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ABSTRACT: Many marine animals have a biphasic life cycle in which demersal adults spawn
pelagic larvae with high dispersal potential. An understanding of the spatial and temporal pat-
terns of larval dispersal is critical for describing connectivity and local retention. Existing tools in
oceanography, genetics, and ecology can each reveal only part of the overall pattern of larval dis-
persal. We combined insights from a coupled physical-biological model, parentage analyses, and
field surveys to span larval dispersal pathways, endpoints, and recruitment of the convict sur-
geonfish Acanthurus triostegus. Our primary study region was the windward coast of O'ahu,
Hawai'i. A high abundance of juvenile A. triostegus occurred along the windward coast, with the
highest abundance inside Kane'ohe Bay. The output from our numerical model showed that larval
release location accounted for most of the variation in simulated settlement. Seasonal variation in
settlement probability was apparent, and patterns observed in model simulations aligned with in
situ observations of recruitment. The bay acted as a partial retention zone, with larvae that were
released within or entering the bay having a much higher probability of settlement. Genetic
parentage analyses aligned with larval transport modeling results, indicating self-recruitment of
A. triostegus within the bay as well as recruitment into the bay from sites outside. We conclude
that Kane'ohe Bay retains reef fish larvae and promotes settlement based on concordant results
from numerical models, parentage analyses, and field observations. Such interdisciplinary ap-
proaches provide details of larval dispersal and recruitment heretofore only partially revealed.

KEY WORDS: Larval dispersal - Self-recruitment - Coral reef - Coupled physical-biological
modeling - Reef fish surveys - Parentage analysis - Connectivity - Acanthurus triostegus

1. INTRODUCTION

Many coastal fish species have complex life cycles
wherein reef-associated adults produce pelagic lar-
vae that are dispersed by oceanographic processes
(Leis & McCormick 2002) before returning to near-
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shore habitats (Paris & Cowen 2004). For many coral-
reef fishes, larval dispersal is the predominant source
of population connectivity between sites, given that
juvenile and adult reef fish generally have restricted
home ranges (Gaines et al. 2007, Green et al. 2015).
For these species, distribution of adult populations
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and connectivity between local populations are gov-
erned by the interplay of oceanographic dynamics,
geographic features, larval behavior, and life history
traits that influence patterns of larval dispersal (e.g.
Hjort 1914, Caley et al. 1996, Schweigert et al. 2010,
Peck et al. 2012). Depending on the species and envi-
ronment, larval dispersal distances range anywhere
from self-recruitment back to the same reef where
spawned (Schultz & Cowen 1994, Taylor & Hellberg
2003, Jones et al. 2005, Cowen et al. 2006, Gerlach et
al. 2007, Almany et al. 2017) to 100s of km (Kinlan &
Gaines 2003, Christie et al. 2010), with combinations
of patterns also observed (Williamson et al. 2016,
Johnson et al. 2018). Some of this variation in dis-
tance traveled is a result of temporal variability in the
pelagic larval stage (Selkoe & Toonen 2011), with
pelagic larval duration (PLD) ranging from 7-94 d
across reef fish species and intraspecific variability in
PLD ranging from 3-56 d (Green et al. 2015). Thus,
understanding spatial and temporal patterns in larval
dispersal is key for understanding recruitment to
local populations and subsequently informing spatial
management strategies (Green et al. 2015). The com-
plexity of relevant environmental and biological
parameters, coupled with the small size of marine
larvae, have historically obscured patterns in larval
dispersal and population connectivity (Caley et al.
1996, Cowen et al. 2006, 2007, Botsford et al. 2009).
Larval movement has long been regarded as one of
the great ‘black boxes' in marine ecology (Caley et
al. 1996, Grosberg & Levitan 1992), yet multidiscipli-
nary approaches hold great promise for illuminating
this enigmatic part of the marine life cycle (Petitgas
et al. 2012, Williamson et al. 2016, Johnson et al.
2018, Hixon et al. 2022).

Oceanographic models can simulate virtual larvae
through their pelagic journey and provide spatially
and temporally extensive estimates of larval disper-
sal pathways and recruitment patterns (Cowen et al.
2006, North et al. 2009). Model simulations can ex-
plore a variety of conditions and depict the sensitivity
of larval dispersal patterns to various oceanographic
conditions. Critical to the success of predicting larval
dispersal via oceanographic models is biological
realism in the simulations of larval behavior com-
bined with biologically appropriate scales for model-
ing water movement and physical attributes inclu-
sive of near-shore regions (Metaxas & Saunders
2009). Modeling larval dispersal provides predictions
of how settlement patterns vary over time, including
connectivity between sites and self-recruitment
(Cowen & Sponaugle 2009, Leis 2021). These predic-
tions can be confirmed through ecological surveys of

fish recruitment and genetic parentage analysis
(Bode et al. 2019).

