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We consider phylogeny estimation under a two-state model of sequence
evolution by site substitution on a tree. In the asymptotic regime where the
sequence lengths tend to infinity, we show that for any fixed k no statisti-
cally consistent phylogeny estimation is possible from k-mer counts over the
full leaf sequences alone. Formally, we establish that the joint distribution
of k-mer counts over the entire leaf sequences on two distinct trees have to-
tal variation distance bounded away from 1 as the sequence length tends to
infinity. Our impossibility result implies that statistical consistency requires
more sophisticated use of k-mer count information, such as block techniques
developed in previous theoretical work.

1. Introduction. Molecular sequence comparisons are fundamental to many bioinfor-
matics methods [6, 10, 20]. In particular, the probabilistic analysis of sequences and their
statistics has provided valuable insights, for instance, in comparative genomics [3, 23, 27,
34], population genetics [2, 31, 32, 39], and phylogenetics [13, 14, 28, 35, 37]. In this paper,
we consider alignment-free phylogeny reconstruction [21, 42].

Alignment-free approaches are an important class of methods for estimating evolutionary
trees that bypass the computationally hard multiple sequence alignment problem (depicted
in Figure 1) and avoid the need for a reference genome. Typically, these methods construct
pairwise distances between sequences based on match lengths [22, 41] or k-mer counts [15,
21, 33]. Here a k-mer refers to a consecutive substring of length k in an input sequence (see
Figure 2 for an illustration). The pairwise distance matrix obtained is then used to reconstruct
the phylogenetic relationships among the sequences. A variety of standard distance-based
phylogenetic methods can be used for this purpose [38, 44]. Numerous popular pipelines are
available that implement these alignment-free approaches [22, 24, 25, 30], although they do
not offer rigorous guarantees of accurate reconstruction.

In this paper, we consider the problem of phylogeny estimation under a two-state symmet-
ric model of sequence evolution by site substitutions on a leaf-labeled tree. In the asymptotic
regime where the sequence length tends to infinity, we show that:

for any fixed k, no statistically consistent phylogeny estimation is possible from the k-mer counts of
the entire input sequences alone.

Formally, we establish that the joint distribution of k-mer counts over the entire leaf se-
quences on two distinct trees have total variation distance bounded away from 1 as the se-
quence length tends to infinity. Put differently, these two joint distributions have a nonva-
nishing overlap in that asymptotic regime. Our results are information-theoretic: since the
reconstruction probability of any method is only as good as the worst total variation distance
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FIG. 1. Standard steps in phylogeny estimation. Top: DNA sequences obtained from species (a), (b), and (c).
While inherited from a common ancestor, the sequences and their lengths differ because of past mutations (includ-
ing insertions and deletions). Middle: A multiple sequence alignment of the sequences, where gaps are inserted
to align the columns as best as possible. Each column indicates inferred common ancestry (homology). Bottom:
A rooted phylogenetic tree depicting the estimated evolutionary history of the sequences, with (a) and (b) being
more closely related.

(see [16], Lemma 3.2), our main claim (Theorem 1) implies an impossibility result for recon-
struction methods using only k-mer counts across the entire sequences at the leaves. On the
other hand, our results have no implications for reconstruction methods using k-mer counts
in more elaborate ways, for example, through block decomposition. We come back to prior
approaches of this type below in “related work.”

To bound the total variation distance between the two distributions on well-chosen trees,
our proof takes advantage of a multivariate local central limit theorem, an approach which is
complicated by the probabilistic and linear dependencies of k-mers.

Related work. A related impossibility result was established in our previous work [17],
where it was shown that no consistent distance estimation is possible from sequence lengths
alone under the TKF91 model [40], a more complex model of sequence evolution which
also allows for insertions and deletions (indels). On the other hand, sequence lengths are
significantly simpler to analyze than k-mers and are not used in practice to infer phylogenies.
Moreover the results in [17] only apply to distance-based phylogeny estimation methods,
while our current results are more general.

In a separate line of work, a computationally efficient algorithm for alignment-free phy-
logenetic reconstruction was developed and analyzed in [8]. Rigorous sequence length guar-
antees for high-probability reconstruction under an indel model related to the TKF91 model
were established. While this method is based on 1-mers, it first divides up the input sequences
into blocks of an appropriately chosen length and then compares the 1-mer counts on each
block across sequences. A block in the ancestral sequence gives rise to blocks in the descen-
dant sequences that have the same position, so the comparison does not require an alignment
technique. The weak correlation between the blocks allows the use of concentration inequali-
ties on a notion of pairwise distance proposed in [8]. In particular, this reconstruction method

FIG. 2. For a given sequence, the k-mer counts are obtained by reading words of length k starting from each
site and then counting how many times each possible length-k word appears. Here k = 5.



PHYLOGENY RECONSTRUCTION FROM k-MERS 4895

uses more information than 1-mer counts over the entire sequences (i.e., it uses 1-mer counts
over each separate block), so that our results do not apply to it (in the limit of zero indel
rate). However no practical implementation of this 1-mer-based approach is available. In [8],
accurate phylogenetic reconstruction with high probability is shown to be achievable when
the sequence length is of polynomial order in the number of leaves n. In a constrained regime
of parameters, significantly improved bounds on the sequence length requirement were ob-
tained in [19], who used techniques related to those of [8] and also exploited a well-studied
connection to ancestral sequence reconstruction. In other related work, it was proved in [1]
that the tree topology as well as mutation parameters can be identified from pairwise joint
k-mer count distributions under more general substitution-only models of sequence evolu-
tion using an appropriately defined notion of distance. Block techniques can then be used to
derive statistical consistency results. See also [11] for extensions to coalescent-based models.
We emphasize that the results in [1, 8, 11, 19] do not contradict our main claim (Theorem 1),
which excludes block decomposition.

Alignment-free sequence comparisons based on k-mer counts were also studied for inde-
pendent sequences with i.i.d. sites or under certain hidden Markov models of sequences [3,
27, 34, 43]. Because they assume independent sequences, such results are not directly rele-
vant to phylogeny reconstruction.

Organization. The paper is organized as follows. In Section 2, we state our main results
after providing the necessary background and definitions. We also sketch the main steps of
the proof. The details of the proof can be found in Section 3. A few auxiliary results are in
the Appendix.

2. Definitions and main result. In this section, we state our result formally, after intro-
ducing the relevant concepts.

k-mers. Let k be a positive integer, fixed throughout. First, we define k-mers and introduce
their frequencies in a binary sequence, which will serve as our main statistic.

DEFINITION 1. A k-mer is a binary string of length k, that is, y ∈ {0,1}k . For a binary
sequence σ = (σi )

m
i=1 of length m, we let fσ (y) ∈ Z+ be the number of times y appears in σ

as a consecutive substring, where Z+ is the set of nonnegative integers. That is,

fσ (y) =
m−k∑

i=0

1
{
(σi+1, . . . ,σi+k) = y

}
.

The frequency vector (or count vector) of k-mers in σ is the vector

fσ = (
fσ (y)

)
y∈{0,1}k ∈ Z2k

+ .

The coordinates of fσ are ordered such that the j th coordinate is the frequency of the k-mer
that is the base-2 numeral representation of j − 1.

