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Diabatic representation of exotic hadrons in the dynamical diquark model
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We apply the diabatic formalism, an extension of the adiabatic approximation inherent to the Born-
Oppenheimer (BO) approach of atomic physics, to the problem of mixing between exotic multiquark
hadrons and their nearby di-hadron thresholds. The unperturbed BO eigenstates are obtained using the
dynamical diquark model, while the diabatic calculation introduces a mixing potential between these states
and the threshold states. We solve the resulting coupled Schrodinger equations numerically for hidden-
charm tetraquarks of both open and closed strangeness to obtain physical mass eigenvalues, and we explore
the di-hadron state content and spatial extent of the eigenstates. As an explicit example, X (3872) emerges
with a dominant D°D*® component, but also contains a considerable diquark-antidiquark component that
can contribute significantly to its radiative decay widths, and this component also generates a full multiplet

of other diquark-based exotic hadrons to be compared with experiment.
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I. INTRODUCTION

With the approach of the two-decade mark for exper-
imental evidence of heavy-quark exotic hadrons [1], the
field remains at a remarkable point: Well over 50 candidates
have been observed with a high degree of statistical
significance, and yet no single theoretical paradigm sat-
isfactorily accounts for all of them [2—13]. Even so, several
of these states lie exceptionally close to di-hadron thresh-
olds, the most extraordinary example being the first one
discovered, X(3872),

My (3g72) = Mpo — mpo = —0.04 £ 0.09 MeV, (1)

using the average mass value for each hadron in Eq. (1)
tabulated by the Particle Data Group (PDG) [14].

No other hadron lies in such close proximity to a decay
threshold, suggesting a unique importance for the D°D*0
component (the inclusion of charge conjugates being
understood throughout) within the state. At minimum, a
state so close to threshold exhibits a number of ‘“univer-
sality” properties that depend only upon the large D°D*°
scattering length [15]. More typically, X(3872) has fre-
quently been considered as a hadronic molecule analogous
to the deuteron d, which is largely (but not entirely) bound
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by z exchanges between its nucleon components. However,
the 2.23 MeV d binding energy is many times larger than
Eq. (1), and it corresponds to a typical hadronic size
comparable to its root-mean-square (rms) charge radius

(r3) = 2.13 fm [16]. By the same token, X (3872) would

be expected to be many femtometers across, larger than
most nuclei, and its physical observables would be utterly
dominated by long-distance D°-D* interactions.

Nevertheless, X(3872) exhibits certain properties sug-
gesting the significance of its short-distance wave-function
components. Its known decays to conventional charmo-
nium (J/y and y.;) account for more than 10% of ['x(3572),
and one of its observed radiative decay modes, yy(2S), has
a branching fraction of at least a few percent [14]. Since
charmonium rms charge radii are predicted from quark-
potential models to be significantly less than 1 fm, the large
expected separation of the charm quarks in the D°-D*? pair
would naively predict much smaller branching ratios for
these processes. But X (3872) also shares the J*¢ quantum
numbers 17" of the yet-unseen conventional charmonium
state y.;(2P) that quark-potential models predict (e.g.,
Ref. [17]) to lie several tens of mega-electron-volts (MeV)
above myg7y). As a result, X(3872) has long been
suggested to contain a substantial core of conventional
xc1(2P) [18], in part as a mechanism to explain its
surprising decay patterns.

Nevertheless, conventional charmonium is not the only
short-distance component available to X(3872). The
valence quark content ccuit of D°D*" allows for an
alternative binding mechanism: that of a diquark-antidi-
quark (cu)z(c @)y pair, each one bound through the
attractive color channel 3 ® 3 — 3.
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A number of other exotic candidates lie quite close
to (within a few MeV of) di-hadron thresholds, notably,
Z.(3900) [DD*], Z.(4020) [D*D*], P.(4312)
[£.D], P.(4450)/P.(4457) [£.D*], Z,(10610) [BB*],
Z,(10650) [B*B*], and others. In fact, all of these Z
meson states lie slightly above the corresponding thresh-
olds, arguing against a traditional bound-state molecular
picture. And yet, one cannot deny the significance of the
proximity of the thresholds in these cases, suggesting a
special importance of those particular hadron pairs for the
exotic state. On the other hand, some exotic candidates
[e.g., the Y states or Z.(4430)] lack an obvious nearby
threshold. A complete theoretical framework accommodat-
ing all of the heavy-quark exotic candidates must therefore
recognize the physical significance of such nearby thresh-
olds on their formation, mass, and decay modes.

