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Incorporating Uncertainty Into a Regression Neural
Network Enables Identification of Decadal State-Dependent
Predictability in CESM2

Emily M. Gordon' (2 and Elizabeth A. Barnes!

'Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

Abstract Predictable internal climate variability on decadal timescales (2—10 years) is associated with
large-scale oceanic processes, however these predictable signals may be masked by the noisy climate system.
One approach to overcoming this problem is investigating state-dependent predictability—how differences

in prediction skill depend on the initial state of the system. We present a machine learning approach to

identify state-dependent predictability on decadal timescales in the Community Earth System Model version

2 pre-industrial control simulation by incorporating uncertainty estimates into a regression neural network.

We leverage the network's prediction of uncertainty to examine state dependent predictability in sea surface
temperatures by focusing on predictions with the lowest uncertainty outputs. In particular, we study two regions
of the global ocean—the North Atlantic and North Pacific—and find that skillful initial states identified by the
neural network correspond to particular phases of Atlantic multi-decadal variability and the interdecadal Pacific
oscillation.

Plain Language Summary As the climate warms with anthropogenic climate change, it is
increasingly important to predict long term climate variability in order to prepare for possible extremes.
However, the Earth's climate is chaotic and deciphering predictable long-term signals from this noisy system
has proven challenging. Here we leverage times where predictable signals rise above the noise and the
long-term forecasts have less error. We present a machine learning approach to identify these times when the
climate is more predictable and show that these are related to particular patterns of heat in the Atlantic and
Pacific Oceans.

1. Introduction

Predicting the evolution of the climate on decadal timescales (2—10 years) has far reaching implications for both
climate science and society. On these timescales, changes in climate patterns are associated with the forced
response to anthropogenic emissions and internal variability in the ocean (Meehl et al., 2021). For example,
the forced response from climate change can manifest as the steady increase of global mean temperature which
provides some predictability of future temperatures. Decadal predictability of oceanic temperature variability
arises from the ocean's ability to store, release and transport heat on decadal timescales. Major modes of varia-
bility in the Pacific and Atlantic Oceans are therefore linked to decadal predictability as they indicate the spatial
distribution of heat in these basins. Furthermore, this internal variability in the ocean can act to either mask
or amplify the forced response from climate change (Trenberth & Fasullo, 2013). The Pacific Ocean exhibits
long-term variability via the interdecadal Pacific oscillation (IPO Meehl et al., 2013; Power et al., 1999) and its
related mode Pacific decadal variability (PDV, Mantua et al., 1997; Zhang et al., 1997). Atlantic multi-decadal
variability (AMYV, Enfield et al., 2001; Xie & Tanimoto, 1998) is considered the dominant form of long-term
variability in the Atlantic ocean, however whether variability arises due to internal Earth system processes or
external forcing is still under debate (Booth et al., 2012; Clement et al., 2015; Mann et al., 2021). Because these
patterns of variability are associated with decadal predictability, decadal prediction is traditionally focused on
either investigating and predicting the processes themselves, (e.g., Meehl et al., 2016; Gordon et al., 2021; Zhang
et al., 2019), or exploring the predictability that arises from the atmospheric teleconnections driven by these
patterns (e.g., Zhang & Delworth, 2006; Simpson et al., 2018, 2019).