For example, when k = 1, the count vector of 1-mers of a binary sequence is (a, b)

where a is the number of zeros and b is the number of ones. Hence, the count vector
of 1-mers of 00111000 is (5,3). When k = 2, there are 2k = 4 binary strings, namely
{(00), (01), (10), (11)}. So the count vector of 2-mers of the sequence 001111000 is
(3,1,1,3) since (00) appears 3 times, (01) appears one time, etc. By convention, the count
vector of k-mers for any binary sequence with length less than k is equal to (0, . . . ,0) ∈ Z2k

+ .
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Probabilistic model of sequence evolution. We consider a symmetric substitution model on
phylogenies, also known as the Cavendar–Ferris–Neyman (CFN) model [4, 18, 29], for binary
sequences of fixed length m. The CFN model on a single edge of a metric tree is a continuous-
time Markov process with state space {0,1}m such that (i) the m digits are independent and
(ii) each of the m digits follows a continuous-time Markov process with two states {0,1} that
switches state at rate 1.

We are interested in this process on a rooted metric tree T , that is, indexed by all points
along the edges of T . We view an edge of length " as the interval [0,"] for the continuous-
time substitution process. The root vertex ρ is assigned a state Xρ ∈ {0,1}m, drawn from
the uniform distribution on {0,1}m. This state then evolves down the tree (away from the
root) according to the following recursive process. Moving away from the root, along each
edge e = (u, v) starting at u, we run the CFN process for a time "(u,v) with initial state Xu,
described in the previous paragraph. Such processes along different edges starting at u are
conditionally independent, given Xu. Denote by Xt the resulting state at t ∈ e. Then the full
process, denoted by {Xt }t∈T , is called the CFN model on tree T . In particular, the set of
leaf states is X∂T = {Xv : v ∈ ∂T }. It is clear that, under this process, the m digits remain
independent. For more background on the CFN model; see, for example, [38].

An impossibility result. Our main result is the following. Recall that the total variation dis-
tance between two probability measures ν1 and ν2 on a countable space E is defined by

(1) ‖ν1 − ν2‖TV = sup
E′⊆E

|ν1
(
E′) − ν2

(
E′)|.

THEOREM 1. Fix k ∈ N. For any n ≥ 3, there exists distinct trees T1 '= T2 with n leaves
such that

(2) lim sup
m→∞

∥∥L(1)
m − L(2)

m

∥∥
TV < 1,

where L(i)
m is the law of the k-mer frequencies of the leaf sequences of length m under the

CFN model on tree Ti . Furthermore, the trees {T1, T2} can be chosen to be independent of k.

From (1), we see that (2) implies the following: using only the k-mer frequencies over
the entire leaf sequences for a fixed k ≥ 1, there is no statistical test that can distinguish
between T1 and T2 with success probability going to 1 as the sequence length tends to +∞.
More precisely, by (2) and the reconstruction upper bound in part 1 of [16], Lemma 3.2, there
exists ε > 0 such that the probability that a tree estimator gives the correct estimate is at most
1 − ε, uniformly for all estimators and all integers m ≥ k. We point out again that our results
do not apply to block decomposition methods.

PROOF SKETCH. Since our goal is to prove a negative result, we get to pick the trees.
We consider two trees {T1, T2} that have the same set of n leaves and are the same except
for the placement of a single edge leading to leaf A. These trees are depicted in Figure 3 and
described in detail in Section 3.1 below. The topologies of {T1, T2} differ only on the subtree
containing three leaves {A,B,C} that have the same distance from the root.

We seek to distinguish the law of the k-mer frequencies of the n leaf sequences between the
two trees. This will be done in two steps, in Sections 3.2 and 3.3 respectively, and concluded
in Section 3.4.

1. Step 1 (Reductions): By using the Markov property of the CFN process on trees,
we first reduce the problem from n leaf sequences to only 3 sequences (Lemma 1). We can
assume the sequence length m is a multiple of k (Lemma 2). Then k-mer frequencies are
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functions of pairs of adjacent, nonoverlapping k-mers, together with the first and the last k-
mers (Lemma 3). For short, we refer to these pairs as “adjacent k-mer pairs” and a precise
definition is in (4) below. We can further reduce the problem to distinguishing the laws of
adjacent k-mer pairs (Lemma 4). The collection of adjacent k-mer pairs satisfy certain linear
relations (Lemma 5), which lead to redundancy that we need to address (Lemma 6). Sum-
marizing, the problem is reduced to distinguishing the laws of nonredundant, adjacent k-mer
pairs on three points {A,B ′,C′} as depicted in Figure 4 (Lemma 7).

2. Step 2 (Applying a local CLT): We apply a local central limit theorem for i.i.d. vec-
tors to the law of nonredundant, adjacent k-mer pairs as m → ∞ (Lemmas 8 and 9 and
Theorem 2). Nonredundancy guarantees the nondegeneracy of the limit distribution (Lem-
mas 10, 11, 12, and 13). The two limit normal distributions, under the two trees respectively,
have an overlap (Lemmas 14 and 15) and therefore so do the laws of nonredundant, adjacent
k-mer pairs.

Section 3.4 concludes the proof of Theorem 1. !

3. Proof. In this section, we give the details of the proof. Some standard results are stated
in the Appendix.

3.1. The two trees. We consider two rooted metric trees {T1, T2} as follows.

1. T1 and T2 have the same set of n ≥ 3 leaves {A,B,C,X4, . . . ,Xn}.
2. The subtree of T1 restricted to the n− 1 leaves {B,C,X4, . . . ,Xn} is the same as that

of T2. Here the restriction of a metric tree T to a subset L of leaves is the metric tree obtained
from T by keeping only those points lying on a path between two leaves in L.

3. The subtrees of T1 and T2 below the most recent common ancestor (MRCA) of
{A,B,C} contain none of {X4, . . . ,Xn}.

4. Leaves {A,B,C} satisfy, for i ∈ {1,2},
distTi (ρ,C) = distTi (ρ,B) and

distT1(A,C) = distT2(A,B) < distTi (B,C),
(3)

where distTi (x, y) denotes the sum of edge lengths along the path from x to y in the tree Ti .

These trees are depicted in Figure 3, where X = (X4, . . . ,Xn) refers to the set of all leaves
other than {A,B,C}. In Newick tree format (see, e.g., [44]), the topology of T1 restricted
to {A,B,C} is ((A,C),B), while the topology of T2 restricted to {A,B,C} is ((A,B),C).
Clearly, {T1, T2} does not depend on k, and their topologies differ only on the subtree con-
taining three leaves {A,B,C}. The topology of the trees restricted to X is arbitrary and plays
no role in the argument.

Notation. For i ∈ {1,2}, we let P(i) = P(i),m be the probability measure of the CFN model
on Ti with sequence length m (recall that the root state is drawn from the uniform distribution
on {0,1}m), and P(i)

' be the law of a random variable ' under P(i). For a binary sequence
σZ = σ (Z) at a point Z ∈ Ti where i ∈ {1,2}, we let fZ := fσ (Z) ∈ Z2k

+ be the k-mer count
vector in σ (Z) (see Definition 1). For a finite ordered set of points U = (uj ) on the tree Ti ,

we let fU = (fuj ) ∈ Z2k×|U |
+ . With this notation, in Theorem 1, L(i)

m = P(i)
fX,fA,fB,fC

. We also
write a ∧ b = min{a, b} and a ∨ b = max{a, b}.

