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A B S T R A C T

Aedes aegypti is one of the most dominant mosquito species in the urban areas of Miami-Dade County, Florida,
and is responsible for the local arbovirus transmissions. Since August 2016, mosquito traps have been placed
throughout the county to improve surveillance and guide mosquito control and arbovirus outbreak response. In
this paper, we develop a deterministic mosquito population model, estimate model parameters by using local
entomological and temperature data, and use the model to calibrate the mosquito trap data from 2017 to 2019. We
further use the model to compare the Ae. aegypti population and evaluate the impact of rainfall intensity in
different urban built environments. Our results show that rainfall affects the breeding sites and the abundance of
Ae. aegypti more significantly in tourist areas than in residential places. In addition, we apply the model to
quantitatively assess the effectiveness of vector control strategies in Miami-Dade County.

1. Introduction

Aedes aegypti is the primary vector responsible for the transmission of
several arboviruses, including dengue fever, chikungunya, yellow fever,
and Zika fever. It is commonly found in tropical and subtropical areas
and is one of the most widespread mosquito species. Urbanization and
human movement are highly related to the presence and distribution of
Ae. aegypti mosquitoes which almost exclusively feed on humans (Pon-
lawat and Harrington, 2005; Wilke et al., 2021a) - making them
extremely threatening in terms of spreading emerging and re-emerging
vector-borne diseases. Dengue, chikungunya, and Zika have been
introduced into Florida, caused local outbreaks (dengue in 2010 and
2020, chikungunya in 2014, Zika in 2016), and posed a major public
health problem there since Ae. aegypti mosquitoes are widely distributed
throughout Florida. Ae. aegypti mosquitoes prefer artificial aquatic
habitats such as flower vases, tires, barrels, cans, and bottles, posing a
significant challenge against most mosquito control programs. Mosquito
relative abundance is usually monitored via either mechanical traps that

attract female adults seeking hosts or ovitraps that attract female adults
to lay their eggs. Whenever vector control interventions are carried out,
mosquito trap data collected before and after the interventions can serve
as the primary resource for evaluation and assessment.

Since August 2016 during the Zika outbreak, the Miami-Dade County
Mosquito Control surveillance network have placed BG-Sentinel traps
(BioGents Corporation, Regensburg, Germany) to monitor the local
adult mosquito population. BG-Sentinel traps that are enhanced with
CO released from dry ice in a small cooler are the gold standard for
collecting several mosquito species including Ae. aegypti (Wilke et al.,
2019a). The surveillance network covered the totality of Miami-Dade
County, with particular attention given to the areas affected by the
2016 Zika outbreak and high human mobility: Miami Beach, Home-
stead, Wynwood and Brickell (Wilke et al., 2019c). Data collected from
mosquito traps represent a random sampling from the actual mosquito
population, and have served as the major indicator for the evaluation of
vector control efficacy for years (Pruszynski et al., 2017; Williams et al.,
2022). However, due to various unexpected reasons such as loose or torn

* Corresponding author.
E-mail address: ruan@math.miami.edu (S. Ruan).

1 Contributed equally to this work.

https://doi.org/10.1016/j.actatropica.2023.106837
Received 22 November 2022; Received in revised form 5 January 2023; Accepted 13 January 2023
Available online 16 January 2023
0001-706X/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.actatropica.2023.106837
www.sciencedirect.com/science/journal/0001706X
https://www.elsevier.com/locate/actatropica
mailto:ruan@math.miami.edu
https://doi.org/10.1016/j.actatropica.2023.106837
http://creativecommons.org/licenses/by/4.0/


´

J. Chen et al. Acta Tropica 239 (2023) 106837

Fig. 1. Map of Miami-Dade County.

catch bags, locked gates, trap invasion by lizards, a certain number of
traps occasionally malfunctioned, resulting in missing data from many
observational days and traps (Stoddard, 2018). In addition, sometimes
the functioning traps also fail to detect mosquitoes as they are not
around due to environmental conditions (too cold, too hot, or too
windy), not attracted by the traps, or their numbers are low for some
unknown reason. As a result, over a three-year period, the traps located in
Miami Beach, Homestead, Wynwood, and Brickell provide respec-
tively 86, 109, 120, and 101 data points. Further, most of the data were
not sampled on the same day, which makes it challenging to compare
trap data from different locations via simple statistical methods. Thus
the random sampling data may not directly provide credible estimations
of the mosquito populations, which could pose difficulties in the
assessment of vector control strategies. Mathematical models incorpo-
rated with mechanisms of population dynamics, when linked with trap
data, are effective tools in understanding the underlying dynamics of the
mosquito population and assessing the potential effectiveness of control
interventions.

