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We consider species tree estimation under a standard stochastic model
of gene tree evolution that incorporates incomplete lineage sorting (as mod-
eled by a coalescent process) and gene duplication and loss (as modeled by a
branching process). Through a probabilistic analysis of the model, we derive
sample complexity bounds for widely used quartet-based inference methods
that highlight the effect of the duplication and loss rates in both subcritical
and supercritical regimes.

1. Introduction. Estimating phylogenies from the molecular sequences of existing
species is a fundamental problem in computational biology that has been the subject of sig-
nificant practical and theoretical work [16, 19, 52, 53, 57, 59, 60]. Rigorous statistical guar-
antees for inference methodologies often involve the probabilistic analysis of Markov models
on trees. In particular, these analyses have uncovered deep connections with phase transitions
in related statistical physics models [4, 7, 9, 15, 18, 29, 31-34, 37, 38, 44, 46].

In modern datasets, however, phylogeny estimation is confounded by heterogeneity across
the genome from processes such as incomplete lineage sorting (ILS), gene duplication and
loss (GDL), lateral gene transfer (LGT), and others [25]. Inferred trees depicting the evolu-
tion of individual loci in the genome are referred to as gene trees, while the tree represent-
ing the speciation history is called the species tree. Current sequencing technology allows
phylogenetic estimates of species relationships for many genes, and a major challenge in re-
constructing species trees is that gene trees often disagree for the reasons mentioned above.
There is a burgeoning literature on the many ways of extracting speciation histories from
collections of gene trees [12, 39, 51, 57, 59].

In this phylogenomic context, the design and analysis of species tree estimation methods
require the use of a variety of stochastic processes beyond Markov models on trees, including
coalescent processes [42], branching processes [5], random subtree prune-and-regraft oper-
ations [17, 24, 47], and tree mixtures [27, 35]. In fact, there is increasing realization in the
phylogenetics community that ILS, GDL, LGT, etc. should not be studied in isolation [10,
49, 50, 55] and, as a result, there has been a push to consider more complex models that
combine many sources of uncertainty and discordance [1, 3, 8, 23, 26, 28, 36, 43, 45, 48, 56].
We study here a joint coalescent and branching process unifying ILS and GDL, as introduced
in [43].

Much is known about estimating species trees in the presence of ILS alone [41], as mod-
eled by the multispecies coalescent (MSC) [42]. The latter model posits that, on a fixed
species tree, gene trees evolve backwards in time on each branch according to the Kingman
coalescent [20] (see Section 2 for more details). Bayesian approaches are a natural choice un-
der such complex models of evolution [13]. However they do not scale well to large datasets
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and more computationally efficient procedures have been developed that combine inferred
gene trees, sometimes referred to as summary methods [59].

One such method is to deduce the species tree by a plurality vote across gene trees. Unfor-
tunately, that approach is not statistically consistent, that is, it may not converge to the true
species tree as the number of gene trees grows to infinity. Indeed, for unrooted species trees
with more than four species, the most frequently occurring gene tree topology need not co-
incide with that of the species tree [11]. However, for every 4-tuple of species—also referred
to as quartet—and every locus, the most probable unrooted gene tree topology matches the
species tree topology [2]. This implies in particular that the species tree topology is identifi-
able from the distribution of gene trees. That is, different species tree topologies necessarily
produce different gene tree distributions. Further, quartet-based algorithms for combining
gene trees [21, 30] are known to be statistically consistent. Tight bounds on their sample
complexity, that is, how many gene trees are needed to recover the true species tree with high
probability, have also been established [54].

Less is known about estimating species trees in the presence of GDL alone. The model in
[5] posits that, on a fixed species tree, the number of copies in a gene family evolves forward
in time on each branch according to continuous-time branching process [6] (see Section 2
for more details). Recently, the identifiability of the species tree in the presence of GDL
alone was established in [22] by showing that, similar to the ILS alone case, for every quartet
the most frequent unrooted gene tree topology matches that of the species tree. As a result,
quartet-based inference methods [40] were also shown to be statistically consistent. To date,
no sample complexity results have been derived under this GDL model however.

In this paper, we investigate the gene tree evolution model of [43], which unifies the mul-
tispecies coalescent and the branching process model of gene duplication and loss discussed
above. Given that quartet-based methods have strong guarantees under these models sepa-
rately, it is natural to consider their performance under the joint model as well (see Section 2
for more details on the methods). Numerical experiments in [14, 22] provide some evidence
for the accuracy of certain quartet-based methods. In [26], the authors give a proof of sta-
tistical consistency for one such method. In our main result, we give the first known upper
bounds on the sample complexity of species tree estimation methods under the joint effect of
ILS and GDL. Our proof, which highlights the somewhat counter-intuitive role played by the
duplication and loss rates in the supercritical regime (see Section 2), is complicated by the
simultaneous forward-in-time/backward-in-time nature of the process.

The rest of the paper is organized as follows. In Section 2, after defining the model and
inference methods, we state and discuss our results. In Section 3, we give a proof of identifia-
bility including new quantitative estimates that play a role in our proof of sample complexity.
The rest of the proof can be found in Section 4.

2. Background and main results. We first describe the model and then state our results
formally.

2.1. Problem and model. Our input is a collection 7 = {ti}f.‘zl of k multilabeled gene
trees given without estimation error. We explain the terminology. The process of gene du-
plication creates multiple copies of a gene within the same individual in a species. We refer
to these duplicated genomic segments as gene copies and we refer to collections of gene
copies from different unrelated genes as gene families. A gene tree is a depiction of the
parental lineages of a gene or multiple gene copies from individuals across several species.
Roughly speaking, it shows the joint ancestral history of these related gene copies. In con-
trast, a species tree is a depiction of the evolutionary relationships of a group of species.
Roughly speaking, it shows the sequence of speciation events that have produced the current
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species. By multilabeled, we mean that each leaf of a gene tree is associated with a label from
the set S of n species of interest and that the leaf labels need not be unique. That is, multiple
leaves of a gene tree may be associated with the same species; this corresponds to observing
multiple paralogous copies (i.e., which have arisen from gene duplication) of a gene within
the genome. In practice, gene trees are estimated from the molecular sequences of the corre-
sponding genomic segments using a variety of phylogenetic reconstruction methods [16, 19,
53, 57, 59, 60]. For the sake of our results, we assume that gene trees are provided without
estimation error for a large number of gene families. Our main modeling assumption is that
these gene trees have been drawn independently from a distribution for which some n-species
tree T is taken as a fixed (i.e., nonrandom)—but unknown—parameter. Our goal is to output
this unknown n-species tree 7. We define the model more precisely next.