3.2. Reductions. Our argument proceeds through a series of reductions.

3.2.1. Reduction to three vertices. First we shall reduce the complexity of the problem
from n to three vertices. For this we define two internal vertices B ′ and C′ on both T1 and T2
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FIG. 3. The trees T1 (left) and T2 (right) on n leaves with points C′ and B ′ added. Here X refers to the remaining
n − 3 leaves.

as follows. Let C′ be the MRCA of A and C on T1, and label C′ as well the point on the path
between C and B on T2 such that distT1(C,C′) = distT2(C,C′). Similarly, we let B ′ be the
MRCA of A and B on T2, and label B ′ as well the point on the path between A and B on T1
such that distT1(B,B ′) = distT2(B,B ′). This setup is depicted in Figure 3.

Our first reduction lemma asserts that we can reduce the problem to one of distinguishing
between the two three-vertex trees depicted in Figure 4.

LEMMA 1 (Reduction to 3 vertices). Let T1 and T2 be the trees with points C′ and B ′ as
described above. Then, for all m ∈ N,

∥∥L(1)
m − L(2)

m

∥∥
TV ≤ ∥∥P(1)

fA,fB′ ,fC′ − P(2)
fA,fB′ ,fC′

∥∥
TV.

PROOF. First, (fX,fA,fB,fC) is of course a function of (fX,fA,fB,fC,fB ′, fC′), so
Lemma 19 in the Appendix implies

∥∥L(1)
m − L(2)

m

∥∥
TV = ∥∥P(1)

fX,fA,fB,fC
− P(2)

fX,fA,fB,fC

∥∥
TV

≤ ∥∥P(1)
fX,fA,fB,fC,fB′ ,fC′ − P(2)

fX,fA,fB,fC,fB′ ,fC′
∥∥

TV.

Also fX,C,B → fB ′C′ → fA forms a Markov chain under both P(1) and P(2), satisfying all
the conditions of Lemma 20 in the Appendix. Hence

∥∥P(1)
fX,fA,fB,fC,fB′ ,fC′ − P(2)

fX,fA,fB,fC,fB′ ,fC′
∥∥

TV = ∥∥P(1)
fA,fB′ ,fC′ − P(2)

fA,fB′ ,fC′
∥∥

TV,

giving the result. !

3.2.2. Reduction to transitions between adjacent, nonoverlapping k-mers. Due to the
following lemma, we can assume m = (µ + 1)k for some µ ∈ N.

FIG. 4. The three-vertex configurations for the measures P(1)
fA,fB′ ,fC′ (left) and P(2)

fA,fB′ ,fC′ (right) respectively.

In this figure, h′ = distT1(B
′,C′) = distT2(B

′,C′) and h = distT1 (A,C′) = distT2 (A,B ′).
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LEMMA 2 (Reduction to multiples of k). If µ̄k < m < (µ̄ + 1)k where µ̄ ∈ N, then
∥∥P(1),m

fA,fB′ ,fC′ − P(2),m
fA,fB′ ,fC′

∥∥
TV ≤ ∥∥P(1),(µ̄+1)k

f̂A,f̂B′ ,f̂C′
− P(2),(µ̄+1)k

f̂A,f̂B′ ,f̂C′

∥∥
TV,

where f̂V = (fV ,σ last
V ) is the k-mer count vector together with the last 2k-digits σ last

V in σV .

PROOF. Note that all digits are independent under the CFN model and
∥∥P(1),m

fA,fB′ ,fC′ − P(2),m
fA,fB′ ,fC′

∥∥
TV = ∥∥P(1),(µ̄+1)k

f m
A ,f m

B′ ,f m
C′

− P(2),(µ̄+1)k
f m

A ,f m
B′ ,f m

C′

∥∥
TV,

where f m
V is the k-mer count vector of the first m digits of σV . The proof is complete by

Lemma 19 since f m
V is a function of fV and the last 2k-digits when σV has length (µ̄ + 1)k.

!

For σ ∈ {0,1}m where m = (µ+1)k, we let xσ
0 , . . . , xσ

µ ∈ {0,1}k be the adjacent, nonover-
lapping k-mers in σ . That is,

(4) σ = (σ1, . . . ,σk)︸ ︷︷ ︸
xσ

0

(σk+1, . . . ,σ2k)︸ ︷︷ ︸
xσ

1

. . . (σµk+1, . . . ,σ(µ+1)k)︸ ︷︷ ︸
xσ
µ

∈ {0,1}(µ+1)k.

For y, z ∈ {0,1}k , let Nσ
y,z be the number of adjacent (y, z) pairs in this representation of σ :

(5) Nσ
y,z =

µ−1∑

j=0

1
{
xσ
j = y, xσ

j+1 = z
}
.

We call Nσ
y,z the number of adjacent transitions from y to z.

The following lemma and its proof give an expression for k-mer frequencies in terms of
the numbers of adjacent k-mer pairs as well as the ending k-mers.

LEMMA 3 (k-mers as a function of adjacent transitions). For any σ ∈ {0,1}(µ+1)k and
µ ∈ N, the frequency vector fσ is a function of

(
xσ
µ,

(
Nσ

y,z

)
y,z∈{0,1}k

)
.

PROOF. We split the set {0,1, . . . ,µk} into the disjoint union (
⋃k−1

a=0 (a) ∪ {µk}, where
(a = {a, k+a,2k+a, . . . , (µ−1)k+a} contains µ integers with remainder a when divided
by k. By definition, for w = (w1, . . . ,wk) ∈ {0,1}k ,

fσ (w) =
µk∑

i=0

1
{
(σi+1, . . . ,σi+k) = w

}

= 1
{
xσ
µ = w

} +
k−1∑

a=0

∑

i∈(a

1
{
(σi+1, . . . ,σi+k) = w

}
.

(6)

For a = 0, the set (0 coincides with the multiples of k from 0 up to µ − 1. So

(7)
∑

i∈(0

1
{
(σi+1, . . . ,σi+k) = w

} =
µ−1∑

i=0

1
{
xσ
i = w

} =
∑

z∈{0,1}k
Nσ

w,z.

For a ∈ {1, . . . , k − 1},
(8)

∑

i∈(a

1
{
(σi+1, . . . ,σi+k) = w

} =
∑

(y,z)∈'a(w)

Nσ
y,z,
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where 'a(w) is the set of all pairs of the form
(
(θ0, . . . , θa−1,w1, . . . ,wk−a), (wk−a+1, . . . ,wk, θa, . . . , θk−1)

) ∈ {0,1}2k,

where (θ0, . . . , θk−1) is an arbitrary element in {0,1}k .
The result then follows when we put (7) and (8) into (6), seeing that fσ (w) depends only

on the specified value of (xσ
µ, (Nσ

y,z)y,z∈{0,1}k ). This completes the proof of the lemma. !

For points V ∈ {A,B ′,C′} on the trees we let

ZV = ((
x

σV
0 , x

σV
1

)
,
(
x

σV
µ−1, x

σV
µ

)
,
(
NσV

y,z

)
y,z∈{0,1}k

)
,

where σV is the binary sequence at V . Note that we included x
σV
0 , x

σV
1 and x

σV
µ−1 here for

reasons that will become clear below.

LEMMA 4 (Reduction to adjacent transitions). Suppose m = (µ + 1)k for some µ ∈ N.
Then

∥∥P(1)

f̂A,f̂B′ ,f̂C′
− P(2)

f̂A,f̂B′ ,f̂C′

∥∥
TV ≤ ∥∥P(1)

ZA,ZB′ ,ZC′ − P(2)
ZA,ZB′ ,ZC′

∥∥
TV.

