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The active inference framework (AIF) is a promising new computational framework
grounded in contemporary neuroscience that can produce human-like behavior
through reward-based learning. In this study, we test the ability for the AIF to capture
the role of anticipation in the visual guidance of action in humans through the
systematic investigation of a visual-motor task that has been well-explored—that of
intercepting a target moving over a ground plane. Previous research demonstrated
that humans performing this task resorted to anticipatory changes in speed intended
to compensate for semi-predictable changes in target speed later in the approach. To
capture this behavior, our proposed “neural” AIF agent uses artificial neural networks
to select actions on the basis of a very short term prediction of the information about
the task environment that these actions would reveal along with a long-term estimate
of the resulting cumulative expected free energy. Systematic variation revealed that
anticipatory behavior emerged only when required by limitations on the agent’s
movement capabilities, and only when the agent was able to estimate accumulated
free energy over sufficiently long durations into the future. In addition, we present
a novel formulation of the prior mapping function that maps a multi-dimensional
world-state to a uni-dimensional distribution of free-energy/reward. Together, these
results demonstrate the use of AIF as a plausible model of anticipatory visually guided
behavior in humans.
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1. Introduction

The active inference framework (AIF) (Friston et al, 2009) is an emerging theory of
neural encoding and processing that captures a wide range of cognitive, perceptual, and motor
phenomena, while also offering a neurobiologically plausible means of conducting reward-
based learning through the capacity to predict sensory information. The behavior of an AIF
agent involves the selection of action-plans that span into the near future and centers around
the learning of a probabilistic generative model of the world through interaction with the
environment. Ultimately, the agent must take action such that it is making progress toward
its goals (goal-seeking behavior) while also balancing the drive to explore and understand
its environment (information maximizing behavior), adjusting the internal states of its world
to better account for the evidence that it acquires over time. As a result, AIF unifies
perception, action, and learning by framing them as processes that result from approximate
Bayesian inference.

The AIF framework has been used to study a variety of reinforcement learning (RL) tasks,
including the inverted pendulum problem (CartPole) (Millidge, 2020; Shin et al., 2022), the
mountain car problem (MountainCar) (Friston et al., 2009; Ueltzhoffer, 2018; Catal et al.,
2020; Tschantz et al., 2020a; Shin et al., 2022) and the frozen lake problem (Frozen Lake)
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(Sajid et al., 2021). Each task places different demands on motor and
cognitive abilities. For instance, CartPole requires online control of
a paddle to balance a pole upright, whereas MountainCar requires
intelligent exploration of the task environment; a simple “greedy”
policy (typical of many modern-day RL approaches) would fail to
solve the problem. The popular Frozen Lake requires skills related to
spatial navigation and planning if the agent is to find the goal while
avoiding unsafe states.

One fundamental aspect of human and animal behavior that
has so far not been sufficiently studied from an active inference
perspective is the on-line visual guidance of locomotion. On-
line visual guidance comprises a class of ecologically important
behaviors for which movements of the body are continuously
regulated based on currently available visual information seen
from the first-person perspective. Some of the most extensively
studied tasks include steering toward a goal (Warren et al., 2010),
negotiating complex terrain on foot (Matthis and Fajen, 2013; Diaz
et al., 2018), intercepting moving targets (Fajen and Warren, 2007),
braking to avoid a collision (Yilmaz and Warren, 1995; Fajen and
Devaney, 2006), and intercepting a fly ball (Chapman, 1968; Fajen
et al., 2008). For each of these tasks, researchers have formulated
control strategies that capture the coupling of visual information
and action.

One aspect of on-line visual guidance that AIF might be
particularly well-suited to capture is anticipation. To successfully
perform any of these kinds of tasks, actors must be able to regulate
their actions in anticipation of future events. One approach to
capturing anticipation in visual guidance is to identify sources
of visual information that specify how the actor should move
at the current instant in order to reach the goal in the future.
For example, when running to intercept a moving target, the
sufficiency of the interceptor’s current speed is specified by the
rate of change in the exocentric visual direction of the target, or
bearing angle (Figure 1). If the interceptor is able to move so as
to maintain a constant bearing angle (CBA), then an interception
is guaranteed. Such accounts of anticipation are appealing because
they avoid the need for planning on the basis of predictions or
extrapolations of the agent’s or target’s motion, thereby presumably
requiring fewer cognitive resources for task execution. Similar
accounts of anticipation in the context of locomotor control
have been developed for fly ball catching (Chapman, 1968) and
braking (Lee, 1976).

However, there are other aspects of anticipatory control that are
more difficult to capture based on currently available information
alone. For example, moving targets sometimes change speeds and
directions in ways that are somewhat predictable, allowing actors to
alter their movement in advance in anticipation of the most likely
change in target motion. This was demonstrated in a previously
published study in which subjects were instructed to adjust their
self-motion speed while moving along a linear path in order to
intercept a moving target that changed speed partway through each
episode (Diaz et al., 2009). Note that episode refers to a single,
complete course of interception for the agent and the target to be
compatible with the conventions used by the reinforcement learning
community. In contrast, Diaz et al. (2009) uses the word trial. The
final target speed randomly varied between episodes such that the
target usually accelerated but occasionally decelerated. In response,
subjects quickly learned to adjust their speed during the first part
of the episode in anticipation of the change in target speed that
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FIGURE 1

A top-down view of the interception problem. The agent (triangle) and
target (circle) approach the invisible interception point (square) by
going straight ahead. ¥ denotes the exocentric direction of the target
(bearing angle) and « denotes the target’'s approach angle. Image
adapted from Diaz et al. (2009).

was most likely given past experience and the initial conditions of
that episode.

