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Abstract

Neural activity in the cortex is highly variable in response to repeated stimuli. Population

recordings across the cortex demonstrate that the variability of neuronal responses is

shared among large groups of neurons and concentrates in a low dimensional space. How-

ever, the source of the population-wide shared variability is unknown. In this work, we ana-

lyzed the dynamical regimes of spatially distributed networks of excitatory and inhibitory

neurons. We found chaotic spatiotemporal dynamics in networks with similar excitatory and

inhibitory projection widths, an anatomical feature of the cortex. The chaotic solutions con-

tain broadband frequency power in rate variability and have distance-dependent and low-

dimensional correlations, in agreement with experimental findings. In addition, rate chaos

can be induced by globally correlated noisy inputs. These results suggest that spatiotempo-

ral chaos in cortical networks can explain the shared variability observed in neuronal popula-

tion responses.

Author summary

Cortical neurons exhibit highly variable spatiotemporal activity patterns, even in the pres-
ence of strong sensory stimuli. The patterns of population responses also vary depending
on animal’s brain state and behavioral context. Understanding the dynamical properties
of cortical circuit is critical to understanding network’s responses to stimulus inputs. Pre-
vious models have proposed that neural variability can be generated through chaotic neu-
ral dynamics in cortical circuits. However, these models fail to capture the statistical
features of the shared variability in population activity patterns observed in experiments.
In this work, we systematically analyze the dynamical regimes of spatially distributed neu-
ronal networks. We discover spatiotemporal chaos that produces correlated response pat-
terns in neural population activity, consistent with cortical recordings. Interestingly, we
find chaos in networks where the excitatory and inhibitory neurons have similar spatial
spreads of connections, which is an anatomical feature of sensory cortex. We further show
that chaotic activity can be induced when the network is driven by correlated noisy inputs,
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which can explain the prevalence of large-scale shared variability observed in cortex. Our
work expands our mechanistic understanding of neural dynamics in cortical circuit
models.

Introduction

A defining feature of cortical neural responses is that they are highly variable. The variability is
reflected at multiple scales of neural recordings, from irregular inter-spike intervals in spike
trains of individual neurons [1, 2] to spatiotemporal patterns in mesoscopic neural activity
measured with voltage sensitive dye imaging [3] and local field potentials [4], to whole brain
signals such as the electroencephalography [5]. Changes in neural variability reflect fluctua-
tions in the brain state and are closely related to behavioral performance [5–8]. Therefore,
understanding the circuit mechanisms that generate neural variability is critical for elucidating
the neural basis of behavior.

Previous models have proposed that chaotic neural dynamics can be a substantial local
source of neural variability in cortical circuits [9–11]. Variable neural responses can be intrin-
sically generated through strong interactions between the excitatory and inhibitory neurons.
Intriguingly, neuronal networks with chaotic dynamics have been shown to demonstrate high
computational capabilities because of their rich reservoir of internal dynamics that can be uti-
lized for complex computations and efficient training [12–16].

However, previous models with unstructured random connectivity produce chaotic
response in individual neurons that is uncorrelated with other neurons in the network. In con-
trast, numerous datasets of cortical recordings have revealed that cortical neurons are on aver-
age positively correlated [17]. The correlation between a pair of neurons depends on many
factors, such as the cortical distance between them and their tuning similarity [18–20]. More-
over, the variability shared among a neuron population has been found to be low dimensional,
meaning that the variations in population response patterns can often be explained by just a
few independent latent variables [21–25]. Therefore, networks with unstructured random con-
nectivity are not able to capture the shared variability in neural population responses.

A main determinant of the connection probability between a pair of neurons in cortex is
the physical distance between them [26–30]. Nearby neurons are more likely to be connected,
whereas neurons that are far apart are less likely to be connected. Recently, several studies of
spatially distributed neuronal networks have suggested that spatiotemporal patterns of neural
activity can explain many features of variability in neural population responses [21, 31–33].
For example, our past work has shown that spiking neuron networks with irregular wave
dynamics generate on average positive correlations and low-dimensional population-wide
shared variability, consistent with cortical recordings [21].

Here we systematically analyze the dynamical regimes of spatially distributed firing rate
networks. We find a parameter region where networks exhibit irregular chaotic dynamics. The
chaotic solutions have several features of response variability that are consistent with experi-
mental findings in cortex, such as broadband frequency power in single neuron responses, dis-
tance-dependent correlations and low-dimensionality of population responses. Interestingly,
chaos occurs in networks where the excitatory and inhibitory neurons have similar projection
widths, an anatomical feature found in the cortex [27, 29, 30]. Further, we find that correlated
noisy inputs induce chaos, which can explain the prevalence of large-scale shared variability
observed in cortex. Our work identifies a new dynamical regime of spatiotemporal chaos in
neuronal networks that can account for rich response patterns in neural population activity.
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Results

