
*Corresponding Author. 

Email address: qc9nq@virginia.edu (Q. Chang) 

 

Hybrid Feedback and Reinforcement Learning-Based Control of 

Machine Cycle Time for a Multi-Stage Production System 

Chen Lia, Qing Changa,* 

aDepartment of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, US 

Abstract 

With the increasing need of flexible manufacturing systems, machine flexibility has become one of the major impact 

factors. An important aspect of machine flexibility is the ability to change an individual machine’s capacity (or cycle 

time) to improve the overall system efficiency. In this paper, a novel control method is proposed for multi-stage 

production systems to dynamically change the individual machines’ cycle time to improve overall system efficiency. 

The proposed control method integrates distributed feedback control scheme and a Reinforcement Learning (RL) 

control scheme based on an extended actor-critic algorithm. The feedback control will determine whether a machine 

is turned on or off using real-time system status, while the RL control scheme will decide how to increase or decrease 

a machine’s cycle time when a machine is on. An improved actor-critic RL algorithm is developed to add an auxiliary 

model-based path to the standard model-free RL to enhance the learning performance. To demonstrate the 

effectiveness of the proposed method, numerical case studies have been performed that clearly show improvements 

in the overall profits and energy savings compared to other methods. 

 
Keywords: Machine Cycle Control, Production Loss, Deep Reinforcement Learning, Markov Decision Process (MDP)  

1. Introduction 

The cycle time of a machine is the time it takes to complete a designated process on one part. It is a crucial 

parameter that determines the efficiency of a machine and, consequently, the overall performance of a production 

system. Usually, a machine’s cycle time is determined based on the production line design, and it is typically 

unchangeable once determined due to efficiency and quality consideration for mass production [1]. Therefore, a large 

amount of research has been focused on reducing machine downtime, optimizing resource distribution, and 

maintenance management to achieve the goal of improving the system efficiency. With the rapid development of 

variable speed drive techniques (i.e., variable speed drives and variable frequency drives) and the recent advancement 

in learning-based control techniques, changing the cycle time of each machine in a manufacturing system is 

increasingly possible. For instance, Siemens launched a series of production automation modules called SINAMICS 

that allows for the speed of each machine to be adjusted by changing the operating voltage of motors [2]. In addition, 

machines in many flexible industrial processes such as machining lines and assembly lines can operate with different 
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cycle times for different product types. Thus, changeable cycle time offers machines and production lines 

considerable flexibility and adaptability, further opening a new pathway to enhance system performance.   

However, managing the cycle time change of machines in a production line is not trivial. A serial production 

line with multiple machines and buffers is a nonlinear (due to limited buffer) and stochastic (due to, e.g., random 

downtimes) system. There is no closed-form representation for such a system [3]. This makes the classic control 

theory hard to apply. In addition, the nonlinear and stochastic dynamics of the production system will lead to a vast 

state space for the control problem, which may include each machine’s cycle time, operating status, and intermediate 

buffer level. A production line with variable cycle time machines will further increase the states and complexity of 

the system. This makes the traditional mathematical programming methods intractable. A Markov Decision Process 

(MDP) [4] can be used to formulate control problems like these, and model-free reinforcement learning (RL) has 

proven to be effective since it does not require detailed state transition models but relies on continual interactions 

with the environment to improve its policy [5]. However, a pure learning-based control policy may not be able to 

enjoy the advantage of the system property or expert knowledge about the system, resulting in lower learning 

performance. It could be time-consuming to train an RL-based control policy considering all parameters and input 

data, assuming no knowledge about the system.  

In view of these challenges, this paper is devoted to developing an intelligent control scheme by changing 

machines’ cycle time and on/off status to facilitate a flexible operation of machines and maximize the profit of the 

system. The main contributions of this paper are in 1) formulating an MDP problem and developing a hybrid control 

scheme that combines a quick distributed feedback control and a deep RL (DRL)-based control scheme; 2) utilizing 

a distributed feedback control scheme for each machine on/off status by adopting the system property of opportunity 

window [6] based on the manufacturing system-level understanding; 3) developing an extended actor-critic algorithm 

to improve DRL performance for controlling machines’ cycle time change.    

The rest of this paper is organized as follows: Section 2 gives a brief overview of related literatures; Section 3 

describes the structure of a serial production line with variable cycle time machines. Section 4 briefly introduces the 

production system model and system property; The hybrid control scheme is presented in Section 5. Section 6 

discusses the integration of the feedback control and the improved DRL to obtain a better policy with higher 

efficiency. A case study is presented in Section 7 to show the effectiveness of the proposed method. Section 8 

summarizes the conclusion of this paper and provides future directions. 

 

2. Literature Review  

There have been substantial research efforts devoted to improving the overall manufacturing system efficiency 

through the scheduling and control of machines’ operations. With the development in modeling and analytical 

analysis of manufacturing systems, the analytical- and model-based control strategies have become one of the 



mainstream approaches to promoting system efficiency. For example, a state-based feedback control policy has been 

developed to switch machines on or off for a Bernoulli production line in [7] to reserve energy, where the on/off 

control is decided based on the occupancy of the buffers using the Markov chain model. In [8], Markovian analysis 

with aggregation approximation is used in deriving the so-called N-policy to maintain desirable productivity while 

reducing the energy consumption of the system. These model-based methods typically need strong machine 

reliability assumptions (e.g., Bernoulli or Geometric machines) and are difficult to generalize to more complicated 

realistic scenarios. 

 With advancements in machine/process sensing and big data analytics, data-driven approaches have seen 

increasing applications in smart manufacturing [9]. Utilizing real-time production data, Liu et al. [10] have 

quantitively analysed the downtime impact on system real-time performance and overall cost. Paul et al. [11] have 

formulated a dynamic solution approach that can deal with multiple disruptions to reschedule the production plan on 

a real-time basis. Based on the sensor reading, Zou et al. [12] have developed an automated distributed feedback 

production control scheme by switching each machine on or off to improve overall system productivity and profit. 

In [13], a real-time resilient adaptive control policy is developed to deliver resilient performance against random 

disruption events based on a real-time system performance diagnostic by unitizing both system properties and sensor 

information. Li et al. [14] proposed an event-based control methodology that can strategically switch machines to 

the energy-saving mode for energy-efficient production. To achieve higher production efficiency, Frazzon et al. 

proposed a data-driven adaptive planning and control approach that uses simulation-based optimization to determine 

the most suitable dispatching rules under varying conditions [15]. However, in most of these studies, the production 

systems considered consist of only unchangeable cycle time machines. There has been not enough discussion on 

smartly adjusting machines’ cycle time to improve system performance and flexibility. 