Active inference offers a potentially useful framework for
understanding and modeling this kind of anticipatory behavior. The
behavior of an AIF agent involves the selection of action plans (or
policies) that span into the near future. These plans are selected based
on expected free energy (EFE), i.e., a reward signal that takes into
account both the action’s contribution to reaching a desired goal
state (i.e., an instrumental component), and the new information
gained by the action (i.e., an epistemic component). This method of
action selection is ideal for the study of predictive and anticipatory
behavior in that it allows for the selection of action plans that do
not immediately contribute to task completion, but that reveal to
the agent something previously unknown about how the agent’s
action affects the environment. Similarly, in the task presented
in Diaz et al. (2009), the human participants learned that success
required increasing speed early in the episode in order to increase the
likelihood of an interception after the target’s semi-predictable change
in speed. Critically, this early change in speed was not motivated
by currently available visual information, but rather by the positive
reinforcement of actions selected in the process of task exploration.

In contrast to reinforcement learning methods, active inference
(AIF) formulates action-driven learning and inference from a
Bayesian, belief-based perspective (Parr and Friston, 2019; Sajid
et al.,, 2021). Generally, AIF offers: (1) flexibility to define a prior
preference (or preferred outcome) over the observation space (which
pushes the agent to uncover goal-orienting policies), which provides
an alternative to designing a reward function, (2) a principled
treatment for epistemic exploration as a means of uncertainty
reduction, information gain, and intrinsic motivation (Parr and
Friston, 2017, 2019; Schwartenbeck et al., 2019), and (3) an
encompassing uncertainty or precision over the beliefs that the
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generative model of the AIF agent computes as a natural part of
then agent’s belief updating (Parr and Friston, 2017). Despite being
a popular and powerful framework of perception, action (Friston,
2009, 2010; Buckley et al., 2017; Friston K. et al., 2017), decision-
making and planning (Kaplan and Friston, 2018; Parr and Friston,
2018) with biological plausibility, AIF has been mostly applied to
problems with a low-dimensionality and often discrete state space
and actions (Friston et al., 2012, 2015, 2018; Friston K. et al., 2017;
Friston K. J. et al., 2017). One of the key limitations is that calculation
of the EFE values for all policies starting from the current time step
is needed in order to select the optimal action at the immediate
time step. The exact EFE calculation becomes intractable quickly as
the size of the action space |.A| and the planning time horizon H
grows (Millidge, 2020; Shin et al., 2022). We refer to Da Costa et al.
(2020) for a comprehensive review on AIF.

The present study makes several specific contributions to the
understanding of visually guided action and active inference:

e We present a novel model for locomotor interception of a target
that changes speeds semi-predictably, as in Diaz et al. (2009).
This model is a scaled-up version of AIF where EFE is treated as
a negative value function in reinforcement learning (RL) (Shin
et al.,, 2022) and deep RL methodology is utilized to scale AIF to
solve tasks such as locomotor interception with continuous state
spaces. Specifically, our method predicts action-conditioned
EFE values with a joint network (see Section 2.4.2) and by
bootstrapping on the continuous observation space over a long
time horizon. This allows the agent to account for the long-term
effects of its current chosen action(s).

e To calculate the instrumental value, we designed a problem-
specific prior mapping function to convert the original
observations into a one-dimensional prior space where a
prior preference can be (more easily) specified. This allows
us to inject domain knowledge into the instrumental reward.
The instrumental measurements in prior space simultaneously
promote interpretability as well as computationally efficient
task performance.

e We present a comparison of task performance of a baseline
deep-Q network (DQN) agent, or an AIF agent in which EFE is
computed using only the instrumental signal/component, with a
full AIF agent in which EFE is computed using both instrumental
and epistemic signals/components.

e We demonstrate behavioral differences among our full AIF
agent under the influence of two varying parameters: the
discount factor y, which describes the weight on future
accumulated quantities when calculating EFE value at each time
step, and pedal lag coefficient K, which specifies how responsive
changes in pedal position is reflected on agents speed (or the
amount of inertia that is associated with the agent’s vehicle).

e We interpret our findings as a model for anticipation in
the context of visually guided action as well as in terms of
specific contributions to the active inference and machine
learning communities.

2. Materials and methods

Our aim in this study was to develop an agent that selects
from a set of discrete actions in order to perform the task of
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interception. In this section, we describe the task that we aim to
solve as well as formally describe the AIF model designed to tackle
it. We start with the problem formulation and brief notation and
definitions, then move on to describe our proposed agent’s inference
and learning dynamics.

2.1. The perceptual-motor problem:
Intercepting a moving target

We designed and simulated a perception-motor problem based
on the human interception task used by Diaz et al. (2009). In the
original study, subjects sat in front of a large rear-projection screen
depicting an open field with a heavily textured ground plane. The
subject’s task was to intercept a moving spherical target by controlling
the speed of self-movement along a linear trajectory with a foot pedal,
the position of which was mapped onto speed according to a first-
order lag. Subjects began each episode from a stationary position
at an initial distance sampled uniformly from between 25 and 30
m from the interception point. The spherical target approached the
subject’s path at one of three initial speeds (11.25, 9.47, and 8.18 m/s).
Between 2.5 and 3.25 s after the episode began, the target changed
speeds linearly by an amount that was sampled from a normal
distribution of possible final speeds. The mean of the distribution
was 15 m/s such that target speed usually increased, but occasionally
decreased (standard deviation was 5 m/s, final speed is truncated by
one standard deviation from the mean). The change of target speed
takes exactly 500 ms.

This interception problem is difficult because a human or agent
that is purely reactive to the likely change in target speed will often
arrive at the interception point after the target (e.g., they will be
too slow). The problem is exacerbated when the agent’s vehicle
is less responsive. In Diaz et al. (2009), subjects were found to
increase their speed during the early part of the episode in order to
anticipate the most likely change in target speed, which helped them
perform at near optimal levels. Differences between the behavior
of subjects and the ideal pursuer were also found under some
conditions. Findings in the original study further yielded insight into
the strategies that humans adopt when dealing with uncertainty in
realistic interception tasks.