PROOF. Recall the definition of f̂V = (fV ,σ last
V ) in Lemma 2. By Lemma 3, (f̂A, f̂B ′,

f̂C′) is a function of (ZA,ZB ′,ZC′). Lemma 19 gives the result. !

3.2.3. Dealing with redundancy. The quantities {Nσ
y,z}y,z∈{0,1}k satisfy certain linear re-

lations described in Lemma 5 below. We will get rid of these redundancies in Lemma 6,
which will be needed for a nondegeneracy condition in the local CLT; see Lemma 11 below.

LEMMA 5 (Combinatorial constraints). For any σ ∈ {0,1}(µ+1)k , µ ∈ N and z ∈ {0,1}k ,

1
{
xσ

0 = z
} +

∑

y∈{0,1}k :y '=z

Nσ
y,z = 1

{
xσ
µ = z

} +
∑

y′∈{0,1}k :y′ '=z

Nσ
z,y′ .(9)

Moreover
∑

y,z∈{0,1}k
Nσ

y,z = µ.(10)

PROOF. Equation (10) holds since the total number of adjacent transitions in σ is µ.
To verify (9), we observe that the total count

∑µ
i=0 1{xσ

i = z} can be computed two ways
to give

1
{
xσ

0 = z
} +

∑

y∈{0,1}k
Nσ

y,z = 1
{
xσ
µ = z

} +
∑

y′∈{0,1}k
Nσ

z,y′ .

Subtracting Nσ
z,z from both sides yields (9). !

There are actually only 2k linearly independent equations among the 2k + 1 equations in
(9)–(10), as can be seen from the proof of Lemma 6 below. To ensure a nondegenerate limit
when applying the central limit theorem, we utilize these 2k linearly independent equations to
remove 2k redundant variables. Specifically, we remove the transition counts corresponding
to the pairs {(/1, z) : z ∈ {0,1}k}, where /1 = (1, . . . ,1) ∈ {0,1}k is the all-1 string.

LEMMA 6 (Redundancy). For any σ ∈ {0,1}(µ+1)k and µ ∈ N, the vector (xσ
0 , xσ

µ,
(Nσ

y,z)y,z∈{0,1}k ) is a function of (xσ
0 , xσ

µ, (Nσ
y,z)(y,z)∈H), where

H = {
(y, z) ∈ {0,1}k × {0,1}k : y '= /1}

.



PHYLOGENY RECONSTRUCTION FROM k-MERS 4901

PROOF. It suffices to show that for any (y, z) /∈ H, we can write Nσ
y,z as a function of

xσ
0 , xσ

µ , µ, and (Nσ
y,z)(y,z)∈H. We do this first for Nσ

/1,z
where z '= /1, and then for Nσ

/1,/1.

Among the 2k equations in (9), each one indexed by z '= /1 has exactly one variable in Hc,
namely Nσ

/1,z
. Precisely, (9) gives

Nσ
/1,z

= 1
{
xσ
µ = z

} − 1
{
xσ

0 = z
} +

∑

y′ '=z

Nσ
z,y′ −

∑

y '=z,/1
Nσ

y,z,

in which all terms on the right come from H. Hence Nσ
/1,z

can be written as a function of the

required variables for each z '= /1.
The variable Nσ

/1,/1 is featured only in equation (10), and we obtain

Nσ
/1,/1 = µ −

∑

(y,z) '=(/1,/1)

Nσ
y,z.

!

For points V ∈ {A,B ′,C′} on the trees, we let

(11) Z′
V = ((

x
σV
0 , x

σV
1

)
,
(
x

σV
µ−1, x

σV
µ

)
,N

σV
H

)
, where N

σV
H = (

NσV
y,z

)
(y,z)∈H.

LEMMA 7 (Reduction to nonredundant transitions). Suppose m = (µ + 1)k for some
µ ∈ N. Then

∥∥P(1)
ZA,ZB′ ,ZC′ − P(2)

ZA,ZB′ ,ZC′
∥∥

TV ≤ ∥∥P(1)
Z′

A,Z′
B′ ,Z′

C′
− P(2)

Z′
A,Z′

B′ ,Z′
C′

∥∥
TV.

PROOF. From Lemma 6, (ZA,ZB ′,ZC′) is a function of (Z′
A,Z′

B ′,Z
′
C′). Then the result

follows from Lemma 19. !

3.2.4. Final reduction step. By Lemmas 1, 2, 4, and 7 above, together with the second
equality of Lemma 18 in the Appendix, to establish Theorem 1 it suffices to prove that

lim inf
µ→∞

∑

z′
A,z′

B′ ,z′
C′

P(1)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

) ∧ P(2)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

)
> 0,(12)

where the sum is taken over the set ({0,1}2k × {0,1}2k × {0,1, . . . ,µ}H)3, and m = (µ+1)k.
Our final reduction step in this section is to condition on the event

(13) Ẽ = {(
x

σA
0 , x

σA
1

) = (
x

σB′
0 , x

σB′
1

) = (
x

σC′
0 , x

σC′
1

) = (/0, /0)
}
,

where x
σV
j ∈ {0,1}k are the adjacent k-mers in the sequence σV at point V ∈ {A,B ′,C′},

defined in (4). Precisely, for i ∈ {1,2} we let P̃(i) = P̃(i),m be the conditional measures under
P(i) = P(i),m given the event Ẽ . Then

∑

z′
A,z′

B′ ,z′
C′

P(1)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

) ∧ P(2)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

)

≥
∑

z′
A,z′

B′ ,z′
C′

(
P̃(1)

Z′
A,Z′

B′ ,Z′
C′

(
z′
A, z′

B ′, z
′
C′

)
P(1)[Ẽ]) ∧ (

P̃(2)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

)
P(2)[Ẽ])

≥ c1
∑

z′
A,z′

B′ ,z′
C′

P̃(1)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

) ∧ P̃(2)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

)
,

where c1 := P(1)[Ẽ] ∧ P(2)[Ẽ] is positive and does not depend on µ.
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Hence, to show (12) it suffices to prove that

(14) lim inf
µ→∞

∑

(z′
A,z′

B′ ,z′
C′ )∈(Sµ

0 )3

P̃(1)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

) ∧ P̃(2)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

)
> 0,

where Sµ
0 := {(/0, /0)} × {0,1}2k × {0,1, . . . ,µ}H.

For the rest of the proof, we shall establish (14) by obtaining suitable lower bounds on the
probabilities in (14) through a local limit theorem.

3.3. Applying a local limit theorem. It will be convenient to consider infinite sequences,
since we shall employ a local limit theorem as the sequence length tends to infinity (i.e., µ →
∞). Let P(i),∞ be the probability measure of the CFN model on Ti with infinite sequence
length and P̃(i),∞ be the conditional measure under P(i),∞, given the event Ẽ .

3.3.1. Pairs of triplets as a Markov chain. We shall apply Doeblin’s method (see,
e.g., [7]). For V ∈ {A,B ′,C′}, we let σV (n) = (xV

0 , . . . , xV
n ) ∈ {0,1}k(n+1) be the first n + 1

adjacent k-mers of σV , where 0 ≤ n ≤ µ if σV has length (µ+1)k and n ∈ Z+ if σV ∈ {0,1}N

has infinite length. For all such n, we consider the triples

(15) /Xn = (
xA
n , xB ′

n , xC′
n

) ∈ {0,1}3k.