Model. We assume that the gene trees in 7 are independent and identically distributed, with
each gene tree generated under the DL.Coal model [43], a unified model of gene duplication,
loss, and coalescence. The process for generating a gene tree under DLCoal involves two
steps which are described below; an example realization of these steps is provided in Figure 1.
In particular, we introduce yet another tree, a locus tree, which is an unobserved intermediate
step in the model generating each gene tree. The process below is repeated independently for
eachi =1, ..., k, thereby producing an independent gene tree ¢;.

1. Locus tree: Birth-death process of gene duplication and loss with daughter edges. We
fix a rooted n-species tree T with edges E directed from root to leaves (i.e., from top to
bottom) and edge lengths {n.}.cg. In Figure 1, this is the four-species tree on the top left.
Note that the species tree is unknown to us.

Starting with a single ancestral copy of a gene at the root of 7, a tree is generated by a
top-down birth-death process [S] within the species tree. That is, on every edge in T, each
gene copy independently duplicates at exponential rate A > 0 and is lost at exponential rate
@ > 0. In addition, whenever a gene copy reaches a speciation event 7, it bifurcates into two
child copies, one for each of the descendant edges on 7. Both duplications and speciations
are indicated in the resulting locus tree by a bifurcation. The locus tree is then pruned of lost
copies to give an (unobserved) rooted tree, which we refer to as locus tree. In this manner,
we obtain a rooted n’-individual locus tree L with edge lengths. Species labels are associated
to each leaf of L from the species set S. These steps for generating L are illustrated in the
top-middle and top-right trees of Figure 1.

Furthermore, for each vertex in L which corresponds to a gene duplication event—but
not vertices corresponding to speciation bifurcations—we distinguish between the two child
edges by choosing one of them uniformly at random to be the daughter edge and the other to
be the mother edge. This distinction plays an important role in the next step.

2. Gene tree: Coalescent process on a locus tree. Gene trees are generated by a backward-
in-time (i.e., bottom-up) coalescent process [20, 42] within the locus tree L. The coalescent
process begins with exactly one gene copy in each leaf of L. Copies at the bottom of a directed
edge in the locus tree undergo the Kingman coalescent process for a time equal to the length
of the directed edge. Edge lengths here are assumed to be in so-called coalescent time units,
which means that each pair of lineages independently coalesces after an exponential time
with mean 1, unless the end of the edge is reached first. Further, we condition on the event
that all gene copies at the bottom of any daughter edge of the locus tree necessarily coalesces
underneath the top of the edge. Continuing upward along ancestral edges of the locus tree,
this process eventually yields a gene tree.

This process, which generates a gene tree from a locus tree, is termed the multilocus coa-
lescent (MLC) in [43]. A realization of this coalescent process within a locus tree is illustrated
in the bottom left of Figure 1, and the tree at the bottom right depicts the resulting gene tree
without the overlying locus tree.
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FIG. 1. A species tree with balanced topology and leaf species A, B, C, D is given in (a). From (a), we obtain a
realization of the gene duplication and loss (GDL) process with deaths not yet pruned. The pre-pruned locus tree
and its generating species tree are shown in (b). Nonextant lineages in the tree are then pruned to obtain the locus
tree, shown in (c). The gene tree obtained from the multispecies coalescent (MSC) process and its generating locus
tree are shown in (d). The gene tree we actually observe is shown in (e).

Intuitively, in Step 1 above the species tree 7T is a fat tree that “contains” the birth-death
process which generates the skinny tree L. In Step 2, we forget about the species tree and
“zoom in” on L so that L becomes the fat tree, with each edge of L containing one or more
edges (or parts of edges) of the gene tree.

Species tree estimation methods. Next we describe two quartet-based species tree methods:
ASTRAL-one and ASTRAL-multi [14, 30, 40]. Recall that a quartet refers to a 4-tuple of
species. It is known that the unrooted topology of a species tree is entirely characterized by
the collection of its quartet topologies (see, e.g., [53]), and hence a large number of quartet-
based approaches to species tree estimation have been developed. Both ASTRAL-one and
ASTRAL-multi are practical variants of an intuitive idea (which in the ILS/GDL context
is motivated by the results of [2, 22]; see also Propositions 1 and 2 below): (1) for each
quartet of species, find the most common topology across gene trees and (2) reconstruct an
n-species tree that coincides with as many resulting quartet topologies as possible. The input
is a collection of k multilabeled gene trees 7 = {t; }f-‘: 1- Let S be the set of n species and ¥ be
the set of m labels (or gene copies). The tree #; is labeled by the set X; C X. For any species
tree T labeled by S, the extended tree Tex labeled by X is built by adding to each leaf of
T all gene copies corresponding to that species as a polytomy (i.e., as a vertex with degree
possibly higher than 3).

Under ASTRAL-one, we pick one gene copy of each species uniformly at random and
restrict the gene tree to these copies, producing a new gene tree ;. For any collection of gene
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copies J = {a, b, c,d}, let TV be the restriction of any tree T to those copies. Then the
quartet score of every candidate species tree 7 is

k
o => > 1T,

i=1J={a,b,c,d}C%;

where 1(Ty, Tp) is the indicator for the event that 77 and 7> have the same topology.
ASTRAL-one selects the candidate tree 7' that maximizes that score.

ASTRAL-multi treats copies of a gene in a species as multiple alleles within the species.
So, we do not replace #; with any restricted gene tree 7;. The quartet score of T with respect
to 7 is

k
o= Y 1T

i=1J={a,b,c,d}C%;

The candidate tree T that maximizes this score is chosen by ASTRAL-multi.

Both procedures can be performed in exact mode or in a default constrained mode, which
restricts the number of candidate species trees to those displaying the bipartitions in the given
gene trees.

2.2. Statement of main results. We present a theoretical bound on the number of gene
trees needed for ASTRAL-one to reconstruct the model species tree with high probability
under the DL.Coal model. Similar to the case of the MSC model [54], the sample complexity
depends on the length of the shortest species tree branch in coalescent time units. We denote
this length by f. However we also highlight the influence of other relevant parameters in the
sample complexity: the depth of the species tree, A; the duplication and loss rates, A and pu.
For simplicity, we assume throughout that p # A.