One formalism that has predicted a specific spectrum of
multiquark heavy-quark exotic hadrons is the dynamical
diquark model [19,20], in which the formation of a diquark-
antidiquark (5-6) exotic meson requires the color-nonsinglet
diquark quasiparticles 8, 6 not to dissociate instantly into a di-
meson pair, but rather to persist as components of a single
multiquark state connected by a color flux tube. Since each
diquark is a color triplet containing a heavy quark, the same
potentials that are computed on the lattice to describe heavy
quarkonium and its hybrids can be imported into Schrodinger
equations, which are solved numerically to obtain the
spectrum of 86 eigenstates. This procedure has been per-
formed both for the multiplet average masses [21] and for the
detailed spectrum once spin and isospin fine-structure effects
areincluded [22-25]. Pentaquarks are handled similarly [26],
by replacing the antidiquark & with a color-triplet triquark
0 = [03(4192)3]5 [27].

This treatment of obtaining eigenstates of heavy (quasi)
particles at separation r connected by a static potential
manifests the well-known Born-Oppenheimer (BO)
approximation [28] from atomic physics. Intrinsic to the
approximation is the assumption that the light degrees of
freedom (d.o.f.) of the state adjust instantly to changes in
the configuration I' of the heavy sources (an adiabatic
approximation), and that the eigenstates of the potential
Vr(r) thus derived from each such configuration I change
gradually with V-(r). However, when the value of V()
crosses the energy of a di-hadron threshold, the physical
eigenstates undergo a rapid level crossing between a
predominantly 86 state and a predominantly di-hadron
state. The mixing of configurations induces diabatic
changes to the system, and solving for its new eigenstates
requires a generalization beyond the strict BO limiting case.

Such a diabatic formalism has been extensively devel-
oped in atomic physics, and in recent years it has been
standardized into textbook form [29]. This approach
provides a specific, nonperturbative method for incorpo-
rating the mixing of coupled-channel contributions from di-
hadron states into the calculations, and we briefly review

the relevant formalism below. The diabatic formalism was
first applied to heavy-quark systems quite recently in
Ref. [30]; in that case, the analysis examined mixing of
di-hadron thresholds with conventional quarkonium, rather
than with the four-quark 86 states of the dynamical diquark
model that are used here.

The initial study of Ref. [30] specifically considers states
lying below or just above a di-hadron threshold. In this work
we adopt the same restriction, specifically to study the
lightest hidden-charm exotics of valence quark content
ctqg (where ¢") are u or d quarks), c¢s3, and cégs.
“Lightest” in this sense means the members of the (pos-
itive-parity) ground-state BO multiplet X} (1S); observed
candidates with (presumed) corresponding flavor contents
include X(3872), Y(4140), and Z,.,(4000), respectively. Of
course, the same methods can be applied as well to orbitally
excited multiplets such as X/ (1P) [containing, e.g.,
Y(4220)], hidden-bottom [e.g., Z,(10610)] states, and fully
charmed cccc [e.g., X(6900)] states, and can also be
generalized to resonant states in order to study mass shifts
and strong-decay widths [31].

Here we focus on identifying the §-6 and meson-meson
content (including distinct contributing partial waves) of
the lightest hidden-charm states, and we extract interesting
features such as the expectation values (r) and (r?)'/? of
the §-6 separation r in each mass eigenstate. We show, for
example, that the wave function of X(3872) is indeed
dominated by D°D*°, but not overwhelmingly so, and find
that the spectrum of states described by the original
uncoupled dynamical diquark model is not greatly dis-
rupted by the existence of di-hadron thresholds.

This paper is organized as follows. In Sec. II we review
the state notation for 56 systems, focusing for now only on
the X/ (1S) multiplet. Section III reviews the diabatic
mixing formalism needed for the current set of calculations.
Our numerical results appear in Sec. IV, and in Sec. V we
summarize and indicate the next directions for future
calculations.

II. STATES OF THE DYNAMICAL
DIQUARK MODEL

The complete spectra of c¢cqg’, ccss, ccqs, and ccce
states as 00 eigenstates of the dynamical diquark model
are presented in Refs. [20,24,25,32], respectively. In this
paper, all relevant states are accommodated by the lowest
(Z;) BO potential, which consists of the (light) gluon
field in its ground state connecting the heavy diquark
[6 = (Qq)3l-antidiquark [6 = (Q7');] or diquark-triquark
[0 = (03(9192)3)]3 quasiparticles. In all cases, &, 6, 6 are
assumed to transform as color triplets (or antitriplets), and
each quasiparticle contains no internal orbital angular
momentum.

