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Abstract 

In today’s manufacturing system, robots are expected to perform increasingly complex manipulation tasks in 

collaboration with humans. However, current industrial robots are still largely preprogrammed with very little autonomy 

and still required to be reprogramed by robotics experts for even slightly changed tasks. Therefore, it is highly desirable 

that robots can adapt to certain task changes with motion planning strategies to easily work with non-robotic experts in 

manufacturing environments. In this paper, we propose a user-guided motion planning algorithm in combination with 

reinforcement learning (RL) method to enable robots automatically generate their motion plans for new tasks by learning 

from a few kinesthetic human demonstrations. Features of common human demonstrated tasks in a specific application 

environment, e.g., desk assembly or warehouse loading/unloading are abstracted and saved in a library. The definition of 

semantical similarity between features in the library and features of a new task is proposed and further used to construct 

the reward function in RL. To achieve an adaptive motion plan facing task changes or new task requirements, features 

embedded in the library are mapped to appropriate task segments based on the trained motion planning policy using Q-

learning. A new task can be either learned as a combination of a few features in the library or a requirement for further 

human demonstration if the current library is insufficient for the new task. We evaluate our approach on a 6 DOF UR5e 

robot on multiple tasks and scenarios and show the effectiveness of our method with respect to different scenarios. 
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1. Introduction 

With the development of Industry 4.0, there is an increasing demand for robots to work adaptively and 

smartly with humans in industrial settings (El Zaatari et al., 2019). However, currently, motions of industrial 

robots are still largely preprogrammed to perform certain repetitive tasks. When tasks sightly change, robots 

need to be reprogrammed, which often requires considerable robotic expertise and time. This would 

significantly impair the efficiency of industrial robots that constantly encounter new tasks, and hence limit 
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their use in quite a few industrial scenarios, e.g., small-batch manufacturing that processes highly customized 

products (Jurczyk-Bunkowska, 2020; Poon et al., 2011). Therefore, how to enable robots to collaborate with 

non-expert personnel and automatically plan adaptive motions for different tasks is a nontrivial and 

challenging research problem in today’s robotics research (Aleotti & Caselli, 2006; Kragic et al., 2018; Laha, 

Figueredo, et al., 2021). In this paper, our goal is to develop a scalable and adaptive motion planning method 

to automatically generate motion plans for new robotic manipulation tasks without manually reprogramming 

robots. To achieve this goal, we propose to represent a task by a sequence of critical constraints, and combine 

human demonstrations with motion planning algorithms to generate motion plans to fulfill those constraints. 

In literatures, the use of human demonstration to teach a robot is often referred to as Learning from 

Demonstration (LfD). An important question in LfD is how to acquire demonstrations for learning, e.g., using 

vision-based sensors, kinesthetic, and data gloves or master-slave systems (Argall et al., 2009; Zhu & Hu, 

2018). In this paper, we opt to use kinesthetic demonstrations for the following considerations. On one hand, 

for kinesthetic demonstrations, there is no correspondence issue between the kinematic structure of the 

demonstrating system and the follower robot. On the other hand, learning from kinesthetic demonstrations 

can potentially benefit from a large variety of existing approaches in learning motion from data, which can 

be classified as follows: (a) demonstrated trajectory decomposition (Hwang et al., 2003; Madridano et al., 

2021), (b) nonlinear regression techniques (Aleotti & Caselli, 2006; Calinon et al., 2007; Kulić et al., 2008), 

and (c) dynamical systems based approach (Gribovskaya et al., 2011; Ijspeert et al., 2013; Jokić et al., 2022) 

Specifically, the trajectory decomposition approaches (Hwang et al., 2003; Madridano et al., 2021) use 

spline functions to decompose the trajectories. These methods ignore the noises in the demonstration, which 

may be nontrivial especially when the motion information is obtained through vision or teleoperation. 

Nonlinear regression techniques use statistical techniques to incorporate the uncertainty of sensing in the 

estimation. For example, (Aleotti & Caselli, 2006) uses Hidden Markov Model for trajectory selection and 

Non-Uniform Rational B-Splines (NURBS) for trajectory approximation. A data-driven approach using 

Gaussian Mixture Model (GMM) is adopted in (Calinon et al., 2007). However, these statistical approaches 

require multiple demonstrations. Furthermore, neither the statistical approaches nor the spline decomposition 

takes the kinetic transformations of the underlying task space, i.e., 𝑆𝐸(3), into account. The dynamical 

systems-based approach, or dynamical motion primitives (DMPs), on the other hand, can learn from single 



 

 

examples (Ijspeert et al., 2013). However, in these settings, most works assume that there is a dynamical 

system modeling each degree-of-freedom (DoF) of the end effector. In (Gribovskaya et al., 2011), the authors 

assume a unit quaternion representation of the rotation space. However, they assume decoupled primitives 

for the four parameters of the unit quaternion and then perform a normalization. The generalization of DMPs 

is predicated on the region of attraction of the dynamical system used. In the case of orientations, there is no 

clear characterization of the region of attraction of the dynamical system on the group of rigid body rotations, 

i.e., 𝑆𝑂(3). Therefore, the generalization capability of these methods is not clear when both the position and 

orientation of the end effector are relevant for the task. Therefore, it is imperative to develop a systematic 

LfD method to ensure that the underlying task space structure of 𝑆𝐸(3) is conformed and exploited during 

motion generation. 

In general, techniques for motion planning and robot control can be divided into Joint-space based 

approaches and Task-space based approaches (Kavraki et al., 1996; Khatib, 1987). Joint space-based motion 

planning approaches handle the planning problem and compute the motion directly in the joint space of the 

robot. The strength of joint space methods lies in finding feasible paths that avoid obstacles (Berenson et al., 

2009). However, handling task constraints in joint-space based planning approaches is quite complicated 

(Jaillet & Porta, 2012) because they lead to nonlinear constraints in joint angles.Task space based planning 

approach is historically older than joint-space based approaches and rose out of the resolved motion rate 

control (RMRC) in (Klein & Huang, 1983). Related to the task space based planning approaches are the 

operational space based control approaches (Nakanishi et al., 2008), where the redundancy resolution may be 

done at either the velocity level or acceleration level. 

Recently, (Laha, Rao, et al., 2021) develop a user-guided motion planning method that learns from only 

one human demonstration to generate motion plans for semantically similar task instances. They first compute 

an “imitated path” in the task space  by replicating the human demonstration based on the goal position of 

the new task instance. Then, use the “imitated path” as the guidance of Screw Linear Interpolation (ScLERP) 

until the current configuration of the end-effector finally blends into the imitated path. However, task 

constraints before the current configuration blends into the imitated path are not guaranteed to be satisfied. 

In addition, the only explicit task constraints considered in this work is the goal position of the task instance. 

Other explicit task constraints like positions and orientations of some critical configurations and environment 



 

 

conditions are not considered. More importantly, the method in (Laha, Rao, et al., 2021) is only able to 

generate motion plans when the whole new task is semantically similar to the demonstrated one, e.g., moving 

the same water bottle, but to a different goal position. As a matter of fact, if we decompose a robot motion 

into several portions appropriately, we might find that some of those portions could be semantically similar 

across different tasks. For example, a portion of robot motions in a transferring task could be similar to that 

in a stacking task. Based on this observation, it is possible to generate motion plans for completely new tasks 

purely based on old tasks that the robot has been taught without additional demonstrations or programming 

efforts from human. 

In this paper, we develop a motion planning method that can enable the robot to learn from one or even 

multiple human demonstrations to generate adaptive motion plans for new manipulation tasks in a certain 

manufacturing environment. First, we define a syntax to specify the manipulation task in an assembly and 

loading/unloading scenario considering both explicit task constraints, e.g., critical configurations of the end-

effector, and environment constraints, e.g., dimension and location of the obstacle. Next, we build a library 

to store human demonstrated features which are embedded in screw transformation throughout 

demonstrations. The same method can also be applied to abstract features of the manipulation task. A criterion 

to identify semantical similarity of a human demonstration and certain part of the manipulation task is defined. 

Based on this criterion, the appropriate features of human demonstrations will be mapped to the manipulation 

task. Therefore, to generate a motion plan for the manipulator to satisfy both explicit and implicit task 

constraints is equivalent to mapping appropriate features in the library to corresponding parts of the 

manipulation task. In this work, we formulate the motion planning problem in 𝑆𝐸(3) into a Markov Decision 

Process (MDP) framework and use the Q-learning method to train a general motion planning policy to 

generate adaptive motion plans in 𝑆𝐸(3) for different tasks in the same assembly and loading/unloading 

environment. Finally, inverse kinematics (IK) is used to calculate corresponding motion plans in the joint 

space to control the robot to execute learned motion plans. 

