User-Guided Motion Planning with Reinforcement Learning

for Human-Robot Collaboration in Smart Manufacturing

Tian Yu?, Qing Chang®*

*Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, US

Abstract

In today’s manufacturing system, robots are expected to perform increasingly complex manipulation tasks in
collaboration with humans. However, current industrial robots are still largely preprogrammed with very little autonomy
and still required to be reprogramed by robotics experts for even slightly changed tasks. Therefore, it is highly desirable
that robots can adapt to certain task changes with motion planning strategies to easily work with non-robotic experts in
manufacturing environments. In this paper, we propose a user-guided motion planning algorithm in combination with
reinforcement learning (RL) method to enable robots automatically generate their motion plans for new tasks by learning
from a few kinesthetic human demonstrations. Features of common human demonstrated tasks in a specific application
environment, e.g., desk assembly or warchouse loading/unloading are abstracted and saved in a library. The definition of
semantical similarity between features in the library and features of a new task is proposed and further used to construct
the reward function in RL. To achieve an adaptive motion plan facing task changes or new task requirements, features
embedded in the library are mapped to appropriate task segments based on the trained motion planning policy using Q-
learning. A new task can be either learned as a combination of a few features in the library or a requirement for further
human demonstration if the current library is insufficient for the new task. We evaluate our approach on a 6 DOF URS5e

robot on multiple tasks and scenarios and show the effectiveness of our method with respect to different scenarios.

Keywords: Human-Robot Collaboration, Learning From Demonstration, Motion Planning, Reinforcement Learning

1. Introduction

With the development of Industry 4.0, there is an increasing demand for robots to work adaptively and
smartly with humans in industrial settings (El Zaatari et al., 2019). However, currently, motions of industrial
robots are still largely preprogrammed to perform certain repetitive tasks. When tasks sightly change, robots
need to be reprogrammed, which often requires considerable robotic expertise and time. This would

significantly impair the efficiency of industrial robots that constantly encounter new tasks, and hence limit
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their use in quite a few industrial scenarios, e.g., small-batch manufacturing that processes highly customized
products (Jurczyk-Bunkowska, 2020; Poon et al., 2011). Therefore, how to enable robots to collaborate with
non-expert personnel and automatically plan adaptive motions for different tasks is a nontrivial and
challenging research problem in today’s robotics research (Aleotti & Caselli, 2006; Kragic et al., 2018; Laha,
Figueredo, et al., 2021). In this paper, our goal is to develop a scalable and adaptive motion planning method
to automatically generate motion plans for new robotic manipulation tasks without manually reprogramming
robots. To achieve this goal, we propose to represent a task by a sequence of critical constraints, and combine
human demonstrations with motion planning algorithms to generate motion plans to fulfill those constraints.

In literatures, the use of human demonstration to teach a robot is often referred to as Learning from
Demonstration (LfD). An important question in L{D is how to acquire demonstrations for learning, e.g., using
vision-based sensors, kinesthetic, and data gloves or master-slave systems (Argall et al., 2009; Zhu & Hu,
2018). In this paper, we opt to use kinesthetic demonstrations for the following considerations. On one hand,
for kinesthetic demonstrations, there is no correspondence issue between the kinematic structure of the
demonstrating system and the follower robot. On the other hand, learning from kinesthetic demonstrations
can potentially benefit from a large variety of existing approaches in learning motion from data, which can
be classified as follows: (a) demonstrated trajectory decomposition (Hwang et al., 2003; Madridano et al.,
2021), (b) nonlinear regression techniques (Aleotti & Caselli, 2006; Calinon et al., 2007; Kuli¢ et al., 2008),
and (c¢) dynamical systems based approach (Gribovskaya et al., 2011; Ijspeert et al., 2013; Joki¢ et al., 2022)

Specifically, the trajectory decomposition approaches (Hwang et al., 2003; Madridano et al., 2021) use
spline functions to decompose the trajectories. These methods ignore the noises in the demonstration, which
may be nontrivial especially when the motion information is obtained through vision or teleoperation.
Nonlinear regression techniques use statistical techniques to incorporate the uncertainty of sensing in the
estimation. For example, (Aleotti & Caselli, 2006) uses Hidden Markov Model for trajectory selection and
Non-Uniform Rational B-Splines (NURBS) for trajectory approximation. A data-driven approach using
Gaussian Mixture Model (GMM) is adopted in (Calinon et al., 2007). However, these statistical approaches
require multiple demonstrations. Furthermore, neither the statistical approaches nor the spline decomposition
takes the kinetic transformations of the underlying task space, i.e., SE(3), into account. The dynamical

systems-based approach, or dynamical motion primitives (DMPs), on the other hand, can learn from single



examples (Ijspeert et al., 2013). However, in these settings, most works assume that there is a dynamical
system modeling each degree-of-freedom (DoF) of the end effector. In (Gribovskaya et al., 2011), the authors
assume a unit quaternion representation of the rotation space. However, they assume decoupled primitives
for the four parameters of the unit quaternion and then perform a normalization. The generalization of DMPs
is predicated on the region of attraction of the dynamical system used. In the case of orientations, there is no
clear characterization of the region of attraction of the dynamical system on the group of rigid body rotations,
i.e., SO(3). Therefore, the generalization capability of these methods is not clear when both the position and
orientation of the end effector are relevant for the task. Therefore, it is imperative to develop a systematic
LfD method to ensure that the underlying task space structure of SE(3) is conformed and exploited during
motion generation.

In general, techniques for motion planning and robot control can be divided into Joint-space based
approaches and Task-space based approaches (Kavraki et al., 1996; Khatib, 1987). Joint space-based motion
planning approaches handle the planning problem and compute the motion directly in the joint space of the
robot. The strength of joint space methods lies in finding feasible paths that avoid obstacles (Berenson et al.,
2009). However, handling task constraints in joint-space based planning approaches is quite complicated
(Jaillet & Porta, 2012) because they lead to nonlinear constraints in joint angles.Task space based planning
approach is historically older than joint-space based approaches and rose out of the resolved motion rate
control (RMRC) in (Klein & Huang, 1983). Related to the task space based planning approaches are the
operational space based control approaches (Nakanishi et al., 2008), where the redundancy resolution may be
done at either the velocity level or acceleration level.