We study a spatially distributed network model that describes the firing rate dynamics of the
excitatory (re) and inhibitory (ri) neurons (Eqs 1 and 2). Neurons are organized on a two-
dimensional sheet (x 2 [0, 1] × [0, 1]) with periodic boundary conditions (Fig 1A). The equa-
tions that describe the dynamics of the firing rates are

te
@reÖx; tÜ
@t

à �re á �ÖWee gÖx; seÜ ⇤ re áWei gÖx; siÜ ⇤ ri á meÜ; Ö1Ü

ti
@riÖx; tÜ
@t

à �ri á �ÖWie gÖx; seÜ ⇤ re áWii gÖx; siÜ ⇤ ri á miÜ; Ö2Ü

where τe (τi) is the time constant of the excitatory (inhibitory) population, ⇤ denotes convolu-
tion in space, and ϕ(x) = max(x, 0)2 is the input-output transfer function of each neuron. The
connection strength from a neuron in population � to a neuron in population � decays with
distance as a Gaussian function, g(x, σ�), with projection width σ� (�, � = e, i). The average con-
nection strength from population � to population � is W��. The external input to each popula-
tion is a static and spatially homogeneous current, μ� (� = e, i).

The spatial networks generate rich spatiotemporal patterns. In particular, we find that the
network exhibits irregular patterns in both space and time for certain parameters (Fig 1B and
1C). These networks show spatially localized and transient activity patterns that sometimes
propagate across the network (Fig 1B). Individual neurons show epochs of brief firing
with varying magnitudes and time intervals in between (Fig 1C). This type of network
dynamics result in large variability that is shared among neurons in the network. In order
to better understand the behavior of the model and the mechanism for generating irregular
firing patterns, we systematically analyze the different dynamical regimes of the spatially
distributed networks. We focus our analysis on varying the temporal (τi) and spatial (σi)
scales of the inhibitory neurons, while fixing those of the excitatory neurons (τe = 5 ms
and σe = 0.1).

A reduced two-unit model with no spatial coupling

We first consider networks with no spatial coupling, meaning that the spatial coupling func-
tion, g, is constant over distance. In this case, the network is reduced to a two-unit system,

Fig 1. Irregular spatiotemporal dynamics in spatially distributed networks. A. Model schematic of recurrently coupled excitatory (E)
and inhibitory (I) neurons. Neurons from each population are equally spaced on a two dimensional sheet, [0, 1] × [0, 1], with distance-
dependent connectivity weights. B. A snapshot of the firing rates of excitatory neurons. C. Three examples of the time courses of firing
rates of neurons at different locations. The square, circle and triangle in panel B denote the spatial location of each neuron.

https://doi.org/10.1371/journal.pcbi.1010843.g001
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where the firing rate, r�(x, t) = r�(t), � = e, i, is independent of the neural location x.

te
dre
dt

à �re á �ÖWeere áWeiri á meÜ; Ö3Ü

ti
dri
dt
à �ri á �ÖWiere áWiiri á miÜ: Ö4Ü

Note that a solution to the two-unit system corresponds to a spatially uniform solution to the
spatially distributed networks (Eqs 1 and 2).

The reduced network (Eqs 3 and 4) has a stable fixed point solution for a small τi (Fig 2A,
gray solid line). As τi increases, the fixed point solution becomes unstable through a Hopf
bifurcation (τi = τHB, Fig 2A, gray arrow), and the system admits a stable periodic solution
(limit cycle; Fig 2A, blue solid curve). Over the interval of τi 2 [7.16, 7.78] ms both the fixed
point and the limit cycle solutions are stable (between the blue and gray arrows in Fig 2A). We
next analyze the stability of the fixed point and the limit cycle solutions in the spatially distrib-
uted networks (Eqs 1 and 2).

Pattern formation in one-dimensional networks

In this section we analyze the stability of spatially uniform solutions and how a loss of stability
leads to periodic spatiotemporal patterns. We first consider networks with one-dimensional
spatial coupling, where neurons are distributed over a line interval, [0, 1], with periodic
boundary conditions (namely, a ring). The stability analysis below is also applicable to two-
dimensional networks.

Fig 2. Dynamical regimes of networks with one-dimensional spatial coupling. A. Bifurcation diagram of the reduced two-unit
model (Eqs 3 and 4) as τi varies. Gray line, fixed point; blue curves, the maximal and minimal firing rates of a limit cycle; solid,
stable; dashed, unstable. The blue arrow indicates the lowest τi with a limit cycle solution. The gray arrow indicates the Hopf
bifurcation (the largest τi with a stable fixed point solution). B. Phase diagram of networks with one dimensional spatial coupling.
Gray, stable fixed point; blue, stable bulk oscillation; orange, stable traveling waves. The fixed point solution loses stability at either
the zero wave number (gray dashed line) or a nonzero wave number (gray solid line). The bulk oscillation loses stability with either
an eigenvalue becoming larger than 1 (green curve) or an eigenvalue becoming less than -1 (magenta curve). Blue and gray arrows
point to the same values of τi as in A. C-G Examples of the firing rate dynamics of the excitatory neurons in networks with
different τi and σi (the square, circle, triangle, diamond and star symbols indicate the parameters in panel B). C, Bulk oscillation; D,
traveling waves; E, traveling bumps; F, alternating bumps; G, non-alternating bumps. The temporal and spatial scales of the
excitatory neurons are τe = 5 ms and σe = 0.1, respectively.