Under P̃(i),∞, { /Xn}n∈Z+ is a sequence of independent random vectors and the pairs
/Mn = ( /Xn, /Xn+1) form a Markov chain with a finite state space. This Markov chain is ir-

reducible since the support of ( /Xn, /Xn+1) is all of {0,1}3k × {0,1}3k for all n. The stationary
distribution ' /M of { /Mn}n∈Z+ is

(16) ' /M(/y, /z) = P̃(i),∞( /X2 = /y)P̃(i),∞( /X2 = /z), for /y, /z ∈ {0,1}3k.

Let τ0 = 0, let τ1 be the first n > 0 such that /Mn = (/0, /0), and in general, for " ≥ 1, let

(17) τ" = inf
{
n > τ"−1 : /Mn = (/0, /0)

}
,

where an infimum over an empty set is +∞ by convention.
The connection between P̃(i) = P̃(i),m and P̃(i),∞ that we will need is given by Lemma 8

below. We let

NV
y,z(n) = NσV (n)

y,z =
n−1∑

j=0

1
{
xV
j = y, xV

j+1 = z
}

be the number of adjacent transitions from y to z up to xV
n , as in (5), with the convention that

NV
y,z(0) = 0.

LEMMA 8 (Infinite sequences). For all µ ∈ Z+, k ∈ N, " ∈ {1,2, . . . ,µ}, (a, b, c) ∈ Z3
+,

and i ∈ {1,2}, the event
{
τ" = µ,

(
NA

H(τ"),N
B ′
H (τ"),N

C′
H (τ")

) = (a, b, c)
}

has the same probability under P̃(i),m and P̃(i),∞, where m = (µ + 1)k.

This lemma follows directly from the construction of the CFN model, in which nonover-
lapping, adjacent k-mers are independent. The rest of Section 3.3 concerns infinite sequences.
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3.3.2. Independent excursions and a multivariate local CLT. We extract i.i.d. random
variables from excursions of the Markov chain /M . Define, for V ∈ {A,B ′,C′},

YV (") = NV
H(τ") − NV

H(τ"−1) = (
NV

y,z(τ") − NV
y,z(τ"−1)

)
(y,z)∈H

and let

Y(") = (
τ" − τ"−1, YA("), YB ′("), YC′(")

)
.

Note that these random vectors take values in N× (ZH
+ )3 ⊂ Zd

+ where d = 1+3(22k −2k),
because |H| = 22k − 2k .

LEMMA 9. The vectors {Y(")}∞"=1 are i.i.d. under P̃(i),∞ for both i = 1 and 2. Further,
their partial sum is equal to

(18)
"∑

ι=1

Y(ι) = (
τ",N

A
H(τ"),N

B ′
H (τ"),N

C′
H (τ")

)
.

PROOF. The first statement is obvious from the construction of the CFN model. The
equality (18) follows from the definitions of Y and the conventions τ0 = NV

y,z(0) = 0. !

We will apply a multivariate local CLT of Davis and McDonald [9], Theorem 2.1, to the
i.i.d. vectors {Y(")}∞"=1 ⊂ Zd

+ under P̃(i),∞. Theorem 2.1 of [9] works for an array of inde-
pendent vectors. Here we need only a sequence of i.i.d. vectors so we state this result for the
case of i.i.d. vectors in Zd .

THEOREM 2 ([9], Theorem 2.1). Let {Xj }∞j=1 be a sequence of independent Zd -valued
random variables with a common probability mass function f , finite mean m ∈ Rd , and
covariance matrix ! ∈ Rd×d . Suppose the following hold:

(a) For all r ∈ {1,2, . . . , d}, there exists xr ∈ Zd such that

f (xr ) ∧ f (xr + er ) > 0,

where er ∈ Zd is the r th standard basis vector.
(b) The sequence S"−"m√

"
converges in distribution to the multivariate normal distribution

N (0,!) as " → ∞, where S" = ∑"
j=1 Xj .

Then the following uniform convergence holds as " → ∞:

sup
y∈Zd

∣∣∣∣"
d/2P[S" = y] − ϕ

(y − "m√
"

)∣∣∣∣ → 0,

where ϕ is the probability density function of the multivariate normal distribution N (0,!).

Condition (a) of Theorem 2 implies that the multivariate normal distribution N (0,!) is
nondegenerate.

LEMMA 10. Let f be a probability mass function on Zd with finite mean and covariance
matrix ! ∈ Rd×d . Assume condition (a) of Theorem 2 holds. Then ! is positive definite.

PROOF. Let X and Y be two independent random vectors with distribution f . Then the
covariance matrix of X can be written as

E
[(

X − E[X])(X − E[X])T ] = (1/2)E
[
(X − Y )(X − Y)T

]
.
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Let xr be as in condition (a) of Theorem 2. Then for any nonzero vector z = (z1, . . . , zd) '= 0
with, say, zr '= 0, we have

zT E
[
(X − Y )(X − Y)T

]
z = E

[(
zT (X − Y)

)2]

≥ f (xr )f (xr + er )z
2
r

> 0,

where the expression on the second line is the contribution to the expectation from the event
that X = xr + er and Y = xr , and the third line follows from condition (a) of Theorem 2.
Note that we used that each term contributing to the expectation is nonnegative. !

We shall apply Theorem 2 to the i.i.d. vectors {Y(")}∞"=1 ⊂ Zd
+ under P̃(i),∞, for each of

i ∈ {1,2}.

3.3.3. Checking conditions of the local CLT. In this section we verify that the i.i.d. vec-
tors {Y(")}∞"=1 ⊂ Zd

+ satisfy all conditions of Theorem 2. We also show that they have the
same mean under P̃(1),∞ and P̃(2),∞. For this we let f (i) be the probability mass function of

Y(1) = (
τ, YA(1), YB ′(1), YC′(1)

) = (
τ,NA

H(τ ),NB ′
H (τ ),NC′

H (τ )
)

under P̃(i),∞ for i ∈ {1,2}, where τ = τ1 is defined in (17).

LEMMA 11 (Nondegeneracy). The distributions f (1) and f (2) both satisfy condition (a)
of Theorem 2.

PROOF. Fix i ∈ {1,2}. The proof relies crucially on the construction of the set H in
Lemma 6. We write a point in Zd

+ as

x = (
t,

(
nA

yz, n
B ′
yz, n

C′
yz

)
yz∈H

)
, where t ∈ Z+ and nA

yz, n
B ′
yz, n

C′
yz ∈ Z+.

Recall that /0 and /1 refer to the all-0 and all-1 k-mers. A sequence of adjacent k-mer triples
starting and ending with (/0, /0, /0)(/0, /0, /0) will give rise to a unique point in Zd

+, in which t is
the length of the sequence and nV

yz counts the number of yz-transitions. By the definition of
H, we are not counting the transition from /1 to z for any z ∈ {0,1}k .

For r = 1 (corresponding to the t-coordinate), we consider the k-mer triple cycles of

C = (/0, /0, /0), (/0, /0, /0), (/1, /1, /1), (/0, /0, /0), (/0, /0, /0) and

C+ = (/0, /0, /0), (/0, /0, /0), (/1, /1, /1), (/1, /1, /1), (/0, /0, /0), (/0, /0, /0).