Genetic parentage analyses can be used to validate
patterns of larval dispersal predicted by oceano-
graphic models by directly identifying paired spawn-
ing and settlement locations (e.g. Planes et al. 2009,
Christie et al. 2010, Almany et al. 2017). Genetic
parentage analyses compare DNA between adults and
new recruits, thereby connecting parent-offspring
pairs (Christie et al. 2017, Coleman 2019). While sin-
gle-nucleotide polymorphism (SNP)-based parentage
analyses have become more accessible and cost-ef-
fective in recent years (Kraft et al. 2020), these analy-
ses are still constrained by the need to collect tissue
specimens from large numbers of individuals. This
can make interannual variation hard to quantify, in
part because of the extensive effort required to collect
a large number of tissue samples, and in part because
destructive sampling methods remove possible future
adults from the population (however, see Catalano et
al. 2021 for a 7 yr parentage study of an anemonefish).
Further, post-settlement mortality, movement of re-
cruits post-settlement, and movement of adults post-
spawning —all factors that can vary by location or
season —can bias the population subset that is avail-
able to be sampled for parentage analysis.

Ecological surveys that provide in situ observations
of juveniles can inform the relative distribution of fish
recruits across reefs and regions. Since the plankto-
nic larval phase is difficult to observe and track di-
rectly, visual surveys of small juvenile reef fish have
been used to document presumed temporal and spa-
tial variability in settlement patterns (e.g. Booth 1992,
Doherty 2002, Fox et al. 2012). This approach can re-
veal the seasonality of recruitment events (Doherty
1991) as well as recruitment habitat characteristics
(Randall 1961). Observed spatial and temporal varia-
tion in reef fish recruitment can be used to infer larval
supply but can be confounded by post-settlement
mortality and movement (Almany & Webster 2006,
Hixon et al. 2012). Despite these limitations, ecologi-
cal investigations of life history strategies and behav-
iors are essential for documenting and predicting lar-
val dispersal patterns (Pfeiffer-Herbert et al. 2007,
North et al. 2008, McManus & Woodson 2012, Faillet-
taz et al. 2018). The respective limitations and com-
plementary strengths of oceanographic numerical
models, ecological field surveys, and genetic parent-
age analyses are such that the integration of these
approaches provides the best possible understanding
of larval dispersal and population connectivity pat-
terns (Petitgas et al. 2012, Williamson et al. 2016,
Johnson et al. 2018, Hixon et al. 2022).
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Here, we combined methods and data from oce-
anography, genetics, and ecology to illuminate pat-
terns of larval dispersal for an endemic Hawaiian
reef fish, the convict surgeonfish Acanthurus trioste-
gus sandvicensis. Locally known as manini, this
species is an important food fish, selected for this
study in consultation with Hawaiian fishers and cul-
tural practitioners. We focused on the windward
coast of O'ahu, Hawai'i, to examine the role of a
large semi-enclosed embayment, Kane'ohe Bay, for
its potential as a source of larvae for the open coast,
as a settlement location for larvae spawned outside
the bay, and/or as a location of retention and self-
recruitment of larvae spawned within the bay. To
evaluate the relative importance of biological and
physical drivers on larval settlement of A. triostegus,
we used a high-resolution oceanographic model of
nearshore physical dynamics and the Connectivity
Modeling System (CMS) as a Lagrangian particle
dispersal model. We included known life history
characteristics of A. triostegus in these models, en-
abling us to predict biologically realistic patterns of
larval dispersal and settlement through space and
time. To validate the connectivity projected by these
simulations of virtual larvae, we incorporated parent-
age analyses of A. triostegus around O'ahu includ-
ing focused efforts on the windward coast and
within Kane'ohe Bay (Coleman 2019). To assess the
local distribution and dynamics of A. triostegus, we
analyzed spatial patterns in size structure from
diver surveys around O'ahu. To identify temporal
patterns in recruitment, we conducted periodic field
surveys within Kane'ohe Bay. By combining oceano-
graphic, genetic, and ecological techniques, this
study provides complementary insights into the spa-
tial and temporal dynamics of larval dispersal and
recruitment patterns.