https://doi.org/10.1371/journal.pcbi.1010843.g002
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We first analyze the stability of the fixed point solution in spatially distributed networks,
which is a static and spatially uniform solution. We linearize around the fixed point in the spa-
tial frequency domain using Fourier transform and obtain eigenvalues for each wave number
(spatial frequency) (see Methods; [34, 35]). The fixed point solution is stable when all eigenval-
ues are negative (stable region is shown in gray in Fig 2B). When σi< σe, the network loses sta-
bility at zero wave number as τi increases, which is the same condition as the Hopf bifurcation
in the two-unit model (Fig 2B, gray arrow, gray dashed line). For small σi and τi> τHB, the net-
work exhibits spatially uniform and temporally periodic solutions (bulk oscillation; Fig 2C),
which corresponds to the limit cycle solution in the two-unit model (Eqs 3 and 4). When σi>
σe, the network loses stability at a nonzero wave number (Fig 2B, gray solid line), suggesting
pattern formation of spatially and/or temporally periodic solutions.

Around the boundary where the fixed point solution loses stability at a nonzero wave num-
ber, we find traveling wave solutions (Fig 2B orange region, Fig 2D). Using a continuation
numerical method [36], we show that stable traveling wave solutions exist in a small parameter
region (Fig 2B, orange) that partially overlaps with the region of stable fixed point. Closely
beyond this region with a larger σi, the traveling waves lose stability and the networks generate
traveling bump solutions (Fig 2E).

We next compute the stability of the bulk oscillation solution. Similar to the stability analy-
sis of the fixed point solution, we linearize around the bulk oscillation solution and perturb the
system at different wave number (see Methods). The dynamics of the perturbation then follow
a linear system of differential equations with periodic coefficients (Eq 8). The stability of the
bulk oscillation solution depends on the eigenvalues (�) of the monodromy matrix, M, of the
linear system, which describes the change of the perturbation after one period of the bulk oscil-
lation solution (Eq 9; [37, 38]). The bulk solution is unstable if there is an eigenvalue of M(k)
with magnitude larger than 1 for any wave number k. We find that with small σi and an inter-
mediate range of τi, the bulk oscillation is stable (Fig 2B, blue region; Fig 2C). As σi increases,
the bulk oscillation loses stability with a real eigenvalue less than -1 for perturbations at a non-
zero wave number, indicating a period-doubling bifurcation (Fig 2B, magenta curve). In the
parameter region beyond this stability boundary, the network activity shows spatial patterns
that alternate over time (Fig 2F). As τi increases, the bulk oscillation loses stability with a real
eigenvalue larger than 1 (Fig 2B, green curve). In the region under this stability boundary (Fig
2B, green curve), the network activity exhibits spatial patterns that repeats at each cycle (Fig
2G).

Chaotic dynamics in two dimensional networks

We next analyze the full networks with two dimensional spatial coupling (Fig 1A). The stability
analysis of the fixed point and the bulk oscillation that we outlined above for the one-dimen-
sional networks is also applicable to networks of higher dimensions. The two-dimensional net-
works have almost identical stability boundaries for the fixed point and the bulk oscillation
solutions as those in the one-dimensional networks (Fig 2B and S1 Fig). In the region
above the period-doubling bifurcation curve of the bulk oscillation solution (Fig 2B, region
with �< −1), the two-dimensional networks have solutions similar to those in the one-dimen-
sional networks, such as traveling waves (Fig 3A) and alternating bumps solutions (Fig 3B). In
addition, we find other spatiotemporal patterns in the two-dimensional networks, such as spa-
tially periodic stripe patterns that alternate in phase over time (Fig 3C).

In particular, we find network solutions that are irregular in both space and time (Figs 3D,
1B and 1C). In these networks, neurons exhibit random like activity with large variability even
though the network is deterministic. We verify that such irregular solutions are chaotic,
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meaning that a small perturbation leads to rapid divergence in network activity, by computing
the maximal Lyapunov exponent (MLE) numerically (see Methods; [39]). The MLE measures
the rate of separation between a perturbed trajectory and the original trajectory. The distance

between the perturbed and and original trajectories grows as e�lMLEtjdz0j where |dz0| is the size
of the initial perturbation. A positive MLE means that the solution is chaotic, a negative MLE
indicates a stable fixed point, and MLE = 0 indicates that the solution is periodic or quasi-peri-
odic. We compute the MLE of network solutions over the parameter space of σi and τi. We
find chaotic solutions in a parameter region where the spatial scales of the excitatory and
inhibitory projections are similar (σi⇡ σe = 0.1) and the time constant of the inhibitory neu-
rons is large (τi> τe = 5 ms) (Fig 4A, yellow). Interestingly, anatomical measurements from
sensory cortices find that excitatory and inhibitory neurons project on similar spatial scales
[29, 30, 40]. In addition, the decay kinetics of inhibitory synaptic currents are also slower than
the excitatory synaptic currents in physiology [28, 41, 42]. These results suggest that the net-
work parameter region of chaotic dynamics is consistent with the anatomy and physiology of
the cortex. In contrast, networks with one-dimensional spatial coupling have a restricted
parameter region of chaos, suggesting that the two-dimensional spatial structure is important
for generating chaos (S2 Fig).