Thus, the main contributions of this paper are: (1) Developing a novel method to capture kinematic features 

(or semantics) of human demonstrations and/or tasks, and defining criteria to identify semantically similar  

tasks; (2) Developing a mapping method to associate semantically similar demonstrations and tasks to enable 

robots to learn from human demonstrations; (3) Formulating the problem of mapping semantically similar 



 

 

human demonstrations to perform new tasks in an MDP framework and implementing a Q-learning algorithm 

to solve the formulated problem effectively.   

The reminder of this paper is organized as follows: The learning from demonstration and motion planning 

problem is stated in Section 2. In Section 3, the problem is formulated as an MDP and solved by the Q-

learning algorithm. Section 4 describes our approach of inverse kinematics. Case studies and conclusions are 

provided in Section 5 and 6 respectively. 

2. Problem Formulation  

In this paper, a robot is required to do manipulation tasks with explicit and implicit constraints on end-

effector configurations during a motion. We assume that the robot has basic capability to move its end-

effector from one configuration to another in the absence of any constraints. Our goal is to develop a method 

to enable the robot to use human demonstrations from a few common tasks stored in a scenario specific library 

and to plan point-to-point motions for other new tasks. The human demonstration library can be formed for 

each specific working scenarios, such as desk assembly library, warehouse sorting library etc. On human 

demonstrations, we take (one-time) kinaesthetic demonstration for one type of tasks and the information is 

observed by the screw transformation throughout the trajectory. Using such screw transformation, the feature 

of the manipulation task can be abstracted in the task space. To select the appropriate human demonstration 

to be learnt from for the manipulation task, criteria are built by comparing the screw transformation of the 

human demonstration and corresponding screw transformation of a few critical configurations of the task. 

Following the criteria, features of appropriate human demonstrations can be mapped to the new manipulation 

task in task space. 

2.1. Mathematical Background  

In this paper, the joint space or configuration space is represented by 𝒥, which is the set of all joint angles 

of the robot manipulator. 𝑆𝐸(3) denotes the Special Euclidean group of 3, which represents the task space 

contains all rigid body motions (i.e., rotations and translations) (Selig, 2005). To describe configurations of 

the end-effector, we adopt dual quaternions since they can encode both rotation and translation in rigid body 

transformation. A dual quaternion 𝑫 is defined as (Selig, 2005): 

𝑫 = 𝒅𝑟 +
1

2
𝜖𝒅𝑡⨂𝒅𝑟 (1) 



 

 

where 𝜖 ≠ 0, but 𝜖2 = 0. In this definition, the pure translation of the rigid body is represented by the 

quaternion 𝒅𝑡 which is denoted as: 

 𝒅𝑡 = (0, 𝒕̂) (2) 

where 𝒕̂ = 𝑡𝑥 𝒊̂ + 𝑡𝑦𝒋̂ + 𝑡𝑧𝒌̂ is the translation vector in 𝑆𝐸(3). The unit quaternion 𝒅𝑟  representing the pure 

rotation of the rigid body can also be expressed as: 

𝒅𝑟 = cos (
𝜙

2
) + 𝒏̂ sin (

𝜙

2
) (3) 

where 𝒏̂ = 𝑛𝑥 𝒊̂ + 𝑛𝑦𝒋̂ + 𝑛𝑧𝒌̂ is a unit vector in 𝑆𝐸(3) representing the rotation axis, and 𝜙 is the rotation 

angle. Using this 𝒅𝑟 , any vector 𝑣̂  can be rotated an angle 𝜙  about the axis 𝒏̂  by using the quaternion 

sandwich 𝒅𝑟𝑣̂𝒅𝑟
∗ , and 𝒅𝑟

∗  is the conjugate of 𝒅𝑟 . For more quaternion manipulations, we refer readers to 

(Figueredo, 2016). 

2.2. Specify Manipulation Tasks for the Robot 

First of all, the manipulation task comprehensible to the robot needs to be specified. Some research 

(Konidaris et al., 2018; Wang et al., 2018) describes a task, e.g., “open the door”, using a symbolic vocabulary 

based on the high-level Planning and Domain Definition Language (PDDL), e.g., {preposition of the door, 

precondition: door closed, effect: door open}, to build a task library. These high-level commands lack detailed 

kinematics information and cannot be directly translated to actionable information for the lower-level robot 

manipulation. (Hauser & Ng-Thow-Hing, 2011) sample reasonable modes for motions of a humanoid robot 

by specifying the manipulation as the starting and goal configurations, together with detailed transition 

configurations during the entire task in the task space. However, for a general manipulation task in practice, 

the specific transition from one configuration to another in both 𝑆𝐸(3) and 𝒥 is not known to the robot. 

Therefore, in this paper, the manipulation task is specified as a set of critical positions obtained from the 

known constraints based on task requirements (e.g., a specific goal position) and the environment constraints 

(e.g., the location of an obstacle), and the associated orientation tolerance for the end effector represented in 

𝑆𝐸(3) at these positions. 

Starting from an initial configuration of the end-effector, a manipulation task 𝑻𝑲 is defined as a sequence 

of 𝑛 critical configurations: 

𝑻𝑲 = {𝑐𝑜𝑛1, 𝑐𝑜𝑛2, … , 𝑐𝑜𝑛𝑛} (4) 



 

 

where 𝑐𝑜𝑛𝑖 , 𝑖 = 1, … , 𝑛, is a tuple of two < 𝑷𝑖 , 𝜽𝑖 >. In this tuple, 𝑷𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]
𝑇 is a vector in 𝑆𝐸(3) that 

specifies the position of 𝑐𝑜𝑛𝑖 , 𝜽𝑖 = [𝜃𝑖1, 𝜃𝑖2, 𝜃𝑖3]𝑇 , 𝜃𝑙1 ≤ 𝜃𝑖1 ≤ 𝜃𝑢1, 𝜃𝑙2 ≤ 𝜃𝑖2 ≤ 𝜃𝑢2, 𝜃𝑙3 ≤ 𝜃𝑖3 ≤ 𝜃𝑢3, is a 

unit vector in 𝑆𝐸(3) that defines Euler angles of 𝑐𝑜𝑛𝑖, and 𝜃𝑙1, 𝜃𝑙2, 𝜃𝑙3, 𝜃𝑢1, 𝜃𝑢2, 𝜃𝑢3 are the lower and upper 

bounds for corresponding Euler angles. For this task specification, only a few task-related explicit 

requirements are given. However, there might be implicit task constraints (e.g., maintain a certain orientation 

from one configuration to another) need to be complied by the robot. Our goal is to find a motion plan to 

satisfy all the task requirements.  

For example, a task 𝑻𝑲 of transferring a cup of water shown in Fig. 3 can be specified by four critical 

configurations, 𝑐𝑜𝑛1, 𝑐𝑜𝑛2, 𝑐𝑜𝑛3, 𝑐𝑜𝑛4, as summarized in Table 1. In this task, the end-effector is required to 

move a cup of water from the starting configuration 𝑐𝑜𝑛1 to the goal configuration 𝑐𝑜𝑛4 while maintaining 

the cup upward. It is noted that, to move the cup without spilling water out, the pitch and roll angles of the 

end-effector need to be constrained within a certain range while the yaw angle does not need to be constrained. 

Therefore, 𝛾 in Table 1 can be any number from −2𝜋 to 2𝜋, and 𝜃𝑖1 and 𝜃𝑖2 for each 𝜽𝑖 are set to be 0 for 

simplicity. Furthermore, if the orientation of the end effector is required to remain the same during the entire 

transferring, then 𝛾 can be also specified to be 0.  

 

Figure. 3 Critical configurations of a transferring task. The position of the end-effector is represented by the black dot and the orientation 

of the end-effector is represented by the triad.  

Table 1. Critical Configurations of 𝑻𝑲 

 



 

 

Remark 1:  In this paper, we only provide a syntax, i.e., Eqn. (4), on how to specify a manipulation task. 