2. MATERIALS AND METHODS
2.1. Study site

The island of O'ahu, Hawai'i, can be divided into
5 coastal regions based on prevailing weather pat-
terns and currents (Fig. 1a). A central focus for our
study, the windward eastern coast, is dominated by
northeasterly trade winds (speeds typically 5-10 m
s71) nearly year-round (Fig. 1c). A dominant feature
of the windward coast is Kane'ohe Bay (21.46°N,
157.81° W), the largest sheltered body of water in
the Hawaiian Islands (Lowe et al. 2009) at 52 km?
(along-shore length: ~13 km; cross-shore width:

~4 km; Fig. 1d). Kane'ohe Bay is bordered by a
shallow (mean depth: 3-5 m) fringing reef that
extends over 12 km? Beyond the fringing reef, the
water depth drops sharply to >20 m. The sheltered
part of Kane'ohe Bay is 10-15 m depth with the
exception of >50 coral patch reefs, which rise to
within <1 m of the surface. Water enters and exits
Kane'ohe Bay primarily through 2 main channels: a
shipping channel (mean depth: 12 m) in the north of
the bay and a second small-craft channel (mean
depth: 6 m) in the south of the bay (Lowe et al.
2009). The southernmost region of Kane'ohe Bay is
a semi-enclosed area that functions as a bay within
a bay (Fig. 1d).

2.2. Study species

Acanthurus triostegus is a common surgeonfish
throughout the Indo-Pacific and the eastern tropical
Pacific, adults of which are associated with hard sub-
strate in lagoon and reef habitats (Randall 1961,
1986). The Hawaiian population was designated a
distinct subspecies, A. t. sandvicensis, based on mor-
phology and coloration (Randall 1956), a designation
recently supported with genetic studies (Otwoma et
al. 2018). While reproductive life history traits of A.
triostegus can vary by location in the Hawaiian Is-
lands, A. triostegus likely reaches sexual maturity in
its first year. The average sizes of 1 and 2 yr old indi-
viduals are 16 and 20 cm total length (TL), respectively
(Longenecker & Langston 2008), and a population on
the southeast coast of O'ahu showed 50 % of 13 cm TL
individuals were sexually mature (Schemmel & Fried-
lander 2017). The smallest sexually mature individual
was ~10 cm TL (Schemmel & Friedlander 2017).

Spawning aggregations of 25-800 individuals have
been observed in Hawai'i and follow a semilunar
spawning periodicity, e.g. spawning within 4 d of
new and full moons (Schemmel & Friedlander 2017).
Spawning effort varies across seasons and years, with
windows of high spawning observed from December
to August (Randall 1961, Schemmel & Friedlander
2017). Resident spawning aggregations with home
ranges of an estimated <2 km of coastline (Robertson
1983) have been observed on the south shore of
O'ahu at a depth of 7-10 m in an area with strong
tidal flow (Schemmel & Friedlander 2017). Spawning
occurs during ebb tides between midday and dusk,
with subgroups of the aggregation displaying syn-
chronized rapid bursts of vertical swimming in which
gametes are released within 1 m of the surface
(Robertson 1983, Domeier & Colin 1997).
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Fig. 1. (a) O'ahu, Hawai'i, divided into coastlines by colored dots for reef fish surveys accessed from a statewide database. Black
diamonds: collection sites for genetic samples. (b) Acanthurus triostegus density by life stage and coastline, with colors on x-axis
matching colors from (a). Points represent the mean density model estimate +95 % CI for adult and juvenile fish. (c) Windward
eastern coast of O'ahu with the numerical model domains of nested Regional Ocean Modeling System (ROMS) overlaid (green
and blue dashed lines). Habitat polygons (n = 53) are depicted and colored by habitat region (n = 9). Black diamonds: collection
sites for genetic samples; red dots: 2 patch reefs in Kane'ohe Bay at which recruit surveys were conducted. (d) Kane'ohe Bay;
black diamonds: collection sites for genetic samples; red dots: 2 patch reefs at which recruit surveys were conducted

Pelagic eggs hatch into pelagic larvae within
~26 h (Randall 1956), with oriented swimming and
feeding behaviors observed after 5 d (Longenecker
& Langston 2008). The PLD of A. triostegus ranges
from 44-74 d, with post-larval stage juveniles arriv-
ing in intertidal habitats at a size of 2-3 cm TL
(Randall 1961, McCormick 1999, Frédérich et al.
2012). As individuals grow, they migrate to slightly
deeper lagoon, reef crest, and upper reef slope
habitats (Sale 1968, Robertson 1983, Frédérich et al.
2012).

