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We apply the diabatic formalism, an extension of the adiabatic approximation inherent to the Born-

Oppenheimer (BO) approach of atomic physics, to the problem of mixing between exotic multiquark

hadrons and their nearby di-hadron thresholds. The unperturbed BO eigenstates are obtained using the

dynamical diquark model, while the diabatic calculation introduces a mixing potential between these states

and the threshold states. We solve the resulting coupled Schrödinger equations numerically for hidden-

charm tetraquarks of both open and closed strangeness to obtain physical mass eigenvalues, and we explore

the di-hadron state content and spatial extent of the eigenstates. As an explicit example, Xð3872Þ emerges

with a dominant D0D̄�0 component, but also contains a considerable diquark-antidiquark component that

can contribute significantly to its radiative decay widths, and this component also generates a full multiplet

of other diquark-based exotic hadrons to be compared with experiment.
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I. INTRODUCTION

With the approach of the two-decade mark for exper-

imental evidence of heavy-quark exotic hadrons [1], the

field remains at a remarkable point: Well over 50 candidates

have been observed with a high degree of statistical

significance, and yet no single theoretical paradigm sat-

isfactorily accounts for all of them [2–13]. Even so, several

of these states lie exceptionally close to di-hadron thresh-

olds, the most extraordinary example being the first one

discovered, Xð3872Þ,

mXð3872Þ −mD0 −mD�0 ¼ −0.04� 0.09 MeV; ð1Þ

using the average mass value for each hadron in Eq. (1)

tabulated by the Particle Data Group (PDG) [14].

No other hadron lies in such close proximity to a decay

threshold, suggesting a unique importance for the D0D̄�0

component (the inclusion of charge conjugates being

understood throughout) within the state. At minimum, a

state so close to threshold exhibits a number of “univer-

sality” properties that depend only upon the large D0D̄�0

scattering length [15]. More typically, Xð3872Þ has fre-

quently been considered as a hadronic molecule analogous

to the deuteron d, which is largely (but not entirely) bound

by π exchanges between its nucleon components. However,

the 2.23 MeV d binding energy is many times larger than

Eq. (1), and it corresponds to a typical hadronic size

comparable to its root-mean-square (rms) charge radius
ffiffiffiffiffiffiffiffi

hr2di
q

¼ 2.13 fm [16]. By the same token, Xð3872Þ would
be expected to be many femtometers across, larger than

most nuclei, and its physical observables would be utterly

dominated by long-distance D0-D̄�0 interactions.

Nevertheless, Xð3872Þ exhibits certain properties sug-

gesting the significance of its short-distance wave-function

components. Its known decays to conventional charmo-

nium (J=ψ and χc1) account for more than 10% of ΓXð3872Þ,
and one of its observed radiative decay modes, γψð2SÞ, has
a branching fraction of at least a few percent [14]. Since

charmonium rms charge radii are predicted from quark-

potential models to be significantly less than 1 fm, the large

expected separation of the charm quarks in the D0-D̄�0 pair
would naively predict much smaller branching ratios for

these processes. But Xð3872Þ also shares the JPC quantum

numbers 1þþ of the yet-unseen conventional charmonium

state χc1ð2PÞ that quark-potential models predict (e.g.,

Ref. [17]) to lie several tens of mega-electron-volts (MeV)

above mXð3872Þ. As a result, Xð3872Þ has long been

suggested to contain a substantial core of conventional

χc1ð2PÞ [18], in part as a mechanism to explain its

surprising decay patterns.

Nevertheless, conventional charmonium is not the only

short-distance component available to Xð3872Þ. The

valence quark content cc̄uū of D0D̄�0 allows for an

alternative binding mechanism: that of a diquark-antidi-

quark ðcuÞ3̄ðc̄ ūÞ3 pair, each one bound through the

attractive color channel 3 ⊗ 3 → 3̄.
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A number of other exotic candidates lie quite close

to (within a few MeV of) di-hadron thresholds, notably,

Zcð3900Þ [DD̄�], Zcð4020Þ [D�D̄�], Pcð4312Þ
[ΣcD̄], Pcð4450Þ=Pcð4457Þ [ΣcD̄

�], Zbð10610Þ [BB̄�],
Zbð10650Þ [B�B̄�], and others. In fact, all of these Z
meson states lie slightly above the corresponding thresh-

olds, arguing against a traditional bound-state molecular

picture. And yet, one cannot deny the significance of the

proximity of the thresholds in these cases, suggesting a

special importance of those particular hadron pairs for the

exotic state. On the other hand, some exotic candidates

[e.g., the Y states or Zcð4430Þ] lack an obvious nearby

threshold. A complete theoretical framework accommodat-

ing all of the heavy-quark exotic candidates must therefore

recognize the physical significance of such nearby thresh-

olds on their formation, mass, and decay modes.