THEOREM 1 (Main result: Sample complexity of ASTRAL-one). Consider a model
species tree whose minimum branch length f is finite and assume gene trees are generated
under the DLCoal model. Then, for any € > 0, there are universal positive constants C,C’
such that the exact version of ASTRAL-one returns the true species tree with probability at
least 1 — € if the number of input error-free gene trees satisfies:

1 eC |u—A]A

(1) k>C'— ————log
f (l—ﬁ/\%)c €

n

Somewhat surprisingly the subcritical (u > A) and supercritical (1 < A) regimes exhibit a
similar behavior. Indeed one naturally expects a higher sample complexity in the subcritical
case as (/A becomes large because the absence of any gene copy in a species becomes more
likely and leads to the need for more gene trees in order to extract a signal. That prediction
is borne out in (1). However the sample complexity similarly increases in the supercritical
regime as A/u becomes large. As the proof shows, the reasons for this behavior are different
in that regime. They have to do with the fact that a large number of copies at the most recent
common ancestor of a species quartet tends to produce large numbers of conflicting gene
tree quartet topologies, thereby obscuring the signal. It is an open problem whether other
inference methods (perhaps not based on quartets) are less sensitive to this last phenomenon.

Our proof of Theorem 1 involves a delicate probabilistic analysis of the DLCoal model.
Along the way, we prove other results of interest. First, we show that the unrooted species
tree is identifiable from the distribution of multilabeled gene trees 7 under the DLCoal model
over 7. Formally, we show that two distinct unrooted species trees produce different gene tree
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distributions. The result is a generalization of [22], Theorem 1, where only GDL is consid-
ered. Theorem 2 was first claimed in [26]. Our novel contribution here lies in the proofs of
Propositions 1 and 2 below, which give a quantitative version of the identifiability result and
play a role in deriving the sample complexity of ASTRAL-one.

In fact, even in the absence of ILS (i.e., in the presence of GDL alone), no sample complex-
ity results were previously available. While identifiability is established through symmetry
arguments (see, e.g., Lemma 1 below, whose simple proof closely mirrors the core argument
in [22]), sample complexity bounds require a quantitative analysis that is significantly more
involved. Our arguments here (see Sections 3 and 4) combine symmetry arguments, explicit
computations, and a detailed case analysis of well-chosen events. In addition we incorporate
ILS, which further complicates the analysis, in part because of the forward-in-time/backward-
in-time nature of the combined process. We expect that the types of arguments developed here
will prove useful in analyzing other reconstruction methods under related complex models of
genome evolution.

Our main identifiability result is stated next.

THEOREM 2 (Identifiability of species tree). Let T be a model species tree with at least

n > 4 leaves. Then T, without its root, is identifiable from the distribution of gene trees T
under the DLCoal model over T .

This identifiability result is established by showing that, for each quartet in the species
tree, the most likely gene tree matches the species tree. As in [22, 26], a direct consequence
of this proof is the statistical consistency of the ASTRAL-one.

THEOREM 3 (Consistency of ASTRAL-one). As the number of input gene trees tends
toward infinity, the output of ASTRAL-one converges to T almost surely, when run in exact
mode or in its default constrained version.

We use a similar reasoning to prove the consistency of ASTRAL-multi. This result is new.

THEOREM 4 (Consistency of ASTRAL-multi). As the number of input gene trees tends
toward infinity, the output of ASTRAL-multi converges to T almost surely, when run in exact
mode or in its default constrained version.

3. First step: A proof of identifiability of the species tree under the DL.Coal model.

Let Q ={A, B, C, D} and assume, without loss of generality, that 7< has unrooted quartet
topology AB|C D, that is, it has the topology depicted in the top left of Figure 2 (ignoring the

root). Let ¢ be a gene tree generated under the DLCoal model on 7" and let < be its restriction
to the gene copies from the species in Q. The high-level idea behind our proof of Theorem 2
is the following:

Conditioning on the number of copies in species A, B, C, D in the species in Q, independently pick a
uniformly random gene copy a, b, c, d in species A, B, C, D and let q be the corresponding quartet
topology under <. We show that the most likely outcome is ¢ = ab|cd.

This is the same approach as that used in [22], but the analysis of the model is more involved.
Define X = (A, B, C, D) to be the number of copies in species A, B, C, D, respectively.
For example, Figure 1 depicts a realization in which X' = (2, 2, 2, 2) since the locus tree (and
hence also the gene tree) has exactly two leaves in each of the species A, B, C, and D. We
will let P’ be the probability measure subject to conditioning on the random vector X'
Although we seek to reconstruct an unrooted species tree, under the DLCoal model, the
locus trees and gene trees are in fact generated from a rooted species tree. Therefore when
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B D B D
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FIG. 2. The top row shows the two cases of root location on T2: the root of 7C may occur either on the
internal edge (left) or the pendant edge adjacent to D (right). In both cases the unrooted quartet topology of T
is AB|CD. However, as shown in the bottom row, the two choices of root location leads to two different rooted
topologies: the balanced case (left) and the caterpillar case (right), which we consider separately.

restricting the species tree to four species, there are two cases of root location to consider:
when the root of the species quartet T< is located on the internal quartet edge of 7< (the
“balanced case”) or on a pendant edge of T2 (the “caterpillar case™). In the caterpillar case
we may take D to be the pendant edge incident with the root. See Figure 2.

For gene copies a, b, ¢, d from A, B, C, D, define the following events:

Q1 ={q = ablcd}, Q2 = {q = ac|bd}, Q3 ={g = ad|bc}.

3.1. Balanced case. We first consider the balanced case. Without loss of generality, as-
sume the species tree restricted to Q has rooted topology as in the bottom left of Figure 2.
Let R be the most recent common ancestor of Q in the species quartet 7< and I be the
number of locus copies exiting R forward in time. Let P” be the probability measure indicat-
ing conditioning on I as well as on A, B, C, D. For any selection of copies (a, b, ¢, d) from
each species in the quartet, let i, € {1, ..., I} be the ancestral lineage on the locus tree of
x €{a, b, c,d}in R. By the law of total probability, we have

2 P[O:1=E[P[Q:]], i=1,2,3.
Hence, in order to show identifiability of the species quartet, it is sufficient to show that

P"1Q1] > max{P"[Q>], P"[Q3]}

when the copie§ of (A, B, C, D) are chosen uniformly at random.

We let X' > 1 be the event that each of (A, B, C, D) has atleast one copy to select from. On
the complement of X > 1 (i.e., atleast one of (A, B, C, D) fails to have a copy to select), theﬁn
ASTRAL-one selects Q1, Q2, Q3 each with probability 0. So we consider the case X > 1.
We will use the notation z; A zp = min{z, z2}.

PROPOSITION 1 (Quartet identifiability: Balanced case). Let x = P'[i, = ip] and y =
P’[i. = i4]. On the events X > 1 and I > 1, we have almost surely

1 1 1
R N
[Q1] [Q2] > A, Y7
The proof of Proposition 1 is in Section 3.1.4. We first establish a series of lemmas.
The next lemma shows that x, y > 1/1, similar to [22], Lemma 1. In that work, it is proved
that the probabilities of {i, = ip} and {i. = i;} are each at least 1/ under a different condi-
tional probability measure. Our proof is otherwise identical.
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AR

A B C

F1G. 3. An example of a locus tree L satisfying the event Fy, for selected gene copies a, b, c,d. In particular,
the edges of L are depicted as residing within the fat edges of TQ, however only the portion of L coinciding with
the edges of T2 is shown; the portion of L above R is omitted.