As hinted at above, it is difficult to decipher the drivers of predictability in observations and historical simulations
as it is influenced by the non-linear interactions between internal variability and external forcing. Studies have
diagnosed predictability in pre-industrial control runs (Branstator et al., 2012), while others have deciphered
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predictability from internal variability in model hindcast ensembles with accompanying un-initialized ensem-
bles (Borchert et al., 2021; Yeager et al., 2018). Another avenue of research has been to quantify (using various
metrics) how much predictability is present in different regions of the ocean, and what the relative contributions
of internal and external drivers may be (Boer, 2011; Branstator & Teng, 2010). However, predictability in the
climate system can vary drastically depending on region, timescale, and initial state (Christensen et al., 2020;
Mariotti et al., 2020; Meehl et al., 2021) thus studies have encouraged a shift of focus toward the concept of
state-dependent predictability (Mariotti et al., 2020; Merryfield et al., 2020; Msadek et al., 2010; Pohlmann
et al., 2004). This paradigm intrinsically acknowledges that some initial states lead to more predictable behavior
than others. The aim is therefore to identify these more predictable initial states, as they provide the opportu-
nity to make more skillful forecasts. State-dependent predictability has been investigated on short (subseasonal
to seasonal) timescales as the identification of “forecasts of opportunity” (Albers & Newman, 2019; Mayer &
Barnes, 2021). An example of an oceanic region with decadal state-dependent predictability is the North Atlantic
Subpolar Gyre. It has been found that anomalously strong ocean heat transport in the North Atlantic ocean is
associated with skillful predictions of sea surface temperature (SST) in the North Atlantic Subpolar Gyre for lead
times up to 8 years (Borchert et al., 2018; Brune et al., 2018). So enhanced heat transport in the North Atlantic
could be considered a more predictable initial state for predicting North Atlantic SSTs.

With this increased focus on state-dependent predictability, it is necessary to explore methods that can identify
state-dependent predictability. Machine learning is one such method that shows promise for identifying more
predictable initial states. In fact, on subseasonal timescales, classification artificial neural networks (ANNs) have
been shown to objectively identify states of the Madden-Julian oscillation that lead to enhanced predictability
of circulation in the North Atlantic (Mayer & Barnes, 2021) by leveraging the network's confidence in a predic-
tion to identify state-dependent predictability. Furthermore, on decadal timescales it has been demonstrated that
ANNSs can skillfully predict decadal processes (Gordon et al., 2021; Labe & Barnes, 2022) and identify states of
enhanced predictability of surface temperature over land (Toms et al., 2021).

This study introduces the identification of state-dependent predictability on decadal timescales using a
regression-based neural network to predict sea surface temperatures (SSTs) across the globe within the Commu-
nity Earth System Model, version 2 (CESM2, Danabasoglu et al., 2020) pre-industrial control simulation. We
demonstrate a powerful technique for incorporating uncertainty into the prediction of regression neural networks
which has previously only been used a handful of times in climate science (Barnes & Barnes, 2021; Foster
et al., 2021; Guillaumin & Zanna, 2021). We further leverage this uncertainty output to identify which initial
states are associated with the lower uncertainty predictions. Lower uncertainty predictions imply more predicta-
ble inputs, hence this technique identifies state-dependent predictability. Furthermore, we link predictable initial
states to major forms of variability so we are able to identify certain combinations of IPO and AMV phases that
correspond to skillful decadal predictions of SSTs in CESM2.

2. Data and Methods
2.1. Data

We use sea surface temperature (SST) and ocean heat content (OHC) output from the CESM2 pre-industrial
control run for the Coupled Model Intercomparison Project phase 6 (CMIP6; Eyring et al., 2016). OHC is inter-
polated to a 4° x 4° grid. We train ANNSs at each SST grid point so SST is interpolated to a 5° X 5° grid which
captures the regional variation in predictability while not being too computationally demanding. We use monthly
output of the 2000 year run with the first 100 years removed to allow the ocean circulation to spin-up. Both
OHC and SST are then de-seasonalized by removing the mean annual cycle from each grid point. Furthermore,
to account for model drift, after deseasonalizing we calculate the third degree polynomial trend via least squares
and subtract this from each grid point. This means that each variable's statistics are approximately stationary
for the remaining 1900 years of data. OHC is smoothed using a 60 month backward running mean to smooth
high frequency variability. We divide the pre-processed data into training, validation and testing. The first 70%
(~1300 years) is used for training, the next 15% (~300 years) for validation and the last 15% (~300 years) for test-
ing. We calculate the mean and standard deviation for every point on both the OHC and SST grids in the training
set. We then use these values to standardize all of the training, validation and testing data.
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a. Neural Network Set-up

b. Truth vs Predicted
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Figure 1. (a) Schematic of the artificial neural network architecture. (b) Scatter plot of predicted sea surface temperature (SST) anomaly (y axis) versus true SST
anomaly (x axis). Dots represent predicted p values, while vertical lines represent the 1o range. (c) Prediction mean absolute error as a function of prediction confidence
(see text). Both (b and c) utilize the same network trained to predict SST in the North Atlantic Ocean (52.5°N, 325°E).