One formalism that has predicted a specific spectrum of

multiquark heavy-quark exotic hadrons is the dynamical

diquark model [19,20], in which the formation of a diquark-

antidiquark (δ-δ̄) exotic meson requires the color-nonsinglet

diquark quasiparticles δ, δ̄ not to dissociate instantly into a di-

meson pair, but rather to persist as components of a single

multiquark state connected by a color flux tube. Since each

diquark is a color triplet containing a heavy quark, the same

potentials that are computed on the lattice to describe heavy

quarkoniumand its hybrids can be imported intoSchrödinger

equations, which are solved numerically to obtain the

spectrum of δδ̄ eigenstates. This procedure has been per-

formed both for themultiplet averagemasses [21] and for the

detailed spectrum once spin and isospin fine-structure effects

are included [22–25]. Pentaquarks are handled similarly [26],

by replacing the antidiquark δ̄ with a color-triplet triquark

θ̄≡ ½Q̄3̄ðq1q2Þ3̄�3 [27].
This treatment of obtaining eigenstates of heavy (quasi)

particles at separation r connected by a static potential

manifests the well-known Born-Oppenheimer (BO)

approximation [28] from atomic physics. Intrinsic to the

approximation is the assumption that the light degrees of

freedom (d.o.f.) of the state adjust instantly to changes in

the configuration Γ of the heavy sources (an adiabatic

approximation), and that the eigenstates of the potential

VΓðrÞ thus derived from each such configuration Γ change

gradually with VΓðrÞ. However, when the value of VΓðrÞ
crosses the energy of a di-hadron threshold, the physical

eigenstates undergo a rapid level crossing between a

predominantly δδ̄ state and a predominantly di-hadron

state. The mixing of configurations induces diabatic

changes to the system, and solving for its new eigenstates

requires a generalization beyond the strict BO limiting case.

Such a diabatic formalism has been extensively devel-

oped in atomic physics, and in recent years it has been

standardized into textbook form [29]. This approach

provides a specific, nonperturbative method for incorpo-

rating the mixing of coupled-channel contributions from di-

hadron states into the calculations, and we briefly review

the relevant formalism below. The diabatic formalism was

first applied to heavy-quark systems quite recently in

Ref. [30]; in that case, the analysis examined mixing of

di-hadron thresholds with conventional quarkonium, rather

than with the four-quark δδ̄ states of the dynamical diquark

model that are used here.

The initial study of Ref. [30] specifically considers states

lying below or just above a di-hadron threshold. In this work

we adopt the same restriction, specifically to study the

lightest hidden-charm exotics of valence quark content

cc̄qq̄0 (where qð0Þ are u or d quarks), cc̄ss̄, and cc̄qs̄.
“Lightest” in this sense means the members of the (pos-

itive-parity) ground-state BO multiplet Σþ
g ð1SÞ; observed

candidates with (presumed) corresponding flavor contents

include Xð3872Þ, Yð4140Þ, and Zcsð4000Þ, respectively. Of
course, the same methods can be applied as well to orbitally

excited multiplets such as Σ
þ
g ð1PÞ [containing, e.g.,

Yð4220Þ], hidden-bottom [e.g., Zbð10610Þ] states, and fully
charmed cc̄cc̄ [e.g., Xð6900Þ] states, and can also be

generalized to resonant states in order to study mass shifts

and strong-decay widths [31].

Here we focus on identifying the δ-δ̄ and meson-meson

content (including distinct contributing partial waves) of

the lightest hidden-charm states, and we extract interesting

features such as the expectation values hri and hr2i1=2 of

the δ-δ̄ separation r in each mass eigenstate. We show, for

example, that the wave function of Xð3872Þ is indeed

dominated by D0D̄�0, but not overwhelmingly so, and find

that the spectrum of states described by the original

uncoupled dynamical diquark model is not greatly dis-

rupted by the existence of di-hadron thresholds.

This paper is organized as follows. In Sec. II we review

the state notation for δδ̄ systems, focusing for now only on

the Σ
þ
g ð1SÞ multiplet. Section III reviews the diabatic

mixing formalism needed for the current set of calculations.

Our numerical results appear in Sec. IV, and in Sec. V we

summarize and indicate the next directions for future

calculations.

II. STATES OF THE DYNAMICAL

DIQUARK MODEL

The complete spectra of cc̄qq̄0, cc̄ss̄, cc̄qs̄, and cc̄cc̄

states as δδ̄ eigenstates of the dynamical diquark model

are presented in Refs. [20,24,25,32], respectively. In this

paper, all relevant states are accommodated by the lowest

(Σþ
g ) BO potential, which consists of the (light) gluon

field in its ground state connecting the heavy diquark

[δ≡ ðQqÞ3̄]-antidiquark [δ̄≡ ðQ̄q̄0Þ3] or diquark-triquark

½θ̄≡ ðQ̄3̄ðq1q2Þ3̄Þ�3 quasiparticles. In all cases, δ, δ̄, θ̄ are

assumed to transform as color triplets (or antitriplets), and

each quasiparticle contains no internal orbital angular

momentum.

In this work, we consider QQ̄qq̄0 states, in which q, q̄0

may assume any of the flavors fu; d; sg. The classification
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scheme, regardless of the combination, begins with six

states, here grouped by JPC quantum numbers. This

spectrum,

JPC ¼ 0þþ∶ X0≡ j0δ;0δ̄i0; X0
0
≡ j1δ;1δ̄i0;

JPC ¼ 1þþ∶ X1≡
1
ffiffiffi

2
p ðj1δ;0δ̄i1þj0δ;1δ̄i1Þ;

JPC ¼ 1þ−∶ Z≡
1
ffiffiffi

2
p ðj1δ;0δ̄i1− j0δ;1δ̄i1Þ; Z0≡ j1δ;1δ̄i1;

JPC ¼ 2þþ∶ X2≡ j1δ;1δ̄i2; ð2Þ

which specifies the full multiplet of Σþ
g S-wave states, is

written with the total δðδ̄Þ spin denoted by sδðsδ̄Þ, and with

the overall state total spin signified by an outer subscript.