2.2. Notation

We next define the notation and mathematical operators that we
will use throughout the rest of this paper. ® indicates a Hadamard
product, - indicates a matrix/vector multiplication (or dot product if
the two objects it is applied to are vectors of the same shape), and (v)”
denotes the transpose. [|v||, is used to represent the p-norm where

p = 2 results in the 2-norm or Euclidean (L2) distance.
2.3. Action and input space specification

To simplify the problem for this work, we assume that the
mapping between environmental (latent) states and observations is

the identity matrix. Furthermore, we formulate the problem as a
Markov Decision Process (MDP) with a discrete action space. The
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action space a; (action vector at time ¢) is defined as a one-hot vector
a € {0,1}°%1, where each dimension corresponds to a unique action
and the actions are mutually exclusive. Each dimension corresponds
to one of the pedal speeds (m/s) in {2,4,8, 10, 12, 14} respectively.
Once a pedal speed is selected, the agent will change its own speed by
the amount of AV = K (V,, — V) in one time step where V), is pedal
speed, V; is current subject speed and K is a constant lag coefficient.
In this study, we experiment with 2 variants of peal lag coefficient, i.e.,
K = 1.0K’and K = 0.5K”. K’ is set to 0.017 to be consistent with the
original study (Diaz et al., 2009) and provides a smooth relationship
between the pedal movement and vehicle speed change. Similar to
Tschantz et al. (2020b), we assume that the control state vector
(which, in AIF, control states are originally treated separately from
action states) lines up one-to-one with the action vector, meaning
that it too is a vector of the form u € {0,1}°%!. We define the
observation/state space (0 € R**!) to be a 4-dimensional vector o; =
(xt, Vs Xs, vS)T, which corresponds to target distance, target speed,
subject distance and subject speed. All distances aforementioned are
with respect to the invisible interception point.

2.4. Neural active inference

Active inference (AIF) is a Bayesian computational framework
that brings together perception and action under one single
imperative: minimizing free energy. It accounts for how self-
organizing agents operate in dynamic, non-stationary environments
(Friston, 2019), offering an alternative to standard, reward function-
centric reinforcement learning (RL). In this study, we craft a simple
ATF agent that resembles Q-learning (Shin et al.,, 2022) where the
expected free energy (EFE) serves the role of a negative action-value
function in RL. We frame the definition of EFE in the context of
a stochastic policy and cast action-conditioned EFE as a negative
action-value using a policy ¢ = ¢(asls;) (where s;, = o; as per
our assumption earlier). The same policy ¢ is used for each future
time step 7, and the probability distribution over the first-step action
is separated from ¢ resulting in a substitution distribution q(a;) for
¢(ar). Therefore, the one-step substituted EFE can be interpreted as
the EFE of a policy of (g(a¢), ¢(ary1), . . ., ¢(ar))).

Following Shin et al. (2022), we consider the deterministic
optimal policy ¢* which always seeks an action with a minimum EFE
and obtain the following EFE definition:

Ggr(s) = main Gy (stla)

= main EP($:+1\St,ﬂz=ﬂ)}7(Ut+1\3t+1) (1)

[ZO p(5t+1|5t) ar = (1)

= + Gy»
P(014+1)q(se+1]0441) (4 (5r+1)]

According to Shin et al. (2022), the equation above is quite similar
to the Bellman optimality equation, where Gy« (s;41) corresponds to
the state-value function V*(s;y1) = max,; V7 (s;41) and Gy« (s¢|a)
corresponds to the action-value function Q* (s, a). Then the first term

plseilsnai=a) ; can be treated as a one-step negative reward and

Plorr1)q(se+1l0r41 ) - )
thus EFE can be treated as a negative value function. This term can
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then be further decomposed into two components:

p(sev1lsp, ar = a) p(ser1lse ar)

Ri:=—log=———————— = logp(osy1) + (—lo,
' Por+1)q(st+1l0t+1) ﬁL gq(5t+1|0t+1)
Instrumental
Epistemic
=Rt + Ry

@)

To connect the formulation above back to AIF, with the term
rephrased as R;; is the instrumental (also known as extrinsic,
pragmatic or goal-directed) component (Tschantz et al., 2020b), which
measures the similarity between the future outcome following the
policy ¢ and preferred outcome (or prior preference). The term
rephrased as Ry, is known as the epistemic (also known as intrinsic,
uncertainty-reducing or information-seeking) component (Tschantz
et al., 2020b), which measures the prediction error between the
estimation of the future state by the transition model and the
state predicted by the encoder given the actual observation from
the environment.

