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Abstract. Rooted species trees are used in several downstream appli-
cations of phylogenetics. Most species tree estimation methods produce
unrooted trees and additional methods are then used to root these
unrooted trees. Recently, Quintet Rooting (QR) (Tabatabaee et al.,
ISMB and Bioinformatics 2022), a polynomial-time method for rooting
an unrooted species tree given unrooted gene trees under the multispecies
coalescent, was introduced. QR, which is based on a proof of identifiabil-
ity of rooted 5-taxon trees in the presence of incomplete lineage sorting,
was shown to have good accuracy, improving over other methods for
rooting species trees when incomplete lineage sorting was the only cause
of gene tree discordance, except when gene tree estimation error was very
high. However, the statistical consistency of QR was left as an open ques-
tion. Here, we present QR-STAR, a polynomial-time variant of QR that
has an additional step for determining the rooted shape of each quintet
tree. We prove that QR-STAR is statistically consistent under the multi-
species coalescent model, and our simulation study shows that QR-STAR
matches or improves on the accuracy of QR. QR-STAR is available in
open source form at https://github.com/ytabatabaee/Quintet-Rooting.

Keywords: Species Tree Estimation - Rooting - Statistical
Consistency + Multispecies Coalescent

1 Introduction

Inferring rooted species trees is important for many downstream applications
of phylogenetics, such as comparative genomics [7,11] and dating [25]. These
estimations use different loci from across the genomes of the selected species, and
so are referred to as multi-locus analyses. If rooted gene trees can be accurately
inferred, then the rooted species tree can be estimated from them [14]; however,
this is not a reliable assumption [29]. Hence, the standard approach is to first
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estimate an unrooted species tree using multi-locus datasets, and then root that
estimated tree.

The estimation of the unrooted species tree is challenged by biological pro-
cesses, such as incomplete lineage sorting (ILS) or gene duplication and loss
(GDL), that can result in different parts of the genome having different evolu-
tionary trees. When ILS or GDL occur, statistically consistent estimation of the
unrooted species tree requires techniques that take the source of heterogeneity
into consideration [15,22]. The case of ILS, as modeled by the multispecies coa-
lescent (MSC) model [10], is the most well-studied, and there are several methods
for estimating unrooted species trees that have been proven statistically consis-
tent under the MSC (see [22] for a survey of such methods).

The general problem of rooting a species tree (or indeed even a gene tree)
is of independent interest, but presents many challenges. A common approach
is the use of an outgroup taxon (i.e., the inclusion of a species that is outside
the smallest clade containing the remaining species), so that the resultant tree
is rooted on the edge leading to the outgroup [16]. However, outgroup selection
has its own difficulties: if the outgroup is too distant, then it may be attached
fairly randomly to the tree containing the remaining species, and if it is too
close, it may even be an ingroup taxon [5,6,9,13]. Other approaches use branch
lengths estimated on the tree to find the root based on specific optimization
criteria; however, these approaches tend to degrade in accuracy unless the strict
molecular clock holds (which assumes that all sites along the genome evolve
under a constant rate) [8,18,31].

Quintet Rooting (QR) [30] is a recently introduced method that is designed
to root a given species tree using the unrooted gene tree topologies, under the
assumption that the gene trees can differ from the species tree due to ILS. QR
is based on mathematical theory established by Allman, Degnan, and Rhodes
[2], which showed that the rooted species tree topology is identifiable from the
unrooted gene tree topologies whenever the number of species is at least five. In
[30], QR was shown to provide good accuracy for rooting both estimated and
true species trees in the presence of ILS, compared to alternative methods.

However, QR was not proven to be statistically consistent for locating the
root. Thus, we do not have a proof that the root location selected by QR, when
given the true species tree topology, will converge to the correct location as
the number of gene trees in the input increases. Although much attention has
been paid to establishing statistical consistency for unrooted species tree esti-
mation methods and many methods, such as ASTRAL [19], SVDQuartets [32]
and BUCKy [12], have been proven to be statistically consistent estimators of
the unrooted species tree topology under the MSC, to the best of our knowledge,
no prior study has addressed the statistical consistency properties of methods
for rooting species trees.
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In this paper, we argue that QR is not guaranteed to be statistically consis-
tent under the MSC, but we also present a modification to QR, which we call
QR-STAR, that we prove statistically consistent. Moreover, QR-STAR, like QR,
runs in polynomial time. We also provide results of a simulation study compar-
ing QR to QR-STAR. Due to space limitations, most of the proofs and results
from the simulation study are presented in the full version of the paper available
at https://doi.org/10.1101,/2022.10.26.513897.