LEMMA 1. Letx =P"[i, =ip] and y =P"[i. = i4]. On the events X > Tand I > 1, we
have almost surely
ANy > !
X —.
=T
PROOF. For j €{l,..., I}, let N; be the number of gene copies descending from j in
R that survive to the most recent common ancestor of A and B. Conditioning on (N;);,
the choice of a and b in the locus tree is independent as in [22]. So i, and i, are picked
proportionally to the N;’s by symmetry. Then

I N2
Plia = i) = B[P [ia = (V1] = B[ S ] 0
(Zj:] Nj) 1

as in [22], Lemma 1. The same holds for y, completing the proof of the lemma. [J

3.1.1. Ancestral locus configurations. Conditioned on X and I, we will characterize the
occurrence of Q1, Q», O3 based on how iy, x € {a, b, c,d}, are picked at the root R, that
is, based on which pairs iy, iy are equal. Then, in a worst-case scenario, we will analyze
events of the coalescent process above R. For an arbitrary quartet (a, b, ¢, d), we relate the
likelihood of Q1, Q2, O3 under each of the following events:

E=a—-b—c—d,
F,p=ab—c—d, F,o=ac—b—d, Foa=ad—-b—c,
Fpe=bc—a—d, Fpg=bd —a—c, F.g=cd—a-b>,
® Gap=ab —cd, Guc=ac—bd, Gui =ad — bc,
H,p. =abc —d, H,pq =abd — c, H,.g =acd — b, Hpeq =bed — a,
K =abcd,

where — indicates separate lineages at R for the chosen copies from A, B, C, D. For example,
the event F,; indicates that the i. and i, are different and are different from the common an-
cestral lineage for i, and i;. See Figure 3. These events are disjoint and mutually exhaustive.
Letting £ run across all the above events, the law of total probability implies

4) P'1Qi1=) P"[QiIEIP[E].

£
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3.1.2. Reduction to coalescence above R. For the rooted locus quartet implied by the
four copies a, b, ¢, d, let NC be the event that no coalescence event occurs beneath R among
the four corresponding lineages. The following lemma shows that conditioning on NC re-
duces the probability of O while increasing that of Q> and Q3.

LEMMA 2. Forany I and any X > 1 and any event
EelE, Fap,....,Gupy ..., Hape, - - .},
we have
P[O11E1=P[Q1IENNC] and P'[Q:|E1<P'[Q;|ENNC], i€(2,3},
almost surely.
PROOF. Under N'C¢, by definition, at least one of the pairs {a, b} or {c,d} coalesces

below R. Both cases immediately lead to the same quartet topology, so Q1 is guaranteed. See
Figure 5 below for an illustration when £ = K. Then the law of total probability implies

P'1Q1|E] =P [NCIE] + P'[Q11E N NCIP'INCIE] > P Q1|E N NC].
Similarly
P"[Q:i1E]1=P"[Q:|E N NCIP"[NCIE] < P"[Q;|E NNC],
fori e (2,3}. O

The event K will play a special role in the proof and we treat it separately. For the other
terms, combining (4) and Lemma 2, we have

P’[Q1] - P"[Q2] = (P"[Q1|K] — P"[Q2| K])P"[K]

+ > (P"[Q11€] - P'[Q2|E])P (€]
E£K

> (P"[Q11K]1—P"[Q2|K])P"[K]
+ Y (P'[Q11ENNC] — P'[Q2]1E NNC])P"[E].
E£K

To prove Proposition 1, we derive an explicit bound on this last sum.

Under P, the events E, Hupe, Hypas Hped, Haucq are symmetric in the sense that switching
the roles of a and c or the roles of @ and d does not change the conditional probability of Q1
and Q. Hence

P"[Q11ENNCI=P"[Q21ENNC]  VE €{E, Hube, Habd> Hped, Hacd}
and using this above we get
P"[01] - P"[0a]
> (P"[Q11K] —P"[Q2| K])P"[K]
(5) + > (P'LQIIG; N NCI—P"[Q2|G; N NCI)P'[G ]

jefab,ac,ad}

+ > (P'[Q1IF; NAC] = P'[Q2|Fj N NCP'[F;].
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3.1.3. The F and G events. We now consider the events {F,p,, F.4, Fuc, Fpq} and
{Gaba Gac}-

Event probabilities. In the next lemma, we compute the probabilities of a given locus tree
quartet satisfying the events in {Fyp, ..., Feq, Gap, Gac}-

LEMMA 3. Let x =P'[i, =ip) and y = P"[ic = ig]. For I > 2 and any X > 1, the
following hold almost surely:

P'[Fap] =

x(1=y),
I1-2
P//[ch] = T(l —Xx)y,

/! /! -2
P [Fac]l =P [Fpal = ———— (1 —x)(1 — ),

I(I-1)
I —1
P'[Gap] = Xy,
P [Gacl = m(l —x)(1—y).

PROOF. The calculations for F;, and F.4 are similar, except that we condition on differ-
ent events. Indeed, note that

P'[Fap) =P [Faplia = ip, ic # ia)P"liq = ip)P"[ic # ia],
P'[Feql =P [Fealia # ib, ic = ia)P"liq # ip)P"[lic = iq].

The conditional probability of Fj; is then obtained by considering that given the placement
of the pair (i., iz) among the I ancestral lineages, the shared lineage i, = i, has I —2 choices
where they do not intersect {i., i;}. The result in the statement follows. Similarly, for F, with
t € {ac, bd}, we have

P'LF] =P [Fliqg # ip,ic # ialP"lia # ip]P"lic # ia].

In this case, out of 7 (I — 1) choices for i, and i}, the choice of i, is determined and there are
I — 2 remaining choices for iy, implying the result.
We use the same principle for G, and G,.. Keeping this in mind, we have

P'[Gup] =P [Gupliac = ip, ic = ia]P"liq = ip]P"[ic = ia],
P'[Gucl =P [Guclia # ip» ic # ialP"lia # ip]P"[ic # ial,
and we proceed as before to get the result. [

Using the previous lemma, we collect further bounds on the probabilities of events at the
root of the locus tree.