Population statistics of the chaotic solutions

Networks with chaotic dynamics intrinsically generate large variability in population activity.
We next measure statistics of the population activity of networks in the chaotic regime and

Fig 3. Examples of solutions in networks with two-dimensional spatial coupling. A-D, Snapshots of the firing rates of the
excitatory population at five time frames. A, traveling waves solution (τi = 8, σi = 0.1). B, alternating bumps solution (τi = 9,
σi = 0.06). C, alternating stripes solution (τi = 9, σi = 0.1). D, chaotic solution (τi = 12.8, σi = 0.096). The axes are the neuron
location on the two-dimensional neuronal sheet.

https://doi.org/10.1371/journal.pcbi.1010843.g003
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compare with cortical recordings. First, we compute the spatial correlations of population
activity along x and y directions (Fig 4B and 4C, see Methods). The spatial correlations of the
chaotic dynamics are roughly isotropic, and decrease with the distance between neurons (Fig
4B). A vanishing correlation at large distance and a positive Lyapunov exponent are the defin-
ing signatures of spatiotemporal chaos [43]. The decrease of correlation with cortical distance
has been widely reported in population recordings across the cortex [19, 44–48]. Further, we
found that the spatial decay rate of correlation depends on network parameters. Networks
with larger τi have a broader range of correlation which remains positive over long distance
(Fig 4C).

Second, we measure the power spectrum of the temporal variability of each neuron unit.
We find that neurons in chaotic networks have broadband frequency power with peaks at
around 20–40 Hz (Fig 4D). Beyond about 50 Hz, the power decays with frequency following a
power law scaling (1/f�) with exponent (�) between 1.5 and 2 (Fig 4D dashed). This means that
the neurons’ rate activities are not periodic as those in regular solutions, but exhibit consider-
able variability over a broad frequency range. This type of broadband frequency power has
also been found in many neural recordings [49–51]. A power-law relationships is often
regarded as a sign for self-organized critical states in network dynamics [52, 53]. However,
power-law scaling can also arise from stochastic dynamics without being at critical states [54,
55]. The chaos in our networks does not result from a critical transition, which would imply

Fig 4. Population statistics of the chaotic solutions. A. The maximal Lyapunov exponent (MLE) as a function of the
projection width (σi) and the time constant (τi) of the inhibitory population for the two-dimensional networks. The white
curves are the stability borders of the parameter regions of stable fixed point (FP) and bulk oscillation (BO) solutions (same
regions as in Fig 2B and S1 Fig). The color axis is limited at ±0.01 to better visualize the region of positive MLE’s (i.e. chaos
region). B. The correlation between neuron activity as a function of distance in x and y directions (Eq 11) in a network labeled
as a blue square in panel A. C. The correlation function along the x direction for three networks in the chaotic regime
(�y = 0). The network parameters are denoted in panel A with corresponding symbols. D. Population averaged power
spectrum of single-neuron rate activity represented in log-log scale (Eq 12). Dashed lines represent 1/f� scaling. E. The
variance of the dominant principal components of population rate activity of 1000 randomly sampled neurons from the
networks, averaged over 100 samples. F. The dimension of population activity saturates as the number of sampled neurons
increases. The dimension is defined as the number of dominant principal components that account for 95% of the total
variance. Snapshots of network activity from the three networks in C-F are shown in S3 Fig.

https://doi.org/10.1371/journal.pcbi.1010843.g004
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scale-free temporal and spatial correlations. Instead, the chaotic dynamics in our networks
have a characteristic temporal frequency and spatial scale of correlations.

Lastly, we examine the dimensionality of the chaotic solutions. We perform principal com-
ponent analysis of the rate activity of 1000 randomly sampled neurons from the networks. The
variance of each principal component is the eigenvalue of the covariance matrix of population
rate over time, sorted from large to small. We find that the variability of the chaotic population
rate concentrates in the first few tens of principal components (Fig 4E). We define the dimen-
sion of the population activity as the number of principal components that explains 95% of the
variance. The dimension of chaotic solutions increases with the number of sampled neurons
and saturates below 50 (Fig 4F), which is much lower than the number of neurons in the net-
work (N = 104). The low dimensional structure is a defining feature of cortical neural variabil-
ity that has been recently demonstrated in multiple population recordings [20–24]. In
contrast, the chaotic rate dynamics in disordered random networks have dimensions that
increase linearly with network size [56].

Transition to chaos through quasi-periodicity and intermittency

To further investigate how network dynamics transition from a regular solution to chaos, we
vary the inhibitory projection width (σi) with fixed inhibitory time constant τi. We find that
the network transitions into chaos through quasi-periodicity and intermittency as σi increases
(Fig 5). For each σi, we show an example trial of rate dynamics from a vertical slice of the excit-
atory population (Fig 5 column 1), a phase plot of two excitatory neurons from different loca-
tions (Fig 5 column 2), the temporal power spectrum of single-neuron rate activity (Fig 5
column 3) and spatial correlations (Fig 5 column 4).