2.2. Artificial Neural Network

Artificial neural networks (ANNs) are used to predict the average SST anomaly at a lead time of 1-5 years
and 3-7 years, that is, the ANN predicts the average 60 month SST anomaly in the next 12-72 months, or
36-96 months respectively. In this experiment the ANN is trained to predict the SST evolution in the CESM2
pre-industrial control, so for example, one input sample is OHC information from a specific time step in the
control run, and the output prediction is the average SST anomaly over the next 12—72 months in the control
run. A schematic of our neural network architecture is provided in Figure 1a and a brief overview of ANNs for
geoscience applications can be found in for example, Toms et al. (2020). The predictors are three OHC grids,
where each grid is OHC integrated to a different depth (100, 300 and 700 m). We chose varying depths of OHC
because each contains information corresponding to different forms of climate variability. For example, the upper
levels of the ocean integrate atmospheric forcing, and hence capture atmospheric variability as well as surface
ocean dynamics (Frankignoul & Hasselmann, 1977). The variability in lower levels of the ocean is guided by
a combination of slow moving ocean circulation and the incorporation of mixed layer processes via the annual
cycle in the thermocline (Alexander & Deser, 1995). By inputting three OHC depths into the neural network, it
can theoretically combine different oceanic and atmospheric processes to make its predictions. The three ocean
grids are vectorized with points over land removed resulting in a total 7947 input pixels. This input is connected
to a hidden layer of 60 nodes which is then connected to another hidden layer of 4 nodes (see Figure 1). In this
network, all layers are densely connected meaning all nodes in the previous layer are connected to all the nodes
in the next layer. Furthermore, all nodes in the hidden layers use the rectified linear unit (ReLU) activation func-
tion. Finally this second layer is connected to the output layer of two nodes which serve as the parameters of the
predicted conditional distribution (see details in the next paragraph). Here the distribution is a normal distribution
as we found allowing skewness did not significantly improve the network's performance (not shown).

We use the —log(p) loss function described by for example, Barnes et al. (2021) which we will summarize
briefly. For each input, the network outputs two values, y and o. To calculate loss, 4 and ¢ are used to construct
a conditional distribution, ¢ and the negative log likelihood function is calculated at the true value (y,,,.), that is,
loss = —log (p(¥,,,ld))- This means that the neural network can decrease loss (decrease —log (p(y,,,.|d))) in differ-
ent ways: either with a low ¢ value and p that is close to y,,,., or predict a larger ¢ value with u that is further from
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Yyuer OF both. The neural network is therefore not penalized for high error predictions as long as it also guesses a
correspondingly high o value, that is, if it recognizes an input is less predictable by assigning a high ¢ value. The
predictions of such an ANN are illustrated in Figure 1b, where we show an example scatter plot of prediction
versus truth from an ANN trained to predict SST anomaly in the North Atlantic Subpolar Gyre. Note that we can
plot both the predicted anomaly value (¢, colored dots) and an uncertainty range, with the error bars indicating the
+10 range predicted by the ANN. The ANN is trained using the training set, with the validation set evaluated at
the end of each epoch. The results presented in this study are from the testing set. During training, we use a learn-
ing rate of 1 x 10~* with stochastic gradient descent for up to 1,000 epochs with early stopping when validation
loss did not decrease for 100 epochs. To implement regularization, we include a dropout layer between the input
layer and first hidden layer in training. We found that a high rate of dropout (80% dropout rate in this experiment)
forced the ANN to learn information more slowly and greatly reduced over-fitting on the validation set.