Mosquitoes are ectothermic, meaning that their reproduction,
development, feeding, and survival rates rely on external sources of
heat. The entomological parameters regarding mosquitoes’ life cycle
under different temperatures have been well studied and documented in
many experimental papers (Delatte et al., 2009; Farnesi et al., 2009;
Rueda et al., 1990; Yang et al., 2009). Ae. aegypti is known as “con-
tainer-breeding”, and female mosquitoes prefer to lay eggs in
water-filled containers (Wilke et al., 2019b; 2020). Thus the abundance
of Ae. aegypti may be influenced by rainfall, but its actual contribution is
still unclear. Ordinary differential equation (ODE) models have been one
of other significant approaches to simulate mosquito population dy-
namics, with the weather data incorporated as time-dependent param-
eters in the model systems. Models with human-mosquito interactions
have been widely applied to explain the patterns of vector-borne disease
outbreaks and estimate the potential future risks where the simulations
were matched with human case data (Hladish et al., 2018; Metelmann et
al., 2019; 2021; Poletti et al., 2011; Robert et al., 2016; Ye et al., 2007)
or together with mosquito trap data (Caldwell et al., 2021; Leach et al.,
2020; Li et al., 2019; Marini et al., 2017; Oidtman et al., 2021; Petrone
et al., 2021; Yi et al., 2019). Specifically, to infer mosquito population
in the field, differential equations models have been devel-
oped with variables representing the population in each stage of the

mosquito’s life cycle. Some models have been employed to calibrate the
entomological parameters and the carrying capacity with climate data
(Ewing et al., 2016; Ezanno et al., 2015; Simoy et al., 2015) and compare
the model simulation with the seasonal trends indicated by trap data
(Vaidya et al., 2014) or ovitrap data (Tran et al., 2013; 2020). Other
models further include several uncertain factors subject to the natural
environment, such as the influence of the intensity of rainfall on carrying
capacity, the hazard risk of death in the wild, inter-specific competition,
and the efficiency of traps or ovitraps (Erguler et al., 2016; Ewing et al.,
2019; Lana et al., 2014; 2018; Marini et al., 2016; Nance et al., 2018;
Valdez et al., 2018; White et al., 2011). Such assumptions result in un-
known model parameters that need to be estimated via data fitting. The
issue of parameter unidentifiability exists in most studies that involve
data fitting, and this problem has been addressed in very few studies
(Lana et al., 2014; 2018). On the basis of our search, only a few studies
have investigated vector control strategies via simulations. Only one
study provides results based on fitting to trap data (Cailly et al., 2012;
Dumont and Chiroleu, 2010; White et al., 2011).

In this paper, we propose a deterministic model to investigate the
growth, abundance, and control of Ae. aegypti mosquitoes in Miami-
Dade County via the calibration of the Ae. aegypti trap data collected
from January 2017 to December 2019 - which is a period not affected by
the outbreaks of Zika in 2016 or COVID-19 after 2020. More specifically,
we aim to (i) determine the model parameters that are identifiable and
justify our findings via fitting experiments; (ii) investigate the necessity
of incorporating temperature and precipitation data in the simulation of
the local mosquito population dynamics by comparing the goodness of
fitting; (iii) utilize the model to compare mosquito population and
environmental differences among communities; and (iv) analyze the
effectiveness of using insecticides under all possible situations.

2. Material and Methods

2.1. Data

Mosquito trap data. Each trap is turned on to attract and collect
mosquitoes for precisely 24 hours on its surveillance day. Collected
mosquitoes are identified to species. We therefore obtain the sampling of
female Ae. aegypti captured in every single trap on each surveillance day.
The trap attracts female mosquitoes by mimicking a host. Both males
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Table 1
Goodness of Fitting

Quantity Reduced Model 7-day Model 21-day Model 42-day Model

Miami Beach trap (86 data points)
LOO -342.20 -330.83 -328.84 -327.32
SE 41.72 39.54 38.80 38.36
Coverage 73 81 82 83

Homestead trap (109 data points)
LOO -671.17 -672.90 -676.05 -673.14
SE 127.48 130.93 130.62 128.59
Coverage 76 98 96 77

Wynwood trap (120 data points)
LOO -1029.69 -1011.86 -1014.99 -1020.23
SE 143.60 140.75 143.40 146.45
Coverage 56 91 94 90

Brickell trap (101 data points)
LOO -428.55 -424.19 -428.11 -430.18
SE 82.31 78.36 79.46 81.03
Coverage 90 96 97 96

LOO: leave-one-out cross-validation. SE: standard error. Coverage: number of
points covered in the 95% prediction interval.

and females are collected by the traps but males are accidental catches
since they were probably trying to mate with the females. Note that
female Ae. aegypti only fly 100�500 meters from their breeding sites,
thus the trap count for each surveillance day can be regarded as a
random sampling of the Ae. aegypti population in the corresponding
community. In 2016 during the Zika outbreak, Miami-Dade County
enforced intensive vector control activities, and the number of
mosquitoes rapidly decreased. Since early 2020, COVID-19 pandemic
has also brought influences on the frequency of outdoor activities and
the exposure to mosquitoes, which could indirectly impact the Ae.
aegypti population that primarily feed on human. Therefore, we focus
our analyses on the trap data collected from January 2017 to December
2019 to avoid the unexpected influences of the two recent disease out-
breaks. We select three traps located in Miami Beach, Wynwood, and
Brickell, top-rated tourist destinations, thus possessing the highest
human mobility. In addition, we select the trap located in Homestead, a
populated residential area away from downtown Miami which has a
more diverse environment compared to the other three. Fig. 1 illustrates
all trap locations and the nearby weather stations.