LEMMA 4. Letting again x =P"[i, = ip) and y =P"[i. = iy4], the following statements
hold:

(a) If I =2 then

1 1
P'[Gup] — P [Gac] = (x - 5) A (y _ 5).
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®) If I =3 and x Ny >1/2, then
P'[Gap] —P"[Gacl = 1/8.
() IfI=2,
P'[Fap) = P'[Facl = P'[Fpal + P'[Feal =
(d) IfI=3andx ANy <1/2, then

1 1

% % _mw % 1 - _ -
P [Fap] = P [Fac] = P [Fpa] + P [ch]>4(x I)/\<y I)'

PROOF. By Lemma 3, P"[Ggp] — P'[Gyc] = %(x + y — 1) which implies part (a).
To prove (b), observe that by Lemma 3 again

I—1 1
P'[Gap] —P'[Gacl = 1 xy—l(l_l)(l—x)(l—y)

(7 st )

=5\ Ta— )( y

1/1—1

>

—4< I 1(1-1))

1

-3(r=)

where the inequalities are justified by the assumption x A y > 1/2. Since [ > 3, it follows
that P"[G 5] — P'[Gyc] > 1/8.
To prove (c) and (d), observe that by Lemma 3,

P'[Fap] = P"[Facl = P'[Fpal +P"[Feal

-2 1-2
(@ =y +y(l—x)—2——=0-x)1-y)

I(I—1)
I —
I —
— T (= »Ux =D+ (1 =)y = D),

Clearly if I =2, the right-hand side is zero, which proves (c). Furthermore, since x,y > 1//
by Lemma 1, it follows that both (1 — y)({x — 1) >0 and (1 —x)({y — 1) > 0, and therefore

P'[Fap] — P"[Facl = P'[Fpal +P"[Feql

> 1(1_1)(1—u)(1v—1)

for (4, v) € {(x,y), (¥, x)}. Taking u = min(x, y) and v = max(x, y) gives
IP)”[Fab] - HDN[Fac] - IP)”[de] + HDN[ch]

= I(II_—21) (1 —min(x, y)) (I max(x, y) — 1)
1-2 1
> ——(1 — min(x, y))(max(x, y) — 7)

—I1-1
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1 1
> —(1 — min(x, y)) (max(x, y) — —)

I
1
—(maX(x y) — ;),

Conditional probabilities of quartet topologies. 1In the following lemma, we give expres-
sions for P”[Q;|E N NC] across the events {Fyp, Feq, Fuc, Fpa) and {Gap, Gac).

-ka—*l\)

which implies (d). U

LEMMA 5. (a) Forany I and any X > T we have
P’[Q1|Fay NNCI =P"[Q1]Fea NNC] =P"[ Q2| Fye NNC] =P"[ Q2] Fpa N NC]=:¢}
and
P"[Q2|Fap N NC]=P"[Q2]Fea NNC]=P"[Q1|Fuc N NCI=P"[Q1|Fpa N NC]=:¢".
(b) For any I and any X > T, we have
P"1Q11Gap NNCI =1
and

P"1Q2|Gac NNC] = 1.

PROOF. (a) The quantities ¢/ and ¢” are indeed well-defined as above by symmetry. (b)
By switching the roles of b and ¢, we observe that P"[Q1|G . N NC] =P"[Q2]|Gac NNC].
To see why P"[Q1|G 4, NNC] = 1, we again examine the topology above the root with leaves
ab and cd. At least one of these leaves descends from a daughter edge, which implies Qg is
constructed with probability 1. This completes the proof of the lemma. [J

The following lemma establishes that, conditioned on Fj;, and NC, the difference in prob-
ability between Q1 and Q> is at least 1/3.

LEMMA 6. For I >1andany X > I, we have

1

PROOF. By definition of ¢/ and ¢” , it suffices to show P"[ Q1| Fup NNC]—P"[ Q2| Fup N
NC] > 1/3. Conditioned on F,; N NC, no coalescence event between the chosen lineages
occurs beneath R. So, we examine the topology of the locus tree above the root with leaf set
being the three leaves implied by F,;. Using the law of total probability, we condition further
across the three possible rooted locus topologies on the three leaves ab, ¢, and d. For each
i €{ab, c,d}, let t; be the rooted topology on three leaves in which the outgroup is labeled by
i and the other two leaves are labelled from the remaining letters in {a, b, c, d}. For example,
745 has ¢ and d as siblings with ab as the outgroup. Then

P'[Q1|Fay NNC1 —P"[ Q2| Fap NNC]

1
=3 > (P"[Q1lti, Fap NNC] = P"[Qal1i, Fap NNC),

where we used the fact that P”[t;| F,, N ANC] = 1/3 for each i. Now we compute the sum-
mands. If i = ab, then either ab descends from a daughter lineage or the pair (c, d) descends
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from a daughter lineage, meaning we observe Q1 with probability 1 and Q, with probability
0. In the other two cases, let p > 0 be the probability that a and b coalesce along the pendant
edge for ab. If they do not coalesce along the pendant edge, then the lineages from a and
b live in the same population as that of, say, c. Then there is probability 1/3 that the first
coalescing pair among a, b, c is a, b. So the probability of observing Qg is p + %(1 — p).
There is probability 1/3 that the first coalescing pair among a, b, c is a, ¢, so the probability
of observing Q> is %(1 — p). Then

o =0 =5(1-0+2(p+30-p) =30 -p) ) =30 +2) 2 5
+7 973 przim T3P ))=] pr=3 O
3.1.4. Proof of Proposition 1. With that we can prove Proposition 1.

PROOF OF PROPOSITION 1. Inthe I =1 case, P'[K] =1 so

(6) P'TO11 = P'[Q2]1=P"[Q11K] - P"[Q2|K] > 0,

where we used that, under K N NC, the quartets Q) and Q» occur with equal probability
under P”. Since x — 1/I =y — 1/I =0, the claim follows.
For I > 2, (5) and Lemma 5 implies that

P'1Q1]1 =P"[Q2] = (P"[Q1|K] — P"[Q2|K1)P"[K]
+P'[Gap] = P"[Gacl + (8 — ¢7) (P [Fap] + P"[Feal)
— (¢} — ¢7) (P"[Facl +P"[Fpal)
> P'[Gap] — P"[Gac]
+ (9 — ) (P"[Fap] — P'[Fac]l — P'[Foal + P"[Feal),

where again we used that, under K N NC, the quartets Q; and Q5 occur with equal probabil-
ity. If I =2, then by Lemma 6 and Lemma 4 parts (a) and (c), this leads to

™ PO P10 > (1 -1 ) A (y- 7).
If I > 3, then by Lemma 4 parts (b) and (d),
1/8 ifxAy>1/2,
3) P'[Q1]1 - P"[Q2] > i(x_l>/\<y_l> ifx Ay <1/2.
12 1 1

