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Abstract—In this paper, we prove a compressive sensing
guarantee for restricted measurement domains on the rotation
group, SO(3). We do so by first defining Slepian functions on a
measurement sub-domain R of the rotation group SO(3). Then,
we transform the inverse problem from the measurement basis,
the bounded orthonormal system of band-limited Wigner D-
functions on SO(3), to the Slepian functions in a way that limits
increases to signal sparsity. Contrasting methods using Wigner
D-functions that require measurements on all of SO(3), we show
that the orthogonality structure of the Slepian functions only
requires measurements on the sub-domain R, which is select-
able. Due to the particulars of this approach and the inherent
presence of Slepian functions with low concentrations on R, our
approach gives the highest accuracy when the signal under study
is well concentrated on R. We provide numerical examples of
our method in comparison with other classical and compressive
sensing approaches. In terms of reconstruction quality, we find
that our method outperforms the other compressive sensing
approaches we test and is at least as good as classical approaches
but with a significant reduction in the number of measurements.

Index Terms—Compressive Sensing, Antenna Metrology,
Slepian Functions.

I. INTRODUCTION

IN antenna design and metrology, characterization of an
antenna’s (or antenna array’s) far-field radiation profile is

of the utmost importance. This is especially true as 5G and
beyond devices are developed with increasing power, control-
lability, and potential for secondary lobes to damage other
devices when in high power regimes [1]. While numerical
simulations give an ideal view of a device under test (DUT)
far-field profile, it is often necessary to physically characterize
this far-field profile to ensure manufactured devices actually
meet design requirements. The now-canonical approach to
characterizing a DUT far-field profile is termed spherical near-
field to far-field (NF2FF) transformation [2], which allows
near-field measurements to be transformed to a far-field char-
acterization. Unfortunately, measurements for characterizing
DUTs are very time-consuming and require large amounts of
data, especially when higher frequencies like those used in
5G technology are involved [2]–[4]. Adding to the challenge,
physical limitations of the measurement apparatus can prohibit
measurements from being taken in certain regions of space.
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For example, when a DUT is placed on a support structure
with its main beam pointing up, it may not be possible to
accurately measure the bottom portion of the near field.

Spherical NF2FF characterizations use near-field measure-
ments on a sphere enclosing the DUT to determine its field
expansion coefficients in the band-limited spherical wave-
function (SW) basis. When characterizing electromagnetic
(EM) devices, vector SWs are used, and when characterizing
an acoustic device like a loudspeaker, scalar SWs are used (in-
air acoustics require only p-waves). The coefficients in these
bases are sometimes called spherical mode coefficients. With
these coefficients in hand, it is possible to determine the far-
field radiation profile. A common and accurate sampling ap-
proach for spherical NF2FF transformations is the equiangular
sampling pattern with fixed polar and azimuthal step sizes [2],
[5]. This approach uses classic Nyquist theory. In the best case,
using a probe that is only sensitive to the lowest SW modes (a
µ = ±1 probe for EM applications, or an axisymmetric µ = 0
probe in acoustics), the Nyquist-based approach requires a
number of measurements that is quadratic in the band-limit [2].
Even more measurements are needed for high accuracy in
the presence of noise. Interestingly, this method can cope
with restricted measurement regions [2], [6]. In particular, the
Nyquist-based method copes with measurement restrictions
by using measurements from available positions and padding
the remainder of the sphere with zeros. The cost of this zero
padding is that the field reconstruction is accurate only in a
subset of the measured region [2], [6]. However, this approach
can still require many measurements and the need to pad with
zeros in unmeasurable regions is highly unfavorable [7], [8].

Compressive Sensing (CS) has proved to be a powerful tool
for reducing the number of measurements needed to acquire
signals, provided they are sparse [9]–[15]. Sparse signals are
those that, in some representation, contain a small number
of nonzero values. It is well-known that the SW coefficients
tend to be sparse and concentrated near the bottom end of
the band when the coordinate system for the SWs is centered
on the phase center of the DUT [3], [16]. Thus, when there
are no measurement restrictions, CS-based random sampling
offers a way to reduce the number of measurements needed
for accurate field reconstructions [3], [4], [16]–[19]. However,
none of the recent work in this vein has developed an approach
that accounts for measurement restrictions. Motivated by CS in
NF2FF characterizations, in this paper, we develop a general
theory for CS that allows for measurements to be taken on
a restricted domain and can give field reconstructions within
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that measured region1.
Every CS recovery problem involves a measurement matrix

relating the observed data to the unknown vector of interest.
When this matrix satisfies certain conditions, one can ensure
that CS recovery algorithms such as quadratically constrained
basis pursuit (QCBP), a form of `1 minimization, will achieve
accurate and robust recovery. Satisfying the Restricted Isome-
try Property (RIP) [15] is one well-known sufficient condition
for a measurement matrix. An important class of measurement
matrices that satisfy the RIP are matrices generated by random
sampling in a Bounded Orthonormal System (BOS). Letting
{fj(x)} denote a set of uniformly bounded orthonormal
functions, taking random samples at locations {xi} yields a
measurement matrix with entries Φij = fj(xi). In such a
setting, the number of measurements to guarantee accurate
CS recovery scales with the square of the uniform bound.
Much work has been devoted to showing that certain classes
of special functions can be used as BOSs [14], [19]. The most
important of these special functions for NF2FF characteriza-
tions is the band-limited Wigner D-functions [19].

When collecting measurements for NF2FF characteriza-
tions, the measurements must be corrected for the probe’s
response to the incident field (probe correction). Thus, these
measurements are taken in the probe’s coordinate system. As
a result, the measurements can be represented as a series
of Wigner D-functions whose coefficients are a combination
of the transformation constants and the SW coefficients [2];
see Section II-A. The Wigner D-functions are an irreducible
representation of the rotation group SO(3) [20]; their argu-
ments represent the position on the sphere and the polarization
angle for a measurement. In [19], Bangun et al. showed that
with a sufficient number of measurements, the measurement
matrix created from the BOS of band-limited Wigner D-
functions satisfies the RIP with high probability. That work
put CS for NF2FF on a solid theoretical footing. However,
since the domain for the Wigner D-functions is all of SO(3),
the theoretical guarantee in [19] holds only when one is able
to collect random measurements from the entire domain. For
cases involving device support structures or other exclusions,
there is as of yet no guarantee that CS can be applied to
measurements restricted to a portion of a sphere.

A. Approach and Contributions

In this work, we avoid the limitations present when using the
Wigner D-functions by transforming the measurement basis
to a different set of bounded orthonormal functions on the
rotation group, namely, a certain set of Slepian functions.
Slepian functions were originally studied as the solution to
the spectral concentration problem [21]–[24], i.e., the problem
of finding the functions within a certain band-limit that are
maximally localized to a spatial (or temporal) region, R.
More recently, Slepian functions have been used in various
areas of signal processing, from novel wavelet constructions
[25] to new tools in signal representation on the sphere [26],

1Sections II to IV provide the general derivations and statements of results.
Due to their technical nature, proofs are provided as supplementary material.

[27]. Slepian functions form an orthogonal basis for band-
limited L2 functions on their full domain D as well as on
R ⊂ D [24]. In this paper, we show this latter property enables
CS recovery guarantees from measurements on a restricted
domain R. However, this benefit comes at a cost. Ensuring
the unit normalization of the Slepian functions on R increases
their uniform bound, particularly due to “trailing” Slepian
functions which are poorly localized to R. This problem can
be mitigated, though, if the signals one wishes to recover using
CS are reasonably localized to the measurable domain R.

Mathematically, the approach we take to theoretically guar-
antee CS recovery on the restricted domain R is as follows.
We begin with the full SO(3) CS problem,

w = Φa+ η, (1)

where w is the vector of measurements of a function
w(α, β, γ) on SO(3), Φ ∈ CM×N with M < N is the
measurement matrix of the band-limited Wigner D-functions
sampled at the corresponding locations (α, β, γ), and a is the
vector of coefficients for the band-limited Wigner D-function
series. The direct CS approach to this problem, as done in
[19], requires collecting enough random measurements from
SO(3) and then using QCBP (`1 minimization) to solve for
the coefficient vector a. The need for random measurements
from SO(3) derives from the fact that the Wigner D-functions
are a bounded orthonormal basis for SO(3) and CS theory
for BOSs requires measurements from the full domain of
orthogonality [19]. As such, the problem in (1) is not viable
for CS when the measurements are limited to R ⊂ D.

To avoid this orthogonality problem, we derive an invertible
transformation matrix, V , that maps Φ into a new measurement
matrix Φ′ containing Slepian functions on SO(3):

w = ΦV −1V a+ η = Φ′a′ + η. (2)

The Slepian basis in Φ′ = ΦV −1 is orthogonal on R as well
as on SO(3) and a′ = V a. Moreover, if R is a latitudinal belt
on SO(3) where only the polar angle of the measurements
is restricted, the Slepian functions are bounded similar to
the Wigner D-functions but with a factor λ ∈ (0, 1) of
the Slepian concentration in the denominator. Importantly,
due to symmetry in the azimuthal and polarization angles of
measurement, we show that when V is applied to a, it has a
bounded effect on increasing the sparsity level of the problem.

Due to the factor λ of the concentration, the bound on the
Slepian basis in Φ′ can become too large for CS guarantees
to be practical because there are Slepian functions whose
concentration is near zero. To avoid this, we partition the
basis into two sets: one set, Φ′1, containing the Slepian
functions with large concentrations on R and the other set,
Φ′2, containing Slepian functions with small concentrations on
R. This partitioning re-expresses (2) as

w = Φ′1a
′
1 + Φ′2a

′
2 + η. (3)

In cases where w(α, β, γ) has little energy in the complement
of R, Rc, we can bound the contribution of Φ′2a

′
2 and group

it with the noise term η. This results in the formulation

w = Φ′1a
′
1 + η′, (4)
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where a′1 are the coefficients of the Slepian functions in Φ′1
and η′ = η + Φ′2a

′
2 is a noise term bounded by the sum

of the noise η and the energy of the w(α, β, γ) in Rc, the
unmeasurable part of SO(3). Thanks to the uniform bound
and orthonormality on R of the Slepian functions in Φ′1, this
new CS problem can be solved using standard guarantees for
BOSs with measurements only taken on R. We emphasize that
this partitioning of the problem implies that solutions to this
inverse problem will, like classical zero padding, only estimate
field values well within R; values in Rc are not assumed to
be correct.

In practice, for functions well-localized on the measurable
domain R, our approach is very competitive against other
methods. Numerical experiments show that it is possible to
achieve similar CS enabled reductions in measurements as
were seen over the full domain in [19]. In particular, our exam-
ple shows that using only around 60% as many measurements
as the classical restricted FFT method results in similar or
even better reconstruction performance and does not require
an equiangular sampling pattern. Moreover, when compared to
various ad hoc restricted measurement adaptations of the work
in [19], our method performs better when the measurement
restrictions are sizable. In contrast, when measurements can be
taken over all of or nearly all of the domain, CS using Wigner
D-functions as in [19] is more favorable. This difference in
performance is due to the difference in approach when con-
structing the Slepian function BOS on SO(3), which prioritizes
the control of function orthogonality at the cost of an increased
function bound. However, it is this control over orthogonality
relations when using Slepian functions that enables theoretical
recovery guarantees and practical gains in terms of the required
number of measurements in the restricted measurement cases.