When needed, 9j angular momentum recoupling coeffi-

cients may be used to transform these states to another spin

basis. For example, the transformation coefficients to the

basis of good total heavy-quark (QQ̄) and light-quark (qq̄0)
spins read

hðsqsq̄Þsqq̄0 ; ðsQsQ̄ÞsQQ̄; SjðsqsQÞsδ; ðsq̄sQ̄Þsδ̄; Si

¼ ð½sqq̄0 �½sQQ̄�½sδ�½sδ̄�Þ1=2
8

<

:

sq sq̄ sqq̄0

sQ sQ̄ sQQ̄

sδ sδ̄ S

9

=

;

; ð3Þ

with ½s�≡ 2sþ 1 denoting the multiplicity of a spin-s state.
Using Eqs. (2) and (3), one may write

JPC ¼ 0þþ∶ X0 ¼
1

2
j0qq̄0 ; 0QQ̄i0 þ

ffiffiffi

3
p

2
j1qq̄0 ; 1QQ̄i0;

X0
0
¼

ffiffiffi

3
p

2
j0qq̄0 ; 0QQ̄i0 −

1

2
j1qq̄0 ; 1QQ̄i0;

JPC ¼ 1þþ∶ X1 ¼ j1qq̄0 ; 1QQ̄i1;

JPC ¼ 1þ−∶ Z ¼ 1
ffiffiffi

2
p ðj1qq̄0 ; 0QQ̄i1 − j0qq̄0 ; 1QQ̄i1Þ;

Z0 ¼ 1
ffiffiffi

2
p ðj1qq̄0 ; 0QQ̄i1 þ j0qq̄0 ; 1QQ̄i1Þ;

JPC ¼ 2þþ∶ X2 ¼ j1qq̄0 ; 1QQ̄i2: ð4Þ

Further specifying the chosen combination of fu; d; sg
light-quark flavors enlarges this set. For example, consid-

ering combinations of fu; dg alone expands the set to 12

states: 6 each with I ¼ 0 and I ¼ 1, but which nonetheless

maintain spin structures in the forms of Eqs. (2) or (4). For

the purposes of this work, we identify states solely based

upon total JPC, effectively ignoring the fine structure due to
isospin. Additionally, we separately examine unique flavor

combinations of light quarks: cc̄ss̄, cc̄qs̄, and cc̄qq̄0, where
henceforth q; q0 ∈ fu; dg. The only sources of SUð3Þflavor
dependence in these calculations arise through distinct

explicit diquark and meson masses.

All states considered within this work are accommodated

within the ground-state BO multiplet Σ
þ
g ð1SÞ, but it is

worth noting that Ref. [20] provides a classification of

states in higher multiplets such as Σþ
g ðnPÞ, as well as those

with excited-glue BO potentials such as Πþ
u .

III. DIABATIC MIXING FORMALISM

In this work, we begin with the same construction as in

the original dynamical diquark model [21]. That is, one

separates the light d.o.f. from the heavy d.o.f. by writing the

Hamiltonian as

H ¼ Kheavy þHlight ¼
p2

2μheavy
þHlight; ð5Þ

such that the Schrödinger equation now reads

�

p2

2μheavy
þHlight − E

�

jψi ¼ 0: ð6Þ

Under the current analysis, “light field” refers to either just

the glue fields (in the case of a δ-δ̄ state) or both glue and

exchanged light-quark fields (in the case of the meson-

meson states).

We now implement the Ansatz that the states defined in

Sec. II may appreciably mix with nearby meson-meson

thresholds sharing the same JPC quantum numbers, but

assume that the two types of states are clearly distinguish-

able away from the thresholds. Thus, one must determine

and solve the multichannel Schrödinger equation connect-

ing the δδ̄ states to such threshold states. We closely follow

the work of Ref. [30], which carries out this process using

conventional quarkonium rather than δδ̄ states. Applying

the diabatic expansion to the eigenstates of said

Schrödinger equation yields [30]

jψi ¼
X

i

Z

dr0ψ̃ iðr0; r0Þjr0ijξiðr0Þi; ð7Þ

where r0 denotes the separation of the heavy sources, r0 is a
freely set fiducial parameter, and jξii are eigenstates of the
light-field Hamiltonian. Inserting Eq. (7) into Eq. (6) and

applying hξjðr0Þj on the left-hand side produces

X

i

�

−
ℏ
2

2μi
δij∇

2 þ Vjiðr; r0Þ − Eδji

�

ψ̃ iðr; r0Þ ¼ 0; ð8Þ

with the diabatic potential matrix defined as

Vjiðr; r0Þ≡ hξjðr0ÞjHlightjξiðr0Þi: ð9Þ

We identify the i ¼ 0 term with δδ̄ states, and i > 0 terms

with meson-meson states.
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This result may be written more compactly in matrix

notation as

½Kþ VðrÞ�ΨðrÞ ¼ EΨðrÞ; ð10Þ

with the parameter r0 implicit. Neglecting interactions

between distinct meson-meson components, as is done

in analogous lattice-QCD studies [33], the potential matrix

then becomes

V ¼

0

B

B

B

B

B

B

@

Vδδ̄ðrÞ V
ð1Þ
mixðrÞ � � � V

ðNÞ
mixðrÞ

V
ð1Þ
mixðrÞ V

ð1Þ
M1M̄2

ðrÞ

.