Temperature and precipitation data. The daily average temperature
and daily precipitation during the study period were obtained from the
open-access database of the National Oceanic and Atmospheric
Administration (NOAA). We choose data from the weather station that is
geographically the closest to each trap location to represent the local
community weather: data from Miami International Airport for traps in
Brickell, Wynwood, and Homestead; and data from Miami Beach station
for the trap in Miami Beach.

Thermal-response test data. We extract the entomological parameters
of Ae. aegypti under various temperatures from published experiment
data (Yang et al., 2009). Specifically, we collect the
temperature-dependent data points on the average survival time for the
aquatic phase, the average transition time from the aquatic stage to
adult, the average survival time for female mosquitoes, and the average
oviposition rate (i.e. the number of eggs laid per mosquito per day).

2.2. Baseline Model

We develop a deterministic ODE model with time-dependent pa-
rameters to simulate the Ae. aegypti population in each community. To
incorporate the least number of unknown parameters, we simply sub-
divide the mosquito population into two classes: the immature mosquito
population in the aquatic stage at time t (J(t)), and the adult female
mosquito population at time t (A(t)). We only consider adult female Ae.
aegypti because only female mosquitoes are seeking for blood meals and
could be attracted to the traps. The compartmental model is presented in
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Fig. A1 and equations are given as follows:

J
¢  
(t) =  b(t)

(
1   

J(t)
)
A(t)   μ (t)J(t)   d(t)J(t),

(2.1)
A

¢ 
(t) =   d(t)J(t)   μ2(t)A(t),

where b(t) represents the time-dependent oviposition rate, d(t) denotes
the time-dependent development rate, μ (t) and μ (t) respectively refer to
the time-dependent death rates of immature and adult mosquitoes. The
fraction 1/2 in the second equation refers to our assumption that half
of the immature population will develop into adult female
mosquitoes. We assume that there is a carrying capacity for the aquatic
stage population, K(t), which may depend on time.

2.3. Entomological Parameters

The entomological parameters b(t), d(t), μ (t), and μ (t) are obtained
by composing the time-dependent temperature function and the corre-
sponding temperature-dependent entomological function. Let T denote
the variable of temperature, we adopt the thermal-response functions as
shown below (Mordecai et al., 2017).

μ1(T) =  
c(T   T0)(Tm   T)

1, (2.2)

μ (T) =  , (2.3)
0          m

b(T) =  c(T   T0)(Tm   T)2, (2.4)

where in each function, T and T are the minimum and maximum
temperature for the survival of Ae. aegypti at the corresponding stage,
respectively, with c being a positive rate constant.

b(1/298.15  1/T )

d(T) =  
298.15(1 +  ec(1/d  1/TK ))

where T is the temperature in Kelvin scale and a, b, c, d are positive
constants. All coefficients shown in functions (2.2)-(2.5) are fitted to the
thermal-response test data (Yang et al., 2009). The fittings are carried
out by utilizing the method of Monte Carlo Markov Chain (MCMC) via
the software Stan. The fitted coefficients for each function are summa-
rized in Table 2, and the fitting outcomes together with the experimental
data are plotted in Fig. 2. In this way, we obtain the entomological
parameter values of Ae. aegypti under arbitrary temperature.

To obtain the time-dependent entomological parameters in model
(2.1), we first acquire the daily temperature data T , with i =  0, 1, 2, ..., N
(N denotes the last day of simulation). By composing the temperature-
dependent functions, we get the entomological values on each day, μ
(T ), μ (T ), b(T ), d(T ) with i =  0,1,2, ...,N. Finally, we fit each daily
entomological data to trigonometric functions with a period of 365 days
to get the continuous time dependent values: μ (t), μ (t), b(t), d(t). The
time-dependent entomological parameters are summarized in Table 3.

2.4. Assumptions on the Carrying Capacity

The carrying capacity for immature mosquito population could be
directly impacted by the cumulative rainfall in the area. Water puddles
and water-filled containers are perfect resources for Ae. aegypti to lay
eggs, so cumulative rainfall may have a positive impact on the carrying
capacity. We formulate

K(t) =  K(1 +  αPn(t)) (2.6)

with K being the baseline carrying capacity, and α being the impact
intensity of rainfall on carrying capacity. P (t) is an index that measures
the effect of cumulative rainfall in the past n days at time t, and is
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Table 2
Thermal-response Functions with Fitted Coefficients

Variables Functions Estimates (median and credible interval)

μ1 (T)

μ2 (T)

b(T)

d(T)

1
1

c(T   T0 )(Tm   T)2
1

c(T   T0 )(Tm   T)