2.3. AMYV and IPO Indices

We compute the AMV and IPO indices within CESM?2 using the deseasoned and detrended SST data. For the
AMV index, we calculate the monthly mean SST anomaly over the North Atlantic ocean (0°N to 80°N, 280°E
to 360°E) and then standardize by removing the mean and dividing by the standard deviation. Note we do not
de-trend by the global mean SST as recommended by Trenberth and Shea (2006) because the control run lacks
a forced long term warming trend and model drift was removed during pre-processing. We calculate the [PO
index following the tripole index proposed by Henley et al. (2015). We include plots of the spatial AMV and [PO
patterns in CESM2 and the method for calculating IPO index in Supporting Information S1.

3. Results
3.1. Evaluating Performance

In this study, 10 networks (identical architecture, only varying the initial network random seed) are trained at each
SST grid point in the ocean and we show the results of the best neural network at each grid point. To designate
the “best” network, we select the ANN with the lowest mean absolute error (MAE, difference between predicted
u and true y) on the 10% of samples with the lowest ¢ predictions in the validation set. This designation lever-
ages a fundamental characteristic of a network that has learned predictability in the data: prediction error should
decrease as predicted o decreases. We demonstrate this idea in Figure 1c where we show a network trained to
predict SST in 1-5 years in the North Atlantic (52.5°N, 325°E). Along the x-axis, we threshold by increasing
confidence (we define more confident predictions as those with lower uncertainty) with the y-axis showing
corresponding MAE for those predictions. For all samples, the MAE is ~0.52 however for the 40% most confi-
dent predictions the MAE has dropped to 0.46. For the 10% most confident predictions, the MAE has dropped
further to ~0.39 implying the network has learned samples that lead to more predictable SST anomaly. We hence
refer to lower o predictions as more confident predictions, or more predictable inputs. For some grid points, all
networks fail to learn anything, meaning they always predict an SST anomaly of zero (or very close to zero).
These networks are removed before analysis, resulting in 30% of networks (525/1709) removed for lead years
1-5, and 39% (675/1709) for lead years 3-7.

3.2. Predicting SST

We ensure that the ANNS are learning to skillfully predict SSTs on decadal timescales in CESM2 by examining
prediction error in the testing data at each grid point. Figure 2a is the MAE for ANN predictions for the testing
set for lead years 1-5, with black indicating grid points where all 10 networks failed to learn anything. These
regions are largely in the Southern Hemisphere subtropics, and the lowest MAEs are found in the North Atlantic
Ocean and the Southern Ocean around South America. This spatial distribution of prediction skill (including
regions where the networks failed) broadly agrees with that found to be attributable to internal variability in the
decadal hindcast studies using the CESM1 decadal prediction large ensemble (Christensen et al., 2020; Yeager
et al., 2018). These studies use a different model version (CESM1 vs. CESM2), and the simulations include the
effects of external forcing since 1850. However, the widespread agreement of spatially varying predictability
suggests the results in Figure 2 are not a result of experiment design or network architecture but are rather due to
differences in predictability between regions.
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Figure 2. Evaluation of artificial neural networks (ANN) prediction error. The left column is the prediction error for lead years 1-5, and the right column is for lead
years 3-7. Panels (a and b) are mean absolute error (MAE) for all predictions in the testing set (i.e., all samples, N = 3400). Panels (¢ and d) show MAE for only the
20% most confident predictions in the testing set as identified using the ANNSs's uncertainty (N = 680). Panels (e and f) are the differences between the 20% most

confident predictions and all predictions (e.g., panel e = panel c—a). Stippling indicates areas where the skill improvement is not statistically significant to a = 0.05.

Panels (f and g) are the difference between MAE,  and MAE

persistence (MAEANN - MAEpersislence) in the teSting set.

The prediction skill for lead years 3—7 is shown in Figure 2b and highlights similar regions as being more predict-
able as in lead years 1-5. Furthermore, there does not seem to be a substantial loss in skill between these two lead
times. This, coupled with the spatial distribution of prediction skill, suggests that the ANNs are learning physical
relationships to make their predictions.