.

.
.
.

.

V
ðNÞ
mixðrÞ V

ðNÞ
M1M̄2

ðrÞ

1

C

C

C

C

C

C

A

; ð11Þ

with the kinetic-energy operator expressed as

K ¼

0

B

B

B

B

B

B

B

B

@

− ℏ
2

2μδδ̄

− ℏ
2

2μ
ð1Þ
M1M̄2

.
.

.

− ℏ
2

2μ
ðNÞ
M1M̄2

1

C

C

C

C

C

C

C

C

A

∇2; ð12Þ

where omitted elements are zeros. Inspection of the i > 0

diagonal elements leads to the identification of V
ðiÞ
M1M̄2

ðrÞ as
simply being the energy associated with that of the pure

free ith meson-meson state. That is,

V
ðiÞ
M1M̄2

ðrÞ ¼ TM1M̄2
; ð13Þ

where

TM1M̄2
≡mM1

þmM̄2
: ð14Þ

For S-wave δδ̄ states, we identify Vδδ̄ðrÞ as the uncoupled
Σ
þ
g potential [20], with parameters that are calculated on the

lattice [34]. Thus, we parametrize

Vδδ̄ðrÞ ¼ −
α

r
þ σrþ V0 þmδ þmδ̄; ð15Þ

where α, σ, and V0 are 0.053 GeV · fm, 1.097 GeV=fm,

and −0.180 GeV, respectively. For each flavor sector, one

also requires values for the δ, δ̄ masses, and a correspond-

ing list of di-hadron thresholds with matching JPC quantum

numbers must be identified. One then needs only to

determine the appropriate form for the mixing potentials.

Reference [30] argues for a Gaussian form, which we also

adopt here. Explicitly,

jVðiÞ
mixðrÞj ¼

Δ

2
exp

�

−
1

2

½Vδδ̄ðrÞ − T
ðiÞ
M1M̄2

�2

ðρσÞ2
�

; ð16Þ

where σ is the same string-tension parameter as in the

Cornell-like potential of Eq. (15).Δ is a free parameter with

units of energy indicating the strength of the mixing, and ρ

is the radial scale for the level crossing [30].

It is a useful first exercise to consider this procedure for a

single threshold. The diabatic-potential matrix then reads

VðrÞ ¼
�

Vδδ̄ðrÞ VmixðrÞ
VmixðrÞ TM1M̄2

�

; ð17Þ

where we have replaced r with its magnitude, since all

relevant potentials at this stage depend solely upon the

diquark separation distance. The corresponding single-

threshold kinetic-energy operator becomes

K ¼

0

B

@

− ℏ
2

2μδδ̄

− ℏ
2

2μM1M̄2

1

C

A
∇2: ð18Þ

The diabatic-potential matrix eigenvalues [denoted V−ðrÞ
and VþðrÞ] and corresponding eigenvectors [jξ−ðrÞi and

jξþðrÞi] may be directly related to the δδ̄ and di-meson

threshold light-field eigenstates via a generic transforma-

tion matrix:

RðrÞ ¼
�

cos θðrÞ sin θðrÞ
− sin θðrÞ cos θðrÞ

�

; ð19Þ

such that

RðrÞVðrÞR†ðrÞ ¼ diagfV−ðrÞ; VþðrÞg: ð20Þ

Here, θ is identified as the mixing angle between the δδ̄

and meson-meson terms. Since RðrÞ diagonalizes VðrÞ,
one can deduce an expression for θ in terms of its matrix

elements [30]:

θðrÞ ¼ 1

2
arctan

�

2VmixðrÞ
TM1M̄2

− Vδδ̄ðrÞ

�

: ð21Þ

As an example, we plot θ for δðδ̄Þ ¼ cqðcq0Þ andM1M̄2 ¼
DD̄� in Fig. 1 using phenomenologically viable values ofΔ

and ρ [see Eq. (22)], as obtained below.

IV. RESULTS

A. cc̄qq̄0 Sector

To obtain values for the Δ and ρ parameters in the

mixing potentials, we fit them such that the lowest 1þþ

eigenvalue in the cc̄qq̄0 sector is near the measured value

mXð3872Þ ¼ 3871.7 MeV. Of course, a range of Δ, ρ value
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pairs achieves this result. Following the approach of

Ref. [30], we select a pair that produces the correct

asymptotic behavior for the single-threshold mixing angle

θðrÞ, as modeled in Fig. 1. Specifically, as supported by

unquenched lattice-QCD calculations [35], we require that

θ → π=2 rapidly for r > rc, the value at which the δδ̄

Cornell-like potential Eq. (15) crosses the M1M̄2 threshold

Eq. (14). According to Eq. (21), the Δ, ρ pair must also

produce the nonzero value θ ¼ π=4 at r ¼ rc, indicating a

nontrivial mixing of the δδ̄ and meson-meson components.