B. Notation

In this paper, we use the following notation and conventions.
The sum

∑nmax

n,m,µ is used to mean
∑nmax

n=n0

∑n
m=−n

∑n
µ=−n,

where n0 = 1 for EM applications and n0 = 0 for acoustics
applications. We use i =

√
−1 as the unit imaginary number.

An over-line represents complex conjugation, e.g., a. We
represent the Hermitian conjugate of a vector or matrix with
a ∗, e.g., a∗ = aT , where T denotes the transpose. The norm
‖ · ‖p with p ≥ 1 is the standard `p vector norm. ‖a‖0 is
the `0 “norm” counting the number of nonzero entries in a
vector a. ‖ · ‖∞ is either the `∞ or L∞ norm, which should
be discernible from the context. As usual, for a vector a,
‖a‖∞ = maxi(|ai|), and for a function f , ‖f‖∞ = inf{c ≥
0 : |f(x)| ≤ c for almost every x}. For Euler rotations, we
use the zyz′ and passive transformation conventions. U(a, b)
is the uniform distribution on the interval [a, b]. We use i.i.d.
to abbreviate independently and identically distributed.

II. BACKGROUND

A. Near Field to Far-field Antenna Measurements

One of the main approaches to characterize a DUT far-field
radiation pattern is to use a spherical NF2FF transformation. In
the NF2FF transformation, near-field measurements are taken
on a sphere enclosing the DUT and used to solve for SW

coefficients in a band-limited SW series. In theory, an infinite
series expansion for DUT’s field should be used. In practice,
terms above a band-limit, nmax, are so small that they can be
ignored. In EM, this band-limit is imposed by the antenna’s
electrical size and typically set to nmax = kra+10, where k is
the wavenumber of the emitted radiation and ra is the radius
of the smallest sphere circumscribing the radiating parts of the
antenna. A similar procedure is used in acoustics. Once the
expansion coefficients up to nmax are determined, the radiated
field of the DUT can be computed anywhere outside of the
minimum circumscribing sphere.

In EM applications it has become recognized that the SW
coefficients are sparse/compressible when an antenna’s phase
center coincides with the center of the near-field measurement
sphere and the antenna’s main beam is properly oriented [3],
[16]. When the DUT field is measured, however, the SW
coefficients are not measured directly. Instead, if multiple
scattering is negligible, the probe’s response to the incident
field is measured. This response is related to the original field
SW coefficients by rotation and translation transformations as
well as probe correction if a non-ideal probe is used [2], [5].
With a fixed translation distance, this transformation results in
a series of Wigner D-functions. Thus, the quantity measured
is,

wj = w(αj , βj , γj) =

nmax∑

n,m,µ

amµn Dµm
n (αj , βj , γj) + ηj , (5)

where j indexes the measurement position (αj , βj , γj) ∈
SO(3), ηj is additive measurement noise, and Dµm

n (α, β, γ)
are the Wigner D-functions with indices satisfying n ∈
{0, 1, · · · , nmax} and m,µ ∈ {−n,−n+ 1, · · · , n− 1, n}.

The transformations described above result in the se-
ries coefficients amµn being a product of the SW coeffi-
cients, the translation transformation, and the probe’s receiv-
ing coefficients. This product takes the form of amµn =∑νmax

ν=ν0
Amn B

µ
n,νR

µ
ν , where the Amn are the SW coefficients,

Bµn,ν contains the translation transformation information, Rµν
are the receiving coefficients of the probe, and ν0 = |µ| 6= 0
and ν0 = |µ| for EM and acoustics SWs, respectively. If
an ideal probe is used, then the receiving coefficients are
proportional to the Kronecker delta function. Typically, one
chooses a probe as close to ideal as possible and thus, non-
ideal probes are electrically small with a significant amount of
rotational symmetry, i.e., Rµν ≈ 0 for νmax & 10 and |µ| & 1.
Consequently, the amµn will be sparse/compressible if Amn
coefficients are sparse. Thus, the spherical NF2FF problem is
an inverse problem that might be solved using CS. Specifically,
if we first recover the Wigner D-function coefficients using
CS, the SW coefficients can be readily estimated. As a note,
even if a slightly non-ideal probe is used, CS should be viable
with increases in the number of measurements. This is because
the effect will be to moderately increase the sparsity level
of the amµn because non-ideal probes have nonzero receiving
coefficients for higher µ.

In the above, the Wigner D-function is defined by

Dµm
n (α, β, γ) = (4π2)−1/2e−iµαdµmn (β)e−imγ , (6)
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where dµmn is the real Wigner d-function defined by

dµmn (β) =(−1)µ−m
√

(2n+ 1)/2

×
√

(n+m)!(n−m)!(n+ µ)!(n− µ)!

×
min(n+m,n−µ)∑

σ=max(0,m−µ)

ξσ,

ξσ =
(−1)σ

(
cos β2

)2n−2σ+m−µ (
sin β

2

)2σ−m+µ

σ!(n+m− σ)!(n− µ− σ)!(µ−m+ σ)!
.

(7)

The normalization factors (4π2)−1/2 and
√

(2n+ 1)/2 are
chosen for later convenience.

The arguments of the Wigner D-function, (α, β, γ) ∈
[0, 2π) × [0, π] × [0, 2π), are the Euler angles representing
a measurement position on SO(3). The Wigner D-functions
with n ≤ nmax form an orthonormal basis for band-limited
functions in L2(SO(3)) and satisfy the orthonormality relation

〈Dµm
n , Dµ′m′

n′ 〉SO(3) = δnn′δmm′δµµ′ , (8)

where δnn′ is the Kronecker delta function. Here, 〈f, g〉SO(3)

is the L2 inner product of two functions f and g on SO(3),

〈f, g〉SO(3) =

∫

SO(3)

f(α, β, γ)g(α, β, γ)dSO(3), (9)

with dSO(3) = sin βdαdγdβ. The inner product on a subset
R of SO(3) and its compliment Rc are defined as

〈f, g〉R =

∫

R

f(α, β, γ)g(α, β, γ)dSO(3) (10)

and
〈f, g〉Rc =

∫

Rc

f(α, β, γ)g(α, β, γ)dSO(3), (11)

respectively, and will be needed later in the paper. Each of
these inner products have an associated norm, ‖f‖2SO(3) =

〈f, f〉SO(3), ‖f‖2R = 〈f, f〉R, and ‖f‖2Rc = 〈f, f〉Rc .
It is important for future calculations to note that the band-

limited Wigner D-functions are uniformly bounded [19],

sup
0≤n≤nmax
µ,m∈−n,··· ,n

∥∥∥
√

sinβDµm
n (α, β, γ)

∥∥∥
∞
≤ C(2nmax + 1)1/4

≤ C ′N1/12
D , (12)

for some constants C > 0 and C ′ > 0. In (12) ND as the
number of band-limited Wigner D-functions with band-limit
nmax and is given by

ND = (nmax + 1)(2nmax + 1)(2nmax + 3)/3. (13)

Casting (5) as [19] does for the CS problem we obtain

w = Φa+ η, (14)

where a known set of M measurements {wj} at positions
{(αj , βj , γj)} is denoted by the vector w with entries wj and
the elements of the measurement matrix Φ ∈ CM×ND are

[Φ]jk = D
µ(k)m(k)
n(k) (αj , βj , γj) (15)

with j ∈ {1, 2, · · · ,M} and k ∈ {1, 2, · · · , ND}. In (14),
a ∈ CND is the vector of correspondingly ordered coefficients

amµn and η is the vector of additive measurement noise. The
results in [19] show that if the samples are selected uniformly
at random according to, αj ∼ U(0, 2π), βj ∼ U(0, π), γj ∼
U(0, 2π), and the number of measurements, M , satisfies

M ≥ C̃N1/6
D s ln3(s) ln(ND) (16)

for some constant C̃ > 0, then, after a preconditioning step,
standard CS guarantees for BOSs apply. Here, s is the sparsity
of the coefficient vector, a.

For the inverse problem in (14), the theoretical guarantee
in [19] requires measurements to be taken at arbitrary positions
on all of SO(3). However, many measurement configurations
leave parts of SO(3) inaccessible. As an example, certain
measurement systems have the antenna placed on a support
structure with its main lobe pointing up. In such a setup,
any values of α and γ are available to measure, but certain
values or intervals of β are not. Our work in Section IV-B
shows that such restrictions on measurement positions do not
invalidate the use of QCBP and its associated CS guaran-
tees. However, restrictions do invalidate the bound on the
number of measurements needed for reconstruction in [19].
This invalidation is because restricting measurement positions
prohibits uniform sampling of the measure associated with the
preconditioned Wigner D-function BOS. As a note, [19] and
other similar papers, e.g. [28], also perform CS by testing
with specific sampling grids or by minimizing the coherence
of the measurement matrix. Such methods can be used with
a restriction to measurements from R, but we emphasize
that these methods still would not provide the theoretical
guarantees we seek.

Generally, we can think of the restriction above as limiting
β to a range from Θ1 to Θ2. This is sometimes known as a
latitudinal belt when considering a sphere instead of SO(3),
but we will use the same name. The latitudinal belt is the
particular form of restricted measurements we consider in this
paper. We show that restriction to a latitudinal belt requires
a change of the basis from the Wigner-D functions to a
related set of Slepian functions on SO(3). This change of
basis does increase the coefficient sparsity level slightly, but
it does so in a bounded way by only transforming within
special fixed subspaces of Wigner D-functions. Although the
transformation allows us to show that CS guarantees hold,
the required number of measurements increases by a factor
proportional to the square of the dimension of the largest fixed
subspace.

B. Slepian Functions on the Rotation Group

1) Concentration on a general sub-domain: The spectral
concentration problem gives rise to Slepian functions on a
domain [21]–[24]. These special functions are an orthogonal
basis for band-limited L2 functions on their entire domain and
on the subset of the domain to which they are space-limited.
This property is of particular interest in our setting because
measurements of the field are not on all of SO(3) but instead
on a subset of SO(3).

Though frequently constructed on the domain R, recent
work has shown that Slepian functions can be constructed on
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more complex domains like the sphere [24]. This work showed
that using a basis for L2 functions on the entire domain,
one can construct Slepian functions concentrated on a chosen
sub-domain. Using this approach, we develop Slepian func-
tions concentrated on a latitudinal belt on SO(3) using only
Wigner D-functions. Mathematically, we formulate a matrix
problem that maximally concentrates linear combinations of
band-limited Wigner D-functions on R ⊆ SO(3). We call
the resulting functions the Rotation Group Slepian Functions
(RGSFs) and denote them by g1, g2, . . . , gN ∈ L2(SO(3)).
Importantly, the RGSFs can be shown to satisfy a uniform
bound that is useful for CS recovery.

The requirements of band-limitedness and L2 integrability
imply that each of the RGSFs has an expansion of the form

gi(α, β, γ) =

nmax∑

n,m,µ

g̃µmin Dµm
n (α, β, γ), (17)

where the coefficients g̃µmin are unknown. To find these co-
efficients (subject to orthogonality with all gj , j < i), the
following optimization problem is solved iteratively over the
index i:

maximize
g̃µmin ∈C

λi

subject to




λi =

‖gi‖2R
‖gi‖2SO(3)

,

0 = 〈gi, gj〉SO(3), ∀j < i ≤ ND.

