ELSEVIER

Contents flfists avafiflabfle at ScfienceDfirect

Acta Tropfica

journal homepage: www.elsevier.com/locate/actatropica

Lfinkfing mathematficafl modefls and trap data to finfer the profliferation, abundance, and controll of *Aedes aegyptfi*

Jfing Chen ^{1,a}, Xfi Huo ^{1,b}, Andre B.B. Wfiflke^c, John C. Befier ^d, Chaflmers Vasquez ^e, Wfiflfiam Petrfie ^e, Robert Stephen Cantreflfl ^b, Chrfis Cosner ^b, Shfigufi Ruan ^{b,*}

- ^a Department of Mathematfics, Nova Southeastern Unfiversfity, 3301 College Ave, Fort Lauderdale, FL 33314, USA
- ^b Department of Mathematfics, Unfiversfity of Mfiamfi, 1365 Memorfial Drfive, Coral Gables, FL 33146, USA
- ^c Laboratory for Computatfional Epfidemfiology and Publfic Health, Department of Epfidemfiology and Bfiostatfistfics, Indfiana Unfiversfity School of Publfic Health, Bloomfington, IN 47405-USA
- ^d Department of Publfic Health Schiences, Mfiller School of Medficfine, Unfiversfity of Mfiamfi, Mfiamfi, FL 33136, USA
- ^e Mfiamfi-Dade County Mosqufito Control Dfivfisfion, Mfiamfi, FL 33178, USA

ARTICLE INFO

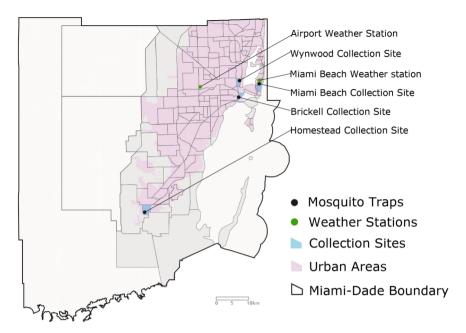
Keywords: Aedes aegyptfi mosqufito controfl vector-borne dfisease mathematficafl modelfing popullatfion dynamfics

ABSTRACT

Aedes aegyptfi fis one of the most domfinant mosqufito specfies fin the urban areas of Mfiamfi-Dade County, Fflorfida, and fis responsfibfle for the flocafl arbovfirus transmfissfions. Sfince August 2016, mosqufito traps have been pflaced throughout the county to fimprove survefifflance and gufide mosqufito controll and arbovfirus outbreak response. In this paper, we deverlop a determfinistfic mosqufito population modefl, estfimate modefl parameters by usfing flocafl entomoflogficafl and temperature data, and use the modefl to caffibrate the mosqufito trap data from 2017 to 2019. We further use the modefl to compare the Ae. aegyptfi population and evafluate the fimpact of rafinfaflfl fintensity fin different urban bufiflt environments. Our resufts show that rafinfaflfl affects the breedfing sfites and the abundance of Ae. aegyptfi more sfignfifficantfly fin tourfist areas than fin resfidentfiafl pflaces. In additition, we appfly the modefl to quantitativefly assess the effectfiveness of vector controll strategies fin Mfiamfi-Dade County.

1. Introductfion

Aedes aegyptfi fis the prfimary vector responsfibfle for the transmfissfion of severafl arbovfiruses, fincfludfing dengue fever, chfikungunya, veflflow fever, and Zfika fever. It fis commonfly found fin tropficafl and subtropficafl areas and fis one of the most wfidespread mosqufito specfies. Urbanfizatfion and human movement are hfighfly reflated to the presence and dfistrfibutfion of Ae. aegyptfi mosqufitoes whfich aflmost excflusfivefly feed on humans (Ponflawat and Harrfington, 2005; Wfiflke et afl., 2021a) - makfing them extremefly threatenfing fin terms of spreadfing emergfing and re-emergfing vector-borne dfiseases. Dengue, chfikungunya, and Zfika have been fintroduced finto Fflorfida, caused flocafl outbreaks (dengue fin 2010 and 2020, chfikungunya fin 2014, Zfika fin 2016), and posed a major pubflfic heaflth probflem there sfince Ae. aegyptfi mosqufitoes are wfidefly dfistrfibuted throughout Fflorfida. Ae. aegyptfi mosqufitoes prefer artfifficfiafl aquatfic habfitats such as fflower vases, tfires, barrefls, cans, and bottfles, posfing a sfignfifficant chaflflenge agafinst most mosqufito controll programs. Mosqufito reflatfive abundance fisusuallfly monfitored vfia efither mechanficall traps that


attract femafle aduflts seekfing hosts or ovfitraps that attract femafle aduflts to flay thefir eggs. Whenever vector controll finterventions are carriied out, mosqufito trap data coflflected before and after the finterventions can serve as the prfimary resource for evafluation and assessment.

Sfince August 2016 durfing the Zfika outbreak, the Mfiamfi-Dade County Mosqufito Controll survefifflance network have pflaced BG-Sentfinefl traps (BfioGents Corporatfion, Regensburg, Germany) to monfitor the flocafl aduft mosqufito popuflatfion. BG-Sentfinefl traps that are enhanced wfith CO₂ refleased from dry fice fin a smaflfl coofler are the gofld standard for cofflectfing severafl mosqufito specfies fincfludfing Ae. aegyptfi (Wfiflke et afl., 2019a). The survefifflance network covered the totalfity of Mfiamfi-Dade County, wfith partficuflar attentfion gfiven to the areas affected by the 2016 Zfika outbreak and hfigh human mobfiflity. Mfiamfi Beach, Homestead, Wynwood and Brickeflfl (Wfiflke et afl., 2019c). Data cofflected from mosqufito traps represent a random sampflfing from the actuafl mosqufito popuflatfion, and have served as the major findficator for the evafluatfion of vector controll effficacy for years (Pruszynskfi et afl., 2017; Wfiflfiams et afl., 2022). However, due to varfious unexpected reasons such as floose or torn

E-mafil address: ruan@math.mfiamfi.edu (S. Ruan).

^{*} Correspondfing author.

¹ Contrfibuted equalify to this work.

Ffig. 1. Map of Mfiamfi-Dade County.

catch bags, flocked gates, trap finvasfion by flfizards, a certafin number of traps occasfionally mallfunctioned, resultfing fin missfing data from many observational days and traps (Stoddard, 2018). In addition, sometimes the functionfing traps aflso fafifl to detect mosquitoes as they are not around due to envfironmentall condfittions (too cofld, too hot, or too wfindy), not attracted by the traps, or thefir numbers are flow for some unknown reason. As a resuflt, over a three-year perfiod, the traps flocated fin Mfiamfi Beach, Homestead, Wynwood, and Brfickeflfl provfide respectfivefly 86, 109, 120, and 101 data pofints. Further, most of the data were not sampfled on the same day, which makes fit chafflengfing to compare trap data from dfifferent flocatfions vfia sfimpfle statfistficafl methods. Thus the random sampflfing data may not dfirectfly provfide credfibfle estfimatfions of the mosqufito populations, which could pose dfifficulaties fin the assessment of vector controll strategies. Mathematficall modells fincorporated wfith mechanfisms of population dynamfics, when flfinked wfith trap data, are effectfive toofls fin understandfing the underflyfing dynamfics of the mosqufito popuflatfion and assessfing the potentfiafl effectfiveness of controfl finterventfions.

Mosqufitoes are ectothermfic, meanfing that thefir reproductfion, deveflopment, feedfing, and survfivafl rates refly on externafl sources of heat. The entomoflogficafl parameters regardfing mosqufitoes' flfife cycfle under dfifferent temperatures have been wellfl studfied and documented fin many experfimentafl papers (Deflatte et afl., 2009; Farnesfi et afl., 2009; Rueda et afl., 1990; Yang et afl., 2009). Ae. aegyptfi fis known as "contafiner-breedfing", and femafle mosqufitoes prefer to flay eggs fin water-ffiffled contafiners (Wfiflke et afl., 2019b; 2020). Thus the abundance of Ae. aegyptfi may be finffluenced by rafinfaflfl, but fits actuall contribution fis sfffluncflear. Ordfinary dfifferentfiafl equation (ODE) modells have been one of other sfignfifficant approaches to sfimuflate mosqufito popuflatfion dynamfics, with the weather data fincorporated as tfime-dependent parameters fin the modefl systems. Modefls wfith human-mosqufito finteractfions have been wfidefly appflfied to expflafin the patterns of vector-borne dfisease outbreaks and estfimate the potentfiafl future rfisks where the sfimuflatfions were matched wfith human case data (Hfladfish et afl., 2018; Meteflmann et afl., 2019; 2021; Poflettfi et afl., 2011; Robert et afl., 2016; Ye et afl., 2007) or together wfith mosqufito trap data (Cafldwefffl et afl., 2021; Leach et afl., 2020; Ifi et afl., 2019; Marfinfi et afl., 2017; Ofidtman et afl., 2021; Petrone et afl., 2021; Yfi et afl., 2019). Specfifficaflfly, to finfer mosqufito population fin the ffiefld, dfifferentfiafl equations modells have been devefl-

oped wfith varfiabfles representfing the popuflatfion fin each stage of the

mosqufito's flfife cycfle. Some modefls have been empfloyed to caflfibrate the entomoflogficafl parameters and the carryfing capacity with cflfimate data (Ewfing et afl., 2016; Ezanno et afl., 2015; Sfimoy et afl., 2015) and compare the modefl sfimuflatfion wfith the seasonafl trends findficated by trap data (Vafidya et afl., 2014) or ovfitrap data (Tran et afl., 2013; 2020). Other modefls further fincflude severafl uncertafin factors subject to the naturafl envfironment, such as the finffluence of the fintensfity of rafinfaflfl on carryfing capacity, the hazard risk of death fin the wiild, finter-specific competition, and the effficiency of traps or ovfitraps (Ergufler et afl., 2016; Ewfing et afl., 2019; Lana et afl., 2014; 2018; Marfinfi et afl., 2016; Nance et afl., 2018; Vafldez et afl., 2018; Whfite et afl., 2011). Such assumptfions resuflt fin unknown modefl parameters that need to be estfimated vfia data ffittfing. The fissue of parameter unfidentfilfiabfilflity exfists fin most studfies that finvoflve data ffittfing, and thfis probflem has been addressed fin very few studfies (Lana et afl., 2014; 2018). On the basfis of our search, onfly a few studfies have finvestfigated vector controll strategies vfia sfimuflations. Onfly one study provfides resufts based on ffittfing to trap data (Cafiffly et afl., 2012; Dumont and Chfirofleu, 2010; Whfite et afl., 2011).

In this paper, we propose a determfinfistfic modell to finvestfigate the growth, abundance, and control of *Ae. aegyptfi* mosqufitoes fin Mfiamfi-Dade County vfia the calfibration of the *Ae. aegyptfi* trap data collilected from January 2017 to December 2019 - which fis a perfiod not affected by the outbreaks of Zfika fin 2016 or COVID-19 after 2020. More specificaflily, we afim to (fi) determfine the modell parameters that are fidentififiable and justifity our ffindings viia flitting experiments; (ff) finvestfigate the necessity of fincorporating temperature and precipitation data fin the sfimulation of the flocal mosqufito population dynamics by comparing the goodness of flitting; (fff) utilifize the model to compare mosquito population and environmentall differences among communitities; and (fiv) analyze the effectiveness of using finsecticides under all possible stituations.