The specific values used here are

Δδδ̄ ¼ 0.300 GeV; ρδδ̄ ¼ 0.185 fm: ð22Þ

Again, these values are not unique, but rather serve as proof

of principle for the approach. The diquark mass is then the

only remaining free parameter, with its value taken as

reported in Ref. [25]:

mδ¼ðcqÞ ¼ mδ̄¼ðc̄ q̄Þ ¼ 1.9271 GeV: ð23Þ

One may then numerically solve Eq. (10) as a coupled

set of equations. We follow the procedure described in

Sec. IV. F of Ref. [30], solving for the lowest bound states.

The resulting eigenvalues and their corresponding state

mixtures are collected in Table I. Note the omission of a

JPC ¼ 1þ− entry in Table I as compared with Eqs. (2) or

(4); while the diabatic formalism allows for the formation

of C ¼ −1 eigenstates, the di-hadron thresholds alone

provide no mechanism to lift the degeneracy with the

1þþ eigenstate.
1
Notably, we find that the 1þþ eigenstate,

which we associate with Xð3872Þ, consists primarily of

DD̄� content (an idea known for quite some time, e.g.,

Refs. [4,18,36]), consistent with expectations given its

proximity to that threshold. In contrast, we find that the

other eigenstates (0þþ and 2þþ) are primarily of δδ̄ content.

Using the results of this formalism, it is also possible to

calculate certain transition rates, which, of course, provide

numerous predictions for comparison with experimental

results. Broadly accepted techniques for calculating the

decays of δδ̄ to QQ̄ states do not yet exist in the literature,

but until such methods are robustly developed, we can at

least perform exploratory studies using analogs of known

expressions. Here, we focus specifically on the radiative

transition of the JPC ¼ 1þþ eigenstate to J=ψ and ψð2SÞ.
For E1 and M1 transitions of states within the dynamical

diquark model, substantial work has already been per-

formed in Ref. [37]. There, a standard equation for E1

partial widths for the process i → γf is adapted to the case

of exotic-to-exotic transitions, and it may be recast for the

present case as

ΓE1ðn2sQQ̄þ1ðJqq̄ÞJ → n02sþ1ðL0ÞJ0 þ γÞ

¼ 4

3
CfiδsQQ̄s

0
QQ̄
Q2

δαjhψfjrjψ iij2E3
γ

E
QQ̄
f

M
QQ̄qq̄
i

; ð24Þ

where

Cfi ≡maxðJqq̄; L0Þð2J0 þ 1Þ
�

L0 J0 sQQ̄

J Jqq̄ 1

�

2

: ð25Þ

In this expression, α is the QED fine-structure constant, Eγ

is the photon energy (measured in the rest frame of the

decaying exotic initial state QQ̄qq̄ of mass M
QQ̄qq̄
i , in

which the conventional quarkonium final state QQ̄ recoils

with energy E
QQ̄
f ), and Qδ ¼ QQ þQq is the diquark

charge in units of proton charge (meaning that the diquark

is treated as a single quasiparticle coupling to the photon).

Furthermore, s
ð0Þ
QQ̄

denotes the total heavy-quark spin

eigenvalue for the initial (final) state, nð0Þ indicates the

principal quantum number for the initial (final) state, Jqq̄
(L0) represents the total angular momentum carried by the

light d.o.f. in the initial (final) state, and J (J0) is the total
angular momentum eigenvalue of the initial (final) state,

respectively.

The original form of Eq. (24) refers solely to E1

transitions between two states with the same two funda-

mental charged constituents, which together generate an

electric dipole moment. This expression is reasonable (and

indeed is commonly used) for conventional quarkonium,

albeit often including relativistic corrections that are out-

lined in Ref. [37]. However, several precarious assumptions

enter into the use of Eq. (24) for the transition of a δδ̄ to a

FIG. 1. The mixing angle θðrÞ [Eq. (21), using Eqs. (16) and

(22)] between δδ̄ ¼ cc̄qq0 and DD̄� in the 1þþ channel, as a

function of heavy-source radial separation r. The dashed line

shows the critical radius rc, i.e., the separation at which

Vδδ̄ðrÞ ¼ TDD̄� , using Eqs. (14), (15), and (23).

1
In the full dynamical diquark model, this degeneracy is lifted

by operators that couple to individual diquark spins [22,24].
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QQ̄ state. The first is the use of a diquark as a single

charged quasiparticle to which a photon couples; this

premise was explored in Ref. [37] along with alternative

hypotheses, such as the incoherent coupling of the photon

to the component quarks of the diquark, leading to different

Oð1Þ factors taking the place of Q2

δ in the analog to

Eq. (24). More significantly, however, Ref. [37] applied

Eq. (24) only to the case of transitions between two δδ̄

states, again treating the diquarks as single compact

quasiparticles. Applying it to δδ̄ → QQ̄ transitions is much

more questionable since, among other possible objections,

such a transition requires the annihilation of the qq̄ pair. At

minimum, Eq. (24) must at least be modified to accom-

modate the Okubo-Zweig-Iizuka (OZI) suppressed ampli-

tude qq̄ → g in this process. While a proper treatment of the

issue lies outside the scope of this work, we may at least

note that the magnitude ϵ of the OZI suppression is

expected to be significantly <1, and so ΓE1 of Eq. (24)

is diminished by a factor ϵ2. One may expect ϵ to depend

upon both the radial excitation number n of the initial state,

as well as the qq̄ spin state.