Note that the syntax can help us to automatically translate task requirements to quantitative specifications as 

shown in Table 1. The practical task specification is typically provided by outside sources and is quite a 

heuristic practice. If the user has sufficient knowledge on the requirements of a new task and the 

corresponding environment constraints, one may better define the critical positions and the associated end 

effector orientations. This will help the robot better understand the new task and facilitates a more effective 

learning in performing the new task.  

2.3. Build the Library of Human Demonstrated Features 

To facilitate the learning from human demonstration, we want to build a library to include primitive or 

common tasks for specific working scenarios. For example, for a workshop that works on assembling height-

adjustable desks, the tasks of twisting screws clockwise and placing screws into assembly holes are common 

or primitive tasks and can be included in the library for this workshop or working scenario. To demonstrate 

these primitive tasks, the human operator can physically hold and move the robot’s end-effector from the 

initial configuration to the goal configuration. Throughout the transformation trajectory, the explicit and 

implicit task constraints embedded in this kinesthetic demonstration can be recorded by many commercial 

robots such as UR robots in the joint space 𝒥 as a time sequence of joint angles 𝝋𝑟𝑒𝑐 as: 

𝝋𝑟𝑒𝑐 = {𝝋(1), 𝝋(2), … , 𝝋(𝑚)} (5) 

where each  𝝋(𝑖) = [𝜑1(𝑖), 𝜑2(𝑖), … , 𝜑𝑟(𝑖)]𝑇 , 𝑖 = 1,2, … , 𝑚 is the vector representing joint angles of the 

manipulator,  𝑟 is the degrees of freedom (DOF) of the manipulator, the order of  𝑖 is the time sequence of 

the configurations reached during the motion. Using the forward kinematics mapping ℱ𝒦: 𝒥 → 𝑆𝐸(3), the 

corresponding human demonstration in the task space will be obtained as 𝑫𝑷 = {𝑫1, 𝑫2, … , 𝑫𝑚}, in which 

each 𝑫𝑗  is a dual quaternion denoted as 𝑫𝑗 = 𝒅𝑟𝑗 +
1

2
𝜖𝒅𝑡𝑗⨂𝒅𝑟𝑗  , 𝑗 = 1,2, … , 𝑚,  according to Eqn. (1). 

Therefore, 𝑫𝑷 represents the sequence of configurations of how a task is performed in 𝑆𝐸(3).  

From the human demonstration 𝑫𝑷 = {𝑫1, 𝑫2, … , 𝑫𝑚}, we compute the relative motion with respect to 

the final end effector configuration. Using the dual quaternion representation, the transformation 𝛿𝑗 between 

the final configuration (denoted by 𝑫𝑚) and every other configuration 𝑫𝑖 is: 

𝛿𝑗 = 𝑫𝑗
∗ ⊗ 𝑫𝑚  , 𝑖 = 1,2, … , 𝑚 − 1 (6) 



 

 

where 𝑫𝑗
∗ is the conjugate dual quaternion of 𝑫𝑗 and ⊗ is the dual quaternion product. It is noticed that all 

implicit task constraints are embedded in the sequence of 𝛿𝑗 during the motion, which is referred to as the 

feature of the human demonstration. As such, the feature of the 𝑘𝑡ℎ human demonstration in the task space 

can then be described as: 

𝑯𝑫𝑘
𝛿 = {𝛿1

𝐻𝐷𝑘 , 𝛿2
𝐻𝐷𝑘 , … , 𝛿𝑚−1

𝐻𝐷𝑘 } (7) 

Therefore, the library consisting of ℎ human demonstrated features in the task space can be denoted as: 

𝑳𝑩 = {𝑯𝑫1
𝛿 , 𝑯𝑫2

𝛿 , … , 𝑯𝑫ℎ
𝛿} (8) 

Based on the definition of the manipulation task and the library of human demonstrations, the problem 

studied in this paper can be described as follows: Given a library of human demonstrations 𝑳𝑩 =

{𝑯𝑫1
𝛿 , 𝑯𝑫2

𝛿 , … , 𝑯𝑫ℎ
𝛿}  and a new task 𝑻𝑲 = {𝑐𝑜𝑛1, 𝑐𝑜𝑛2, … , 𝑐𝑜𝑛𝑛}  in the task space 𝑆𝐸(3) , develop a 

method to find motion plan 𝑴𝑷 in the joint space 𝒥 for the new task by learning from human demonstrated 

features in 𝑳𝑩 such that the explicit task space constraints specified in each 𝑐𝑜𝑛𝑖 in 𝑻𝑲 is satisfied. If no 𝑴𝑷 

can be found, then a request for additional human demonstrations is made to satisfy all task-relevant 

constraints in 𝑻𝑲. 

2.4. Build criteria for selecting appropriate human demonstration for the new task 

In a previous work (Laha, Rao, et al., 2021), we demonstrate a method of learning by demonstration, where 

the robot is shown the exact demonstration that needs to be learned from. In this paper, we use a more 

advanced and realistic scenario that the human demonstrations are abstracted by features 𝑯𝑫𝑘
𝛿  and stored in 

a library 𝑳𝑩. Therefore, when performing a task specified by 𝑻𝑲, we first need to identify the appropriate 

one or more 𝑯𝑫𝑘
𝛿  to be learned from.  

Let 𝒕𝒌𝑠 ⊆ 𝑻𝑲 be a subset or the entire new task 𝑻𝑲 as: 

𝒕𝒌𝑠 = {𝑐𝑜𝑛𝑖 , 𝑐𝑜𝑛𝑖+1, … , 𝑐𝑜𝑛𝑤},   𝑖 ≥ 1, 𝑖 ≤ 𝑤 ≤ 𝑛 (9)

we need to determine a criterion that can facilitate the comparison of 𝒕𝒌𝑠 and a human demonstration 𝑯𝑫𝑘
𝛿 . 

Since 𝑯𝑫𝑘
𝛿  represents the relative motion with respect to the final end effector configuration, in order to 

compare 𝑯𝑫𝑘
𝛿  with 𝒕𝒌𝑠, the relative motion with respect to the final configuration in task 𝒕𝒌𝑠 needs to be 

obtained in a similar way to that of 𝑯𝑫𝑘
𝛿 . Based on Eqn. (1), the 𝑖𝑡ℎ configuration of the task 𝒕𝒌𝑠 can be 

written as: 



 

 

𝑫𝑖 = 𝒅𝑟𝑖 +
1

2
𝜖𝒅𝑡𝑖⨂𝒅𝑟𝑖  , 𝑖 = 1,2, … , 𝑛 (10) 

where 𝒅𝑡𝑖 = (0, 𝑷𝑖), 𝑷𝑖 is the position of the 𝑖𝑡ℎ critical configuration, 𝒅𝑟𝑖 is a unit quaternion that can be 

expressed as: 

𝒅𝑟𝑖 =

cos (
𝜃𝑖3

2
) cos (

𝜃𝑖2

2
) cos (

𝜃𝑖1

2
) + sin (

𝜃𝑖3

2
) sin (

𝜃𝑖2

2
) sin (

𝜃𝑖1

2
) +

(sin (
𝜃𝑖3

2
) cos (

𝜃𝑖2

2
) cos (

𝜃𝑖1

2
) − cos (

𝜃𝑖3

2
) sin (

𝜃𝑖2

2
) sin (

𝜃𝑖1

2
)) 𝒊̂ +

(cos (
𝜃𝑖3

2
) sin (

𝜃𝑖2

2
) cos (

𝜃𝑖1

2
) + sin (

𝜃𝑖3

2
) cos (

𝜃𝑖2

2
) sin (

𝜃𝑖1

2
)) 𝒋̂ +

(cos (
𝜃𝑖3

2
) cos (

𝜃𝑖2

2
) sin (

𝜃𝑖1

2
) − sin (

𝜃𝑖3

2
) sin (

𝜃𝑖2

2
) cos (

𝜃𝑖1

2
)) 𝒌̂

(11) 

where 𝜽𝑖 = (𝜃𝑖1, 𝜃𝑖2, 𝜃𝑖3) is the orientation of the 𝑖𝑡ℎ critical configuration of the end-effector. Therefore, the 

transformation, 𝛿𝑖
𝑡𝑘𝑠 , between the last critical configuration 𝑐𝑜𝑛𝑛 and any other critical configuration 𝑐𝑜𝑛𝑖 is 

defined as: 

𝛿𝑖
𝑡𝑘𝑠 = 𝑫𝑖

∗ ⊗ 𝑫𝑛 , 𝑖 = 1, … , 𝑛 − 1 (12) 

As such, the feature of the task 𝒕𝒌𝑠 can be represented as 𝒕𝒌𝑠
𝛿 = {𝛿1

𝑡𝑘𝑠 , 𝛿2
𝑡𝑘𝑠 , … , 𝛿𝑛−1

𝑡𝑘𝑠 }.  