Recently, (Laha, Rao, et al., 2021) develop a user-guided motion planning method that learns from only
one human demonstration to generate motion plans for semantically similar task instances. They first compute
an “imitated path” in the task space by replicating the human demonstration based on the goal position of
the new task instance. Then, use the “imitated path” as the guidance of Screw Linear Interpolation (ScCLERP)
until the current configuration of the end-effector finally blends into the imitated path. However, task
constraints before the current configuration blends into the imitated path are not guaranteed to be satisfied.
In addition, the only explicit task constraints considered in this work is the goal position of the task instance.

Other explicit task constraints like positions and orientations of some critical configurations and environment



conditions are not considered. More importantly, the method in (Laha, Rao, et al., 2021) is only able to
generate motion plans when the whole new task is semantically similar to the demonstrated one, e.g., moving
the same water bottle, but to a different goal position. As a matter of fact, if we decompose a robot motion
into several portions appropriately, we might find that some of those portions could be semantically similar
across different tasks. For example, a portion of robot motions in a transferring task could be similar to that
in a stacking task. Based on this observation, it is possible to generate motion plans for completely new tasks
purely based on old tasks that the robot has been taught without additional demonstrations or programming
efforts from human.

In this paper, we develop a motion planning method that can enable the robot to learn from one or even
multiple human demonstrations to generate adaptive motion plans for new manipulation tasks in a certain
manufacturing environment. First, we define a syntax to specify the manipulation task in an assembly and
loading/unloading scenario considering both explicit task constraints, e.g., critical configurations of the end-
effector, and environment constraints, e.g., dimension and location of the obstacle. Next, we build a library
to store human demonstrated features which are embedded in screw transformation throughout
demonstrations. The same method can also be applied to abstract features of the manipulation task. A criterion
to identify semantical similarity of a human demonstration and certain part of the manipulation task is defined.
Based on this criterion, the appropriate features of human demonstrations will be mapped to the manipulation
task. Therefore, to generate a motion plan for the manipulator to satisfy both explicit and implicit task
constraints is equivalent to mapping appropriate features in the library to corresponding parts of the
manipulation task. In this work, we formulate the motion planning problem in SE(3) into a Markov Decision
Process (MDP) framework and use the Q-learning method to train a general motion planning policy to
generate adaptive motion plans in SE(3) for different tasks in the same assembly and loading/unloading
environment. Finally, inverse kinematics (IK) is used to calculate corresponding motion plans in the joint
space to control the robot to execute learned motion plans.

Thus, the main contributions of this paper are: (1) Developing a novel method to capture kinematic features
(or semantics) of human demonstrations and/or tasks, and defining criteria to identify semantically similar
tasks; (2) Developing a mapping method to associate semantically similar demonstrations and tasks to enable

robots to learn from human demonstrations; (3) Formulating the problem of mapping semantically similar



human demonstrations to perform new tasks in an MDP framework and implementing a Q-learning algorithm
to solve the formulated problem effectively.

The reminder of this paper is organized as follows: The learning from demonstration and motion planning
problem is stated in Section 2. In Section 3, the problem is formulated as an MDP and solved by the Q-
learning algorithm. Section 4 describes our approach of inverse kinematics. Case studies and conclusions are

provided in Section 5 and 6 respectively.

2. Problem Formulation

In this paper, a robot is required to do manipulation tasks with explicit and implicit constraints on end-
effector configurations during a motion. We assume that the robot has basic capability to move its end-
effector from one configuration to another in the absence of any constraints. Our goal is to develop a method
to enable the robot to use human demonstrations from a few common tasks stored in a scenario specific library
and to plan point-to-point motions for other new tasks. The human demonstration library can be formed for
each specific working scenarios, such as desk assembly library, warehouse sorting library etc. On human
demonstrations, we take (one-time) kinaesthetic demonstration for one type of tasks and the information is
observed by the screw transformation throughout the trajectory. Using such screw transformation, the feature
of the manipulation task can be abstracted in the task space. To select the appropriate human demonstration
to be learnt from for the manipulation task, criteria are built by comparing the screw transformation of the
human demonstration and corresponding screw transformation of a few critical configurations of the task.
Following the criteria, features of appropriate human demonstrations can be mapped to the new manipulation

task in task space.

2.1. Mathematical Background

In this paper, the joint space or configuration space is represented by J, which is the set of all joint angles
of the robot manipulator. SE (3) denotes the Special Euclidean group of 3, which represents the task space
contains all rigid body motions (i.e., rotations and translations) (Selig, 2005). To describe configurations of
the end-effector, we adopt dual quaternions since they can encode both rotation and translation in rigid body

transformation. A dual quaternion D is defined as (Selig, 2005):

1
D =d, +ed,®d, (1)



where € # 0, but €2 = 0. In this definition, the pure translation of the rigid body is represented by the
quaternion d; which is denoted as:

d. = (0,0 (2)
where t = t,i + tyj+ t,k is the translation vector in SE(3). The unit quaternion d, representing the pure

rotation of the rigid body can also be expressed as:

¢ ¢
d, = cos <—) + 7N sin (—) 3
r > > (3)
where t = n, i +nyj+ n,k is a unit vector in SE (3) representing the rotation axis, and ¢ is the rotation
angle. Using this d,., any vector ¥ can be rotated an angle ¢ about the axis 7i by using the quaternion

sandwich d,?d;, and d; is the conjugate of d,.. For more quaternion manipulations, we refer readers to

(Figueredo, 2016).

2.2. Specify Manipulation Tasks for the Robot

First of all, the manipulation task comprehensible to the robot needs to be specified. Some research
(Konidaris et al., 2018; Wang et al., 2018) describes a task, e.g., “open the door”, using a symbolic vocabulary
based on the high-level Planning and Domain Definition Language (PDDL), e.g., {preposition of the door,
precondition: door closed, effect: door open}, to build a task library. These high-level commands lack detailed
kinematics information and cannot be directly translated to actionable information for the lower-level robot
manipulation. (Hauser & Ng-Thow-Hing, 2011) sample reasonable modes for motions of a humanoid robot
by specifying the manipulation as the starting and goal configurations, together with detailed transition
configurations during the entire task in the task space. However, for a general manipulation task in practice,
the specific transition from one configuration to another in both SE(3) and J is not known to the robot.
Therefore, in this paper, the manipulation task is specified as a set of critical positions obtained from the
known constraints based on task requirements (e.g., a specific goal position) and the environment constraints
(e.g., the location of an obstacle), and the associated orientation tolerance for the end effector represented in
SE(3) at these positions.