It follows that P"[Q1] —P"[ Q3] > % (x— %) Ay — %), finishing the proof of the main claim
in the balanced case. [

3.2. Caterpillar case. We now consider the caterpillar case. Without loss of generality,
assume the species tree restricted to Q has rooted topology as in the bottom right of Figure 2.
Let R be the most recent common ancestor of A, B, C and let / be the number of locus copies
exiting R (forward in time). Let P” be the probability measure indicating conditioning on
and X. Let iy € {1,..., I} be the ancestral lineage of x € {a, b, ¢} in R. As with the balanced
case, on the complement of X > 1, ASTRAL-one selects Q1, Q», Q3 each with probability
0. To prove

P[Q1] > max{P[Q2], P[ 03]},

it is sufficient to prove Proposition 2 below for X’ > 1.
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PROPOSITION 2 (Quartet identifiability: Caterpillar case). Let x = P"[iy = ip]. On the
events I > 1 and X > 1, we have almost surely

1 1
P'[Q1] - P'[Qs] > g(x - ;).

Similar to the balanced case, in order to prove this proposition we consider the following
events:

E=a-b—c,
Gup=ab—c, Gye=ac—b, Gpe=bc—a,
K =abc,

where — indicates separation of lineages in R of the selected copies of A, B, C. Letting £
run across all events, the law of total probability implies

9) P'[Qi]1 =) P"[Qi|EIP"[E].
&

Let NVC be the event that no coalescent event occurs beneath R between the three lineage
corresponding to a, b, c.
Analogues to Lemmas 1, 2, 3, 4, and 5 hold with similar proofs.

LEMMA 7. Let x =P"[i, =ip]. On the events X > 1 and I > 1, we have almost surely

1
X = —.
-1

LEMMA 8.  Let the species tree be a rooted caterpillar on four leaves A, B, C, D. For all
I >1and X > 1, and any event £ € {E, Gyp, Gac, Gpels

P'TO1IEI =P IQ1IENNC] and P"[Q;|E1 <P"[Q:IENNC], i €{2,3).

LEMMA 9. For I >2andany X > 1, let x = P"[i, = ip]. Then the following hold:

I —

P"[Gap] = 7

X,

// /! 1

P [Gac] =P [Gbc] = 7(1 - x)-
LEMMA 10. On I > 1, almost surely
1

P//[Gab] - IPW[Gac] =X — ;

LEMMA 11. Forany I and any X > T, we have
P'[Q11Gap NNC]1=P"[Q2|G e NNC] =: ¥/

and

IPW[Q2|Gab ﬂNC] = IFD//[QllGac ﬂNC] = Wﬁ
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C (gene copies a and b coalesce
S abe along the dotted locus linage)
N
R C¢ (copies a and b do not coalesce
ab—c¢ .
along the dotted locus linage)

—_——
ab—c Hap S. .
abd — ¢ gene copies a and b
s_ab—c coalesce along dotted
A H. S locus lineage

R ' ab —cd S :
—_— K(' S -
ab—e ab—c—d
orab—d—c .
b o d gene copies a and b
w-e : 2 do not coalesce along
K S

dotted locus lineage

ab—c—

FI1G. 4.  Flowchart for case analysis in Lemma 12.

3.2.1. The G events. The following lemma bounds the conditional probability difference
for the G events.

LEMMA 12. Ontheevents [ > 1 and X > T, we have almost surely

1
1 4

_ >

Vi—y_ = 3
PROOF. By definition of ¥/ and v, it suffices to show that P"[Q1|Ga, N NC] —
P"[Q2|Gap» NNC] > 1/3. The proof of this inequality involves decomposing G, N NC into
a number of subcases, depicted in Figure 4, and computing the probabilities of O and Q>
in each subcase. Let S be the most recent common ancestor of Q in the species tree. Let A

be the event that the ab and ¢ individuals in R descend from a common ancestor in S and let
q =P"[A|Ggp NNC]. There are two cases:

1 (Condition on A). Let C be the event that gene copies a and b coalesce above R and
below the MRCA of loci iqp = iy = ip and i.. Let ¢’ = P’[C|A, Gap, NC]. We claim that
g’ > 1/2. To see this, observe that conditional on G4, N NC the loci iy and i, share the
same ancestral locus at S only if there occurred a duplication event between S and R which
is ancestral to both of them. Therefore with probability at least 1/2, the gene copies a, b
coalesce along their shared pendant edge in the rooted topology between R and S, proving
the claim. Furthermore, it is obvious that

(10) P'[Q11C, A, Gap, NC] —P"[Q2]C, A, Ggp, NC] = 1.

On the other hand, conditional on C¢, the copies of a, b, and ¢ enter the same population and
are then symmetric, and hence

(11 P'TO1ICE, A, Gap, NC] = P"[Q2ICC, A, Gap, NC] = 0.

2 (Condition on A°). Let H; be the event that copies d and j share the same ances-
tor in the locus tree at S, and define H = (Hap U He)€ and r = P'[H|AC, Gap, NC]. Then
by symmetry, P"'[Hap| A, Gap, NC] = P"[Hc|AC, Gap, NC] = 15, By a further symmetry
argument similar to that made in Case 1 we have

(12) P"[QilHab, AC, Gap, NC] —P"[ Q2| Hap, A€, Gap, NC] > 0,

where the inequality accounts for the possibility that the lineages from a and b coalesce
between R and S. Let t be the topology of the locus tree restricted to the copies ab, ¢, d and
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restricted to the portion above S (and suppressing nodes of degree 2). Conditioned on H.,
we have T = (ab, cd), so it must be the case that either ab descends from a daughter lineage
or cd descends from a daughter lineage, meaning we observe Q1 with probability 1 and Q>
with probability 0. Therefore

(13) P'[Q11He, AS, Gap, NC] — P"[ Q2| He, A, Gap, NC] = 1.

It remains to consider the case H = (Hqp U H,)C. Let K be the event that T = (ab, (c, d)). By
symmetry, the three possible topologies are equally likely, so P"[K|H, A€, Gap, NC] = 1/3.
Conditioned on K, either ab descends from a daughter lineage or the pair (¢, d) descends
from a daughter lineage, and therefore

(14) ]P)”[Ql |IC5 H? AC? Gab’ NC] - PH[QZUC? H7 AC’ GabvNC] = 1

Conditioned on K€, let p denote the probability that gene copies a and b coalesce along the
pendant edge for ab in the rooted triple above S. Then

1
P"[011K, H, A, Gap, NC] = p + 5(1 —Dp)

and
P"[021K, H, A, Gap, NC] = %(1 - D),
and hence
(15) P'[O11KS, H, A, Gap, NC] — P"[Q2|KE, H, A€, Gap, NC] > p,

where again the inequality accounts for the possibility that the lineages from a and b coalesce
between R and S.