1
cT(T   T0 )(Tm   T)2

aTKeb(1/298.15  1/TK )

298.15(1 +  ec(1/d  1/TK ) )

c
0.0254

(0.0012, 0.0397)

0.1037
(0.0561,0.1039)

c
0.0058

(0.0022,0.0103)

0.1666
(0.1164,0.2000)

T0
2.3209

(0.0002,7.1740)
T0

6.4429
(2.8497, 9.0406)

T0
14.0343

(8.0104,18.6666)
b

21388
(21629,47348)

Tm
31.0033

(30,3400.6216)
Tm

41.4382
(37.6608,47.1059)

Tm
39.0899

(34.4189,51.9590)
c d

32013                                         300.02
(21629,47348) (299.67,300.38)

Fig. 2. Temperature-dependent entomological parameters. The thermal-response functions are fitted to the experimental data obtained from (Yang et al., 2009). In
each figure, the dots represent experimental data, the red curve represent the best-fit function, and the gray area represent the 95% credible interval (CI).

formulated so that 0 £  P (t) £  1 for all t ³  0. To determine this index,
we calculate the n-day cumulative rainfall and get the time sequence
data {C (T )}, i =  1, 2, 3, ..., N. Select the highest 2.5% quantile cumu-
lative rainfall value and denote it as Cmax, and define

{
Cn (Ti )

/
Cm ax , if Cn(Ti) <  Cmax ,

n        i
0, if Cn(Ti) ³  Cmax

for each day i =  0, 1, 2, ..., N in the study period. The reason for defining P
(T ) =  0 for those days with excessive rainfall is to account for flushing of
breeding sites resulting from such extreme events. We then fit the data set
P (T ) with i =  0, 1, 2, ..., N to trigonometric functions to obtain the
continuous-time precipitation index function Pn(t). The time-dependent

precipitation parameters are summarized in Table 3.
On one hand, the duration of Ae. aegypti maturation cycle (that is, the

period for eggs to develop into adults) is approximately 14 days, thus the
rainfall accumulated in the past 14 or more days could impact resources
available for the current generation of immature mosquitoes. On the
other hand, small-size water puddles would diminish in several days
without continuous rainfall, so precipitation might not have a long-time
impact on such breeding sites. Therefore, to examine in which accu-
mulation fashion the rainfall is impacting local Ae. aegypti population,
we propose four different assumptions on the carrying capacity:
Reduced Model assumes a constant baseline carrying capacity, 7-day
Model, 21-day Model, and 42-day Model respectively assumes rainfall
accumulated in the past 7, 21, and 42 days would impact the carrying
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Table 3
Time-dependent Model Parameters

Miami International Airport Weather Station

μ (t) - death rate for 0.03411272   0.00299637sin(2πt/365)
juvenile 0.00350181cos(2πt/365)

μ (t) - death rate for adult 0.03354552   0.00073822sin(2πt/365)
0.00050008cos(2πt/365)

b(t) - birth rate 6.20618176   0.96169481sin(2πt/365)
1.85341518cos(2πt/365)

d(t) - development rate 0.11026478   0.01650584sin(2πt/365)
0.03270561cos(2πt/365)

P7 (t) - 7-day precipitation 0.20877977   0.05637451sin(2πt/365)
index 0.14470886cos(2πt/365)

P21 (t) - 21-day 0.28119345   0.11241392sin(2πt/365)
precipitation index 0.20581943cos(2πt/365)

P42 (t) - 42-day 0.34709785   0.17999706sin(2πt/365)
precipitation index 0.23746802cos(2πt/365)

Miami Beach Weather Station
μ (t) - death rate for 0.03309639   0.00045398sin(2πt/365)

juvenile 0.00083619cos(2πt/365)
μ (t) - death rate for adult 0.0335949   0.00039216sin(2πt/365) +

0.000011939cos(2πt/365)
b(t) - birth rate 5.8358171 + 0.36835033sin(2πt/365)

2.04066277cos(2πt/365)
d(t) - development rate 0.10413367 + 0.00644022sin(2πt/365)

0.03762437cos(2πt/365)
P7 (t) - 7-day precipitation 0.19671585   0.02564263sin(2πt/365)

index 0.0678024cos(2πt/365)
P21 (t) - 21-day 0.27737096   0.01935936sin(2πt/365)

precipitation index 0.0982553cos(2πt/365)
P42 (t) - 42-day 0.37260115   0.02072676sin(2πt/365)

precipitation index 0.13756741cos(2πt/365)

capacity.

K(t) =  K , (ReducedModel)
K(t) =  K(1 +  αP7(t)), (7   dayModel)
K(t) =  K(1 +  αP21(t)),          (21   dayModel)
K(t) =  K(1 +  αP42(t)) (42   dayModel).