Changing the cycle time of machines for a stochastic production line needs to deal with large state space and 

is a real-time decision-making problem, which can be formulated as a RL problem. MDP is a typical framework that 

can solve most RL problems [4]. The objective of MDP is to find an optimal policy that gives the best action for 

each state. The most widely used methods to solve MDP can be categorized into model-free RL and model-based 

RL. 

Model-based RL rely on a system model that evaluates the outcomes of the current action. On the other hand, 

model-free RL uses real-world experiences obtained from environments and does not require the transition 

probability distribution (and the reward function). The emergence of deep reinforcement learning (DRL) method 

allows the standard RL to incorporate deep learning (DL). The state-of-the-art DRL method has demonstrated a great 

potential to solve complex manufacturing problems, such as NP-hard production scheduling [16]. Recent studies 

propose to combine the strengths of both model-free and model-based approaches. In [17], an integrated control of 

production and preventive maintenance has been formulated as a semi-MDP and an infinite time horizon dynamic 

programming algorithm has been adopted to solve the control problem. Ou et al. [5] have developed an innovative 



method, “Q-ADP”, which combines a model-free Q-learning and an approximate dynamic programming to optimally 

assign gantry robots in a work cell. Racanière et al. [18] propose a novel I2As architecture for DRL by combining 

model-free and model-based techniques to improve data efficiency and robustness of the model. Inspired by these 

ideas, we propose an improved DRL algorithm that embeds an auxiliary model-based path to the standard model-

free DRL algorithm to smartly change machines’ cycle time.    

Industrial manufacturing is becoming more automated and complex. Therefore, control problems need to deal 

with increasingly complex environments and handle variability and uncertainty. Hybrid control strategies are 

emerging as a promising way to solve real world control problems [19]. There are various ways of performing hybrid 

control. In [20], a problem of solving combined discrete decision variables (e.g., digital outputs) and continuous 

decision variables (e.g., velocity setpoints) are addressed. To improve the control accuracy and efficiency, Neunert 

et al. [20] have defined a hybrid RL problem to optimize for discrete and continuous actions simultaneously. Hybrid 

automation with balanced introduction of humans and robots are also on the rise. Astudillo et al. [21] have introduced 

a hybrid framework of a manufacturing control system that integrates human activities in the manufacturing process 

by employing a human decisional entity as a virtual component. These control methods only introduce additional 

module or component to the conventional or RL-based control scheme without integrating different control methods. 

In [19], a robotic control problem involving contacts and unstable objects is introduced. It can be difficult for 

conventional feedback control to account for contact behavior and RL requires a considerable amount of data before 

converging to adequate performance. Therefore, Johannink et al. [19] have developed a hybrid control methodology 

that combines the strength of both feedback control and deep RL methods to achieve an assembly task by relying on 

the engineered controller as a starting point and using RL to correct for the controller’s mistakes.  

To the best of our knowledge, the applications of hybrid control methods to manufacturing system-level 

decision makings (e.g., maintenance or machines’ cycle time change) have yet to be sufficiently studied, albeit their 

powerful advantages. Motivated by these prior efforts, this paper presents a hybrid feedback control and an improved 

DRL-based control scheme to optimally change the cycle time of machines on the production line to achieve a higher 

system profit.   

 

3. System Description   

3.1 Notations and assumptions 

A schematic of a multi-stage production line with  𝑀 machines and 𝑀 − 1  buffers is shown in Figure 1, where 

rectangles represent machines and circles represent buffer. The following notations are adopted in this work: 

 

Figure 1. The structure of a serial production line 



1) 𝑆𝑖 represents the 𝑖𝑡ℎ machine, 𝑖 = 1, 2, … , 𝑀; 

2) 𝑇𝑖(𝑡) denotes the cycle time of machine 𝑆𝑖 at time 𝑡, 𝑖 = 1, 2, … , 𝑀; 

3) 𝑆𝑀∗(𝑡) denotes the slowest machine of the production line at time 𝑡, and 𝑇𝑀∗(𝑡) denotes the cycle time of 

the slowest machine at time 𝑡; 

4) 𝐵𝑖  denotes the 𝑖𝑡ℎ buffer, 𝑖 = 2, 3, … , 𝑀, and it is also used to represent the buffer capacity of the 𝑖𝑡ℎ buffer 

for convenience; 

5) 𝑏𝑖(𝑡) represents the buffer level of 𝐵𝑖  at time 𝑡; 

6) 𝑒𝑖 = (𝑗, 𝑡𝑖 , 𝑑𝑖) denotes 𝑖𝑡ℎdisruption event that machine 𝑆𝑗 is down at time 𝑡𝑖 with time duration of 𝑑𝑖, where 

𝑖 = 1, 2, … , 𝑛, and 𝑗 = 1, 2, … , 𝑀; 

We make the following assumptions in this paper: 

1) A machine is starved if it is on, and its upstream buffer is empty;  

2) A machine is blocked if it is on, and its downstream buffer is full; 

3) The cycle time of a machine can only be changed within a range that is constrained by the design of the 

machine, and therefore 𝑇𝑖(𝑡) ∈ [𝑇𝑖,𝐿 , 𝑇𝑖,𝑈], where 𝑇𝑖,𝐿 and 𝑇𝑖,𝑈 are the lower bound and the upper bound for 

machine 𝑆𝑖 respectively.  

 

4. Introduction of System Model and System Property 

Our previous study [6] has developed a data-enabled model for serial production lines with variable cycle time 

machines, which efficiently evaluates the real-time states of the system. To keep this paper self-contained, the main 

conclusions and the modeling methodology are briefly introduced without detailed derivation.   