The most sensitive term to calculate in Eq. (24) is the

overlap jhψfjrjψ iij2 of the initial and final radial wave

functions weighted by r, the characteristic spatial separa-

tion of the heavy sources. Note especially that ψ i (ψf) is a

δδ̄ (QQ̄) state, so that computing this amplitude properly

certainly requires more than the simple evaluation of wave-

function overlap performed here. Recall that the full exotic

eigenstate in this analysis is taken to be a mixture of both δδ̄

and M1M̄2 components. However, the expected relative

separation of the mesons in the D0D̄�0 component of

Xð3872Þ is expected to be much greater than that of a pure

δδ̄ state. Explicitly, using the results of Table I, we find that

the D0D̄�0 component alone should have hri ¼ 5.092 fm,

in agreement with the crude estimate provided by the Bohr-

radius analog r ∼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2μEbind

p .
2
Conversely, the value of hri for

the pure δðδ̄Þ ¼ cqðc̄q̄0Þ component is only 0.361 fm. Since

the decays Xð3872Þ → γψ require the annihilation of the

light qq̄ pair in Xð3872Þ, one naively expects that the δδ̄

component should dominate in this process. Let us test this

expectation.

Once the fractional δδ̄ content in the 1þþ eigenstate is

known, onemay calculate the E1 partial width fromEq. (24).

Using the potential of Eq. (15) and numerical inputs for its

parameters given there, and adoptingmc ¼ 1840 MeV [30]

in place ofmδ, we compute the radial wave functions of J=ψ ,
ψð2SÞ, and χc1ð2PÞ treated as pure conventional charmo-

nium states. We also solve for the ð1SÞ δδ̄ ¼ cqðc̄ q̄Þ wave
function, which was an essential ingredient in Ref. [37].

Introducing these values into Eq. (24), we find

ΓE1½Xð3872Þ → γJ=ψ � ¼ 469ϵ2 keV;

ΓE1½Xð3872Þ → γψð2SÞ� ¼ 1.56ϵ2 keV; ð26Þ

while

ΓE1½χc1ð2PÞ → γJ=ψ � ¼ 20.8 keV;

ΓE1½χc1ð2PÞ → γψð2SÞ� ¼ 78.0 keV: ð27Þ

We note that the results of Eqs. (27) are comparable to the

predictions of 71 keV and 95 keV, respectively, from

Ref. [38] [which also uses Eq. (24), but with somewhat

different numerical values for the matrix elements].

On the other hand, Eq. (26) predicts (setting ϵ → 1) wildly

different Xð3872Þ radiative widths than the current PDG

averages [14], 10.1� 4.7 keV for J=ψ and 54� 25 keV for

ψð2SÞ. The PDG separately gives an average for their ratio,

R≡
Γ½Xð3872Þ → γψð2SÞ�
Γ½Xð3872Þ → γJ=ψ � ¼ 2.6� 0.6; ð28Þ

while the corresponding ratio from Eqs. (26), taking the two

values of ϵ equal, is only 3.3 × 10−3. Interestingly, this

number approximately equals an early estimate for R based

upon a molecular-model calculation using vector-meson

dominance [38]. However, a modern molecular-model cal-

culation employing an effective Lagrangian supports values

of R in a typical range of order several tenths [39], and these

predictions are numerically stablewhen a small admixture of

the conventional-charmonium state χc1ð2PÞ is included [40].

TABLE I. Calculated eigenvalues and component-state admixtures for the cc̄qq̄0 sector obtained from solving

Eq. (10) for specific JPC numbers. Also presented are the expectation values hri of the radial coordinate r

(corresponding to δ-δ̄ separation) as well as hr2i1=2 for each state. Suppressed entries indicate contributions that are

individually <1%.

JPC E (MeV) δδ̄ DD̄� DsD̄s D�D̄� D�
sD̄

�
s hri (fm) hr2i1=2 (fm)

0þþ 3905.4 63.0% 27.4% 8.4% 1.2% 0.596 0.605

1þþ 3871.5 8.6% 91.4% 4.974 5.459

2þþ 3922.3 83.1% 1.5% 13.9% 1.5% 0.443 0.497

2
The specific Oð1Þ coefficient in this expression arises from

using the literal Bohr radius for r. A different Oð1Þ coefficient
arises when computing hrmi1=m, but in any case one obtains a
result for Xð3872Þ of multiple fm.
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The origin of such a small predicted value for R in the

dynamical diquark model can be traced to the fact that the

δδ̄ component of Xð3872Þ is a ground-state (n ¼ 1) radial

mode like J=ψ , while χc1ð2PÞ is a first-excited (n ¼ 2)

radial mode like ψð2SÞ. Indeed, our calculated idealized δδ̄
wave function has almost exactly the same size as our

calculated cc̄ J=ψ wave function, leading to almost

complete overlap and a large transition to J=ψ . In a more

realistic treatment including a finite diquark ðcqÞ size [22],
one expects this overlap enhancement to be muted.