2. Materfial and Methods

2.1. Data

Mosqufito trap data. Each trap fis turned on to attract and cofflect mosqufitoes for precfisefly 24 hours on fits survefiflflance day. Cofflected mosqufitoes are fidentfiffied to specfies. We therefore obtafin the sampflfing of femafle Ae. aegyptfi captured finevery sfingfle trap on each survefiflflance day. The trap attracts femafle mosqufitoes by mfimfickfing a host. Both mafles

Table 1Goodness of Ffittfing

Quantfity	Reduced Modefl	7-day Modefl	21-day Modefl	42-day Modefl		
Mfiamfi Beach trap (86 data pofints)						
LOO	-342.20	-330.83	-328.84	-327.32		
SE	41.72	39.54	38.80	38.36		
Coverage	73	81	82	83		
Homestead trap (109 data pofints)						
LOO	-671.17	-672.90	-676.05	-673.14		
SE	127.48	130.93	130.62	128.59		
Coverage	76	98	96	77		
Wynwood trap (120 data pofints)						
LOO	-1029.69	-1011.86	-1014.99	-1020.23		
SE	143.60	140.75	143.40	146.45		
Coverage	56	91	94	90		
Brfickell trap (101 data pofints)						
LOO	-428.55	-424.19	-428.11	-430.18		
SE	82.31	78.36	79.46	81.03		
Coverage	90	96	97	96		

LOO: fleave-one-out cross-vaflfidatfion. SE: standard error. Coverage: number of pofints covered fin the 95% predictfion fintervafl.

and femafles are coflflected by the traps but mafles are accfidentafl catches sfince they were probabfly tryfing to mate wfith the femafles. Note that femafle Ae. aegyptfi onfly ffly 1000500 meters from thefir breedfing sfites, thus the trap count for each survefiflflance day can be regarded as a random sampflfing of the Ae. aegyptfi popullation fin the corresponding communfity. In 2016 durfing the Zfika outbreak, Mfiamfi-Dade County enforced fintensfive vector controll activitities, and the number of mosqufitoes rapfidfly decreased. Sfince earfly 2020, COVID-19 pandemfic has also brought finffluences on the frequency of outdoor activities and the exposure to mosqufitoes, whfich could findfirectfly fimpact the Ae. aegyptfi popuflatfion that prfimarfifly feed on human. Therefore, we focus our anaflyses on the trap data coflflected from January 2017 to December 2019 to avofid the unexpected finffluences of the two recent dfisease outbreaks. We seflect three traps flocated fin Mfiamfi Beach, Wynwood, and Brickeflfl, top-rated tourfist destfinations, thus possessfing the hfighest human mobfiflfity. In addfitfion, we seflect the trap flocated fin Homestead, a popuflated resfidentfiafl area away from downtown Mfiamfi whfich has a more dfiverse envfironment compared to the other three. Ffig. 1 fiflflustrates affltrap flocatfions and the nearby weather statfions.

Temperature and precfipfitation data. The dafify average temperature and dafify precfipfitation durfing the study perfiod were obtained from the open-access database of the Natfionafl Oceanfic and Atmospherfic Admfinfistratifion (NOAA). We choose data from the weather station that its geographficality the cflosest to each trap flocation to represent the flocal community weather: data from Miamfi Internationafl Afirport for traps in Brickefli, Wynwood, and Homestead; and data from Miamfi Beach station for the trap in Miamfi Beach.

Thermal-response test data. We extract the entomoflogfical parameters of Ae. aegyptfi under various temperatures from publifished experfiment data (Yang et afl., 2009). Specificaflily, we cofilect the temperature-dependent data points on the average survival time for the aquatfic phase, the average transfitfion time from the aquatfic stage to aduft, the average survival time for femalle mosquitoes, and the average ovfiposfitfion rate (fi.e. the number of eggs flafid per mosquito per day).

2.2. Baselfine Model

We deverlop a determfinfistfic ODE modefl wfith tfime-dependent parameters to sfimuflate the Ae. aegyptfi popuflatfion fin each communfity. To fincorporate the fleast number of unknown parameters, we sfimpfly subdivide the mosqufito popuflatfion finto two cflasses: the fimmature mosqufito popuflatfion fin the aquatfic stage at tfime t (J(t)), and the aduflt femafle mosqufito popuflatfion at tfime t (A(t)). We onfly consfider aduflt femafle Ae. aegyptfi because onfly femafle mosqufitoes are seekfing for bflood meafls and could be attracted to the traps. The compartmental modefl fispresented fin

Ffig. A1 and equations are given as follflows:

$$J'(t) = b(t) \ 1 \quad \frac{J(t)}{K(t)} A(t) \quad \mu_1(t)J(t) \quad d(t)J(t),$$

$$A'(t) = \frac{1}{2}d(t)J(t) \quad \mu_2(t)A(t),$$
(2.1)

where b(t) represents the tfime-dependent ovfiposfitfion rate, d(t) denotes the tfime-dependent deveflopment rate, μ (t) and μ (\underline{t}) respectfivefly refer to the tfime-dependent death rates of fimmature and adult mosqufitoes. The fractfion 1/2 fin the second equation refers to our assumption that half of the fimmature population wffl deveflop finto adult female mosquitoes. We assume that there fis a carryfing capacity for the aquattic stage population, K(t), which may depend on time.

2.3. Entomologfical Parameters

The entomoflogficafl parameters b(t), d(t), $\mu_1(t)$, and $\mu_2(t)$ are obtained by composfing the trime-dependent temperature function and the correspondfing temperature-dependent entomoflogficafl function. Let T denote the varfiabfle of temperature, we adopt the thermafl-response functions as shown beflow (Mordecafi et afl., 2017).

$$\mu_1(T) = \frac{1}{c(T - T_0)(T_m - T)^{\frac{1}{2}}}$$
 (2.2)

$$\mu_2(T) = \frac{1}{c(T - T_0)(T_m - T)'} \tag{2.3}$$

$$b(T) = c(T T_0)(T_m T)^{\frac{1}{2}}, (2.4)$$

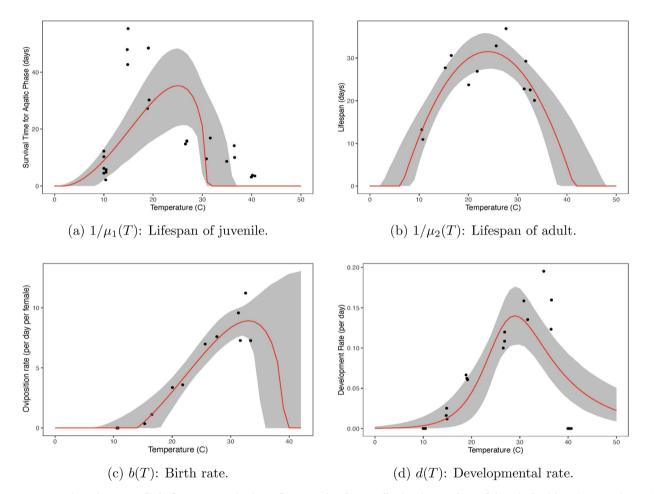
where fin each function, T_0 and T_m are the mfinfimum and maximum temperature for the survival of Ae. aegyptfi at the corresponding stage, respectfively, which c belong a positive rate constant.

$$d(T) = \frac{aT_K e^{b(1/298.15 \ 1/T_K)}}{298.15(1 + e^{c(1/d \ 1/T_K)})'}$$
(2.5)

where T_K fis the temperature fin Keflvfin scafle and a,b,c,d are posfitfive constants. Afflcoeffficfients shown fin functions (2.2)-(2.5) are ffitted to the thermafl-response test data (Yang et afl., 2009). The ffittfings are carried out by utfiffizing the method of Monte Carflo Markov Chafin (MCMC) vfia the software Stan. The ffitted coefficfients for each function are summarfized fin Tabfle 2, and the ffittfing outcomes together wfith the experfimental data are pflotted fin Ffig. 2. In this way, we obtain the entomoflogical parameter vaflues of Ae. aegyptfi under arbitrary temperature.

To obtafin the tfime-dependent entomoflogficafl parameters fin modefl (2.1), we ffirst acqufire the dafifly temperature data T_f , wfith fi=0,1,2,...,N (N denotes the flast day of sfimuflatfion). By composfing the temperature-dependent functions, we get the entomoflogficafl varlues on each day, μ (T), μ (T), μ (T), μ (T), μ (T), μ (T) in this field T0, T1, T2, T3, T4. Finally, we flit each dafifly entomoflogficafl data to trigonometric functions with a perfood of 365 days to get the continuous time dependent varlues: $\mu_1(t)$, $\mu_2(t)$, μ 0, μ 1. The trime-dependent entomoflogficafl parameters are summarfized fin Tabfle 3.

2.4. Assumptfions on the Carryfing Capacfity


The carryfing capacity for fimmature mosquito population could be directly fimpacted by the cumuflative rainfalfil in the area. Water puddiles and water-fifilied containers are perfect resources for *Ae. aegypti* to flay eggs, so cumuflative rainfalfil may have a positive fimpact on the carryfing capacity. We formuflate

$$K(t) = K(1 + \alpha P_n(t)) \tag{2.6}$$

with K befing the baseflfine carryfing capacity, and α befing the fimpact fintensfity of rafinfalfl on carryfing capacity. $P_n(t)$ fix an findex that measures the effect of cumuflative rafinfalfl fin the past n days at time t, and fix

Table 2Thermafl-response Functions with Ffitted Coeffficients

Varfiabfles	Functiions	Estfimates (medfian and credfibfle fintervafl)			
$\mu_1(T)$	1	с	T ₀		T_m
. 1 . ,	1	0.0254	2.3209	31.	0033
	$c(T T_0)(T_m T)\overline{2}$	(0.0012, 0.0397)	(0.0002,7.1740)	(30,34	00.6216)
$\mu_2(T)$	1	c	T_0		T_m
	$\overline{c(T-T_0)(T_m-T)}$	0.1037	6.4429	41.	.4382
		(0.0561, 0.1039)	(2.8497, 9.0406)	(37.6608	8,47.1059)
b(T)	1	c	T_0		T_m
	$cT(T T_0)(T_m T)\overline{2}$	0.0058	14.0343	39.	.0899
		(0.0022,0.0103)	(8.0104,18.6666)	(34.4189	9,51.9590)
d(T)	$aT_K e^{b(1/298.15 1/T_K)}$	а	b	c	d
	$\overline{298.15(1 + e^{c(1/d-1/T_K)})}$	0.1666	21388	32013	300.02
		(0.1164,0.2000)	(21629,47348)	(21629,47348)	(299.67,300.38)

Ffig. 2. Temperature-dependent entomoflogfical parameters. The thermafl-response functions are flitted to the experimental data obtained from (Yang et al., 2009). In each ffigure, the dots represent experimental data, the red curve represent the best-flit function, and the gray area represent the 95% credible finterval (CI).

formuflated so that $0 \le P_n(t) \le 1$ for affl $t \ge 0$. To determfine this findex, we calcuflate the n-day cumuflatfive rafinfaflfl and get the tfime sequence data $\{C_n(T_j)\}$, fi=1,2,3,...,N. Seflect the hfighest 2.5% quantifile cumuflatfive rafinfaflfl vaflue and denote fit as C_{nax} , and deffine

$$P_n(T_i) = \begin{cases} {C_n(T_i)}/{C_{\text{max}}}, & \text{if } C_n(T_i) < C_{\text{max}}^n, \\ 0, & \text{if } C_n(T_i) \ge C_{\text{max}}^n, \end{cases}$$

for each day f = 0, 1, 2, ..., N fin the study perfiod. The reason for deffinfing $P(T_n) = 0$ for those days with excessfive rafinfalf lf is to account for fflushfing of breedfing sfites result fing from such extreme events. We then ffit the data set $P(T_n)$ with f = 0, 1, 2, ..., N to trigonometric functions to obtain the continuous-time precipitation findex function $P_n(t)$. The time-dependent

precfipfitatfion parameters are summarfized fin Tabfle 3.