Based on Eqn. (1), using dual quaternions 𝒖𝑗 and 𝒗𝑖 to represent 𝛿𝑗
𝐻𝐷𝑘 and 𝛿𝑖

𝑡𝑘𝑠 , the similarities between 

them are evaluated by the closeness/difference with respect to both rotation and translation. The closeness of 

their rotation can be evaluated using Euclidean distance as: 

𝛼(𝒖𝑗 , 𝒗𝑖  ) = min{‖𝒅𝑟

𝒖𝑗
− 𝒅𝑟

𝒗𝑖  ‖, ‖𝒅𝑟

𝒖𝑗
+ 𝒅𝑟

𝒗𝑖 ‖} (13) 

The difference between the translation direction of the 𝛿𝑖  and 𝛿𝑗
𝑡𝑘𝑠  is evaluated as the dot product of the 

normalized translation vector as: 

𝛽(𝒖𝑗 , 𝒗𝑖  ) =
𝒅𝑡

𝒖𝑗

|𝒅𝑡

𝒖𝑗
|

⋅
𝒅𝑡

𝒗𝑖

|𝒅𝑡
𝒗𝑖|

(14) 

Given tolerances ∆𝛼 and  ∆𝛽 , if 𝛼(𝒖𝑗 , 𝒗𝑖 ) ≤ ∆𝛼  and 𝛽(𝒖𝑗 , 𝒗𝑖 ) ≥ ∆𝛽 , then these two transformations are 

referred to as being “semantically similar”.  

Remark 2. According to a previous work (Laha, Rao, et al., 2021), if two transformations are sufficiently 

close within a certain tolerance (the practical value is about 10 degrees according to (Laha, Rao, et al., 2021)) 

in the task space, the corresponding solutions in the joint space using inverse kinematics can be uniquely 

determined by a small increment in joint angles. Since the human demonstration guarantees the feasible 



 

 

solution in the joint space without violating any joint limits, if the new task is “semantically similar” to a 

certain human demonstration based on Eqn. (13) and Eqn. (14), by learning from that human demonstration, 

the solution in the joint space can be ensured. Therefore, a criterion of semantic similarity between a task and 

a demonstration can be defined. 

Definition 1. Let 𝑝 be the number of critical configurations in a task feature 𝒕𝒌𝑠
𝛿, the task feature 𝒕𝒌𝑠

𝛿  and a 

human demonstrated feature 𝑯𝑫𝑘
𝛿  are semantically similar, denoted as 𝒕𝒌𝑠

𝛿 ∝ 𝑯𝑫𝑘
𝛿 , if the same number of 𝑝 

configurations on 𝑯𝑫𝑘
𝛿  can be allocated such that the following criterion is satisfied: 

∀𝒗𝑖 ∈ 𝒕𝒌𝑠
𝛿 , 𝑖 = 1, … , 𝑝, ∃𝛿𝑙 ∈ 𝑯𝑫𝑘

𝛿  → 𝛼(𝒖𝑗 , 𝒗𝑖 ) ≤ ∆𝛼 and 𝛽(𝒖𝑗 , 𝒗𝑖  ) ≥ ∆𝛽 (15) 

where 𝑙 = 𝑖, … , 𝑚 and 𝑚 is the last configuration in 𝑯𝑫𝑘
𝛿 .  

For example, for the same task 𝑻𝑲 shown in Fig. 3, four critical configurations can be specified in Table 

2 and corresponding features can be derived in Table 3 using Eqn. (12). Suppose there exists a library 𝑳𝑩 

that includes features 𝑯𝑫1
𝛿  and 𝑯𝑫2

𝛿  summarized in Table 4, we want to compare these features with the 

feature of the task 𝑻𝑲. From Table 3 and Table 4, we find that, for each 𝛿𝑖
𝑻𝑲, 𝑖 = 1,2, we can find a 𝛿𝑗 in 

𝑯𝑫1
𝛿 , such that 𝛼(𝒖𝑗, 𝒗𝑖  ) = 0 and 𝛽(𝒖𝑗 , 𝒗𝑖) ≥ 0. For 𝛿3

𝑻𝑲, we find 𝛿1  in 𝑯𝑫2
𝛿 , such that 𝛼(𝒖𝑗, 𝒗𝑖  ) = 0 and 

𝛽(𝒖𝑗 , 𝒗𝑖  ) ≥ 0. Given ∆𝛼= 0.5 and ∆𝛽= 0, based on Definition 1, the feature of the segment between 𝑐𝑜𝑛1 

and 𝑐𝑜𝑛3 for task 𝑻𝑲 is semantically similar to that of 𝑯𝑫1 and the feature of the segment between 𝑐𝑜𝑛3 and 

𝑐𝑜𝑛4 for task 𝑻𝑲 is semantically similar to that of 𝑯𝑫2.  

Table 2. Critical Configurations of 𝑻𝑲 

 

Table 3. Features of 𝑻𝑲 

 

Table 4. Features of Human Demonstrations  



 

 

 

2.5. Map the feature of the selected human demonstration to the new task 

In a previous work (Laha, Rao, et al., 2021), to generate the point-to-point motion plan for similar task 

instances, an imitated path is built by transmitting the human demonstration in the task space to the new goal 

position and the ScLERP (Kavan et al., 2006) is used to blend any current configuration of the end-effector 

into the imitated path. However, this method only considers the goal position of the new task instance as the 

explicit new task constraints and the implicit task constraints may not be satisfied during the blend in motion. 

Therefore, the method has the limit in performing similar tasks in close adjacent areas of human 

demonstrations. In this paper, we adopt a different approach by using the selected feature 𝑯𝑫𝑘
𝛿  based on the 

criterion in Eqn. (15), and mapping the feature to a new task or a segment of the new task. 

Suppose 𝑯𝑫𝑘 and a new task 𝒕𝒌𝑠 are semantically similar based on Definition 1, i.e., 𝒕𝒌𝑠 ∝ 𝑯𝑫𝑘, we will 

use mapping 𝒎𝒑𝑘
𝑠 : 𝑯𝑫𝑘 → 𝒕𝒌𝑠 , such that to finish the new task 𝒕𝒌𝑠, the robot can learn from 𝑯𝑫𝑘

𝛿 . Let 

𝑯𝑫𝑘
𝛿 = {𝒖1, 𝒖2, … , 𝒖𝑚−1}, 𝒕𝒌𝑠

𝛿 = { 𝒗1, 𝒗2, … , 𝒗𝑛−1}, the first step is to align the translation vector 𝒅𝑡
𝒖1  in 

𝑯𝑫𝑘
𝛿  to the translation vector 𝒅𝑡

𝒗1  in 𝒕𝒌𝑠
𝛿. Based on Eqn. (3), a unit quaternion 𝑸 representing rotating the 

vector 𝒅𝑡
𝒖1  to the vector 𝒅𝑡

𝒗1 is defined as: 

𝑸 = cos (
𝜙𝑸

2
) + 𝒏̂𝑸 sin (

𝜙𝑸

2
) (16) 

where 𝒏̂𝑸 =
𝒖1×𝒗1

|𝒖1×𝒗1|
 and 𝜙𝑸 = cos−1 𝒖1⋅𝒗1

|𝒖1||𝒗1|
. Since 𝑯𝑫𝑘  and 𝒕𝒌𝑠 are semantically similar, each 𝒅𝑡

𝒖1  of 𝛿𝑗 in 

𝑯𝑫𝑘 , 𝑗 = 1,2, … , 𝑚 − 1 can be rotated using the quaternion sandwich 𝑸𝒅𝑡
𝒖1𝑸∗. Based on Eqn. (16), we can 

align end-effector’s translation encoded in the human demonstrated feature to that of the new task. Then, we 

can scale the vector 𝑸𝒅𝑡
𝒖1𝑸∗ with 

|𝒅𝑡
𝒖1|

|𝒅𝑡
𝒗1|

. The final quaternion 𝒅𝑡𝑗
𝒎𝒑𝑘𝑠  that maps each end-effector’s translation 

𝒅𝑡

𝒖𝑗
 in 𝑯𝑫𝑘 to 𝒕𝒌𝑠 can be obtained as: 