2 Background

We present the theory from [2] first, which establishes identifiability of the rooted
species tree from unrooted quintet trees, and then we describe Quintet Rooting
(QR), our earlier method for rooting species trees. Together these form the basis
for deriving our new method, QR-STAR, which we present in the next section.

2.1 Allman, Degnan, and Rhodes (ADR) Theory

Allman, Degnan, and Rhodes (ADR) [2] established that the unrooted topology
of the species tree is identifiable from four-leaf unrooted gene trees under the
MSC, a result that is well known and used in several “quartet-based” methods
for estimating species trees under the MSC [12,17,19,24]. ADR also proved that
the rooted species tree topology is identifiable from unrooted five-leaf gene tree
topologies; this result is much less well known, but was recently used in the
development of QR for rooting species trees.

ADR have described the probability distribution of unrooted gene tree
topologies under each 5-taxon MSC model species tree. On a given set of five
taxa, there exist 105 different rooted binary trees, labeled with Ry,..., Rigs',
that can be categorized into three groups based on their (unlabeled) rooted
shapes: caterpillar, balanced and pseudo-caterpillar [27]. An example of a tree
from each category is shown in Fig. 1. Each 5-taxon model species tree defines a
specific probability distribution over the 15 different unrooted gene tree topolo-
gies on the same leafset, shown with T7,...,T15. Theorem 9 in [2] states that
this distribution uniquely determines the rooted tree topology and its internal
branch lengths for trees with at least five taxa.

To prove this identifiability result, the ADR theory specifies a set of linear
invariants (i.e., equalities) and inequalities that must hold between the proba-
bilities of unrooted 5-taxon gene trees, for any choice of the parameters of the
model species tree. These linear invariants and inequalities define a partial order
on the probabilities of the topologies of the different 5-taxon unrooted gene trees.
In other words, two gene tree probabilities u; = P(T;) and u; = IP(T}) can have
one of four possible relationships: u; > u;, u; > wu;, u; = u;, or u; and u; are
not comparable.

! The labeling of rooted and unrooted trees in this paper is consistent with the nota-
tions and leaf-labeling used in Tables 4-5 in [2] as well as in [30].
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Us, Ug , U7, Ug , Uy, Urz, Upgy U

Pseudo-Caterpillar

Rg7 = (((a,b),(d,e)), )

U7, Ug , Uy, Ugg, Usgy Uss

Balanced

R, = (((a, b), c), (d,e))

U7, Ug , U0, Ugy, Usg, Uss

Caterpillar

Ry = ((((a,b),c),d), e)

Fig.1. ADR invariants and inequalities for different rooted topological
shapes. The invariants and inequalities found by ADR define, for each rooted 5-taxon
model tree topology, a partial order on the probabilities of the 15 unrooted 5-leaf gene
trees; importantly, the partial order depends only on the “rooted shape” of the 5-taxon
model species trees (i.e., caterpillar, balanced and pseudo-caterpillar). Thus, the topol-
ogy of any 5-leaf rooted binary species tree is uniquely determined by the partial order,
and so can be determined from the true distribution on unrooted 5-leaf gene trees (i.e.,
it is identifiable, as established by ADR).

Figure 1 shows examples of these partial orders with a Hasse diagram for a
particular leaf labeling of trees from each rooted shape. Note that some proba-
bilities are members of the same set (e.g., for Ry, set ¢4 contains both uys and
u13, indicating that uy = wi3), and so we refer to the sets ¢; as equivalence
classes on these probabilities. Furthermore, we will denote the set of equivalence
classes associated with a 5-taxon rooted tree R with C'r. As can be seen in Fig. 1,
the number of equivalence classes depends on the shape of the rooted species
tree, with caterpillar, balanced and pseudo-caterpillar trees having 7, 5 and 5
equivalence classes, respectively.