To contextualize the predictions of the ANNs, we benchmark them against a simple persistence model. The
persistence model predicts that the SST anomaly will be unchanged so that the SST anomaly at the time of
input remains the same at the time of prediction. We calculate the MAE for the persistence model and subtract
it from the MAE of the ANNs (AMAE = MAE,y — MAE__ .
In regions where AMAE is negative, the ANN outperforms persistence (i.e., has lower error). These regions are

), and plot the results in Figures 2g and 2h.
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illustrated in warm colors in Figures 2g and 2h and illustrates that the ANNSs trained in this study out-perform
persistence in all locations and at both lead times. Using a null hypothesis of AMAE = 0, the MAE differences
in these regions are significantly different from zero (i.e., the null hypothesis can be rejected) using a one-sided
Wilcoxon signed-rank test with @ = 0.05. The greatest improvement in skill above persistence occurs in the cold
tongue region of the Equatorial Pacific. This is unsurprising as this region exhibits large interannual variability
due to the El Nino Southern Oscillation, and hence persistence performs poorly in this region. Also notable, the
improvements over persistence do not necessarily align with grid points where the networks achieve lowest MAE.
This is a fingerprint of regional decadal variability, that regions with longer memory (e.g., the mid-latitude North
Atlantic) are better modeled by persistence, but in these cases our networks still out-perform persistence.

3.3. Identifying State-Dependent Predictability

The predictive power of ANNs for decadal prediction is now demonstrated by using them to identify state-dependent
predictability. In Figures 2¢ and 2d we plot the MAE for only the 20% most confident predictions (20% lowest
predicted o) by the ANN for each SST grid point. That is, ANN objectively identifies more predictable initial
states, and we do not directly use knowledge of the ground truth to identify these predictions. To aid in visualiza-
tion, we also plot the difference in MAE between the 20% confident predictions and all predictions in Figure 2e.
When comparing the most confident predictions with all predictions at lead years 1-5 (Figure 2e), MAE is
largely reduced for more confident predictions in the mid-latitudes, implying that more confident predictions are
associated with smaller prediction errors in these locations. Similarly for lead year 3—7 (Figure 2f), we see that
sorting for the most confident predictions leads to reduced error in most locations. For those regions where error
increases, this is likely due to the network learning predictability in the testing and validation data that does not
generalize to the testing data which either suggests over-fitting or unaccounted-for model drift. Interestingly, at
both lead times, some regions that show very little skill across all predictions exhibit large increases in skill when
considering only the most confident predictions (e.g., central Pacific and the Gulf of Guinea), demonstrating that
aregion may be considered not predictable when in fact it is just not always predictable.

3.4. Investigating Skillful Decadal Predictions

By using ANN predictions to identify state-dependent predictability, we can also investigate oceanic patterns
that lead to predictability. Here we examine the predictions of two ANNS trained to predict SSTs in the North
Atlantic and North Pacific oceans to investigate processes that are contributing to enhanced prediction skill in
these regions. In the following analysis we single out two particular grid points to investigate SST predictability
but the results are largely unchanged for the directly adjacent grid cells. Here, we show results for the testing data
but these results are consistent throughout the control run (see Supporting Information S1).

Figure 3 shows the 20% most confident predictions of positive SST anomaly for a point in the North Atlantic
Sub-Polar Gyre from the testing set (52.5°N, 325°E). We single out positive predictions because the ANN's confi-
dent predictions are preferentially positive (583 positive predictions out of 680 confident testing samples, where
680 is 20% of the testing set), implying that the ANN detects that particular positive predictions lead to lower
uncertainty. As predictions are preferentially positive, this is evidence that the ANN is detecting state-dependent
predictability in the North Atlantic.