Nevertheless, one still expects the phase-space advantage

of J=ψ over ψð2SÞ to generate a rather small R value in this

model. If a value of R substantially larger than 1 persists in

the data, we conclude that one must have some underlying

preferential coupling to ψð2SÞ over J=ψ, from a significant

χc1ð2PÞ component in Xð3872Þ, from an enhanced ratio of

ψð2SÞ to J=ψ effective-theory couplings as suggested in

Ref. [39], or from an enhanced wave-function overlap of δδ̄

to the spatially larger ψð2SÞ state.
The overall size of the prediction for Γ½Xð3872Þ →

γJ=ψ � from the first of Eqs. (26) also points to the

necessity of ϵ being no larger than about 1=6, which is

not an unreasonable expectation for an OZI-suppressed

amplitude.

Last, in a model for Xð3872Þ with not just δδ̄ but also

D0D̄�0 components [and possibly χc1ð2PÞ as well], the full
value for its radiative decay widths can include contribu-

tions from more than one source. In that case, it becomes

crucial to determine the relative phase of each contribution,

since interference may be critical to obtaining a physically

accurate result. This effect in a mixed D0D̄�0-χc1ð2PÞ
model was considered in Ref. [40].

B. cc̄ss̄ and cc̄qs̄ Sectors

In the cc̄ss̄ sector, one encounters an additional free

parameter, the ðcsÞ diquark mass. We fix this mass so that

the 0þþ energy eigenvalue matches the Xð3915Þmass [14].

This choice produces the result

mδ¼ðcsÞ ¼ mδ̄¼ðc̄ s̄Þ ¼ 1.9450 GeV: ð29Þ

Note that this value only slightly exceeds mδ¼ðcqÞ given in

Eq. (23), despite containing a heavier s quark; in particular, it
is substantially smaller than the value (2.080 GeV) obtained

from the analysis of Ref. [25], because that work (unlike

here) incorporates spin-splitting fine structure for the

Σ
þ
g ð1SÞ δδ̄ multiplet. The remaining eigenstates may then

be calculated and are presented in Table II. Remarkably, the

1þþ and 2þþ states exhibit rather little D
ð�Þ
ðsÞD̄

�
ðsÞ content,

while the 0þþ state shows significant mixing with DsD̄s.

The calculations for cc̄qs̄ states follow entirely from the

previously determined parameters and are presented sep-

arately in Table III. This sector in particular contains a

unique threshold structure, in that the D�D̄s and DD̄�
s

thresholds differ by less than 4 MeV, for each fixed value of

total charge for the meson pair. Our calculations show that

thresholds extremely close to each other tend to evenly

share state content (assuming that the allowed l quantum

numbers are the same).

In all three sectors, whenever δδ̄ðl ¼ 0Þ content domi-

nates, we furthermore find a preferential coupling to

S-wave meson-meson combinations over D-wave combi-

nations, even if the latter threshold is closer to the mass

eigenvalue. This result is exhibited by the cc̄qq̄02þþ,
cc̄ss̄1þþ, and cc̄qs̄2þ states. The cc̄qq̄02þþ state is the

most extreme of these, preferring to couple more strongly

to D�
sD̄

�
s over DsD̄s, despite the ∼280 MeV difference.

This behavior is further exhibited by the results for

individual thresholds; for example, in the 2þþcc̄qq̄0 state,
the distinct D�D̄� channels with l ¼ 0 and l ¼ 2 contrib-

ute 11.6% and 1.2%, respectively. The expected suppres-

sion associated with the near-orthogonal overlap of an S-

wave δδ̄ state and a D-wave meson-meson state provides a

natural explanation.

We also note that the expectation values hri (or hr2i1=2)
for each state increase with increasing meson-meson

TABLE II. The same as in Table I, for the cc̄ss̄ sector.

JPC E (MeV) δδ̄ DsD̄s D�D̄� DsD̄
�
s D�

sD̄
�
s hri (fm) hr2i1=2 (fm)

0þþ 3922.0 50.6% 39.9% 8.3% 1.2% 0.627 0.757

1þþ 3978.7 86.9% 1.5% 11.0% 0.421 0.470

2þþ 3998.7 95.2% 1.5% 3.3% 0.394 0.437

TABLE III. The same as in Tables I and II, for the cc̄qs̄ sector.

JP E (MeV) δδ̄ D�D̄s DD̄�
s D�D̄�

s hri (fm) hr2i1=2 (fm)

0þ 3983.5 93.2% 6.8% 0.397 0.440

1þ 3914.5 66.7% 16.5% 15.9% 0.482 0.548

2þ 3962.1 90.4% 1.8% 1.8% 6.0% 0.411 0.460
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content, consistent with predictions of hri for hadron

molecular states [41]. As discussed above, the 1þþcc̄qq̄0

state exhibits a several-femtometer value for hri, as is

expected for a pure DD̄� molecular state with a binding

energy of tenths of an MeV [41].

V. CONCLUSIONS

The introduction into a diquark-based model—in this

paper, the variant known as the dynamical diquark model—

of effects caused by the proximity of some of its eigenstates

to di-hadron thresholds creates a model for multiquark

exotic hadrons that combines the best features of both

diquark and hadron-molecular models. One universal

model can then incorporate exotic candidates that lie quite

close to such thresholds, but which still maintain a close

physical connection to other exotic candidates with no

obvious di-hadron interpretation.

