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Dynamic Modeling and Analysis of Multi-Product Flexible Production Line 

Abstract 

Mass customization has been a major challenge in the manufacturing sector. For this purpose, Flexible 

Manufacturing Systems (FMS) are usually designed to accommodate variations and manufacture different 

types of products in batches, but the products follow a single rigid path using a conveyor and in case of a 

failure on a single machine, the whole production line is affected. However, a multi-product dynamic 

production system can operate under an elongated failure on a single machine. A novel dynamic modeling 

method for a multi-product production line is developed to investigate dynamic properties of the system 

under random disruptions such as machine failures and market demand changes. Permanent production loss 

(PPL) and demand dissatisfaction for multi-production lines are formally defined as real-time performance 

metrics. A real-time analysis method is developed to evaluate the PPL and demand dissatisfaction. 

Numerical case studies are presented to validate the fidelity of the real-time multi-product production line 

model and the effectiveness of the real-time analysis method. 

 

Keywords: Flexible manufacturing system, multi-products, dynamic modelling, demand 

dissatisfaction, permanent production loss 

1. Introduction 

Traditional manufacturing systems comprise a series of machines that performs a set of operations 

to produce the end product. Each part goes through all the machines in a sequence, resulting in a 

final product (Browne et al. 1984). Such lines are also called serial production lines. These lines 

are usually designed for the mass production of a single product where the parts usually move 

through a conveyor, but the growing and customized customer requirements need a flexible line 

that can accommodate the regular changes quickly (Yadav and Jayswal 2018).  



Conventionally, manufacturing systems comprise sequential, ordered and task-oriented 

workstations. Production flows are defined and immutable. Thus, there is no insight into the 

production lines. Since the introduction of FMS and the emergence of industry 4.0, production 

lines are now comprised of flexible, value-adding units that easily deal with demand variations in 

terms of variety and volume (Oztemel and Gursev 2020, Singh et al. 2022). 

FMS was introduced with its definition as ‘an integrated system that is capable of processing 

medium-sized batches of different product types’ (Browne et al. 1984). This definition is very 

generic, and the specific meaning of flexibility is unknown, as the term ‘flexible’ can be used to 

address higher product varieties, large production volumes, lower costs, or minimum setup times. 

However, it does clarify that an FMS can adopt changes (Bhatta, Huang, and Chang 2022, Waseem 

et al. 2021). With the increasing and varying customer demands, the FMS must be quickly ramped 

up. In addition, these systems need to be updated with the advent of new/improved technologies. 

However, higher flexibility may lead to higher complexity of FMS, making modeling such systems 

more challenging. Increasing production throughput for demand satisfaction has become a 

significant issue for manufacturing industries such as automotive, battery, and composite, etc. 

Unlike a typical serial production line, which is usually designed for a single product type, and 

uses a conveyor for the parts’ handling, a multi-product production line is a complex system, using 

a mobile robot for the products’ handling among the buffers and machines. The performance is 

not only determined by the machines or buffers’ status but also depends on the availability of the 

mobile robot. Further, unlike serial lines, even an elongated downtime on the slowest machine may 

not result in a permanent production loss, as the multi-product line processes multiple products, 

following a unique sequence, and a failure on a single machine may only result in demand 

dissatisfaction for the corresponding product type passing through the disrupted machine.  



This paper is devoted to the modeling and analysis of multi-product production system. The 

major contribution of this paper is twofold: 1) A dynamic mathematical system model is built for 

multi-product production lines with mobile robots constituting material handling, and a recursive 

algorithm is developed to quickly evaluate system real-time state. 2) Based on the developed 

model, an analytical method is proposed to efficiently identify real-time permanent production loss 

(PPL) attributed to each machine due to random disruption events and to evaluate demand 

dissatisfaction for each product type. This dynamic modeling and analysis framework for multi-

product manufacturing systems provide theoretical tools for understanding system dynamic 

properties and facilitate real-time production control.   

The rest of the paper is organized as follows: Section 2 provides an extensive literature review. 

Section 3 describes the system. In Section 4, a dynamic system model for a multi-product 

production system is established. Section 5 evaluates the system’s dynamic performance. 

Numerical experiments are presented in Section 6. Conclusion and future work are addressed in 

Section 7. 

2. Literature Review 

A multi-product production system is a dynamic system, that is subject to unpredictable changes 

such as demand variations and machines’ random disruptions. In literature, the multi-product 

systems are studied in the context of batch manufacturing, where each batch follows the same 

production path irrespective of the product type and the line is set up for each product type. For 

example (Jarrahi and Abdul-Kader 2015) evaluated the performance of a multi-product system 

using the queuing model with each product type as a batch. To enable flexibility, (Bavelos et al. 

2021) developed a framework integrating the shop floor and robot workers. Robot perception 

functions and sensor data from the shop floor were used to analyze the integration level. Lei et al. 



(Ren et al. 2021) established a mathematical model for lithium batteries to estimate their remaining 

useful life. Although the model was tested successfully, due to some assumptions, its applications 

cannot be applied to other product types. A predictive model was developed by  (Long, Li, and 

Chen 2022) to compare the productivity of three different aircraft. This model works efficiently 

on the defined number of product types, but it does not guarantee to efficiently satisfy the product 

customization based on the users’ demands. This challenge was addressed by (Mueller-Zhang, 

Antonino, and Kuhn 2021), whose main objective was to optimize the process plans and make 

sure that each customized demand is satisfied even if it is only single product demand. However, 

their model was based on batch manufacturing, where the setup time is critical.  To satisfy varying 

market demands, (Huang, Chang, and Arinez 2020) used a distributed production scheduling for 

a multi-product system. However, it does not address the line performance under system failures.  

Park et al. (Park and Li 2019) studied a case of a motorcycle manufacturing plant, where a multi-

product machining line is used. The production process is transformed into a two-stage Bernoulli 

model and Markov chain analysis is used for the throughput analysis.  Although these studies 

consider a multi-product system, they follow a rigid single production path using a conveyor for 

all product types. 

In general, dynamic systems have received significant attention in the literature (Qu et al. 2019). 

There are two major methods followed to address these systems: analytical and simulation 

methods. Analytical methods are more of a mathematical representation of a real system, which 

can be categorized into exact solutions and approximate solutions. Whereas simulation methods 

are based on experimentation and are mostly used to analyze complex systems, it is time-

consuming, and the simulation-based results are difficult to interpret. For the analytical 

approaches, exact analytical results are available only for two-machine and one-buffer systems (Li 



et al. 2009). These methods are approximated for complex systems as (Colledani and Gershwin 

2013) developed a decomposition method for the performance evaluation of continuous flow lines 

with machines characterized by general Markovian fluid models and finite buffers. An aggregation 

method was proposed by (Li and Meerkov 2007) to analyze Markovian serial production lines. 