In this work, we consider QQqg’ states, in which g, 7’
may assume any of the flavors {u, d, s}. The classification
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scheme, regardless of the combination, begins with six
states, here grouped by JPC¢ quantum numbers. This
spectrum,

JPE=0"": X0 =10505)0.  Xo=115.15)0,

1
JPC =1t X, =—(|15,05), + 105, 15),),
1 \/§(| o 6>1 | o 6>1)
PC =1 2= (1,00, = 05, 13))), Z' =15 1501,
V2
JPC =211 Xy =115, 15),, (2)

which specifies the full multiplet of X S-wave states, is

written with the total 5(5) spin denoted by s;(s3), and with
the overall state total spin signified by an outer subscript.
When needed, 9 angular momentum recoupling coeffi-
cients may be used to transform these states to another spin
basis. For example, the transformation coefficients to the
basis of good total heavy-quark (QQ) and light-quark (¢g’)
spins read

((5457)84 (5059)500- S|(5450)5s. (5355)55. S)
s

= ([sqz1lsgollsallss))*q so s 500 ¢ 3)
ss sz S

with [s] = 25 + 1 denoting the multiplicity of a spin-s state.
Using Egs. (2) and (3), one may write

V3

1 3
JPC = 0++: XQ == 5 |qu/’OQQ>O + 7|qu” 1QQ>O’

V3

X = Y210, 0pp) = S 1o 1)
0 o 1M4q> Y0070 o 17qq> TQ0/0
JPC = 151 Xy = Ly Lg),

- 1
JFC=17: 72 = _2(|1q?/’0QQ>1 = 1047+ 100),)-

1
VAR %(“qc‘/’OQQ% + |qu7” 1QQ>1)’

JPC =2+ Xy = (1, 190),. 4)

Further specifying the chosen combination of {u,d, s}
light-quark flavors enlarges this set. For example, consid-
ering combinations of {u, d} alone expands the set to 12
states: 6 each with / = 0 and I = 1, but which nonetheless
maintain spin structures in the forms of Egs. (2) or (4). For
the purposes of this work, we identify states solely based
upon total J¥C, effectively ignoring the fine structure due to
isospin. Additionally, we separately examine unique flavor
combinations of light quarks: c¢ss, ccqs, and ccqg’, where
henceforth ¢, ¢’ € {u, d}. The only sources of SU(3)g,vor
dependence in these calculations arise through distinct
explicit diquark and meson masses.

All states considered within this work are accommodated
within the ground-state BO multiplet X (15), but it is
worth noting that Ref. [20] provides a classification of
states in higher multiplets such as X (nP), as well as those
with excited-glue BO potentials such as IT; .

II1. DIABATIC MIXING FORMALISM

In this work, we begin with the same construction as in
the original dynamical diquark model [21]. That is, one
separates the light d.o.f. from the heavy d.o.f. by writing the
Hamiltonian as

2

p
H = Kpeavy + Hijgne = Do + Hijgpy, (5)
heavy

such that the Schrodinger equation now reads

2
(2 S Hyjgn — E) ly) = 0. (6)
Hheavy

Under the current analysis, “light field” refers to either just
the glue fields (in the case of a §-0 state) or both glue and
exchanged light-quark fields (in the case of the meson-
meson states).

We now implement the Ansatz that the states defined in
Sec. II may appreciably mix with nearby meson-meson
thresholds sharing the same J”C quantum numbers, but
assume that the two types of states are clearly distinguish-
able away from the thresholds. Thus, one must determine
and solve the multichannel Schrédinger equation connect-
ing the 86 states to such threshold states. We closely follow
the work of Ref. [30], which carries out this process using
conventional quarkonium rather than 66 states. Applying
the diabatic expansion to the eigenstates of said
Schrodinger equation yields [30]

W =% [an@ e, 0

where r’ denotes the separation of the heavy sources, ry is a
freely set fiducial parameter, and |£;) are eigenstates of the
light-field Hamiltonian. Inserting Eq. (7) into Eq. (6) and
applying (£;(ry)| on the left-hand side produces

h2 _
z |:_2,u‘5ijv2 + Vji(r’ ry) — ESj; w(r,ry) =0, (8)

with the diabatic potential matrix defined as
Vji(rv ry) = <5j(1'0)|H1ight|‘fi(r0)>- 9)