They give rise to xr and xr + er respectively, where we take xr to be the point in Zd
+ such

that t = 3 and

(19)
(
nA

yz, n
B ′
yz, n

C′
yz

) =






(2,2,2) if (y, z) = (/0, /0),

(1,1,1) if (y, z) = (/0, /1),

(0,0,0) if (y, z) ∈ H \ {
(/0, /0), (/0, /1)

}
,

and xr + er = (4, (nA
yz, n

B ′
yz, n

C′
yz)yz∈H). Recall that

H = {
(y, z) ∈ {0,1}k × {0,1}k : y '= /1}

,
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so that, in particular, the transitions (/1, /1) are not counted. Then

f (i)(xr ) ≥ P̃(i),∞(
( /Xn)

3
n=0 = C

)
> 0 and

f (i)(xr + er ) ≥ P̃(i),∞(
( /Xn)

4
n=0 = C+)

> 0,

where /Xn = (xA
n , xB ′

n , xC′
n ) ∈ {0,1}3k as defined in (15).

For r > 1, we first suppose r corresponds to the coordinate nA
ab where (a, b) ∈ H. The

cycles

CA
ab = (/0, /0, /0), (/0, /0, /0), (/1, /1, /1), (/1, /1, /1), (b, /1, /1), (/0, /0, /0), (/0, /0, /0) and

CA+
ab = (/0, /0, /0), (/0, /0, /0), (/1, /1, /1), (a, /1, /1), (b, /1, /1), (/0, /0, /0), (/0, /0, /0)

give rise to xr and xr + er respectively, where xr is the point on Zd
+ such that t = 5 and (19)

hold. Hence both f (i)(xr ) and f (i)(xr + er ) are positive, as before.
The proof for coordinates nB ′

ab is the same, except that we replace (a, /1, /1) by (/1, a, /1) and
(b, /1, /1) by (/1, b, /1). The proof for coordinates nC′

ab follows similarly. The proof is complete.
!

To verify condition (b) of Theorem 2, we let m(i) and !(i) be respectively the mean and
the covariance matrix of Y(1) under P̃(i),∞. We also let S" = ∑"

j=1 Y(j).

LEMMA 12. For i ∈ {1,2}, under P̃(i),∞, the sequence S"−"m(i)√
"

converges in distribution

to the multivariate normal distribution N (0,!(i)) as " → ∞.

PROOF. Fix i ∈ {1,2}. Observe that Y(1) ≤ (τ1, τ1, . . . , τ1) coordinate-wise. Moreover,
by construction, τ1 is geometric and therefore has finite first and second moments. Hence
m(i) is finite and Ẽ(i),∞[‖Y(")‖2] < ∞, from which we have that the entries of !(i) are finite
and hence |det(!(i))| < ∞. Also !(i) is positive definite by Lemmas 10 and 11. The claim
follows from the multivariate central limit theorem (see, e.g., [12], Section 3.10). !

Due to symmetry between T1 and T2, as well as the independence of nonoverlapping,
adjacent k-mers under the CFN model, the expectations are the same, as we show formally
next.

LEMMA 13 (Expectation). The equality m(1) = m(2) ∈ Rd
+ holds.

PROOF. By symmetry (3), we have P̃(1),∞
(τ,σA,σB′ ,σC′ ) = P̃(2),∞

(τ,σA,σC′ ,σB′ ). Hence

Ẽ(1),∞[(
τ,NA

H(τ )
)] = Ẽ(2),∞[(

τ,NA
H(τ )

)]
,

and

Ẽ(1),∞[(
NB ′

H (τ ),NC′
H (τ )

)] = Ẽ(2),∞[(
NC′

H (τ ),NB ′
H (τ )

)]
.

It remains to show that

(20) Ẽ(i),∞[
NB ′

H (τ )
] = Ẽ(i),∞[

NC′
H (τ )

]
for i ∈ {1,2}.

While P̃(i),∞
σB′ = P̃(i),∞

σC′ , equation (20) is not immediately clear because τ depends on all three
sequences.
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Using the notation of Section 3.3.1, for arbitrary (y, z) ∈ {0,1}k × {0,1}k , we have

(21) NB ′
(y,z)(τ ) =

∑

(/y,/z):(y2,z2)=(y,z)

τ−1∑

j=0

1 /Mj=(/y,/z),

where the sum is over the set of (/y, /z) with y2 = y and z2 = z, with /y = (y1, y2, y3) ∈ {0,1}3k

and /z = (z1, z2, z3) ∈ {0,1}3k . Using standard Markov chain results (e.g., [12], Chapter 5),

(22) Ẽ(i),∞
[

τ−1∑

j=0

1 /Mj=(/y,/z)

]

= c̃' /M(/y, /z),

where c̃ = Ẽ(i),∞[τ ] ∈ (0,∞) and the stationary distribution ' /M(/y, /z) was computed in (16).
Combining (16), (21), and (22), we have

Ẽ(i),∞[
NB ′

y,z(τ )
] = c̃

∑

(/y,/z):(y2,z2)=(y,z)

P̃(i),∞( /X2 = /y)P̃(i),∞( /X2 = /z)

= c̃P̃(i),∞(
xB ′

2 = y
)
P̃(i),∞(

xB ′
2 = z

)

and, similarly for C′,

Ẽ(i),∞[
NC′

y,z(τ )
] = c̃P̃(i),∞(

xC′
2 = y

)
P̃(i),∞(

xC′
2 = z

)
.

The two displayed equations are the same since P̃(i),∞
σB′ = P̃(i),∞

σC′ . !

3.3.4. Applying the local CLT. By Lemmas 11 and 12, we can apply Theorem 2 to the
i.i.d. vectors {Y(j)}∞j=1 to obtain the following lower bound. Recall that m(1) = m(2) by

Lemma 13, and let m = m(i). Recall also that S" = ∑"
j=1 Y(j).

LEMMA 14 (Uniform lower bound). There exist constants c1, c2 ∈ (0,∞) such that

inf
y∈Y(i)

"

P̃(i),∞[S" = y] ≥ c2

"d/2

for all " ≥ c1 and i ∈ {1,2}, where

(23) Y(i)
" := {

y ∈ Zd
+ : (y − "m)T(

!(i))−1
(y − "m) ≤ 2"

}
.

PROOF. By Theorem 2, for i ∈ {1,2}, as " → ∞,

sup
y∈Zd

∣∣∣∣"
d/2P̃(i),∞[S" = y] − ϕ(i)

(y − "m√
"

)∣∣∣∣ → 0,(24)

where

ϕ(i)(X) = exp{−1
2 xT(!(i))−1x}

√
(2π)d det(!(i))

.

Therefore, for arbitrary ε > 0, there exists "ε sufficiently large such that for all integers
" ≥ "ε and all y ∈ Zd ,

P̃(i),∞[S" = y] ≥ 1
"d/2

(
ϕ(i)

(y − "m√
"

)
− ε

)

= 1
"d/2

(exp{−1
2(y−"m√

"
)T(!(i))−1(y−"m√

"
)}

√
(2π)d det(!(i))

− ε

)
.
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The bound in the definition of Y(i)
" gives

inf
y∈Y(i)

"

P̃(i),∞[S" = y] ≥ 1
"d/2

(
e−1

√
(2π)d [det(!(1)) ∨ det(!(2))]

− ε

)

for all " ≥ "ε . The lemma follows by taking ε to be any fixed number small enough that
depends only on det(!(1)) ∨ det(!(2)). !