Following the work of (Li 2005), (Li and Meerkov 2007) developed a new method to evaluate the 

performance of complex systems with rework, parallel, scrap, and assembly operations. Similarly, 

(Zhang et al. 2013) further extended the aggregation method of (Li and Meerkov 2007) for the 

transient analysis of serial production lines. However, most of these analytical approaches focus 

on a single product type and address the system's steady-state behaviour to optimize long-term 

production schedule plans. 

In modern manufacturing systems, the extensive use of sensors has made it possible to collect 

real-time information, which is used for data-driven modelling (Rossit and Tohmé 2022). These 

data-driven models use the plant floor information, e.g., buffer levels, and machine downtimes, 

for the performance evaluation of the system. A dynamic model was developed by (Ma et al. 2022) 

for scheduling a smart shop floor. The model analyzes production performance by using shop floor 

knowledge. Similarly, (Zheng et al. 2020) discussed a model for assembly lines to focus on process 

time minimization. The model was tested on data generated from Monte Carlo simulation. It also 

assumed machine random disruptions and uncertain cycle times to update the scheduling 

accordingly. Oscar et al. (Serradilla et al. 2022) facilitated the implementation of a predictive 

maintenance system by using domain knowledge with a dynamic model. Although these models 

optimize the system efficiency in general, they cannot be used to address a multiproduct system, 

as they consider the system’s overall production rather than the product variations. Besides, the 

response variables also vary from model to model, which makes it difficult to implement a single 



model in each environment. While considering the applications of big data, (Rossit, Tohmé, and 

Frutos 2019) developed a model for scheduling smart manufacturing systems. The model uses 

sensors’ data to update the schedules accordingly. Another data-driven method was developed by 

(Zou, Chang, Arinez, and Xiao 2017)  to find the impacts of machine downtime on the system 

output. Even though these methods serve to be very useful for the scheduling optimization or 

performance evaluation of typical manufacturing systems, to our knowledge, the literature lacks 

an analytical method to evaluate the dynamic performance of a multi-product system, where a 

mobile robot handles the products, and each product type follows a unique sequence rather than a 

single fixed production path.  

Market demand satisfaction/dissatisfaction plays a critical role in the performance analysis of 

multi-product dynamic production systems. Market demand is addressed by (Kück and Freitag 

2021). Considering the customized market requirements and variable demands, (Kuo et al. 2021) 

interlinked the supply chain members with the material resource management, which enabled both 

the manufacturers and distributors to observe the production plan and market demand. Because of 

the demand variations, the manufacturers try to forecast the market demand and produce in 

advance, but usually, the forecasting methods ignore the marketing factors. Therefore, (Kumar, 

Shankar, and Aljohani 2020) developed a data-driven framework based on forecasting with a focus 

on mix-marketing variables. Similarly, (Shao et al. 2018) developed a dynamic optimization model 

to analyze the performance of a gear manufacturing line. Although the model worked properly, it 

was designed for a specific product only, which may not be suitable for other product types. These 

models try to improve demand satisfaction, but they do not address its impacts on shop floor 

activities. Besides, mostly these models focus on single product types rather than different product 

types.    



3. System Description  

The system considers a multi-product flexible production line that consists of 𝑀 machines and 

𝑀 − 1  intermediate buffers as shown in Fig. 1. Machines are represented by rectangles and 

denoted as 𝑆𝑖 , 𝑖 = 1, 2, … ,𝑀 . Buffers are represented by the circles and denoted as 𝐵𝑖 , 𝑖 =

2, 3, … ,𝑀 . The source provides raw products to the system, while the sink receives finished 

products. The system uses a mobile robot for material handling among machines and buffers. As 

shown in Fig. 1, the different flowline styles between stations and buffers represent the material 

flows of different product types. For clarity, only three types of products are shown with each 

flowline representing individual product types 𝑙, 𝑙 = 1, 2, 3.  

S
o

u
rc

e

S1 B2 S2 B3 SM-1 SMBM

S
in

k… 

Mobile 

Robot

S3

Product type 1
Product type 2
Product type 3

 

Figure 1: General multi-product flexible production line with a mobile robot 

In this system, the following notations are used. 

(1) 𝑆𝑖 , 𝑖 = 1, 2, … ,𝑀 represents the 𝑖𝑡ℎ machine 

(2) 𝐵𝑖 , 𝑖 = 2,3, … ,𝑀  represents the 𝑖𝑡ℎ  buffer. With the abuse of notation, it is also 

denoted as the capacity of the 𝑖𝑡ℎ buffer 

(3) 𝓟 = [

𝑃11 𝑃12 … 𝑃1𝑀 
𝑃21 𝑃22 … 𝑃2𝑀 
⋮
𝑃𝐾1 

⋮
𝑃𝐾2 

⋮
…

⋮
𝑃𝐾𝑀 

] , where 𝑃𝑙𝑖  , 𝑙 = 1,2, … , 𝐾 𝑎𝑛𝑑 𝑖 = 1,2, … ,𝑀  denotes 

whether product type 𝑙 is processed at the machine 𝑆𝑖 . 𝑃𝑙𝑖 has only two values: 1 or 0. 



A value of 1 denotes the presence of operation by machine 𝑆𝑖 on product type 𝑙 and 0 

denotes the absence of operation by the machine 𝑆𝑖 on product type 𝑙. 

(4) 𝑝𝑙𝑖(𝑡) denotes the quantity of product type 𝑙 in buffer  𝐵𝑖 at time 𝑡  

(5) 𝑇𝑖 , 𝑖 = 1,2, … ,𝑀 represents the processing time of the 𝑖𝑡ℎ machine 

(6) 𝑇𝑡𝑟𝑎𝑣𝑒𝑙  is the travel time of a mobile robot between two adjacent machines, and 

𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑖𝑗

= |𝑗 − 𝑖| × 𝑇𝑡𝑟𝑎𝑣𝑒𝑙, 𝑖, 𝑗 = 1, 2, … ,𝑀, 𝑎𝑛𝑑  𝑖 ≠ 𝑗 represents the travelling time 

of mobile robot from machine 𝑆𝑖  to machine 𝑆𝑗 . Machine 𝑆𝑖  denotes the current 

position of the robot while machine 𝑆𝑗 is the final position of the robot 

(7) 𝑏⃗ 𝑖(𝑡) = [𝑝1𝑖(𝑡) …𝑝𝑙𝑖(𝑡) …𝑝𝐾𝑖(𝑡)]′ is the 𝑖𝑡ℎ  buffer level at time 𝑡 , representing the 

quantity of each product type 𝑙, 𝑙 = 1,2, … , 𝐾. 

(8) 𝑒 𝑖 = (𝑗, 𝑡𝑖, 𝑑𝑖), denotes the 𝑖𝑡ℎ disruption event that machine 𝑆𝑗 is down at time 𝑡𝑖 for a 

duration of 𝑑𝑖. 