 

 

𝒅𝑡𝑗
𝒎𝒑𝑘𝑠 = (0,

|𝒅𝑡
𝒖1|

|𝒅𝑡
𝒗1|

𝑸𝒅𝑡

𝒖𝒋
𝑸∗) , 𝑗 = 1,2, … . , 𝑚 − 1 (17) 

Since the detailed transformation between 𝑐𝑜𝑛𝑖 and 𝑐𝑜𝑛𝑖+1 of the new task are unknown and unspecified, 

and more importantly, due to the rational in Remark 2, we can just use all the intermediate transformation in 

𝛿𝑖  for the transformation between 𝑐𝑜𝑛𝑖  and 𝑐𝑜𝑛𝑖+1 . Let 𝒅𝑟𝑗
𝒎𝒑𝑘𝑠 = 𝒅𝑟

𝒖𝑗
, 𝑗 = 1,2, … . , 𝑚 − 1 , the mapping 

𝒎𝒑𝑘𝑠 can finally be derived as: 

𝒎𝒑𝑘𝑠 = 𝒅𝒓
𝒎𝒑𝑘𝑠 +

1

2
𝒅𝒕

𝒎𝒑𝑘𝑠 ⊗ 𝒅𝒓
𝒎𝒑𝑘𝑠 (18) 

Where 𝒅𝒓
𝒎𝒑𝑘𝑠 = {𝒅𝑟1

𝒎𝒑𝑘𝑠 , 𝒅𝑟2
𝒎𝒑𝑘𝑠 , … , 𝒅𝑟𝑚−1

𝒎𝒑𝑘𝑠 } , 𝒅𝒕
𝒎𝒑𝑘𝑠 = {𝒅𝑡1

𝒎𝒑𝑘𝑠 , 𝒅𝑡2
𝒎𝒑𝑘𝑠 , … , 𝒅𝑡𝑚−1

𝒎𝒑𝑘𝑠 } . Let 𝑻𝑲 =

{𝑡𝑘1, 𝑡𝑘2, … , 𝑡𝑘𝑝}, the final motion plan 𝑴𝑷 in task space for 𝑻𝑲 can be determined by 

𝑴𝑷 = 𝑫𝑛 ⊗ 𝒎𝒑𝑘𝑠
∗ , 𝑠 = 1,2, … , 𝑝 (19) 

If the requirements of all 𝒕𝒌𝑠 of a new task 𝑻𝑲 can be covered by features of human demonstrations in 

𝑳𝑩, then it is theoretically possible that there exists a set {𝑯𝑫𝒊
𝜹, … , 𝑯𝑫𝒍

𝜹}  ⊆ 𝑳𝑩 , from which the robot can 

learn to finish 𝑻𝑲 by using mapping. This is made more rigorous in Theorem 1.  

Theorem 1. Given a library of human demonstrations 𝑳𝑩 = {𝑯𝑫𝟏
𝜹 , 𝑯𝑫𝟐

𝜹 , … , 𝑯𝑫𝒉
𝜹} and a new task 𝑻𝑲 =

{𝒕𝒌1, 𝒕𝒌2, , … , 𝒕𝒌𝑝} in SE(3), it is always possible to find a set 𝑯𝑫𝜹 = {𝑯𝑫𝑖
𝛿 , … , 𝑯𝑫𝑙

𝛿}  ⊆ 𝑳𝑩 such that 

∀ 𝒕𝒌𝑠 ⊆ 𝑻𝑲, 𝑠 = 1,2, … , 𝑝, ∃𝑯𝑫𝑘
𝛿 ∈ 𝑯𝑫𝜹 such that 𝒕𝒌𝒔 ∝ 𝑯𝑫𝒌

𝜹 , if and only if  ∀ 𝒕𝒌𝑠 ⊆ 𝑻𝑲, 𝑠 = 1,2, … , 𝑝, 

∃𝑯𝑫𝑗
𝛿 ∈ 𝑳𝑩 such that 𝒕𝒌𝒔 ∝ 𝑯𝑫𝑗

𝛿   

Proof  

If ∀ 𝒕𝒌𝑠 ⊆ 𝑻𝑲, 𝑠 = 1,2, … , 𝑝 , ∃𝑯𝑫𝑗
𝛿 ∈ 𝑳𝑩 such that 𝒕𝒌𝑠 ∝ 𝑯𝑫𝑗

𝛿 , then we can always find a set that 

includes 𝑯𝑫𝑗
𝛿 , i.e., 𝑯𝑫𝜹 = {𝑯𝑫𝑖

𝛿 , … , 𝑯𝑫𝑙
𝛿}  ⊆ 𝑳𝑩 that satisfy the above condition. To prove the sufficiency, 

suppose we can find a a set 𝑯𝑫𝜹 = {𝑯𝑫𝑖
𝛿 , … , 𝑯𝑫𝑙

𝛿}  ⊆ 𝑳𝑩, that ∀ 𝒕𝒌𝑠 ⊆ 𝑻𝑲, 𝑠 = 1,2, … , 𝑝, ∃𝑯𝑫𝑘
𝛿 ∈ 𝑯𝑫𝜹 

such that 𝒕𝒌𝒔 ∝ 𝑯𝑫𝑘
𝛿. Since 𝑯𝑫𝑘 ∈ 𝑯𝑫𝜹 = {𝑯𝑫𝑖

𝛿 , … , 𝑯𝑫𝑙
𝛿}  ⊆ 𝑳𝑩, then sufficient condition must be true.

 ∎  

In the next section, we will discuss how to find a set 𝑯𝑫𝜹 = {𝑯𝑫𝑖
𝛿 , … , 𝑯𝑫𝑙

𝛿}, meaning find the motion 

planning by learning from 𝑯𝑫 in the task space. This problem is formulated into a Markov Decision Process 

(MDP) problem and solved with Q-learning. 



 

 

3. Obtaining the Optimal Motion Plan Trough Reinforcement Learning 

To find a set of appropriate features in 𝑳𝑩 that can satisfy all task-relevant constraints in 𝑻𝑲 , one has to 

go through all subsets 𝒕𝒌𝑠 of 𝑻𝑲 and evaluate each 𝑯𝑫𝑘
𝛿  in the library 𝑳𝑩, which is an NP-hard problem 

(Bovet et al., 1994). Assume that there are 𝑥 features stored in the library 𝑳𝑩 and 𝑦 subsets of the new task 

𝑇𝐾, the computational complexity for searching exhaustively is 𝑂(𝑥𝑦), which would be huge if the number 

of human demonstrations and the constraints of the new task is large. For example, the library of “Assemble 

a height-adjustable desk” have 10 features including flipping, twisting, passing, etc. A new task “Place the 

screw into the assembly hole and fasten the screw” can have 20 subsets (such as passing horizontally to 

certain position, then change direction to another position, etc.). In this case, the computational complexity 

for exhaustive search is 𝑂(1020). Therefore, we formulate the problem into an MDP and solve the problem 

using a model-free reinforcement learning (RL) algorithm. 

3.1. MDP Formulation of the Problem 

The most common framework for RL is MDP, which is a stochastic process that models the sequential 

decision making in uncertain environments. There are three components in an MDP, including state 𝑠, action 

𝑎 and reward function 𝑟. In a RL framework, an agent’s objective is to find a policy 𝜋 so as to maximize the 

sum of discounted expected rewards  

𝑣(𝑠, 𝜋) = ∑ 𝛾𝑡𝐸(𝑟𝑡|𝜋, 𝑠0 = 𝑠)

𝑇

𝑡=0

(20) 

where 𝑣(𝑠, 𝜋) is the value for state 𝑠 under the policy 𝜋. Here 𝜋 = (𝜋0, … , 𝜋𝑡 , … ) is defined over the entire 

process. The standard solution to the problem above is through the 𝐵𝑒𝑙𝑙𝑚𝑎𝑛 equation: 

𝑣(𝑠, 𝜋∗) = max
𝑎

[𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑝(𝑠′|𝑠, 𝑎)𝑣(𝑠′, 𝜋∗)

𝑠′

] (21) 

where 𝑟(𝑠, 𝑎) is the reward for taking action 𝑎 at state 𝑠, 𝑠′ is the next state, and 𝑝(𝑠′|𝑠, 𝑎) is the probability 

of transiting to state 𝑠′ after taking action 𝑎 in state 𝑠. A solution 𝜋∗  that satisfies the above equation is 

guaranteed to be an optimal policy. Before we can apply RL algorithms to obtaining the ultimate motion 

planning policy 𝜋∗, we need to first properly define the three key components 𝑠𝑡, 𝑎𝑡 and 𝑟𝑡 at time step 𝑡. 