Starting from an initial configuration of the end-effector, a manipulation task TK is defined as a sequence
of n critical configurations:

TK = {conq, con,, ...,con,} 4



where con;, i = 1,...,n, is a tuple of two < P;, 8; >. In this tuple, P; = [x;,V;,z]" is a vector in SE(3) that
specifies the position of con;, 8; = [6;1,0i2,0i317, 011 < 01 < 041,01, < 0y < 045,013 < 03 < O3, is a
unit vector in SE'(3) that defines Euler angles of con;, and 8,4, 8,3, 83, 0,1, 84,2, 0,3 are the lower and upper
bounds for corresponding Euler angles. For this task specification, only a few task-related explicit
requirements are given. However, there might be implicit task constraints (e.g., maintain a certain orientation
from one configuration to another) need to be complied by the robot. Our goal is to find a motion plan to
satisfy all the task requirements.

For example, a task TK of transferring a cup of water shown in Fig. 3 can be specified by four critical
configurations, con,, con,, cons, con,, as summarized in Table 1. In this task, the end-effector is required to
move a cup of water from the starting configuration con, to the goal configuration con, while maintaining
the cup upward. It is noted that, to move the cup without spilling water out, the pitch and roll angles of the
end-effector need to be constrained within a certain range while the yaw angle does not need to be constrained.
Therefore, y in Table 1 can be any number from —27 to 27, and 6;; and 8;, for each 8; are set to be 0 for
simplicity. Furthermore, if the orientation of the end effector is required to remain the same during the entire

transferring, then y can be also specified to be 0.

Figure. 3 Critical configurations of a transferring task. The position of the end-effector is represented by the black dot and the orientation

of the end-effector is represented by the triad.

Table 1. Critical Configurations of TK

cony con, cons cony

P (-0.2,0,0.6) (-0.3,0,0.6) (-0.4,0,0.6) (-0.5,0,0.6)
o (0,0,¥) (0,0,¥) (0,0,¥) (0,0,¥)




Remark 1: In this paper, we only provide a syntax, i.e., Eqn. (4), on how to specify a manipulation task.
Note that the syntax can help us to automatically translate task requirements to quantitative specifications as
shown in Table 1. The practical task specification is typically provided by outside sources and is quite a
heuristic practice. If the user has sufficient knowledge on the requirements of a new task and the
corresponding environment constraints, one may better define the critical positions and the associated end
effector orientations. This will help the robot better understand the new task and facilitates a more effective

learning in performing the new task.

2.3. Build the Library of Human Demonstrated Features

To facilitate the learning from human demonstration, we want to build a library to include primitive or
common tasks for specific working scenarios. For example, for a workshop that works on assembling height-
adjustable desks, the tasks of twisting screws clockwise and placing screws into assembly holes are common
or primitive tasks and can be included in the library for this workshop or working scenario. To demonstrate
these primitive tasks, the human operator can physically hold and move the robot’s end-effector from the
initial configuration to the goal configuration. Throughout the transformation trajectory, the explicit and
implicit task constraints embedded in this kinesthetic demonstration can be recorded by many commercial
robots such as UR robots in the joint space J as a time sequence of joint angles ¢@,... as:

@Qrec = {9 (D), @(2), ..., (M)} (5)
where each @ (i) = [@,(D), 9,(D), ..., 0, (D]T,i = 1,2, ..., m is the vector representing joint angles of the
manipulator, 7 is the degrees of freedom (DOF) of the manipulator, the order of i is the time sequence of
the configurations reached during the motion. Using the forward kinematics mapping FXK': J — SE(3), the
corresponding human demonstration in the task space will be obtained as DP = {D{, D, ..., D,,,}, in which
each D; is a dual quaternion denoted as D; = d,; +%edtj®drj ,j =1,2,..,m, according to Eqn. (1).
Therefore, DP represents the sequence of configurations of how a task is performed in SE (3).

From the human demonstration DP = {D,, D,, ..., D,,,}, we compute the relative motion with respect to
the final end effector configuration. Using the dual quaternion representation, the transformation §; between

the final configuration (denoted by D,,,) and every other configuration D; is:

§=D;®D, ,i=12,..,m—1 (6)



where D; is the conjugate dual quaternion of D; and @ is the dual quaternion product. It is noticed that all
implicit task constraints are embedded in the sequence of §; during the motion, which is referred to as the
feature of the human demonstration. As such, the feature of the k** human demonstration in the task space
can then be described as:

HD{ = {87°%, 85°%, .., 61Pk (7)

Therefore, the library consisting of h human demonstrated features in the task space can be denoted as:
LB = {HD$,HDS, ..., HD}} (8)
Based on the definition of the manipulation task and the library of human demonstrations, the problem
studied in this paper can be described as follows: Given a library of human demonstrations LB =
{HD‘S, HD?, ...,HDfl} and a new task TK = {cony, con,, ...,con,} in the task space SE(3), develop a
method to find motion plan MP in the joint space J for the new task by learning from human demonstrated
features in LB such that the explicit task space constraints specified in each con; in TK is satisfied. If no MP
can be found, then a request for additional human demonstrations is made to satisfy all task-relevant

constraints in TK.

2.4. Build criteria for selecting appropriate human demonstration for the new task

In a previous work (Laha, Rao, et al., 2021), we demonstrate a method of learning by demonstration, where
the robot is shown the exact demonstration that needs to be learned from. In this paper, we use a more
advanced and realistic scenario that the human demonstrations are abstracted by features HD$ and stored in
a library LB. Therefore, when performing a task specified by TK, we first need to identify the appropriate
one or more HD? to be learned from.