Ultimately, we simplify and approximate the search for optimal
EFE values by adapting an estimation approach based on the Bellman
equation, arriving at a Q-learning bootstrap scheme. We assume
that the outcome/observation can be set equal to state variables
and, as a result, our generative model is designed with respect to
fully observed environment (Tschantz et al., 2020a). Following the
active inference literature, we adopt the Laplace assumption and
mean-field approximation. Therefore, a fixed identity covariance
matrix is used for the likelihood distribution p(o|s). Our model (the
function approximator) outputs the mean of states, which encodes
the belief that there is a direct mapping between outcomes and
states. Similarly, our model outputs the mean of estimated EFE
values. Following (Mnih et al., 2015), we integrated an experience
replay as well as a target network in order to facilitate learning and
improve sample efficiency. Note that the Q-learning style framing
of negative EFE estimation is referred to as G-learning. Our model
estimates the EFE for each possible action that it could take in
the immediate next time step (i.e., time t + 1) then selects the
action that corresponds to the minimal EFE value. This, in effect,
corresponds to only explicitly calculating the EFE over a horizon of 1
(whereas as planning over horizons >1 quickly become prohibitive,
requiring expensive search methods such as Monte Carlo tree search)
but incorporates a bootstrap estimate of future EFE values via the
G-learning setup. Our definition in Equation (1) is similar to the
EFE definition in Friston et al. (2021) in the sense that EFE is
formulated recursively in both works. However, differences between
our method and sophisticated inference (Friston et al., 2021) still
exist. For instance, our method works with continuous state space
whereas sophisticated inference works with a discrete state space.
Our method displays a connection to Q-learning, thus it is able
to plan over a trajectory of arbitrary length in principle using
bootstrap estimation, whereas sophisticated inference terminates the
evaluation of recursive EFE whenever an action is found as unlikely
or an outcome is implausible. We utilize the AIF framework within
the G-learning framing for the interception task and modify the
framework to fit the interception task, see Figure 2. Spatial variables,
i.e., distance and speed, will serve as the inputs to our framework and,
as mentioned before, an identity mapping is assumed to connect the
observation directly to the state variables (allowing us to avoid having
to learn additional parameterized encoder/decoder functions). As
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Ry = —EFE; = Ry; + Ry,
Observation at time t prior preference /
Ot(wty Uiy Ty Us) prior space
8y =argdnax —EFE(0;,a) Prior function
action 1
action 2
G)int Model \ %
L d
" action n
Expected Free
Energy Head
>
\__J Transition Head
Prediction Error
FIGURE 2
Our neural AIF architecture for the interception task. The joint model is a two-headed artificial neural network which consists of shared hidden layers, an
EFE (estimation) head, and a transition dynamics (prediction) head. The EFE head estimates EFE values for all possible actions given the current
(latent/hidden) state. An action which is associated with maximum EFE value is selected and executed in the environment and the resulting observation is
fed into the prior mapping function where the instrumental value R;; is calculated in prior space. Meanwhile, the transition dynamics head predicts the
resulting observation given the current (latent/hidden) state. The error between the predicted and actual observation at t + 1 forms the epistemic value
Rte. The summation of R¢; and R results in the final EFE (target) value.

a result, the AIF agent we designed for this paper’s experiments
consists of two major components: a prior mapping function and a
multi-headed joint neural model.

Notably, our particular proposed joint model works jointly as a
function approximator of EFE values as well as a forward dynamics
predictor. It takes in the current observation o; as input and then
conducts, jointly, action selection and next-state prediction (as well
as epistemic value estimation). The selected action is executed and
the resulting observation is returned by the environment. The prior
mapping function itself takes in as input the next observation 041,
the consequence/result of the agent’s currently selected action, and
calculates the log likelihood of the preferred/prior distribution (set
according to expert knowledge related to the problem), or the
instrumental term Ry ;. The squared difference between the outcome
of the selected action o;4+1 and its estimation 0,41 (as per the
generative transition component of our model) forms the epistemic
term Ry, as shown in Equation 7. The summation of the instrumental
and epistemic terms forms the G-value (or negative EFE value) which
is ultimately used to train / adapt the joint model. Formally, R; =
—Gg+(st) = Ry + Ry .. We explain each component in detail below.

2.4.1. The prior mapping function and prior space
With the ability and freedom of designing a prior preference
(or distribution over problem goal states or preferred outcomes)
afforded by AIFE, we integrate domain knowledge of the interception
task into the design of a prior mapping function. In essence, our
designed prior mapping function transforms the original observation
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vector o to a lower-dimensional space (the prior space) where a
semantically meaningful variable is calculated and prior preference
distribution is specified over this new variable—in our case, this is set
to be the speed difference, as shown in Figure 3. The speed difference
represents the difference between the agent’s speed after taking the
selected action and the speed required for successful interception,
i.e., speed difference = speedggent — speedyequirea- Given the current
observation, the required speed is calculated as the agent’s distance
to the interception point divided by the first-order target time-to-
contact (TTC). We define TTC as the duration for the target or agent
to reach the theoretical interception point from the current time step
regardless of the success of the actual interception task. Then, target’s
first-order TTC is the amount of time that it would take for the
target to reach the interception point assuming that target speed does
not change throughout the episode, i.e., TTCfyst—order = Xt/Vconstant
where x; is the target distance and veousant is the target constant
speed. In our neural AIF framework, the instrumental values are
calculated given all possible actions (blue circles in Figure 3) and
a prior distribution over speed difference. The smaller the absolute
speed difference associated with a particular action, the higher the
instrumental value prior mapping function assigns.

Note that the agent might not have enough time to adjust
its speed later in the interception task if it only follows the
guidance of this prior mapping function without anticipating the
likely future speed change of target, since this prior mapping function
only accounts/embodies first-order information. To overcome this
limitation, we investigated the effects of discounted long-term EFE
value on the behavior of the agent in Section 3.4.

frontiersin.org


https://doi.org/10.3389/fncom.2023.1099593
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Yang et al.

Instrumental value

Y

Speed difference (speedagent — speedfirst-order)

FIGURE 3

The prior preference specified in the prior space where each action
corresponds to a different instrumental value. Circles correspond to
pedal positions to choose from.

2.4.2. Joint model

Our proposed joint model embodies two key functionalities:
EFE estimation and transition dynamics prediction, which are
typically implemented as separate artificial neural networks (ANNs)
in earlier AIF studies (Shin et al., 2022) (in contrast, we found that,
during preliminary experimentation, that a joint, fused architecture
improved both the agents overall generalization ability as well as
its training stability). Concretely, we implement the joint model as
a multi-headed ANN with an EFE head and a transition head (see
Figure 2). The system takes in the current observation o; and predicts:
(1) the EFE values for all possible actions, and (2) a future observation
ata distance o4 p (in this work, we fix the temporal distance to be one
step, i.e., D = 1). Within the joint model, the current observation o;
is taken as input and a latent hidden activity vector z; is produced,
which is then provided to both output heads as input. The transition
head p(0s4plz;) serves as a generative model (or a forward dynamics
model) and the EFE head Ggy+(z,a) represents an approximation
over the EFE values. As a result, EFE module and transition modules
are wired together such that the prediction of the future observation
0,+p and the estimation of EFE values G;4p are driven by the shared
encoding from the topmost (hidden) layer of the joint model. This
enables the sharing of underlying knowledge between the module
selecting actions and the module predicting the outcome(s) of an
action. Our intuition is that we humans tend to evaluate the “value”
of an action by the consequences that it produces.