Finally, applying the law of total probability and using equations (10)—(15) gives

1—r 1 2
P"[Q11Gap, NC1 —P"[Q2|G ap, NC] > ¢'q + (T tart gpr)(l -q)

1
= C]+§(1—Q)

W= N =

(Y

’

where the second inequality follows from ¢’ > 1/2 andr > 0. O

3.2.2. Proofs of Proposition 2 and Theorems 2 and 3. With that, the proof of Proposi-
tion 2 is similar to that of Proposition 1.

In both the balanced and caterpillar cases, observe that P"[Q1] — P"[Q3] = P"[Q1] —
P”[Q>] by switching the roles of ¢ and d. By Propositions 1 and 2, all species quartet topolo-
gies are identifiable and hence we have verified Theorem 2.

Theorem 3 then follows, along similar lines as [22], Theorem 2, from the law of large
numbers.

3.3. Proof of consistency for ASTRAL-multi. Before finishing the proof of Theorem 1,
we give a proof of Theorem 4.

PROOF OF THEOREM 4.  Let Nap|cp (respectively Nac|gp, Nap|sc) be the number of
choices consisting of one gene copy in the gene tree from each species in Q@ = {A, B, C, D}



SPECIES TREE ESTIMATION UNDER COALESCENCE AND DUPLICATION 4697

whose corresponding restriction in ¢ agrees with AB|C D (respectively AC|BD, AD|BC).
Similar to [22], Theorem 3, it suffices to show that

(16) E[Nagicp] > max{E[Nacizp], E[Napacl}.

Letting again X = (A, B, C, D), by taking expectation with respect to I in Propositions 1
and 2, we have on the event X’ > 1 that

(17) P[q = AB|CD|X] > max{P[g = AC|BD|X],P[g = AD|BC|X]},

where ¢ is the topology of a uniformly chosen quartet among A, B, C, D. Let M = ABCD
be the number of quartet choices and let g;,i =1, ..., M be the corresponding topologies
ordered arbitrarily. Because ¢ is a uniform choice, we have

1 M
(18) ]P’[q:AB|CD|X]:MZ]P’[q,-:AB|CD|X],
i=1
and similarly for the other topologies. Since

M
Nagicp = Z 1{g; = AB|CD},
i=1
and similarly for the other topologies, taking expectations and using (17) and (18) gives (16)
as claimed. [J

4. Proof of sample complexity bound. To prove Theorem 1, our sample complexity
result for ASTRAL-one, we use a union bound over all quartets and build on the analysis of
Section 3. In particular, the key step of the proof is a more careful analysis of the event K
that appeared in the proof of Theorem 2. We first discuss a number of quantities that play an
important role in the analysis.

4.1. Bounds on branching process quantities. We highlight the role of a number of pa-
rameters in the sample complexity: the shortest branch length in the species tree, f; the depth
of the species tree, A; and the duplication and loss rates, A and . These parameters enter the
analysis through three quantities of significance:

e Coalescence of a pair of lineages on an edge: In the standard coalescent, the probability
that a pair of lineages has coalesced by time f is
y=1-— e/,

e Survival probability of a quartet: For a quartet Q = {A, B, C, D}, let Xo = (A, B,C, D)
be the number of gene copies in the corresponding species. The smallest probability over
all quartets that a gene family contains a copy in each species will be denoted by

0 :=minP[Xg > 1.
e FExpected number of lineages at a vertex: For any vertex R in the species tree, let /g be

the number of copies at R in a single gene family. The largest expectation of Ir over all
vertices will be denoted by

o =max E[IR].
R
These last two quantities can be controlled using branching process theory. See, for exam-

ple, [57], Section 9.2, for the relevant results in the phylogenetic context. We use the notation
71V z2 = max{zy, z2}.
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LEMMA 13. The following hold:
- 1 . 4
7= [ (3]
4
o> |:1 — E:| .
A

PROOF. Let Q@ ={A, B, C, D} be a quartet and let as before Xg = (A, B, C, D) be the
number of gene copies in the corresponding species. Assume the species tree topology on Q
is balanced (the argument in the caterpillar case being similar). The probability that A > 1 is
given by

o When u > A,

o When A > u,

MAzu=1—%MAL

where

90 =

It can be checked that, whether © > A or u < A, the function ¢(¢) is increasing in ¢. Condi-
tioned on {4 > 1}, there is at least one copy in each vertex along the path between the root
and A. Hence

P[D> 1|4 > 1]21—%61@).

Repeating this argument for B and C gives

- n 4
Plto=T)z (1- xq(A)) .
It remains to bound the right-hand side. When A > u, ¢(¢) — 1 as t — 400, which implies

¢(t) < 1 by monotonicity. So 1 — £¢(A) > 1 — £. On the other hand, when 1 > A,

1 — e~ G—mwA

M
L= ) =h— —amoa

_ b
- Iue(ll_)\)A — A

- 1 | A
T elnmhAa ( N ;) U

A=A

LEMMA 14. We have

a<lve

PROOF. Recall that we assume there is a single lineage at the top pendant vertex of the
species tree. If the time elapsed between this vertex and another vertex U is d, then the
expectation number of lineages at U is ¢*~*¢_ The result follows from the fact that d < A
by considering separately the cases 4 > A and A > . [
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4.2. Sufficient effective number of samples. For a quartet Q, let Ko be the set of gene
trees such that each species in Q has at least one gene copy. For k* > 1, let

S ={IKgl > k*:VQ}.

LEMMA 15. Forany k* > 1 and € € (0, 1), it holds that P[Sy+] > 1 — € provided
k> {205} \% {%logg}.

PROOF. For any Q, by the definition of g, if k is the number of loci then

E|Ko| = ko.

Assume k is large enough that %ka > k*. Then by the union bound and Hoeffding’s inequality
(see, e.g., [58]), using the fact that the gene trees are independent,

P[Sg] ZIP’ Kol < k*]
1
< ZP[|}CQ| < Eko}
Q
1
< ZP[E|1€Q| —|Ko| > zko]
Q

2
<n* exp<—2 (ko]£2) )

<e

if

2 4
k> —210gn—,
o €

and since € < 1 this inequality holds whenever
8
k> — log E.
o €
That proves the claim. [J

4.3. The event K. Using the notation of Section 3, fix a quartet of species Q =
{A, B, C, D}, let I’ denote the conditional probability given the event {Xg > 1}, and define
=P'[Q;]— 1/3. Since P'[Q>] = P'[Q3], we have

P1Q1]1+ P[Q2] + P'[Q5] , ,
3 3(IP’[Q 11-P'[Q2]).