(18)

This optimization problem can be viewed as maximizing the
concentration of gi on R relative to all of SO(3) while
ensuring the entire set of gi are mutually orthogonal on SO(3).
Substituting (17) into (18) and using (8) we find

λi =

∑nmax

n′,µ′,m′ g̃
µ′m′
in′

∑nmax

n,µ,m〈Dµm
n , Dµ′m′

n′ 〉Rg̃µmin∑nmax

n,µ,m g̃
µm
in g̃µmin

. (19)

We recognize (19) as the equivalent matrix equation

λi =
g∗iDgi
g∗i gi

(20)

where the elements of the matrix D ∈ CND×ND are inner
products between Wigner D-functions on the domain R,

[D ]jk = 〈Dµ(k)m(k)
n(k) , D

µ′(j)m′(j)
n′(j) 〉R, (21)

and the vector gi has the coefficients g̃µmin correspondingly ar-
ranged according to the ordering functions n(j), µ(j), m(j).
Furthermore, iteratively solving (18) is equivalent to iteratively
solving the constrained maximum eigenvalue problem

maximize
gi∈CND

λi subject to

{
λigi = Dgi,

0 = g∗jgi, ∀j < i ≤ ND.
(22)

From (21) and (18) D is Hermitian and positive definite,
respectively. This implies D has a spectral decomposition with
orthonormal eigenvectors and, by construction, the associated
eigenvalues satisfy 1 > λ1 ≥ λ2 ≥ · · ·λND > 0. It follows
that the solution (18), and thus the set of RGSFs, is given by
the eigenvalues and associated eigenvectors of D . Importantly,

the RGSFs are orthogonal over both SO(3) and R (see ?? for
the derivation), i.e.,

〈gi, gi′〉SO(3) = δii′ (23)

and
〈gi, gi′〉R = λiδii′ . (24)

The above derivation is general and works for any region
R. Before specializing the choice of R to a latitudinal belt,
we make several remarks.

Remark 1. As shown in (18), the eigenvalue associated with
each RGSF measures the degree to which it is localized to R.
So we expect the RGSFs with eigenvalues close to unity to
be well localized on R and the RGSFs with eigenvalues near
zero to be more localized on Rc.

Remark 2. The total number of RGSFs is always ND and
does not depend on R. However, the number of RGSFs highly
concentrated on R (i.e., λi near unity) does depend on the
selection of R.

Remark 3. Similar to how we can expand the RGSFs in
Wigner D-functions, we can expand the Wigner D-functions
in the RGSFs. This is because both sets of functions form a
basis for band-limited functions in L2(SO(3)).

2) Concentration on a latitudinal belt: We are interested in
the case when measurements are limited to a latitudinal belt,
so we set the restricted region to be R = [0, 2π)× [Θ1,Θ2]×
[0, 2π) with 0 ≤ Θ1 < Θ2 ≤ π. Under this restriction, using
(6), and since the dµmn are real, the elements of the matrix D
reduce to

[D ]jk = δm(k)m(j)δµ(k)µ(j)

×
∫ Θ2

Θ1

d
µ(k)m(k)
n(k) (β)d

µ(j)m(j)
n(j) (β) sinβdβ.

(25)

Thus, there exists an indexing such that D has a block diagonal
structure,

D = diag
(
D00,D01,D0−1,D10, · · · ,D−nmax−nmax

)
(26)

with

[Dµm]jk =

∫ Θ2

Θ1

dµmn(k)(β)dµmn(j)(β) sinβdβ. (27)

The matrix D will have a total of (2nmax + 1)2 blocks and
each block has a dimension of nmax−nmin +1, where nmin =
max(|m|, |µ|).

From (25), the block diagonal structure arises due to the
presence of the full α and γ ranges. This makes [D ]jk zero
unless the matrix pairs functions that belong to the same fixed
µ, m subspace Smµ. Specifically, Smµ can be defined as,

Smµ = span {Dµm
n (α, β, γ) : n ∈ {nmin, · · · , nmax}} ,

(28)
where m, µ ∈ {−nmax,−nmax + 1, · · · , nmax}.

Importantly, each of the sub-matrices Dµm are symmet-
ric and can be solved individually for their eigenvectors.
For convenience and to maintain awareness of the subspace
Smµ, we change notation and label the eigenvectors with
their associated m, µ values and order them according to
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decreasing eigenvalues within Smµ. That is, the eigenvec-
tors and eigenvalues are gµmi and λµmi , respectively, where
i ∈ {1, · · · , nmax − nmin + 1}, µ, m ∈ {−nmax,−nmax +
1, · · · , nmax}, and λµm1 ≥ λµm2 ≥ · · · ≥ λµmnmax−nmin+1. To
relate the two labeling schemes, if we take all gµmi and order
them according to decreasing eigenvalues, we get the original
labeling gi with i ranging from 1 to ND.

The eigenvectors of each Dµm give the expansion coef-
ficients for the RGSFs in Smµ. Similar to the eigenvectors,
we will re-index the RGSFs by m and µ and their order in
concentration within Smµ. Since the eigenvectors gµmi only
involve the fixed Smµ subspace we can rewrite (17) as

gµmi (α, β, γ) =

nmax∑

n=nmin

g̃µmin Dµm
n (α, β, γ) (29)

with the inverse relation given by (see supplementary material
?? for derivation)

Dµm
n (α, β, γ) =

nmax−nmin+1∑

i=1

g̃µmin gµmi (α, β, γ), (30)

where i ∈ {1, · · · , nmax − nmin + 1} and m, µ ∈
{−nmax,−nmax+1, · · · , nmax}. Importantly, due to the max-
imum dimension of any Smµ, the RGSFs satisfy the following
uniform bound.

Proposition 1. Let R be the latitudinal belt defined by Θ1 and
Θ2, gµmi (α, β, γ) be the RGSF on R associated with the ith
eigenvalue of the matrix Dµm corresponding to the subspace
indicated by m and µ, S be the subset of band-limited RGSFs
on R with eigenvalues greater than or equal to λmin, and ND
be the total number of band-limited RGSFs on R. Then the
following holds:

sup
gµmi ∈S

∥∥∥∥∥

√
sinβ

λµmi
gµmi (α, β, γ)

∥∥∥∥∥
∞
≤ C ′′N1/4

D√
λmin

(31)

where C ′′ =
(

3
2

)1/6
C ′ and C ′ > 0 is from (12).

Proof : See supplementary material ??.
The construction of RGSFs on the latitudinal belt enables

CS recovery to remain viable on R. The particular selection
of R is such that the Dµm result in isolated rotations of
Wigner D-functions within each subspace Smµ. Moreover,
these subspaces have a maximum dimension nmax +1. There-
fore, even without explicitly knowing the eigenvectors, their
transformation does not grow the bound on the RGSFs too
large, and thus the construction is useful for CS recovery. This
is formalized in Proposition 1.

III. COMPRESSIVE SENSING GUARANTEES FOR
STRUCTURED MATRICES

Compressive sensing approaches to the inverse problems
presented in this paper rely on two key assumptions. First
is that the unknown vector of coefficients is sparse (having
many zero entries) or be compressible. Roughly speaking,
compressible means that a vector is well approximated by
a sparse vector. Work in [3], [16] has established that this
is indeed the case in the Wigner D-function basis for many

antennas of interest. The second assumption concerns the
choice of the measurement matrix Φ, which must allow for
efficient recovery of a sparse or compressible vector via
QCBP. To guarantee the recovery performance of QCBP, we
argue that the types of Φ we consider satisfy the RIP with
high probability. The relevant background on the RIP and
performance guarantees are given in the remainder of this
section.

Definition 2 (Best s-Sparse Approximation Error [15, p. 42,
def. 2.2]). Given a vector x ∈ CN , the best s-sparse approxi-
mation error in the `p norm is

σs(x)p = inf
z∈CN :‖z‖0≤s

‖z − x‖p. (32)

Definition 3 (Restricted Isometry Property (RIP) [15, p. 133,
def. 6.1]). A matrix Φ ∈ CM×N satisfies the restricted
isometry property of order s with constant δ ∈ (0, 1) if the
following holds for all s-sparse vectors in x ∈ CN

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22, (33)

where the smallest δ, denoted by δs, is called the restricted
isometry constant.

Theorem 4 (RIP for Bounded Orthonormal Systems
(BOS) [15, p. 405, Thm. 12.31]). Consider a set of bounded
orthonormal basis functions φi : D → C, i ∈ {1, 2, · · · , N}
that are orthonormal with respect to a probability measure ρ
on the measurable space D. Consider the matrix Φ ∈ CM×N
with entries

φji = φi(tj), j ∈ {1, 2, · · · ,M}, i ∈ {1, 2, · · · , N} (34)

constructed with i.i.d. samples of tj from the measure ρ on
D. Suppose the orthonormal functions are bounded such that
1 ≤ supi∈{1,··· ,N} ‖φi‖∞ ≤ K. If

M ≥ C0δ
−2K2s ln4(N) (35)

then with a probability of at least 1−N− ln3(N), the restricted
isometry constant δs of 1√

M
Φ satisfies δs ≤ δ for δ ∈ (0, 1).

The constant C0 > 0 is universal.

Theorem 5 (Sparse Recovery for RIP Matrices [15, p. 144,
Thm. 6.12]). Suppose that the matrix Φ ∈ CM×N has
restricted isometry constant δ2s < 4/

√
41 ≈ 0.6246. Sup-

pose that the measurements are taken with Φ and are noisy,
y = Φx+ η, with ‖η‖∞ ≤ ε. If x̂ is a solution to

x̂ = arg min
z∈CN

‖z‖1 subject to ‖y − Φz‖2 ≤
√
Mε, (36)

then
‖x− x̂‖2 ≤ C1

(
σs(x)1√

s
+ ε

)
, (37)

where the constant C1 > 0 only depends on δ2s.

Theorem 5 states that a compressible vector x can be
recovered using QCBP with an accuracy proportional to the
sparse approximation error plus a noise factor so long as the
measurement matrix Φ satisfies RIP with small enough RIP
constant. Pairing Theorem 4 and Theorem 5 shows that BOS
measurement matrices can be used for accurate CS recovery
provided that enough samples are taken.
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IV. COMPRESSIVE SENSING ON THE RESTRICTED
DOMAIN R

The approach we take to achieve our main result in Theorem
6 is broken into three parts. In Section IV-A, we transform
the measurement matrix Φ and the coefficient vector a in (14)
from the Wigner D-function to the RGSF basis. We then state
our main result in Section IV-B along with our interpretation
of this result. In Section IV-C we detail the effect of the
transformation presented in Section IV-A on the sparsity of
the coefficient vector a. In particular, we argue that for certain
cases, the sparsity level could increase, but not so much that
the coefficient vector in the RGSF basis is no longer sparse,
and this can be determined from the sparsity pattern of the
Wigner D-function coefficients only.