We next formally describe the dynamics of our joint model,
including both its inference and learning processes.

Inference In general, our agent is meant to produce an
action conditioned on observations (or states) sampled from the
environment at particular time-steps. Specifically, within any given
T-step episode, our agent receives as input the observation o; €
RDP*1 where Dis the dimensionality of the observation space o; (D =
4 for the problem investigated in this study). The agent then produces
a set of approximate free energy values, one for each action (similar in
spirit to Q-values) as well as a prediction of the next observation that
it is to receive from its environment (i.e., the perceptual consequence
of its selected action).

Formally, in this work, the outputs described above are ultimately

3

produced by a multi-output function z;, zg = fo(o;), implemented
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3

> contains estimated

as a multi-layer perceptron (MLP), where z
expected free energy values (one per discrete action) while z> is the
generative component’s estimation of the next incoming observation
0;+1. Note that we denote only outputting an action value set from
this model as z; = f&(o;) (using only the action output head) and
only outputting an observation prediction as z; = f3(o;) (using
only the state prediction head). This MLP is parameterized by a set
of synaptic weight matrices ® = {WI,WZ,WZ,Wg}, that operates
according to the following:

z' = ¢,(W' - 2°), 22 = ¢, (W? . 2') 3)
7, = pa(W3 - 2%)), 22 = ¢o(W3 - 22)) (4)

Where z° = o, (the input layer to our model is the observation
at t). Note that a single discrete action is read out/chosen from our
agent function’s action output head as: a = argmax, f§(o;). The
linear rectifier ¢,(v) = max(0,v) was chosen to be the activation
function applied to the internal layers of our model while ¢,(v) = v
(the identity) is the function specifically applied to the action neural
activity layer z> and ¢,(v) = v is the function applied to predicted
observation layer neurons. Note that the first hidden layer z' €
R1<1 contains J; neurons and zZ2 € RJ2*! contains J, neurons,
respectively. The action output layer z2 € R4*! contains A neurons
A =
per discrete action (out of A total possible actions as defined by

6 for the problem investigated in this study), one neuron

the environment/problem), while the observation prediction layer

3 ¢ RP*! contains D =

z,

4 neurons, making it the same
dimensionality/shape as the observation space.

Learning While there are many possible ways to adjust the values
inside of ®, we opted to design a cost function and calculate the
gradients of this objective with respect to the synaptic weight matrices
of our model for the sake of simulation speed. The cost function that
we designed to train our full agent was multi-objective in nature and

is defined in the following manner:

L0411, O) = Ly(0r41; ©) + Lo(tr41; ©) (5)
Lalt;©) = 51t = z13 (6)

1
Lo(0s41; O) = QHOHI - 13||§ (7)

Where the target value for the action output head is calculated as
tj = rj + y max, f§(o;) while the target action vector is computed as
tj = tja; + (1 — a))Of§ (o). In the above set of equations, we see that
the MLP model’s weights are adjusted so as to minimize the linear
combination of two terms, the cost associated with the difference
between a target vector t, which contains the bootstrap-estimated of
the EFE values, and the agent’s original estimate z as well as the cost
associated with how far off the agents prediction/expectation z> of
its environment is from the actual observation 0;41. In this study,
the standard deviation coeflicients associated with both output layers
are set to one, i.e,, 0, = 0, = 1 (highlighting that we assume unit
variance for our model’s free energy estimates and its environmental
state predictions—note that a dynamic variance could be modeled
by adding an additional output head responsible for computing the
aleatoric uncertainty associated with 0/41).

Updating the parameters © of the neural system then

9L(0s+1,t;0)
90

consists of computing the gradient using reverse-mode

differentiation and adjusting their values using a method such as
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stochastic gradient descent or variants, e.g., Adam (Kingma and Ba,
2014), RMSprop (Tieleman et al., 2012). Specifically, at each time
step of any simulated episode, our agent first stores the current
transition of the form (o, as, rt,0441) into an episodic memory
replay buffer (Mnih et al., 2015) and then immediately calculates
w from a batch of observation/transition data (uniformly)
sampled from the replay buffer, which stores up to 10° transitions.
We will demonstrate the benefit of this design empirically in the
results section.

3. Results

3.1. Hypotheses for interception strategies

Given the fact that the target changes its speed during an episode
in our interception task, the agent / human subject could gain
advantage by anticipating the target speed change prior to the change
of target speed. To select an optimal action early within the trail,
the agent needs to take into consideration the initial target speed in
the current episode and make adjustments based on the experience
acquired from previous episodes. So, the question becomes: how
does the agent adapt its behavior on the basis of current episode’s
observation of target speed/distance from the interception point and
the learned statistics across episodes?

3.2. Experimental setup

We implemented the interception task as an environment in
Python based on the OpenAl gym (Brockman et al., 2016) library.
This integration provides the full functionality and usability of the
gym environment, which means that the environment can work / be
used with any RL algorithm and is made accessible to the machine
learning community as well. Our AIF agents and baseline algorithm
DQN are implemented with the Tensorflow2 (Abadi et al., 2015)
library. Experimental data and code will be made publicly available
upon acceptance.

