5,39) h3
1h4h6 ?τ(
e1 + C0)g Lemma 7.85

(81,8,42) τ 2gD3 ?
2h2n
(81,8,43) τ gD3 ?τ(
e1 + C0)g

(86,6,45) τh2
1f2 ?τ 2gQ3

?
2h3d1

(86,6,46) h2
1f2 ?h1h4x71,6

?τ gQ3

?τh2
2gA′

(86,6,46) h2h6g + h2
1f2 ?h1h4x71,6

?τh2
2gA′

(86,7,45) τh1x85,6 ?τ 2gQ3

?
2h3d1

(87,5,46) h2
1c3 ?τh0g2

2
(87,6,45) τh1h4h6c0 ?τ 2h0g2

2
(87,9,48) gQ3 ?τMh0h2g2

(88,8,48) g2
2 ?τh2

2gC′
?
h1g2g

TABLE 21. — Hidden ν extensions

(s, f ,w) Source Target Proof Notes

(20,6,11) τh2
0g Ph1d0 τ

(20,6,12) h2
0g h1c0d0 Cτ

(22,4,13) h2c1 h2
1h4c0 Cτ

(26,6,15) τh2
2g h1d2

0 τ

(30,2,16) h2
4 p Cτ

(32,6,17) 
h1h3 τ 2h1e2
0 tmf

(39,9,21) 
h1d0 τd3
0 tmf

(40,10,23) τh2
0g2 h1d3

0 τ

(40,10,24) h2
0g2 h1c0e2

0 Cτ

(42,8,25) h2c1g h6
1h5c0 Cτ

(45,3,24) h2
3h5 Mh2 Cτ crossing

(45,4,24) h0h2
3h5 Mh0h2 Cτ crossing

(45,9,24) τ
h1g τ 2d0e2
0 mmf

(46,10,27) τh2
2g2 h1d0e2

0 τ

(48,6,26) h2h5d0 τ gn [61] crossing
(51,8,27) τMh2

2 MPh1 τ

(51,8,28) Mh2
2 Mh1c0 [30, Table 31]

(52,10,29) 
h1h3g τ 2h1e2
0g τ

(52,11,28) τ 2e0m 
h2
0d0e0 mmf

(53,7,30) i1 gt Cτ

(54,11,32) h6
1h5e0 h2e2

0g τ

(57,10,30) h0h2h5i τ 2d2
0 l tmf
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TABLE 21. — (Continued )