On one hand, the duratfion of *Ae. aegyptfi* maturatfion cycfle (that fis, the perfiod for eggs to deveflop finto aduflts) fis approxfimatefly 14 days, thus the rafinfaffl accumuflated fin the past 14 or more days could fimpact resources avafiflabfle for the current generatfion of fimmature mosqufitoes. On the other hand, smaffl-sfize water puddfles would dfimfinfish fin severafl days wfithout contfinuous rafinfaffl, so precfipfitatfion mfight not have a flong-tfime fimpact on such breedfing sfites. Therefore, to examfine fin whfich accumuflatfion fashfion the rafinfaffl fis fimpactfing flocafl *Ae. aegyptfi* popuflatfion, we propose four dfifferent assumptfions on the carryfing capacfity: **Reduced Model** assumes a constant baseflfine carryfing capacfity, **7-day Model**, **21-day Model**, and **42-day Model** respectfivefly assumes rafinfaffl accumuflated fin the past 7, 21, and 42 days would fimpact the carryfing

Table 3Tfime-dependent Modefl Parameters

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mfiamfi Internatifonafl Afirport Weather Station				
$\begin{array}{lll} \mu_2(t) - \operatorname{death\ rate\ for\ adufit} & 0.03354552 & 0.00073822 \sin(2\pi t/365) \\ 0.00050008 \cos(2\pi t/365) & 0.00050008 \cos(2\pi t/365) \\ b(t) - \operatorname{bfirth\ rate} & 6.20618176 & 0.96169481 \sin(2\pi t/365) \\ 1.85341518 \cos(2\pi t/365) & 0.01650584 \sin(2\pi t/365) \\ 0.03270561 \cos(2\pi t/365) & 0.03270561 \cos(2\pi t/365) \\ P_7(t) - 7 - \operatorname{day\ precfipfitatfion\ findex} & 0.20877977 & 0.05637451 \sin(2\pi t/365) \\ p_{21}(t) - 21 - \operatorname{day\ } & 0.28119345 & 0.11241392 \sin(2\pi t/365) \\ p_{22}(t) - 42 - \operatorname{day\ } & 0.34709785 & 0.17999706 \sin(2\pi t/365) \\ p_{22}(t) - 42 - \operatorname{day\ } & 0.34709785 & 0.17999706 \sin(2\pi t/365) \\ p_{21}(t) - \operatorname{death\ rate\ for\ } & 0.0339639 & 0.00045398 \sin(2\pi t/365) \\ p_{22}(t) - \operatorname{death\ rate\ for\ } & 0.0339949 & 0.0039216 \sin(2\pi t/365) + 0.000011939 \cos(2\pi t/365) \\ b(t) - \operatorname{bfirth\ rate\ } & 5.8358171 + 0.36835033 \sin(2\pi t/365) \\ b(t) - \operatorname{deveflopment\ rate\ } & 0.10413367 + 0.00644022 \sin(2\pi t/365) \\ 0.03762437 \cos(2\pi t/365) & 0.03762437 \cos(2\pi t/365) \\ \end{array}$	$\mu_1(t)$ - death rate for	0.03411272 0.00299637sin(2πt/365)			
$b(t) - \text{bfirth rate} \\ 6.20618176 \\ 0.96169481 \sin(2\pi t/365) \\ 1.85341518 \cos(2\pi t/365) \\ 0.1026478 \\ 0.01650584 \sin(2\pi t/365) \\ 0.03270561 \cos(2\pi t/365) \\ 0.003270561 \cos(2\pi t/365) \\ 0.003270561 \cos(2\pi t/365) \\ 0.003270561 \cos(2\pi t/365) \\ 0.14470886 \cos(2\pi t/365) \\ 0.1241392 \sin(2\pi t/365) \\ 0.20581943 \cos(2\pi t/365) \\ 0.23746802 \cos(2\pi t/365) \\ 0.23746802 \cos(2\pi t/365) \\ 0.23746802 \cos(2\pi t/365) \\ 0.00339639 \\ 0.00045398 \sin(2\pi t/365) \\ 0.0033994 \\ 0.00039216 \sin(2\pi t/365) \\ 0.000011939 \cos(2\pi t/365) \\ 0.000011939$	juvenfifle	$0.00350181\cos(2\pi t/365)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mu_2(t)$ - death rate for aduft	0.03354552 $0.00073822 \sin(2\pi t/365)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$0.00050008\cos(2\pi t/365)$			
$\begin{array}{lll} d(t) - \text{deveflopment rate} & 0.11026478 & 0.01650584 \sin(2\pi t/365) \\ 0.03270561 \cos(2\pi t/365) & 0.03270561 \cos(2\pi t/365) \\ P_7(t) - 7 - \text{day precfipfitatfion} & 0.20877977 & 0.05637451 \sin(2\pi t/365) \\ \text{findex} & 0.14470886 \cos(2\pi t/365) & 0.1241392 \sin(2\pi t/365) \\ P_{21}(t) - 21 - \text{day} & 0.28119345 & 0.11241392 \sin(2\pi t/365) \\ \text{precfipfitatfion findex} & 0.20581943 \cos(2\pi t/365) & 0.29581943 \cos(2\pi t/365) \\ P_{42}(t) - 42 - \text{day} & 0.34709785 & 0.17999706 \sin(2\pi t/365) \\ \text{precfipfitatfion findex} & 0.23746802 \cos(2\pi t/365) & \\ \hline{\textbf{Mismfi Beach Weather Station}} \\ \mu_1(t) - \text{death rate for} & 0.03309639 & 0.00045398 \sin(2\pi t/365) \\ \text{juvenfifle} & 0.00385949 & 0.00039216 \sin(2\pi t/365) + \\ 0.00081939 \cos(2\pi t/365) & \\ b(t) - \text{bfirth rate} & 5.8358171 + 0.36835033 \sin(2\pi t/365) \\ 2.04066277 \cos(2\pi t/365) & \\ d(t) - \text{deveflopment rate} & 0.10413367 + 0.00644022 \sin(2\pi t/365) \\ 0.03762437 \cos(2\pi t/365) & \\ \end{array}$	b(t) - bfirth rate	6.20618176 $0.96169481\sin(2\pi t/365)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.85341518cos(2πt/365)			
$\begin{array}{lll} P_7(t) - 7\text{-day precipitation} & 0.20877977 & 0.05637451\sin(2\pi t/365) \\ \text{findex} & 0.14470886 \csc(2\pi t/365) \\ P_{21}(t) - 21\text{-day} & 0.28119345 & 0.11241392\sin(2\pi t/365) \\ \text{precipitation findex} & 0.20581943 \csc(2\pi t/365) \\ P_{42}(t) - 42\text{-day} & 0.34709785 & 0.17999706\sin(2\pi t/365) \\ \text{precipifitation findex} & 0.23746802 \csc(2\pi t/365) \\ \hline \textbf{Misumfi Beach Weather Startion} \\ \mu_1(t) - \text{death rate for} & 0.03309639 & 0.00045398\sin(2\pi t/365) \\ \text{juvenfifle} & 0.0033949 & 0.00039216\sin(2\pi t/365) \\ \mu_2(t) - \text{death rate for aduflt} & 0.0335949 & 0.00039216\sin(2\pi t/365) + \\ 0.00011939 \cos(2\pi t/365) \\ b(t) - \text{bfirth rate} & 5.8358171 + 0.36835033\sin(2\pi t/365) \\ 2.040662277 \cos(2\pi t/365) \\ d(t) - \text{deveflopment rate} & 0.10413367 + 0.00644022\sin(2\pi t/365) \\ 0.03762437 \cos(2\pi t/365) \\ \end{array}$	d(t) - deveflopment rate	0.11026478 $0.01650584\sin(2\pi t/365)$			
$\begin{array}{llll} & 0.14470886 \csc(2\pi t/365) \\ P_{21}(t) - 21 - \mathrm{day} & 0.28119345 & 0.11241392 \sin(2\pi t/365) \\ & \mathrm{precfipfitation findex} & 0.20581943 \cos(2\pi t/365) \\ P_{42}(t) - 42 - \mathrm{day} & 0.34709785 & 0.17999706 \sin(2\pi t/365) \\ & \mathrm{precfipfitation findex} & 0.23746802 \cos(2\pi t/365) \\ & & & & & & & & & & & & & \\ \hline & & & &$		$0.03270561\cos(2\pi t/365)$			
$\begin{array}{lll} P_{21}(t) - 21\text{-day} & 0.28119345 & 0.11241392\sin(2\pi t/365) \\ & \text{precfipfitation findex} & 0.20581943\cos(2\pi t/365) \\ P_{42}(t) - 42\text{-day} & 0.34709785 & 0.17999706\sin(2\pi t/365) \\ & \text{precfipfitation findex} & 0.23746802\cos(2\pi t/365) \\ & & \textbf{Mfiamfi Beach Weather Stattion} \\ \mu_1(t) - \text{death rate for} & 0.03309639 & 0.00045398\sin(2\pi t/365) \\ & \text{juvenfifle} & 0.00083619\cos(2\pi t/365) \\ \mu_2(t) - \text{death rate for aduflt} & 0.0335949 & 0.00039216\sin(2\pi t/365) + \\ & 0.000011939\cos(2\pi t/365) \\ b(t) - \text{bfirth rate} & 5.8358171 + 0.36835033\sin(2\pi t/365) \\ & 2.04066277\cos(2\pi t/365) \\ d(t) - \text{deveflopment rate} & 0.10413367 + 0.00644022\sin(2\pi t/365) \\ & 0.03762437\cos(2\pi t/365) \\ \end{array}$	$P_7(t)$ - 7-day precfipfitatfion	0.20877977 0.05637451 $\sin(2\pi t/365)$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	findex	0.14470886cos(2πt/365)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_{21}(t)$ - 21-day	0.28119345 0.11241392 $\sin(2\pi t/365)$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	precfipfitatfion findex	0.20581943cos(2πt/365)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{42}(t)$ - 42-day	0.34709785 $0.17999706\sin(2\pi t/365)$			
$\begin{array}{lll} \mu_1(t) - \text{death rate for} & 0.03309639 & 0.00045398 \sin(2\pi t/365) \\ \text{juvenfifle} & 0.00083619 \cos(2\pi t/365) \\ \mu_2(t) - \text{death rate for aduflt} & 0.0335949 & 0.00039216 \sin(2\pi t/365) + \\ 0.000011939 \cos(2\pi t/365) \\ b(t) - \text{bfirth rate} & 5.8358171 + 0.36835033 \sin(2\pi t/365) \\ & 2.04066277 \cos(2\pi t/365) \\ d(t) - \text{deveflopment rate} & 0.10413367 + 0.00644022 \sin(2\pi t/365) \\ & 0.03762437 \cos(2\pi t/365) \\ \end{array}$	precfipfitatfion findex	$0.23746802\cos(2\pi t/365)$			
$\begin{array}{lll} \text{juvenfifle} & 0.00083619\cos(2\pi t/365) \\ \mu_2(t) \text{ - death rate for aduflt} & 0.0335949 & 0.00039216\sin(2\pi t/365) + \\ 0.000011939\cos(2\pi t/365) \\ b(t) \text{ - bfirth rate} & 5.8358171 + 0.36835033\sin(2\pi t/365) \\ & 2.04066277\cos(2\pi t/365) \\ d(t) \text{ - deveflopment rate} & 0.10413367 + 0.00644022\sin(2\pi t/365) \\ & 0.03762437\cos(2\pi t/365) \\ \end{array}$	Mfiamfi Beach Weather Statfion				
$\begin{array}{lll} \mu_2(t) \text{ - death rate for aduflt} & 0.0335949 & 0.00039216 \sin(2\pi t/365) + \\ & 0.000011939 \cos(2\pi t/365) \\ b(t) \text{ - bfirth rate} & 5.8358171 + 0.36835033 \sin(2\pi t/365) \\ & 2.04066277 \cos(2\pi t/365) \\ d(t) \text{ - deveflopment rate} & 0.10413367 + 0.00644022 \sin(2\pi t/365) \\ & 0.03762437 \cos(2\pi t/365) \\ \end{array}$	$\mu_1(t)$ - death rate for	0.03309639 $0.00045398 \sin(2\pi t/365)$			
$\begin{array}{ccc} & 0.000011939\cos(2\pi t/365) \\ b(t) - \text{bfirth rate} & 5.8358171 + 0.36835033\sin(2\pi t/365) \\ & 2.04066277\cos(2\pi t/365) \\ d(t) - \text{deveflopment rate} & 0.10413367 + 0.00644022\sin(2\pi t/365) \\ & 0.03762437\cos(2\pi t/365) \\ \end{array}$	juvenfifle	0.00083619cos(2πt/365)			
$\begin{array}{lll} b(t) \text{ - bfirth rate} & 5.8358171 + 0.36835033 \sin(2\pi t/365) \\ & 2.04066277 \cos(2\pi t/365) \\ d(t) \text{ - deveflopment rate} & 0.10413367 + 0.00644022 \sin(2\pi t/365) \\ & 0.03762437 \cos(2\pi t/365) \end{array}$	$\mu_2(t)$ - death rate for aduft	0.0335949 $0.00039216\sin(2\pi t/365) +$			
$ 2.04066277\cos(2\pi t/365) $	-	$0.000011939\cos(2\pi t/365)$			
$\begin{array}{ll} \textit{d(t)} \text{ - deveflopment rate} & 0.10413367 + 0.00644022 \text{sin} (2\pi t/365) \\ & 0.03762437 \text{cos} (2\pi t/365) \end{array}$	b(t) - bfirth rate	$5.8358171 + 0.36835033\sin(2\pi t/365)$			
$0.03762437\cos(2\pi t/365)$		2.04066277cos(2πt/365)			
` ' '	d(t) - deveflopment rate	$0.10413367 + 0.00644022 \sin(2\pi t/365)$			
$P_{7}(t) = 7$ -day precfinitation 0.19671585 0.02564263sin($2\pi t/365$)		0.03762437cos(2πt/365)			
1/(t) / dily precipitation 0.150/1000 0.020042003iii(2/t/500)	$P_7(t)$ - 7-day precfipfitatfion	0.19671585 $0.02564263\sin(2\pi t/365)$			
findex $0.0678024\cos(2\pi t/365)$	findex	0.0678024cos(2πt/365)			
$P_{21}(t)$ - 21-day 0.27737096 0.01935936sin($2\pi t/365$)	$P_{21}(t)$ - 21-day	0.27737096 $0.01935936\sin(2\pi t/365)$			
precfipfitation findex $0.0982553\cos(2\pi t/365)$	precfipfitatfion findex	$0.0982553\cos(2\pi t/365)$			
$P_{42}(t)$ - 42-day 0.37260115 0.02072676sin(2 π t/365)	$P_{42}(t)$ - 42-day	0.37260115 $0.02072676\sin(2\pi t/365)$			
precfipfitation findex $0.13756741\cos(2\pi t/365)$	precfipfitatfion findex	$0.13756741\cos(2\pi t/365)$			