This ecological information on spawning time,
spawning depth, PLD, and known habitat use for A.
triostegus was used to parameterize our biophysical
model.

2.3. Oceanographic model
2.3.1. Regional Ocean Modeling System

Ocean conditions were simulated for 2014 and 2015
using the Regional Ocean Modeling System (ROMS)
with atmospheric forcing, tidal forcing, stream dis-
charge, and bottom topography (Table 1, see Supple-
ment at www.int-res.com/articles/suppl/m684p117_
supp.pdf). The model domain covered an area of
1404 km? (Fig. 1c) along the windward coast of
O'ahu. The ROMS for Kane'ohe Bay had a 100 m res-
olution with 12 vertical layers (Fig. 1d), while the
ROMS model for the windward coast had a 1 km res-
olution with 20 vertical layers.
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Table 1. Simulated reef fish larvae were modeled using a coupled physical-biological model. Model parameterizations are
provided for the set of nested Regional Ocean Modeling Systems (ROMS; Shchepetkin & McWilliams 2005) and a Connec-
tivity Modeling System (CMS) that were used in model simulations of larval movement. SSH: sea surface height; SST: sea

surface temperature

Module

Parameter

Input

ROMS,
Hawaiian Islands

ROMS,
Windward Coast

ROMS,
Kane'ohe Bay

CMS

Grid resolution
Data availability
Physical data

Atmospheric forcing
Bottom topography

Grid resolution
Vertical layers

Data availability
Atmospheric forcing
Bottom topography

Grid resolution
Vertical layers

Data availability
Atmospheric forcing

Tidal forcing
Stream discharge

Bottom topography

Model boundary
Land boundary
Surface boundary
Vertical layers

Turbulence

Time step
Release habitat sites

Release timing

Release depth

Release magnitude
Competence

4 km, Hawaiian Islands (Matthews et al. 2012)
3h

Satellites (SSH, SST, and surface currents), Argo floats and gliders, high-
frequency radar

Weather Research and Forecasting Model (Michalakes et al. 2001)

Hawai'i Mapping Research Group of the Hawai'i Institute of Geophysics and
Planetology at the University of Hawai'i

1 km, windward coast of O'ahu (54 x 26 km)

20 vertical layers of current velocities

1h

Weather Research and Forecasting Model (Michalakes et al. 2001)

Hawai'i Mapping Research Group of the Hawai'i Institute of Geophysics and
Planetology at the University of Hawai'i

0.1 km, Kane'ohe Bay (14 x 6.9 km)
12 vertical layers of current velocities
30 min

Weather Research and Forecasting Model, local configuration (Zhou & Chen
2014)

The OSU TOPEX/Poseidon Global Inverse Solution TPXO (Egbert et al. 1994)
Stream gauge data from the US Geological Survey were obtained from:
https://waterdata.usgs.gov/nwis/inventory/?site_no=ID, where ID is:
16275000 for He'eia; 16294100 for Waiahole; 16284200 for Waihe'e; and
16294900 for Waikane.

Blended data from the Pacific Islands Benthic Habitat Mapping Center
(https://www.soest.hawaii.edu/pibhmc/cms/) and the National Coastal
Mapping Program (2013 USACE NCMP Topobathy Lidar,
https://inport.nmfs.noaa.gov/inport/item/49755)

ROMS Windward Coast and ROMS Kane'ohe Bay
‘avoidcoast’ model setting
‘upperlevelsurface’' model setting

41 fixed depth levels: 0.5 m intervals from 0-10 m, 1 m intervals from
10-20 m, 5 m intervals from 20-30 m, 10 m intervals from 30-50 m, 25 m
intervals from 50-200 m

Horizontal dispersion coefficient of 0.2 m? s™! (Lowe et al. 2009) for ROMS
Kane'ohe Bay and 2 m? s~ for ROMS Windward Coast

Vertical dispersion coefficient of 0.001 m? s~! (Durski et al. 2004)

300s

Reef habitat polygons (n = 53) based on NOAA's National Centers for Coastal
Ocean Science benthic habitat maps

Egg release dates (n = 32) based on afternoon ebb tides in Hawai'i (03:00 h
UTC, 17:00 h HST -1 d) for new and full moons between Jan-Jul 2014 and
Dec 2014-July 2015 (Randall 1961, Schemmel & Friedlander 2017)