2.5. Fitting

We use the MCMC method to fit the female adult Ae. aegypti count
predicted by the model to the actual number of observed Ae. aegypti in
each trap. Specifically, on each trap day, we assume that the actual
mosquito count would follow a Poisson distribution with mean value
proportional to the mosquito population predicted by the model for the
whole community. Denote Di as the trap count on day i, then

Di � Poisson(q�A(i)),

where q represents the trap efficiency in attracting Ae. aegypti. The ex-
pected trap count is proportional to the fraction of blood-seeking female
adult mosquitoes and the trap’s efficiency in catching such mosquitoes.
Here we consider a combined effect of these two fractions and denote q as
trap efficiency for simplicity.

The MCMC method samples the posterior distributions of model
parameters by maximizing the likelihood function

∏ [qA(i)]Di e  qA(i)

i for all trap days                Di !

Based on all of our model assumptions, there are five unknown pa-
rameters for the n-day Model and four for the Reduced Model: (K,α, q, J
, A ), where J and A refer to the initial immature and mature Ae.
aegypti population on the first simulation day, respectively.

2.6. Parameter Identifiability

We reparameterize the model to show that the baseline carrying
capacity, K, cannot be identified based on trap data. Let J(t) =  J(t) /K
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and A(t) =  A(t)/K. The model (2.1) becomes

J
¢  

(t) =  b(t)
(
1   

1 
J(t)

n(t)

)
A(t)   μ1(t)J(t)   d(t)J(t),

A
¢ 

(t) =   d(t)J(t)   μ2(t)A(t)

with initial conditions J(0) =  J0/K and A(0) =  A0/K. The trap data then
follows a Poisson distribution with respect to the new variable A(t):

Di � Poisson(q�K�A(i)).

Thus, in the reparameterized system the carrying capacity K only im-
pacts the dynamics as in terms J /K, A /K, and q�K, which are coupled
with parameters (q,J ,A ). Therefore, one will only identify parameters
(α, qK, J /K, A /K) via fitting, and the parameter K is theoretically
unidentifiable.

Additionally, we conduct fitting experiments with synthetic data to
show the practical identifiability of the model parameters. The experi-
ments and results of the practical identifiability are summarized in
Figs. A2–A4.

2.6.1. Model Comparison
We now fit each model to the real trap data (specified in section 2.1)

while fixating the carrying capacity K =  1, 000 and the initial date of
simulation as January 1st, 2017. In each fitting, we sample a total of four
independent chains that the first 2,000 iterations as burn-in, where in
each chain we discard all but every second sampled value to obtain
4,000 sampled values. Convergence was checked by calculating the R
value in Gelman-Rubin diagnostic (Gelman and Rubin, 1992) and
examining the effective sample size.

We compare the goodness of fit among all four models by evaluating
the leave-one-out cross-validation (LOO). The calculations are per-
formed via the Python package ArviZ which conducts an efficient
computation of LOO from MCMC samples (Vehtari et al., 2017; 2015).
Table 1 shows the model comparison results for the fittings of all four
traps.

1. The differences of LOO values among all four models are far smaller
than the scale of standard errors. This indicates that all models
perform equivalently well in fitting the trap data.

2. The 7-day Model and 21-day Model tend to cover more data points
in their 95% prediction intervals.

From a statistical point of view, there is no significant difference in
the goodness of fitting for all models. However, the prediction intervals
of models incorporated with precipitation data can include the majority
of trap data under all scenarios investigated. Therefore, 7-day Model
and 21-day Model show a slightly better fitting will be used to explore
our following questions.

2.6.2. The Combined Trap Model
We now extend the n-day Model for the simulation of mosquito

population in four locations. By assuming that all traps share the same
efficiency, we can use this model to compare the mosquito abundance
and rainfall dependency among communities. Specifically, we consider
four traps and denote J (t) and A (t) as the juvenile and female adult
population in trap i (i =  1, 2, 3, 4) at time t, and have the following
Combined Trap Model with n-day cumulative rainfall data Pi (t) for
each trap location:

J
¢  
(t) =  bi (t)

(
1  

Ji(t) )
)
Ai ( t)   μi (t)Ji(t)   di(t)Ji(t),

i i     n (2.7)
Ai(t) =   di(t)Ji(t)   μi (t)Ai(t), for i =  1, 2, 3, 4.
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Fig. 3. Fitting outcomes of the Combined Trap Model with 21-day cumulative rainfall. (a) The colored bands indicate that the trap count of Ae. aegypti obtained on each
trap day should lie within the band with a 95% probability. (b) Each box with and whiskers show the median, interquartile range, and 95% CIs of predicted trap counts
derived from simulations based on 100 parameter combinations drawn from the posterior distributions. (c)&(d) Each violin plot represents the posterior distribution
of the corresponding parameter. In a violin plot: the white dot represents the median; the thick black bar represents the interquartile range; the thin black
bar represents the rest of the distribution; the two colored sides represent the shape of the distribution (wider sides indicate higher probability).

Note that the entomological parameters bi(t),di(t),μi (t),μi (t) could also
differ among traps due to different local temperature profiles. Denote Dj

as the trap count on day i in trap j, then

Dj � Poisson q�Aj(i)
)
.