Let tk; € TK be a subset or the entire new task TK as:

tk, = {con;, con;,q,..,con,}, i=1,i<w<n 9

we need to determine a criterion that can facilitate the comparison of tk, and a human demonstration HDg.
Since HD? represents the relative motion with respect to the final end effector configuration, in order to
compare HDg with tkg, the relative motion with respect to the final configuration in task tk needs to be
obtained in a similar way to that of HD?. Based on Eqn. (1), the i*" configuration of the task tkg can be

written as:



1
Di = dTi + EEdﬁ@d”’ ,i = 1,2, e, n (10)

where dy; = (0, P;), P; is the position of the it" critical configuration, d,; is a unit quaternion that can be

expressed as:

cos <%) cos (@> cos (@> + sin <%) sin (@> sin <@) +

2 2 2 2 2 2
(sin (%) cos (E) cos <ﬂ) — CcoS (E) sin <%> sin (%» i+

d = 2 2 2 2 2
(cos (%) sin <%) cos (@) + sin (E) cos (2) ( )
2 2 2 2 2 2
(cos <%) cos (@> sin <@) — sin (%> sin <%) cos <@) k
2 2 2 2 2 2

where 8; = (8;1, 8,5, 6;3) is the orientation of the i*" critical configuration of the end-effector. Therefore, the

(11D

. tk .. . .. . .
transformation, §;"°, between the last critical configuration con,, and any other critical configuration con; is

defined as:
8§ =D;®D,,i=1,..,n—1 (12)
As such, the feature of the task tk, can be represented as tk? = {61”(5, 6;ks, s é'fl}isl .

Based on Eqn. (1), using dual quaternions u; and v; to represent 6].HD" and é‘it *s_ the similarities between

them are evaluated by the closeness/difference with respect to both rotation and translation. The closeness of

their rotation can be evaluated using Euclidean distance as:
. u;i . u; .
a(utv;) = minfld? — a2 |, 142 + a2 |} (3)
The difference between the translation direction of the §; and (Yj.tks is evaluated as the dot product of the

normalized translation vector as:

duf d”i
B(u,v;) = —t— —% (14)
( ] l) |d:l;| |d’t71|

Given tolerances A, and Ag, if a(uj, v; ) <A, and 8 (uj, v; ) = Ag, then these two transformations are
referred to as being “semantically similar”.

Remark 2. According to a previous work (Laha, Rao, et al., 2021), if two transformations are sufficiently
close within a certain tolerance (the practical value is about 10 degrees according to (Laha, Rao, et al., 2021))
in the task space, the corresponding solutions in the joint space using inverse kinematics can be uniquely

determined by a small increment in joint angles. Since the human demonstration guarantees the feasible



solution in the joint space without violating any joint limits, if the new task is “semantically similar” to a
certain human demonstration based on Eqn. (13) and Eqn. (14), by learning from that human demonstration,
the solution in the joint space can be ensured. Therefore, a criterion of semantic similarity between a task and
a demonstration can be defined.
Definition 1. Let p be the number of critical configurations in a task feature tk?, the task feature tk¢ and a
human demonstrated feature HD? are semantically similar, denoted as tkS o< HDY, if the same number of p
configurations on HD$ can be allocated such that the following criterion is satisfied:
vy, € tkl,i=1,..,p,38; € HD} - a(u;,v;) < A, and B(w;,v; ) = Ag (15)

where [ = i, ..., m and m is the last configuration in HDg.

For example, for the same task TK shown in Fig. 3, four critical configurations can be specified in Table
2 and corresponding features can be derived in Table 3 using Eqn. (12). Suppose there exists a library LB
that includes features HD? and HDS summarized in Table 4, we want to compare these features with the
feature of the task TK. From Table 3 and Table 4, we find that, for each 617 K i =1,2, we can find a 6; in
HD? such that a(uj, v; ) = 0 and ,B(uj, vi) > 0. For 67%, we find §; in HD3, such that a(uj, v; ) = 0 and
ﬂ(uj, v; ) = 0. Given A,= 0.5 and Ag= 0, based on Definition 1, the feature of the segment between con,
and con; for task TK is semantically similar to that of HD, and the feature of the segment between con; and
con, for task TK is semantically similar to that of HD,,.

Table 2. Critical Configurations of TK

cony cony cong cony
P  (-0.2,0,0.6) (-0.3,0,0.6) (-0.4,0,0.6) (-0.5,0,0.6)
] (0,0,0) (0,0,0) (0,0,0) (0,0,—m/2)

Table 3. Features of TK

57 57K 57K
a’™ (0,1,0,0) (0,1,0,0) (0,1,0,0)
das™ (1,0,0,0) (1,0,0,0) (0.7,0,0,—0.7)

Table 4. Features of Human Demonstrations



HD, HD,

s d>  (01,00) (0,0.7,0,-0.7)
1
d®  (0.7,00,-0.7) (0.7,0,0.7,0)
d” (0,100
62

d®  (0.9,0,0,-0.4)

2.5. Map the feature of the selected human demonstration to the new task

In a previous work (Laha, Rao, et al., 2021), to generate the point-to-point motion plan for similar task
instances, an imitated path is built by transmitting the human demonstration in the task space to the new goal
position and the SCLERP (Kavan et al., 2006) is used to blend any current configuration of the end-effector
into the imitated path. However, this method only considers the goal position of the new task instance as the
explicit new task constraints and the implicit task constraints may not be satisfied during the blend in motion.
Therefore, the method has the limit in performing similar tasks in close adjacent areas of human
demonstrations. In this paper, we adopt a different approach by using the selected feature HDZ based on the
criterion in Eqn. (15), and mapping the feature to a new task or a segment of the new task.