capacfity.

K(t) = K, (ReducedModel) $K(t) = K(1 + \alpha P_7(t))$, (7 dayModel) $K(t) = K(1 + \alpha P_{21}(t))$, (21 dayModel) $K(t) = K(1 + \alpha P_{42}(t))$ (42 dayModel).

2.5. Ffittfing

We use the MCMC method to ffit the femafle aduflt Ae. aegyptfi count predficted by the modefl to the actual number of observed Ae. aegyptfi fin each trap. Specfifficaflfly, on each trap day, we assume that the actual mosqufito count would follow a Pofisson distribution with mean value proportional to the mosqufito population predficted by the modefl for the whose community. Denote D_{fi} as the trap count on day f_i , then

$$D_i \square Poisson(q \square A(i)),$$

where q represents the trap efficiency fin attractfing Ae. aegyptfi. The expected trap count fis proportional to the fractfion of bflood-seekfing femalle aduft mosqufitoes and the trap's efficiency fin catchfing such mosqufitoes. Here we consider a combfined effect of these two fractfions and denote q as trap efficiency for stimpflicity.

The MCMC method sampfles the posterfior distributions of modefl parameters by maximfizfing the flfikeflfihood function

$$\prod_{i \text{ for all trap days}} \frac{\left[qA(i)\right]^{D_i} e^{-qA(i)}}{D_i \,!}$$

2.6. Parameter Identfiffiabfilfity

We reparameterfize the modefl to show that the baseflfine carryfing capacity, K, cannot be fidentfiffied based on trap data. Let J(t) = J(t)/K

and A(t) = A(t)/K. The modefl (2.1) becomes

$$J(t) = b(t) 1 \frac{J(t)}{1 + \alpha P_n(t)} A(t) \quad \mu_1(t)J(t) \quad d(\tilde{t})J(t),$$

$$A(t) = \frac{1}{2}d(t)J(t) \quad \mu_2(t)A(t)$$

wfith firfilfall condititions $J(0) = J_0/K$ and $A(0) = A_0/K$. The trap data then folfolws a Pofisson distribution with respect to the new variable A(t):

 $D_i \square Poisson(g \mathbb{Z} K \mathbb{Z} A(i)).$

Thus, fin the reparameterfized system the carryfing capacity K onfly fimpacts the dynamics as fin terms J_0/K , A_0/K , and $q \mathbb{Z} K$, which are coupfled with parameters (q, J_0, A_0) . Therefore, one wffllonfly fidentify parameters $(\alpha, qK, J_0/K, A_0/K)$ viia ffittfing, and the parameter K is theoretically unfidentififiable.

Addfitfionalfily, we conduct ffittling experfiments which synthetic data to show the practficall fidentifilabilifity of the model parameters. The experfiments and results of the practfical fidentifilabilifity are summarfized fin Ffigs. A2–A4.

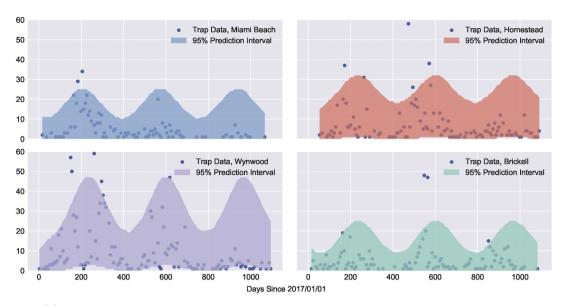
2.6.1. Model Comparfison

We now ffit each model to the reafl trap data (specfiffied fin section 2.1) whifile flixating the carryfing capacity K=1,000 and the finitial date of simuflation as January 1st, 2017. In each flitting, we sample a total of four findependent chafins that the flirst 2,000 fiterations as burn-fin, where fin each chafin we discard all but every second sampled value to obtain 4,000 sampled values. Convergence was checked by calculating the R value fin Gellman-Rubfin diagnostic (Gellman and Rubfin, 1992) and examfinfing the effective sample sfize.

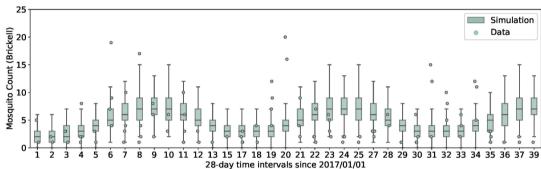
We compare the goodness of ffit among afflour modefls by evafluatfing the fleave-one-out cross-valifidation (LOO). The caflcuflatfions are performed viia the *Python* package *ArvfiZ* which conducts an efficient computation of LOO from MCMC sampfles (Vehtarfi et afl., 2017; 2015). Tabfle 1 shows the modefl compartison resufts for the ffittings of affl four traps.

- 1. The dfifferences of LOO vaflues among affl four modefls are far smaflfler than the scafle of standard errors. This findficates that affl modefls perform equivarlently welfl fin ffittfing the trap data.
- The 7-day Model and 21-day Model tend to cover more data pofints fin thefir 95% predfictfion fintervals.

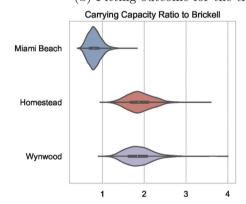
From a statistical point of view, there is no significant difference in the goodness of fitting for all models. However, the prediction intervals of models fincorporated with precipitation data can finclude the majority of trap data under all scenarios finvestigated. Therefore, 7-day Model and 21-day Model show a slightly better fitting will be used to explore our following questions.

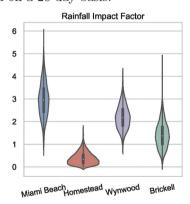

2.6.2. The Combfined Trap Model

We now extend the **n-day Model** for the sfimuflatfion of mosqufito popullation fin four flocations. By assumfing that affil traps share the same efficiency, we can use this model to compare the mosquiito abundance and rafinfalfil dependency among communitities. Specificalfily, we consider four traps and denote $J_{f_i}(t)$ and $A_{f_i}(t)$ as the juvenfifle and femalle adulit popullation fin trap $f_i(f_i = 1, 2, 3, 4)$ at time t, and have the following **Combfined Trap Model** with n-day cumuflative rafinfalfil data $P_{f_i}^i(t)$ for each trap flocation:


$$J_{i}(t) = b^{i}(t) \mathbf{1} \xrightarrow{J_{i}(t)} A_{i}(t) \xrightarrow{A_{i}(t)} A_{i}(t) \qquad \mu_{1}^{i}(t)J_{i}(t) \qquad d^{i}(t)J_{i}(t),$$

$$A_{i}(t) = \frac{1}{2}d^{i}(t)J_{i}(t) \qquad \mu_{2}^{i}(t)A_{i}(t), \text{ for } i = 1, 2, 3, 4.$$


$$(2.7)$$



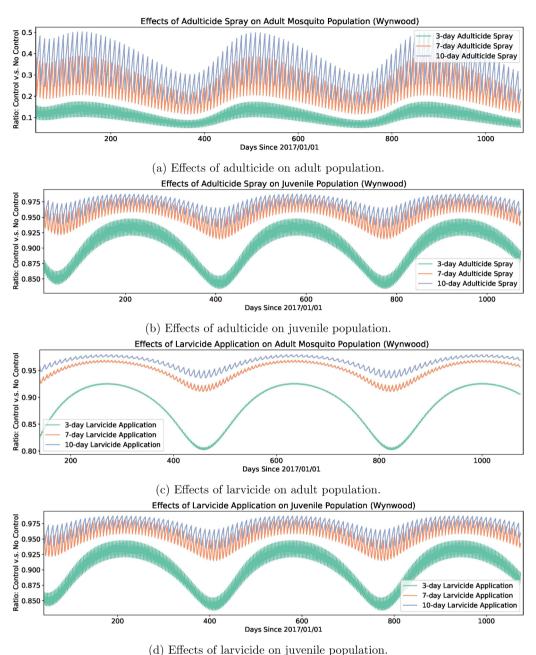
(a) Fitting outcome for traps in Miami Beach, Homestead, Wynwood, and Brickell.