Observe that the bound in Lemma 14 is uniform over the set Y(i)
" . Our use of Lemma 14

below will require a lower bound on the size of Y(1)
" ∩ Y(2)

" .

LEMMA 15. Let λ
(i)
min be the minimal eigenvalues of !(i). Then

(25)
{
y ∈ Zd

+ : ‖y − "m‖2 ≤ 2"
(
λ

(1)
min ∧ λ

(2)
min

)} ⊂ Y(1)
" ∩ Y(2)

" ,

where {Y(i)
" }2

i=1 are defined in (23).

PROOF. Note that 0 < λ
(i)
min < ∞ by Lemma 12. Since λ is an eigenvalue of !(i) if and

only if 1/λ is an eigenvalue of (!(i))−1, we have

(y − "m)T(
!(i))−1

(y − "m) ≤ 1

λ
(i)
min

‖y − "m‖2.

This inequality implies (25). !

In fact, we will need to control the size of subsets of Y(1)
" ∩Y(2)

" whose first coordinates are
sufficiently close to their expectation. Letting m1 be the first coordinate of m, by Lemma 13,

(26) m1 = Ẽ(1),∞[τ1] = Ẽ(2),∞[τ1].
We consider the following set of pairs (µ, ")

(27) L = {
(µ, ") ∈ N2 : |µ − "m1| ≤ c3

√
"
}
, where c3 =

√
λ

(1)
min ∧ λ

(2)
min.

The next two lemmas concern bounds on the level sets

L|" := {
µ ∈ N : (µ, ") ∈ L

}
and L|µ := {

" ∈ N : (µ, ") ∈ L
}
.

LEMMA 16. Let Zd
+(µ) be the subset of Zd

+ whose first coordinate is µ. Then

(28) inf
µ∈L|"

∣∣Y(1)
" ∩ Y(2)

" ∩ Zd
+(µ)

∣∣ ≥ c4c
d−1
3 "(d−1)/2

for all " ∈ N, where c4 ∈ (0,∞) is a constant that depends only on d .

PROOF. By Lemma 15, the set Y(1)
" ∩ Y(2)

" contains all integer points of

Bd("m, c3
√

2") ∩ Rd
+,

where Bd(x, r) := {y ∈ Rd : ‖y − x‖Rd ≤ r} is the d-dimensional Euclidean ball with center
x and radius r . By Lemma 13, m = (m1,m2, . . . ,md) ∈ Rd

+. Hence Y(1)
" ∩ Y(2)

" ∩ Zd
+(µ)

contains all integer points of B̃(rµ) ∩ Rd
+, where

B̃(rµ) := {
(µ, y2, . . . , yd) ∈ Rd : ∥∥(y2, . . . , yd) − "(m2, . . . ,md)

∥∥
Rd−1 ≤ rµ

}
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with

(29) rµ :=
√

c2
32" − (µ − "m1)2 ≥ c3

√
".

The last inequality follows whenever (µ, ") ∈ L.
Since {m2, . . . ,md} are all nonnegative, B̃(rµ) ∩ Rd

+ contains a (d − 1)-dimensional cube

with side length rµ√
d−1

≥ c3
√

"√
d−1

by (29). This cube contains at least c4c
d−1
3 "(d−1)/2 many

integer points for some c4 ∈ (0,∞) that depends only on d , uniformly for all (µ, ") ∈ L. !

Finally, the following lemma gives a lower bound on the cardinality of L|µ.

LEMMA 17. There exists a constant c5 ∈ (0,∞) that depends only on m1 and c3 such
that, for µ large enough,

[
µ

m1
− c5

√
µ,

µ

m1
+ c5

√
µ

]
⊆ L|µ,

where m1 = Ẽ(1),∞[τ1] = Ẽ(2),∞[τ1].

PROOF. Suppose " belongs to the interval on the left-hand side of the display in the
statement of the lemma. Then " ≥ µ

m1
− c5

√
µ. Solving this quadratic inequality in

√
µ and

then squaring gives

√
µ ≤c5m1 +

√
(c5m1)2 + 4m1"

2
,

and

µ ≤"m1 + 1
2
(c5m1)

2 + c5m1
√

(c5m1)2 + 4m1"

2
.

From the last inequality, we see that µ ≤ "m1 + c3
√

" for all " ≥ 1, provided that c5 ∈ (0,∞)
is small enough (depending only on c3 and m1).

Similarly, by solving the inequality " ≤ µ
m1

+ c5
√

µ to yield

√
µ ≥−c5m1 +

√
(c5m1)2 + 4m1"

2
,

and

µ ≥ "m1 + 1
2
(c5m1)

2 − c5m1
√

(c5m1)2 + 4m1"

2
.

For sufficiently small c5 ∈ (0,∞) (depending only on c3 and m1), we have µ ≥ "m1 − c3
√

".

The desired subset relation is obtained. !

3.4. Final bound on the total variation distance. PROOF OF THEOREM 1. Now we
finish the proof of Theorem 1 by establishing (14). That is, we now show that

(30) lim inf
µ→∞

∑

(z′
A,z′

B′ ,z′
C′ )∈(Sµ

0 )3

P̃(1)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

) ∧ P̃(2)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

)
> 0,

where Sµ
0 := {(/0, /0)} × {0,1}2k × {0,1, . . . ,µ}H and m = (µ + 1)k. We further restrict the

last pair of triples by considering Sµ
00 := {(/0, /0)}× {(/0, /0)}× {0,1, . . . ,µ}H. Since Sµ

00 ⊂ Sµ
0 ,
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the sum
∑

(z′
A,z′

B′ ,z′
C′ )∈(Sµ

0 )3 on the left of (30) is bounded below by

(31) W00 =
∑

(z′
A,z′

B′ ,z′
C′ )∈(Sµ

00)
3

P̃(1)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

) ∧ P̃(2)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

)
.

As an element of Sµ
00, z′

V = ((/0, /0), (/0, /0),N ′
V ) for some N ′

V ∈ {0,1, . . . ,µ}H, where V ∈
{A,B ′,C′}. Hence

P̃(i)
Z′

A,Z′
B′ ,Z′

C′

(
z′
A, z′

B ′, z
′
C′

)

=
µ∑

"=1

P̃(i){(NσA
H (τ"),N

σB′
H (τ"),N

σC′
H (τ")

) = (
N ′

A,N ′
B ′,N

′
C′

)
, τ" = µ

}

=
µ∑

"=1

P̃(i),∞{(
N

σA
H (τ"),N

σB′
H (τ"),N

σC′
H (τ")

) = (
N ′

A,N ′
B ′,N

′
C′

)
, τ" = µ

}

=
µ∑

"=1

P̃(i),∞
{

"∑

j=1

Y(j) = (
µ,N ′

A,N ′
B ′,N

′
C′

)
}

,

where the second and the last equalities follow from Lemma 8 and (18) respectively. There-
fore,

(32) W00 ≥
µ∑

"=1

∑

y∈Zd
+(µ)

P̃(1),∞
{

"∑

j=1

Y(j) = y

}

∧ P̃(2),∞
{

"∑

j=1

Y(j) = y

}

,

where recall that Zd
+(µ) was defined in Lemma 16.