Suppose HD,, and a new task tk, are semantically similar based on Definition 1, i.e., tkg « HD,,, we will
use mapping mpj: HD,, — tk , such that to finish the new task tk;, the robot can learn from HDS. Let
HDS = {u;, uy, ..., Upy_1}, thd = {vy,v,, ..., v,_,}, the first step is to align the translation vector d;* in
HD? to the translation vector d’;l in tk?. Based on Eqn. (3), a unit quaternion Q representing rotating the

vector d?l to the vector d’;l is defined as:

Q = cos <&) + Mg sin (@) (16)
2 2
where fig = lZi;’:l and ¢g = cos™* |:11|I|1:711|. Since HD), and tk, are semantically similar, each d;* of §; in

HD,,j=1,2,..,m — 1 can be rotated using the quaternion sandwich Qd?lQ*. Based on Eqn. (16), we can

align end-effector’s translation encoded in the human demonstrated feature to that of the new task. Then, we

|,
b
||

can scale the vector Qd't‘lQ* with The final quaternion d;’;p"s that maps each end-effector’s translation

d?j in HD,, to tk, can be obtained as:



||
t

U1|
|d;

MPks __

Qdf"Q*),j =12,... m—1 (17)

Since the detailed transformation between con; and con;,, of the new task are unknown and unspecified,

and more importantly, due to the rational in Remark 2, we can just use all the intermediate transformation in
6; for the transformation between con; and con;,,. Let d:}pks = dl:j,j =1,2,...,m—1, the mapping

mp, can finally be derived as:

1
mp,, = d:lpks + Ed't"pks ® d:lpks (18)
Where — dyP%s = (dPks, dPks, . dibks Y dy PR = {dPRS, AT, L, dPRY L Let TK =

{tkl, tk,, ..., tkp}, the final motion plan M P in task space for TK can be determined by
MP =D, @ mpy,,s =12,..,p (19)

If the requirements of all tkg of a new task TK can be covered by features of human demonstrations in
LB, then it is theoretically possible that there exists a set {HD?, s HDf} C LB, from which the robot can
learn to finish TK by using mapping. This is made more rigorous in Theorem 1.

Theorem 1. Given a library of human demonstrations LB = {HD$, HDS, ..., HD%} and a new task TK =
{tk,, tk,,, ...,tkp} in SE(3), it is always possible to find a set HD? = {HD?, ...,HDf} C LB such that
Vtk, € TK,s=1.2,..,p, EIHD‘,E € HD? such that tkg < HDi, if and only if Ytk € TK,s =1,2,...,p,
3HD} € LB such that tky o HD?

Proof

Ifvtk; € TK,s =1,2,..,p, EIHD]‘-s € LB such that tkg < HD]‘-S, then we can always find a set that
includes HD]‘-s, ie, HD® = {HD?, s HD?} C LB that satisfy the above condition. To prove the sufficiency,
suppose we can find a a set HDS = {HD?, ...,HD;S} C LB, thatVtk, € TK,s =12, ...,p, EIHDﬁ € HD?
such that tkg o< HDS. Since HD,, € HD® = {HD?, s HD?} € LB, then sufficient condition must be true.

]

In the next section, we will discuss how to find a set HD® = {HD?, ..., HD{}, meaning find the motion

planning by learning from HD in the task space. This problem is formulated into a Markov Decision Process

(MDP) problem and solved with Q-learning.



3. Obtaining the Optimal Motion Plan Trough Reinforcement Learning

To find a set of appropriate features in LB that can satisfy all task-relevant constraints in TK , one has to
go through all subsets tk; of TK and evaluate each HDg in the library LB, which is an NP-hard problem
(Bovet et al., 1994). Assume that there are x features stored in the library LB and y subsets of the new task
TK, the computational complexity for searching exhaustively is O (x?), which would be huge if the number
of human demonstrations and the constraints of the new task is large. For example, the library of “Assemble
a height-adjustable desk” have 10 features including flipping, twisting, passing, etc. A new task “Place the
screw into the assembly hole and fasten the screw” can have 20 subsets (such as passing horizontally to
certain position, then change direction to another position, etc.). In this case, the computational complexity
for exhaustive search is 0(102°). Therefore, we formulate the problem into an MDP and solve the problem

using a model-free reinforcement learning (RL) algorithm.

3.1. MDP Formulation of the Problem

The most common framework for RL is MDP, which is a stochastic process that models the sequential
decision making in uncertain environments. There are three components in an MDP, including state s, action
a and reward function r. In a RL framework, an agent’s objective is to find a policy 7 so as to maximize the

sum of discounted expected rewards

T

v(s,m) = Z Yy E(ri|m, s = 5) (20)
where v(s, ) is the value for state s under the ptgloicy . Here m = (my, ..., ¢, ... ) is defined over the entire
process. The standard solution to the problem above is through the Bellman equation:

v(s, ") = maax[r(s, a) + yz p(s'|s, a)v(s’, )] (21)
where (s, @) is the reward for taking action a at state s, ;,' is the next state, and p(s’|s, a) is the probability
of transiting to state s’ after taking action a in state s. A solution * that satisfies the above equation is
guaranteed to be an optimal policy. Before we can apply RL algorithms to obtaining the ultimate motion
planning policy *, we need to first properly define the three key components s;, a, and ; at time step t.

For a state space S(t), that contains the current configuration of the end-effector and all task segments,
the state s, € S(t), is defined as:

s, = [CF,, tk,] (22)



where CF, is the current configuration of the end-effector at t, tk, = {con;, con;,4, ..., con,} is the subset
of TK containing task constraints that the robot is going to satisfy.
Given a state s;, all legal actions of identifying semantical similarities between human demonstrations
and task segments form an action space A(s;). The action a; € A(s;) can be defined as:
ar = [a;(8), ax(2), ..., an(t)] (23)
where each a;(t) is to identify a subsequent critical point cony that tki = {con;,...,con;} <
{con;, conj,4, ..., con,}, such that tki o< HD;. Then a;(t) will take the index value of k. Therefore, a;(t)

is defined as:

k, iftk; «< HD;
0, otherwise

ai(®) = | (24)

To evaluate the action at t, we apply the semantical similarity criteria defined in Section 2. The reward

function 7; is defined as:

k
_ ' th; . , )
. Za (6,6),  if thi « HD, 25
1=j
—o00, otherwise

!
where § lt ¥t is the It feature of the task segment tk;. It is noted that after mapping, end-effector translation
encoded in human demonstrated features will be aligned to the task segment while end-effector rotational
features of demonstrations are preserved. Therefore, we only calculate the difference in end effector rotation

between the selected human demonstration and the task segment to reward semantic similar demonstrations.