(9) 𝑬 =  [𝑒 1, 𝑒 2, … , 𝑒 𝑛], represents a sequence of disruption events 

(10) 𝑀𝑇𝐵𝐹𝑖  and 𝑀𝑇𝑇𝑅𝑖  represent the mean time between failure and mean time to 

repair of machine 𝑆𝑖, respectively. 

(11) 𝑆𝑀∗  denotes the slowest machine of the production line, while 𝑇𝑀∗ + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑖𝑀∗

  

represents the cycle time of the slowest machine.  

(12) A machine 𝑆𝑖 is critical if it processes all product types of the system. For example, 

if a machine 𝑆𝑖  is critical then [𝑃1𝑖 𝑃2𝑖 … 𝑃𝐾𝑖]′ = [1 1 … 1]′.  The 𝑖𝑡ℎ 

critical machine is denoted as 𝑆𝑖𝑐, whereas 𝑇𝑖𝑐 + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗,𝑖𝑐

  represents the cycle time of 

the 𝑖𝑡ℎ critical machine. 



(13) 𝑆𝑠𝑐 represents the slowest critical machine of the production line, while 𝑇𝑠𝑐 +

𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗,𝑠𝑐

  represents the cycle time of the slowest critical machine.  

(14) 𝐷𝑙(𝑡) is the market demand of product type 𝑙 at time 𝑡 

(15) 𝑁𝑙(𝑡) represents the net loss of product type 𝑙 at time 𝑡 

(16) 𝑄𝑙(𝑡) represents a production loss threshold for product type 𝑙 during time 𝑡 

The following assumptions are adopted in this system: 

(1) The term ‘part’ and ‘product’ in this study are used interchangeably 

(2) The system is capable of processing 𝑙 types of products. Each product type follows a 

unique sequence of operations, for example,  𝑆1 → 𝑆2 → 𝑆4  and  𝑆1 → 𝑆3 → 𝑆4 are 

two different product types 

(3) Each part must pass through the first and last machine. In other words, machines 𝑆1 

and 𝑆𝑀 are always critical. The sequence of operations required on each part must be 

in the forward direction.  

(4) Each machine must process at least one type of product in the system 

(5) The buffers have a limited capacity, denoted as 𝐵𝑖 , 𝑖 = 2,3, … ,𝑀 

(6) Immediate upstream buffer has only those product types which are to be processed by 

the consecutive next machine 

(7) Following the unique sequence of each product type, parts produced by machine 𝑆𝑖 will 

be delivered to the upstream buffer of its next-level operating station by the mobile 

robot 

(8) Each machine 𝑆𝑖 operates at a rated speed of 
1

𝑇𝑖+𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗𝑖

 
 

(9) Machines follow the exponential reliability models. The failure rate for machine 𝑆𝑖 is 

λ𝑖, and the repair rate for machine 𝑆𝑖 is 𝜇𝑖 



(10) The part loading and unloading time is assumed to be included in the travelling 

time of the mobile robot 

(11) First machine is never starved, and the last machine is never blocked 

(12) A machine is said to be blocked if it is operational and its downstream buffer is full. 

Whereas a machine is said to be starved if it is operational and its upstream buffer is 

empty 

4. Dynamic System Model 

The major difference of this kind of multi-product dynamic system from that of a traditional 

line/serial production system is that it does not follow a single mainstream flow but has multiple 

interlaced tributaries. Besides, it uses a mobile robot for the material handling among machines 

and buffers, which is another difference from that of a typical serial production line, using 

conveyors for the material handling. The material flow in this system is not only constrained by 

the interaction between machines and buffers but also dependent on the mobile robot’s movement. 

This system can be modelled as a dynamic system, where each buffer’s level is the system state, 

and external disturbances come from random disruption events such as machine failures. In 

addition, machines may wait for mobile robots to load/unload parts, which is dependent on the 

scheduling policy for mobile robots. This study only considers the system modelling and analysis 

and leaves the control problem of mobile robots to be future work. Therefore, the control input is 

treated as a given determined policy. Based on the prior discussion, our dynamic system can be 

presented by the following state-space equation 

𝒃̇(𝑡) = 𝑭(𝒃(𝑡),𝑼(𝑡),𝑾(𝑡))                                                         (1) 

𝒀(𝑡) = 𝑯(𝒃(𝑡))                                                                    (2) 

In the context of this multi-product system, the parameters are defined as 



𝒃(𝑡) = [𝑏⃗ 2(t), 𝑏⃗ 3(t),⋯ , 𝑏⃗ 𝑀(t)]
′
 represents the buffer levels at time 𝑡. It is a vector of all product 

types and 𝑏⃗ 𝑖(𝑡) = [𝑝1𝑖(𝑡)…𝑝𝑙𝑖(𝑡)…𝑝𝐾𝑖(𝑡)]
′ 

𝑾(𝑡) = [𝑤1(t), 𝑤2(t),⋯, 𝑤𝑀(t)]′ represents the disturbances at time 𝑡, where 𝑤𝑗(𝑡) describes 

whether 𝑆𝑗  suffers from a disruption at time 𝑡. If ∃𝑒 𝑘 ∈ 𝑬. 𝑠. 𝑡. 𝑒 𝑘 = (𝑖, 𝑡𝑘, 𝑑𝑘) and 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +

𝑑𝑘], then, 𝑤𝑖(𝑡) = 1, otherwise, 𝑤𝑖(𝑡) = 0. The authors define 𝜃𝑖(𝑡) as the status of machine 𝑆𝑖 

at time 𝑡 i.e., 𝜃𝑖(𝑡) = 1 − 𝑤𝑖(𝑡). A machine 𝑆𝑖 is up at time 𝑡 when 𝑤𝑖(𝑡) = 0, and down when 

𝑤𝑖(𝑡) = 1; 

𝒀(𝑡) = [𝑌⃗ 1(𝑡), 𝑌⃗ 2(𝑡),… , 𝑌⃗ 𝑀(𝑡)]
′

 denotes the system output at time 𝑡 , where 𝑌⃗ 𝑖(𝑡) =

 [𝑝1𝑖(𝑡)… 𝑝𝑙𝑖(𝑡)… 𝑝𝐾𝑖(𝑡)]′, 𝑖 = 1,… ,𝑀 , and 𝑙 = 1, 2, … , 𝐾 , denotes the production count of 

machine 𝑆𝑖 for all product types up to time 𝑡; 

𝑭(∗)= [𝑓1(∗), 𝑓2(∗),⋯ , 𝑓𝑀(∗)]′, where 𝑓𝑗(∗) denotes the dynamic function for machine 𝑆𝑗; 