We identify the i = 0 term with 86 states, and i > 0 terms
with meson-meson states.
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This result may be written more compactly in matrix
notation as

K + V(r)¥(r) = E¥(r), (10)

with the parameter r, implicit. Neglecting interactions
between distinct meson-meson components, as is done
in analogous lattice-QCD studies [33], the potential matrix
then becomes

1 N
Ve Vi@ - v
1 1
Vi) Vi) ()
V= . (1)
(N) (N)
Vmix (I‘) VM1M2 (l‘)

with the kinetic-energy operator expressed as

hZ
2us5
hZ

ot i

K= V2, (12)

h2
(N)
My

where omitted elements are zeros. Inspection of the i > 0

diagonal elements leads to the identification of Vﬁf}l i, (r) as

simply being the energy associated with that of the pure
free ith meson-meson state. That is,

Vi, (®) = Tag e (13)
where
Ty, i, = my, + my,. (14)

For S-wave 86 states, we identify V;(r) as the uncoupled
X} potential [20], with parameters that are calculated on the
lattice [34]. Thus, we parametrize

a
Vgg(r):—;+6r+Vo+m5+m5, (15)

where a, o, and V, are 0.053 GeV - fm, 1.097 GeV/fm,
and —0.180 GeV, respectively. For each flavor sector, one
also requires values for the &, 6 masses, and a correspond-
ing list of di-hadron thresholds with matching J*¢ quantum
numbers must be identified. One then needs only to
determine the appropriate form for the mixing potentials.
Reference [30] argues for a Gaussian form, which we also
adopt here. Explicitly,

PHYS. REV. D 106, 074007 (2022)
Vis(r) = T
{ 11Va5 it

) 09

where o is the same string-tension parameter as in the
Cornell-like potential of Eq. (15). A is a free parameter with
units of energy indicating the strength of the mixing, and p
is the radial scale for the level crossing [30].

It is a useful first exercise to consider this procedure for a
single threshold. The diabatic-potential matrix then reads

Vi) ( Vss(r) vmix<r>)’

Vmix(r) TM,M2

}2

(17)

where we have replaced r with its magnitude, since all
relevant potentials at this stage depend solely upon the
diquark separation distance. The corresponding single-
threshold kinetic-energy operator becomes

_n
2us
K= v o V2. (18)
Z#MIMZ

The diabatic-potential matrix eigenvalues [denoted V_(r)
and V_(r)] and corresponding eigenvectors [|£_(r)) and
|€.(r))] may be directly related to the 65 and di-meson
threshold light-field eigenstates via a generic transforma-
tion matrix:

R(r) = ( cos §(r)

sin(r)
—sind(r) ) (19)

cos O(r)
such that
R(r)V(r)R'(r) = diag{V_(r), V,(r)}. (20

Here, 6 is identified as the mixing angle between the 56
and meson-meson terms. Since R(r) diagonalizes V(r),
one can deduce an expression for € in terms of its matrix
elements [30]:

o(r) — %arctan <M> e

Ty,in, — Vis(r)

As an example, we plot @ for §(8) = cq(cq’) and M\ M, =
DD* in Fig. 1 using phenomenologically viable values of A
and p [see Eq. (22)], as obtained below.

IV. RESULTS
A. ccqq’ Sector

To obtain values for the A and p parameters in the
mixing potentials, we fit them such that the lowest 17"
eigenvalue in the c¢cqg’ sector is near the measured value
my3g72) = 3871.7 MeV. Of course, a range of A, p value
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FIG. 1. The mixing angle 6(r) [Eq. (21), using Egs. (16) and
(22)] between 66 = c¢qq’ and DD* in the 1** channel, as a
function of heavy-source radial separation r. The dashed line

shows the critical radius r., i.e., the separation at which
Vs3(r) = Tpp-» using Egs. (14), (15), and (23).

pairs achieves this result. Following the approach of
Ref. [30], we select a pair that produces the correct
asymptotic behavior for the single-threshold mixing angle
0(r), as modeled in Fig. 1. Specifically, as supported by
unquenched lattice-QCD calculations [35], we require that
0 — /2 rapidly for r > r,, the value at which the 66
Cornell-like potential Eq. (15) crosses the M, M, threshold
Eq. (14). According to Eq. (21), the A, p pair must also
produce the nonzero value 8 = /4 at r = r, indicating a
nontrivial mixing of the 56 and meson-meson components.
The specific values used here are