Each directed edge between two equivalence classes in these Hasse diagrams
defines an inequality, so that all gene tree probabilities in class ¢, at the source
of an edge are greater than all gene tree probabilities in class ¢, at the target,
and we denote this by ¢, > ¢,. The exact values of the unrooted gene tree
probabilities depend on the internal branch lengths of the model tree, and ADR
provide a set of formulas that relate the model tree parameters to the probability
distribution of the unrooted gene trees in Appendix B of [2], which will be used
in our proofs.
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2.2 Quintet Rooting

The input to QR is an unrooted species tree T' with n leaves and a set G of k
single-copy unrooted gene trees where the gene trees draw their leaves from the
leafset of T', denoted by L£(T'). Given this input, QR searches over all possible
rootings of T" and returns a tree most consistent with the distribution of quintets
(i.e., 5-taxon trees) in the input gene trees.

QR approaches this problem by selecting a set ) of quintets of taxa from
L(T) (called the “quintet sampling” step; refer to Supplementary Materials Sec.
A for details), and scoring all rooted versions of T' based on their induced trees
on these quintets. The subtree T|,, T restricted to taxa in quintet set g, can be
rooted on any of its seven edges. In a preprocessing step, QR computes a score for
each of these seven different rootings for all trees induced on the quintets in set
@, based on a cost function. This results in 7 x |Q| computations, and therefore
the preprocessing step takes O(k(|Q| + n)). Next, for every rooted version of
T, QR sums up the costs of all its induced rooted trees on quintets in @ using
the scores computed in the preprocessing step, and returns the rooting with the
minimum overall cost. Since T can be rooted on any of its 2n — 3 edges, the
scoring step takes O(n + |Q|) time. Therefore, the overall runtime of QR when
using an O(n) sampling of quintets is O(nk). Figure 2 shows the pipeline of QR
and its individual steps.

Thus, QR provides an exact solution to the optimization problem with the
following input and output:

— Input: An unrooted tree topology T, a set of k unrooted gene tree topologies
G ={91,92,---,9x}, a set @ containing quintets of taxa from leafset L£(T)
and a cost function Cost(r, ).

— Output: Rooted tree R with topology 1" such that 3 ., Cost(R|q, iq) is

minimized, where 6(1 is the distribution of unrooted gene tree quintets in
g|q = {gl‘qa92|Q7 ... 7gk‘q}'

Cost Function. The cost function Cost(R|q,ﬁq) measures the fitness of the
rooted quintet tree R|, with the distribution of the unrooted gene trees restricted
to ¢ (i.e., 5q), according to the linear invariants and inequalities derived from
the ADR theory. In particular, this cost function is designed to penalize a rooted
tree R)|, if the estimated quintet distribution ﬁq violates some of the inequalities
or invariants in its partial order. To this end, a penalty term was considered for
each invariant and inequality in the partial order of a 5-taxon rooted tree that
is violated in a quintet distribution. The cost function was defined based on a
linear combination of these penalty terms, and had the following form, where r
is a 5-taxon rooted tree and 4 is an estimated quintet distribution:

Cost(r, ) ZH Z lbq, — Up| + Z ﬁ Z max(0, 4y — Ug) -

ceC, Uq ,UpEC c>c'eC, ugEc,upEC!

Invariants Penalty Inequalities Penalty

(1)
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The normalization factors ﬁ and ﬁ were used to reduce a topological bias that
arose from differences in the sizes of the equivalence classes for each tree shape.

3 QR-STAR

QR-STAR is an extension to QR that has an additional step for determining
the rooted shape (i.e., the rooted topology without the leaf labels) of a quintet
tree, as well as an associated penalty term in its cost function. This penalty term
compares the rooted shape of the 5-taxon tree, denoted by S(r), with the rooted
shape inferred by QR-STAR from the given quintet distribution, denoted by
S (). The motivation for this additional preprocessing step is that, as we argue
in Supplementary Materials Sec. C, the cost function of QR does not guarantee
statistical consistency. The cost function of QR-STAR takes the following general
form

Cost* (r, ﬁ) = Z Z g p|la — Up| + Z Z Bap max(0, 4y — Ug)

c€C\ Ug,up€C c>c eC, ua€c,upEc’

Invariants Penalty Inequalities Penalty
+C1|S(r) # 5(a)
%’_/

Shape Penalty
(2)
where agp > 0 and §,,C > 0 are constant real numbers for all a,b®. Let
Omax = MaXg p(gp) and Bmin = ming 5(5q,5) where a, b ranges over all pairs of
indices a, b used in the penalty terms in Eq. 2.