𝑯(∗)= [𝐻1(∗),𝐻2(∗),⋯ ,𝐻𝑀(∗)]′, where 𝐻𝑗(∗) denotes the observation function for machine 

𝑆𝑗; 

𝑼(𝑡) is the control input, which is the mobile robot's availability to load/unload a product based 

on a certain control and scheduling policy. Since the control problem is not considered in this paper 

and is treated as a given, which in this case is 1, the state space equations can be simplified as: 

𝒃̇(𝑡) = 𝑭(𝒃(𝑡),𝑾(𝑡))                                                             (3) 

𝒀(𝑡) = 𝑯(𝒃(𝑡))                                                                  (4) 

4.1.Dynamic System Derivation 

Using the conservation of flow, the accumulated production count within a time [0, 𝑡] between any 

two machines 𝑆𝑖  and 𝑆𝑗 , ∀𝑖, 𝑗 ∈ 1,2, … ,𝑀,  for product type 𝑙 , where 𝑙 = 1,2, … , 𝐾  satisfy the 

below equation: 



𝑌⃗ 𝑖(𝑡) − 𝑌⃗ 𝑗(𝑡) =  𝜏 𝑖𝑗
𝑙 (𝑡) =  [𝜏𝑖𝑗

1 (𝑡) …   𝜏𝑖𝑗
𝑙 (𝑡)…  𝜏𝑖𝑗

𝐾(𝑡)]
′
=

                        {

∑ [𝑝1𝑛(𝑡) … 𝑝𝑙𝑛(𝑡)…𝑝𝐾𝑛(𝑡)]′
𝑗
𝑛=𝑖+1 − ∑ [𝑝1𝑛(0)… 𝑝𝑙𝑛(0)…𝑝𝐾𝑛(0)]′

𝑗
𝑛=𝑖+1 ,   𝑖 < 𝑗

0                                                                                                                                          𝑖 = 𝑗

∑ [𝑝1𝑛(0)… 𝑝𝑙𝑛(0)…𝑝𝐾𝑛(0)]′
𝑖
𝑛=𝑗+1 − ∑ [𝑝1𝑛(𝑡)… 𝑝𝑙𝑛(𝑡)…𝑝𝐾𝑛(𝑡)]′

𝑖
𝑛=𝑗+1 , 𝑖 > 𝑗

     

                                                                                                                                                       (5) 

Denote 𝜏𝑖𝑗(𝑡) = 𝜏𝑖𝑗
1 (𝑡) + ⋯+ 𝜏𝑖𝑗

𝑙 (𝑡) + ⋯+ 𝜏𝑖𝑗
𝐾(𝑡) to be the total production count including all 

product types produced between 𝑆𝑖 and 𝑆𝑗 up to time 𝑡, note that 𝜏𝑖𝑗(𝑡) has an upper bound and 

follows the condition that all buffers between machine 𝑆𝑖 and 𝑆𝑗 for all product types are empty 

(for 𝑖 > 𝑗) or full (for 𝑖 < 𝑗). This boundary is denoted as 𝛽𝑖𝑗 and can be derived as 

𝛽𝑖𝑗 = {

∑ 𝐵𝑛
𝑗
𝑛=𝑖+1 − ∑ [𝑝1𝑛(0) + ⋯+ 𝑝𝑙𝑛(0) + ⋯+𝑝𝐾𝑛(0)]

𝑗
𝑛=𝑖+1 ,      𝑖 < 𝑗

0                                                                                                               𝑖 = 𝑗

∑ [𝑝1𝑛(0) + ⋯+ 𝑝𝑙𝑛(0) + ⋯+𝑝𝐾𝑛(0)]
𝑖
𝑛=𝑗+1 ,                             𝑖 > 𝑗

                   (6) 

where 𝐵𝑛 is buffer capacity of buffer 𝑛. 

Therefore, 𝜏𝑖𝑗(𝑡) ≤ 𝛽𝑖𝑗 always holds. If 𝜏𝑖𝑗(𝑡) < 𝛽𝑖𝑗, machine 𝑆𝑖 is not starved or blocked by 𝑆𝑗, 

and it operates at its own rated speed. If 𝜏𝑖𝑗(𝑡) = 𝛽𝑖𝑗, the processing speed of machine 𝑆𝑖 will be 

constrained by machine 𝑆𝑗.  

Let 𝜉(𝑡) = [𝜉𝑖𝑗(𝑡)]𝑀×𝑀 be a matrix used to indicate the interactions among machines 𝑆𝑖 and 𝑆𝑗 

at time 𝑡 as: 

𝜉𝑖𝑗(𝑡) = {
1, 𝑖𝑓 𝜏𝑖𝑗(𝑡) = 𝛽𝑖𝑗, 𝑖 ≠ 𝑗

∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                   (7) 

where 𝜉𝑖𝑗(𝑡) indicates the starvation or blockage of machine 𝑆𝑖 by 𝑆𝑗. If machine 𝑆𝑖 is constrained 

by machine 𝑆𝑗 , then machine 𝑆𝑖 must operate at the operating speed of machine 𝑆𝑗 

𝑣𝑖(𝑡) = min {
𝜉𝑖𝑗(𝑡)𝜃𝑗(𝑡)

𝑇𝑗+𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑖𝑗 ,

𝜃𝑖(𝑡)

𝑇𝑖+𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗𝑖 }                                                    (8) 



where 𝑣𝑖(𝑡) is the operating speed of machine 𝑆𝑖 at time 𝑡. 𝑣𝑖(𝑡) can be extended to consider the 

interactions of machine 𝑆𝑖 with all other machines of the production system. 

𝑣𝑖(𝑡) = min

{
 
 
 
 

 
 
 
 
𝜉𝑖1(𝑡)𝜃1(𝑡)

𝑇1+𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗1 ,

𝜉𝑖2(𝑡)𝜃2(𝑡)

𝑇2+𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗2 ,

⋮
𝜃𝑖(𝑡)

𝑇𝑖+𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗𝑖 ,

⋮
𝜉𝑖𝑀(𝑡)𝜃𝑀(𝑡)

𝑇𝑀+𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗𝑀

 

}
 
 
 
 

 
 
 
 

                                                           (9) 

The change rate of 𝑏⃗ 𝑖(𝑡) is the speed difference between 𝑆𝑖 and 𝑆𝑖−1. 

𝑏⃗ 𝑖
̇ (𝑡) = {[𝑣𝑖(𝑡)][𝑃1𝑖 …𝑃𝑙𝑖 …𝑃𝐾𝑖]′ − [𝑣𝑖−1(𝑡)][𝑃1(𝑖−1)…𝑃𝑙(𝑖−1)…𝑃𝐾(𝑖−1)]

′
} ⊙ [𝑃1𝑖 …𝑃𝑙𝑖 …𝑃𝐾𝑖]

′                                     

(10) 

= 𝐹𝑖(𝒃(𝑡),𝑾(𝑡)) 

where ⊙  represents the Hadamard product, and 𝑃𝑙𝑖 , 𝑖 = 1,2, . . . , 𝑀, 𝑙 = 1,2, . . . , 𝐾  denotes 

whether machine 𝑆𝑖 processes product type 𝑙. 