The manufacturing system with variable cycle time machines can be modelled with the following state-space 

equation: 

𝑿̇(𝑡) = 𝑭(𝑿(𝑡), 𝑾(𝑡), 𝑼(𝑡)) (1) 

⚫ 𝑿(𝑡) = [𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑀(𝑡)]′, where 𝑋𝑖(𝑡) is the production count of machine 𝑆𝑖 up to time 𝑡; 

⚫ 𝑾(𝑡) = [𝑊1(𝑡), 𝑊2(𝑡), … , 𝑊𝑀(𝑡)]′, where 𝑊𝑖(𝑡) denotes whether machine 𝑆𝑖 is suffering a disruption event at 

time 𝑡. If there exists a random disruption event 𝑒𝑘 = (𝑖, 𝑡𝑘, 𝑑𝑘) and 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘 + 𝑑𝑘], then 𝑊𝑖(𝑡) = 1, otherwise, 

𝑊𝑖(𝑡) = 0; 

⚫ 𝑼(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑀(𝑡)]′ is the control input at time 𝑡. 

In this paper, the control input of a machine is the machine operation status, including machine on, off, and 

cycle time increasing and decreasing.  We assume each machine’s cycle time can be increased or decreased by a 

ratio 𝜑, where 𝜑 ∈ [0,1]. Let 𝒖𝒄(𝑡) = [𝑢1
𝑐(𝑡), 𝑢2

𝑐(𝑡), … , 𝑢𝑀
𝑐 (𝑡)]′ denote the cycle time control input, we have 



𝑢𝑖
𝑐(𝑡) = {

(1 + 𝜑), increase the cycle time of machine 𝑆𝑖  with the ratio of 𝜑 at time 𝑡

(1 − 𝜑), decrease the cycle time of machine 𝑆𝑖  with the ratio of 𝜑 at time 𝑡
(2) 

Let 𝒖𝒆(𝑡) = [𝑢1
𝑒(𝑡), 𝑢2

𝑒(𝑡), … , 𝑢𝑀
𝑒 (𝑡)]′ denote the on/off control input, we have 

𝑢𝑖
𝑒(𝑡) = {

0, turn machine 𝑆𝑖  off at time 𝑡 
1, turn machine 𝑆𝑖  on with its designed cycle time at time 𝑡 

(3) 

Therefore, the control input to machine 𝑆𝑖 at time 𝑡 is 

𝑢𝑖(𝑡) = 𝑢𝑖
𝑐(𝑡) ∙ 𝑢𝑖

𝑒(𝑡) (4) 

Machine 𝑆𝑖  is operational when there is no disruption event, and it is not turned off. Let 𝜗(𝑡) =

[𝜗1(𝑡), 𝜗2(𝑡), … , 𝜗𝑀(𝑡)]′ denotes the on/off status of each machine, where  

𝜗𝑖(𝑡) = (1 − 𝑊𝑖(𝑡)) ∙ 𝑢𝑖
𝑒(𝑡) (5) 

Based on the conservation of flow, a quick recursive algorithm has been developed to evaluate the system state 

𝑿(𝑡) and 𝒃(𝑡), i.e., production count of each machine and buffer level of each buffer at time 𝑡. The analytical 

derivation of the dynamic functions 𝑭(∗) can be found in [6].  

In order to real-time control the machine operation, we need a metric to gauge the system's dynamic 

performance. It has been proven from our previous study [6] that not all the downtimes will lead to permanent 

production loss (PPL) of the system, and only the downtime that causes the stoppage of the slowest machine, 𝑆𝑀∗, 

will result in PPL. To quantify such property, we have developed the concept of opportunity window (OW). The 

OW for machine 𝑆𝑖, denoted as 𝑂𝑊𝑖, is defined as the longest possible downtime on 𝑆𝑖 that will not cause the PPL 

of the system [6]. It has been shown that 𝑂𝑊𝑖 is the time it takes for all the buffers between 𝑆𝑖 and the slowest 

machine 𝑆𝑀∗ to be empty or full [6]. Based on the definition of 𝑂𝑊𝑖, PPL due to downtimes on machine 𝑆𝑖 is defined 

as the amount of production loss due to an extended downtime that exceeds its threshold (i.e., 𝑂𝑊𝑖). If machine 𝑆𝑖 

suffers from a downtime event with a duration 𝑑, then PPL due to 𝑑 can be evaluated as 𝑃𝑃𝐿𝑖 = max{
𝑑−𝑂𝑊𝑖(𝑡)

𝑇𝑀
∗ (𝑡)

, 0}. 

We have proven that this production loss is the same for every machine on the line that cannot be recovered in any 

circumstances [6]. The details of derivation and rigorous proof of OW and PPL can be found in our pervious study 

[6]. 𝑂𝑊𝑖 and 𝑃𝑃𝐿𝑖 are important system dynamic properties that we will use in designing the control policy in this 

paper.  

 

5. Control Problem Formulation 

Production systems with changeable cycle time machines offer more flexibility and adaptability, but the overall 

complexity is increased. Therefore, controlling such systems becomes more challenging. In this paper, the control 

actions will be to turn each machine on/off and/or change its cycle time as in Eq. (4). Changing machines’ cycle time 

in a stochastic production line is a real-time decision-making problem, which can be formulated as an MDP problem 

[4]. The target of the control problem is to find an optimal policy under stochastic situations, by mapping from states 



to actions (i.e., cycle time change), so as to maximize a reward.  

There are various methods to solve MDP problems. In this work, the system state consists of all machines’ 

states and buffers’ states, which can grow exponentially with the number of machines and buffers. Furthermore, the 

system may also have a large action space due to the extra flexibility in machine cycle time adjustments. For example, 

for a 10-machine production line, the action space will be 410 = 1048576 assuming each machine has four actions 

(i.e., on, off, increasing its cycle time, and decreasing its cycle time). Therefore, conventional algorithms, such as 

dynamic programming, are difficult to apply for controlling the machine’s operational status [6]. In addition, 

although we have developed a fast recursive algorithm to evaluate system real-time output and PPL, there is no 

closed-form representation for the production lines. In view of this challenge, we propose a hybrid control scheme 

that combines a quick distributed feedback control and a DRL-based control, as shown in Figure 2. 