And the MCMC method will sample the posterior distributions of pa-

rameters that maximize the likelihood function:

∏ ∏  [
qAj(i)

]Di e  qAj(i)

j=1,2,3,4 Dj !
trap

tr
days

There are a total of 17 unknown parameters: the carrying capacity in
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Fig. 4. Effects of adulticide and larvicide in Wynwood. Effects are measured by calculating the daily fraction between mosquito population with and without control.

each trap K , the rainfall impact factor for each trap location α , initial
juvenile population J (0), initial female adult population A (0), and trap
efficiency q. Similar to the analysis of the single trap model (2.1), it is
easy to see that one has to presume the carrying capacity in one of the
traps to identify other parameters. First we can fix the carrying capacity
of trap 1 as K =  K with K being a baseline value. Then we fit the above
model to data from four traps with the aim of estimating a total of 16
unknowns: K /K, K /K and K /K as relative carrying capacity ratios, the
rainfall impact factors α , the relative initial populations J (0) /K and
A (0)/K (i =  1,2,3,4), and q�K. The posterior distributions of K /K, K
/K and K /K could help compare the Ae. aegypti population among
different areas, and the estimated values of α could help evaluate the
dependency of the mosquito population on rainfall in each community.

We conduct similar synthetic tests to confirm that all parameters are
identifiable and the parameter estimations are not affected by the pre-
sumed baseline carrying capacity K for trap 1. Then we take K =  1000 as
the carrying capacity for the Brickell trap, and fit model (2.7) with n =  7

and n =  21 to the trap data in Brickell, Wynwood, Miami Beach, and
Homestead. The fitting outcomes are discussed in the following section,
and the posterior distribution of all parameters being estimated are
adopted to generate further simulations on insecticide applications.

3. Results

3.1. Mosquito Abundance and Rainfall Impact Comparison

Due to personnel shortages, the schedule and frequency of trap
counts differ from community to community. Thus one cannot directly
compare the abundance of Ae. aegypti among the four communities. The
average trap count of Ae. aegypti per trap day in Brickell, Homestead,
Wynwood, and Miami Beach are 5.25, 7.36, 10.91, and 5.22. It is
insufficient to conclude the lower abundance of Ae. aegypti in Brickell
and Miami Beach comparing to the other two communities because the
trap capture could undoubtedly be affected by randomness. Here we

7



i

J. Chen et al. Acta Tropica 239 (2023) 106837

Fig. 5. Combined use of adulticide and larvicide on 7-day schedule.

Fig. 6. Combined use of adulticide and larvicide on 14-day schedule.

utilize our model to compare the mosquito population among commu-
nities, and in order to do this, we assume that the trap efficiency in
attracting and trapping Ae. aegypti is the same among all four
communities.

The fitting outcomes for real trap data with 21-day cumulative
rainfall are presented in Fig. 3: (a) shows that the model can explain the
trap counts in all four communities, (b) visualizes how data points fall
into the prediction interval on a monthly basis (with results for the other
three traps in Fig. A5), (c) shows the estimation of relative carrying
capacities (thus abundance) among the communities, and (d) shows the
posterior distributions of the rainfall impact factor in different com-
munities. Corresponding results obtained from the Combined Trap
Model with 7-day cumulative rainfall are summarized in Fig. A6 with
consistent conclusions as summarized below.

Mosquito Abundance. From the posterior distribution of carrying ca-
pacity ratios we know that Brickell and Miami Beach tend to have less
Ae. aegypti population than Homestead and Wynwood. Thus the
extremely high trap count in Miami Beach in summer 2017 could be
caused either by temporally high adult Ae. aegypti population or by the

randomness of sampling. Such a high count was not observed continu-
ously in the latter part of the study period. Then based on our
mechanistic-based model, the tentative high trap counts in Miami Beach
do not link to high local mosquito abundance.

Rainfall Impact. The rainfall impact factor value for each trap (α )
measures how the fluctuation of precipitation may affect the overall
carrying capacity in the surrounding area. Our results show that the trap
in Homestead, the only residential place among all four locations, has
the lowest rainfall impact factor. Thus cumulative rainfall may affect the
breeding sites of Ae. aegypti more significantly in the tourist areas where
the small water containers are usually left unattended.

3.2. Effects of Vector Control

Mosquito control interventions in Miami-Dade County are conducted
on a two-week basis by applying insecticides mainly via truck spray
Miami Dade County Mosquito Control. The aerial spray of adulticide
kills flying mosquitoes upon contact and lasts only a short period of time,
then degrades into harmless byproducts. Larviciding prevents immature
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mosquitoes from completing their immature stage and developing into
biting mosquitoes. The most frequently used larvicide in the County,
Bacillus thuringiensis israelensis (Bti) (Wilke et al., 2021b), can be applied
either by hand or truck spray to areas of standing water as potential
mosquito breeding sites.