Ags = 0300 GeV,  pg =0.185 fm.  (22)

Again, these values are not unique, but rather serve as proof
of principle for the approach. The diquark mass is then the
only remaining free parameter, with its value taken as
reported in Ref. [25]:

Ms=(cq

) = Ms_(zg) = 1.9271 GeV. (23)

One may then numerically solve Eq. (10) as a coupled
set of equations. We follow the procedure described in
Sec. IV. F of Ref. [30], solving for the lowest bound states.
The resulting eigenvalues and their corresponding state
mixtures are collected in Table I. Note the omission of a
JP€ = 17 entry in Table I as compared with Egs. (2) or
(4); while the diabatic formalism allows for the formation
of C = —1 eigenstates, the di-hadron thresholds alone
provide no mechanism to lift the degeneracy with the
1+ eigenstate." Notably, we find that the 17 eigenstate,

'In the full dynamical diquark model, this degeneracy is lifted
by operators that couple to individual diquark spins [22,24].

which we associate with X(3872), consists primarily of
DD* content (an idea known for quite some time, e.g.,
Refs. [4,18,36]), consistent with expectations given its
proximity to that threshold. In contrast, we find that the
other eigenstates (0*+ and 2*++) are primarily of 56 content.

Using the results of this formalism, it is also possible to
calculate certain transition rates, which, of course, provide
numerous predictions for comparison with experimental
results. Broadly accepted techniques for calculating the
decays of 86 to QQ states do not yet exist in the literature,
but until such methods are robustly developed, we can at
least perform exploratory studies using analogs of known
expressions. Here, we focus specifically on the radiative
transition of the J¢ = 17+ eigenstate to J/y and y(2S).
For E1 and M1 transitions of states within the dynamical
diquark model, substantial work has already been per-
formed in Ref. [37]. There, a standard equation for El
partial widths for the process i — yf is adapted to the case
of exotic-to-exotic transitions, and it may be recast for the
present case as

rEl(nZSQQJrl(JqZ])j N n’ZHI(L’)J/ + 7/)
4 EQQ
_ 2 23 f
= §Cfi5sQQs'QQQaa|<ll/f|r|Wi>| E; 17200 (24)

i

where

o , , L/ J/ SQQ 2
Cri=max(J,z, L")(2J' 4 1) . (25)

J g 1

In this expression, «a is the QED fine-structure constant, E,
is the photon energy (measured in the rest frame of the
decaying exotic initial state QQgg of mass M2%% in
which the conventional quarkonium final state QQ recoils
with energy E?Q), and Qs = Qp + Q, is the diquark
charge in units of proton charge (meaning that the diquark
is treated as a single quasiparticle coupling to the photon).
/
0
eigenvalue for the initial (final) state, n") indicates the
principal quantum number for the initial (final) state, J,;
(L") represents the total angular momentum carried by the
light d.o.f. in the initial (final) state, and J (J') is the total
angular momentum eigenvalue of the initial (final) state,
respectively.

The original form of Eq. (24) refers solely to El
transitions between two states with the same two funda-
mental charged constituents, which together generate an
electric dipole moment. This expression is reasonable (and
indeed is commonly used) for conventional quarkonium,
albeit often including relativistic corrections that are out-
lined in Ref. [37]. However, several precarious assumptions
enter into the use of Eq. (24) for the transition of a 86 to a

Furthermore, s denotes the total heavy-quark spin
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TABLE I. Calculated eigenvalues and component-state admixtures for the ccqg’ sector obtained from solving
Eq. (10) for specific J?¢ numbers. Also presented are the expectation values (r) of the radial coordinate r
(corresponding to 8-8 separation) as well as (r2)!/2 for each state. Suppressed entries indicate contributions that are

PHYS. REV. D 106, 074007 (2022)

individually <1%.