3.3. Task performance

We compare AIF agents with and without the epistemic
component and a baseline algorithm, ie., a deep-Q network
(DQN) (Mnih et al., 2015). We define a trial as a computational
experiment where the agent performs the interception task
sequentially for a number of episodes. We run a number of trials and
then calculate the mean and standard deviation across trials in order
to obtain a statistically valid results. The simulations in our study set
the update frequency of the task environment to be 60Hz in order to
match the exact frequency of the original human study by Diaz et al.
(2009). During each episode, the joint model receives an observation
each time step at 60Hz and estimates the EFE value for each possible
action. Finally, an action is selected based on the estimated EFE
values and executed in the environment. This process corresponds
to Section 2.4.2. Experiments are conducted for 20 trials where each
trial contains 3000 episodes. The task performance of agents is shown
as curves plotting window-averaged rewards (with a window size of
100 episodes) in Figure 4, where the solid line depicts the mean value
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across trials and the shaded area represents standard deviation. We
conducted a set of experiments where the discount factor y of the
models and the pedal lag coefficient K were varied (note that, in AIF
and RL research, y is typically fixed to a value between 0.9 and 1
to enable the model to account for long term returns). In order to
compare the performance of our agents to that of human subjects, we
apply the original pedal lag coefficient in one set of our experiments
(specifically shown in Figure 4C).

Observe that our AIF agents are able to reach around a 90%
success rate stably with very low variance. This beats human
performance with 47% (std = 11.31) on average and 54.9% in the
final block of experiments reported in Diaz et al. (2009). The baseline
DQN agent, which learns from the problem’s sparse reward signal at
the end of each episode, yields an average success rate of 22% at test
time. Similarly, the AIF agent with both instrumental and epistemic
components achieves a 90% mean success rate.

Note that the DQN agent is outperformed by the AIF agents
trained with our customized prior preference function by a large
margin. This reveals that the flexibility of injecting prior knowledge
is crucial for solving complex tasks more efficiently and validates our
motivation of applying AIF to cognitive tasks. In our preliminary
experiments, we tested an AIF agent which consists of an EFE
network and a transition network separately. This AIF agent is out-
performed by the AIF agent with joint model in terms of windowed
mean rewards and stability. Furthermore, the AIF agent with joint
model has lower model complexity. Specifically, AIF agent with joint
model has only 66.8% of the parameter counts of that of AIF agent
with separate models. This supports our intuition that combining
the EFE model with the transition model yields an overall better
model agent.

Interestingly, the AIF agent with only instrumental component
was able to nearly reach the same level of performance as the full
ATF agent. However, success rate of this agent exhibited a larger
variance than the full ATF agent. Based on comparison between agents
with and without epistemic component, we argue that epistemic
component serves, at least in the context of the interception task we
investigate, as a regularizer for the AIF models, providing improved
robustness. Since we apply experience replay and bootstrapping to
train the AIF models, it is possible that a local minimum is reached
in the optimization process because the replay buffer is filled up
with samples which come from the same subspace as the state
space. Therefore, with the help of epistemic component, the agent is
encouraged to explore the environment more often and adjusts its
prediction of future observations such that it has a higher chance
of escaping poorer local optima. Our proposed AIF agent reaches a
plateau in performance after about 1, 000 episodes and stabilizes more
after 1, 500 episodes. Note that, in contrast, human subjects were able
to perform the task at an average success rate after 9 episodes of initial
practice (Diaz et al., 2009).

3.4. Anticipatory behavior of AIF agents

Do the AIF agents exhibit a similar capacity for anticipatory
behavior as humans do? To answer this question and to compare
the strategy used by our AIF agents to that of human subjects, we
record the Time-To-Contact (TTC) from trained AIF agents at the
onset of the target’s speed change in each episode. We then calculate,
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(A-D) Window-averaged reward measurements of agent performance on the interception task. DQN_Reward represents a DQN agent that utilized the
sparse reward signal and € — greedy exploration; AIF_InstOnly represents our AIF agent with only instrumental component which is defined by the prior
mapping function; AIF_InstEpst represents an AIF agent that consists of both instrumental and epistemic components. Discount factor is denoted by y,
pedal lag coefficient is denoted by K

at the same time: 1) the target’s TTC using first-order information,
and 2) target’s TTC with the assumption that the target would change
its speed at the most likely time and reach an averaged final speed.
Finally, we compose these three types of TTC data grouped by
target initial speed into a single boxplot in Figure 5. Following the
assumptions made in Diaz et al. (2009), we expect that the agent
would adjust its speed in a way such that its first-order TTC will equal
the target’s first-order TTC before it learns enough from experience
to realize that the target almost always accelerates. The target’s actual
TTC with the interception point would be less than the first-order
TTC if the target accelerates midway through. If the agent is able
to anticipate the target’s acceleration later in the episode, it should
accelerate even before the target does in order to match the target’s
actual TTC with the interception point.

In our experimental analysis, we found that the discount factor
y plays a big role in forming different behavior patterns within
AIF agents. All variants of AIF agents were trained with the
instrumental value computed using our first-order prior mapping
function. Intuitively, the agent’s behavior should conform to a reactive
agent who uses only the first-order information and acts to match
its own TTC to the targets first-order TTC, just like what has
been observed in Figure 5A (please see that the green box is nearly
identical to the blue box under all target initial conditions). The
ATF agent depicted in Figure 5A is set to use a discount factor of 0,
which means that the agent only seeks to maximize its immediate
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reward without considering the long-term impact of the action(s)
that it selects. Such an agent converges to a reactive behavior.
However, when we increase the discount factor to 0.99 (which is a
common practice in RL literature), the AIF agent starts to behave
more interestingly. In Figure 5C, the agent’s TTC (green box) lies in
between target’s first-order TTC (blue box) and target’s actual mean
TTC (orange box), which suggests that the AIF agent tends to move
faster than a pure-reactive, first-order agent would in the early phase
of interception. In other words, the agent tends to anticipate the
likely target speed change in the future and adjusts its action selection
policy. This behavioral pattern can be explained as exploiting the
benefits provided by estimating long-term accumulated instrumental
reward signal (when the discount factor value is increased). Given a
higher discount factor, in this case y = 0.99, the AIF agent estimates
the summation of instrumental values from its current (time) step
in the task until the end of the interception using discounting. This
leads to an agent who seeks to maximize long-term benefits in terms
of reaching the goal when selecting actions.