We further restrict the sums to be over (µ,N ′
A,N ′

B ′,N
′
C′) ∈ Y(1)

" ∩ Y(2)
" and " ≥ c1, where

recall that Y(i)
" and c1 were defined in Lemma 14. We obtain from Lemma 14 that the right-

hand side of (32) is

≥
∑

"∈[c1,µ]∩Z+

∑

y∈Y(1)
" ∩Y(2)

" ∩Zd
+(µ)

c2

"d/2

= c2
∑

"∈[c1,µ]∩Z+

|Y(1)
" ∩ Y(2)

" ∩ Zd
+(µ)|

"d/2

≥ c2c
d−1
3 c4

∑

"∈[c1,µ]∩L|µ

1
"1/2 ,

where the last inequality follows from Lemma 16 and the fact that " ∈ L|µ if and only if µ ∈
L|". Now by Lemma 17 and the fact that m1 ≥ 1 (recall that m1 = Ẽ(1),∞[τ1] = Ẽ(2),∞[τ1]),
we have for µ large enough that

∑

"∈[c1,µ]∩L|µ

1
"1/2 ≥

∑

"∈[c1,µ]∩[ µ
m1

−c5
√

µ, µ
m1

+c5
√

µ]

1
"1/2

=
∑

"∈[ µ
m1

−c5
√

µ, µ
m1

+c5
√

µ]

1
"1/2

≥ 2c5
√

µ − 1
√

µ
m1

+ c5
√

µ
,

which tends to 2c5
√

m1 > 0 as µ → ∞. We finally obtain (30) by combining the last display
with (32). !
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4. Concluding remarks. Our main result, Theorem 1, suggests that to develop statisti-
cally consistent k-mer-based methods under a standard model such as the CFN model, one
cannot simply fix a k and use the k-mer frequencies of the entire leaf sequences. Instead, one
has to look for more elaborate methods, such as block decomposition.

Another possible approach to achieve consistency is to allow k to increase with the se-
quence length m. It is an interesting open problem to determine the smallest growth rate
of k = km as a function of m for which consistency becomes possible (without recourse to
block techniques). By standard phylogenetic reconstruction results for distance-based and
likelihood-based methods (see, e.g., [5, 36]), statistical consistency is possible in the extreme
case where km = m (i.e., when the full sequence is observed). Formally, by the reconstruction
upper bound [16], Lemma 3.2, it follows that

(33) lim sup
m→∞

∥∥L(1)
m − L(2)

m

∥∥
TV = 1 if km = m.

Hence the remaining question is: Is there a sequence {km} such that, say, limm→∞ km
m < 1 or

even limm→∞ km
m = 0, and such that we also have lim supm→∞ ‖L(1)

m − L(2)
m ‖TV = 1? A key

challenge to extend our proof is that, in our use of the local CLT, we must also control the
convergence rate in terms of the dimension d = 1 + 3(22k − 2k).

We focused exclusively on the two-state symmetric model of single-site substitution. We
conjecture that the techniques developed here can be used to analyze more complex substi-
tution models as well (e.g., the four-state Jukes–Cantor model). Another open question is
to show that our results hold under models of insertions and deletions, such as the TKF91
model [40]. See [17] for related results regarding estimators based on the sequence length
alone.

APPENDIX: INFORMATION-THEORETIC BOUNDS

In this section we give details about some basic facts we used in the paper. Recall the
definition of the total variation distance in (1). It is well known (see, e.g., [26]) that the
supremum on the right-hand side of (1) is reached at the set B = {x ∈ E : ν1(x) ≥ ν2(x)} as
well as its complement Bc, and that we have the following characterizations.

LEMMA 18. Let ν1 and ν2 be probability measures on a countable space E:

‖ν1 − ν2‖TV = 1
2

∑

σ∈E

∣∣ν1(σ ) − ν2(σ )
∣∣ = 1 −

∑

σ∈E

ν1(σ ) ∧ ν2(σ ).

Let X be a measurable function on a measure space (/,F), and P and P′ be two proba-
bility measures on (/,F). Denote by Pg(X) and P′

g(X) the probability distribution of g(X)

under P and P′ respectively, where g is an arbitrary measurable function on the state space
of X.

LEMMA 19. Let g be a measurable map on the state space of X. Then
∥∥Pg(X) − P′

g(X)

∥∥
TV ≤ ∥∥PX − P′

X

∥∥
TV.

PROOF. Applying the definition (1) twice,
∥∥Pg(X) − P′

g(X)

∥∥
TV = sup

A

∣∣P
(
g(X) ∈ A

) − P′(g(X) ∈ A
)∣∣

= sup
A

∣∣P
(
X ∈ g−1(A)

) − P′(X ∈ g−1(A)
)∣∣ ≤ ∥∥PX − P′

X

∥∥
TV. !
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Let X, Y , Z be measurable functions on a measure space (/,F), and P and P′ be two
probability measures on (/,F). We say that X → Y → Z is a Markov chain under P if Z is
conditionally independent of X given Y in the sense that

(34) PZ|X,Y = PZ|Y ,

where PZ|X,Y is the conditional distribution of Z given (X,Y ) and PZ|Y is the conditional
distribution of Z given Y . The law of total probability and (34) imply that

(35) PX,Y,Z = PXPY |XPZ|Y ,

where PX,Y,Z is the joint probability distribution of (X,Y,Z).

LEMMA 20. Suppose PX = P′
X , PY |X = P′

Y |X , and X → Y → Z is a Markov chain
under both P and P′. Then

∥∥PX,Y,Z − P′
X,Y,Z

∥∥
TV = ∥∥PY,Z − P′

Y,Z

∥∥
TV.

PROOF. By the first equality in Lemma 18,
∥∥PX,Y,Z − P′

X,Y,Z

∥∥
TV = 1

2

∑

(a,b,c)

∣∣P
(
(X,Y,Z) = (a, b, c)

) − P′((X,Y,Z) = (a, b, c)
)∣∣.

Applying (35) to P and P′, we have

P
(
(X,Y,Z) = (a, b, c)

) = P(X = a)P(Y = b|X = a)P(Z = c|Y = b),

P′((X,Y,Z) = (a, b, c)
) = P′(X = a)P′(Y = b|X = a)P′(Z = c|Y = b).

From the assumptions PX = P′
X and PY |X = P′

Y |X , it follows that PX,Y = P′
X,Y and PY =

P′
Y . Using the displayed equations above gives

∣∣P
(
(X,Y,Z) = (a, b, c)

) − P′((X,Y,Z) = (a, b, c)
)∣∣

= P(X = a)P(Y = b|X = a)
∣∣P(Z = c|Y = b) − P′(Z = c|Y = b)

∣∣

= P(X = a,Y = b)
∣∣P(Z = c|Y = b) − P′(Z = c|Y = b)

∣∣.

Hence
∥∥PX,Y,Z − P′

X,Y,Z

∥∥
TV

= 1
2

∑

(a,b,c)

P(X = a,Y = b)
∣∣P(Z = c|Y = b) − P′(Z = c|Y = b)

∣∣

= 1
2

∑

(b,c)

P(Y = b)
∣∣P(Z = c|Y = b) − P′(Z = c|Y = b)

∣∣

= 1
2

∑

(b,c)

∣∣P(Y = b)P(Z = c|Y = b) − P′(Y = b)P′(Z = c|Y = b)
∣∣,

where we used P(Y = b) = P′(Y = b) in the last equality. The expression on the last line is
equal to ‖PY,Z − P′

Y,Z‖TV by the first equality in Lemma 18, establishing the claim. !
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