Jre E (MeV) 56 DD* DD, D*D* DD (r) (fm) (r?)1/2 (fm)
o+t 3905.4 63.0% 27.4% 8.4% 1.2% 0.596 0.605
I+ 3871.5 8.6% 91.4% 4.974 5.459
2+t 3922.3 83.1% 1.5% 13.9% 1.5% 0.443 0.497

QOQ state. The first is the use of a diquark as a single
charged quasiparticle to which a photon couples; this
premise was explored in Ref. [37] along with alternative
hypotheses, such as the incoherent coupling of the photon
to the component quarks of the diquark, leading to different
O(1) factors taking the place of Q3 in the analog to
Eq. (24). More significantly, however, Ref. [37] applied
Eq. (24) only to the case of transitions between two 86
states, again treating the diquarks as single compact
quasiparticles. Applying it to 56 — QQ transitions is much
more questionable since, among other possible objections,
such a transition requires the annihilation of the gg pair. At
minimum, Eq. (24) must at least be modified to accom-
modate the Okubo-Zweig-lizuka (OZI) suppressed ampli-
tude gg — ¢ in this process. While a proper treatment of the
issue lies outside the scope of this work, we may at least
note that the magnitude e of the OZI suppression is
expected to be significantly <1, and so I'g; of Eq. (24)
is diminished by a factor ¢2. One may expect € to depend
upon both the radial excitation number 7 of the initial state,
as well as the ¢g spin state.

The most sensitive term to calculate in Eq. (24) is the
overlap |(y|rly;)|* of the initial and final radial wave
functions weighted by 7, the characteristic spatial separa-
tion of the heavy sources. Note especially that y; () is a
56 (QQ) state, so that computing this amplitude properly
certainly requires more than the simple evaluation of wave-
function overlap performed here. Recall that the full exotic
eigenstate in this analysis is taken to be a mixture of both 56
and MM, components. However, the expected relative
separation of the mesons in the D°D*® component of
X (3872) is expected to be much greater than that of a pure
56 state. Explicitly, using the results of Table I, we find that
the D°D*® component alone should have (r) = 5.092 fm,
in agreement with the crude estimate provided by the Bohr-

. 1 2
radius anal?g I~ Conversely, the value of (r) for

the pure 6(8) = cq(¢g’) component is only 0.361 fm. Since
the decays X(3872) — yy require the annihilation of the

*The specific O(1) coefficient in this expression arises from
using the literal Bohr radius for r. A different O(1) coefficient
arises when computing ()'/™, but in any case one obtains a
result for X(3872) of multiple fm.

light ¢g pair in X(3872), one naively expects that the 56
component should dominate in this process. Let us test this
expectation.

Once the fractional 56 content in the 17+ eigenstate is
known, one may calculate the E1 partial width from Eq. (24).
Using the potential of Eq. (15) and numerical inputs for its
parameters given there, and adopting m, = 1840 MeV [30]
in place of m;, we compute the radial wave functions of J /y,
w(2S), and y.(2P) treated as pure conventional charmo-
nium states. We also solve for the (15) 86 = cq(¢ g) wave
function, which was an essential ingredient in Ref. [37].
Introducing these values into Eq. (24), we find

[ [X(3872) = yJ/w] = 469¢* keV,
5 [X(3872) — 7w (25)] = 1.5662 keV,  (26)

while

FEI b(cl (2P) = }’J/l//] =20.8 keV,

We note that the results of Eqs. (27) are comparable to the
predictions of 71 keV and 95 keV, respectively, from
Ref. [38] [which also uses Eq. (24), but with somewhat
different numerical values for the matrix elements].

On the other hand, Eq. (26) predicts (setting e — 1) wildly
different X(3872) radiative widths than the current PDG
averages [14], 10.1 £ 4.7 keV for J/y and 54 + 25 keV for
y(2S). The PDG separately gives an average for their ratio,

[[X(3872) - yw(2S)]
['[X(3872) - yJ /]

R =26+06, (28)

while the corresponding ratio from Egs. (26), taking the two
values of € equal, is only 3.3 x 1073, Interestingly, this
number approximately equals an early estimate for R based
upon a molecular-model calculation using vector-meson
dominance [38]. However, a modern molecular-model cal-
culation employing an effective Lagrangian supports values
of R in a typical range of order several tenths [39], and these
predictions are numerically stable when a small admixture of
the conventional-charmonium state y ., (2P) is included [40].
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The origin of such a small predicted value for R in the
dynamical diquark model can be traced to the fact that the
86 component of X(3872) is a ground-state (n = 1) radial
mode like J/y, while y.(2P) is a first-excited (n = 2)
radial mode like y(25). Indeed, our calculated idealized 65
wave function has almost exactly the same size as our
calculated cc J/w wave function, leading to almost
complete overlap and a large transition to J/y. In a more
realistic treatment including a finite diquark (cq) size [22],
one expects this overlap enhancement to be muted.
Nevertheless, one still expects the phase-space advantage
of J/w over y(2S) to generate a rather small R value in this
model. If a value of R substantially larger than 1 persists in
the data, we conclude that one must have some underlying
preferential coupling to y(2S) over J/y, from a significant
X1 (2P) component in X(3872), from an enhanced ratio of
w(2S) to J/y effective-theory couplings as suggested in
Ref. [39], or from an enhanced wave-function overlap of 56
to the spatially larger y(2S5) state.