Each of the 105 rooted binary trees on a given set of 5 leaves have a unique set
of inequalities and invariants that can be derived from the ADR theory. The cost
function in Eq. 2 considers a penalty term for these inequalities and invariants
as well as the shape of the tree, so that Cost™(r, ﬁ) is minimized for a rooted
5-taxon tree r that best describes the given estimated quintet distribution.

3.1 Determining the Rooted Shape

Model 5-taxon species trees with different rooted shapes (i.e., caterpillar, bal-
anced, pseudo-caterpillar) define equivalence classes with different class sizes on
the unrooted gene tree probability distribution. These class sizes can be used
to determine the unlabeled shape of a rooted tree, when given the true gene
tree probability distribution. For example, the size of the equivalence class with
the smallest gene tree probabilities is 8 for the pseudo-caterpillar trees and 6
for balanced or caterpillar trees. Therefore, the size of the equivalence class
corresponding to the minimal element in the partial order can differentiate a
pseudo-caterpillar tree from other tree shapes. Moreover, both caterpillar and

2 Refer to Remark 1 for why oy 5 does not need to be strictly positive.
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Unrooted Species Tree a) Quintet Sampling b) Determining the Topological Shape

S
AT

Unrooted Gene trees Q ={q(e):e € E(T)}

b

Sort

Uy, S g, <+ < Mgy,

Gap? Gap?
Ugy S Ug, < v+ llgy S Ug, S Ugy S Ugy < -+ < g,

15

PRl
Pseudo-Caterpillar Balanced  Caterpillar

c) Preprocessing
HER) - d) Scoring Rooted Species Tree

Umf/mﬁ%® N

Score(R;,T,G) = ZqeqCost(R;

Probability

l‘q argmingScore(R,T,G)

Ty, Ug, Uy, Uy, Uss, UgS

Cost(R, u)

Fig. 2. Pipeline of QR and QR-STAR. The input is an unrooted species tree T’
and set of unrooted gene trees G on the same leafset. a) The sampling step selects a
set @ of quintets from the leafset of 7' (shown is the linear encoding sampling). b) An
additional step in QR-STAR that determines the rooted shape for each selected quintet.
¢) The preprocessing step computes a cost for each of the seven possible rootings of
each selected quintet. d) The scoring step computes a score for each rooted tree in
the search space based on the costs computed in the preprocessing step, and returns a
rooting of T with minimum score.

balanced trees have a unique class with the second smallest probability, which
is of size 2 for caterpillar trees and 4 for balanced trees and this can be used
to differentiate a caterpillar tree from a balanced tree. This approach is used in
Theorem 9 in [2] for establishing the identifiability of rooted 5-taxon trees from
unrooted gene trees.

However, given an estimated gene tree distribution, it is likely that none of
the invariants derived from the ADR theory exactly hold, and so the class sizes
cannot be directly determined and the approach above cannot be used as is
to infer the shape of a rooted quintet. Here we propose a simple modification
for determining the rooted shape of a tree from the estimated distribution of
unrooted gene trees, by looking for significant gaps between quintet gene tree
probabilities.

Let T be the unrooted species tree with n > 5 leaves given to QR-STAR and ¢
be a quintet of taxa from £(T). Let @i be the quintet distribution estimated from
input gene trees induced on taxa in set q. QR-STAR first sorts @ in ascending
order to get Gy, < Gg, < -+ < gy, Let A(k) = 1/21In(30|Qk) (refer to
Lemma 4 for the derivation of A(k)), where k is the number of input gene trees
and |@] is the size of the set of sampled quintets in QR-STAR (this depends on
the number n of taxa and is assumed fixed), and note that limg_,, A(k) = 0.
The first step of QR-STAR computes an estimate of the rooted shape of a quintet
¢, denoted by S(@) in Eq. 2, as follows:



48 Y. Tabatabaee et al.

~ estimate the rooted shape S(@) as pseudo-caterpillar if iy, — ly, < A(k);

— estimate the rooted shape S(@) as balanced if Gy, — iy, > A(k) and Gg, —
Uy < A(K);

— estimate the rooted shape (i) as caterpillar if Gy, — iy, > A(k) and iy, —
ligg > A(K).