 

Figure 2. The control diagram of the hybrid control framework 

 

Figure 2 represents the hybrid control structure for this MDP problem. 𝑺 denotes the state of the system with 

variable cycle time machines. It includes each machine’s cycle time, disruption events, and system buffer levels. The 

state space dimension depends on the number of machines and buffers. Let 𝑠𝑡 ∈ 𝑺 denote the system states of each 

machine at time 𝑡, we define 

𝑺 = [𝑻(𝑡), 𝑾(𝑡), 𝝑(𝑡), 𝒃(𝑡)] (6) 

where each element of the state is: 

⚫ 𝑻(𝑡) =[𝑇1(𝑡), 𝑇2(𝑡), … , 𝑇𝑀(𝑡)] denotes the cycle time of each machine at time 𝑡;  

⚫ 𝑾(𝑡) = [𝑊1(𝑡), 𝑊2(𝑡), … , 𝑊𝑀(𝑡)] denotes whether machines are suffering a disruption event at time 𝑡; 

⚫ 𝝑(𝑡) =[𝜗1(𝑡), 𝜗2(𝑡), … , 𝜗𝑀(𝑡)] denotes the operating status of machines at time 𝑡;  

⚫ 𝒃(𝑡) = [𝑏2(𝑡), 𝑏3(𝑡), … , 𝑏𝑀(𝑡)] denotes the buffer levels of each machine at time 𝑡.  



For the hybrid control framework, the control inputs 𝒖𝒊(𝑡) include 𝒖𝒊
𝒆(𝑡), i.e., a machine’s on/off action, and 

𝒖𝒊
𝒄(𝑡), i.e., machines’ cycle time change action. To reduce the state and action space, we will leverage the system 

property to control a machine’s on/off input 𝒖𝒆(𝑡). A distributed feedback control will be designed for each machine 

based on the system property of OW as discussed in Section 4. For machine’s cycle time change, i.e., 𝒖𝒄(𝑡), we 

propose to use DRL due to the NP-hard nature of the problem and a lack of closed-form representation for general 

production lines. This hybrid control scheme can take advantage of the well-developed feedback control using our 

understanding of the production system and the flexibility of RL to effectively reduce the action space to facilitate 

efficient online control.  

The goal of the control is to maximize the profit, or in another word, to minimize the profit loss of the system. 

The cost function of the system can be formulated as:  

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑃𝑃𝐿 + 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 + 𝐶𝑠𝑤 (7) 

where 𝐶𝑃𝑃𝐿 stands for the profit loss due to the permanent production loss, 𝐶𝑒𝑛𝑒𝑟𝑔𝑦  denotes the energy cost, and 𝐶𝑠𝑤 

indicates the control cost when executing actions. 

The profit loss of the whole system due to PPL within the time period [0, 𝑇] can be written as: 

𝐶𝑃𝑃𝐿 = 𝑐𝑝 ⋅ ∑ 𝑃𝑃𝐿𝑗[0, 𝑇]

𝑀

𝑗=1

(8) 

where 𝑐𝑝 is the profit per part produced by the system, and 𝑃𝑃𝐿𝑗 is evaluated as discussed in Section 5. 

Energy cost 𝐶𝑒𝑛𝑒𝑟𝑔𝑦  is evaluated by the cost of energy consumed by all the machines within the system during 

time period [0, 𝑇], and can be represented as  

𝐶𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑐𝑒 ⋅ ∫ ∑ 𝐼𝑗

𝑀

𝑗

𝑇

0

𝜗𝑗(𝑡)𝑑𝑡 (9) 

where 𝑐𝑒 is the electricity rate, 𝜃𝑗 is the on/off status of machine 𝑆𝑗, and  𝐼𝑗 is the power consumption rate of machine 

𝑆𝑗.  

We also define a penalty cost for frequent control action to change the status of a machine. This cost accounts 

for the potential damage and extra energy consumption when a machine’s cycle time or on/off status is changed. 

Assume the control cost of machine 𝑆𝑗 at time 𝑡 is 𝐶𝑗,𝑠𝑤(𝑡), then the control cost of the production line during time 

period [0, 𝑇] is  

𝐶𝑠𝑤 = ∫ ∑ 𝐶𝑗,𝑠𝑤(𝑡)

𝑀

𝑗

𝑑𝑡
𝑇

0

(10) 

 



6. Hybrid Control Method Description  

Based on the control framework in Section 5, we first introduce the distributed feedback control scheme that 

takes the system property of OW to determine whether a machine should be turned on or off at time 𝑡. Then an 

extended DRL-based algorithm will be designed to change the cycle time of each machine. Finally, the hybrid control 

method is developed that integrates the feedback control and DRL-based control.  

6.1. Feedback Control for Each Machine  

As shown in Figure 2, the control input for the feedback control part 𝒖𝒆(𝑡) are decided by the current states of 

the production system, and we have: 

𝒖𝒆(𝑡) = 𝐺(𝑻(𝑡), 𝑾(𝑡), 𝝑(𝑡), 𝒃(𝑡)) (11) 

For the feedback control part, the control inputs are switching each machine on or off. The feedback policy 

𝑮(∗) depends on the current system state described above. Based on the system assumption, the machine 𝑆𝑖, ∀𝑖 ∈

{1, … , 𝑀}, 𝑎𝑛𝑑 𝑖 ≠ 𝑀∗ can be (partially) starved or blocked only when its immediate downstream buffer is full, or 

its immediate upstream buffer is empty. Thus, 𝑆𝑖 can be switched off based on the buffer level of its upstream and 

downstream buffers, i.e., when, its downstream buffer is full, or its upstream buffer is empty.  

In addition, as we discussed in Section 4, the opportunity window indicates the ability of the system to 

withstand a disruption event without causing PPL. We can set a desired system resilience threshold values 𝑜1, … . , 𝑜𝑀 , 

based on either expert knowledge of the system or the system's historical performance as detailed in [13]. Assuming 

the existence of a set of threshold values and using this set as a control goal, then conventional distributed feedback 

control can be applied to each machine. The machine 𝑆𝑖 can be turned off when its opportunity window goes beyond 

the threshold value, i.e., 𝑂𝑊𝑖(𝑡) ≥ 𝑜𝑖 , otherwise, the machine will keep at “on” status. The feedback control scheme 

is shown in Algorithm 1.  