1.5 m for sites <3 m deep, 3 m for all other sites (Robertson 1983, Domeier &
Colin 1997, Schemmel & Friedlander 2017)

100 particles per each habitat site (5300 per release date)

55, 65, and 75 d pelagic larval durations (Randall 1961, Longenecker &
Langston 2008)
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2.3.2. Connectivity Modeling System

Particle motion was evaluated using CMS, a
Lagrangian particle-tracking model that employs a
4™ order Runge-Kutta scheme to transport virtual lar-
vae through a set of velocity fields with the ability to
incorporate biological parameterization using an
individual-based model (Paris et al. 2013). Larvae
were set to be neutrally buoyant and passively ad-
vected throughout each model simulation (see
Text S1). Pilot simulations were run in which larvae
drifted for 65 d without any turbulent velocity to ver-
ify that the model was capturing expected regional
oceanographic features. After this confirmation, the
CMS turbulence module was used to provide ran-
domness to larval trajectories and simulate motion on
scales smaller than the grid resolution. Each virtual
larva was perturbed in a random direction every
300 s at a velocity proportional to a specified disper-
sion constant (Table 1). To prevent larvae from be-
coming stranded on land, those that crossed shoreline
boundaries were returned to their previous location
and moved with reduced velocities or held in place to
keep them in the water (avoidcoast model setting;
Paris et al. 2013). When larvae crossed an open ocean
boundary from the model domain (Fig. 1c), they were
considered ‘lost’ from the simulation.

2.3.3. Model simulations

Areas of hard bottom habitat comparable to sites
where juvenile and adult A. triostegus have been
observed were defined using QGIS, based on the
benthic habitat maps created by NOAA's National
Centers for Coastal Ocean Science (Fig. 1c). The Sea-
scape module within CMS was used to designate
these habitat polygons (n = 53) as release and settle-
ment locations for A. triostegus. To increase the inter-
pretability of spatial patterns, these habitat polygons
were grouped into 9 regions based on circulation
patterns (Bathen 1968, Lowe et al. 2009; Fig. 1c,d).
Following the observed semi-lunar spawning behav-
ior of A. triostegus in Hawai'i, spawning events were
simulated on afternoon ebb tides in Hawai'i (03:00 h
UTC, 17:00 h HST - 1 d) for new and full moons from
January to July 2014 and from December 2014 to
July 2015. For each model simulation (32 release
dates), 100 eggs were released at the centroid of
each habitat polygon (563 release locations) at a depth
of 1.5-3 m (Table 1). To test the effect of variation in
PLD on the settlement success of A. {riostegus, simu-
lations were run for 3 PLDs: 55, 65, and 75 d (based

on Randall 1961, Frédérich et al. 2012). Each model
included a 10 d settlement window, such that after
the designated PLD had elapsed, competent larvae
that were not already within a habitat polygon had
10 additional days to enter a polygon. In total, 96 sim-
ulations were run with 5300 larvae in each model.
For the 508800 virtual larvae released, 'successful
settlement’ refers to larvae that were within a habitat
polygon at the end of the simulation.

2.3.4. Settlement of virtual larvae

To evaluate how much the biological components
incorporated in model simulations accounted for
variation in settlement, a set of generalized linear
models (GLMs) were used (glm function in the stats
package; R Core Team 2019). For each GLM, settle-
ment was the binomial response variable, scored as
0 or 1 for larval absence or presence in habitat poly-
gons at the end of the simulation. A set of single pre-
dictor models was used to directly consider the
power of each predictor: PLD (Model 1), release date
(Model 2; corresponds to spawning date, this vari-
able was treated as a factor), window of release date
(Model 3; the first window from January 2014 to July
2014 and the second window from December 2014 to
July 2015), release habitat polygon (Model 4), and
release habitat region (Model 5; included an offset
for the number of polygons in a region). In addition to
these GLMs focused on single predictor variables, a
full model was fit with PLD, release date, window of
release date, release habitat polygon, and release
habitat region as predictors. This full model was used
to investigate the effect of each predictor accounting
for the variation of the other predictors and to work
through a comprehensive model selection process
(dredge function in the MuMiIn package; Barton
2019) to identify the best-fit model (Model 6). To
evaluate the significance of each predictor variable,
a marginal likelihood ratio test was used (Anova
function in the car package; Fox & Weisberg 2019).
Akaike's information criterion (AIC) scores were
used to compare model fit across all GLMs. Residuals
from each model were confirmed to follow the
expected distribution visually using QQ plots and
plots of residuals against fitted values.