For a state space 𝒮(𝑡), that contains the current configuration of the end-effector and all task segments, 

the state 𝑠𝑡 ∈ 𝒮(𝑡),  is defined as: 

𝑠𝑡 = [𝑪𝑭𝑡 , 𝒕𝒌𝑡] (22) 



 

 

 

where  𝑪𝑭𝑡 is the current configuration of the end-effector at 𝑡, 𝒕𝒌𝑡 = {𝑐𝑜𝑛𝑗 , 𝑐𝑜𝑛𝑗+1, … , 𝑐𝑜𝑛𝑛} is the subset 

of 𝑻𝑲 containing task constraints that the robot is going to satisfy. 

Given a state 𝑠𝑡, all legal actions of identifying semantical similarities between human demonstrations 

and task segments form an action space 𝒜(𝑠𝑡). The action 𝑎𝑡 ∈ 𝒜(𝑠𝑡)  can be defined as: 

𝑎𝑡 = [𝑎1(𝑡), 𝑎2(𝑡), … , 𝑎ℎ(𝑡)] (23) 
 

where each 𝑎𝑖(𝑡)  is to identify a subsequent critical point 𝑐𝑜𝑛𝑘  that 𝒕𝒌𝑡
′ = {𝑐𝑜𝑛𝑗, … , 𝑐𝑜𝑛𝑘} ⊆

{𝑐𝑜𝑛𝑗, 𝑐𝑜𝑛𝑗+1, … , 𝑐𝑜𝑛𝑛}, such that  𝒕𝒌𝑡
′ ∝ 𝑯𝑫𝑖 . Then 𝑎𝑖(𝑡) will take the index value of 𝑘. Therefore, 𝑎𝑖(𝑡) 

is defined as: 

𝑎𝑖(𝑡) = {
 𝑘,      if 𝒕𝒌𝑡

′ ∝ 𝑯𝑫𝑖  
0,       otherwise    

(24) 

To evaluate the action at 𝑡, we apply the semantical similarity criteria defined in Section 2. The reward 

function 𝑟𝑡 is defined as: 

𝑟𝑡 = {
− ∑ 𝛼 (𝛿𝑖 , 𝛿𝑙

𝒕𝒌𝑡
′

 )

𝑘

𝑙=𝑗

,          if  𝒕𝒌𝑡
′ ∝ 𝑯𝑫𝒊                              

−∞,                                    otherwise                                     

(25) 

where  𝛿𝑙

𝒕𝒌𝑡
′

 is the 𝑙𝑡ℎ feature of the task segment 𝒕𝒌𝑡
′ . It is noted that after mapping, end-effector translation 

encoded in human demonstrated features will be aligned to the task segment while end-effector rotational 

features of demonstrations are preserved. Therefore, we only calculate the difference in end effector rotation 

between the selected human demonstration and the task segment to reward semantic similar demonstrations. 

3.2. Applying Q-learning to Obtain the Optimal Motion Planning Policy 

In order to obtain the optimal policy 𝜋∗, various algorithms have been proposed in the past, among which 

Q-learning is one of the most widely used algorithms (Sutton & Barto, 2018). The basic idea of Q-learning is 

that we can define a function 𝑄: 

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑝(𝑠′|𝑠, 𝑎)𝑣(𝑠′, 𝜋)

𝑠′∈𝑆

(26) 

such that 𝑣(𝑠, 𝜋∗) = max
𝑎

𝑄∗(𝑠, 𝑎). If we know 𝑄∗(𝑠, 𝑎), then the optimal policy 𝜋∗ can be found by simply 

identifying the action that maximizes 𝑄∗(𝑠, 𝑎) under the state 𝑠. Starting with arbitrary initial values of 

𝑄(𝑠, 𝑎), the updating procedure of Q-learning is: 



 

 

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = (1 − 𝛼𝑡)𝑄𝑡(𝑠𝑡 , 𝑎𝑡) + 𝛼𝑡[𝑟𝑡 + 𝛾 max
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎𝑡)] (27) 

where 𝛼𝑡 ∈ [0,1) is the learning rate and 𝛾 ∈ (0,1) is the discount factor. The training process is shown in 

Algorithm 1. After the training, the ultimate policy 𝜋∗ is determined as: 

𝜋∗(𝑎|𝑠) = {
1, if 𝑎 = arg max

𝑎′∈𝐴(𝑠)
{𝑄(𝑠, 𝑎′)}

0, otherwise
(28) 

where 𝐴(𝑠) is the set of all legal actions at state 𝑠 in the Q-table 𝑄(𝑠, 𝑎). The final motion plan 𝑴𝑷 is 

generated following the Algorithm 2. The overall framework of robot motion planning based on Q-learning 

by learning from human demonstrations is illustrated in Fig. 4.  

Algorithm 1 Training of the RL-based Motion Planner in 𝑺𝑬(𝟑) 

Procedure 1 Mapping Features of the Human Demonstration to the New Task 

Input: 𝒕𝒌𝑠, 𝑯𝑫𝑘 

Output: 𝒎𝒑𝑘𝑠 

Initialize 𝒎𝒑𝑘𝑠 with zeros 

Compute each 𝒗𝑖 using Eqn. (12)  

Compute the rotation quaternion 𝑸 using Eqn. (16) 

For 𝑘 = 1,2, … , 𝑚 − 1 do 

     Update each 𝒅𝑡𝑗
𝒎𝒑𝑘𝑠 

 using Eqn. (17) 

       𝒅𝑟𝑗
𝒎𝒑𝑘𝑠 ← 𝒅𝑟

𝒖𝑗
 

End For 

Compute 𝒎𝒑𝑘𝑠 using Eqn. (18) 

Output 𝒎𝒑𝑘𝑠 

End Procedure 

Procedure 2 Training Process of Q-learning 

Input: 𝑻𝑲, 𝑳𝑩, 𝜖, 𝛾 

Output: 𝑄(𝑠, 𝑎) 

Initialize 𝑄(𝑠, 𝑎) randomly 

Initialize 𝑡 = 0 

Initialize 𝑠0 with 𝑪𝑭0 = 𝑫1
𝑡𝑘1 and 𝒕𝒌0 = 𝑻𝑲 

For 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 0,1, … ,100 do 

        While the last 𝑐𝑜𝑛𝑛 of 𝑻𝑲 is not reached do 

                 Choose 𝑎𝑡 using policy derived from 𝑄(𝑠, 𝑎) (e.g., 𝜖-greedy) 

                 Take action 𝑎𝑡, observe 𝑟𝑡 

                 If 𝒕𝒌𝑡
′ ∝ 𝑯𝑫𝒊 based on Definition 1 

                        𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

                        𝑖 ← index of the non-zero term of 𝑎𝑡 

                        Invoke Procedure 1 with 𝑯𝑫𝑖 and 𝒕𝒌𝑡
′  as inputs 



 

 

                        𝑪𝑭𝑡+1 ← 𝑫𝑛
𝑡𝑘𝑡

′

 

                        𝒕𝒌𝑡+1 ← {𝑐𝑜𝑛𝑎𝑖(𝑡), … , 𝑐𝑜𝑛𝑛} 

                        𝑠𝑡 ← 𝑠𝑡+1 

                        𝑡 ← 𝑡 + 1 

                 Else 

                        𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

                       Break 

                 End if 

        End While 

End For 

Output 𝑄(𝑠, 𝑎) 

End Procedure 

 

Algorithm 2 Generating Motion Plan in 𝑺𝑬(𝟑)  

Input: 𝑻𝑲, 𝑳𝑩, 𝜖, 𝛾, 𝑄(𝑠, 𝑎) 

Output: 𝑴𝑷 

Initialize 𝑠0 with 𝑪𝑭0 = 𝑫1
𝑡𝑘1and 𝒕𝒌0 = 𝑻𝑲  

For 𝑡 = 0,1, … , 𝑇 do 

     Find legal action list 𝐴(𝑠𝑡) from 𝑄(𝑠𝑡, 𝑎) → 𝑎 ∈ 𝐴(𝑠𝑡)  

     Find the optimal action as 𝑎𝑡 = arg max
𝑎∈𝐴(𝑠𝑡)

𝑄(𝑠𝑡, 𝑎)  

     Map 𝑯𝑫𝑖 to 𝒕𝒌𝑡
′  according to 𝑎𝑡 

    𝑀𝑃𝑡 ← 𝑫𝑛 ⊗ 𝒎𝒑𝑘𝑠
∗  according to Eqn. (19) 

End For 

𝑴𝑷 ← {𝑀𝑃0, 𝑀𝑃1, … , 𝑀𝑃𝑇}  

     Output  𝑴𝑷 

 

 



 

 

Figure. 4 Framework of the RL based user-guided motion planning. 