3.5. Effect of vehicle dynamics on agent
behavior

To test how anticipatory behavior is affected when simple reactive
behavior is no longer sufficient, we increased the inertia on the
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(A-D) TTC values taken at the onset of target's speed change. In each subplot, the target’s first-order TTC, the target's actual mean TTC, and the agent’s
TTC are shown in different colors, with data grouped by target initial speed. The discount factor is denoted by y while the pedal lag coefficient is denoted
by K.

agent’s vehicle by changing the pedal lag coefficient K. Given the
same discount factor y = 0.99, we compare two different pedal
lag coeflicients K = 1.0 in Figure 5C and K = 0.5 in Figure 5D,
where lower K indicates less responsive vehicle dynamics. With the
same discount factor, the AIF agent performing the task under a
lower pedal lag coefficient in Figure 5D has a lower success rate in
intercepting the target. This is due to the fact that the agent’s ability
to manipulate its own speed is limited, therefore there is less room
left for error. However, the AIF agent in this condition yields TTC
values that are closer to the target’s actual mean TTC. Note that,
when the target initial speed is 11.25 m/s (Figure 5D), the median
of agent’s TTC value is actually smaller than targets actual mean
TTC. This supports our hypothesis that purely reactive behavior is
not sufficient for successful interception and anticipatory behavior is
emergent when the vehicle becomes less responsive.

4. Discussion

Variations of an AIF agent were trained to manipulate the speed
of movement so as to intercept a target moving across the ground
plane, and eventually across the agent’s linear path of travel. On each
episode, the target would change in speed on most episodes to a value
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that was selected from a Gaussian distribution of final speeds. The
results demonstrate that the AIF framework is able to model both
on-line visual and anticipatory control strategies in an interception
task, as was previously demonstrated by humans performing the
same task (Diaz et al., 2009). The agent’s anticipatory behavior aimed
to maximize the cumulative expected free energy in the duration
that follows action selection. Variation of the agent’s discount factor
modified the length of this duration. At lower discount factors,
the agent behaved in a reactive manner throughout the approach,
consistent with the constant bearing angle strategy of interception. At
higher values, actions that were selected before the predictable change
in speed took into account the most likely change in target speed
that would occur later in the episode. Anticipatory behavior was
also influenced by the agent’s capabilities for action.This anticipatory
behavior was most apparent when the pedal lag coefficient was
set to lower values, which had the effect of changing the agent’s
movement dynamics so that purely reactive control was insufficient
for interception behavior.

Despite the agent’s demonstration of qualitatively human-like
prediction, careful comparison of the agent’s behavior to the human
performance and learning rates demonstrated in Diaz et al. (2009)
reveals notable differences. Analysis of participant behavior in the
fourth and final block of Experiment 1 in Diaz et al. (2009) reveals

frontiersin.org


https://doi.org/10.3389/fncom.2023.1099593
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Yang et al.
3
¢ Subject
------ First-Order Target
251 == Mean Actual Target
2 -
15 +
! —
051
0 . . .
8.18 9.47 11.25
Target Initial Speed (m/s)
FIGURE 6
Human subject data from Exp 1. of Diaz et al. (2009). TTCs were taken
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that subject TTC at the onset of the target’s change in speed was well
matched to the most likely time and magnitude of the target’s likely
change in speed (i.e., the mean actual target TTC in Figure 6). In
contrast, the AIF agent with an equivalent pedal lag (K = 1.0; i.e.,
the matched agent) demonstrated only partial matching of its TTC
to the likely change in target speed (the target’s mean actual TTC in
Figure 5C). Although one might attribute this to under-training of
the agent, it is notable that the agent achieved a hit rate exceeding
80% by the end of training, while human participants in the original
study consistently improved in performance until reaching 55% hit
rate at the end of the experiment.

To better understand the potential causes of these differences
between agent and human performance, it is helpful to consider
how the agents mechanism for anticipation differs from that of
humans. The agent chooses actions on the basis of a weighted
combination of reward-based reinforcement (instrumental reward)
and short model-based prediction (epistemic reward), both of which
are computed within the two-headed joint model. EFE values are
computed in the EFE head, which is responsible for selecting the
action (i.e., pedal position) that it estimates would produce the lowest
expected free energy later in the agents approach. The estimate of
EFE associated with each pedal position does not involve an explicit
process of model-based prediction, but is learned retrospectively,
through the use of an experience replay buffer. Following action
selection, visual feedback provides an indication of the cumulative
EFE over the duration of the replay buffer. The values of EFE within
this buffer are weighted by their temporal distance from the selected
action in accordance with the parameter of discount factor. This
is similar to both reward-based learning and is often compared to
the dopaminergic reward system in humans (Holroyd and Coles,
2002; Haruno, 2004; Lee et al., 2012; Momennejad et al., 2017). The
epistemic component of the EFE reward signal is thought to drive
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exploration toward uncertain world states, and it relies on predictions
made in the transition head. This component of the model relies
on the hidden states provided by the shared neural layers in the
joint model and predicts an observation at next time step Ost].
The estimated observation at next time step is then compared to
the ground truth observation o,y and the difference between them
generates the epistemic signal R,. The role of the transition head
is in many ways consistent with a “strong model-based” form of
prediction (Zhao and Warren, 2015), whereby predictive behaviors
are planned on the basis of an internal model of world states
and dynamics that facilitate continuous extrapolation. In summary,
whereas the EFE head is consistent with reward based learning,
the transition head is consistent with relatively short-term model
based prediction.