The runtime of QR-STAR is the same as QR, as determining the topological
shape for each quintet is done in constant time, so that the overall runtime
remains O(nk) when a linear sampling of quintets is used.

4 Theoretical Results

In this section, we provide the main theoretical results, starting with a series of
lemmas and theorems that will be used in the proof of statistical consistency of
QR-STAR in Theorem 2. Throughout this paper, we assume that discordance
between species trees and gene trees is solely due to ILS. In establishing sta-
tistical consistency, we assume that input gene trees are true gene trees and,
thus, have no gene tree estimation error. If not otherwise specified, all trees
are assumed to be fully resolved (i.e., binary). Due to space constraints, the
proofs are provided in Supplementary Materials Section B. We begin with some
definitions and key observations.

Definition 1 (Path length parameter). Let R be an MSC model species tree.
Let f(R) be the length of the shortest internal branch of R and g(R) be the length
of the longest internal path (i.e., a path formed from only the internal branches)
of R. We define the path length parameter of R as

1
—e 39 (] — = FUD))2 (3)

MR) =35

Note that h(R) € (0, 15) since exp(—z) € (0,1) for all > 0 and the branch
lengths have positive values. The formula for Eq. 3 is derived from the proof of
Lemma 2 in Supplementary Materials Sec. B.

Lemma 1. Let R be an MSC model species tree with n > 5 leaves and q be an
arbitrary set of 5 leaves from L(R). Then h(R|,) > h(R) where R|, is the rooted
tree R restricted to tazxa in set q.

Lemma 2. Let R be an MSC model species tree with 5 leaves and internal
branch lengths x,y, and z. Let @ be the probability distribution that R defines
on the unrooted 5-taxon gene tree topologies. Ifﬁ is an estimate of U such that
given € > 0, we have |i; —u;| < € for all 1 < i < 15, then the following inequality
holds:

VesereCnVugecupee & U — Uy > h(R) — 2e. (4)
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Definition 2. For a 5-taxzon rooted tree R, we define Ir as the set of ordered
pairs (1,7), 1 < i # j < 15, corresponding to inequalities in the form wu; > u,
defined according to the partial order of R. The inequalities that are a result of
transitivity (i.e. u; > uj and uj; > uy implies u; > uy) are not included in Ig.

Definition 3. Let V(R, R') be the set of violated inequalities of two rooted 5-
tazon trees R and R', i.e., all pairs {i,j} such that (i,7) € Ir and (j,i) € Igs.

Figure 3a shows an example of V(R,R') computed for caterpillar trees and
Fig.3b is a heatmap showing the function |V (R, R’)| computed for the seven
possible rootings of an unrooted quintet tree. The set V(R, R') can be eas-
ily computed from I and Ig/ for all pairs of rooted 5-taxon trees, and Iy is
derived from the ADR theory for all 105 5-taxon rooted trees in the Supplemen-
tary Materials, Sec. S2 in [30].

Other Tree (R')
59 60 67

-

59

Model Tree (R)
60

105 76 67

Uz, Ug, Uso, Ur1, Urs, Uss

Uz, Ug, Urg) Uy ) Ut Uss

Ry = ((((a,b),c),d),€) Ry = ((((a,b),d),e),0) R, = ((((a,0),b),d),e)

V(Ry, Ry) = {{2,3}} = IV(R, Ry = 1
V(R7,Ry) = {{2,3}1,(3,6}} > IV(Ry, Rl = 2

Fig. 3. Conflicting inequality penalty terms between rooted 5-taxon species
trees. a) Set of violated inequality penalty terms in the partial orders of R; and
R~ with respect to R4, which are all caterpillar trees. The red edges show violations
of inequalities in tree R4, highlighted in blue. b) Heatmap showing the number of
pairwise violated penalty terms (function |V(R,R')|) of seven possible rooted trees
having unrooted topology with bipartitions ab|cde and abc|de. The dark colors indicate
more violations, and the lightest color corresponds to no violations (|V(R, R')| = 0).
(Color figure online)

Lemma 3. (a) For 5-tazon binary rooted trees R and R’ with the same rooted
shape, the set V(R, R') is always non-empty. (b) For each balanced tree B, there
exist two caterpillar trees C1 and Cy such that V(B,C;) = 0.