(b) Fitting outcome for the trap in Brickell on a 28-day basis.

(c) Posterior distribution of carrying capacities. (d) Posterior distribution of rainfall impact factor.

Ffig. 3. Ffitting outcomes of the Combfined Trap Modell wfith 21-day cumuflatfive rafinfalf. (a) The coflored bands findficate that the trap count of Ae. aegyptf obtained on each trap day should ffewfithfin the band wfith a 95% probabfillity. (b) Each box wfith and whiskers show the median, finterquartifle range, and 95% CIs of predicted trap counts derived from stimuflatfions based on 100 parameter combfinations drawn from the posterfior distributions. (c)&(d) Each wfidlfin pflot represents the posterfior distribution of the corresponding parameter. In a vfidlfin pflot: the white dot represents the median; the thick black bar represents the finterquartifle range; the thin bflack bar represents the rest of the distribution; the two coflored stides represent the shape of the distribution (wfider stides findficate hfigher probabfiflity).

Note that the entomoflogficafl parameters $b^{f_i}(t)$, $\mu^{f_i}(t)$, $\mu^{f_i}(t)$, $\mu^{f_i}(t)$ could afl dfiffer among traps due to dfifferent flocafl temperature proffifles. Denote D^j as the trap count on day *fifin* trap j, then


 $D_i^j \square \text{ Poisson } q \square A_j(i)$.

And the MCMC method wfffl sampfle the posterfior dfistrfibutfions of pa-

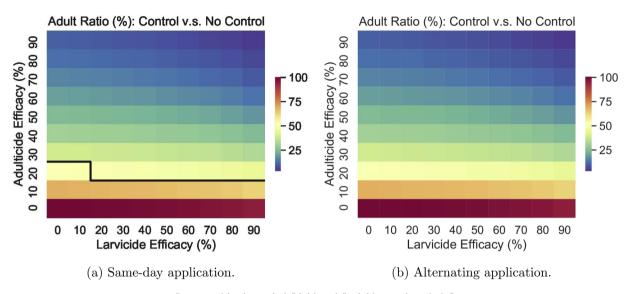
rameters that maxfimfize the flfikeflfihood function:

$$\prod_{j=1,2,3,4} \prod_{\substack{j \text{ in all} \\ \text{trap days} \\ \text{trap days}}} \frac{\left[qA_j(i)\right]^{D_i^j} e^{-qA_j(i)}}{D_i^j!}.$$

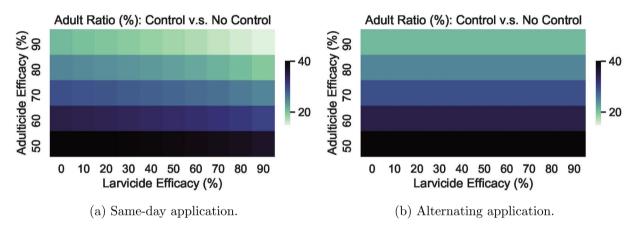
There are a totafl of 17 unknown parameters: the carryfing capacity fin

Ffig. 4. Effects of adufltficfide and flarvficfide fin Wynwood. Effects are measured by caflcuflatfing the daffify fractfion between mosqufito populatfion wfith and wfithout controfl.

each trap $K_{\it fl}$ the rafinfalfI fimpact factor for each trap flocatfion $\alpha_{\it fl}$ finfitfall juvenfifle popullatfion $J_{\it fl}(0)$, finfitfall femalle adult popullatfion $A_{\it fl}(0)$, and trap efficiency q. Simifilar to the analysis of the stingle trap modell (2.1), fit is easy to see that one has to presume the carryfing capacity fin one of the traps to fidentify other parameters. First we can flix the carryfing capacity of trap 1 as $K_1 = K$ whith K being a baselfine value. Then we flit the above modell to data from four traps whith the alim of estimating a totall of 16 unknowns: K_2/K , K_3/K and K_4/K as relative carryfing capacity rathos, the rafinfalfI fimpact factors $\alpha_{\it fl}$ the reflative finfitfall popullations $J_{\it fl}(0)$ /K and $A_{\it fl}(0)/K$ (fl=1,2,3,4), and q2K. The posterfior distributions of K_2/K , K_3/K and K_4/K could help compare the Ae. aegypt1i popullation among different areas, and the estimated values of $\alpha_{\it fl}$ could help evaluate the dependency of the mosquiito popullation on rafinfalfI fin each community.


We conduct sfinfiflar synthetfic tests to conffirm that affl parameters are fidentfiffiabfle and the parameter estfimatfions are not affected by the presumed baseflfine carryfing capacity K for trap 1. Then we take K=1000 as the carryfing capacity for the Brickeflfl trap, and flit modefl (2.7) which n=7

and n=21 to the trap data fin Brfickeflfl, Wynwood, Mfiamfi Beach, and Homestead. The ffittfing outcomes are dfiscussed fin the folflowfing section, and the posterfior dfistrfibutfion of alfl parameters befing estfimated are adopted to generate further stimus on finsectfic applifications.


3. Results

3.1. Mosqufito Abundance and Rafinfall Impact Comparfison

Due to personnefl shortages, the schedufle and frequency of trap counts dfiffer from community to community. Thus one cannot dfirectfly compare the abundance of *Ae. aegyptfi* among the four communitifies. The average trap count of *Ae. aegyptfi* per trap day fin Brickeflfl, Homestead, Wynwood, and Mfiamfi Beach are 5.25, 7.36, 10.91, and 5.22. It fs finsufficient to concflude the flower abundance of *Ae. aegyptfi* fin Brickeflfl and Mfiamfi Beach comparfing to the other two communitities because the trap capture could undoubtedfly be affected by randomness. Here we

Ffig. 5. Combfined use of adufltficfide and flarvficfide on 7-day schedufle.

Ffig. 6. Combfined use of aduftsficfide and flarvficfide on 14-day schedufle.

utfiffize our modefl to compare the mosqufito population among communitities, and fin order to do this, we assume that the trap efficiency fin attractfing and trappfing Ae. aegyptfi fis the same among affl four communitities.

The ffittfing outcomes for reafl trap data wfith 21-day cumuflatfive rafinfalfl are presented fin Ffig. 3: (a) shows that the modell can expflafin the trap counts fin affl four communfitfies, (b) vfisualflizes how data pofints affl finto the predfictfion fintervall on a monthfly basfis (wfith results for the other three traps fin Ffig. A5), (c) shows the estfimation of reflatfive carryfing capacififies (thus abundance) among the communfitfies, and (d) shows the posterfior dfistrfibutfions of the rafinfalfl fimpact factor fin dfifferent communfitfies. Corresponding results obtafined from the Combfined Trap Modell wfith 7-day cumuflatfive rafinfalfl are summarfized fin Ffig. A6 wfith consfistent conclusions as summarfized beflow.

Mosqufito Abundance. From the posterfior distrfibution of carryfing capacity ratios we know that Brickefil and Miamfi Beach tend to have fless Ae. aegyptfi population than Homestead and Wynwood. Thus the extremely high trap count fin Miamfi Beach fin summer 2017 could be caused efither by temporafily high adult Ae. aegyptfi population or by the

randomness of sampflfing. Such a hfigh count was not observed contfinuousfly fin the flatter part of the study perfiod. Then based on our mechanfistfic-based modefl, the tentatfive hfigh trap counts fin Mfiamfi Beach do not flink to hfigh flocafl mosqufito abundance.

Rafinfall Impact. The rafinfalfil fimpact factor value for each trap (α_r) measures how the ffluctuation of precipitation may affect the overalfil carryfing capacity finthe surrounding area. Our results show that the trap fin Homestead, the onfly residential place among all four flocations, has the flowest rafinfalfil fimpact factor. Thus cumuflative rafinfalfil may affect the breeding stites of $Ae.\ aegyptfi$ more stignfillicantly finthe tourist areas where the smalfil water containers are usualfly fleft unattended.

3.2. Effects of Vector Control

Mosqufito controll finterventfions fin Mfiamfi-Dade County are conducted on a two-week basfis by appflyfing finsectficfides mafinfly vfia truck spray Mfiamfi Dade County Mosqufito Controll. The aerfiafl spray of adufltficfide kfffkfflyfing mosqufitoes upon contact and flasts onfly a short perfiod of trime, then degrades finto harmfless byproducts. Larvficfidfing prevents fimmature

mosqufitoes from compfletfing thefir fimmature stage and deveflopfing finto bfitfing mosqufitoes. The most frequentfly used flarvficfide fin the County, *Bacfillus thurfingfiensfis fisraelensfis (Btfi)* (Wfiffke et afl., 2021b), can be appflfied efither by hand or truck spray to areas of standfing water as potentfiafl mosqufito breedfing sfites.

Here we utfiflize our weflfl-caflfibrated modefl to sfimuflate vector controfl strategfies with finsectficfide effficacy rangfing from wiidefly assumed fintervafls. We assume the effficacy of adufltficfide as $\varepsilon_a \in [0, 90]$, which means that adufltficfide can lfffla percentage ε_{n} of aduflt mosqufitoes upon contact. The appflfication of adufltficfide is modefled by resetting the number of femafle aduft mosqufito population A(t) on the applification day t to (1) $\varepsilon_{\rm a}/100)A(t)$. The flavficfide effficacy fis denoted as $\varepsilon_{\rm i} \in [0, 90]$, which means that flavficfide can $kffl \varepsilon$ percent of the fimmature mosqufito popuflatfion over a 24-hour perfiod. Then the ffirst-day kfffffing rate of juvenfifle can be parameterfized as $y = \ln(1 \epsilon/100)$. Sfince flarvficfide fis appflfied to water resources whfich coufld flast and mafintafin fits effficacy flonger, we assume that the toxficfity would decay exponentfiallfly at a rate of v. While the haflf-flife of Bifi fin sofifl could be flong, studies found only 41% of the toxfin would remafin after 24 hours fin water (Perez et afl., 2015). Thus we modefl the tfime-dependent flavficfide kffffing rate as $v(0.41)^{\Delta t}$, where Δt measures the dfifference between current tfime and the flast flavficfide appflfication time. We obtain the effectiveness of vector control strategies based on sfimuflatfions wiith the ffitted Combfined Trap Modefl wfith 21-day cumuflatfive rafinfalls, and sfimfilar concflusiions are observed for the modell wfith 7-day cumuflatfive rafinfaflfl.

Effects of adultificide spray. We utififize the caffibrated model for Wynwood to perform stimulations on adultificide applification under three different schedulles: 3-day schedulle (adultificide spray for every three days), 7-day schedulle, and 10-day schedulle. Ffig. 4(a)-(b) show the effects of various schedulles fin compartison to no controll given a 50% efficacy adultificide. Affl sprayfing schedulles are effective fin reducting the overaflil prevallence of the femalle adult population (Ffig. 4(a)), hence should reduce the trap observations. In additition, the reduction of femalle adult mosquitoes would flead to decreased egg-flayfing rate hence a flower fimmature population. The most frequent 3-day spray schedulle fis the most effective strategy fin reducing the adult mosquito population and aflso reduces the fimmature population by more than 10% (Ffig. 4(b)).