A. Transformation of the Inverse Problem in (14)

Using (15) and (30), we can write the term Φa appearing
in (14) as

Φa = ΦU∗
√

Λ
−1√

ΛUa = Φ′
√

ΛUa, (38)

where
√

Λ ∈ CM×ND is the principal square root of the
diagonal matrix of strictly positive RGSF concentrations, i.e.,

[Λ]jk = λ
µ(j)m(j)
i(j) δjk. (39)

In (38), U ∈ CM×ND is the unitary matrix that transforms
from the Wigner D-function basis into the RGSF basis (see
(29)) with elements

[U ]jk = g̃
µ(j)m(j)
i(j)n(k) (40)

and Φ′ = ΦU∗
√

Λ
−1 ∈ CM×ND has elements

[Φ′]jk =
(
λ
µ(k)m(k)
i(k)

)−1/2

g
µ(k)m(k)
i(k) (αj , βj , γj). (41)

Next, we absorb
√

ΛU into the unknown vector of coeffi-
cients, giving

Φa = Φ′
√

ΛUa = Φ′
√

Λã = Φ′a′, (42)

where ã = Ua is the vector of coefficients in the RGSF basis
normalized over all of SO(3) and a′ =

√
Λã is the vector of

coefficients on the RGSFs normalized on R. We now write
our inverse problem as

w = Φ′a′ + η. (43)

From the form of U that derives from (29) and (30), if the
signal a is sparse or compressible due to a small subset
of all Smµ being sufficient in the Wigner D-function basis,
then it will remain so in the RGSF basis. This is detailed in
Section IV-C.

The inverse problem in (43) is a manipulated version of (14)
and no assumptions about the set of measurement positions
have been made. However, it is more amenable to choosing
measurement positions that are restricted to R. A drawback,
however, is that some λµmi are very small and so the R-
normalized RGSFs’ uniform bound will be very large.

To avoid the problem caused by RGSFs with small λµmi ,
we take the columns of Φ′ with the RGSFs having eigenvalues

less than some cutoff λc, say, Nλ<λc functions, and place them
in a matrix Φ′2. We also take the remainder of the columns to
be in a matrix Φ′1 and partition a′ accordingly into a′1 and a′2.
This allows us to write (43) as

w = Φ′1a
′
1 + Φ′2a

′
2 + η. (44)

Without detailing the effect here (see Section IV-B), it is
beneficial to group the last two terms above into the new noise
term η′ to obtain

w = Φ′1a
′
1 + η′. (45)

With an eye towards (31), we precondition (45) with the
diagonal matrix Pii =

√
sinβi. Then, PΦ′1 is a matrix

constructed from a sampled BOS over the latitudinal belt R. In
particular, PΦ′1 arises by sampling the BOS containing only
preconditioned RGSFs with concentrations no less than λc.
Explicitly, the BOS is the set S with λmin = λc,

S ′ :=

{√
sinβ

λµmi
gµmi (α, β, γ) : gµmi ∈ S with λmin = λc

}

(46)
paired with the measure dρ = dαdβdγ over the domain R. In
this preconditioned formulation we can readily apply the CS
results from Section III to solve for a′1.

To summarize, we took (14) with a measurement ma-
trix constructed from the BOS of band-limited Wigner D-
functions and transformed it into (45) with a measurement
matrix constructed from the BOS of band-limited RGSFs
with eigenvalues no less than λc. In (14), we solve for the
coefficient vector a, requiring measurements on all of SO(3)
for CS to apply. In (45), we solve for the coefficient vector
a′1, requiring measurements only on R. Here a′1 contains the
coefficients of the function w(α, β, γ) on the RGSFs with
concentrations λc or greater. Therefore, solving (45) will not
give all of the RGSF coefficients for w(α, β, γ) and therefore
cannot be expected to give trustworthy field values on Rc

where the unknown coefficients in a′2 contribute to w(α, β, γ).
However, Section IV-B will show that having only a′1 does not
prohibit the accurate recovery of w(α, β, γ) if w falls into a
certain class of functions.

B. Compressive Sensing on R

We now state our main result for applying CS on the
latitudinal belt R by solving (45). This is given in Theorem
6 below. Note, the last part of this result, (51), characterizes
the size of the truncated RGSF coefficients a′2 in terms of the
energy of w on Rc. In the next subsection, we provide a set
of lemmas that are helpful in establishing the sparsity of a′

and thus a′1 appearing in (45).
First, we recap the definitions needed for our main result:

1) a ∈ CND is the vector containing the Wigner D-function
coefficients for the band-limited function w(α, β, γ) =∑nmax

n,m,µ a
mµ
n Dµm

n (α, β, γ) and ND is the number of
band-limited Wigner D-functions with band-limit nmax.

2) R is the latitudinal belt on SO(3) specified by Θ1 and
Θ2 where 0 ≤ Θ1 < Θ2 ≤ π.
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3) The set {(λµ(k)m(k)
i(k) )−1/2g

µ(k)m(k)
i(k) }NDk=1 is the band-

limited R-normalized RGSF basis for SO(3) concentrated
on R.

4) a′ ∈ CND is the vector of RGSF coefficients for
w(α, β, γ) in the R-normalized RGSF basis. The prod-
uct matrix

√
ΛU transforms the band-limited Wigner

D-function coefficients a into the band-limited R-
normalized RGSF coefficients a′.

5) a′1 is the vector of coefficients for w(α, β, γ) asso-
ciated with the RGSFs that have λµmi ≥ λc, with
λc ∈ (minλµmi ,maxλµmi ), and a′2 is the vector of the
remaining RGSF coefficients for w(α, β, γ).

6) Nλ<λc is the number of band-limited RGSFs with con-
centrations less than λc,

7) Φ′i, i ∈ {1, 2} is the sensing matrix whose elements are
the RGSFs corresponding to a′i. These have elements

[Φ′i]jk =
g
µ(k)m(k)
i(k) (αj , βj , γj)√

λ
µ(k)m(k)
i(k)

for RGSFs satisfying λ
µ(k)m(k)
i(k) ≥ λc if i = 1 and

λ
µ(k)m(k)
i(k) < λc if i = 2.

8) η′ = Φ′2a
′
2 + η where η is the vector of additive

measurement noise.
9) P is the diagonal matrix whose elements are Pjj =√

sinβj .

Theorem 6 (Sparse Recovery for Wigner D-Function Series
on Restricted SO(3)). Consider the linear inverse problem,

Pw = PΦ′1a
′
1 + Pη′, (47)

that is constructed from M i.i.d. noise corrupted samples
(αj , βj , γj) of w(α, β, γ) where αj ∼ U(0, 2π), βj ∼
U(Θ1,Θ2), γj ∼ U(0, 2π), Suppose ‖Pη′‖∞ ≤ ε and s is
an integer satisfying

M ≥ C2

√
ND

λc
s ln4(ND). (48)

Let the estimated RGSF coefficients â′ be constructed by
solving (47) using QCBP for â′1 and setting â′2 to be all
zeros. Let the estimated Wigner D-function coefficients be
â = U∗

√
Λ
−1
â′ so that we have the estimated function

ŵ(α, β, γ) =
∑nmax

n,m,µ â
mµ
n Dµm

n (α, β, γ) on SO(3). Then with
probability 1− (ND−Nλ<λc)− ln3(ND−Nλ<λc ), the following
hold.

(i) The estimated function ŵ(α, β, γ) satisfies

‖w(α,β, γ)− ŵ(α, β, γ)‖2R

< C2
1

(
σs(a

′
1)1√
s

+ ε

)2

+
λc

1− λc
ERc ,

(49)

where ERc = ‖w(α, β, γ)‖2Rc is the energy of w(α, β, γ)
on Rc.

(ii) The estimated Wigner D-function coefficients â satisfy

‖a− â‖2 ≤ C2
1

(
σs(a

′
1)1√
s

+ ε

)2

+
1

1− λc
ERc

+ ÊRc + 2

√
ERcÊRc ,

(50)

where ÊRc is the energy of ŵ(α, β, γ) on Rc.
(iii) The noise term ‖Pη′‖∞ ≤ ε in the errors is bounded,
‖Pη′‖∞ ≤ ‖Pη‖∞ + ‖PΦ′2a

′
2‖∞ and ‖PΦ′2a

′
2‖∞ satis-

fies

‖PΦ′2a
′
2‖∞ ≤

C ′′N3/4
D ERc

(1− λc)
. (51)

Proof : See supplementary material Section VIII-D.

Remark 4. Relationships between the various constants in the
above equations are as follows. We have C2 = C ′′C0δ

−2
2s ,

where C0 is from Theorem 4 (see associated reference for
numerical value) and C ′′ = ( 3

2 )1/6C ′ with C ′ found in (12)
(see associated reference for numerical value). Remaining is
C1, which is from Theorem 5 (see associated reference for
numerical value).

Remark 5. In the above, the s can be thought of as the sparsity
of the vector a′1, which is bounded by the sparsity of a′.
Thus, Theorem 6 tells us that if the sparsity of a′ (a′1) scales
slower than the square root of ND, the required number of
measurements to recover w(α, β, γ) on R only becomes sub-
linear in ND (ignoring log factors) and the errors in w(α, β, γ)
and the Wigner D-function coefficients are given by (49) and
(50), respectively.

Remark 6. From (49) as λc decreases, the error in ŵ(α, β, γ)
on R becomes bounded only by the sparse representation error
and ε, which includes noise and the ignored RGSFs. Also note
that if the function w can be represented by only the RGSFs
that are kept in Φ′1, then the bound on function reconstruction
error in (49) depends only on the sparse representation and
noise errors (see the proof of (49)).

Remark 7. It is worth commenting on the presence of ÊRc

in (50). This term comes about because no samples of the
function w(α, β, γ) on Rc are used. In particular, we can write
the l2 error for the Wigner D-function coefficients in terms of
(49) plus the contributions from w(α, β, γ) and ŵ(α, β, γ) in
Rc. It is not unreasonable to expect that ÊRc will be small
when ERc is small, however. This is because a small ERc

implies small elements of a′1 associated with RGSFs having
larger concentrations in Rc and with a sufficient number of
measurements â′ will be close to a′1 in the sense of the l2
distance (see proof of Theorem 6).

Remark 8. The above result gives a theoretical foundation
for CS using measurements on R and its ideas can be
used together with approaches tailored to give deterministic
sampling patterns [16], [19]. For example, the RGSF basis
can be used and fixed measurement positions on R can be
iteratively added to the measurement matrix as to minimize
its coherence.

Remark 9. As stated, Theorem 6 dictates the use of random
polarization angle measurements when used for EM antennas.
However, it is common to only use to polarization angle
measurements separated by π/2 [2] when a µ = ±1 probe
is used. If one desires only those two measurement positions,
Theorem 6 can be altered to work in this case. However, the
BOS becomes mixed continuous (azimuth and polar angle) and
discrete (polarization angle). This mixed BOS makes the dis-
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cussion rather technical but does not change the fundamental
nature of the result.

C. Sparsity in Wigner D-Functions and RGSFs

The sparsity of s of the RGSF coefficients a′ plays an
important role in Theorem 6. As discussed earlier, we know
that the Wigner D-function coefficients a are typically sparse,
using only a fraction of the Smµ subspaces. The transfor-
mation a =

√
ΛUa′ used in (43) will clearly affect the

level of sparsity of a′ relative to a. Roughly speaking, the
change in sparsity is because the transformation can map one
coefficient of a in an Smµ subspace to many in the same
subspace in a′. This effect on sparsity in the RGSF basis is
straightforwardly addressed in two cases that we present in
the lemmas below. The first lemma relates the RGSF sparsity
to an upper bound on both |m| and |µ| for which the Wigner
D-function coefficients, a, are nonzero. The second lemma
relates the RGSF sparsity to the sparsity in the Wigner D-
function basis without restrictions on m or µ. Importantly,
these lemmas show the RGSF coefficients, a′, will be sparse
when a is sparse. Furthermore, the lemmas quantify how the
sparsity level of a′ is related to the sparsity level of a.