 

4.  Computing the Motion Plan in the Joint Space 

After the motion plan 𝑴𝑷 in the task space is generated, the corresponding motion plan in the joint space 

needs to be calculated through inverse kinematics. Based on a previous work (Laha, Rao, et al., 2021), to 

calculate the sequence of joint angles in the joint space is to solve the equation 

𝒒̇ = (𝐉𝑠)𝑇(𝐉𝑠(𝐉𝑠)𝑇)−1𝐉2 [
𝒑̇
𝒓̇

] (29) 

where 𝒒̇ is the joint rate vector, 𝒑 is the position of the end-effector, 𝒓 is the quaternion representing the 

orientation of the end-effector, 𝐉𝑠  is the spatial Jacobian and 𝐉2 = [
𝐈3×3 2𝒑𝐉1

𝟎3×3 2𝐉1
]  where 𝐉1  is the matrix 

transformation of the spatial angular velocity of the rigid body. Let 𝜸̇ = [𝒑̇ 𝒓̇]𝑇 and 𝑩 = (𝐉𝑠)𝑇(𝐉𝑠(𝐉𝑠)𝑇)−1𝐉2, 

Eqn. (29) can also be written as:  

𝒒̇ = 𝑩𝜸̇ (30) 

Using Euler time-step to discretize this equation where ℎ is a small time step, 

𝒒(𝑡 + ℎ) − 𝒒(𝑡)

ℎ
= 𝑩

𝜸(𝑡 + ℎ) − 𝜸(𝑡)

ℎ
(31) 

or 

𝛿𝒒 = 𝑩(𝜸(𝑡 + ℎ) − 𝜸(𝑡)) (32) 

In such way, for two consecutive configurations of the end-effector 𝜸(𝑡) and 𝜸(𝑡 + ℎ), the value of 𝛿𝒒 is 

determined. Therefore, starting from  𝒒(0), the joint angles 𝒒(𝑡) at any time step 𝑡 can be obtained. 

In practice, an unavoidable problem when executing motion plans in the joint space is the joint limits. In 

previous studies, researchers usually handle joint limits with optimization or Nullspace of the Jacobian 

(Flacco et al., 2015). However, in this paper, we still have limitations in handling joint limits because task 

constraints in 𝑆𝐸(3) always have the higher priority than joint limit constraints in 𝒥. Since we map the 

feature of the normalized human demonstration to the new task in the task space, the motion plan obtained 

by Q-learning in 𝑆𝐸(3) cannot guarantee feasible solutions in 𝒥 that do not violate joint limits. There’re also 

some other methods in handling joint limits (Moe et al., 2016), we will explore these options in our future 

work. 



 

 

5. Case Study  

In order to validate effectiveness of the proposed method in generating motion plans for new tasks, 

multiple experiments are conducted on the UR5e platform. Our experiments consist of four steps: (1) Build 

an illustrative library of features of human demonstrations; (2) Specify new tasks in 𝑆𝐸(3); (3) Offline train 

the RL-based Motion Planner in 𝑆𝐸(3) and obtain motion plans in 𝒥; (4) Execute motion plans in 𝒥. In this 

case study, two performance metrices are considered: (1) The accumulated reward of the motion plan in 

𝑆𝐸(3); (2) The successful rate of applying the motion plan in 𝒥 for new tasks. From the case study, two 

significant results can be concluded: (1) The proposed RL-based user-guided motion planning method can 

benefit from sufficient knowledge in the proposed task specification scheme; (2) The proposed method is 

effective in combining different features of human demonstrations to generate motion plans for the new task; 

(3) The proposed method is effective in requesting additional human demonstrations if no features in the 

library are semantically similar to the new task.  

5.1. Setting up a Library of Features of User Demonstrations 

To build a library including some common features in certain assembly and loading/unloading 

environment, we start with five illustrative tasks as shown in Fig. 5. The tasks are recorded in joint space 𝒥 

through kinesthetic demonstrations, including: 

1) Screwing Task 1: Twist a screw driver 90 degrees clockwise; 

2) Screwing Task 2: Twist a screw driver 90 degrees anti-clockwise; 

3) Filling Task: Hold a cup horizontally and then turn down 90 degrees (representing certain orientation 

constraints); 

4) Pouring Task: Hold a cup vertically and then turn up 90 degrees (representing certain orientation 

constraints); 

5) Stacking Task: Stack one block from an initial location to a goal location; 



 

 

Figure. 5 Kinesthetic demonstrations of 5 most common tasks. (a) Screwing Task 1: The end-effector is required to twisting the screw 

driver 90 degrees clockwise while moving straight forward to the goal position. (b) Screwing Task 2: The end-effector is required to 

twisting the screw driver 90 degrees anti-clockwise while moving straight forward to the goal position. (c) Pouring Task: The end-

effector is required to hold the cup horizontally at first, then turn down 90 degrees. (d) Filling Task: The end-effector is required to hold 

the cup vertical to the ground at first, then turn up 90 degrees. (e) Stacking Task: The end-effector is required to stack the small block 

up the big block. The orientation of the small block should be kept upward during the stacking. 

 

 

(a)                                                                                                            (b) 

(c)                                                                                                            (d) 

(e) 



 

 

 

 

 

Figure. 6 Human demonstrations in 𝑆𝐸(3). (a) Screwing task 1. (b) Screwing task 2. (c) Pouring task. (d) Filling task. (e) Stacking task. 

 

Using forward kinematics, corresponding configurations of end-effector in 𝑆𝐸(3) are shown in Fig. 6. Using 

Eqn. (8), features of human demonstrations are saved as 𝑳𝑩 = {𝑯𝑫1, 𝑯𝑫2, … , 𝑯𝑫5} in the library shown in 

Table 5. 

 

(a)                                                                                                            (b) 

(c)                                                                                                            (d) 

(e) 



 

 

Table 5. Library of human demonstrated features 

 

5.2. Training the RL-based Motion Planner in SE(3) 

In order to obtain a general motion planning policy in 𝑆𝐸(3) for the assemble and loading/unloading 

scenario with the features library, we implement Algorithm 1 to train a Q-table initialized with random Q 

values in Matlab using a 4-core 4.0GHz Intel Core i7 processor. Parameters for training are listed in Table 6. 

20 new tasks are used during the training, each of which has four critical configurations. Positions of these 

critical configurations are randomly generated within a 50 × 50 × 50 𝑐𝑚3 workspace. Corresponding Euler 

angles of each critical configuration are also randomly selected from a set {−𝜋, −
𝜋

2
, 0,

𝜋

2
, 𝜋}. The total 

training episode for each new task is set to be 100. The total computation time is 1927.42 seconds.  

To monitor the training process, accumulated rewards for each new task are recorded every two iterations. 

The average accumulated reward for all 20 new tasks is shown in Fig. 7. Although the training rewards are 

noisy before 50 episodes, the underlying trend is that the rewards are increasing with training episodes. It can 

be observed that the reward reaches a steady level after around 50 episodes. This indicates that a steady 

motion planning policy in 𝑆𝐸(3) that can map appropriate features of human demonstrations to new tasks 

with semantically similar features is generated for the assemble and loading/unloading scenario. 

Table 6. Parameters for Training 

 

 

 

 

 



 

 

 

Figure. 7 Training process for motion plans in 𝑆𝐸(3)  

5.3. Evaluation of the Trained Motion Planning Policy 

To evaluate the performance of the trained motion plan policy in 𝑆𝐸(3)  for the assemble and 

loading/unloading scenario, three new tasks, namely, a transferring task, a filling-and-pouring task, and an 

assembling task, are used as examples to demonstrate the method. The trained Q-table from section 6.2 is 

used as the input to Algorithm 2 to generate motion plans for new unseen tasks in 𝑆𝐸(3). The inverse 

kinematics as discussed in Section 5 is used to calculate the final motion plan in joint space ℐ.  For each task, 

20 experiment trials are conducted to evaluate the successful executions. 