4.1 Statistical Consistency

In this section, we establish statistical consistency for QR-STAR under the MSC
and provide the sufficient condition for a set of sampled quintets to lead to con-
sistency. That is, we prove that as the number of input true gene trees increases,
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the probability that QR-STAR and its variants correctly root the given unrooted
species tree converges to 1. We first prove statistical consistency for QR-STAR
when the model tree has only five taxa in Theorem 1 and then extend the proofs
to trees with arbitrary numbers of taxa in Theorem 2. The main idea of the
proof of consistency for 5-taxon trees is that we show as the number of input
gene trees increases, the cost of the true rooted tree becomes arbitrarily close
to zero, but the cost of any other rooted tree is bounded away from zero, where
the bound depends on the path length parameter of the model tree, h(R).

Lemma 4. Let R be an MSC model species tree with n > 5 leaves and Q) be a
set of quintets of taxa from L(R). Given § > 0 and k > 0 unrooted gene tree

topologies, the following inequality holds, where As(k) = \/ % ln(%)

P (quQV1<i<15|(ﬂq)i — (ug)i] < A‘;(k)) >1-06. (5)

Setting § = ¢ in Eq.5, we get A(k) = /2 In(30|Q|k), which is the bound that
is used for determining the rooted shape of each quintet in the first step of QR-
STAR as well as the proofs of statistical consistency. When R has only five taxa,

A(k) becomes /% In(30k), as @ can only contain one quintet.

Lemma 5 (Correct determination of rooted shape). Let R be a 5-tazon
model species tree and iU be the probability distribution that it defines on the
unrooted 5-taxon gene tree topologies. There is an integer k > 0 such that if
we are given at least k unrooted gene trees drawn i.i.d. from the distribution i,
the first step of QR-STAR will correctly determine the rooted shape of R with
probability at least 1 — %

Lemma 6 (Upper bound on the cost of the model tree). Let R be a
5-tazon model species tree and U be the probability distribution that it defines on
the unrooted 5-taxon gene tree topologies. There is an integer k > 0 such that if
we are given at least k unrooted gene trees drawn i.i.d. from distribution i, then
Cost*(R, @) is less than 3lomax A(k) with probability at least 1 — 3.

Theorem 1 (Statistical Consistency of QR-STAR for 5-taxon trees).
Let R be a 5-taxon model species tree and U be the distribution that it defines on
the unrooted 5-taxon gene tree topologies. Given a set G of unrooted true quintet

gene trees drawn i.i.d. from @, QR-STAR is a statistically consistent estimator
of R under the MSC.

Remark 1. Note that when a,.x = 0, meaning that the invariant penalty terms
are removed from the cost function, the cost of the true tree would become
exactly zero according to the proof of Lemma 6, and the cost of any other tree
would be positive when k is large enough so that the conditions of Theorem 1
hold. Hence in this case, the condition in Eq.7 (see full version of the paper)
will reduce to A(k) < $h(R).
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Remark 2. Note that Lemma 3(a) holds for all pairs of 5-taxon rooted trees
with the same rooted shape and with different permutations of the leaf-labeling,
regardless of whether they have the same unrooted topology or not. Due to
this property, it is possible to differentiate all pairs of 5-taxon rooted trees in
a statistically consistent manner with the cost function of QR-STAR, without
prior knowledge about the unrooted tree topology, and hence Theorem 1 does
not assume that the unrooted topology is given as input.

The next lemma and theorem extend the proof of statistical consistency to trees
with n > 5 taxa. The linear encoding of a tree T" by quintets is defined in
Supplementary Materials Section A.

Lemma 7 (Identifiability of the root from the linear encoding). Let R
and R' be rooted trees with unrooted topology T and distinct roots. Let Qrg(T)
be the set of quintets of leaves in a linear encoding of T. There is at least one
quintet of taza q € Qrr(T) so that Ry, and Riq have different rooted topologies.