The system output is the production count of the last machine 𝑆𝑀 at time 𝑡 and it can be written 
as follows: 

𝒀(𝑡) = 𝑌⃗ 𝑀(𝑡) = [𝑝1𝑀(𝑡)…𝑝𝑙𝑀(𝑡)…𝑝𝐾𝑀(𝑡)] = 𝐻𝑖(𝒃(𝑡))                           (11) 

Hence, the dynamic function 𝑭(∗) and observation function 𝑯(∗) are derived for our production 

line. This model can be used to obtain the system states and other important variables at any time 

if the sequence of operations required for each product type, 𝑃⃗ 𝑙𝑖  and machine random failures 

𝑾(𝑡) are known. 

5. System Dynamic Performance Evaluation 

A real production line constantly faces random disruption events, which can significantly affect 

the system's efficiency and throughput. For a typical production line with a single product type, a 



random disruption event might stop the processing at one machine and thus block the upstream 

machines or starve the downstream machines. However, due to the presence of finite buffers and 

machines’ variable cycle times, the permanent production loss (PPL) at the end of the line after a 

certain time is not guaranteed (Ou et al. 2017). In our previous study, an ideal clean case is defined, 

which represents a virtual scenario when there are no random disruptions and there is always a 

robot available to load/unload a machine. Then the PPL is defined as the difference between the 

output of the ideal clean case and the real output of a production line (Ou et al. 2017). This PPL is 

fundamentally different from the steady-state metric of throughput where long-term throughput is 

the same for each machine.  

In this paper, multi-product production lines are considered. The dynamic performance of such 

lines is not only affected by random disruptions but also depends on the customer demands for 

various products. Therefore, two metrics are defined to evaluate real-time performance: PPL and 

demand dissatisfaction. For a critical machine 𝑆𝑖𝑐, since all product types need to go through this 

machine, the authors want to evaluate PPL caused by random disruptions on this machine. For 

other machines such as 𝑆𝑖, a disruption on machine 𝑆𝑖 will only affect the production of product 

type 𝑙 passing through machine 𝑆𝑖. Since there is no objective reference for product type 𝑙, the 

demand dissatisfaction will be used as the evaluation metric. 

5.1.Permanent Production Loss Evaluation 

PPL evaluation depends on the system performance under failures. The system status is measured 

by the Opportunity window that directly relates to the resilience to the disruption events (Zou, 

Chang, Arinez, and Xiao 2017). Zou et al. also defined the opportunity window and PPL for a 

single-product serial production line. Using the similar concept, PPL evaluation methods will be 



developed for the multi-product system. To make this paper self-sufficient, a summary of the basic 

concepts is provided without detailed proof. 

Opportunity window of a machine 𝑆𝑗, denoted as 𝑂𝑊𝑗(𝑇𝑑), is the longest possible downtime on 

machine 𝑆𝑗  at time 𝑇𝑑  such that the end-of-line machine 𝑆𝑀  does not result in PPL. It can be 

defined as: 

𝑂𝑊𝑗(𝑇𝑑) = sup{𝑑 ≥ 0: 𝑠. 𝑡. ∃𝑇∗(𝑑), 

 ∫
0

𝑇
 𝑠𝑀(𝑡)𝑑𝑡 = ∫0

𝑇
 𝑠̃𝑀(𝑡; 𝑒 )𝑑𝑡, ∀𝑇 ≥ 𝑇

∗(𝑑)}                                                       (12) 

where ∫
0

𝑇
 𝑠̃𝑀(𝑡; 𝑒 )𝑑𝑡 and ∫

0

𝑇
 𝑠𝑀(𝑡)𝑑𝑡 represents the production count of the last machine 𝑆𝑀 with 

and without disruption event 𝑒 = (𝑀, 𝑇𝑑 , 𝑑 ) respectively. 

Our previous study (Zou, Chang, Arinez, and Xiao 2017) defined the opportunity window of a 

machine 𝑆𝑗 along a serial production line with finite buffers as the time it takes for the buffers 

between machines 𝑆𝑗  and the slowest machine 𝑆𝑀∗  to become empty (𝑗 < 𝑀∗) or full (𝑗 > 𝑀∗) 

when 𝑆𝑗 is forced down. 

Besides, the authors have proved that there will be a permanent production loss only if the 

duration of disruption event exceeds the opportunity window. Such a permanent production loss 

due to an elongated disruption is also permanent to other machines of the line (Zou, Chang, Arinez, 

Xiao, et al. 2017).  In case of a disruption event 𝑒 𝑖 = (𝑗, 𝑡𝑖, 𝑑𝑖 , ) , which is greater than its 

corresponding opportunity window 𝑂𝑊𝑗(t), then for any machine 𝑆𝑗 , there exists 𝑇∗ ≥ 𝑡 + 𝑑 , 

which is also dependent on the relative position of machine 𝑆𝑗 with respect to the slowest machine 

 𝑆𝑀∗, such that: 

∫
0

𝑇
 𝑆𝑗(𝑡

′)𝑑𝑡′ − ∫
0

𝑇
𝑆𝑗(𝑡

′, 𝑒 )𝑑𝑡′ =
(𝑑−𝑂𝑊𝑗(𝑡))

𝑇𝑀∗
 ,    ∀𝑇 ≥ 𝑇∗                                (13) 



PPL is a key measure to analyze the production system's performance. Any stoppage of the 

slowest machine 𝑆𝑀∗  contributes to the PPL (Zou, Chang, Arinez, Xiao, et al. 2017). To extend 

this concept to a multi-product production line, a disruption on the slowest machine 𝑆𝑀∗ may not 

necessarily result in PPL. Therefore, the permanent production loss for this system can be defined 

as follows. 

Remark 1: For a production line with a mobile robot subject to random failures, if the slowest 

critical machine 𝑆𝑠𝑐  stops for a duration of 𝐷𝑠𝑐(𝑇) during a time [0, 𝑇],  the permanent production 

loss can be defined as 

𝑃𝑃𝐿(𝑇) =
𝐷𝑠𝑐(𝑇) 

𝑇𝑠𝑐+𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗,𝑠𝑐                                                        (14) 

It is proved by (Li et al. 2014) that any downtime on the slowest machine 𝑆𝑀∗ adds to permanent 

production loss, which is given as  

𝑃𝑃𝐿(𝑇) =
𝐷

𝑇𝑀∗
 

where 𝐷 represents the length of the duration for which the slowest machine is down and 𝑇𝑀∗ 

represents its cycle time. 