Effects of larvficfide application. Our sfimuflatfions show that applyfing flarvficfides wfith 90% effficacy (Pruszynskfi et afl., 2017) could reduce femafle aduflt mosqufitoes by $10\,\Box\,20\%$ (Ffig. 4(c)). In comparfison to the 50% adufltficfide spray, flarvficfide fis not as effectfive as adufltficfide fin reducfing mosqufito popuflatfion. Larvficfide could lfffla sfignfifficant amount of the fimmature popuflatfion durfing the applfication perfiod. However, given the hfigh prevaflence of femafle aduflt mosqufitoes, the fimmature popuflatfion can be finstantfly compensated wfith newfly flaffd eggs. Overaflfl, the fimmature popuflatfion could be mafintafined at a reasonabfly flower flevefl, and the flower deveflopment rate fleads to a reduced aduflt popuflatfion.

Effects of combfined application of adulticfide and larvficfide. We sfimuflate the fimpflementation of both adultiticfide and flarvficfide fin a 7-day schedufle under variousfly assumed finsectficfide effficacfies. Ffig. 5(a) shows the outcomes of such a 7-day control strategy where the adultiticfide and flarvficfide are applified on the same day. Under aflipossfibfle effficacfies, using flarvficfide aflone would not reduce the femafle adult population by more than 6%, and the optimal control strategy fisto use a combfination of both finsectficfides. To reduce the femafle population by 50%, we need an finsectficfide combfination with efficacfies fallfling fin the upper area segregated by the bflack border fin Ffig. 5(a).

Same-day versus alternatfing schedule. The Mosqufito Controll Department of Mfiamfi-Dade County conducts a two-week vector controll strategy. The schedufle of aduftificfide spray and flavficfide appflication fin the same area may not faffl on the same day due to the avafifablififity of personnefl. Then fit fis naturall to ask about the necessfity of fimpflementfing the two finsectficfides on a same-day schedufle. We, therefore, conduct experfiments for a 7-day and a 14-day controll schedufles where the finsectficfides are used efither on the same day or alternatfivefly (Ffig. 5(b) and Ffig. 6). We conclude that the alternatfing schedufle possesses simfiflar effectfiveness fin a hfigh-frequency controll program but could bring zero effect fin flavficfide appflication fin a flow-frequency program such as the one empfloyed fin Mfiamfi-Dade County. This ffindfing cofincfides with the conclusion of the ffield study conducted by our ecoflogy team (Wfiflke et afl., 2021b), where the same-day appflication of both finsectficfides was superfior to the alternatfing schedufle.

4. Dfiscussfion

In thfis study, we utfiflfized a determfinfistfic modefl to ffit the Ae. aegyptfi trap count data from four communfitfies fin Mfiamfi-Dade County over a three-year perfiod. The tfime-dependent modefl parameters were obtafined by combfinfing the flocafl temperature data and the temperaturedependent entomoflogficafl data for Ae. aegyptfi. We found that the baseflfine carryfing capacity and trap efficiency are two coupfled parameters that cannot be separatefly fidentfiffied based on trap data. We formuflated four hypotheses about the fimpact of rafinfaflfl on the carryfing capacity of Ae. aegyptfi, and found no statfistficafl dfifferences among the ffitness of modefls. This means the Reduced Model without rafinfalfl could also fit the Ae. aegyptfi trap count as well as the others under a statfistfical point of vfiew. However, we would flike to emphasize that this ffinding does not suggest flfimfited fimpact of rafinfaflfl on Ae. aegyptfi popuflatfion. The temperature and precfipfitatfion patterns are practficaflfly synchronfized fin South Fflorfida, whfich makes the entomoflogficafl parameters drfiven by temperature oscfiflflatfions fin our modells suffficient to capture the trap count trends. For study sfites with distfinctive temperature and precfipfitatfion patterns, fincorporatfing rafinfaflfl fimpact could become essentfiafl fin the finterpretation of Ae. aegyptfi population dynamics.

We appflfied the modefl to ffit the trap count data coflflected from four communfitfies. This afflows us to compare the reflative scafle of Ae. aegyptfi popuflatfion and the breedfing sfite dependency on rafinfaflfl among dfifferent urban bufiflt envfironments. Wynwood, whfich fis undergofing an fintense gentrfifficatfion process, and Homestead, whfich fis undergofing an urbanfizatfion process, showed a reflatfivefly hfigh Ae. aegyptfi abundance. Brfickeflfl, as a hfighfly urbanfized and hfigh-fincome area with a hfigh human popuflatfion densfity but fewer aquatfic habfitats due to the absence of hfighfly productfive urban enviironments for mosqufito deveflopment and proflfiferatfion, had a reflatfivefly flow carryfing capacity of Ae. aegyptfi. Mfiamfi Beach was the most affected area by the Zfika vfirus fin 2016. As a resuflt of an fintense jofint effort made by the communfity and the Mfiamfi-Dade Mosqufito Controll Dfivfisfion, many fimportant aquatfic habfitats were removed from the area and therefore the abundance of Ae. aegyptfi was fimpacted. Among afflour finvestfigated areas, we found that the breedfing sfites for Ae. aegyptfi fin Homestead do not depend sfignfifficantfly on the cumuflatfive rafinfaflfl. Thus reducfing unattended artifficfiafl contafiners coufld hellp reduce the breedfing sfites of Ae. aegyptfi fin rafiny seasons and further heflp reduce the Ae. aegyptfi popuflatfion.

In reafl practfice, the success of aduftficfide spray aflso depends on many other aspects such as the specifific trime and flocation of the spray, wfind, and precfipfitation (Stoddard, 2018), thus the practfical aduftificfide efficacy

coufld be consfiderabfly flower than expected. Therefore, the domfinant aduflificfide effect found fin our sfimuflatfion does not rufle out the necessfity of the fintegrated vector controll strategy with both finsectficfides. Our ffindfing on flarvficfide effectfiveness fis based on the assumption of appflyfing flarvficfide fin water where 41% of the toxfin remafined after one day. However, the half-fflife of *Btfi* fis a flot flonger fin sofifl, and pflant surface (Perez et afl., 2015), and ffiefld studfies showed that aerfiafl flarvficfide appflfication could stignfifficantly reduce the trap count of aduflt mosqufitoes. Therefore, the half-fflife of *Btfi* could be constiderabfly dfifferent fin dfiversfiffied urban environments and the effectfiveness of flarvficfide appflfication could be underestfimated fin the sfimuflatfions presented herefin.

CRedfiT authorshfip contrfibutfion statement

Jfing Chen: Methodoflogy, Formafl anaflysfis, Investfigatfion, Wrfitfing – orfigfinafl draft, Wrfitfing – revfiew & edfitfing. Xfi Huo: Methodoflogy, Formafl anaflysfis, Investfigatfion, Wrfitfing – orfigfinafl draft, Wrfitfing – revfiew & edfitfing. Andre B.B. Wfilke: Data curatfion, Wrfitfing – revfiew & edfitfing. Chalmers Vasquez: Data curatfion, Wrfitfing – revfiew & edfitfing. Wfillfiam Petrfie: Data curatfion, Wrfitfing – revfiew & edfitfing. Robert Stephen Cantrell: Wrfitfing – revfiew & edfitfing. Chrfis Cosner: Wrfitfing – revfiew & edfitfing. Shfigufi Ruan:

Methodoflogy, Formafl anaflysfis, Wrfitfing - revfiew & edfitfing.

Declaration of Competting Interest

The authors decflare that there fis no confilfict of finterest.

Data avafilabfilfity

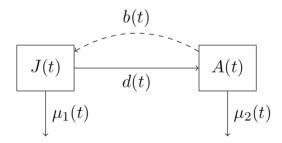
Data wffflbe made avafiflabfle on request.

Acknowledgement

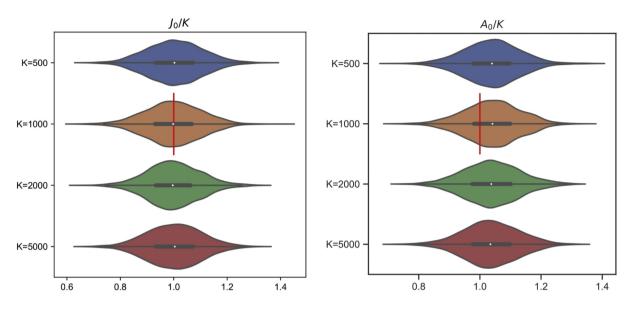
This research was partialfly supported by the National Science Foundation (DMS-1853622, DMS-1853562), the Mfiamfi-Dade Mosqufito Control Dfivision, and the CDC (https://www.cdc.gov/) grant 1U01CK000510-05: Southeastern Regional Center of Excellilence fin Vector-Borne Dfiseases: The Gateway Program. NSF and CDC had no rolle fin the destign of the study and collilection, analysfis, and finterpretation of data and fin writing the manuscript. The authors would flike to thank the two anonymous reviewers for thefir helpfufl comments and vafluable suggestions.

Appendfix A. Practfical Identfiffiabfilfity

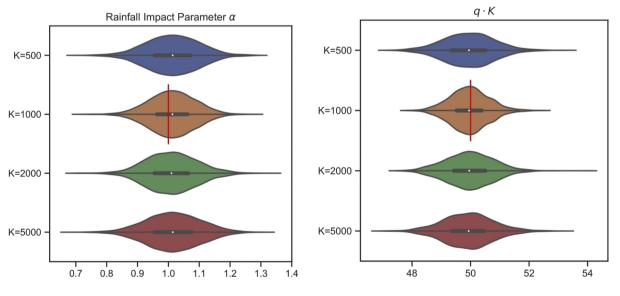
A1. Sfingle Trap Models


To vafffidate our concflusions on parameter fidentfiffiabfile modell parameters to the data and compare the flitting outcomes with the actuall parameter vaflues being used.

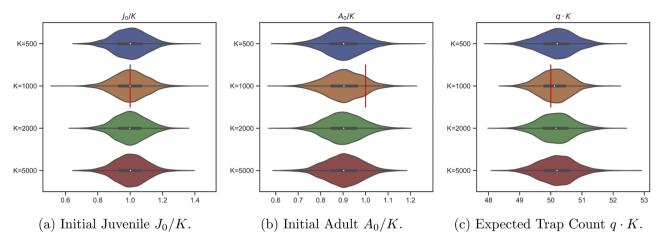
Generate synthetfic data. For each modefl, we ffirst sfimuflate the femafle aduflt population for a two-year trime period by settling $J_0 = K = 1000$, $\alpha = 1$, and q = 5%, whifile adopting the flocal temperature and 7-day accumuflated precipitation. Secondfly, we randomfly seflect 100 trap days and obtain the synthetfic trap data on each corresponding day by drawfing a sampfle from a Pofisson distribution with mean variue being the trap count predicted by the modefl.


Fitting experiments. To validate our conclusion that the carryfing capacity K cannot be fidentified via fitting the models to the trap data, we conduct four fitting scenarios with various values of K being 500, 1000, 2000, and 5000. We utfillize the package Stan for Bayesian finference to conduct AIf fittings via the MCMC methods.