We plot the correct and confident positive predictions to ensure we are analyzing the correct signals that contrib-
ute to predictability. This leaves 472 samples. Figures 3a—3c show the composite of OHC input maps for correct
and confident positive predictions to investigate the initial states that lead to predictability. At all three OHC
levels there is a positive OHC anomaly in the subtropical to mid-latitude Atlantic Ocean. We verify that this
signal was likely utilized by the ANN in its predictions by using an ANN explainability technique to investigate
the input regions that are important to the network's prediction (see Text S1 and Figure S2 in Supporting Infor-
mation S1). This shows the positive OHC anomaly in the North Atlantic at all three OHC levels was highlighted
as contributing to the ANN's decisions. As the positive heat anomaly is slightly south of the predicted grid point,
this could indicate northward heat transport to achieve a positive prediction. The composite SST anomaly in
Figure 3f shows the positive anomaly is around the predicted grid point in the North Atlantic which implies that
this anomaly has moved northward from the initial state (i.e., northward from the positive OHC anomaly in the
subtropical North Atlantic in Figure 3a). From this evidence, we posit that the skillful SST prediction is preceded
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Figure 3. State-dependent predictability identified in the North Atlantic for predicting average sea surface temperature (SST) anomaly at lead time 1-5 years. Panels
(a—c): Composite of ocean heat content inputs for confident predictions of positive SST anomaly in a point in the North Atlantic (red dot). Panel (d): histogram of
Atlantic multi-decadal variability index for testing data (pink shading) and most confident predictions (pink outline). Panel (e): as panel (d) but for interdecadal Pacific
oscillation index. Panel (f): Composite of SST map for confident predictions of SST in the North Atlantic (green dot).

by a positive heat anomaly in North Atlantic ocean, which is transported into the gyre region. This is consistent
with Borchert et al. (2018) who identified periods of enhanced heat transport in the mid-latitude as a state of
increased predictability of SSTs in the North Atlantic subpolar gyre for up to 8 years.

As an analogue for oceanic variability, we also consider the phases of the AMV and IPO during periods of
increased network confidence. In Figure 3d we present the distribution of the AMV index during the entire
testing period (pink shading, mean = 0.00) with the solid line showing the distribution for only 20% confident
predictions which has a mean of 0.16. From this, it appears that confident predictions are most likely to occur
during positive AMV. When randomly drawing 20% of the samples from the AMV distribution in testing, the
likelihood of a mean of 0.16 occurring is less than 1%. This implies that more skillful SST predictions in the
North Atlantic Sub-Polar Gyre coincide with northward heat transport from the subtropics (from Figures 3a -3¢
and 3f) coupled with the positive phase of AMV (from Figure 3d). This is consistent with previous results by for
example, Christensen et al. (2020); Borchert et al. (2018). In Figure 3e, we show the distribution of IPO phase for
the testing data (green shading, mean = 0.05) and 20% most confident predictions outlined with the solid line,
with a mean of —0.58. The likelihood drawing a mean of —0.58 from the IPO testing distribution is less than 1%
which suggests that the negative phase of the IPO contributes to the predictability of North Atlantic SSTs. This is
also apparent in Figures 3a—3c which all show the negative IPO pattern in the Pacific Ocean. This may indicate
some inter-basin teleconnection that contributes to the predictability of North Atlantic SSTs.

We now perform a similar analysis for an ANN trained to predict SST in 1-5 years at a point in the North Pacific
(42.5°N, 175°E). In Figure 4 we show the results for the 20% most confident negative predictions. For this region,
632 out of the 680 most confident samples were predictions of negative anomaly, implying the ANN designated
negative predictions as more confident. Again we plot only the correct predictions, resulting in 466 samples in
these composites. Figures 4a—4c shows the composite OHC inputs for confident negative predictions, and the
major signal appears to be a positive [IPO/PDV pattern in all panels. It is likely the ANN utilized this pattern to
make these confident negative predictions from the ANN explainability heat-maps (see Text S1 and Figure S3 in
Supporting Information S1). This is supported by the histogram of the IPO index in Figure 4e which shows the
distribution of IPO phase in the confident samples is shifted such that confident samples significantly coincide
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Figure 4. As Figure 3 but for the North Pacific.

with the positive phase of the IPO. There is no such strong signal in the AMYV index (Figure 4d). Lastly, the confi-
dent predictions appear to relate to persistence in the positive IPO phase because the composite map of SST at
output (Figure 4f) shows an IPO pattern in the Pacific Ocean. The largest SST anomalies are in the north Pacific
mid-latitudes, in the traditional PDV region. From this, we posit that skillful predictions of SST in the North
Pacific are associated with persistence in the positive phase of IPO (i.e., negative SST anomaly at the predicted
grid point). Here, the ANN preferentially identifies negative SST predictions as skillful, perhaps implying that
persistence in the positive phase of IPO is more predictable than persistence of the negative phase. We posit that
this difference in predictability is due to the underlying non-linear mechanisms governing IPO dynamics and
particularly the asymmetry in the dynamics governing ENSO events (Choi et al., 2013; Okumura & Deser, 2010).
Further investigation of this is an avenue for future work.