Beyond the period-doubling bifurcation of the bulk oscillation solution (Fig 2B and S1 Fig,
magenta curves), the network has alternating bump solutions (Figs 5A and 3B). We can see
that the solution is periodic both from the spatiotemporal activity from one slice of the net-
work (Fig 5A1) and the phase plot of firing rates of two excitatory neurons (Fig 5A2). For this
solution, the temporal power spectrum has sharp peaks at harmonic frequencies and the spa-
tial correlation is large across all distances. As σi increases, the alternating bump solution loses
stability and leads to quasi-periodic solutions with alternating stripe patterns (Fig 5B, similar
to the solution in Fig 3C). The temporal power spectrum shows sharp frequency peaks (Fig
5B3) and the spatial correlation shows a diagonal stripe pattern (Fig 5B4). As σi further
increases, the network shows intermittent behavior with alternating stripes interspersed with
irregular activity (Fig 5C1, irregular activity around 500 ms). The MLE is positive for this net-
work, indicating a chaotic solution. The spatial correlation peaks at the center and the opposite
corners because the alternating stripes switch orientations from time to time (Fig 5C4). After a
narrow parameter range of intermittent activity, the chaotic solution becomes more irregular
with Gaussian-like spatial correlations that decay to zero at large distance (Fig 5D4). The
temporal power spectrum contains a broad range of frequency power (Fig 5D3). Lastly, for
larger σi, chaotic solutions disappear and the network shows complex quasi-periodic activity
(Fig 5E).

Correlated input noise expands the chaotic regime

We have, thus far, analyzed the behavior of fully deterministic networks. We now consider
how input noise changes network dynamics. The input to neuron k from population � is

Iak à ma á snÖ
ÅÅÅÅÅÅÅÅÅÅÅ
1� c
p

� Zak á
ÅÅ
c
p
� Zac Ü; Ö5Ü

where σn is the standard deviation and c 2 [0, 1] is the correlation coefficient of the input
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noise. The input noise to each neuron consists of two components: 1) an independent noise
component, Zak , which is private to each neuron k, and 2) a correlated noise component, Zac ,
which is common for all neurons in population � 2 {e, i} (Fig 6A; [57, 58]). Both noise compo-
nents are modeled as Ornstein–Uhlenbeck processes with time constant τn = 5 ms (see Meth-

ods, Eq 13). The amplitude of the independent noise component is sn

ÅÅÅÅÅÅÅÅÅÅÅ
1� c
p

and the

amplitude of the correlated component is sn
ÅÅ
c
p

.
When the input noise is weak (small σn), the regular solutions can roughly maintain their

spatiotemporal patterns (Fig 6B). However, when the input noise is strong (large σn), the pat-
terns might be distorted or completely destroyed. For example, a network that produces travel-
ing waves without input noise (Fig 3A) can still generate a noisy traveling wave pattern with
weak noise (Fig 6B), but exhibits irregular patterns when input noise is strong (Fig 6C).

The irregular spatiotemporal patterns in networks with strong noise are similar to the cha-
otic solutions in deterministic networks (Fig 3A). We next compute the MLE of networks with

Fig 5. Transition to chaos as the inhibitory projection width (σi) increases. A1-E1. Firing rate dynamics of excitatory neurons from a vertical slice of
the network. The MLE of the solution is shown on top. A2-E2. Phase plots of firing rates of two excitatory neurons from different locations. A3-E3.
Population averaged power spectrum of single-neuron rate activity (Eq 12). A4-E4. The correlation between neuron activity as a function of distance in
x and y directions (Eq 11). The inhibitory time constant is fixed as τi = 11 ms.

https://doi.org/10.1371/journal.pcbi.1010843.g005
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frozen input noise in the parameter space of σi and τi (see Methods). We find that input noise
can induce chaos in the spatially distributed networks. With correlated input noise, the param-
eter region of chaotic solutions expands as the amplitude of noise increases (compare yellow
regions in Figs 4A and 7A and 7B). This suggests that a network receiving correlated input, for
example from an upstream area, is more likely to generate chaotic dynamics than a network
receiving static input without noise, which can potentially explain the prevalence of correlated
activity across cortex.

In addition to inducing chaos, we find that noise can also synchronize bulk oscillations,
reflected as negative MLE’s in the previously identified regime of bulk oscillations (light blue
area in Fig 7A and 7B). A negative MLE of a noise driven system means that networks starting
at different initial conditions would converge to the same network dynamical trajectory that
depends only on the noise realization [59, 60].

Further, we investigate the impacts of the amplitude (σn) and the correlation (c) of input
noise on network dynamics. We compute the MLE of four examples of periodic solutions with
varying σn and c (Fig 7C–7F). When there is no input noise (σn = 0), the MLE’s of these net-
works are zero, since they produce temporally periodic patterns. When driven by independent
noise (c = 0), the MLE’s remain close to zero, which suggests that the periodic solutions are
insensitive to independent noise. As σn and c increase, the MLE’s generally increase and
become positive, indicating a transition to chaos (Fig 7C–7E). The bulk oscillation solution
becomes synchronized with negative MLE for intermediate values of σn and c before transi-
tioning to chaos (Fig 7F).