How does this account of anticipation demonstrated by our
agent compare with what we know about anticipation in humans?
As discussed in the introduction, empirical data on the quality of
model-based prediction suggests that it degrades sufficiently quickly
that it cannot explain behaviors of the sort demonstrated here, by
our agent, or by the humans in Diaz et al. (2009). In contrast,
a common theory in motor control and learning relies upon a
comparison of a very short-term prediction (e.g., milliseconds) of
self-generated action with immediate sensory feedback (Hoist et al.,
1950; Wade, 1994; Wolpert et al., 1995; Blakemore et al., 1998).
However, this similarity is weakened by the observation that, in
the context of motor-learning, short-term prediction is thought to
rely upon access to an efferent copy of the motor signal used to
generate the action. For this reason, it is problematic that the AIF
agent is predicting both its own future state (xs, vs) and the future
state of the target (xy,v;), for which there is no efferent copy or
analogous information concerning movement dynamics. Although
research on eye movements has revealed evidence for the short-
term prediction of future object position and trajectory (Ferrera and
Barborica, 2010; Diaz et al., 2013a,b), it remains unclear whether
these behaviors are the result of predictive models of object dynamics
or representation-minimal heuristics.

Another possible contribution to the observed differences
between agent and human performance is the perceptual input.
When considering potential causes for the difference between agent
and human anticipatory behavior, it is notable that the agent
relies upon an observation vector defined by agent’s and target’s
position and velocity measured in meters, and meters per second,
respectively. However, in the natural context, these spatial variables
must be recovered or estimated on the basis of perceptual sources of
information, such as the rate of global optic flow due to translation
over the ground plane, the exocentric direction of the target,
the instantaneous angular size of the target, or the looming rate
of the target during the agent’s approach. It is possible that by
depriving the agent of these optical variables, we are also depriving
the agent of opportunities to exploit task-relevant relationships
between the agent and environment, such as the bearing angle.
It is also notable that some perceptual variables may provide
redundant information about a particular spatial variable (e.g.,
both change in bearing angle and rate of change in angular size
may be informative about an objects approach speed). However,
redundant variables will differ in reliability by virtue of sensory
thresholds and resolutions. For these reasons, a more complete
and comprehensive model of human visually guided action and
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anticipation would take as input potential sources of information
and learn to weight them according to context-dependent reliability
and variability.

Another potential contributor to differences between human
and agent performance is the notable lack of visuo-motor delays
within the agents architecture. In contrast, human visuo-motor
delay has been estimated to be on the order of 100-200 ms
between the arrival of new visual information and the modification
or execution of an action (Nijhawan, 2008; Le Runigo et al,
2010). Because uncompensated delays would have devastating
consequences on human visual and motor control, they are often
cited as evidence that humans must have some form of predictive
mechanism that acts in compensation (Wolpert et al., 1995).
Future attempts to make this model’s anticipatory behavior more
human-like in nature may do so by imposing similar length
delay between the agents choice of motor plan on the basis of
the observed world-state and the time that this motor plan is
executed (Walsh et al, 2009). Finally, note that our proposed
architecture is “flat” in the temporal sense. It other words, EFE
values are calculated and actions are planned in a single linear
time scale. In contrast, a deep/hierarchical temporal model would
imply that policies are inferred, learned, and ultimately operate
at different time scales (Friston et al., 2018). We believe that our
approach is sufficient for the given task of this study. However, if
one intended to extend the problem to more sophisticated settings
where higher level cognitive functions are separated from lower-
level motor control, a deep temporal model could be a more
suitable/useful approach.

Due to limited computation resources that we have access to and
the high computational cost of the full Bayesian inference framework
(which, in the context of neural networks, requires formulating
each neural network as a Bayesian neural network where training,
typically to obtain good-quality performance, requires Markov chain
Monte Carlo), we simplify the Bayesian inference by assuming a
uniform prior (or uninformative prior) on the parameters of our
model, similar to Tschantz et al. (2020a). Maximum likelihood
estimation (MLE), in our setup, is generally equivalent to maximum
a posteriori (MAP) estimation while assuming the priors to be
uniform distributions. More general forms of Bayesian inference
with different prior assumptions could be examined in future work.
Also, note that the Laplace approximation applied in this work
leads to the expected free energy reducing to a KL-divergence
(i.e., KL control).

5. Conclusion

We present a novel scaled-up version of active inference
framework (AIF) model for studying online visually guided
locomotion using an interception task where a moving target changes
its speeds in a semi-predictable manner. In order to drive the agent
toward the goal more effectively, we devised a problem-specific prior
mapping function, improving the agent’s computational efficiency
and interpretability. Notably, we found that our proposed AIF agent
exhibits better task performance when compared to a commonly
used RL agent, i.e., the deep-Q network (DQN). The full AIF agent,
containing both instrumental and epistemic components, exhibited
slightly better task performance and lower variance compared to
the AIF agent with only an instrumental component. Furthermore,
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we demonstrated behavioral differences among our full AIF agents
given different discount factor y values as well as levels of the
agent’s action-to-speed responsiveness. Finally, we analyzed the
anticipatory behavior demonstrated by our agent and examined the
differences between the agent’s behavior and human behavior. While
our results are promising, future work should address the following
limitations—first, inputs to our agent are defined in a simplified
vector space whereas sensory inputs to the humans that actually
perform the interception task are visual in nature (i.e., the model
should work directly with unstructured sensory data such as pixel
values). We remark that a vision-based approach could facilitate the
extraction of additional information and features that are useful for
solving the interception task more reliably. Second, our simulations
do not account for visuo-motor delays inherent to the human visual
and motor systems, and that might be modeled using techniques like
delayed Markov decision process formulations (Walsh et al., 2009;
Firoiu et al., 2018).
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