3.2. Applying Q-learning to Obtain the Optimal Motion Planning Policy
In order to obtain the optimal policy 7*, various algorithms have been proposed in the past, among which
Q-learning is one of the most widely used algorithms (Sutton & Barto, 2018). The basic idea of Q-learning is

that we can define a function Q:

0(5,0) =7(5,0) + Y p(s'ls (s, m) (26)

SIES

such that v(s,7*) = max Q*(s, a). If we know Q*(s, a), then the optimal policy * can be found by simply
a

identifying the action that maximizes Q*(s, @) under the state s. Starting with arbitrary initial values of

Q(s, @), the updating procedure of Q-learning is:



Qes1(spa) = (1 — a)Qe(se, ap) + ap[ry + Vm‘f‘X Qt (541, ap)] (27)

where a; € [0,1) is the learning rate and y € (0,1) is the discount factor. The training process is shown in
Algorithm 1. After the training, the ultimate policy " is determined as:

ifa =arg a;relgé){Q(s, a’)}

m*(als) = {1' (28)
0,

otherwise

where A(s) is the set of all legal actions at state s in the Q-table Q(s,a). The final motion plan MP is
generated following the Algorithm 2. The overall framework of robot motion planning based on Q-learning

by learning from human demonstrations is illustrated in Fig. 4.

Algorithm 1 Training of the RL-based Motion Planner in SE(3)

Procedure 1 Mapping Features of the Human Demonstration to the New Task
Input: tkg, HD,,
Output: mp
Initialize mp,,; with zeros
Compute each v; using Eqn. (12)
Compute the rotation quaternion @ using Eqn. (16)
Fork=1,2,..,m—1do
Update each d';}p"s using Eqn. (17)

d;’;pks - d'r‘j

End For

Compute mpy using Eqn. (18)

Output mp,s

End Procedure

Procedure 2 Training Process of Q-learning

Input: TK, LB, €,y

Output: Q(s,a)

Initialize Q (s, a) randomly

Initialize t = 0

Initialize s, with CFo = D{** and tk, = TK

For episode = 0,1, ...,100 do

While the last con,, of TK is not reached do

Choose a; using policy derived from Q(s, a) (e.g., e-greedy)
Take action a;, observe 7;

If tk; o< HD; based on Definition 1
Q(spar) « Q(spa) +a [rt +y H}lﬁ}x Q(se41,a") — Qs at)]

i « index of the non-zero term of a

Invoke Procedure 1 with HD; and tk; as inputs



tk{
n

CFiy1 <D
thi i, < {cong ), .-, cONy}
St < St+1
t—t+1

Else

Q(spar) « Q(spap) +a [rt +y n}f}x Q(se+1,a") — Qs at)]
Break
End if
End While
End For
Output Q(s, a)

End Procedure

Algorithm 2 Generating Motion Plan in SE(3)

Input: TK, LB, €,v,Q(s,a)
Output: MP
Initialize s, with CFo = D{**and tk, = TK
Fort=0,1,...,T do
Find legal action list A(s;) from Q(s;, a) = a € A(sy)

Find the optimal action as a; = arg max_Q(s;, a)
a€cA(sy)

Map HD; to tk; according to a,
MP, « D,, ® mp;,_ according to Eqn. (19)

End For
MP « {MPy,MP,, ..., MP;}
Output MP
Task. Constraints New Task Constraints
in SE(3) in SE(3)

| RL based Motion Planner |

f ~
Library of features Input

Motion Panning
! state| |reward action Policy
SE(3 .
L n ( ) ) 5t 15 Tert a, inS§ 5(3)
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Figure. 4 Framework of the RL based user-guided motion planning.

4. Computing the Motion Plan in the Joint Space
After the motion plan MP in the task space is generated, the corresponding motion plan in the joint space
needs to be calculated through inverse kinematics. Based on a previous work (Laha, Rao, et al., 2021), to

calculate the sequence of joint angles in the joint space is to solve the equation
q= 0970097, [F] 29)
where q is the joint rate vector, p is the position of the end-effector, 1 is the quaternion representing the

Lixs  2p)y

where J; is the matrix
035 211] i

orientation of the end-effector, J° is the spatial Jacobian and J, =

transformation of the spatial angular velocity of the rigid body. Let ¥ = [p #]” and B = J5)TJ*(J*$)")~1],,
Eqn. (29) can also be written as:
q = By (30)

Using Euler time-step to discretize this equation where h is a small time step,

q(t+h) —q(t) _ By(t +h)—y()

h h (31)

or
5q =B(y(t+h) —y(®) (32)

In such way, for two consecutive configurations of the end-effector y(t) and y(t + h), the value of §q is

determined. Therefore, starting from q(0), the joint angles q(t) at any time step t can be obtained.

In practice, an unavoidable problem when executing motion plans in the joint space is the joint limits. In
previous studies, researchers usually handle joint limits with optimization or Nullspace of the Jacobian
(Flacco et al., 2015). However, in this paper, we still have limitations in handling joint limits because task
constraints in SE(3) always have the higher priority than joint limit constraints in J. Since we map the
feature of the normalized human demonstration to the new task in the task space, the motion plan obtained
by Q-learning in SE'(3) cannot guarantee feasible solutions in J that do not violate joint limits. There’re also
some other methods in handling joint limits (Moe et al., 2016), we will explore these options in our future

work.



5. Case Study

In order to validate effectiveness of the proposed method in generating motion plans for new tasks,
multiple experiments are conducted on the URSe platform. Our experiments consist of four steps: (1) Build
an illustrative library of features of human demonstrations; (2) Specify new tasks in SE(3); (3) Offline train
the RL-based Motion Planner in SE(3) and obtain motion plans in J; (4) Execute motion plans in J. In this
case study, two performance metrices are considered: (1) The accumulated reward of the motion plan in
SE(3); (2) The successful rate of applying the motion plan in J for new tasks. From the case study, two
significant results can be concluded: (1) The proposed RL-based user-guided motion planning method can
benefit from sufficient knowledge in the proposed task specification scheme; (2) The proposed method is
effective in combining different features of human demonstrations to generate motion plans for the new task;
(3) The proposed method is effective in requesting additional human demonstrations if no features in the

library are semantically similar to the new task.