Lemma 7 (Sparsity of a′ with Bounded m and µ). Let a be the
coefficient vector for w(α, β, γ) in the band-limited Wigner D-
function basis with band-limit nmax. If the Wigner D-function
coefficients amµn in a are nonzero only for |m|, |µ| ≤ mmax,
then the coefficient vector a′ =

√
ΛUa in the RGSF basis is

s-sparse with s satisfying

s ≤ Nmmax , (52)

where

Nmmax
= (mmax + 1)(2mmax + 1)(2mmax + 3)/3

+ (nmax −mmax)(2mmax + 1)2.
(53)

Proof : The proof is given in Section VIII-B.

Lemma 8 (Sparsity of a′ Given a is k-sparse). Let a be the
coefficient vector for w(α, β, γ) in the band-limited Wigner
D-function basis with band-limit nmax. If a is k-sparse with
k ∈ {1, 2, · · · , (2nmax + 1)2 − 1}, then the coefficient vector
a′ =

√
ΛUa in the RGSF basis is s-sparse with s satisfying

s ≤ Nmmax
+ (k − (2mmax + 1)2)(nmax −mmax), (54)

with

mmax =

{ b√kc−1
2 , b

√
kc is odd

b
√
kc−2
2 , b

√
kc is even,

(55)

where Nmmax
is given by (53) and b·c is the floor function.

Proof : The proof is given in Section VIII-C.

Remark 10. In the lemmas above, the upper bounds on the
RGSF sparsities grow with m3

max and nmaxm
2
max as the

highest order terms. This scaling is due to the dimension
of the Wigner D-function basis (and RGSF basis) scaling
with the m, µ band-limit and nmax as m2

maxnmax. Since
the transforming to the RGSF basis mixes coefficients within
m, µ subspaces, the worst case sparsity is one non-zero

Wigner D-function coefficient per m, µ subspace turning into
full RGSF subspaces. In contrast, the best case is when all
Wigner D-function coefficients are in a single m, µ subspace.
This gives, at most, one full m, µ subspace for the RGSF
coefficients.

V. NUMERICAL RESULTS

We present numerical examples of the compressive sensing
theory developed above. We begin with examples of the
RGSFs and how transforming from the Wigner D-function
basis to the RGSF basis affects sparsity. Next, we study how
CS using the BOS of RGSFs is affected by the parameters
of Theorem 6 via its CS recovery phase diagram. Then,
using an example field, we present how CS reconstruction
according to Theorem 6 performs compared to other CS and
non-CS methods in two cases. The first case is with the
domain R chosen to be nearly all of SO(3) and the second
is when the measurements are restricted to half of SO(3).
For these comparisons, we look at both the near-field and far-
field reconstructions acquired from different CS and classical
methods. Note that the far-field reconstruction is acquired by
solving the coefficient vector a or a′ for the spherical wave
coefficients, which are used to calculate the field at a large
distance. Next, we analyze the performance of these methods
in regard to spherical wave coefficients when R is restricted
to half of SO(3). Finally, we cover how the tuning of λc or
the addition of measurement noise affects CS reconstruction
in the truncated RGSF basis.

For the sake of simplicity, the function on SO(3) that we
reconstruct in this section is chosen to be an axisymmetric
acoustic scalar field F (r, θ, φ) (field coefficients are given
in the supplementary material Section IX), for which we
simulate measurements by an ideal axisymmetric probe. Here,
(r, θ, φ) are positions in spherical coordinates centered on the
device. This means w(α, β, γ) is the rotated and translated
form F (r, θ, φ) as measured by the ideal probe. The near
field measurement position for this field with wavelength
λrad is found to be r = 7λrad and the far-field is taken at
r = 2000λrad. This setup is analogous to the full EM antenna
case. The main differences between the acoustic and EM cases
are twofold. First, the measurements w(αj , βj , γj) in acoustics
are independent of the polarization angle. This is not so for
the EM case. Second, monopole terms do not exist in the EM
case, so the coefficients and explicit sensitivities of an ideal
probe are different. These two differences amount to increases
in the number of non-zero RGSF coefficients, but the form of
the inverse problem remains otherwise unchanged. As we will
see, the figures below show that when measurements are only
available on R, CS with the truncated RGSF basis performs
the best.

As a basis of comparison for our method (CS using the
truncated RGSF series), we include recovery results from the
following methods. Note, none of the following CS methods
have theoretical guarantees of the form of Theorem 6 when
using measurements only on R.

1) WD CS – CS in the Wigner D-function BOS using
measurements on all of SO(3) [19]
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2) Padded FFT – Zero-padded FFT according to [5]
3) Dropped WD CS – CS in the Wigner D-function BOS

using only measurements on R
4) Padded WD CS – CS in the Wigner D-function BOS

using measurements on R with zeros inserted for any
measurement in Rc

The WD CS method is simply for comparison to CS
when full SO(3) measurements are available. The other three
methods are alternative approaches to CS when full SO(3)
measurements are not available. The Padded FFT method is
a particularly important baseline for comparison; it can be
considered as the classical method to maintain accuracy when
measuring only a subset of SO(3) [2]. The accuracy one
should expect when using the Padded FFT method is well-
known from the full EM case [2]. In short, if measurements
are only available for R, then the far-field reconstruction of an
antenna’s field is only reliable on a subset of R based on the
geometry of the antenna and the radius at which measurements
are taken, see [2, pp. 232–234].

A. Parameter Selections

In all following examples, we select nmax = 20 and Θ1 = 0
unless otherwise specified. To compute the integrals in (25)
we use Gauss–Legendre quadrature. For a given nmax, this
method is numerically exact, since the product of Wigner
d-functions is a polynomial in cosβ. Thus, it follows that
a product of Wigner d-functions becomes a polynomial on
the interval [−1, 1]. To calculate the Wigner d-functions we
use the recursive algorithm developed in [29]. Additionally,
eigendecompositions are computed using MATLAB2 function
eig(). For the CS methods we use BP (for WD CS, Drop
WD CS, Pad. WD CS) and QCBP (for RGSF CS) from
the SPGL1 library2 [30], [31] with 300 non-zero simulated
measurements. For the QCBP, we use the quadratic constraint
‖Pw − PΦ′1a

′
1‖ ≤ 0.05‖Pη′‖, where η′ is known from the

actual coefficients a′2 and the given noise level η (which
can be zero). Lastly, for the Padded FFT method, we use
861 simulated measurements (the minimum according to the
Nyquist sampling theorem), 451 of which are nonzero, with
the remainder being padded zeros.

We note that the run time for problem setup and a single CS
reconstruction using RGSFs with nmax = 20 is on the order of
30 seconds or less when done on a laptop utilizing 16 GB of
RAM and one 2.3 GHz core (Intel i7)2. This run time includes
the computation of the RGSF expansion coefficients in the
Wigner D-function basis (from pre-computed integrals over
R), which can be reduced by pre-computing the expansion
coefficients.

B. RGSF Examples

We give examples of the sorted RGSF spectrum and the β
distribution of a few RGSFs in Figs. 1 and 2, respectively,
with Θ2 = π/2 and band-limit nmax = 20. Note that we
have dropped the subspace indices and ordered the RGSFs

2Mention of this product is not an endorsement but only serves to clarify
what was done in this work.

0 2000 4000 6000 8000 10000 12000
Concentration Index i

0

0.5

1

C
on

ce
n
tr

a
ti
o
n
6

i

Fig. 1: Energy Concentration of the RGSFs. Distribution of
all RGSF eigenvalues with band-limit nmax = 20.
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Fig. 2: RGSF Examples. The β dependence of RGSF magni-
tudes in S00: (a) g00

1 , (b) g00
7 , (c) g00

11 , and (d) g00
21 .

according to their concentration in R. The spectrum shows the
critical behavior that is expected for Slepian functions, where
a portion of the eigenvalues are near unity and there is a rapid
transition to near zero. In Figure 2 we plot the magnitude of
a selection of RGSFs in S00 as a function of β. We select
the first, seventh, eleventh, and last RGSFs in this subspace
in order to demonstrate different levels of concentration in
R. The first and seventh RGSFs in the subspace are almost
entirely supported on R, the eleventh is supported on all of
SO(3), and the last one is almost entirely supported on Rc.

C. Changes in Sparsity When Using RGSFs

As discussed above in section IV-C, transforming from the
Wigner D-function basis to the RGSF basis increases the
sparsity level of the spherical near-field measurement inverse
problem in a bounded way. In Fig. 3 we depict this change
as specified by Lemma 7 in the bottom pane and Lemma
8 in the top pane (dashed curve). Note, for this experiment
we set nmax = 10. Lemma 8 is the worst case change in
sparsity level, so we also depict the change in sparsity when
the Wigner D-function coefficients, a, are randomly selected
on all Wigner D-functions (top pane solid curve) or only on
Wigner D-functions with |µ| ≤ 1 (dotted curve). In both
cases, the values of the particular coefficients are i.i.d. random
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Fig. 3: Change In Sparsity from Wigner D-functions to RGSFs.
Top pane: RGSF sparsity s resulting from Lemma 8, random
k-sparse Wigner D-function coefficients, and random k-sparse
Wigner D-function coefficients only in |µ| ≤ 1 subspaces.
Bottom Panel: RGSF sparsity given Wigner D-function coef-
ficients satisfying Lemma 7.

variables of the form x+ iy with both x, y ∼ N (0, 1) where
N (0, 1) the standard normal distribution and the output RGSF
sparsity is averaged over 100 trials for each Wigner D-function
sparsity. Note, the most physically relevant case is when a
is nonzero only for |µ| ≤ 1, as measurements are usually
conducted with probes only sensitive to low-order SWs. As
can be seen in Fig. 3, both random coefficient selections have
considerably lower sparsity levels than Lemma 8 guarantees,
with |µ| ≤ 1 being well bounded. Moreover, the results in
the bottom pane show that a secondary band limit like mmax

assumed in Lemma 7 results in the RGSF sparsity being well
controlled unless mmax ≈ nmax.

D. RGSF CS Phase Diagram

Theorem 6 gives a requirement on the number of measure-
ments needed for CS using RGSFs to be successful. However,
as is common with similar RIP-based guarantees for BOS,
there are various factors affecting the number of measurements
needed. To investigate how these affect recovery in practice,
Fig. 4 shows the phase transition diagram generated by using
BP to solve the inverse problem in (47) with η′ = 0 (since this
encapsulates noise and modeling errors). In Fig. 4, (a) gives
the general phase diagram with λc = 0.5 and (b) gives the
distribution of the success rate, #successes

#trials , for fixed normalized
sampling, M/(ND−Nλ<λc), but varying λc. Here the solution
to BP, â1, is considered a success if ‖â′1−a′1‖/‖a′1‖ ≤ 0.001.
For Fig. 4a-c we set nmax = 5 to allow for reasonable
computation times.