4. Discussion and Conclusion

We show that artificial neural networks (ANNs) skillfully predict SST evolution on decadal timescales and that
they can objectively identify decadal state-dependent predictability associated with low-frequency internal vari-
ability in the North Pacific and North Atlantic Oceans. Specifically, we use a regression neural network where
the predictions take the form of a conditional normal distribution which we leverage to isolate predictions that
are more likely to have lower error. This approach allows us to investigate possible contributing mechanisms to
decadal SST predictability, particularly Atlantic multi-decadal variability and the interdecadal Pacific oscilla-
tion (AMV and IPO, Figures 3 and 4). We chose to model the conditional distributions as normal distributions
as alternatives did not significantly improve skill. We suggest that future studies investigating state-dependent
predictability for other timescales and variables may benefit from the addition of skewness to the predicted
conditional distributions (Barnes et al., 2021), as well as further exploring alternative network architectures to
tease out additional skill.

We investigate state-dependent predictability in two regions, the North Atlantic Subpolar Gyre, and the North
Pacific Ocean. Predictability is assessed by investigating the processes that correspond to the lowest uncertainty
predictions by the ANNs for these two regions. This study utilizes the CESM2 long control representation of the
climate system and the results in the North Atlantic appear to agree with hindcast studies of Brune et al. (2018);
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Borchert et al. (2018); Yeager et al. (2018) which use different models to that used here (MPI-ESM; Giorgetta
et al. (2013) and CESM1; Hurrell et al. (2013)). These previous studies also incorporate observations or reanaly-
sis to evaluate the prediction skill of the decadal hindcasts. Moreover, in a study of initialized decadal hindcasts
in the CMIP6 archive, Borchert et al. (2021) attribute predictable SSTs in the North Atlantic subpolar gyre to
the effects of external forcing in the historical era, particularly volcanic forcing. Since our findings are consistent
with the state-dependent predictability investigated in these studies, this suggests that the ANN predictions and
mechanisms investigated here are likely relevant to realistic climate variability and implies a role for internal
variability in North Atlantic predictability. Further investigation is left for future work.

Here we present a data-driven approach to diagnosing state-dependent predictability in an unforced model simu-
lation. In addition to the role of North Atlantic heat transport, we find evidence for a state-dependent inter-basin
teleconnection, that is, the negative phase of the IPO influencing predictability of North Atlantic SSTs (Figure 3).
The drivers of predictability and variability in the North Atlantic ocean are still debated, especially the relative
roles of internal variability and external forcing (Clement et al., 2015; Fang et al., 2021; Fenske & Clement, 2022;
Mann et al., 2021; Wu et al., 2011; Zhang et al., 2019). We hence suggest that future work on decadal predic-
tion should investigate the roles of internal variability and external forcing through the lens of state-dependent
predictability.

This study emphasizes the importance of examining state-dependent predictability for decadal predictions. We
stress that the a priori identification of more predictable initial states greatly increases prediction skill and can
hence aid in estimating the evolution of the internal long-term variability of the climate system.

Data Availability Statement

We use CESM2 output from the pre-industrial control experiment which is freely available from Earth System
Grid https://esgf-node.llnl.gov/projects/cmip6 (Danabasoglu, 2019). Analysis was carried out in Python 3.7 and
3.9, ANNs were developed using TensorFlow (Abadi et al., 2016), while XAl heatmaps were created with iNNves-
tigate (Alber et al., 2019). Many color maps in this work are the from CMasher package (van der Velden, 2020)
and regridding was achieved using Climate Data Operators (CDO; Schulzweida, 2019). Code used to preprocess,
generate the ANNS, and produce the figures in this work can be found at Gordon (2022).
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