The overall size of the prediction for I'[X(3872) —
yJ/w] from the first of Egs. (26) also points to the
necessity of ¢ being no larger than about 1/6, which is
not an unreasonable expectation for an OZI-suppressed
amplitude.

Last, in a model for X(3872) with not just 85 but also
D°D*® components [and possibly y.;(2P) as well], the full
value for its radiative decay widths can include contribu-
tions from more than one source. In that case, it becomes
crucial to determine the relative phase of each contribution,
since interference may be critical to obtaining a physically
accurate result. This effect in a mixed D°D*0-y ., (2P)
model was considered in Ref. [40].

B. c¢ss and ccqs Sectors

In the ccss sector, one encounters an additional free
parameter, the (c¢s) diquark mass. We fix this mass so that
the 0 energy eigenvalue matches the X(3915) mass [14].
This choice produces the result

m(;:(cs) = m;sz(ﬁ) = 1.9450 GeV. (29)
Note that this value only slightly exceeds ms_.,) given in
Eq. (23), despite containing a heavier s quark; in particular, it
is substantially smaller than the value (2.080 GeV) obtained
from the analysis of Ref. [25], because that work (unlike
here) incorporates spin-splitting fine structure for the
2/ (1S) 66 multiplet. The remaining eigenstates may then
be calculated and are presented in Table II. Remarkably, the

1+ and 21+ states exhibit rather little DE_;D’(‘S)

while the 0"+ state shows significant mixing with DD.

The calculations for ccgs states follow entirely from the
previously determined parameters and are presented sep-
arately in Table III. This sector in particular contains a
unique threshold structure, in that the D*D, and DD}
thresholds differ by less than 4 MeV, for each fixed value of
total charge for the meson pair. Our calculations show that
thresholds extremely close to each other tend to evenly
share state content (assuming that the allowed £ quantum
numbers are the same).

In all three sectors, whenever 65(Z = 0) content domi-
nates, we furthermore find a preferential coupling to
S-wave meson-meson combinations over D-wave combi-
nations, even if the latter threshold is closer to the mass
eigenvalue. This result is exhibited by the ccqg’2*+,
ccss1t, and ccgs2™ states. The ccqg'2'™ state is the
most extreme of these, preferring to couple more strongly
to DD} over D,D,, despite the ~280 MeV difference.
This behavior is further exhibited by the results for
individual thresholds; for example, in the 27" ccqg’ state,
the distinct D*D* channels with # = 0 and # = 2 contrib-
ute 11.6% and 1.2%, respectively. The expected suppres-
sion associated with the near-orthogonal overlap of an S-
wave 86 state and a D-wave meson-meson state provides a
natural explanation.

We also note that the expectation values (r) (or (r?)!/?)
for each state increase with increasing meson-meson

*
\)

content,

TABLE II. The same as in Table I, for the ccs§ sector.

Jre E (MeV) 56 DD, D*D* DD D:D: (r) (fm) (r2>1/2 (fm)
ot 3922.0 50.6% 39.9% 8.3% 1.2% 0.627 0.757
1+ 3978.7 86.9% 1.5% 11.0% 0.421 0.470
2+ 3998.7 95.2% 1.5% 3.3% 0.394 0.437
TABLE III. The same as in Tables I and II, for the ccg¢3 sector.

JP E (MeV) 56 D*D, DD: D*D* (r) (fm) (r?)1/2 (fm)
(0 3983.5 93.2% 6.8% 0.397 0.440
1+ 3914.5 66.7% 16.5% 15.9% 0.482 0.548
2+ 3962.1 90.4% 1.8% 1.8% 6.0% 0411 0.460
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content, consistent with predictions of (r) for hadron
molecular states [41]. As discussed above, the 17" ccqgg’
state exhibits a several-femtometer value for (r), as is
expected for a pure DD* molecular state with a binding
energy of tenths of an MeV [41].