In Fig. 4a, the phase diagram is constructed by conducting
100 trials for each combination of normalized sparsity level
(s/M ) and normalized measurement number. In these trials,
the support of a′1 is selected uniformly at random and the

coefficients are i.i.d. random variables of the form x + iy,
where both x and y are independent and distributed according
to the standard normal distribution. As can be seen in Fig. 4a,
there is a sharp transition from a success rate of near unity (i.e.,
uniform recovery) to a success rate of near 0 as is typically
seen in CS phase diagrams like those in [14], [19].

An important part of the RGSF phase diagram to understand
is its dependence on the RGSF cutoff λc. This is because the
number of measurements needed for successful CS depends on
λ−1
c , and ideally, the cutoff is set as low as possible. Note the

presence of this parameter in (47) is due to the uniform bound
on the RGSFs, which is dominated by the RGSFs with small
concentrations. Fig. 4b shows the dependence of the phase
transition on λc. For Fig. 4b, the normalized measurement
number is fixed at 0.6 and the coefficients a′1 are set to have
their support on the s RGSFs with the smallest concentrations
λµmi with random values of the same form as described for
Fig. 4a. The selection of this particular support is to ensure
that the RGSFs that contribute the most to the selection of
λc are active in the CS problem. As can be seen in Fig. 4b,
decreasing λc indeed reduces the sparsity level at which the
transition to successful CS recovery occurs.

E. Compressive Sensing Recovery for an Example Field

To verify that CS recovery using RGSFs becomes accurate
for the function on the entirety of SO(3) as R becomes close
to all of SO(3), we investigate CS recovery using the RGSFs
with Θ2 = 35π/36, or a loss of 5 degrees of measurement
availability in β. We select λc = 0.5 as to remove at least
several RGSFs from the reconstructions. We must select a
moderately sized λc because most of the RGSFs will have
at least some energy in R due to the small size of Rc and
a relatively small band-limit. In Figs. 5 and 6, we plot the
near-field and far-field reconstructions and relative error for all
methods. Note, the relative error for WD CS is not numerically
zero since there is a finite error tolerance using BP in SPGL1.
The reconstructions are plotted in dB in terms of magnitude
relative to the actual field for a given φ slice, i.e.,

Relative Magnitude = 20 log10




∣∣∣F̂
∣∣∣

maxθ |F |


 , (56)

and the relative error of the field in dB is given by

Relative Error = 20 log10

(
|F − F̂ |
|F |

)
, (57)

where F̂ is the estimated reconstruction of F . From θ = −π/2
to θ = π/2, the near-field reconstructions are accurate to
around 50 dB for all methods except the Padded WD CS
method. However, for the RGSF CS and Padded FFT methods,
we see a decline in accuracy beyond this range; the relative
error increases to near 0 dB in Rc. This is expected since the
RGSF reconstruction lacks several functions concentrated on
Rc and the padded FFT has zeros inserted in this region. The
far-field reconstructions are similar to those of the near field.

We now compare the reconstruction methods when a much
larger portion of SO(3) is inaccessible. In particular, we select
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Fig. 4: Phase Transition Diagrams for CS with RGSFs. (a)
Phase diagram for RGSF CS using BP to solve (47) with
η′ = 0. (b) Dependence of the phase transition on the RGSF
cutoff, λc, for a fixed normalized measurement number of 0.6.
Each plot uses nmax = 5 and is conducted with 100 trials at
each normalized sparsity and measurement number.

Θ2 = π/2 and λc = 0.05. The near-field and far-field
reconstructions are shown in Figs. 7 and 8, respectively. Recall
that with such a restriction on R, we only expect accurate field
reconstructions within R. For this case of R and λc, we see
that the near-field reconstructions for all but the Padded WD
CS methods are accurate in nearly all of R, with deterioration
near the edges of R. The far field shows a similar behavior,
with the degradation occurring slightly more rapidly. In Rc we
see that the Dropped WD CS method overestimates the field
by a large margin while the other methods have field values
near zero as expected.

To investigate the performance of each restricted measure-
ment method further, we plot the m = 0 spherical wave
coefficients amn in Fig. 9. Since the field is axisymmetric, the
amn should be nonzero only when m = 0. The Padded FFT
method gives numerical zeros for all SW coefficients with
m 6= 0. On the other hand, the other methods have nonzero
coefficients with m 6= 0. For the RGSF CS case, the energy
contained in these coefficients is less than 3×10−4 of the total
energy, for Dropped WD CS it is less than 4× 10−5, and for
Padded WD CS it is 3 × 10−2 of the total energy. Figure 9
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Fig. 5: Near-field Reconstruction Θ2 = 35π/36. Near-field
reconstruction (a) and relative error (b) when R is nearly all
of SO(3). (a) and (b) share the legend in (a).

demonstrates that the RGSF CS and Padded FFT methods have
good performance for both SW coefficient relative error and
absolute phase error in radians. However, the Dropped WD CS
and Padded WD CS methods have large errors visible just by
looking at the coefficient magnitudes (Fig. 9a). It is interesting
to note that the Dropped WD CS method appears to oscillate
around the actual coefficients. From Figs. 7 to 9 we see that
the RGSF CS method performs the best compared to the other
restricted measurement methods and the Padded FFT method
as a close second.

We now analyze the performance of the RGSF CS method
as we vary λc. For this study, we use Θ2 = π/2 and vary
λc from 0.05 to 0.95 in increments of 0.025. Fig. 10a plots
the near-field relative error and Fig. 10b plots the relative error
between the actual Wigner D-function coefficients a and those
from RGSF reconstruction,

Coeff. Relative Error =
‖a− â‖
‖a‖ , (58)

where â = U∗
√

Λ
−1
â′, and â′ is constructed from the

recovered â′1 and â′2 = 0. In Fig. 10a, the lighter the curve
corresponds to the larger cutoff λc. Thus, as λc decreases, the
reconstruction performance improves. Similarly, if we look
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Fig. 6: Far-field Reconstruction Θ2 = 35π/36. Far-field
reconstruction (a) and relative error (b) when R is nearly all
of SO(3). (a) and (b) share the legend in (a).

at the relative error of the field and â, the lower λc values
provide better reconstruction performance in the RGSF basis.
Not depicted here, however, is the case where λc becomes very
small. Experiments have shown that if λc is taken to be too
small, the reconstruction begins to grow in Rc to values well
above the true field. This is likely due to numerical accuracy
problems in the basis pursuit method; functions with small
λµmi contribute so little to the measurements in R that minor
fluctuations in their coefficients can lead to possibly sizable
changes in the field on Rc. In summary, setting λc too large
can lead to poor reconstructions depending on the amount of
energy the field has in Rc while selecting λc too small leads
to errors due to an effective freedom to add RGSFs with small
concentrations without a large effect on the measured portions
of the field. Thus, two factors should go into picking an ideal
λc, an idea of how well concentrated the field is (the larger
this is, the larger λc can be) and the maximum magnitude of
the RGSFs discarded on R.

We last analyze the performance of the RGSF CS method
with respect to additive measurement noise. Theorem 6, in
particular (50), states that the coefficient relative error of the
reconstruction â increases with increasing noise. In Fig. 11
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Fig. 7: Near-field Reconstruction Θ2 = π/2. Near-field recon-
struction (a) and relative error (b) when R is half of SO(3).
(a) and (b) share the legend in (a).

we plot the normalized coefficient error, (58), as we increase
the magnitude of the additive measurement noise. Again we
have selected Θ2 = π/2 and λc = 0.05. Each entry of the
measurement noise vector is i.i.d. and uniformly distributed on
the complex unit disc with radius rnoise that gives the specified
Peak Signal to Noise Radius ratio in dB,

Peak Signal

Noise Radius
= 20 log10

(
maxα,β,γ w(α, β, γ)

rnoise

)
. (59)

As can be seen in Fig. 11, if the noise level increases (Peak
Signal/Noise Radius decreases), the normalized coefficient
error increases. Note, noise levels below 40 dB are such that
the noise would have a magnitude approaching the size of
the barely forming side-lobes in the near-field. This means
these noise levels are quite large; typically one expects noise
well below the side-lobes. In the more physical case where
PeakSignal/NoiseRadius ≈ 40 dB, RGSF CS coefficient
accuracy is about on par with the noise-less case depicted
in Fig. 10.

F. Remarks on Reconstruction Performance

The results in Figs. 5 and 6 support the expectation that the
ideal case for reconstruction is when all of SO(3) is available



14

-: -:/2 0 :/2 :

Measurement Angle 3 (rad)

-80

-60

-40

-20

0
R
el
a
ti
v
e
M
a
gn
it
u
d
e
(d
B
)

Acoustic Antenna Far--eld Pro-le, #2 =
:
2 , ? = 0

Actual
Pad. FFT
WD CS
RGSF CS
Pad. WD CS
Drop WD CS

(a)

-: -:/2 0 :/2 :

Measurement Angle 3 (rad)

-100

-50

0

R
el
at

iv
e

E
rr

or
(d

B
)

Far--eld Relative Error, #2 = :
2 , ? = 0

(b)

Fig. 8: Far-field Reconstruction Θ2 = π/2. Far-field recon-
struction (a) and relative error (b) when R is half of SO(3).
(a) and (b) share the legend in (a).

for measurements and we can perform CS using the Wigner
D-function basis. However, when only R is available for
measurement and Rc is sizable, Figs. 7 to 9 show that CS with
the truncated RGSF basis provides the best performance for
both the near-field and far-field reconstructions. Specifically,
the Padded Wigner D-function approach fails to accurately
reconstruct the main beam. This is likely due to the zero
padding procedure weighting points for which we do not know
the field. The Dropped Wigner D-function approach performs
well in R but vastly overestimates the field in Rc, hinting
that the method recovers incorrect SW coefficients (this is
confirmed by Fig. 9). This is likely due to having enough
freedom in the Wigner D-function basis to fit the field but at
the cost of an effectively arbitrary field on Rc (similar to spline
fitting with free-floating ends). The FFT and RGSF methods
both perform similarly, though the RGSF method requires
fewer measurements. However, close inspection shows that the
near-field reconstruction from the FFT method is subject to
Gibbs phenomena near the edge of R that is worse than the
ripples from the RGSF method. It is also worth noting that the
CS method using the RGSFs is the only CS method here that
guarantees accurate recovery and the fact that the Dropped
Wigner D-function method performs well in R is a fortunate
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Fig. 9: Reconstructed SW Coefficients Θ2 = π/2. (Top)
Reconstructed SW wave coefficients amn with m = 0. (Bottom
left) SW coefficient relative error for RGSF CS and Padded
FFT reconstructed SW coefficients with m = 0. (Bottom right)
Absolute Phase error in radians for RGSF CS and Padded FFT
reconstructed SW coefficients with m = 0. All figures share
the same legend.

outcome. Lastly, the investigations in Figs. 10 and 11 show
that, for the tested field, the RGSF CS method is not all too
sensitive to λc and the addition of noise, at least when λc or
the size of the noise are not too extreme.