We next measure how MLE depends on the amplitude of the correlated noise component,

sn
ÅÅ
c
p

(Fig 6A). When plotting as a function of sn
ÅÅ
c
p

, the MLE’s for varying σn and c collapse to
a single function curve (Fig 7G–7J). This suggests that the MLE of the noise driven system
mainly depends on the amplitude of the correlated noise component. The transition to chaos
can be sharp, as in the cases of traveling waves and alternating stripes (Fig 7G and 7I), or grad-
ual, as in the cases of alternating bumps and bulk oscillation (Fig 7D and 7F). Therefore, we
identify that it is the correlated noise component that is responsible for inducing chaos and
synchronizing bulk oscillations in the two-dimensional networks. In contrast, the network
dynamical patterns are insensitive to independent noise.

Fig 6. Two-dimensional networks with input noise. A. The input noise to each neuron consists of a correlated noise component
(black) that is common for all neurons from the same population, and an independent noise component that is private to each
neuron (gray). B-C. Snapshots of the firing rates of the excitatory population at three time frames for a network that generates
traveling waves when there is no input noise (τi = 8, σi = 0.1, same parameters as in Fig 3A). The correlation of the input noise is
c = 0.5, and the amplitude is σn = 0.04 (B) and σn = 0.08 (C).

https://doi.org/10.1371/journal.pcbi.1010843.g006
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Discussion

Variability in neural responses is prevalent in cortex. The structure of the variability shared
among a neuron population has important consequences on the information processing of the
network [61]. However, the circuit mechanism underlying neural variability remains unclear.
In this work, we discover a new dynamical regime in spatially distributed neuronal networks
where spatiotemporal chaos produce large magnitude of shared variability in population activ-
ity. The statistical properties of the spatiotemporal chaos are consistent with population
recordings from cortex, such as the broadband frequency power in single neuron responses,
distance-dependent correlations and the low dimensionality of population responses.

Our model incorporates a few generic biological features of cortical circuits. First, the syn-
aptic connections between neurons are spatially organized, meaning that the connection prob-
ability between a pair of neurons strongly depends on the physical distance between them [26,
28–30, 40, 62]. Importantly, it has been found that the excitatory and inhibitory projections
have a similar spatial footprints [29, 30, 40], which is also the network condition where we find
chaotic dynamics. Second, the decay kinetics of inhibitory synaptic currents are much slower

Fig 7. The maximal Lyapunov exponent (MLE) for the two-dimensional networks with input noise. A-B. The MLE map
with weak (A, σn = 0.0141) and strong (B, σn = 0.0424) noise. The correlation of the input noise is c = 0.5. C-F. MLE as a
function of the amplitude (σn) and the correlation (c) of input noise, for four example networks that generate traveling waves (C;
τi = 8, σi = 0.1, same as Fig 3A), or alternating bumps (D; τi = 9, σi = 0.06, same as Fig 3B), or alternating stripes (E; τi = 9, σi =
0.1, same as Fig 3C) or bulk oscillation (F; τi = 8, σi = 0.03) without noise. G-J. Same as panels C-F with MLE as a function of the
amplitude of the correlated noise component, sn

ÅÅ
c
p

.

https://doi.org/10.1371/journal.pcbi.1010843.g007
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than the excitatory synaptic currents in physiology [28, 41, 42]. We find that slow inhibition is
important to generate complex spatiotemporal dynamics. Lastly, we use a power-law transfer
function of rate response, which has been found to well describe neuron responses measured
in cat visual cortex [63]. Power-law transfer functions have also shown to be critical to explain-
ing various features of neural responses from the visual cortex, such as contrast invariance of
tuning, sublinear response summation and surround suppression [64–66]. We show that neu-
ral networks with these biological features generate complex spatiotemporal dynamics whose
population statistics match those from cortical recordings during the awake state.

Rate chaos in neuronal networks has been widely studied using random recurrent net-
works, where the connection weights from each neuron follow a Gaussian distribution with
zero mean [9]. The network solution transitions from a stable fixed point to chaos when the
variance of connection weights exceeds a critical value. Similar transition to chaos is also
observed in networks with separate excitatory and inhibitory populations [67] and in spiking
neuron networks [68]. In contrast, in spatially distributed networks, chaos appears after several
solutions of different spatiotemporal patterns lose stability. As σi increases, the bulk oscillation
solutions transition to alternating bump solutions, which transition to alternating stripes or
traveling waves, and then to chaos (Fig 5). Further theoretical analysis is needed to elucidate
the transition to chaos in spatial networks.

The spatiotemporal chaos in our networks has several distinct features from the chaotic
solutions in random neuronal networks [9, 11, 69]. First, in networks of unstructured random
connectivity, the correlations among neurons vanish as network size becomes large (scales as

1=
ÅÅÅÅ
N
p

with N being the network size) [11, 70]. Hence, those networks do not generate corre-
lated population patterns, while the chaos in spatial networks produce distance-dependent
correlations. Second, the dimensionality of population activity in random networks has been
found to be high and increases linearly with network size [56]. This is in contrast with the low
dimensional structure of the spatiotemporal chaos found in spatial networks (Fig 4F) and pop-
ulation activity found in experimental data [20–24]. Lastly, previous work showed that time
varying inputs, such as independent white noise and oscillatory inputs, suppress chaos [11, 56,
69, 71, 72], while we found that the chaotic solutions in spatial networks are insensitive to
independent noise and that chaos can be induced by correlated noise (Fig 7). This provides a
testable prediction that a spatially global and time-varying stimulation can desynchronize
strong oscillations and increase irregularity in population activity.