We seek to bound the right-hand side. Assume first that 7€ is balanced. Let [P indicate [P’
conditioned on {/ = i}. By the proof of Proposition 1, specifically the argument leading up
to (6), (7), and (8), we have

P'1011 = P"[Q2] = (P"[Q11K] = P"[ Q2| KT)P[K].

By further conditioning on the event {Xg > 1} (which has positive probability when [ > 1),
we get forall i > 1

(19) §'=P01] -

PQO1] —Pi[Q2] > (Pi[Q11K] — P Q2| K])PK].
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FIG. 5. An example realization of K N N'CC. In particular, a locus tree satisfying event K for copies a, b, c,d
is depicted in the case where T2 is balanced; additionally, a realization of the gene tree is shown (in blue) within
the locus tree. This realization satisfies K N N'C€ since at least one coalescence event—in this case between the
ancestors of gene copies ¢ and d—has occurred on the gene tree below R. Since copies ¢ and d are therefore not
separated by an internal edge on the gene tree, the event Q1 occurs.

On the event K N NC, Q1, and Q, are equally likely by symmetry. On K N AN C¢, at least
one of the pairs {a, b} or {c, d} coalesces below R, guaranteeing Q1 (similar to the proof of
Lemma 2). See Figure 5 for an illustration. Hence, we have

P[01] — P{[Q2] = P{[Q1 N K]1—P/[Q2 N K]
=P;[Q1NKNNC]—P[Q>2N K NNC]
+P[Q1NK NNC]—P;[Q2N K NNC]
> Pi[K NNCC].

To bound the right-hand side, we consider the event C,p, that the lineages picked from
A and B coalesce below R. Notice in particular that C,;, implies {i;, = ip}. The event K N
NC€ is implied by Cgj, together with {i. = iy =i}, which are conditionally independent. By
Lemma 1, the latter has probability at least IP’; i, = id]% > iz Hence,

i
1
(20) PQO1] - Pi[ Q2] ZP;[Cab]l._z-
By a similar argument in the caterpillar case, we have

Pi[Q1] — P}[Q2] = P{[K N NC¢]

1
(21) >P; [Cab]l_.
, 1
>P; [Cab]l._2~
It remains to bound P;[C,p].

LEMMA 16. We have

11
P;[Cap] > {V A g}l—

PROOF.  Similar to the proof of Lemma 1, for copy ¢ at R, let N, be the number of its
descendant copies at R’, the most recent common ancestor of A and B, and let J =) _,_; N.
We consider two cases for Ny:
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1. In the case Ny =1 and {i, =i = £}, let Y, be the indicator function of the event that
the lineages from a and b coalesce before R. So Y, = 1 if the lineages from a and b coalesce
before R, and O otherwise. Under the standard coalescent, the probability of that coalescent
event is at least y. Here, though, we are working under the bounded coalescent. In the case
that a daughter edge is ancestral to the lineages from a and b, the additional conditioning on
complete coalescence only increases the probability that a and b coalesce before R. So y
remains a lower bound.

2. In the case Ny > 2 and {i, = i, = £}, let Z, be the indicator function of the event that
the lineages from a and b coalesce before R. So Z; = 1 if the lineages from a and b coalesce
before R, and 0 otherwise. Since Ny > 2, there is at least one duplication below ¢ before R’.
By symmetry, there is probability at least 1/2 that the first duplication produces a daughter
edge with at least half of the descendants of £ below it at R". Under {i, = i = ¢}, there is
then a probability at least 1/4 that a and b descend from copies at R’ below that daughter
edge. So overall there is probability at least 1/8 that Z, =1 in that case.

Putting these two cases together, we get

N2 N\ 2 .
Ficol =B ¥ (5) re+ ¥ () zavoi ]
L:Ng>1

L:Nog=1

N 2 N, 2
=E§[ > (—Z> Ei[Ye|Nel+ ) (—’Z> E;[zgwg]}
ener N J

C:Np>1
1 N2 N2
=rglEl Z () + 2 () )
0:No=1 C:Np>1

- { N 1 } 1
Z3\Y 87
as in [22], Lemma 1, proving the claim. [

LEMMA 17. We have

8'>2{ /\1}03
=317 8]

PROOF. By (19), (20), (21), and Lemma 16,
/ 2 / /
§'==(P[01]1-P'[Q2])

3
ool
=378
- 2{ . 1} 1
) KA Y TVIER
where the last line follows from Jensen’s inequality. Moreover
o>E[]]
=E[I|Xg > 1IP[Xg > 11+ E[I|{Xg > T}]P[{Xg = 1)°]
>E'[I]o.

Plugging back into (22) gives the claim. [J
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4.4. Final analysis.

PROOF OF THEOREM 1. The following, adapted from [54], Lemmas A.1 and A.2, gives
a bound on the k* required to reconstruct the correct species tree with probability 1 — € in

terms of §’
n* 1
k* > 2log<—>—.
€ (5/)2

In particular, for € < 1 this inequality holds whenever

" n\ 1
k™ > 8log| — |—.
€ (8/)2

By Lemmas 15 and 17, it suffices to have

16 n 1 8 n

k>{—log| - )| =————Vvi{—=log—
2 1,o3\2 2

o €/ Glrrglp) o €

23040 n

———log—.
o’y? e

The claim follows from Lemmas 13 and 14. O

5. Concluding remarks. Through a probabilistic analysis of the DLCoal model, we es-
tablished identifiability of the model species tree and statistical consistency of quartet-based
species tree estimation methods ASTRAL-one and ASTRAL-multi. In our main new result,
we derived an upper bound on the required number of gene trees to reconstruct the species
tree with high probability. In particular, we highlighted the roles of the branching process
parameters A and p as well as the tree depth A. These parameters enter naturally through
two relevant quantities: the minimum survival probability of a quartet (o) and the maximum
expected number of lineages at a vertex («).

Our results suggest many open problems. First, can we derive a lower bound (and matching
upper bound) on the required number of gene trees for ASTRAL-one and similar methods (in-
cluding ASTRAL-multi)? In particular, is our dependence on « (in the supercritical regime)
and o (in the subcritical regime) optimal? An improvement on the polynomial dependence on
o (see Lemma 17) is likely possible with a more detailed analysis of the events in Section 3.
But, perhaps more importantly, are there alternative ways of processing multilabeled gene
trees (not necessarily quartet-based) that dampen or even exclude the effect of «?

More generally, it would be interesting to obtain statistical consistency and sample com-
plexity results for models also including LGT, under which at low enough rates quartet-based
methods have also been shown to be consistent [47]. One such more general model was re-
cently introduced in [23].
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