Algorithm 1 Feedback Control Algorithm for Each Machine 

For each action time step 𝑡:  

1. For 𝑗 = 𝑀∗(𝑡), 𝑢𝑗
𝑒(𝑡) = 1 

2. For 𝑗 = 1 ≠ 𝑀∗(𝑡) 

⚫ if 𝑏𝑗+1(𝑡) = 𝐵𝑗+1 and 𝜗𝑗(𝑡) = 1, then 𝑢𝑗
𝑒(𝑡) = 0 

⚫ if 𝑂𝑊𝑗(𝑡) < 𝑜𝑖 , 𝑏𝑗+1(𝑡) < 𝐵𝑗+1, and 𝜗𝑗(𝑡) = 0, then 𝑢𝑗(𝑡) = 0, and 𝑇𝑗(𝑡) = 𝑇𝑗,𝑜𝑟  

3. For 𝑗 = 𝑀 ≠ 𝑀∗(𝑡) 

⚫ if 𝑏𝑗−1(𝑡) = 0 and  𝜗𝑗(𝑡) = 1, then 𝑢𝑗
𝑒(𝑡) = 0 

⚫ if 𝑂𝑊𝑗(𝑡) < 𝑜𝑖 , 𝑏𝑗−1(𝑡) > 0, and 𝜗𝑗(𝑡) = 0, then 𝑢𝑗(𝑡) = 0, and 𝑇𝑗(𝑡) = 𝑇𝑗,𝑜𝑟 

4. For ∀𝑗 ∈ {2, … , 𝑀 − 1}, 𝑗 ≠ 𝑀∗(𝑡) 

⚫ if 𝑏𝑗−1(𝑡) = 0  or 𝑏𝑗+1(𝑡) = 𝐵𝑗+1, and  𝜗𝑗(𝑡) = 1, then 𝑢𝑗
𝑒(𝑡) = 0 



⚫ if 𝑂𝑊𝑗(𝑡) < 𝑜𝑖  , 𝑏𝑗−1(𝑡) > 0 , 𝑏𝑗+1(𝑡) < 𝐵𝑗+1 , and 𝜗𝑗(𝑡) = 0 , then 𝑢𝑗
𝑒(𝑡) = 0 , and 𝑇𝑗(𝑡) =

𝑇𝑗,𝑜𝑟 

 

6.2. Reinforcement Learning Based Control  

6.2.1. Problem Formulation  

According to our hybrid control framework, a reinforcement learning (RL)-based control will be used to control 

the machines’ cycle time change. A commonly used framework for RL is MDP, which is a stochastic decision process 

for decision making under stochastic environment.  

An MDP is represented by a tuple 〈𝑆, 𝐴, 𝑃𝑠𝑠′
𝑎 , 𝑅𝑠𝑠′

𝑎 〉, which contains a set of states 𝑆, a set of actions 𝐴, transition 

probabilities 𝑃𝑠𝑠′
𝑎  and reward function 𝑅𝑠𝑠′

𝑎 . At each time step, the process is in some state 𝑠, and the decision-maker 

may choose any action 𝑎 that is available in state 𝑠. At the next time step, the process moves to a new state 𝑠′ with 

the transition probability 𝑃𝑠𝑠′
𝑎  and giving the decision-maker a corresponding reward 𝑅𝑠𝑠′

𝑎 . The MDP problem aims 

to find out a “policy” 𝜋(𝑎|𝑠), which indicates the specific action that will be taken in a certain state 𝑠. For the speed 

changing problem, the task is to find the optimal policy 𝜋∗ that maximizes the cumulative reward. Due to the large 

state space in this cycle time control problem, a DRL algorithm will be applied.    

6.2.2.     Action Set 

Each machine can either increase, decrease, or stay at its current cycle time. Therefore, let 𝑎𝑡  denotes the 

machine control action at time 𝑡, we define 

𝑎𝑡 = 𝒖𝒄(𝑡) = [𝑢1
𝑐(𝑡), 𝑢2

𝑐(𝑡), … , 𝑢𝑀
𝑐 (𝑡)] (12) 

6.2.3.    Reward Function 

For the MDP problem, 𝑅(𝑠𝑡+1, 𝑠𝑡 , 𝑎𝑡) is the immediate reward received after the transition from state 𝑠𝑡 to state 

𝑠𝑡+1, due to action 𝑎𝑡. Therefore, for the serial production line, the overall reward function should be able to map 

each perceived state-action pair to a certain value. Since the control strategy aims to minimize losses due to 

production loss, control action, and energy consumption, the reward function can be formulated as the negative form 

of the total cost of the system. By evaluating the effectiveness of the proposed data-enabled model and the energy 

economics of the manufacturing system, the reward functions during two consecutive decision points are defined as 

follows: 

𝑟𝑡 = −𝐶𝑡𝑜𝑡𝑎𝑙 (𝑡) (13) 

where 𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) is the stepwise total cost of the production line, as defined in Eq. (7), at time 𝑡.  



6.2.4.   Extended DRL with Model-Based Value Expansion 

Typical RL methods fall into two categories: model-based and model-free methods. The model-based methods 

use the model's predictions or distributions of the next state and reward to calculate optimal actions. For the model-

based method, the performance of the learned policy is strongly dependent on the accuracy of the model. However, 

for the cycle time changing problem, since the control inputs,  𝒖𝒄(𝑡), are highly coupled with the system dynamics, 

the transition probabilities of the machine states cannot be fully provided, meaning the model is not available.  

 On the contrary, model-free methods, such as Q-learning and Actor-Critic, are model-free algorithms that are 

purely sampled from experiences. They rely on actual samples from the environment and never use generated 

predictions of the following state and next reward to alter behavior. However, the model-free DRL does not take into 

account some system properties that could influence policy exploration. Thus, its estimated state value is inaccurate 

in some cases.  

To deal with these limitations, we seek a more rigorous and efficient way to control the machine cycle time. 

We propose an extended DRL control method that takes advantages of both model-based method and model-free 

method by combining the model-based path and the model-free path, as illustrated in Figure 3. 

 

Figure 3. The MVE-DRL architecture  

 

For the model-based path, we propose a model-based value expansion (MVE) method to predict the state value 

at the next time step conditioned on an action sampled from the expanded policy. Inspired by the idea of I2As, we 

use an expanded encoder that processes the model-based expansion as a whole and learns to interpret it [18]. Figure 

4 shows a zoom-in illustration of the model-based path, where MVE is used to produce 𝑛 trajectories and 𝑛 is the 

number of the available actions. The actions are chosen in each MVE resulting from an expanded policy 𝜋̂. The agent 

model and the expansion policy 𝜋̂ constitute the MVE to predict the next step. We expand the agent model over 

multiple steps into the future. In this paper, the encoder uses a long short-term memory (LSTM) architecture to 

process each trajectory. The features are fed to the LSTM from the end of the trajectory to mimic the dynamic 

programming, which utilizes the information in reversed order. The model-based path provides additional 

information and more expressive power. The model-free path only takes the objective observation as input. Therefore, 



the extended DRL method can learn to combine information from its model-free path and model-based path.  