Spatiotemporal chaos in distributed excitable systems has been studied in different models,
such as fluid turbulence, coupled oscillators and coupled maps [43, 73]. Most of the models are
reaction-diffusion models and chaos is induced by diffusion. In contrast, our model is a system
of integro-differential equations with non-local coupling. In neural network models, spatio-
temporal chaos has been demonstrated in networks with local coupling [74, 75]. In [74] spatio-
temporal chaos occurs in networks with a large diffusion coefficient of the inhibitory
membrane potential, which models for local electrical coupling such as gap junctions. In con-
trast, we find chaos when the inhibitory neurons have a similar spatial scale as the excitatory
neurons. The spatiotemporal chaos in their networks is caused by an interplay between Turing
and Hopf instabilities of the fixed point solution, where both a nonzero and the zero wave
number lose stability. This is not the case in our model, where both the fixed point and the
bulk oscillation solutions are destabilized at multiple wave numbers in the parameter region of
chaos (S4B and S4C Fig). Similar to our model, they also need the time constant of the inhibi-
tory population to be large. [75] studies networks with local coupling (such as nearest neighbor
coupling) among excitatory neurons and distance-dependent delays. They show that spatio-
temporal chaos can appear when the network size is large. Similar to our model, they also find
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spatiotemporal chaos after the bulk oscillation solution loses stability and find intermittent
solutions before the appearance of spatiotemporal chaos. Delays have been shown to generate
various spatiotemporal patterns [76] and may play a similar role to the inhibitory time con-
stant (τi) in our model. In neither of these works are the effects of noisy inputs studied.

Several recent models have studied chaos in random neuronal networks with structured
connectivity. For example, networks with a low rank connectivity component in addition to a
random component can generate low dimensional coherent chaos, which can be utilized for
complex computations [77, 78]. Networks with cell-type-dependent distributions of connec-
tions can produce chaos with multiple modes of autocorrelation functions of individual neu-
rons [79]. In this work, we demonstrate that networks with two-dimensional spatial couplings
and no random connectivity can also generate chaos which resides in a low-dimensional state
space. How random connectivity in combination with spatially ordered connectivity affect
chaos remain to be studied in future work.

Chaotic dynamics in neuronal networks offer a rich “reservoir” of population activity pat-
terns, which can be utilized to learn a target output function or accomplish complex neural
computations [12, 33, 80–82]. Near the transition of chaos, networks can generate slow
dynamics which are important for temporal integration and necessary for many behavioral
tasks [13, 83]. Information diffusion within a network has been found to be high in the regime
of spatiotemporal chaos suggesting rapid mixing of information [75]. Here we find a new type
of spatiotemporal chaos in networks where the connectivity features are consistent with corti-
cal anatomy. It would be fruitful to explore the computational benefits of such chaos in spa-
tially distributed networks.

Methods

Stability of fixed point solutions

Linearization around the fixed point solution Ö�re;�riÜ of Eqs 1 and 2 in Fourier space gives a
Jacobian matrix at each spatial Fourier mode:

JÖ~nÜ à
Ö�1á LeWee~gÖ~n; seÜÜ=te LeWei~gÖ~n; siÜ=te

LiWie~gÖ~n; seÜ=ti Ö�1á LiWii~gÖ~n; siÜÜ=ti

 !

; Ö6Ü

where~n is the Fourier mode, ~gÖ~n; saÜ à expÖ�2jj~njj2p2s2
aÜ is the Fourier Gaussian kernel,

and La à �
0Öu⇤aÜ evaluated at the fixed point u⇤a àWae�re á wai�ri á ma, � = {e, i}.

The fixed point is stable if all eigenvalues of JÖ~nÜ have negative real part for any~n (Fig 2B).
Note that the stability only depends on the wave number k à jj~njj.

Stability of bulk oscillation solutions

To analyze the stability of bulk oscillation solutions, we linearize around the time dependent
limit cycle solution, Ö�reÖtÜ;�riÖtÜÜ, and obtain the Jacobian matrix at each Fourier mode, which
is also periodic in time [37, 38]:

JÖ~n; tÜ à
Ö�1á LeÖtÜWee~gÖ~n; seÜÜ=te LeÖtÜWei~gÖ~n; siÜ=te

LiÖtÜWie~gÖ~n; seÜ=ti Ö�1á LiÖtÜWii~gÖ~n; siÜÜ=ti

 !

; Ö7Ü

where LaÖtÜ à �
0Öu⇤aÖtÜÜ evaluated along the limit cycle solution u⇤a àWae�reÖtÜ á wai�riÖtÜ á ma,

� = {e, i}. The perturbation of rate, d~rÖ~nÜ, at Fourier mode,~n, follows a linear system with
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periodic coefficients:

dd~rÖ~nÜ
dt

à JÖ~n; tÜ � d~rÖ~nÜ: Ö8Ü

We obtain a principal fundamental matrix solution of Eq 8 by solving X0 à JÖ~n; tÜX with
initial conditions X(0) = I, where I is the identity matrix. The stability of the bulk oscillation
solution is then determined by the eigenvalues of the monodromy matrix,

MÖ~nÜ à XÖ~n;TÜ; Ö9Ü

where T is the period of the bulk oscillation solution. If any of the eigenvalues of MÖ~nÜ have
magnitude greater than 1 at some Fourier model~n, then the bulk oscillation will lose stability
with spatial mode~n. A real eigenvalue less than -1 indicates a period-doubling bifurcation,
while a real eigenvalue larger than 1 suggests a pattern formation with the same period as the
bulk oscillation [37].