5.1. Setting up a Library of Features of User Demonstrations
To build a library including some common features in certain assembly and loading/unloading
environment, we start with five illustrative tasks as shown in Fig. 5. The tasks are recorded in joint space J
through kinesthetic demonstrations, including:
1) Screwing Task 1: Twist a screw driver 90 degrees clockwise;
2) Screwing Task 2: Twist a screw driver 90 degrees anti-clockwise;
3) Filling Task: Hold a cup horizontally and then turn down 90 degrees (representing certain orientation
constraints);
4) Pouring Task: Hold a cup vertically and then turn up 90 degrees (representing certain orientation
constraints);

5) Stacking Task: Stack one block from an initial location to a goal location;



© ()

(e)

Figure. 5 Kinesthetic demonstrations of 5 most common tasks. (a) Screwing Task 1: The end-effector is required to twisting the screw
driver 90 degrees clockwise while moving straight forward to the goal position. (b) Screwing Task 2: The end-effector is required to
twisting the screw driver 90 degrees anti-clockwise while moving straight forward to the goal position. (c¢) Pouring Task: The end-
effector is required to hold the cup horizontally at first, then turn down 90 degrees. (d) Filling Task: The end-effector is required to hold
the cup vertical to the ground at first, then turn up 90 degrees. (e) Stacking Task: The end-effector is required to stack the small block
up the big block. The orientation of the small block should be kept upward during the stacking.



(b)

)

©

Figure. 6 Human demonstrations in SE(3). (a) Screwing task 1. (b) Screwing task 2. (c) Pouring task. (d) Filling task. (e) Stacking task.
Using forward kinematics, corresponding configurations of end-effector in SE (3) are shown in Fig. 6. Using

Eqn. (8), features of human demonstrations are saved as LB = {HD, HD,, ..., HD} in the library shown in

Table 5.



Table 5. Library of human demonstrated features

HD, HD, HD, HD, HD:
d® (0,1,00) (0,1,0,0) (0,0.7,0,-0.7) (0,-0.7,0,0.7) (0,0.7,0,-0.7)
g d® (0.7,0007) (07,0007 (0.7,0,0.7,0) (0.7,0,-0.7,0) (1,0,0,0)
d®  (0,1,00) (0,1,0,0) (0,0.5,0,-0.8) (0,-0.8,0,0.5) (0.0.7,0,0.7)
£ d® (0.9,00,04)  (0.80,00.5) (0.8,0,0.5,0) (0.8,0,-0.5,0) (1,0,0,0)
d” (01,00 (0,1,0,0) (0,0.2,0,-0.9) (0,-0.9,0,0.2) (0,0,0,1)
& d% (1,00,02) (0.9,0,0,0.3) (0.9,0,0.2,0) (0.9,0,-0.2,0) (1,0,0,0)

5.2. Training the RL-based Motion Planner in SE(3)

In order to obtain a general motion planning policy in SE(3) for the assemble and loading/unloading
scenario with the features library, we implement Algorithm 1 to train a Q-table initialized with random Q
values in Matlab using a 4-core 4.0GHz Intel Core i7 processor. Parameters for training are listed in Table 6.
20 new tasks are used during the training, each of which has four critical configurations. Positions of these

critical configurations are randomly generated within a 50 X 50 X 50 cm?® workspace. Corresponding Euler

angles of each critical configuration are also randomly selected from a set {—m, —g, O,g,ﬂ}. The total

training episode for each new task is set to be 100. The total computation time is 1927.42 seconds.

To monitor the training process, accumulated rewards for each new task are recorded every two iterations.
The average accumulated reward for all 20 new tasks is shown in Fig. 7. Although the training rewards are
noisy before 50 episodes, the underlying trend is that the rewards are increasing with training episodes. It can
be observed that the reward reaches a steady level after around 50 episodes. This indicates that a steady
motion planning policy in SE(3) that can map appropriate features of human demonstrations to new tasks
with semantically similar features is generated for the assemble and loading/unloading scenario.

Table 6. Parameters for Training

Parameters Aa A y £

Value 0.5 -0.9 0.9 0.8
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Figure. 7 Training process for motion plans in SE(3)

5.3. Evaluation of the Trained Motion Planning Policy

To evaluate the performance of the trained motion plan policy in SE(3) for the assemble and
loading/unloading scenario, three new tasks, namely, a transferring task, a filling-and-pouring task, and an
assembling task, are used as examples to demonstrate the method. The trained Q-table from section 6.2 is
used as the input to Algorithm 2 to generate motion plans for new unseen tasks in SE(3). The inverse
kinematics as discussed in Section 5 is used to calculate the final motion plan in joint space 7. For each task,
20 experiment trials are conducted to evaluate the successful executions.

Transferring Task: In this task, the end-effector is required to transfer a cup of water while avoiding an
obstacle shown as red cube in Fig. 8. The dimension of the obstacle is 20 X 20 X 20 cm? and the position
of its center is (—0.3,—0.1,0.2). To avoid this obstacle, a safety protocol is assumed given as a
40 X 40 x 40 cm? safety shell (shown as transparent purple cube in Fig. 8 with the same center position as
the cubic obstacle) that the manipulator cannot penetrate through. Knowing these environment constraints
and the task requirement on moving the cup of water from the starting position to the goal position, a sample
of user defined critical configurations, cony, con,, cons, con, are summarized in Table 7, where 0.1 < z <
0.5. In these critical configurations, con; and con, describe the end-effector starting and the ending
positions and orientations, con, and con; are two intermediate critical configurations selected on edges of
the safety shell. Note that different users may have different task specifications depending on their

understandings of the task and environment constraints.



The result shows that all 20 trials are successfully executed, where each of the 20 feasible motion plans
(shown as the path composed of the small triads) complies with the task requirement that the end-effector
maintains the same orientation of (0,—m/2,0) to prevent the spill out. One of the 20 motion plans are
demonstrated as the yellow line in Fig. 8, where the orientations of the small triads along each path represent
the orientations of the end-effector. Execution of the corresponding motion plan in the joint space is shown
in Fig. 8 (b). It is noticed that the feature of the human demonstrated stacking task is learned and mapped for
this transferring task. In this experiment, both explicit task constraints (position and orientation constraints
of critical configurations) and implicit task constraints (keeping the orientation of the end-effector) are
satisfied. This experiment demonstration the effectiveness of the motion plan policy trained in section 6.2,
which can be used as motion plans to avoid the obstacles in SE'(3) if users have sufficient knowledge about
the task and the environment and can properly infuse the knowledge in task specification based on the syntax
we defined.