To evaluate spatial patterns in settlement, the ob-
served distribution of settlers across habitat polygons
was compared to a random distribution (scaled to the
surface area of each habitat polygon) of settlement
across habitat polygons using a Pearson's y? test
(chisq.test function from the stats package; R Core



Counsell et al.: Reef fish larval dispersal and connectivity 123

Team 2019). This analysis was repeated at the re-
gional scale. To visualize population connectivity be-
tween habitat polygons and regions, connectivity ma-
trices were created using larval release and settlement
location data from the oceanographic models.

2.4. Parentage analyses for A. friostegus

To evaluate the population connectivity patterns
predicted through simulations, we incorporated data
from parentage analyses conducted on A. triostegus
around O'ahu (see Coleman 2019 for details). To
briefly summarize, a genetic parentage analysis
based on 399 SNPs was conducted from 1213 A.
triostegus samples (606 adults, 607 juveniles) col-
lected across 23 sites around O'ahu (Fig. la). The
sampling effort was focused on the windward coast
(Fig. 1c) and included collections from multiple patch
reefs within Kane'ohe Bay (Fig. 1d). Parent-offspring
assignments were determined using CERVUS v.3.0.7
(Marshall et al. 1998, Kalinowski et al. 2007). CERVUS
calculates the likelihood that each candidate is the
parent, taking into account population allele fre-
quencies and genotype errors. Parent—offspring as-
signments were accepted at a 95 % confidence level
resulting in 68 assignments (11 % assignment rate)
with a 2% average chance of being a false assign-
ment. Using the collection sites of adult and juvenile
samples from each genetically linked pair, geneti-
cally confirmed examples of population connectivity
were linked to spawning (parent) and settlement
(offspring) habitat polygons (Fig. 1c).

2.5. Spatial and temporal patterns of A. friostegus
populations

To evaluate spatial patterns in the population size
structure of A. triostegus around O'ahu, we accessed
reef fish survey data from a statewide database. We
used data from 1949 reef fish surveys of hard bottom
sites conducted by 5 research organizations (i.e.
Coral Reef Assessment and Monitoring Program of
the University of Hawai'i, NOAA, State of Hawai'i
Division of Aquatic Resources, Fisheries Ecology
Research Lab of the University of Hawai'i, and The
Nature Conservancy) from 2000-2016. Counts of A.
triostegus were standardized to number per 100 m?
to account for differences in the survey methods.
Observed A. triostegus were categorized as either
juveniles (<9 cm) or adults (>13 cm). Using a GLM,
we analyzed the effect of life stage (LifeStage: juve-

nile or adult) and the 5 coastal regions of O'ahu
(Region) on the density of A. triostegus (Density) as:

Density ~ Region + LifeStage

+ Region:LifeStage + Depth M

The model included the main effects of Region
and LifeStage as well as an interaction between
Region and LifeStage. Reef depth (Depth) was in-
cluded in the model as a predictive factor to ac-
count for variation across survey sites. The model
was fit using a negative binomial distribution to
account for over-dispersion (glm.nb function in the
Mass package; Venables & Ripley 2002). Residuals
from each model were confirmed to follow the
expected distribution visually using QQ plots and
plots of residuals against fitted values. A marginal
likelihood ratio test was used to evaluate the signif-
icance of Region, LifeStage, and the interaction term
(Anova function in the car package; Fox & Weisberg
2019).

To measure temporal variability in A. triostegus re-
cruitment and to estimate the synchrony of recruit-
ment inside Kane'ohe Bay, we conducted monthly
surveys of A. triostegus at 2 representative patch
reefs (each reef approximately 45 m in diameter)
within Kane'ohe Bay from March 2015 to March
2016. Surveys were increased to a frequency of twice
a month from May 2015 through September 2015 for
a total of 18 survey dates. Both patch reefs were in the
Central North Bay region of Kane'ohe Bay (reefs
marked by red dots in Fig. 1d), with one at the north-
ern boundary (21.4753°N, 157.8300° W) and the other
at the southern boundary (21.4576° N, 157.8069° W).
On each patch reef, ten 25 m transects were sur-
veyed: 4 on the reef slope (depth: 4.5 m), 4 on the reef
crest (2.1 m), and 2 on the reef top (<1 m). On the out-
bound swim of each transect, fish >5 cm TL were sur-
veyed within a 4 m belt; on the return swim, fish
<5 cm TL were surveyed within a 2 m belt. To im-
prove our estimates of the age of recruits, the TL of
A. triostegus was visually estimated to 0.5 cm for fish
<10 cm TL. At the start of each survey, teams spent
10-30 min estimating the size of model fish to re-
calibrate their underwater visual size estimation with
an emphasis on fish <10 cm TL.