Maximal Lyapunov exponent

The maximal Lyapunov exponent (MLE) is computed numerically using the method by [39].
We first simulate the network long enough such that the solution has converged to an

attractor. We denote the solution trajectory as~RÖtÜ à ÖreÖx; tÜ; riÖx; tÜÜ
T .

We continue simulating the trajectory for n time points, {t0, t1, . . ., tn}, with step size �t. At

the initial time point, t0, we perturb the trajectory,~RÖtÜ, by d~z0, which is in a random direction
and has a small magnitude jd~z0j à dM. We integrate the same model system with the per-

turbed initial condition,~RÖt0Ü á d~z0, by one time step, �t, and obtain the perturbed trajectory,
~RpÖt1Ü. The separation between the two trajectories is D~z1 à ~RpÖt1Ü �~RÖt1Ü. Then we choose

the perturbation at the next time step as d~z1 à
D~z1
jD~z1 j

dM. In this way, the perturbation in each

time point has a magnitude of dM, and is in the same direction as the separation between the
original and the perturbed trajectories at the previous time step. We then integrate the same

model system with the perturbed initial condition,~RÖt1Ü á d~z1, by one time step and obtain
~RpÖt2Ü. We repeat this procedural n steps and obtain a sequence of trajectory separations,

ÖD~ziÜ
n
ià0. Lastly, the Maximal Lyapunov exponent is computed as

MLE à 1

nDt
Xn

ià1

logÖjD~zij=dMÜ; Ö10Ü

where n = 106 and �t = 0.01s. The MLE converges at large n (S5 Fig).

Spatial correlation

The spatial correlations in Fig 4B and 4C are defined as the Pearson correlation coefficient of
re, for each neural distance (�x, �y):

CÖDx;DyÜ à
hÖreÖxá Dx; yá Dy; tÜ � hreÖxá Dx; yá Dy; tÜitÜÖreÖx; y; tÜ � hreÖx; y; tÜitÜix;y;t

VarÖreÖx; y; tÜÜ
; Ö11Ü

where h�it is average over time and h�ix,y,t denotes average over time and space.
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Power spectrum

The power spectrum in Fig 4D is defined as:

S à hjFÖre � hreitÜj
2ix;y ; Ö12Ü

where the function F is the Fourier transform in time.

Input noise

The input noise terms Zak and Zac (� 2 {e, i}) in Eq 5 are modeled as independent Ornstein–

Uhlenbeck processes:

tndZ à �Zdt á dW; Ö13Ü

where W is a Wiener process, and the noise time constant is τn = 5 ms.

Network parameters

Unless specified otherwise, the network parameters are Wee = 80, Wei = −160, Wie = 80, Wii =
−150, τe = 5 ms, σe = 0.1, μe = 0.48 and μi = 0.32. τi and σi vary in each figure and are specified
in figure axes and captions. The number of neurons in the two dimensional network are
N = 100 × 100 for each of the excitatory and inhibitory populations. In the one dimensional
network N = 100 for each of the populations.

Supporting information

S1 Fig. Related to Fig 3. Phase diagram of networks with two dimensional spatial coupling.
Same format as Fig 2B in the main text. The letters mark the locations of the parameters used
in Fig 3A–3D.
(TIFF)

S2 Fig. Related to Fig 4. The maximal Lyapunov exponents of networks with one dimensional
spatial coupling. Same format as Fig 4A. The maximal Lyapunov exponent as a function of the
projection width (σi) and the time constant (τi) of the inhibitory neurons. The white curves are
the stability borders of the parameter regions of stable fixed point (FP) and bulk oscillation
(BO) solutions (same regions as in Fig 2B).
(TIFF)

S3 Fig. Related to Fig 4. Snapshots of the firing rates of the excitatory population at five time
frames from the three chaotic solutions in Fig 4. There is no qualitative difference in the activ-
ity.
(TIFF)

S4 Fig. Related to Fig 4. A. The maximal Lyapunov exponent (MLE) as a function of the pro-
jection width (σi) and the time constant (τi) of the inhibitory population for the two-dimen-
sional networks. Same as Fig 4A in the main text. B. The number of unstable wave numbers
from the stability analysis of the bulk oscillation solution. C, The number of unstable wave
numbers from the stability analysis of the fixed point solution. Orange dots in panels B and C
denote the chaos region shown in panel A with MLE>0.005. A-C. Same network parameter as
in Fig 4 of the main text. D-F. Same parameters as A-C except that Wie is changed from 80 to
100.
(TIFF)
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S5 Fig. Related to Methods: Maximal Lyapunov exponent. Convergence of the maximal Lya-
punov exponent as a function of the number of perturbations n (Eq 10). Each curve is the
MLE for one solution. There are 10 chaotic solutions (MLE>0.005) and 5 periodic solutions
(MLE<0.002).
(TIFF)
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