Here we utilize our well-calibrated model to simulate vector control
strategies with insecticide efficacy ranging from widely assumed in-
tervals. We assume the efficacy of adulticide as ε Î [0,90], which means
that adulticide can kill a percentage ε of adult mosquitoes upon contact.
The application of adulticide is modeled by resetting the number of fe-
male adult mosquito population A(t) on the application day t to (1
ε /100)A(t). The larvicide efficacy is denoted as ε Î [0, 90], which
means that larvicide can kill ε percent of the immature mosquito pop-
ulation over a 24-hour period. Then the first-day killing rate of juvenile
can be parameterized as γ =    ln(1   ε /100). Since larvicide is applied to
water resources which could last and maintain its efficacy longer, we
assume that the toxicity would decay exponentially at a rate of ν. While
the half-life of Bti in soil could be long, studies found only 41% of the
toxin would remain after 24 hours in water (Perez et al., 2015). Thus we
model the time-dependent larvicide killing rate as γ(0.41)Δt , where Δt
measures the difference between current time and the last larvicide
application time. We obtain the effectiveness of vector control strategies
based on simulations with the fitted Combined Trap Model with 21-day
cumulative rainfall, and similar conclusions are observed for the model
with 7-day cumulative rainfall.

Effects of adulticide spray. We utilize the calibrated model for Wyn-
wood to perform simulations on adulticide application under three
different schedules: 3-day schedule (adulticide spray for every three
days), 7-day schedule, and 10-day schedule. Fig. 4(a)-(b) show the ef-
fects of various schedules in comparison to no control given a 50% ef-
ficacy adulticide. All spraying schedules are effective in reducing the
overall prevalence of the female adult population (Fig. 4(a)), hence
should reduce the trap observations. In addition, the reduction of female
adult mosquitoes would lead to decreased egg-laying rate hence a lower
immature population. The most frequent 3-day spray schedule is the
most effective strategy in reducing the adult mosquito population and
also reduces the immature population by more than 10% (Fig. 4(b)).

Effects of larvicide application. Our simulations show that applying
larvicides with 90% efficacy (Pruszynski et al., 2017) could reduce fe-
male adult mosquitoes by 10 � 20% (Fig. 4(c)). In comparison to the
50% adulticide spray, larvicide is not as effective as adulticide in
reducing mosquito population. Larvicide could kill a significant amount
of the immature population during the application period. However,
given the high prevalence of female adult mosquitoes, the immature
population can be instantly compensated with newly laid eggs. Overall,
the immature population could be maintained at a reasonably lower
level, and the lower development rate leads to a reduced adult
population.

Effects of combined application of adulticide and larvicide. We simulate
the implementation of both adulticide and larvicide in a 7-day schedule
under variously assumed insecticide efficacies. Fig. 5(a) shows the
outcomes of such a 7-day control strategy where the adulticide and
larvicide are applied on the same day. Under all possible efficacies, using
larvicide alone would not reduce the female adult population by more
than 6%, and the optimal control strategy is to use a combination of both
insecticides. To reduce the female population by 50%, we need an
insecticide combination with efficacies falling in the upper area segre-
gated by the black border in Fig. 5(a).

Acta Tropica 239 (2023) 106837

Same-day versus alternating schedule. The Mosquito Control Depart-
ment of Miami-Dade County conducts a two-week vector control strat-
egy. The schedule of adulticide spray and larvicide application in the
same area may not fall on the same day due to the availability of
personnel. Then it is natural to ask about the necessity of implementing
the two insecticides on a same-day schedule. We, therefore, conduct
experiments for a 7-day and a 14-day control schedules where the in-
secticides are used either on the same day or alternatively (Fig. 5(b) and
Fig. 6). We conclude that the alternating schedule possesses similar
effectiveness in a high-frequency control program but could bring zero
effect in larvicide application in a low-frequency program such as the
one employed in Miami-Dade County. This finding coincides with the
conclusion of the field study conducted by our ecology team (Wilke et
al., 2021b), where the same-day application of both insecticides was
superior to the alternating schedule.

4. Discussion

In this study, we utilized a deterministic model to fit the Ae. aegypti
trap count data from four communities in Miami-Dade County over a
three-year period. The time-dependent model parameters were obtained
by combining the local temperature data and the temperature-
dependent entomological data for Ae. aegypti. We found that the base-
line carrying capacity and trap efficiency are two coupled parameters
that cannot be separately identified based on trap data. We formulated
four hypotheses about the impact of rainfall on the carrying capacity of
Ae. aegypti, and found no statistical differences among the fitness of
models. This means the Reduced Model without rainfall could also fit
the Ae. aegypti trap count as well as the others under a statistical point of
view. However, we would like to emphasize that this finding does not
suggest limited impact of rainfall on Ae. aegypti population. The tem-
perature and precipitation patterns are practically synchronized in
South Florida, which makes the entomological parameters driven by
temperature oscillations in our models sufficient to capture the trap
count trends. For study sites with distinctive temperature and precipi-
tation patterns, incorporating rainfall impact could become essential in
the interpretation of Ae. aegypti population dynamics.