Coupled-channel calculations between bound states and

thresholds have, of course, been carried out many times in

the past, originally in the context of atomic and molecular

physics, but more recently for exotic-hadron candidates as

well. The so-called diabatic approach used here earns

distinction as the natural (and rigorous) generalization of

the Born-Oppenheimer approximation used to compute the

unperturbed spectrum of heavy-heavy systems such as

quarkonium and its hybrid excitations, and in this work

for the first time to our knowledge, the diquark-antidiquark

states of the dynamical diquark model.

The precise functional form for the mixing potential

between unperturbed states and thresholds used here is

phenomenological in origin, but it is motivated by lattice-

QCD results involving the breaking of the color flux tube

between the heavy sources. Clearly, advances in lattice

simulations can be incorporated into improved future

calculations.

We find, using parameters from themost recent analysis in

the dynamical diquark model, that the famous Xð3872Þ can
naturally contain a dominant component of D0D̄�0 and yet

originate as the unique isosinglet 1þþ member of the lightest

multiplet of hidden-charm diquark-antidiquark states.

Masses of all the remaining members of the multiplet are

then predicted, along with their di-hadron content generated

by nearby thresholds. Since the original model has been

extended to study hidden-charm, hidden-strangeness, and

open-strange states as well, we also present calculations for

those flavor sectors. General results include the observation

that S-wave thresholds always produce larger effects thanD-

wave thresholds, even if the latter are substantially closer to

the mass eigenvalue, and that coincident di-hadron thresh-

olds with different arrangements of the light flavors in the

hadrons have comparable effects.

We also use our results on state content to calculate the

radiative decay widths for Xð3872Þ → γJ=ψ and γψð2SÞ,

which provides crucial information on the short-distance

components of Xð3872Þ, since its di-hadron component is

spatially much larger than that of its diquark-antidiquark

component. Interestingly, we obtain a γψð2SÞ width

much smaller than the current measured value, due not

just to the fact that the compact component amounts to

only about 10% of the full state, but also that the overlap

of the 1S diquark-antidiquark and 2S cc̄ states is small.

We conclude that obtaining the full radiative width may

require including a comparable contribution from the

diffuse di-hadron component, or even from a χc1ð2PÞ
component (which can also be included in the diabatic

formalism).

These initial calculations, while quite encouraging,

remain quite incomplete. First, no spin- or flavor-dependent

effects (besides explicit differences in the diquark mass)

have been incorporated into the unperturbed side of this

calculation. The Hamiltonian for the full dynamical diquark

model contains spin-spin and spin-isospin operators that,

for example, distinguish masses of Xð3872Þ, Zcð3900Þ, and
Zcð4020Þ. In this calculation, the only mass splittings arise

from the explicit differences of D
ð�Þ
ðsÞ masses. One major

future research thrust is the inclusion of explicit fine-

structure effects into the initial unperturbed states.

A second possible improvement involves the treatment

of the threshold contribution. Di-hadron molecular models

have been alluded to several times in this paper, but the

actual treatment of the di-hadron state uncoupled from the

diquark-antidiquark state, according to Eq. (14), is simply

that of two free hadrons. Should it be desirable to regard the

pair as forming a true di-hadron molecule, then directly

replacing Eq. (14) with a mildly attractive (e.g., meson-

exchange) potential would be straightforward in this

formalism.

Finally, the diabatic formalism as presented here strictly

applies only to states either below or not too far above

significant di-hadron thresholds. Some of the exotic can-

didates [e.g., Zcð4430Þ] lie rather far from relevant thresh-

olds, and consequently have large decay widths. Such

broad resonances should properly be treated as poles in di-

hadron scattering amplitudes. However, the diabatic for-

malism has been developed, in the case of mixing with

conventional quarkonium, to include the calculation of

strong decay widths [31] and di-hadron scattering ampli-

tudes [42]. These methods can be immediately adapted to

the case of mixing with diquark-antidiquark states, and will

also be incorporated into future work.
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Phys. Rev. D 92, 114019 (2015).

[35] Z. Prkacin, G. Bali, T. Dussel, T. Lippert, H. Neff, and

K. Schilling, Proc. Sci. LAT2005 (2006) 308 [arXiv:hep-lat/

0510051].

[36] Y. Yamaguchi, A. Hosaka, S. Takeuchi, and M. Takizawa,

J. Phys. G 47, 053001 (2020).

[37] J. Gens, J. Giron, and R. Lebed, Phys. Rev. D 103, 094024

(2021).

[38] E. Swanson, Phys. Lett. B 598, 197 (2004).

[39] F.-K. Guo, C. Hanhart, Y. S. Kalashnikova, U.-G. Meißner,

and A. Nefediev, Phys. Lett. B 742, 394 (2015).

[40] E. Cincioglu and A. Ozpineci, Phys. Lett. B 797, 134856

(2019).

[41] Y.-R. Liu, X. Liu, W.-Z. Deng, and S.-L. Zhu, Eur. Phys.

J. C 56, 63 (2008).

[42] R. Bruschini and P. González, Phys. Rev. D 104, 074025

(2021).

DIABATIC REPRESENTATION OF EXOTIC HADRONS IN THE … PHYS. REV. D 106, 074007 (2022)

074007-9