Lemma 7 states that no two distinct rooted trees with topology T induce the
same set of rooted quintet trees on quintets of taxa in set Qrg(T). Clearly, the
same is true for any superset @ such that Qg (T) C @, including the set Q5 of
all quintets of taxa on the leafset of T'. There might also be other quintet sets that
are not a superset of Qg (7)), but have the property that no two rooted versions
of T define the same set of rooted quintets on their elements. We generalize the
proof of consistency to all set of sampled quintets with this property.

Definition 4. Let T be an unrooted tree and @ be a set of quintets of taxa from
L(T). We say Q is “root-identifying” if every rooted tree R with topology T is iden-
tifiable from T and the set of rooted quintet trees in {R|, : ¢ € Q}, i.e., no two
rooted trees with topology T induce the same set of rooted quintet trees on Q.

Theorem 2 (Statistical Consistency of QR-STAR). Let R be an MSC
model species tree with n > 5 leaves and let T denote its unrooted topology.
Given T and a set G of unrooted true gene trees on the leafset L(T), QR-STAR
18 a statistically consistent estimator of the rooted version of T under the MSC,
if the set of sampled quintets Q is root-identifying.

5 Experimental Study

We performed an experimental study on simulated datasets to explore the param-
eter space of QR-STAR on a training dataset, and then compared its accuracy to
QR on a test dataset. We used the 101-taxon simulated datasets from [34] as our
training data, which had model conditions characterized by four levels of gene tree
estimation error (GTEE) ranging from 0.23 to 0.55 (measured in terms of normal-
ized Robinson-Foulds (RF) [26] distance between true and estimated gene trees)
for 1000 genes. The normalized RF distance between the model species tree and
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Fig. 4. Rooting the model species tree with estimated gene trees on S200
datasets. Comparison between QR and QR-STAR in terms of rooting error (nCD)
for rooting the true unrooted species tree topology using estimated gene trees (GTEE
levels vary from 0.22 (for low ILS) to 0.49 (for high ILS)) on the 201-taxon datasets
from [20] with 50 replicates in each model condition. The columns show tree height
(500K for high ILS, 2M for moderate ILS, and 10M for low ILS), and the rows show
speciation rate (1le—06 or 1e—07).

true gene trees (denoted average distance, or AD) in this dataset was 0.46, which
indicates moderate ILS. For the test data (see Table D1 in the Supplementary
Materials for empirical statistics), we used a set of 201-taxon simulated datasets
from [20]; these are characterized by two different speciation rates and three tree
heights (500K for high ILS, 2M for moderate ILS, and 10M for low ILS) and three
numbers of genes for each combination of speciation rate and tree height. GTEE
levels on the test data varied from 0.22 (for low ILS) to 0.49 (for high ILS). The
AD levels ranged from 0.09 (for the 10M, 1e—07 condition) to 0.69 (for the 500K,
1e—06 condition). The number of replicates for each model condition for both the
training and test datasets was 50.

We measured the error in the rooted species tree in terms of average nor-
malized clade distance (nCD) [30], which is an extension of RF error for rooted
trees. For our training experiment, we only rooted the true species tree topology
to directly observe the rooting error. In our test experiments, we rooted both
the model species tree and estimated species tree, as produced by ASTRAL,
using both true and estimated gene trees (which were estimated using FastTree
[23]). Additional information about the simulation study, datasets, and software
commands are provided in Supplementary Materials Section D.

In our training experiments, we explored the impact of the shape coeffi-
cient C' and the ratio %=e= (that describes the relative impact of invariants
and inequalities) on the accuracy of QR-STAR. Results for the training experi-
ments (provided in Supplementary Materials Sec. E1) show that there are wide
ranges of settings for the algorithmic parameters that provide the best accuracy.
We used these training results and theoretical considerations related to sample
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complexity of QR-STAR to set the algorithmic parameters to C = 1e—02 and