For a multi-product system, a stoppage on only the slowest critical machine 𝑆𝑠𝑐 will result in 

permanent production loss, as it processes all product types of the system. Also, a part can only be 

finished if it is loaded, processed, and unloaded, so the cycle time of the slowest critical machine  

𝑆𝑠𝑐 equals 𝑇𝑠𝑐 + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗,𝑠𝑐

 , where the loading and unloading times are included in the travel time of 

the mobile robot. Therefore, permanent production loss of a multi-product dynamic system is 

𝑃𝑃𝐿(𝑇) =
𝐷𝑠𝑐(𝑇) 

𝑇𝑠𝑐 + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗,𝑠𝑐

 

5.2.Permanent Production Loss Attribution 



For a deterministic scenario, where the disruptions 𝑾(𝑡) are known, the total PPL can be attributed 

to an individual machine and can identify the impact of each machine’s downtime on the system.  

For the system with multiple products, the state 𝒃(𝑡), which is the buffer level of each buffer 𝑏⃗ 𝑖 

at time 𝑡, can be measured by using Eq. (9)-(11). For a multi-product system subject to known 

disruption events 𝑒 𝑖 = (𝑗, 𝑡𝑖, 𝑑𝑖)  within time [0, 𝑇] , we have 𝑌𝑗(𝑡) = 𝑌𝑗(𝑡𝑖), ∀𝑡 ∈ [𝑡𝑖 ,  𝑡𝑖 + 𝑑𝑖] , 

since machine 𝑆𝑗 stops from 𝑡𝑖. It is clear from equation (14) that every unit of PPL can be related 

to the downtime on the slowest critical machine 𝑆𝑠𝑐. The PPL attribution is discussed in three 

cases. 

5.2.1. Case 1 

Only one disruption event occurs. A disruption event 𝑒 𝑖 = (𝑗, 𝑡𝑖 , 𝑑𝑖) does not overlap with other 

disruption events within [𝑡𝑎 , 𝑡𝑏] ⊆ [𝑡𝑖,  𝑡𝑖 + 𝑑𝑖], the production loss due to 𝑒 𝑖 during this interval 

is  

𝑃𝑃𝐿𝑒 𝑖[𝑡𝑎 , 𝑡𝑏] = max{0, ((𝑡𝑏 − 𝑡𝑎)/(𝑇𝑠𝑐 + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗,𝑠𝑐

)) − (𝑌𝑗(𝑡𝑎) − 𝑌𝑠𝑐(𝑡𝑎) + 𝛽𝑗,𝑠𝑐)}      (15) 

where  𝑃𝑃𝐿𝑒 𝑖[𝑡𝑎 , 𝑡𝑏] represents the production loss due to 𝑒 𝑖 within [𝑡𝑎 , 𝑡𝑏] under deterministic 

scenario. 

Eq. (15) shows that the PPL will start to accumulate after the buffers between machine 𝑆𝑗 and 

the critical slowest machine 𝑆𝑠𝑐 become full (𝑗 > 𝑠𝑐) or empty (𝑗 < 𝑠𝑐). 

5.2.2. Case 2 

A disruption event 𝑒 1 = (𝑗1, 𝑡1, 𝑑1) overlaps with another disruption event 𝑒 2 = (𝑗2, 𝑡2, 𝑑2) within 

[𝑡𝑎 , 𝑡𝑏], where 𝑡𝑎 ≥ max (𝑡1, 𝑡2) and 𝑡𝑏 ≤ min (𝑡1 + 𝑑1, 𝑡2 + 𝑑2). In such a case, the permanent 

production loss in [𝑡𝑎 , 𝑡𝑏] can be attributed to either event based on any reasonable principles. The 

permanent production loss is attributed to the disruption event whose corresponding machine has 

a smaller opportunity window. In case of equal opportunity windows, the permanent production 



loss is equally attributed to the involved disruption events. Using the similar concept used by (Zou, 

Chang, Arinez, Xiao, et al. 2017), the production losses attributed to the overlapping disruption 

events during the time [𝑡𝑎  , 𝑡𝑏] can be calculated based on equation (15) as follows. 

𝑃𝑃𝐿𝑒 1[𝑡𝑎 , 𝑡𝑏] =

{
 
 

 
 
𝑃𝑃𝐿𝑒 1[𝑡𝑎 , 𝑡𝑏],          if 𝑌𝑗1(𝑡𝑎) + 𝛽𝑗1,𝑠𝑐 < 𝑌𝑗2(𝑡𝑎) + 𝛽𝑗2,𝑠𝑐

 
 𝑃𝑃𝐿𝑒 1[𝑡𝑎 , 𝑡𝑏]

2
,       if 𝑌𝑗1(𝑡𝑎) + 𝛽𝑗1,𝑠𝑐 = 𝑌𝑗2(𝑡𝑎) + 𝛽𝑗2,𝑠𝑐

0,                                  if  𝑌𝑗1(𝑡𝑎) + 𝛽𝑗1,𝑠𝑐 > 𝑌𝑗2(𝑡𝑎) + 𝛽𝑗2,𝑠𝑐
              

 

                              (16) 

𝑃𝑃𝐿𝑒 2[𝑡𝑎  , 𝑡𝑏] =

{
 
 

 
 
𝑃𝑃𝐿𝑒 2[𝑡𝑎 , 𝑡𝑏] ,      if 𝑌𝑗2(𝑡𝑎) + 𝛽𝑗2,𝑠𝑐 < 𝑌𝑗1(𝑡𝑎) + 𝛽𝑗1,𝑠𝑐 

 
𝑃𝑃𝐿𝑒 2[𝑡𝑎 , 𝑡𝑏] 

2
,     if 𝑌𝑗2(𝑡𝑎) + 𝛽𝑗2,𝑠𝑐 = 𝑌𝑗1(𝑡𝑎) + 𝛽𝑗1,𝑠𝑐

0,                               if  𝑌𝑗2(𝑡𝑎) + 𝛽𝑗2,𝑠𝑐 > 𝑌𝑗1(𝑡𝑎) + 𝛽𝑗1,𝑠𝑐
              

 

                                                                                                                                                   

(17) 

where 𝑌𝑗(𝑡𝑎) − 𝑌𝑠𝑐(𝑡𝑎) + 𝛽𝑗,𝑠𝑐  is the opportunity window of machine 𝑆𝑗 . OW, as discussed in 

section 5.1, is the time it takes for the buffers between machine 𝑆𝑗 and 𝑆𝑠𝑐 to become empty (𝑗 <

𝑠𝑐) or full (𝑗 > 𝑠𝑐). Therefore, in case of disruption events on two machines 𝑆𝑗1 and 𝑆𝑗2, the OW 

decides the attribution of production loss.  