(s, f ,w) Source Target Proof Notes

(59,12,33) Ph3
1h5e0 τd2

0 e2
0 τ

(59,13,32) τ
h1d0g τ 2d2
0 e2

0 mmf

(60,14,35) τh2
0g3 h1d2

0 e2
0 τ

(62,8,33) 
e1 + C0 τMh0g Lemma 7.103
(62,12,37) h2c1g2 h8

1D4 Cτ

(63,6,33) τh1H1 τ 2Mh1g Lemma 7.105 crossing
(65,3,34) h2h2

5 τh1Q3 Cτ

(65,9,36) h2
1X2 Mh2g τ

(65,13,36) τ
h1g2 + Ph1h5c0e0 τ 2e4
0 mmf

(66,6,36) 
1h2
3 h2

2C′ Cτ

(66,14,39) τh2
2g3 h1e4

0 τ

(67,8,36) h2
2A′ h1h3(
e1 + C0) Lemma 7.109

(68,13,36) Ph2h5j 
2h2
0h2g Cτ

(69,9,38) h2
2C′ τ 2d1g2 Lemma 7.112

(70,9,37) τh1D′
3 τMd2

0 Lemma 7.113 indet
(70,12,37) 
2h2c1 
2h2

1h4c0 τ

(70,14,37) τ
2h2
1g + τ 3m2 τ 2
h1d0e2

0 mmf

(71,8,39) h3
2H1 h3C′′ Cτ

(71,12,39) τMh2
2g Mh1d2

0 τ

(71,14,38) 
2h0h2g τ 4e2
0g2 mmf

(72,14,41) 
h1h3g2 τ 2h1e2
0g2 τ

(72,15,40) τ 2e0gm 
h2
2d2

0 e0 mmf

(73,11,41) h2
2C′′ τ g2t Lemma 7.115

(74,14,39) τ
2h2
2g τ 5e0g3 τ

(77,3,40) h2
3h6 τh1x1 Lemma 7.120 indet

(77,7,41) h1x76,6 c1A′ Cτ

(77,15,42) 
2h3
2g τ 2d0e2

0 l τ

(77,16,41) τ 5e0g3 τ 3d0e2
0 l mmf

(78,8,40) h6
0h4h6 
2p Cτ

(78,9,40) h7
0h4h6 τ
2h1d1 Lemma 7.121

(79,17,45) 
h1e2
0g + Mh3

1d0e0 τd0e4
0 mmf

(80,18,47) τh2
0g4 h1d0e4

0 τ

(80,18,48) h2
0g4 h1c0e2

0g2 Cτ

(82,6,44) h2
5g h0h2h4Q3 Cτ

(82,8,44) h2
2x76,6 Ph1x76,6 Cτ

(82,10,42) P2h2h6 
2h0x Cτ

(82,12,44) τ (
e1 + C0)g ?M
h2
1d0 τ

(82,12,45) (
e1 + C0)g τMh0g2 Lemma 7.127
(82,16,49) h2c1g3 h14

1 h6c0 Cτ

(83,7,43) τh2
0h6g Ph1h6d0 τ

(83,7,44) h2
0h6g h1h6c0d0 Cτ

(83,11,44) τ 2gC′ M
h2
0e0 Lemma 7.129 crossing

(83,11,45) 
j1 + τ gC′ τ 2Mh1g2 Lemma 7.129
(84,9,46) h2gD3 B6d1 Cτ

(85,6,44) τx85,6 + h3
0c3 ?h1x87,7 + τ 2g2

2 Lemma 7.132
(85,5,45) h2h6c1 h2

1h4h6c0 Cτ

(85,7,46) h2h4Q3 h0g2
2 Cτ

(85,17,48) τ
h1g3 τ 2e4
0g mmf

(86,18,51) τh2
2g4 h1e4

0g + Mh7
1e0g τ

(87,12,48) h2
2gA′ 
h2

1g2g Lemma 7.134
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TABLE 22. — Some null hidden ν extensions

(s, f ,w) Source Proof

(64,2,33) h1h6 Lemma 7.107
(64,8,34) h3Q2 Lemma 7.108
(68,7,36) h3A′ Lemma 7.110
(69,4,36) p′ Lemma 7.111
(71,4,37) h6c0 Lemma 7.114
(71,5,37) τh1p1 [16]
(73,12,41) Mh1h3g Lemma 7.116
(76,8,41) τd1g2 Lemma 7.118
(76,8,40) h0h4A Lemma 7.119
(78,10,42) e0A′ Lemma 7.122
(79,3,41) h1h4h6 Lemma 7.123
(81,7,44) h2

3n1 Lemma 7.124
(82,8,44) τ e1g2 Lemma 7.125
(82,11,42) P2h0h2h6 Lemma 7.126
(83,10,45) h2c1A′ Lemma 7.128
(84,4,44) h2

2h4h6 Lemma 7.131
(87,12,45) P2h6c0 Lemma 7.133

TABLE 23. — Possible hidden ν extensions

(s, f ,w) Source Target Proof

(70,5,36) h3
0h3h6 ?h0h4D2

(75,6,40) h0h3d2 ?M
h2
1h3 Lemma 7.117

(81,12,42) 
2p ?τM
h1d0

(85,5,45) h1f2 ?τ g2
2

(85,5,44) τh1f2 ?h1x87,7 or
?h1x87,7 + τ 2g2

2
(86,11,44) h3

0h6i ?τ
2h1f1
(87,5,46) h2

1c3 ?τM
h1g

(87,7,45) x87,7 ?τ 2M
h1g

TABLE 24. — Miscellaneous hidden extensions

(s, f ,w) Type Source Target Proof

(16,2,9) σ h1h4 h4c0 Cτ

(20,4,11) ε τ g d2
0 [30, Table 33]

(30,2,16) σ h2
4 x Cτ

(30,2,16) η4 h2
4 h1h5d0 [30, Table 33]

(32,6,17) ε 
h1h3 
h2
1d0 tmf

(32,6,17) κ 
h1h3 τd0l + 
c0d0 tmf
(44,4,24) θ4 g2 x74,8 Cτ

(45,3,23) ε τh2
3h5 MP Lemma 7.138

(45,3,24) ε h2
3h5 Mc0 Lemma 7.138

(45,3,24) κ h2
3h5 Md0 Lemma 7.140

(45,3,24) κ h2
3h5 τMg Lemma 7.142

(45,3,24) {
h1h3} h2
3h5 M
h1h3 Lemma 7.143

(45,3,24) θ4.5 h2
3h5 M2 Lemma 7.144

(62,2,32) σ h2
5 p′ Cτ

(62,2,32) ρ15 h2
5 ?h0x77,7 Lemma 7.147

?τ 2m1
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TABLE 24. — (Continued )

(s, f ,w) Type Source Target Proof

(62,2,32) θ4 h2
5 h2

0g3 Cτ

(63,7,33) ε τX2 + τC′ d0Q2 Cτ
(63,7,33) κ τX2 + τC′ M
h1h3 Cτ

(63,7,33) η4 τX2 + τC′ h1x78,9 Cτ

(64,2,33) ρ15 h1h6 Ph6c0 Lemma 7.148
(64,2,33) ρ23 h1h6 P2h6c0 Lemma 7.148
(65,10,35) ε τMg Md2

0 Lemma 7.149
(69,4,36) σ p′ h0h4A or Cτ

h0h4A + τ 2d1g2

(77,12,41) ε M
h1h3 ?M
h2
1d0 Lemma 7.150

(79,3,41) σ h1h4h6 h4h6c0 Cτ

TABLE 25. — Some miscellaneous null hidden extensions

(s, f ,w) Type Source Proof

(30,2,16) θ4 h2
4 Lemma 7.137

(45,5,24) ε h5d0 Lemma 7.145
(45,5,24) {
h1h3} h5d0 Lemma 7.146
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