Ymaz — 0
ﬁnlin

Figure 4 shows a comparison between QR and QR-STAR in terms of rooting
error for rooting the model species tree topology using estimated gene trees on
the test datasets. Increasing the ILS level (by reducing tree height) decreases the
rooting error, and increasing the number of genes also generally reduces rooting
error (although much less under the lowest ILS level where tree height is 10M).
To understand the impact of ILS in Fig. 4, note that the true species tree is being
rooted and so ILS will not impact species tree estimation accuracy. However, the
level of ILS impacts information about rooting location, which comes from the
distribution of gene tree topologies. Thus, with lower ILS, it is likely that many
gene trees that have low probability of appearing will not appear in the input. In
this case, some estimates of quintet probabilities would become zero, and it may
not be possible to differentiate some of the rooted quintets using the inequality
and invariants derived from the ADR theory. In the extreme case, when there is
no discordance, there will be only one quintet gene tree with non-zero probability,
and the identifiability theorem in [2] would not hold and it becomes impossible
to find the root. This trend can be compared to the impact of ILS level on the
problem of estimating the unrooted topology of the species tree, where increases
in ILS generally lead to increases in error [19-21].

A comparison between QR and QR-STAR shows that QR-STAR generally
matched or improved on QR; the only exception was for the high ILS conditions,
where the two methods were very close but with perhaps a small advantage to
QR. On these high ILS conditions, however, GTEE is also large, and QR-STAR
is more accurate than QR when used with true gene trees, even under high ILS
(Supplementary Materials Sec. E). Hence, the issue is likely to be high GTEE
rather than high ILS, suggesting that QR-STAR is slightly more affected by
GTEE compared to QR.

6 Conclusion

In this work we presented QR-STAR, a polynomial time statistically consistent
method for rooting species trees under the multispecies coalescent model. QR-
STAR is an extension to QR, a method for rooting species trees introduced in
[30]. QR-STAR differs from QR in that it has an additional step for determining
the topological shape of each unrooted quintet selected in the QR algorithm,
and incorporates the knowledge of this shape in its cost function, alongside
the invariants and inequalities previously used in QR. We also showed that the
statistical consistency for QR-STAR holds for a larger family of optimization
problems based on cost functions and sampling methods.

To the best of our knowledge, this is the first work that established the
statistical consistency of any method for rooting species trees under a model that
incorporates gene tree heterogeneity. It remains to be investigated whether other
rooting methods can also be proven statistically consistent under models of gene
evolution inside species trees, such as the MSC or models of GDL. For example,
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STRIDE [4] and DISCO+QR [33] are methods that have been developed for
rooting species trees from gene family trees, where genes evolve under gene
duplication and loss (GDL); however, it is not known whether these methods
are statistically consistent under any GDL model.

Our simulation study showed as well that QR-STAR generally improved on
QR in a wide range of model conditions. Given that QR itself improved on other
methods for rooting species trees (as shown in [30]), this experimental study
suggests that QR-STAR may be a useful tool for rooting species trees when
gene tree discordance due to ILS is present.

This study suggests several directions for future research. For example, we
proved statistical consistency for one class of cost functions, which was a linear
combination of the invariant, inequality and shape penalty terms; however, cost
functions in other forms could also be explored and proven statistically consis-
tent. The proof of Theorem 1 suggests that the sample complexity of QR-STAR
depends on the function h(R), which is based on both the length of the short-
est branch and the longest path in the model tree. This suggests that having
very short or very long branches can both confound rooting under ILS, which is
also suggested in previous studies [1,2]. This is unlike what is known for species
tree estimation methods such as ASTRAL, where the sample complexity is only
affected by the shortest branch of the model tree [3,28], and trees with long
branches are easier to estimate.

Another theoretical direction is the construction of the rooted species tree
directly from the unrooted gene trees. As explained in Remark 2, the proof of
consistency of QR-STAR for 5-taxon trees does not depend upon the knowledge
of the unrooted tree topology; this suggests that it is possible to estimate the
rooted topology of the species tree in a statistically consistency manner directly
from unrooted gene tree topologies. Future work could focus on developing sta-
tistically consistent methods for this problem, which is significantly harder than
the problem of rooting a given tree.

There are also directions for improving empirical results. An important con-
sideration in designing a good cost function is its empirical performance, as many
cost functions can lead to statistical consistency but may not provide accurate
estimations of the rooted tree in practice (see Figures E1 and E2 in the Supple-
mentary Materials). One potential direction is to incorporate estimated branch
lengths, whether of the gene trees or the unrooted species tree, into the rooting
procedure.
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