Table 7. Critical configurations of Task 3

cony cony cong cony
P (-0.50,03) (-0.4,0.2,2) (0,0.2,2) (0.1,0,0.3)
6 (0,—73/2,0) (Dl _TE/ZFO) (0: _lelo) (01 —1'[/2,0)

|\|
=)

=N

con, [o] =TI cong

(a) (b)

Figure. 8 Motion plans for the transferring task. (a) The motion plan in SE(3). (b) Execution the motion plan in J.
Filling-and-Pouring Task: As shown in Fig. 9 (a), in this task, the end-effector is required to fill water
to Cup 1, then go through another two critical positions, and reach a goal position above Cup 2, and finally

pour water to Cup 2. The location of Cup 2 is on the surface of a desk within a workspace of 20 X 20 cm?.



We can specify 5 critical configurations based on the described task. Sample critical configurations from

con, to cong are presented in Table 8, where —t <y <7, —0.5 < x < 0.7, —0.2 < y < 0. It is noted that,

in this task, only the orientation of the initial configuration and goal configuration are specified with specific

Euler angles. When moving the cup from con, to con,, the end-effector is only required upward without any

specific constraints in the yaw angle.

Table 8. Critical configurations of TK

cony cony cong cony

cong

P (-0.4,-0.1,0) (-05,0.1,0.1) (-0.7,-0.1,0.1) (x,y,0.1)
6 (0,—m0) (0, —=m/2y) (0, —m/2,y) (0, =m/2,¥)

(x,y,0)
(m/2,0, —m/2)

.,
| s
LL,L‘ - LL_I:Ll?L
L_L_L“ cony =
L .,
con,
cong

(b)



Figure. 9 Generate motion plans for the filling-and-pouring task. (a) The motion plan in SE(3) (b) The final execution of the motion
planin J.

For 20 experiment trials with various locations of Cup 2, all experiments are successfully performed in J.
We use the motion plan in J and SE'(3) for one trial as an example as shown in Fig. 9 (a) and (b) to illustrate
the result. It is noticed that the feature of 3 human demonstrated tasks, namely filling, stacking, and twisting,
are learned and mapped to the segment between con, and con,, the segment between con, and con,, and
the segment between con, and cons, respectively. In this experiment, the proposed method can identify and
compose the appropriate features in the human demonstration library to perform a new task.

Assembling Task: In this task, the end-effector needs to disassemble a screw from Assembly Hole 1, then
place the screw into Assembly Hole 2, and finally fasten the screw. The location of Assembly Hole 1 and
Assembly Hole 2 are (0,0.5,0.6) and (0.5,0,0.6) as shown in Fig. 10 (a). To transfer the screw from
Assembly Hole 1 to Assembly Hole 2, the end-effector is required to hold the screw horizontally and turn 90
degrees anti-clockwise. Based on the task requirement, the critical configurations can be specified in Table
9.

Table 9. Critical configurations of the assembling task

cony con, cons cony

P  (0,0.5,0.6) (0.1,0.5,0.6) (0.5,0.1,0.6) (0.5,0,0.6)
8 (—m/2,0,/2) (0, —m/2,0) (0, —m/2,m/2) (m,0, —m/2)
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Figure. 10 Generate motion plans for the assembling task after the feature of a new human demonstration is added to the library. (a)
Critical configurations and the motion plan in J for the assembling task after an additional human demonstration is provided. (b)
Additional human demonstration for picking up a span. (¢) The training process of the assembling task after the feature of a new

human demonstration is added. (d) Motion plan in SE (3).

By applying the same trained general motion plan policy in section 6.2, no successful motion plan can be
generated, which indicates additional human demonstrations are needed. A closer examination reveals that
none of the five features saved in the library is semantically similar to the feature of the task segment between
con, and cons, which requires a 90-degree rotation about its body-fixed x-axis clockwise. Therefore,
additional human demonstration is requested for this feature.

With this additional human demonstration shown in Fig. 10 (b) added in the library, the motion planning
policy is retrained using Algorithm 1 with the Q-table trained in section 6.2. As shown in Fig. 10 (c), the
accumulated reward reaches a steady value after around 10 iterations. Then by applying the newly trained

policy, the motion plan in SE(3) is generated as shown in Fig. 10 (d). The result shows that the features of



the human demonstrated twisting task 1 and task 2 are learned and mapped to the task segment between con,
and con,, and the segment between con; and con,, respectively. The feature of the newly added human
demonstration is learned and mapped to the task segment between con, and conz. Corresponding motion
plan in J is shown in Fig. 10 (a).

To summarize, the case study results demonstrate the effectiveness of the proposed RL-based user-guided
motion planning method in learning and mapping appropriate features of human demonstrations to new tasks
and generating motion plans in the joint space for semantically similar tasks. The proposed method can also
request additional human demonstrations when new task features cannot be found in the human

demonstration library.

6. Conclusion and Future Work

In this paper, we present a novel method for robot learning from human demonstrations based on RL-
based motion planning. A task specification scheme is first developed for users to provide necessary
kinematic information about task and environment constraints. A human demonstration library for specific
working scenarios is built through recording and storing the common actions by utilizing the existing
recording capability for modern robots. By abstracting features from human demonstrations and tasks, the
task-space RL-based motion planner can effectively identify, learn, and compose the appropriate
demonstrated features to perform new tasks that comply with the task requirements and environment
constraints. Followed by inverse kinematics, motion plans in joint space can be obtained

In future work, we plan to explore using different hardware architecture since the motion planning is done
in SE(3). Joint limit consideration will be further studied. In addition, we will extend this work to integrate
with the human motion perception, recognition, and prediction for realistic implementation. More

complicated scenarios will also be considered and deep RL method will be applied.
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