Transferring Task: In this task, the end-effector is required to transfer a cup of water while avoiding an 

obstacle shown as red cube in Fig. 8. The dimension of the obstacle is 20 × 20 × 20 𝑐𝑚3 and the position 

of its center is (−0.3, −0.1, 0.2) . To avoid this obstacle, a safety protocol is assumed given as a 

40 × 40 × 40 𝑐𝑚3 safety shell (shown as transparent purple cube in Fig. 8 with the same center position as 

the cubic obstacle) that the manipulator cannot penetrate through. Knowing these environment constraints 

and the task requirement on moving the cup of water from the starting position to the goal position, a sample 

of user defined critical configurations, 𝑐𝑜𝑛1, 𝑐𝑜𝑛2, 𝑐𝑜𝑛3, 𝑐𝑜𝑛4 are summarized in Table 7, where 0.1 ≤ 𝑧 ≤

0.5 . In these critical configurations, 𝑐𝑜𝑛1  and 𝑐𝑜𝑛4  describe the end-effector starting and the ending 

positions and orientations, 𝑐𝑜𝑛2 and 𝑐𝑜𝑛3 are two intermediate critical configurations selected on edges of 

the safety shell. Note that different users may have different task specifications depending on their 

understandings of the task and environment constraints.  



 

 

The result shows that all 20 trials are successfully executed, where each of the 20 feasible motion plans 

(shown as the path composed of the small triads) complies with the task requirement that the end-effector 

maintains the same orientation of (0, −𝜋/2,0) to prevent the spill out. One of the 20 motion plans are 

demonstrated as the yellow line in Fig. 8, where the orientations of the small triads along each path represent 

the orientations of the end-effector. Execution of the corresponding motion plan in the joint space is shown 

in Fig. 8 (b). It is noticed that the feature of the human demonstrated stacking task is learned and mapped for 

this transferring task. In this experiment, both explicit task constraints (position and orientation constraints 

of critical configurations) and implicit task constraints (keeping the orientation of the end-effector) are 

satisfied. This experiment demonstration the effectiveness of the motion plan policy trained in section 6.2, 

which can be used as motion plans to avoid the obstacles in 𝑆𝐸(3) if users have sufficient knowledge about 

the task and the environment and can properly infuse the knowledge in task specification based on the syntax 

we defined. 

Table 7. Critical configurations of Task 3 

 

 

 

Figure. 8 Motion plans for the transferring task. (a) The motion plan in 𝑆𝐸(3). (b) Execution the motion plan in 𝒥. 

Filling-and-Pouring Task: As shown in Fig. 9 (a), in this task, the end-effector is required to fill water 

to Cup 1, then go through another two critical positions, and reach a goal position above Cup 2, and finally 

pour water to Cup 2. The location of Cup 2 is on the surface of a desk within a workspace of 20 × 20 𝑐𝑚2. 

(a)                                                                                                            (b) 



 

 

We can specify 5 critical configurations based on the described task. Sample critical configurations from 

𝑐𝑜𝑛1 to 𝑐𝑜𝑛5 are presented in Table 8, where −𝜋 ≤ 𝛾 ≤ 𝜋, −0.5 ≤ 𝑥 ≤ 0.7, −0.2 ≤ 𝑦 ≤ 0. It is noted that, 

in this task, only the orientation of the initial configuration and goal configuration are specified with specific 

Euler angles. When moving the cup from 𝑐𝑜𝑛2 to 𝑐𝑜𝑛4, the end-effector is only required upward without any 

specific constraints in the yaw angle. 

Table 8. Critical configurations of 𝑻𝑲 

 

 

(a) 

(b) 



 

 

Figure. 9 Generate motion plans for the filling-and-pouring task. (a) The motion plan in 𝑆𝐸(3) (b) The final execution of the motion 

plan in 𝒥. 

For 20 experiment trials with various locations of Cup 2, all experiments are successfully performed in ℐ. 

We use the motion plan in ℐ and 𝑆𝐸(3) for one trial as an example as shown in Fig. 9 (a) and (b) to illustrate 

the result. It is noticed that the feature of 3 human demonstrated tasks, namely filling, stacking, and twisting, 

are learned and mapped to the segment between 𝑐𝑜𝑛1 and 𝑐𝑜𝑛2, the segment between 𝑐𝑜𝑛2 and 𝑐𝑜𝑛4, and 

the segment between 𝑐𝑜𝑛4 and 𝑐𝑜𝑛5, respectively. In this experiment, the proposed method can identify and 

compose the appropriate features in the human demonstration library to perform a new task. 

Assembling Task: In this task, the end-effector needs to disassemble a screw from Assembly Hole 1, then 

place the screw into Assembly Hole 2, and finally fasten the screw. The location of Assembly Hole 1 and 

Assembly Hole 2 are (0, 0.5, 0.6) and (0.5, 0, 0.6) as shown in Fig. 10 (a). To transfer the screw from 

Assembly Hole 1 to Assembly Hole 2, the end-effector is required to hold the screw horizontally and turn 90 

degrees anti-clockwise. Based on the task requirement, the critical configurations can be specified in Table 

9. 

Table 9. Critical configurations of the assembling task 

 

 

 

 

 



 

 

 

Figure. 10 Generate motion plans for the assembling task after the feature of a new human demonstration is added to the library. (a) 

Critical configurations and the motion plan in 𝒥 for the assembling task after an additional human demonstration is provided. (b) 

Additional human demonstration for picking up a span. (c) The training process of the assembling task after the feature of a new 

human demonstration is added. (d) Motion plan in 𝑆𝐸(3).  

By applying the same trained general motion plan policy in section 6.2, no successful motion plan can be 

generated, which indicates additional human demonstrations are needed. A closer examination reveals that 

none of the five features saved in the library is semantically similar to the feature of the task segment between 

𝑐𝑜𝑛2  and 𝑐𝑜𝑛3 , which requires a 90-degree rotation about its body-fixed x-axis clockwise. Therefore, 

additional human demonstration is requested for this feature.  

With this additional human demonstration shown in Fig. 10 (b) added in the library, the motion planning 

policy is retrained using Algorithm 1 with the Q-table trained in section 6.2. As shown in Fig. 10 (c), the 

accumulated reward reaches a steady value after around 10 iterations. Then by applying the newly trained 

policy, the motion plan in 𝑆𝐸(3) is generated as shown in Fig. 10 (d). The result shows that the features of 

(a)                                                                                                       (b) 

(c)                                                                                                       (d) 



 

 

the human demonstrated twisting task 1 and task 2 are learned and mapped to the task segment between 𝑐𝑜𝑛1 

and 𝑐𝑜𝑛2, and the segment between 𝑐𝑜𝑛3 and 𝑐𝑜𝑛4, respectively. The feature of the newly added human 

demonstration is learned and mapped to the task segment between 𝑐𝑜𝑛2 and 𝑐𝑜𝑛3. Corresponding motion 

plan in 𝒥 is shown in Fig. 10 (a). 

To summarize, the case study results demonstrate the effectiveness of the proposed RL-based user-guided 

motion planning method in learning and mapping appropriate features of human demonstrations to new tasks 

and generating motion plans in the joint space for semantically similar tasks. The proposed method can also 

request additional human demonstrations when new task features cannot be found in the human 

demonstration library. 

6. Conclusion and Future Work 

In this paper, we present a novel method for robot learning from human demonstrations based on RL-

based motion planning. A task specification scheme is first developed for users to provide necessary 

kinematic information about task and environment constraints. A human demonstration library for specific 

working scenarios is built  through recording and storing the common actions by utilizing the existing 

recording capability for modern robots. By abstracting features from human demonstrations and tasks, the 

task-space RL-based motion planner can effectively identify, learn, and compose the appropriate 

demonstrated features to perform new tasks that comply with the task requirements and environment 

constraints. Followed by inverse kinematics, motion plans in joint space can be obtained 

In future work, we plan to explore using different hardware architecture since the motion planning is done 

in 𝑆𝐸(3). Joint limit consideration will be further studied. In addition, we will extend this work to integrate 

with the human motion perception, recognition, and prediction for realistic implementation. More 

complicated scenarios will also be considered and deep RL method will be applied. 
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