VI. CONCLUSION

Motivated by the limitations of measurement platforms in
spherical near-field to far-field transformations, we have estab-
lished a theoretical guarantee for the success and accuracy of
compressive sensing on a restricted spherical domain for band-
limited functions on SO(3), Theorem 6. The guarantee uses a
BOS of localized Slepian functions (RGSFs with concentration
less than λc) on the measurement domain to limit the growth
of the BOS bound and thus the number of measurements for
the CS recovery is guaranteed. Numerically generated phase
diagrams showed that this dependence on RGSF concentration
cutoff, λc, is present in practice, but the degree to which it
affects real-world application is only qualitatively understood.
Future work can aim to further quantify and minimize the
dependence measurement numbers have on λc in CS guaran-
tees like Theorem 6. It is worth noting that the bound for the
RGSFs is over the domain SO(3), while the bound is only
needed for the sub-domain R. Thus, improved bounds for the
RGSFs as well as Slepian functions on more general domains
would be an interesting topic for future work.

The method of constructing the RGSFs in this paper is based
upon performing many integrations to construct the matrix D
in the functions’ defining eigenvalue problem. Many domains
like the sphere have operator constructions that allow for defin-
ing this eigenvalue problem without integration [24]. Future
work might focus on improving the RGSF constructions by
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Relative error as a function of measurement noise level for
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constructed using RGSF CS with Θ2 = π/2 and λc = 0.05.

attaining an explicit form of such an operator for the RGSFs.
Moreover, finding a fast Slepian transform for the RGSFs, as
in [32], would also improve upon the numerical performance
of the restricted measurement domain compressive sensing
problem as treated here.

In our tests, we saw that CS with the truncated RGSF basis
can have relative error comparable to the classical restricted
domain method with roughly 60% as many measurements.
Additionally, in our tests, CS with the truncated RGSF basis
outperformed the tested forms of measurement restricted CS
using Wigner D-functions. These Wigner D-function methods
tend to give larger errors in reconstructed SW coefficients and
have no theoretical guarantee of recovery, unlike the RGSF
based method. Our numerical experiments also showed that

CS results using the RGSFs improve as the number of Slepian
functions kept for recovery increases. However, the reconstruc-
tions suffered beyond the measurement domain. Future work
can look to include more a priori information about a field’s
coefficient structure in the RGSF basis so that performance
improves in regions beyond the measurable domain while also
further decreasing the number of measurements needed for
accurate reconstructions.

Lastly, as presented, the RGSF-based CS method uses
random measurement positions. It is sometimes desirable to
instead have deterministic measurement positions. To that
end, future research can investigate the use of RGSFs and
samples on R paired with now theoretical approaches, iterative
coherence minimization, or other coherence-minimizing algo-
rithms for constructing deterministic measurement matrices
from known basis functions.
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[16] C. Culotta-López, D. Heberling, A. Bangun, A. Behboodi, and
R. Mathar, “A Compressed Sampling for Spherical Near-Field Mea-
surements,” in 2018 AMTA Proceedings, Nov. 2018, pp. 1–6, iSSN:
2474-2740.

[17] R. Cornelius, D. Heberling, N. Koep, A. Behboodi, and R. Mathar,
“Compressed sensing applied to spherical near-field to far-field trans-
formation,” in 2016 10th European Conference on Antennas and Prop-
agation (EuCAP), Apr. 2016, pp. 1–4.

[18] B. Fuchs, L. Le Coq, S. Rondineau, and M. D. Migliore, “Compressive
sensing approach for fast antenna far field characterization,” in 12th
European Conference on Antennas and Propagation (EuCAP 2018), Apr.
2018, pp. 1–5.

[19] A. Bangun, A. Behboodi, and R. Mathar, “Sensing Matrix Design
and Sparse Recovery on the Sphere and the Rotation Group,” IEEE
Transactions on Signal Processing, vol. 68, pp. 1439–1454, 2020.

[20] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum
Theory Of Angular Momemtum. New Jersey, USA: World Scientific,
Oct. 1988.

[21] D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, fourier
analysis and uncertainty — I,” The Bell System Technical Journal,
vol. 40, no. 1, pp. 43–63, Jan. 1961, conference Name: The Bell System
Technical Journal.

[22] H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions,
fourier analysis and uncertainty — II,” The Bell System Technical
Journal, vol. 40, no. 1, pp. 65–84, Jan. 1961, conference Name: The
Bell System Technical Journal.

[23] ——, “Prolate spheroidal wave functions, fourier analysis and uncer-
tainty — III: The dimension of the space of essentially time- and band-
limited signals,” The Bell System Technical Journal, vol. 41, no. 4, pp.
1295–1336, Jul. 1962, conference Name: The Bell System Technical
Journal.

[24] F. Simons and A. Plattner, “Scalar and Vector Slepian Functions,
Spherical Signal Estimation and Spectral Analysis,” in Handbook of
Geomathematics, 2nd ed. Springer, Aug. 2015, p. 2563.

[25] P. J. Roddy and J. D. McEwen, “Slepian Scale-Discretised Wavelets
on the Sphere,” arXiv:2106.02023 [astro-ph], Jun. 2021, arXiv:
2106.02023. [Online]. Available: http://arxiv.org/abs/2106.02023

[26] A. Aslam and Z. Khalid, “Linear Transformations and Signal Estimation
in the Joint Spatial-Slepian Domain,” IEEE Signal Processing Letters,
vol. 28, pp. 1195–1199, 2021, conference Name: IEEE Signal Processing
Letters.

[27] W. Nafees, Z. Khalid, and R. A. Kennedy, “Differential and Weighted
Slepian Concentration Problems on the Sphere,” IEEE Transactions on
Signal Processing, vol. 68, pp. 2830–2840, 2020, conference Name:
IEEE Transactions on Signal Processing.

[28] B. Hofmann, O. Neitz, and T. F. Eibert, “On the Minimum Number
of Samples for Sparse Recovery in Spherical Antenna Near-Field Mea-
surements,” IEEE Transactions on Antennas and Propagation, vol. 67,
no. 12, pp. 7597–7610, Dec. 2019.

[29] N. A. Gumerov and R. Duraiswami, “Recursive Computation
of Spherical Harmonic Rotation Coefficients of Large Degree,”
in Excursions in Harmonic Analysis, Volume 3: The February
Fourier Talks at the Norbert Wiener Center, ser. Applied and
Numerical Harmonic Analysis, R. Balan, M. J. Begué, J. J.
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Abstract—This supplementary material contains the deriva-
tions and proofs for the main results in Compressive Sensing
with Wigner D-functions on Subsets of the Sphere.

VII. DERIVATIONS OF PROPERTIES OF THE RGSFS

A. RGSF Orthogonality Relations

The orthogonality relation in (23) can be seen from the
following calculation. Using (17) in the inner product we find

⟨gi, gi′⟩SO(3) =

nmax∑

n,µ,m

nmax∑

n′,µ′,m′

g̃µmin g̃µ
′m′

i′n′ ⟨Dµm
n , Dµ′m′

n′ ⟩SO(3)

By (8) and the orthonormality of the gi we arrive at (23), i.e.,

⟨gi, gi′⟩SO(3) =

nmax∑

n,µ,m

nmax∑

n′,µ′,m′

g̃µmin g̃µ
′m′

i′n′ δnn′δmm′δµµ′

=

nmax∑

n,µ,m

g̃µmin g̃µmi′n

= δii′ .

The orthogonality relation over the region R in (24) can be
seen from a similar calculation. We begin by using (17) to
obtain

⟨gi, gi′⟩R =

nmax∑

n′,µ′,m′

g̃µ
′m′

i′n′

nmax∑

n,µ,m

g̃µmin ⟨Dµm
n , Dµ′m′

n′ ⟩R.

We can recognize this as a matrix calculation using D and its
eigenvectors. Substituting this in and then using the orthonor-
mality of the eigenvectors we get (24), i.e.,

⟨gi, gi′⟩R = = g∗
i′Dgi

= λig
∗
i′gi

= λiδii′ .

B. Expansion of Wigner D-Functions in RGSFs

The inverse transformation from RGSFs to Wigner D-
functions can be seen from the orthogonality of the eigenvec-
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tors of the Dµm matrix. First we write (29) in matrix form,
i.e.,




gµm1 (α, β, γ)
gµm2 (α, β, γ)

...
gµmimax

(α, β, γ)


 =




gµm
1

T

gµm
2

T

...
gµm
imax

T







Dµm
nmin

(α, β, γ)
Dµm

nmin+1(α, β, γ)
...

Dµm
nmax

(α, β, γ)


 ,

where imax = nmax−nmin+1. Next, we note that the matrix of
eigenvectors gµm

i
T is orthogonal (by the eigendecomposition

of Dµm) to obtain

[
gµm
1 · · · gµm

imax

]




gµm1 (α, β, γ)
gµm2 (α, β, γ)

...
gµmimax

(α, β, γ)


 =




Dµm
nmin

(α, β, γ)
Dµm

nmin+1(α, β, γ)
...

Dµm
nmax

(α, β, γ)


 .

Rewriting this as a sum we get the desired result, namely,

Dµm
n (α, β, γ) =

nmax−nmin+1∑

i=1

g̃µmin gµmi (α, β, γ).

VIII. PROOFS FOR MAIN RESULTS

A. Proof of Proposition 1

Using the bound on the Wigner-D functions in (12) along
with (29) we find

∣∣∣∣∣

√
sinβ

λµm
i

gµmi (α, β, γ)

∣∣∣∣∣ ≤
C ′N1/12

D√
λµm
i

∣∣∣∣∣∣

nmax∑

n=max(|µ|,|m|)
g̃µmin

∣∣∣∣∣∣

and from the triangle inequality we obtain
∣∣∣∣∣

√
sinβ

λµm
i

gµmi (α, β, γ)

∣∣∣∣∣ ≤
C ′N1/12

D√
λµm
i

nmax∑

n=max(|µ|,|m|)
|g̃µmin | .

(58)
We can recognize the sum on the right-hand side of (58) as
∥gµm

i ∥1. Noting that ∥gµm
i ∥2 = 1 (since they are orthonormal

eigenvectors of the symmetric matrix Dµm), we can use the
special case of Hölder’s inequality that given v ∈ CN , ∥v∥1 ≤√
N∥v∥2 to find

∣∣∣∣∣

√
sinβ

λµm
i

gµmi (α, β, γ)

∣∣∣∣∣ ≤
C ′N1/12

D√
λµm
i

√
nmax + 1 (59)

since the largest dimension of any Dµm is nmax +1. In (13),
we can see its right-hand side has two terms greater than
nmax + 1. Replacing 2nmax + 1 with nmax + 1 so we have
an inequality version of (13), then replacing 2nmax + 3 with
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2nmax+2, factoring out the 2, and then solving for
√
nmax + 1

we find that
√
nmax + 1 ≤

(
3
2

)1/6
N

1/6
D . Thus, we obtain

∣∣∣∣∣

√
sinβ

λµm
i

gµmi (α, β, γ)

∣∣∣∣∣ ≤
C ′′N1/4

D√
λµm
i

, (60)

with C ′′ =
(
3
2

)1/6
C ′. Thus, denoting λmin as the minimum

λµm
i associated with any RGSF in a subset S of all band-

limited RGSFs on R yields

sup
gµm
i ∈S

∥∥∥∥∥

√
sinβ

λµm
i

gµmi (α, β, γ)

∥∥∥∥∥
∞

≤ C ′′N1/4
D√

λmin
(61)

for some constant C ′′.