5.2.3. Case 3 

Multiple disruption events 𝐸⃗ = (𝑒 1, 𝑒 2… , 𝑒 𝑛) occurs during the time period [𝑡𝑎 , 𝑡𝑏]. In this case, 

the production loss needs to be further attributed to each machine 𝑆𝑖 and disruption event 𝑒 𝑖. Based 

on the discussion in case 2 above, the production loss can be attributed to the disruption event 𝑒 𝑖 =

(𝑗𝑖, 𝑡𝑖, 𝑑𝑖), 1 ≤ 𝑖 ≤ 𝑛 during the time [𝑡𝑎  , 𝑡𝑏] as follows 

𝑃𝑃𝐿𝑒 𝑖[𝑡𝑎 , 𝑡𝑏] = 𝑃𝑃𝐿[𝑡𝑎 , 𝑡𝑏]/𝜌                                                   (18) 



where 𝜌 denotes the number of all the corresponding events that are equally contributing to the 

whole production loss of the line during a time [𝑡𝑎 , 𝑡𝑏].  

The production loss can be further attributed to individual machines. For a sequence of 

disruption events 𝑒 𝑗,1,…𝑒 𝑗,𝑛  on machine 𝑆𝑗  during a time [0, 𝑇], the PPL caused by machine 𝑆𝑗 

within [0, 𝑇] can be measured as: 

𝑃𝑃𝐿𝑗[0, 𝑇] = ∑ 𝑃𝑃𝐿𝑒 𝑗,𝑞
𝑛
𝑞=1                                                     (19) 

5.3. Demand Dissatisfaction 

Demand 𝐷𝑙(𝑡) is defined as the customer’s order for a product type 𝑙 at a time 𝑡. Demand is a 

major factor in analyzing the performance of a production line and its satisfaction/dissatisfaction 

decides the line’s capability. A demand 𝐷𝑙(𝑡) is satisfied if the production line produces the 

required quantity during a time [0, 𝑡] , otherwise, it is dissatisfied. In a real-time production 

environment, it is very challenging to satisfy market demand because the production line faces 

random disruption events, and the demand is not consistent. There is significant literature available 

on the optimization of demand satisfaction and production lines’ throughput (Turki, Sauvey, and 

Rezg 2018, Rachih, Mhada, and Chiheb 2022). However, the scope of this paper excludes the 

optimization part and focuses on its analysis only. 

For a multi-product production line, the system faces permanent production loss only if the 

disruption is on a critical machine 𝑆𝑖𝑐. If a machine 𝑆𝑖 other than the critical one faces an elongated 

failure exceeding the opportunity window, the system may dissatisfy the demand for product type 

𝑙 , which is passing through the disrupted machine 𝑆𝑖.  

Demand dissatisfaction is considered as an equivalent permanent production loss in this paper 

and for each product type 𝑙. The authors assume the demand 𝐷𝑙(𝑡) to be equal to the production 

quantity of each product type 𝑙 under an ideal scenario at time 𝑡, i.e.,  𝐷𝑙(𝑡) = 𝑌𝑀
𝑙 (𝑡). Due to the 



stochastic nature of the system, the actual production is always less than the ideal production. This 

difference in the production quantities under different scenarios is called net loss, represented as 

𝑁𝑙(𝑡), then  

𝑁𝑙(𝑡) = 𝑌𝑀
𝑙 (𝑡) − 𝑌𝑀

𝑙 (𝑡, 𝑒 )                                                         (20) 

where 𝑌𝑀
𝑙 (t) represents the end-of-line machine 𝑆𝑀  production count for product type 𝑙  under 

ideal conditions and 𝑌𝑀
𝑙 (𝑡, 𝑒 ) represents the real production of end-of-line machine 𝑆𝑀 for product 

type 𝑙 under disruption events 𝑒 . 

In addition, 𝑄𝑙(𝑡) is defined as a production loss threshold for product type 𝑙 during time 𝑡. 𝑄𝑙 

is a qualitative parameter and is defined based on the demand history of the respective product 

type 𝑙. Therefore, the demand satisfaction/dissatisfaction can be defined as: 

𝑁𝑙(𝑡) ≤ 𝑄𝑙(𝑡)             𝐷𝑒𝑚𝑎𝑛𝑑 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑
𝑁𝑙(𝑡) > 𝑄𝑙(𝑡)        𝐷𝑒𝑚𝑎𝑛𝑑 𝑖𝑠 𝑑𝑖𝑠𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

 

A demand 𝐷𝑙(𝑡) for a product type 𝑙 during the time [0, 𝑡] is said to be satisfied if the net loss of 

product type 𝑙, i.e., 𝑁𝑙(𝑡) does not exceed the production loss threshold 𝑄𝑙(𝑡) during the time 

[0, 𝑡], otherwise, there is a demand dissatisfaction for the product type 𝑙. 

6. Case Study 

In this section, a case study is presented to numerically validate the model. First, the fidelity of the 

proposed multi-product dynamic mathematical model is validated for which the proposed model 

is compared with a discrete event simulation model. Second, the authors verify the proposed 

methods for the permanent production loss evaluation and attribution and demand dissatisfaction.  

To demonstrate the aforementioned goals, extensive research is carried out under deterministic 

scenarios. For the validation reliability, 100 different production lines are used for the evaluation 

of the model fidelity, which consists of practical industries like automotive assembly lines, battery, 

and semi-conductor lines etc. 



For demonstration purpose, the authors use a segment of a mobile robot-assisted multi-product 

production line consisting of 5 machines, 4 intermediate buffers and one mobile robot. A schematic 

diagram of the line is given in below Fig. 2. The production line processes 3 types of products, as 

shown in Fig. 2. The parameters used in this study are given in Tables 1, 2, and 3. 
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Figure 2: 5-Machines, 4-buffers line with a mobile robot for 3 types of products 

Table 1: Machines’ operation on each product type, 𝑷𝒍𝒊 

Machine 

Product 

1 2 3 4 5 

1 1 0 1 1 1 

2 1 1 1 0 1 

3 1 1 1 1 1 

 

Table 2: Initial buffers and buffer capacity 

Initial Buffers 

Buffer 

1 

Buffer 

2 

Buffer 

3 

Buffer 

4 

0 0 0 0 



Buffer’s Capacity     

Product type 1 15 25 35 25 

Product type 2 15 25 35 25 

Product type 3 15 25 40 15 

 

Table 3: Machines' cycle time, MTBF and MTTR 

 

 

 

 

 

6.1.Fidelity of the Proposed Model 

For validation purpose, the production count from the proposed dynamic math model and 

simulation built-in Simul8 are used. The time duration is 5000 minutes. The production count for 

each product type by the mathematical model and simulation model is compared. From the 

numerical study for the 100 lines, the average error between the mathematical and simulation 

model is observed to be 1.7%. Since about 5% error is considered acceptable (Kumar and Varaiya 

2015, Li and Meerkov 2008) , the model is claimed to be accurate. 