We applied the model to fit the trap count data collected from four
communities. This allows us to compare the relative scale of Ae. aegypti
population and the breeding site dependency on rainfall among different
urban built environments. Wynwood, which is undergoing an intense
gentrification process, and Homestead, which is undergoing an urbani-
zation process, showed a relatively high Ae. aegypti abundance. Brickell,
as a highly urbanized and high-income area with a high human popu-
lation density but fewer aquatic habitats due to the absence of highly
productive urban environments for mosquito development and prolif-
eration, had a relatively low carrying capacity of Ae. aegypti. Miami
Beach was the most affected area by the Zika virus in 2016. As a result of
an intense joint effort made by the community and the Miami-Dade
Mosquito Control Division, many important aquatic habitats were
removed from the area and therefore the abundance of Ae. aegypti was
impacted. Among all four investigated areas, we found that the breeding
sites for Ae. aegypti in Homestead do not depend significantly on the
cumulative rainfall. Thus reducing unattended artificial containers
could help reduce the breeding sites of Ae. aegypti in rainy seasons and
further help reduce the Ae. aegypti population.

In real practice, the success of adulticide spray also depends on many
other aspects such as the specific time and location of the spray, wind,
and precipitation (Stoddard, 2018), thus the practical adulticide efficacy
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could be considerably lower than expected. Therefore, the dominant
adulticide effect found in our simulation does not rule out the necessity
of the integrated vector control strategy with both insecticides. Our
finding on larvicide effectiveness is based on the assumption of applying
larvicide in water where 41% of the toxin remained after one day.
However, the half-life of Bti is a lot longer in soil, and plant surface
(Perez et al., 2015), and field studies showed that aerial larvicide
application could significantly reduce the trap count of adult mosqui-
toes. Therefore, the half-life of Bti could be considerably different in
diversified urban environments and the effectiveness of larvicide
application could be underestimated in the simulations presented
herein.
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Appendix A. Practical Identifiability

A1. Single Trap Models

To validate our conclusions on parameter identifiability, we first run our model to generate synthetic data, then fit the identifiable model pa-
rameters to the data and compare the fitting outcomes with the actual parameter values being used.

Generate synthetic data. For each model, we first simulate the female adult population for a two-year time period by setting J =  A =  K =  1000, α
=  1, and q =  5%, while adopting the local temperature and 7-day accumulated precipitation. Secondly, we randomly select 100 trap days and obtain
the synthetic trap data on each corresponding day by drawing a sample from a Poisson distribution with mean value being the trap count
predicted by the model.

Fitting experiments. To validate our conclusion that the carrying capacity K cannot be identified via fitting the models to the trap data, we conduct
four fitting scenarios with various values of K being 500, 1000, 2000, and 5000. We utilize the package Stan for Bayesian inference to conduct all
fittings via the MCMC methods.

As an example, we discuss our findings on the 7-day Model, where we obtain similar conclusions for the 21-day Model and 42-day Model. The
posterior distributions of the fitted parameters J /K, A /K, α, and q�K under all scenarios are pictured in Fig. A2 for the 7-day Model. The fitting
scenario with K =  1000 represents the case with the real carrying capacity, and the posterior distributions of all fitted parameters show that their fitted
values are close to real values. Similar experiments are conducted for the Reduced Model with posterior distributions in Fig. A3 with consistent
observations. Then we conclude from the synthetic tests that:

1. The actual carrying capacity K cannot be estimated from trap data.
2. Other parameters (J /K, A /K, α, q�K) can be correctly identified.
3. The trap efficiency q cannot be identified as the carrying capacity is unidentifiable.

Fig. A1. Compartmental dynamics for Ae. aegypti population.
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Fig. A2. Fitting Validation for the 7-day Model. Synthetic data were generated by letting K =  1000. Fitting were conducted under four scenarios by assuming K =
500,1000,2000,5000. The figures show the posterior distributions of each model parameter under different assumed K values, where the red vertical bars represent

the actual value of the model parameter used to generate synthetic data.
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Fig. A3. Fitting Validation for the Reduced Model. Synthetic data were generated by letting K =  1000. Fitting were conducted under four scenarios by assuming K
=  500, 1000, 2000, 5000. The figures show the posterior distributions of each model parameter under different assumed K values, where the red vertical bars

represent the actual value of the model parameter used to generate synthetic data.

A2. Combined Trap Model

We conduct similar synthetic test for the Combined Trap Model with outcomes shown in Fig. A4, and reach the conclusion in the main text.

Fig. A4. Fitting Validation for the Combined Trap Model. Synthetic data were generated by setting the carrying capacity for Trap 1 as K =  1000. Fitting were
conducted under four scenarios by assuming K =  500,1000,5000. The figures show the posterior distributions of each model parameter under different assumed K

values, where the red vertical bars represent the actual value of the model parameter used to generate synthetic data.
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Fig. A5. Combined Fitting of Four Traps with 21-day cumulative rainfall.
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Fig. A6. Fitting outcomes of the Combined Trap Model with 7-day cumulative rainfall.
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