B. Proof of Lemma 7

Assume the transformation a′ =
√
ΛUa maximally mixes

the coefficients in the Smµ subspace, i.e., any one element
of a corresponding to a function in Smµ is mapped to
a nonzero coefficient on all RGSFs in the subspace. This
scenario corresponds to the worst-case increase in nonzero
entries going from a to a′. Thus, we need to calculate the
total number of band-limited RGSFs with µ, m ≤ mmax.
This is the same as calculating the number of Wigner D-
functions with the same index constraints, i.e., µ,m ≤ mmax.
There are (mmax + 1)(2mmax + 1)(2mmax + 3)/3 RGSFs
for n ≤ mmax. The remaining RGSFs satisfy n > mmax

and m, µ ≤ mmax, giving nmax − mmax possible values
of n. For each n there are 2mmax + 1 functions. Thus,
there are (nmax − mmax)(2mmax + 1) remaining functions
for mmax < n ≤ nmax. Adding these gives the desired result.

C. Proof of Lemma 8

Take the same assumptions as those in Section VIII-B and
further assume that each nonzero element of a belongs to
different Smµ. This is the worst-case increase in nonzero
entries transforming from a to a′. Any other case has more
than one element of a mapped to the same subspace, so the
sparsity level of a′ would be less than the case described. Note
that we restrict k to be less than (2nmax +1)2 because this is
the total number of Smµ subspaces, and having k any larger
would result in a dense a′ since all subspaces are used.
Now, let the nonzero elements of a be indexed as ai so

that i increases as the associated Smµ subspace dimension
decreases. So a1 is in the largest Smµ subspace, a2 is in the
next largest, and so on. Thus, to get the sparsity of a′, s, we
sum the dimensions of the first k largest Smµ subspaces.
To sum the subspace dimensions it helps to visualize these

subspaces first. This can be done by imagining each subspace
as a point in a square grid whose side length is given by
2nmax+1. The center point is the S00 subspace. As we move
left or right µ decreases or increases, respectively. As we move
up or down, m increases or decreases, respectively. In this
view, see Figure 9 where the red dot is the S00 subspace,
concentric squares around the center are all of the same
dimension. So, for a given k, we need to sum the dimension
of all of the subspaces up to the last complete square of nodes

(µ = 2,m = 0)

(µ = 2,m = 2)

(µ = 2,m = −2)

Fig. 9: Graphical View of Smµ Subspaces. Here we graphi-
cally represent each Smµ subspace of RGSFs with band-limit
nmax = 3 as a node. The S00 subspace is the center red node.

and then add the dimension of the remaining nodes in the
partially used concentric square. The total dimension of all
fully used squares is the same as the total number of band-
limited RGSFs with µ, m ≤ mmax, Nmmax

, where mmax is
given by

mmax =

{ ⌊
√
k⌋−1
2 , ⌊

√
k⌋ is odd

⌊
√
k⌋−2
2 , ⌊

√
k⌋ is even.

(62)

To obtain (62), we observe that each square has an odd side
length, so we take the largest odd perfect square whose side
length l is less than or equal to

√
k. Then, we need to find the

mmax that gives this side length, which is just (l−1)/2. Lastly,
we need to sum dimensions of the remaining Smµ subspaces
in the l = 2(mmax+1)+1 square that is not fully used. This is
k−(2mmax+1)2 times the dimension of the subspaces, which
is nmax −mmax. Summing (k −Nmmax

)(nmax −mmax) and
Nmmax

, both with mmax from (62), gives the desired result
for the bound on s.

D. Proof of Theorem 6

The proof of relies on Proposition 1. It can be seen that Φ′
1

in (45) is constructed from samples of the BOS of RGSFs,
S ′ with the measure dρ = dαdβdγ on R. Thus, pairing
Proposition 1 together with Theorems 4 and 5, with probability
1− (ND −Nλ<λc

)− ln3(ND−Nλ<λc ), if â1 is the solution to

â′1 = arg min
z∈CND

∥z∥1 subject to ∥Pw − PΦ′
1z∥2 ≤

√
Mϵ

(63)
then

∥a′1 − â′1∥2 ≤ C1

(
σs(a

′
1)1√
s

+ ϵ

)
. (64)

Here C1 > 0 only depends on the restricted isometry constant
of PΦ′

1, δ2s, and C2 = C ′′C0(δ2s)
−2 with C ′′ from Proposi-

tion 1 and C0 from Theorem 4.
Using (64) above, we can establish (49) and (50). First,

however, we establish (51).
1) Proof of (51): The vector b = PΦ′

2a
′
2 has its jth element

given by the partial series of RGSFs whose eigenvalues are
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less than λc, evaluated at (αj , βj , γj) and scaled by
√
sinβj .

That is,

bj =
∑

i,µ,m: λµm
i <λc

ãmµ
i

√
sinβjg

µm
i (αj , βj , γj), (65)

where the ãmµ
i are the expansion coefficients for w(α, β, γ) in

the RGSF basis. By (60) and the triangle inequality we have

|bj | ≤ C ′′N1/4
D

∑

i,µ,m: λµm
i <λc

|ãmµ
i | (66)

and the energy ERc is

ERc =

∫

Rc

|w(α, β, γ)|2dSO(3), (67)

or

ERc =

∫

SO(3)

|w(α, β, γ)|2dSO(3)

−
∫

R

|w(α, β, γ)|2dSO(3).

(68)

Substituting the RGSF expansion of w(α, β, γ),

w(α, β, γ) =
∑

i,µ,m

ãmµ
i gµmi (αj , βj , γj), (69)

into (68) and using (23) and (24) yields

ERc =
∑

i,µ,m

(1− λµm
i ) |ãmµ

i |2 . (70)

If we restrict the sum above to only those coefficients on
RGSFs with eigenvalues less than λc we have

ERc ≥
∑

i,µ,m: λµm
i <λc

(1− λµm
i ) |ãmµ

i |2 (71)

and using the fact that 1 − λc < 1 − λµm
i and dividing by

1− λc gives

ERc

(1− λc)
≥

∑

i,µ,m: λµm
i <λc

|ãmµ
i |2 . (72)

Noting the sum in (66) is the ℓ1 norm of the vector of
coefficients on the RGSFs with eigenvalues less than λc and
that (72) is the ℓ2 norm of the same vector. Then, given the
fact that for v ∈ CN , ∥v∥1 ≤

√
N∥v∥2, we find

|bj | ≤
C ′′N1/4

D

√
Nλ<λc

ERc

(1− λc)
, (73)

where Nλ<λc is the number of RGSF eigenvalues less than
λc. Thus, since Nλ<λc ≤ N , we have

∥b∥∞ ≤ C ′′N3/4
D ERc

(1− λc)
. (74)

2) Proof of (49): We begin with the explicit calculation of
the error,

∥w(α, β, γ)−ŵ(α, β, γ)∥2R =
∑

i,µ,m

∑

i′,µ′,m′

χmµ
i χm′µ′

i′ ⟨gµmi , gµ
′m′

i′ ⟩R, (75)

where χmµ
i = ãmµ

i − ̂̃amµ

i . By the orthogonality of the RGSFs
on R we find

∥w(α, β, γ)− ŵ(α, β, γ)∥2R =
∑

i,µ,m

λµm
i |χmµ

i |2 . (76)

The right side of (76) can be rewritten in terms of a′1 and â′1
by splitting the sum into two parts and absorbing the RGSF
eigenvalue into the absolute values:
∑

i,µ,m

λµm
i |χmµ

i |2 =
∑

i,µ,m

λµm
i

∣∣∣ãmµ
i − ̂̃amµ

i

∣∣∣
2

=
∑

i,µ,m:λµm
i ≥λc

∣∣∣∣
√
λµm
i ãmµ

i −
√
λµm
i

̂̃amµ

i

∣∣∣∣
2

+
∑

i,µ,m:λµm
i <λc

λµm
i

∣∣∣ãmµ
i − ̂̃amµ

i

∣∣∣
2

=∥a′1 − â′1∥2

+
∑

i,µ,m:λµm
i <λc

λµm
i

∣∣∣ãmµ
i − ̂̃amµ

i

∣∣∣
2

.

(77)

The coefficients in â′2 are zero, so the ̂̃amµ

i on the right can
be set to zero. Thus,

∥w(α, β, γ)−ŵ(α, β, γ)∥2R =

∥a′1 − â′1∥2 +
∑

i,µ,m:λµm
i <λc

λµm
i |ãmµ

i |2 . (78)

Since λµm
i < λc in the remaining sum, we have the bound

∥w(α, β, γ)−ŵ(α, β, γ)∥2R <

∥a′1 − â′1∥2 + λc

∑

i,µ,m:λµm
i <λc

|ãmµ
i |2 . (79)

We can then use (71) and the error bound in (64) to find the
desired result, namely,

∥w(α, β, γ)−ŵ(α, β, γ)∥2R <

C2
1

(
σs(a

′
1)1√
s

+ ϵ

)2

+
λc

1− λc
ERc

(80)

with probability as stated in Theorem 6.
3) Proof of (50): We begin by noting the Parseval relation

for a function w(α, β, γ) that can be written as a series of
band-limited Wigner D-functions with coefficients a, that is
∥w(α, β, γ)∥2SO(3) = ∥a∥2. This implies for w(α, β, γ) and
ŵ(α, β, γ) we have

∥a− â∥2 = ∥w(α, β, γ)− ŵ(α, β, γ)∥2SO(3) . (81)

We can rewrite the right hand side by splitting the norm into
a sum of ∥ · ∥2R and ∥ · ∥2Rc and this gives

∥a− â∥2 = ∥w(α, β, γ)− ŵ(α, β, γ)∥2R
+ ∥w(α, β, γ)− ŵ(α, β, γ)∥2Rc .

(82)
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By the triangle inequality we obtain

∥a− â∥2 ≤∥w(α, β, γ)− ŵ(α, β, γ)∥2R
+ (∥w(α, β, γ)∥Rc + ∥ŵ(α, β, γ)∥Rc)

2
.

(83)

Noting the two terms in the parentheses are
√
ERc and

√
ÊRc

and using (49) gives the desired result.

IX. SW COEFFICIENTS USED IN NUMERICAL EXAMPLES

The SW coefficients used for the numerical examples in the
main manuscript are given below in Table I.

n a0n
0 0.0092 + 0.0924i
1 −0.1249− 0.0090i
2 0.0047− 0.1245i
3 0.1271− 0.0126i
4 0.0155 + 0.1290i
5 −0.1273 + 0.0173i
6 −0.0280− 0.1241i
7 0.1169− 0.0419i
8 0.0542 + 0.1068i
9 −0.0954 + 0.0624i
10 −0.0680− 0.0790i
11 0.0590− 0.0751i
12 0.0799 + 0.0400i
13 −0.0189 + 0.0745i
14 −0.0633 + 0.0032i
15 −0.0169− 0.0507i
16 0.0323− 0.0218i
17 0.0225 + 0.0167i
18 −0.0073 + 0.0195i
19 −0.0136− 0.0010i
20 −0.0016− 0.0087i

TABLE I: Field Coefficients for the acoustic field used in the
numerical examples in Compressive Sensing with Wigner D-
functions on Subsets of the Sphere.
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