We used a zero-inflated Poisson model (glmmTMB
function in the glmmTMB package; Brooks et al.
preprint doi:10.1101/132753) to determine whether
the number of juveniles (<9 cm; Juveniles), when
observed, differed between the northern and south-
ern patch reef (Site) or across survey month (Month):

Juveniles ~ Site + Month + (11 ReefDepth) (2)
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The model includes main effects of Site and Month.
Reef depth (ReefDepth) was included as a random
effect given that juvenile A. triostegus use shallow
reef tops more than other regions of patch reefs. Date
of spawning was estimated for all observed juveniles
(£9 cm TL) as: dategpservation — @J€days: 1he age in days
since spawning was calculated by inputting the
observed size of each individual into the growth
equation for A. triostegus (Longenecker & Langston
2008). A zero-inflated Poisson model was used
because A. triostegus juveniles were not present for
>75% of surveys, and yet, when A. ({riostegus juve-
niles were present, observations ranged from 1-27
juveniles transect™!. For this 2-stage model, residuals
were simulated (‘simulateResiduals’ function in the
DHARMa package; Hartig 2021) and then visually
inspected using a QQ plot. No deviations from the
expected distribution were observed.

We conducted our statistical analysesin Rv.3.6.1 (R
Core Team 2019).

3. RESULTS
3.1. Modeled predictions of settlement

Of all 508800 simulated larvae, one-third (33 %)
settled within the study area. Given the large number
of virtual larvae modeled, all predictive factors in-
cluded in GLMs for the probability of settlement were
statistically significant (ANOVA, p < 0.0001). The best
fit model included release polygon, release date, and
PLD (Model 6, 12 = 0.44; Table 2); however, models
that included only spatial factors, i.e. release region
(Model 5, r* = 0.43) described nearly the same amount

Table 2. GLM output for a set of models with binomial distribution for the prob-

of variation. Interactions between larval release poly-
gon, release date, and PLD may explain why release
date and PLD were retained in the best fit model de-
spite small contributions to the explained variation.

Settlement differed by release polygon (Model 4;
Fig. 2a) with clear regional patterns (Model 5). South
Bay had the greatest probability of settlement (91 %),
followed by Central South Bay (75%), North Bay
(72 %), Central North Bay (51 %), and Reef Flat (27 %).
Larvae released in regions outside of Kane'ohe Bay
had lower probabilities of settlement than larvae
released in regions inside the bay: North Coast (2 %),
Mid Coast (6%), Mokapu (11 %), and South Coast
(1%). These patterns of settlement across habitat poly-
gons and regions were non-random (x? test, p < 0.0001;
Fig. 2b).

Release date accounted for <1% of variation
(Model 2; Table 2) in settlement. In both years of
study, the highest probabilities of settlement were
observed in late March and early April (maximum
mean estimate was 43.4 % for 18 April 2015 release
date), and the lowest probabilities of settlement were
observed in January and early February (minimum
mean estimate was 22.3% for 16 January 2014 re-
lease date; Fig. 3). The probability of settlement was
higher for larvae released in 2015 (33.5%) than in
2014 (32.1 %) (Model 3; Fig. 3), but the difference be-
tween 2014 and 2015 release dates (Model 3; Table 2)
accounted for <0.1 % of variation in settlement. The
probability of settlement was higher for larvae with
shorter PLDs, ranging from 31.2% for a 75 d PLD to
34.7% for a 55 d PLD (Model 1; Table 2, Fig. 3), but
PLD accounted for <0.1% of variation in settlement
(Model 1; Table 2).