As an exampfle, we discuss our ffindfings on the **7-day Model**, where we obtafin sfinfflar concflustions for the **21-day Model** and **42-day Model**. The posterfior distributions of the ffitted parameters J_0/K , A_0/K , α , and $q\mathbb{Z}K$ under affl scenarios are pfictured fin Ffig. A2 for the **7-day Model**. The ffitting scenario with K=1000 represents the case with the reafl carryfing capacity, and the posterfior distributions of affliftited parameters show that thefir ffitted values are cflose to reafl values. Simifflar experiments are conducted for the **Reduced Model** with posterfior distributions fin Ffig. A3 with constistent observations. Then we conclude from the synthetic tests that:

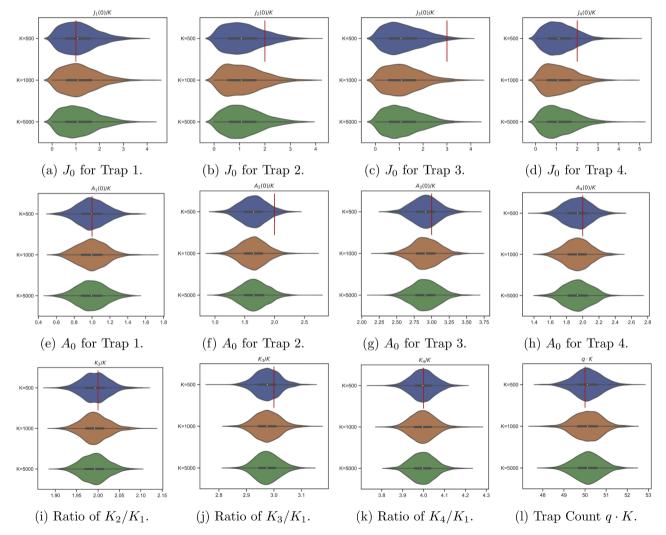

- 1. The actual carryfing capacity *K* cannot be estimated from trap data.
- 2. Other parameters $(J_0/K, A_0/K, \alpha, q \mathbb{E}K)$ can be correctfly fidentfiffied.
- 3. The trap efficiency q cannot be fidentfiffied as the carryfing capacity fis unfidentfiffiabfle.

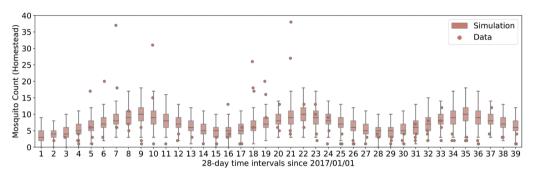
Ffig. A1. Compartmentafl dynamfics for Ae. aegyptfi popuflatfion.



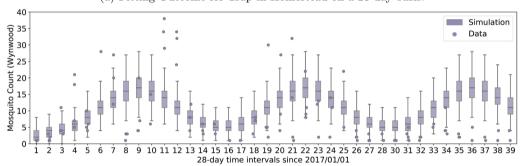
(a) Initial Juvenile Population J_0/K . (b) Initial Adult Population A_0/K .

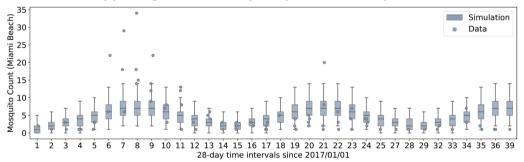
(c) Rainfall Impact Parameter α . (d) Expected Trap Count $q \cdot K$.


Ffig. A2. Ffittfing Vaflfidatfion for the **7-day Model**. Synthetfic data were generated by flettfing K = 1000. Ffittfing were conducted under four scenarios by assumfing K = 500, 1000, 2000, 5000. The ffigures show the posterfior dfistrfibutfions of each modell parameter under dfifferent assumed K vaflues, where the red vertical bars represent the actual vaflue of the modell parameter used to generate synthetfic data.

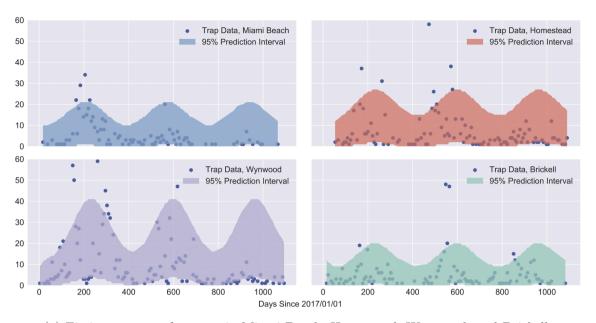

Ffig. A3. Ffittfing Vaflfidatfion for the **Reduced Model**. Synthetfic data were generated by flettfing K = 1000. Ffittfing were conducted under four scenarios by assumfing K = 500, 1000, 2000, 5000. The ffigures show the posterfior distributions of each model parameter under different assumed K vaflues, where the red vertical bars represent the actual vaflue of the model parameter used to generate synthetfic data.

A2. Combfined Trap Model

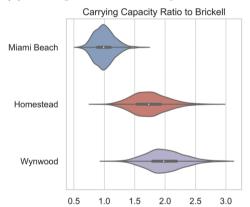

We conduct simfifar synthetfic test for the Combfined Trap Model with outcomes shown fin Ffig. A4, and reach the conclusion fin the mafin text.

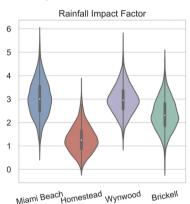

Ffig. A4. Ffittfing Vaflfidatfion for the **Combfined Trap Model**. Synthetfic data were generated by settling the carryfing capacity for Trap 1 as K = 1000. Ffittfing were conducted under four scenarios by assumfing K = 500, 1000, 5000. The ffigures show the posterfior dfistrfibutfions of each model parameter under dfifferent assumed K vaflues, where the red vertical bars represent the actual vaflue of the model parameter used to generate synthetfic data.

(a) Fitting Outcome for Trap in Homestead on a 28-day basis.



(b) Fitting Outcome for Trap in Wynwood on a 28-day basis.




(c) Fitting Outcome for Trap in Miami Beach on a 28-day basis.

Ffig. A5. Combfined Ffittfing of Four Traps wiith 21-day cumuflatfive rafinfaflfl.

(a) Fitting outcome for traps in Miami Beach, Homestead, Wynwood, and Brickell.

(b) Posterior distribution of carrying capacities. (c) Posterior distribution of rainfall impact factor.

Ffig. A6. Ffittfing outcomes of the Combfined Trap Modefl wfith 7-day cumuflatfive rafinfalfl.

References

Cafiffly, P., Tran, A., Baflenghfien, T., L'Ambert, G., Toty, C., Ezanno, P., 2012. A cflfimate-drfiven abundance modefl to assess mosqufito controll strategfies. Ecologfical Modeflfling 227, 7–17. https://dofi.org/10.1016/j.ecoflmodefl.2011.10.027.

Cafldweffl, J.M., LaBeaud, A.D., Lambfin, E.F., Stewart-Ibarra, A.M., Ndenga, B.A., Mutuku, F.M., Krystosfik, A.R., Ayafla, E.B., Anyamba, A., Borbor-Cordova, M.J., et afl., 2021. Cflfimate predficts geographfic and temporall variation fin mosquito-borne dfisease dynamfics on two continents. Nature Communications 12 (1), 1–13.

Mfiamfi Dade County Mosqufito Controfl, https://www.mfiamfidade.gov/gflobafl/soflfidwaste/mosqufito/finsectficfides.page. Accessed: 2021-06-25.

Deflatte, H., Gfimonneau, G., Trfibofire, A., Fontenfiffle, D., 2009. Inffluence of temperature on fimmature development, survfivafl, flongevfity, fecundfity, and gonotrophfic cycfles of aedes aflbopfictus, vector of chfikungunya and dengue fin the findfian ocean. Journafl of Medficafl Entomoflogy 46 (1), 33–41.

Dumont, Y., Chfirofleu, F., 2010. Vector controll for the chfikungunya dfisease. Mathematficafl Bfioscfiences and Englineerfing 7 (2), 313–345.

Ergufler, K., Smfith-Unna, S.E., Wafldock, J., Proestos, Y., Chrfistophfides, G.K., Leflfievefld, J., Parham, P.E., 2016. Large-scafle modeflifting of the environmentalfily-driven population dynamfics of temperate aedes aflbopfictus (skuse). PLoS ONE 11 (2), 1–28.

Ewfing, D.A., Cobbofld, C.A., Purse, B.V., Nunn, M.A., Whfite, S.M., 2016. Modefliffing the effect of temperature on the seasonall population dynamics of temperate mosquitoes. Journall of Theoretical Biology 400, 65–79. https://doi.org/10.1016/j. ithi 2016.04.008

Ewfing, D.A., Purse, B.V., Cobbofld, C.A., Schafer, S.M., Whfite, S.M., 2019. Uncoverfing mechanfisms behfind mosqufito seasonalfity by fintegratfing mathematticall modells and dafifly empfirficall populatfion data: Cullex pfipfiens fin the UK. Parasfites and Vectors 12 (1), 1–19. Ezanno, P., Aubry-Kfientz, M., Arnoux, S., Cafiffly, P., L'Ambert, G., Toty, C., Baflenghfien, T., Tran, A., 2015. A generific weather-drifven model to predfict mosqufito popullation dynamfics applified to specifies of anophefles, cuflex and aedes genera of southern france. Preventfive Veterfinary Medficfine 120 (1), 39–50. https://dofi.org/ 10.1016/j.prevetmed.2014.12.018.

Farnesfi, L.C., Martfins, A.J., Vaflfle, D., Rezende, G.L., 2009. Embryonfic deverlopment of aedes aegyptfi (dfiptera: Cuflficfidae): Inffluence of dfifferent constant temperatures. Memorfias do Instfituto Oswafldo Cruz 104 (1), 124–126.

Geflman, A., Rubfin, D.B., 1992. A sfingfle serfies from the gfibbs sampfler provfides a faflse sense of securfity. Bayesfian statfistfics 4, 625–631.

Hfladfish, T.J., Pearson, C.A., Patricfia Rojas, D., Gomez-Dantes, H., Haflfloran, M.E., Vazquez-Prokopec, G.M., Longfinfi, I.M., 2018. Forecastfing the effectfiveness of findoor restidual sprayfing for reducting dengue burden. PLoS Negflected Tropfical Dfiseases 12 (6), 1–16.

Lana, R.M., Carnefiro, T.G., Honórfio, N.A., Codeço, C.T., 2014. Seasonafl and nonseasonafl dynamfics of aedes aegyptfi fin rfio de janefiro, brazfifl: Ffittfing mathematficafl modells to trap data. Acta Tropfica 129 (1), 25–32.

Lana, R.M., Morafis, M.M., de Lfima, T.F.M., de Senna Carnefiro, T.G., Stoflerman, L.M., dos Santos, J.P.C., Cortés, J.J.C., Efiras, A.E., Codeço, C.T., 2018. Assessment of a trap based aedes aegyptfi survefiflflance program usfing mathematficall modelfling. PLoS ONE 13 (1), 1–17.

Leach, C.B., Hoetfing, J.A., Pepfin, K.M., Efiras, A.E., Hooten, M.B., Webb, C.T., 2020.
Lfinkfing mosqufito survefifflance to dengue fever through bayesfian mechanfistfic modelffing. PLoS Negflected Tropficafl Dfiseases 14 (11), 1–20. https://dofi.org/10.1371/journafl.pntd.0008868.

Ifi, R., Xu, L., Bjørnstad, O.N., Lfiu, K., Song, T., Chen, A., Xu, B., Lfiu, Q., Stenseth, N.C., 2019. Cflfimate-drfiven variatifion fin mosqufito densfity predficts the spatfiotemporall dynamfics of dengue. Proceedings of the Natfionall Academy of Schiences of the Unfited States of America 116 (9), 3624–3629.