 

Figure 4. The structure of a single trajectory of Model-based value expansion  

 

6.2.5.   Extended Advantage Actor Critic (A2C) Implementation  

In this paper, we use the A2C algorithm [22] to implement the above extended DRL algorithm. The extended 

A2C is proposed to improve the state value estimation by combining a model-based path when updating the 

advantage function. 

The standard model-free A2C algorithm aims to achieve a near-optimal policy by iteratively updating the policy 

parameter 𝜃. Policy gradients are used to update the parameter: 

𝑔(𝜃) = 𝐴(𝑠𝑡 , 𝑎𝑡)∇𝜃 log 𝜋(𝑎𝑡|𝑠𝑡 , 𝜃) (14) 

where 𝐴(𝑠𝑡 , 𝑎𝑡) is an estimate of the advantage function, which can be evaluated as: 

𝐴(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 − (𝑉(𝑠𝑡; 𝜃) − 𝛾𝑉(𝑠𝑡+1; 𝜃)) (15) 

The estimation of the value function 𝑉(𝑠𝑡; 𝜃) of the pure model-free A2C relies on the interactive interaction 

with the environment. The accuracy of the estimation cannot be guaranteed. However, for the extended A2C 

algorithm, there is an auxiliary model-based path with the expansion policy 𝜋̂ which sampled from the MVE process 

for each trajectory. This model-based path is also trained by updating the expansion policy parameter 𝜃̂.  Its value 

function 𝑉(𝑠𝑡; 𝜃̂) is also evaluated as the output of the neural network. For the MVE process with 𝑙  steps, its 

corresponding advantage function is formulated as: 

𝐴̂(𝑠𝑡 , 𝑎𝑡) = ( ∑ 𝛾𝑡′−𝑡𝑟𝑡′

𝑡<𝑡′≤𝑡+𝑙

) + 𝛾𝑙+1𝑉(𝑠𝑡+𝑙+1; 𝜃̂) − 𝑉(𝑠𝑡; 𝜃̂) (16) 

where 𝛾 is the discount factor, 𝑟𝑡′ is the instant reward at time 𝑡′. Therefore, the gradient of the expansion policy 

parameter is:  

𝑔(𝜃̂) = −𝐴̂(𝑠𝑡 , 𝑎𝑡)𝜕𝜃̂𝑉(𝑠𝑡; 𝜃̂) (17) 

The cross-entropy loss between the extended A2C policy 𝜋(𝑠𝑡) as computed on the current observation, and 



the expansion policy 𝜋̂(𝑠𝑡) as computed on the same observation, will be added to the total loss function as an 

auxiliary loss. By imitating the extended A2C policy, the internal expansion will be similar to the trajectories of the 

agent in the real environment, which would enhance the accuracy of the value function estimation. This also ensures 

that the expansion corresponds to trajectories with high rewards [18].  

To summarize, for the extended A2C algorithm, both the state value and policy are determined based on the 

aggregation of model-free and model-based paths. Therefore, the proposed extended A2C algorithm can make 

learning more reliable and closer to a “true optimal” policy and can estimate state value function more accurately 

than standard A2C. The extended A2C algorithm for machine cycle time control is shown in Algorithm 2. 

Algorithm 2 Extended A2C Algorithm  

Input: 𝜂, 𝜃, 𝜃̂ 

Initialize 𝜃, 𝜃̂ 

Repeat  

Generate an episode 𝜏 following 𝜋𝜃(∙) 

For each action time step 𝑡:  

1. Perform action 𝑎𝑡 according to policy 𝜋𝜃(∙) 

2. Get state 𝑠𝑡+1, reward 𝑟𝑡 from environment 

Repeat 𝑛  times (𝑛: number of trajectories) 

Repeat 𝑙 times (𝑙: number of time steps on a trajectory) 

Expand for each time step  

      Advantage function:  𝐴̂(𝑠𝑡 , 𝑎𝑡) = (∑ 𝛾𝑡′−𝑡𝑟𝑡′𝑡<𝑡′≤𝑡+𝑙 ) + 𝛾𝑙+1𝑉(𝑠𝑡+𝑙+1, 𝜃̂) − 𝑉(𝑠𝑡 , 𝜃̂) 

      Update 𝑔(𝜃̂) = 𝑔(𝜃̂) − 𝐴̂(𝑠𝑡 , 𝑎𝑡)𝜕𝜃̂𝑉(𝑠𝑡 , 𝜃̂) 

      Expand encoding for each trajectory  

3. Aggregate for all trajectories 

4. Update 𝑉(𝑠𝑡; 𝜃) 

5. Evaluate advantage function: 𝐴(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 − (𝑉(𝑠𝑡 , 𝜃) − 𝑉(𝑠𝑡+1, 𝜃)) 

6. Update 𝑔(𝜃) = 𝑔(𝜃) + 𝐴(𝑠𝑡 , 𝑎𝑡)∇𝜃𝑙𝑜𝑔𝜋(𝑎𝑡|𝑠𝑡 , 𝜃)  

7. 𝑠𝑡 ← 𝑠𝑡+1 

 

6.3. Hybrid Control by Integrating Distributed Feedback Control and Extended DRL Control  

The extended A2C algorithm is used in managing the machines’ cycle time change and the distributed feedback 

control takes advantage of the system property of OW. These two control schemes are simultaneously trained to 

derive an optimal control policy. The hybrid control framework can effectively reduce the action space for this 

control problem. The hybrid integrated control scheme is shown in Algorithm 3. 