V. CONCLUSIONS

The introduction into a diquark-based model—in this
paper, the variant known as the dynamical diquark model—
of effects caused by the proximity of some of its eigenstates
to di-hadron thresholds creates a model for multiquark
exotic hadrons that combines the best features of both
diquark and hadron-molecular models. One universal
model can then incorporate exotic candidates that lie quite
close to such thresholds, but which still maintain a close
physical connection to other exotic candidates with no
obvious di-hadron interpretation.

Coupled-channel calculations between bound states and
thresholds have, of course, been carried out many times in
the past, originally in the context of atomic and molecular
physics, but more recently for exotic-hadron candidates as
well. The so-called diabatic approach used here earns
distinction as the natural (and rigorous) generalization of
the Born-Oppenheimer approximation used to compute the
unperturbed spectrum of heavy-heavy systems such as
quarkonium and its hybrid excitations, and in this work
for the first time to our knowledge, the diquark-antidiquark
states of the dynamical diquark model.

The precise functional form for the mixing potential
between unperturbed states and thresholds used here is
phenomenological in origin, but it is motivated by lattice-
QCD results involving the breaking of the color flux tube
between the heavy sources. Clearly, advances in lattice
simulations can be incorporated into improved future
calculations.

We find, using parameters from the most recent analysis in
the dynamical diquark model, that the famous X (3872) can
naturally contain a dominant component of D°D* and yet
originate as the unique isosinglet 1" member of the lightest
multiplet of hidden-charm diquark-antidiquark states.
Masses of all the remaining members of the multiplet are
then predicted, along with their di-hadron content generated
by nearby thresholds. Since the original model has been
extended to study hidden-charm, hidden-strangeness, and
open-strange states as well, we also present calculations for
those flavor sectors. General results include the observation
that S-wave thresholds always produce larger effects than D-
wave thresholds, even if the latter are substantially closer to
the mass eigenvalue, and that coincident di-hadron thresh-
olds with different arrangements of the light flavors in the
hadrons have comparable effects.

We also use our results on state content to calculate the
radiative decay widths for X(3872) — yJ/y and yy(2S5),

which provides crucial information on the short-distance
components of X(3872), since its di-hadron component is
spatially much larger than that of its diquark-antidiquark
component. Interestingly, we obtain a yw(2S) width
much smaller than the current measured value, due not
just to the fact that the compact component amounts to
only about 10% of the full state, but also that the overlap
of the 1S diquark-antidiquark and 2S cc states is small.
We conclude that obtaining the full radiative width may
require including a comparable contribution from the
diffuse di-hadron component, or even from a y.(2P)
component (which can also be included in the diabatic
formalism).

These initial calculations, while quite encouraging,
remain quite incomplete. First, no spin- or flavor-dependent
effects (besides explicit differences in the diquark mass)
have been incorporated into the unperturbed side of this
calculation. The Hamiltonian for the full dynamical diquark
model contains spin-spin and spin-isospin operators that,
for example, distinguish masses of X(3872), Z.(3900), and
Z.(4020). In this calculation, the only mass splittings arise
from the explicit differences of DET)) masses. One major
future research thrust is the inclusion of explicit fine-
structure effects into the initial unperturbed states.

A second possible improvement involves the treatment
of the threshold contribution. Di-hadron molecular models
have been alluded to several times in this paper, but the
actual treatment of the di-hadron state uncoupled from the
diquark-antidiquark state, according to Eq. (14), is simply
that of two free hadrons. Should it be desirable to regard the
pair as forming a true di-hadron molecule, then directly
replacing Eq. (14) with a mildly attractive (e.g., meson-
exchange) potential would be straightforward in this
formalism.

Finally, the diabatic formalism as presented here strictly
applies only to states either below or not too far above
significant di-hadron thresholds. Some of the exotic can-
didates [e.g., Z.(4430)] lie rather far from relevant thresh-
olds, and consequently have large decay widths. Such
broad resonances should properly be treated as poles in di-
hadron scattering amplitudes. However, the diabatic for-
malism has been developed, in the case of mixing with
conventional quarkonium, to include the calculation of
strong decay widths [31] and di-hadron scattering ampli-
tudes [42]. These methods can be immediately adapted to
the case of mixing with diquark-antidiquark states, and will
also be incorporated into future work.
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