As an illustration, the results for the production line in Fig. 2 from both the proposed model and 

simulation are studied. The data is divided into three groups: input data, randomly generated data, 

and model output data. Input data comprises machines’ cycle time, given in Tables 3 and 4, 

operations’ sequence for individual product type, given in Table 1, initial buffers, and buffers’ 

capacity, given in Table 2, machines’ MTTR and MTBF, given in Table 3, and production loss 

Machine M1 M2 M3 M4 M5 

Cycle Time, 𝑻𝒊 + 𝑻𝒕𝒓𝒂𝒗𝒆𝒍
𝒋𝒊

 2 4 6 3 5 

MTBF 300 400 250 350 300 

MTTR 40 50 30 40 35 



threshold for each product type, given in Table 6. Randomly generated data includes the machines’ 

random disruption events. Using exponential distribution, these disruptions are generated and fed 

into the model for the system’s analysis. Based on the input and random data, the model results in 

the system state at each time step. This data includes the machines’ production and buffer levels 

at a certain time. Table 5 presents the production data for the machine 𝑆5  with and without 

disruptions. Figure 3 and 4 represents the detailed production data and its comparison based on the 

proposed model. The production data is generated based on the developed mathematical model. 

The dynamic mathematical model assumes a continuous flow model, while the simulation is based 

on a discrete model. Therefore, the discrete flow and continuous flow properties can be observed 

from the result. However, the systems’ variation follows the same pattern for both models. From 

the results, both the continuous flow model and discrete flow model highly resemble each other. 

For the demonstration purpose, the production counts of the fifth machine 𝑆5 is shown in Fig.3. It 

can be observed that the result of the simulation model (red solid line) and dynamic model (blue 

dashed line) overlaps with each other. It validates the fidelity of the model and thus it can be used 

for the evaluation of production performance for a multi-product production line.  

 



(a)                                                                        (b) 

 

(c) 

Figure 3: (a)Model validation for product type 1, (b) product type 2, (c) product type 3,  

6.2. Validation of Performance Evaluation  

6.2.1. PPL evaluation 

To demonstrate the PPL evaluation, let the critical slowest machine be 𝑆3 that processes all product 

types 𝑙 with the highest cycle time in Table 3, 𝑇3 + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗3

= 6. First, using the suggested method 

for production loss identification and attribution as Eqs. (18) and (19), the PPL attribution to each 

event and machine is obtained. For example, a production loss of 36 units for product type 2 and 

3 is attributed to the fifth machine 𝑆5. 

Next, the production improvement is evaluated in a controlled simulation, where downtime is 

eliminated on each machine one at a time and then its impact on the overall production output is 

calculated. Both the PPL attribution and production improvement are represented in Fig. 4. It also 

depicts individual product type 𝑙  loss attribution. The PPL attribution and overall production 

improvement bars in Fig.4 represent the average attribution and improvement for all product types.  



 

Figure 4: Overall production improvement and PPL distribution 

The permanent production loss is only attributed to the critical machines 𝑆1 , 𝑆3 , and 𝑆5 . A 

disruption on these machines affects the production of all product types and thus results in a 

permanent production loss if the downtime exceeds the corresponding opportunity window. 

Whereas disruption on the non-critical machines 𝑆2  and 𝑆4  can only affect the production of 

product types 2 and 3, or product types 1 and 3 respectively. If the downtime on these non-critical 

machines exceeds the opportunity window, there may be a demand dissatisfaction for the 

corresponding product types. 

Results in Fig.4 show that the PPL is in close agreement with the overall productivity 

improvement in the corresponding controlled simulation experiments for critical machines 𝑆1, 𝑆3, 

and 𝑆5 . This means that the PPL attribution can accurately identify and rank each machine’s 

responsibility for system-level production loss. 

6.2.2. Demand Dissatisfaction 



For demand dissatisfaction analysis, the same production line is studied but with different cycle 

times, 𝑇𝑖 + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙
𝑗𝑖

. New cycle times are given in Table 4. This scenario addresses the demand 

dissatisfaction for each product type. From Tables 1 and 4, the slowest machine 𝑆2 is not the 

critical machine and thus, under elongated disruptions, there will only be a demand dissatisfaction. 

The model is run for the same period of 5000 minutes. Using the same controlled 

experimentation, the production count of the fifth machine 𝑆5 with and without downtime for each 

product type can be observed from Table 5. 

Table 4: Machine cycle time for scenario 2 

Machine M1 M2 M3 M4 M5 

Cycle time, 𝑻𝒊 + 𝑻𝒕𝒓𝒂𝒗𝒆𝒍
𝒋𝒊

 5 6 3 4 2 

 

Table 5: Production count of 𝑆5 with and without disruptions for each product type 

Production Count With disruption Without 

disruption, 𝑫𝒍  

Net Loss, 𝑵𝒍 

Product 1 797 832 35 

Product 2 773 841 68 

Product 3 765 837 72 

 

Product types 2 and 3 are more affected by downtime as compared to type 1. The main reason 

is that product types 2 and 3 are passing through the slowest machine 𝑆2. In case of disruption on 

𝑆2, product types 2 and 3 may be affected and result in demand dissatisfaction if there is an 

elongated downtime. However, there is no PPL, as the other machines are still processing product 



type 1. For the fifth machine 𝑆5, it can be observed that there is a significant difference between 

production counts for each product type. In addition, the production loss threshold for each product 

type at time 𝑡, 𝑄𝑙(𝑡) is given in Table 6, which is defined based on the ideal capability of the 

production line and demand history for each product type during a time [0, 𝑡]. 

 

Table 6: Production loss threshold for each product type, 𝑙 

Product, 𝒍 1 2 3 

Threshold, 𝑸𝒍 40 40 40 

 

A production loss for product type 𝑙  under the threshold 𝑄𝑙  can happen due to any random 

disruptions on the production line. Only product type 1 satisfies the demand, while product type 2 

and 3 exceeds 𝑄𝑙  and thus dissatisfies the market demand. 

7. Conclusion and Future Work 

In this paper, a multi-product production line, handled by a mobile robot is modelled. Using the 

concept of a serial production line, a dynamic model is extended to include multiple products. A 

product follows a unique sequence of operations along the production line. The paper addresses 

the performance of the whole production line in case of a disruption event on an individual machine. 

As compared to a serial production line, a single-machine disruption for an elongated time may 

not result in a permanent production loss. However, there might be a demand dissatisfaction for 

the product type passing through the disrupted machine. A mobile robot is used for the products’ 

handling among machines and buffers, based on a given determined policy. The control problem 

of mobile robot will be addressed in future work. 
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