Algorithm 3 DK-DRL Algorithm for Machine Controlling 

Input: 𝜂, 𝜃, 𝑄 

Initialize 𝜃, 𝑄,𝜋̂, 𝑄̂ 

Repeat  

Generate an episode 𝜏 following 𝜋𝜃(∙) 

For each action time step 𝑡:  

1. For 𝑗 = 𝑀∗(𝑡), 𝑢𝑗(𝑡) = 1 

2. For 𝑗 = 1 ≠ 𝑀∗(𝑡) 

⚫ if 𝑏𝑗+1(𝑡) = 𝐵𝑗+1 and 𝜗𝑗(𝑡) = 1, then 𝑢𝑗
𝑒(𝑡) = 0 

⚫ if 𝑂𝑊𝑗(𝑡) < 𝑜𝑖 , 𝑏𝑗+1(𝑡) < 𝐵𝑗+1, and 𝜗𝑗(𝑡) = 0, then 𝑢𝑗(𝑡) = 0, and 𝑇𝑗(𝑡) = 𝑇𝑗,𝑜𝑟  

⚫ otherwise, execute steps 1 to 6 of Algorithm 2  

3. For 𝑗 = 𝑀 ≠ 𝑀∗(𝑡) 

⚫ if 𝑏𝑗−1(𝑡) = 0 and  𝜗𝑗(𝑡) = 1, then 𝑢𝑗
𝑒(𝑡) = 0 

⚫ if 𝑂𝑊𝑗(𝑡) < 𝑜𝑖 , 𝑏𝑗−1(𝑡) > 0, and 𝜗𝑗(𝑡) = 0, then 𝑢𝑗(𝑡) = 0, and 𝑇𝑗(𝑡) = 𝑇𝑗,𝑜𝑟 

⚫ otherwise, execute steps 1 to 6 of Algorithm 2  

4. For ∀𝑗 ∈ {2, … , 𝑀 − 1}, 𝑗 ≠ 𝑀∗(𝑡) 

⚫ if 𝑏𝑗−1(𝑡) = 0  or 𝑏𝑗+1(𝑡) = 𝐵𝑗+1, and  𝜗𝑗(𝑡) = 1, then 𝑢𝑗
𝑒(𝑡) = 0 

⚫ if 𝑂𝑊𝑗(𝑡) < 𝑜𝑖  , 𝑏𝑗−1(𝑡) > 0 , 𝑏𝑗+1(𝑡) < 𝐵𝑗+1 , and 𝜗𝑗(𝑡) = 0 , then 𝑢𝑗
𝑒(𝑡) = 0 , and 𝑇𝑗(𝑡) =

𝑇𝑗,𝑜𝑟 

⚫ otherwise, execute step 1 to 6 of Algorithm 2  

5. 𝑠𝑡 ← 𝑠𝑡+1 

 

7. Case Study 

In this section, simulation experiments are performed to validate the effectiveness of the proposed hybrid 

control scheme. The following case study compares the production performance of the control policies learned from 

the standard A2C, extended A2C algorithm, and the proposed hybrid control scheme. We intend to show three results: 

1) with the same training duration, the policy learned by the proposed hybrid control scheme has the best performance 

in improving the system profits; 2) the proposed hybrid control scheme outperforms other pure learning based 

algorithms in the training process (i.e., reaching a stable reward faster); 3) the impact of cycle time changing ratio 

on training and the execution performance; 4) the impact of control interval on training and the execution 

performance.  

7.1. Parameters setting and training progress  

The simulation experiments are carried out on Python platform. We construct and investigate 100 different 



serial productions lines, including automotive assembly lines, semi-conductor lines, and battery lines etc. The 

effectiveness and robustness of the proposed hybrid control scheme have been successfully validated with these 100 

different lines. For demonstration purposes, we present a detailed numerical case study on a serial production line 

with four machines and three buffers, similar to Figure 1. System parameters for machines and buffers are shown in 

Table I, which are mocked up data based on a real production line for confidential consideration. 

Table I. Parameters for the Four-Machine and Three-buffer in the Production Line System 

Parameters 
Machines 

𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 

Designed cycle time(sec) 50 70 60 40 

Cycle time upper bound(sec) 75 105 90 60 

Cycle time lower bound(sec) 25 35 30 20 

Profit per part 𝒄𝒑 ($) 50 50 50 50 

electricity rate 𝒄𝒆 ($) 5 5 5 5 

Power consumption rate I 10 6 8 12 

MTBF(min) 24.2 13 24.4 16.1 

MTTR(min) 1.3 2 1.4 2 

 Buffers 

 𝑩𝟐 𝑩𝟑 𝑩𝟒 

Buffer capacity 𝑩𝒊 12 30 48 

 

Given the system parameters, we implement Algorithm 3 to train the control policy. The control decision is 

triggered for each machine when it finished its current process. The control interval is the number of cycles for each 

machine between two consecutive control actions. For example, a control interval of two cycles indicates that the 

control decision is made when a machine completes two parts. During the initial training, the control interval is 4 

cycles, and the time step for each trajectory of the MVE process is 1 min. The cycle time changing ratio is set to be 

𝜑 = 0.1. The neural network has two fully connected hidden layers, and each layer has 32 hidden units. The reward 

function is based on Eq. (13), where 𝜂 is set as 0.00025 after multiple experiments. The discount factor 𝛾 for the 

model value expansion is set to 0.95. The learning rate of actor 𝛼𝑎 is set to 0.0005, and the learning rate of the critic 

𝛼𝑐  is set to 0.001. For the MVE process, we generate 𝑛 = 4 sample trajectories between every two consecutive 

actions, and each path rollouts 𝑙 = 1 step. With the completion of the training process, a machine control policy is 

derived based on the updated network parameter 𝜃.  

To evaluate the performance of training and the learned policy 𝜋 based on the proposed hybrid control scheme, 

two other control schemes are considered, including the standard A2C and an extended A2C schemes.  

1) Standard A2C scheme.    

In this scenario, a standard model-free advantage actor-critic (A2C) algorithm will be used for training to obtain 



a control policy 𝜋𝑎2𝑐. All the four actions (i.e., on, off, speed up and slow down) of each machine will be determined 

by this pure model-free RL-based control scheme.  

2) Extended A2C scheme 

In this scenario, we use the extended A2C algorithm with an auxiliary model-based path for training to obtain 

a control policy 𝜋𝑚𝑣𝑒 . All the four actions (i.e., on, off, speed up and slow down) of each machine will be determined 

by this extended A2C algorithm.  

In this case study, a static policy without any control action is used as a baseline. For the training process, we 

use the reward’s improvement with respect to the baseline reward as the metric. In other words, we compare (𝑅𝑏𝑎𝑠𝑒 −

𝑅𝑏𝑎𝑠𝑒) , ( 𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐴2𝐶 − 𝑅𝑏𝑎𝑠𝑒) , ( 𝑅𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝐴2𝐶 − 𝑅𝑏𝑎𝑠𝑒)  and (𝑅ℎ𝑦𝑏𝑟𝑖𝑑 − 𝑅𝑏𝑎𝑠𝑒) . In order to ensure that the 

performance of control policies is independent of its initial states, eight sets of initial states are randomly generated 

to evaluate each policy. With each initial state, these three policies are tested with the three scenarios independently 

for 10,188 min.   