- Marfinfi, G., Guzzetta, G., Bafldacchfino, F., Amofldfi, D., Montarsfi, F., Capeflffi, G., Rfizzoflfi, A., Merfler, S., Rosa, R., 2017. The effect of finterspectiffic competitifion on the temporal dynamfics of aedes aflbopfictus and cuflex pfipfiens. Parasfites and Vectors 10 (1).
- Marfinfi, G., Poflettfi, P., Gfiacobfinfi, M., Pugflfiese, A., Merfler, S., Rosa, R., 2016. The rofle of dffimatfic and densfity dependent factors fin shapfing mosqufito populatfion dynamfics:the case of cuflex pfipfiers fin northwestern fitafly. PLoS ONE 11 (4), 1–15. https://dofi.org/ 10.1371/journafl.pone.0154018.
- Meteflmann, S., Camfinade, C., Jones, A.E., Medflock, J.M., Bayflfis, M., Morse, A.P., 2019.
 The UK's sufitabfiflity for aedes aflbopfictus fin current and future cflfimates. Journall of the Royall Society Interface 16 (152).
- Meteflmann, S., Lfiu, X., Lu, L., Camfinade, C., Lfiu, K., Cao, L., Medflock, J.M., Bayflfis, M., Morse, A.P., Lfiu, Q., 2021. Assessfing the sufitabfiflity for aedes aflbopfictus and dengue transmfissfion rfisk fin chfina wfith a deflay dfifferentfiafl equatfion modefl. PLoS Negflected Tropficafl Dfiseases 15 (3), 1–21. https://dofi.org/10.1371/journafl.pntd.0009153.
- Mordecafi, E.A., Cohen, J.M., Evans, M.V., Gudapatfi, P., Johnson, L.R., Lfippfi, C.A., Mfiazgowficz, K., Murdock, C.C., Rohr, J.R., Ryan, S.J., Savage, V., Shocket, M.S., Stewart Ibarra, A., Thomas, M.B., Wefikefl, D.P., 2017. Detectfing the fimpact of temperature on transmissfion of zfika, dengue, and chfikungunya usfing mechanfistfic modefls. PLoS Negflected Tropficafl Dfiseases 11 (4), 1–18. https://dofi.org/10.1371/journafl.pntd.0005568.
- Nance, J., Fryxeflfl, R.T., Lenhart, S., 2018. Modeflfing a sfingfle season of aedes aflbopfictus popullatfions based on host-seekfing data fin response to temperature and precfipfitatfion fin eastern tennessee. Journall of Vector Ecoflogy 43 (1), 138–147.
- Ofidtman, R.J., Omodefi, E., Kraemer, M.U., Castañeda Orjuefla, C.A., Cruz-Rfivera, E., Mfisnaza-Castrfifflon, S., Cfifuentes, M.P., Rfincon, L.E., Cañon, V., Aflarcon, P.d., et afl., 2021. Trade-offs between findfivfidual and ensembfle forecasts of an emerging finfectfious dfisease. Nature Communificatifions 12 (1), 1–11.
- Perez, J., Bond, C., Buhfl, K., Stone, D., 2015. Bacfifflus thurfingfiensfis (bt) generall fact sheet. Natfionall Pestficfide Information Center, Oregon State Unfiversity Extension Servfices.http://npfic.orst.edu/factsheets/btgen.htmfl
- Petrone, M.E., Earnest, R., Lourenço, J., Kraemer, M.U., Paullfino-Ramfirez, R., Grubaugh, N.D., Tapfia, L., 2021. Asynchronficfity of endemfic and emergfing mosquitoborne dfisease outbreaks fin the domfinfican republific. Nature Communications 12 (1), 1–12
- Poflettfi, P., Messerfi, G., Ajeflfli, M., Vaflfloranfi, R., Rfizzo, C., Merfler, S., 2011. Transmfission potentfiafl of chfikungunya vfirus and controll measures: The case of fitafly. PLoS ONE 6 (5)
- Ponflawat, A., Harrfington, L.C., 2005. Bflood feedfing patterns of aedes aegyptfi and aedes aflbopfictus fin thafifland. Journafl of Medficafl Entomoflogy 42 (5), 844–849.
- Pruszynskfi, C.A., Hrfibar, L.J., Mfickfle, R., Leafl, A.L., 2017. A flarge scafle biforatfionall approach usfing bacfifflus thurfingfiensfis fisaeflifensfis (strafin am65-52) for managfing aedes aegyptfi populatfions to prevent dengue, chfikungunya and zfika transmissfion. Pflos ONE 12 (2), e0170079.
- Robert, M.A., Chrfistofferson, R.C., Sfifva, N.J., Vasquez, C., Mores, C.N., Wearfing, H.J., 2016. Modelfling mosqufito-borne dfisease spread fin u.s. urbanfized areas: The case of dengue fin mfiamfi. PLoS ONE 11 (8), 1–29. https://dofi.org/10.1371/journafl. pope 0161365
- Rueda, L.M., Patefl, K.J., Axteflfl, R.C., Stfinner, R.E., 1990. Temperature-dependent devellopment and survival rates of cuflex qufinquefascfiatus and aedes aegyptfi (dfiptera: Cuflficfidae). Journal of medfical entomoflogy 27 (5), 892–898.
- Sfimoy, M.I., Sfimoy, M.V., Canzfianfi, G.A., 2015. The effect of temperature on the populatfion dynamfics of aedes aegyptfi. Ecoflogficafl Modelfilfing 314, 100–110. https:// dofi.org/10.1016/j.ecoflmodefl.2015.07.007.
- Stoddard, P.K., 2018. Managfing aedes aegyptfi popuflatfions fin the ffirst zfika transmfissfion zones fin the contfinentall unfited states. Acta Tropfica 187, 108–118. https://dofi.org/ 10.1016/j.actatropfica.2018.07.031.(June)
- Tran, A., L'Ambert, G., Lacour, G., Benoît, R., Demarchfi, M., Cros, M., Cafiffly, P., Aubry-Kfientz, M., Baflenghfien, T., Ezanno, P., 2013. A rafinfaffl- and temperature-driiven

- abundance modell for aedes aflbopfictus popullatfions. Internatfionall Journall of Environmentall Research and Publific Health 10 (5), 1698–1719.
- Tran, A., Mangeas, M., Demarchfi, M., Roux, E., Degenne, P., Haramboure, M., Goff, G.L., Damfiens, D., Gouagna, L.C., Herbreteau, V., Dehecq, J.S., 2020. Compflementarfity of empfirical and process based approaches to modeflifting mosqufito population dynamfics with aedes aflopfictus as an example-applification to the development of an operational mappling toofl of vector populations. PLoS ONE 15 (1), 1–21.
- Vafidya, A., Bravo-Saflgado, A.D., Mfildler, A.R., 2014. Modeflfing cflfimate-dependent populatifion dynamics of mosquitoes to guifide publific health polificies. ACM BCB 2014 -5th ACM Conference on Biofinformatics, Computational Bioflogy, and Health Informatics, pp. 380–389.
- Vafidez, L.D., Sfibona, G.J., Condat, C.A., 2018. Impact of rafinfaffl on aedes aegyptfi popullatfions. Ecoflogical Modelfilfing 385, 96–105. (June)
- Vehtarfi, A., Geflman, A., Gabry, J., 2017. Practical bayesfian modell evafluation using fleave-one-out cross-valifidation and WAIC. Statistics and Computing 27 (5), 1413–1432
- Vehtarfi, A., Sfimpson, D., Geflman, A., Yao, Y., Gabry, J.. Pareto smoothed fimportance sampflfing. arXfiv:1507.02646.
- Whfite, M.T., Grfifffin, J.T., Churcher, T.S., Ferguson, N.M., Basáñez, M.G., Ghanfi, A.C., 2011. Modeflflfing the fimpact of vector controll finterventifions on anophelles gambfiae populatfion dynamfics. Parasfites and Vectors 4 (1), 1–14.
- Wfiflke, A.B., Carvajafl, A., Medfina, J., Anderson, M., Nfieves, V.J., Ramfirez, M., Vasquez, C., Petrfie, W., Cardenas, G., Befier, J.C., 2019. Assessment of the effectfiveness of BG-sentfinefl traps bafited wfith CO2 and BG-flure for the survefiflflance of vector mosqufitoes fin mfiamfi-dade county, fflorfida. PLoS ONE 14 (2), e0212688.
- Wfiflke, A.B., Chase, C., Vasquez, C., Carvajafl, A., Medfina, J., Petrfie, W.D., Befier, J.C., 2019. Urbanfizatfion creates dfiverse aquatfic habfitats for fimmature mosqufitoes fin urban areas. Scfientfiffic Reports 9 (1), 1–11.
- Wfiflke, A.B., Vasquez, C., Carvajafl, A., Moreno, M., Fuffler, D.O., Cardenas, G., Petrfie, W. D., Befier, J.C., 2021. Urbanfization favors the profliferation of aedes aegyptfi and cuflex qufinquefascfiatus fin urban areas of mfiamfi-dade county, fflorfida. Scfientfiffic reports 11 (1), 1–12.
- Wfiflke, A.B., Vasquez, C., Carvajafl, A., Ramfirez, M., Cardenas, G., Petrfie, W.D., Befier, J. C., 2021. Effectfiveness of adultificide and flavficfide fin controfflfling hfigh densitities of aedes aegyptfi fin urban envfironments. PLoS ONE 16 (11), 1–15.
- Wfiflke, A.B., Vasquez, C., Medfina, J., Carvajafl, A., Petrfie, W., Befier, J.C., 2019. Community compositifion and year-round abundance of vector specifies of mosqufitoes make mfiamfi-dade county, fflorfida a receptifive gateway for arbovfirus entry to the unfited states. Scfientfiffic reports 9 (1), 1–10.
- Wfiflke, A.B.B., Vasquez, C., Carvajafl, A., Medfina, J., Chase, C., Cardenas, G., Mutebfi, J.-P., Petrfie, W.D., Befier, J.C., 2020. Prollificratifion of aedes aegyptfi fin urban environments mediated by the avafiflabfiflity of key aquatfic habfitats. Scfientfiffic Reports 10 (1), 1–10.
- Wfiftfiams, K.K., Ramfirez, S., Lesser, C.R., 2022. Ffield evafluation of walls truck-mounted a1 super duty mfist sprayer® wfith vectobac® wdg agafinst aedes aegyptfi (dfiptera: Cufficidae) populatfions fin manatee county, fflorfida. SN Appflfied Scfiences 4 (2), 1–15.
- Yang, H.M., Macorfis, M.L., Gaflvanfi, K.C., Andrfighettfi, M.T., Wanderfley, D.M., 2009. Assessfing the effects of temperature on the population of aedes aegyptfi, the vector of dengue. Epfidemfioflogy and Infection 137 (8), 1188–1202.
- Yé, Y., Sauerborn, R., Séraphfin, S., Hoshen, M., 2007. Usfing modefiffing to assess the rfisk of mallarfiafl finfectfion durfing the dry season, on a flocall scafle fin an endemfic area of rurall burkfina faso. Annalls of Tropficafl Medficfine and Parasfitoflogy 101 (5), 375–389.
- Yfi, B., Chen, Y., Ma, X., Rufi, J., Cufi, J.A., Wang, H., Lfi, J., Chan, S.F., Wang, R., Dfing, K., Xfie, L., Zhang, D., Jfiao, S., Lao, X., Chfiang, Y.C., Su, Y., Zhao, B., Xu, G., Chen, T., 2019. Incfidence dynamfics and finvestfigatfion of key finterventfions fin a dengue outbreak fin nfingbo cfity, chfina. PLoS Negflected Tropficafl Dfiseases 13 (8), 1–23.