7.2. Results and discussion 

Training performance comparison: The training processes for all three algorithms are demonstrated in Figure 

5. The x-axis shows the training iteration, and the y-axis represents the rewards as in Eq. (13). It is observed that the 

extended A2C algorithm and the proposed hybrid control scheme ultimately reach a much higher reward than that 

of the standard A2C algorithm. The final reward after training for the extended A2C and the hybrid control schemes 

are comparable to each other. This result confirms that the DRL with the auxiliary model-based path is more 

competitive in achieving a more accurate state value. Although the training reward of both extended A2C and the 

hybrid control schemes are similar, the hybrid algorithm achieves the steady reward value (considered as converges) 

much faster during the training process. This result indicates that the proposed hybrid control scheme can effectively 

shorten the training time through reducing the action space of the control problem.  



  

Figure 5. The learning performance comparison within the same training duration 

 

Execution performance comparison: In Figure 6, the average costs and their 95% confidence intervals using 

the trained policies based on the three algorithms are compared. Eight randomly generated initial state sets have been 

used. It is evident that both extended A2C and hybrid control schemes outperform the standard A2C in reducing both 

profit loss and energy costs. In terms of the total cost, the hybrid control scheme performs 29.62% better than the 

standard A2C. Meanwhile, extended A2C algorithm improves the system performance by 23.4% compared with the 

standard A2C. This result further confirms the discussion in Section 6.2.5 that with the additional information gained 

from the model-based path, more accurate state value estimations can be achieved to ensure a higher reward policy. 

In addition, it is noted that although the hybrid control scheme has resulted the highest action costs, it leads to the 

best system performance in terms of lowest total cost. This result demonstrates that although the proposed hybrid 

control algorithm requires more actions during the operational period, the effectiveness of each action is ensured.  

 

Figure 6. The average cost comparison between different policies 



 

Impact of cycle time changing ratio on training and execution: Based on a realistic machine’s setting, the cycle 

time of each machine can only be changed within a range. In other words, a machine’s cycle time cannot exceed its 

designed upper and lower bound to ensure the machine normal operation. Within the boundary, when control action 

triggers, each machine’s cycle time can be increased or decreased by a cycle time changing ratio 𝜑, i.e., the cycle 

time of machine 𝑆𝑖 can be changed to 𝑇𝑖(𝑡) = 𝑇𝑖(𝑡 − 1) ∗ (1 ± 𝜑). We perform additional experiments to study the 

impact of cycle time changing ratio on training and execution. We vary the cycle time changing ratio from 0.05 to 

0.3 with an increment of 0.05 and return the training with the same parameters for each variation. As shown in Figure 

7, the proposed hybrid control method outperforms the standard A2C method and extended A2C method in achieving 

a faster convergence and a higher reward value, as expected. It is noticed that for different cycle time changing ratio, 

there is no significant difference in convergence time for all three algorithms. Figure 8 further demonstrates the 

average total cost with 95% confidence intervals (CI) resulted from the trained policy based on the hybrid control 

scheme. It can be observed that there is no statistically significant difference in total cost for different cycle time 

changing ratio. These experiments suggest that the hybrid control scheme and the system performance are not 

sensitive to the cycle time changing ratio.  

   

(a) (b) (c) 

   

(d) (e) (f) 

 

Figure 7. The learning performance comparison with different cycle time changing ratios 

 



 

Figure 8. The average total cost and 95% confidence intervals comparison between different cycle time changing ratios  

 

Impact of control interval on training and execution: The control interval is a critical factor that is difficult to 

analyze analytically in complex manufacturing systems. Therefore, additional experiments have been performed to 

study the impact of control interval on the system.  We vary the control interval to be every one cycle, two cycles, 

three cycles, four cycles, five cycles, and six cycles of each machine. The training process and execution keep the 

same as previous experiments. Figure 9 illustrates the training process. It shows that for very short control interval 

such as one cycle, or relatively longer control interval such as six cycles, although all three algorithms converge with 

hybrid control scheme converging faster, the final rewards in training for all three schemes are noticeably lower 

compared to that for other control interval. The same phenomenon can be observed for execution performance. In 

Figure 10, the total costs with 95% CI resulting from the trained policies based on the proposed hybrid control scheme 

are compared for different control intervals. It is clear that very short or very long control intervals may lead to lower 

system performance in terms of higher total cost. It is noticeable that when the control interval is comparable to the 

general cycle time of the production line (i.e., within the range of two cycles - three cycles for each machine in this 

case study), the overall system performance will reach its best (meaning lowest total cost), and the advantage of the 

hybrid control method is most obvious compared with the other two pure DRL-based algorithms. This phenomenon 

is due to the fact that too short control intervals make the control actions chase the noise without stabilizing the effect 

of control. On the other hand, a much longer control interval means lesser chances for the agent to interact with the 

environment within the same training time. Thus, it requires more iterations to gather experience to achieve 

convergence, leading to poorer training and execution performance. Therefore, it is evident that the manufacturing 

system and control schemes are sensitive to the control interval, and there exists an optimal range of control interval 

that can lead to better system performance. 



   

(a) (b) (c) 

   

(d) (e) (f) 

 

Figure 9. The learning performance comparison with different control intervals 

 

   

Figure 10. The average total cost and 95% confidence intervals comparison between different control intervals  

 

8. Conclusion and Future Work 

Machine cycle control is a complex problem due to its huge state space and complicated machine interactions. 



A hybrid control strategy that combines distributed feedback control and extended DRL-based control is developed 

to solve this problem. The distributed feedback control can quickly determine each machine's on/off status based on 

the system property of OW, which can effectively reduce the action space for this control problem. The extended 

DRL algorithm is proposed to adjust each machine’s cycle time smartly. In addition, we develop an MVE method to 

improve the state value estimation for the DRL algorithm by adding an auxiliary model-based path. The case study 

demonstrates that a good control policy can be obtained by using the proposed hybrid control scheme, which leads 

to a lower total cost than that obtained from pure learning-based control policy. In the future, we plan to investigate 

more about the real-world constrains of the production line and further refine our control methods. We will also 

consider embedding the process-level knowledge (e.g., quality issue) into our control framework.  
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