3.2. Modeled dispersal

ability of settlement as a binary response (pS) for simulated reef fish larvae. The

first 5 models are single predictor models for pelagic larval duration (PLD), the
date of simulated larvae release (a discrete factor), the time window of the sim-
ulated larvae release (a 2-level factor representing each of the 2 yr of study), the
specific habitat polygon of simulated larvae release, and a broader metric for
the region of simulated larvae release. The final model (6) is the best fit model
from a comprehensive model selection process run on a full model with all 5
predictor variables included. R? values are calculated as 1 — (residual deviance /

null deviance)

A portion of virtual larvae released
from every habitat polygon dis-
persed to outside the model domain.
This was the prevailing route for lar-
vae released from the North Coast,
Mid Coast, Mokapu, and South
Coast, but also included larvae re-

Model AIC

(1) pS ~ PLD 643907
(2) pS ~ release date 638162
(3) pS ~ release time window 644269
(4) pS ~ release habitat polygon 370896
(5) pS ~ release region + offset(N polys) 386678
(6) pS ~ PLD + release date + release habitat poly 358115

AALC R? leased within Kane'ohe Bay (Fig. 4).
Among larvae that were retained
285792  0.0007 within the model domain, the
280047 0.0097 strongest connectivity signals were
286154 0.0002 for sites within Kane'ohe Bay (Fig. 4).
12781 0.4246 Larvae released from habitat poly-
28563 0.4259 .
0 0.4445 gons in the Central North Bay, Cen-
tral South Bay, and South Bay often
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settled within the South Bay or Central South Bay.
Larvae released in the North Bay, Central North Bay,
and Central South Bay often settled within the North
Bay. Larvae released on the Reef Flat along the out-
side of Kane'ohe Bay often dispersed to habitat poly-
gons in Kane'ohe Bay (North Bay, Central South Bay,
and South Bay; Fig. 4). Further, larvae released at
habitat polygons along the north and south coastal

edges of Kane'ohe Bay had connectivity to sites
within the bay. Larval dispersal patterns from model
simulations included self-recruitment, in which vir-
tual larvae settled in the same habitat polygon from
which they were released, for 45 of 53 habitat poly-
gons (85%; Fig. 4). Self-recruitment was strongest
within Kane'ohe Bay, particularly within the North
Bay and South Bay regions (Fig. 4).
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3.3. Parentage analyses

From 1213 Acanthurus triostegus samples (606
adults, 607 juveniles) collected around O‘ahu, 67 par-
ent—-offspring assignments were confirmed to have
been spawned or settled along the windward coast.
Genetic evidence confirmed the dispersal of larvae
from the windward coast to areas outside of the
windward coast. For 3 adult—-juvenile pairs, adults on
the windward coast (1 from Mid Coast and 2 from
South Coast) were connected to juveniles outside of
the windward coast (Figs. 2c & 5). This connectivity
pathway ran in both directions. Eight windward
coast juveniles (2 on the North Coast, 3 on the South
Coast, and 3 within the Central South Bay) were con-
firmed offspring of adults sampled outside of the
windward coast.

Movement of offspring into Kane'ohe Bay was
the strongest connectivity pathway identified with

Number of particles
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Fig. 5. Connectivity matrix for oceanographic model simula-
tions of reef fish larval dispersal along the windward coast of
O'ahu with data aggregated to the region scale. Confirmed
numbers of juvenile-adult pairs between regions based on
parentage analyses are overlaid (white numerals). The loca-
tion of each adult is used for the release region, and the loca-
tion of the juvenile is used for the settlement region. Sampling
effort for the parentage analyses was not evenly divided
among regions, with intensified efforts in Central S. Bay,
which was the most easily accessed

parentage analyses (42 % of parent—offspring assign-
ments). In total, 28 juveniles found within Kane'ohe
Bay (Central North Bay, Central South Bay, and
South Bay) originated from adults found on the wind-
ward coast (North Coast, Mid Coast, and South
Coast; Figs. 2c & 5). In addition to windward sites
feeding into Kane'ohe Bay, there were 3 examples of
adults that were in Kane'ohe Bay sending larvae to
sites outside the bay (from the North Bay to the North
Coast; Figs. 2c & 5).

Parentage analyses were consistent with model
predictions of larval retention within Kane'ohe Bay.
Six juveniles within Kane'ohe Bay (Central North Bay,
Central South Bay, and South Bay) were connected to
adults found within Kane'ohe Bay (North Bay, Central
North Bay, and Central South Bay; Figs. 2c & 5). Self-
recruitment of A. triostegus was confirmed for 2 habi-
tat regions: the South Coast (1 parent—offspring pair
found on the Kailua Coast) and the Central South
Bay (2 parent-offspring pairs found in the Kane'ohe
Bay Reef Cluster 11-16).

3.4. In situ patterns of A. friostegus distribution
and abundance

The relative abundance of A. triostegus differed
among coastal regions of O'ahu (p < 0.001) and across
depth (ranging from 0.3-29 m), with more A. trioste-
gus at shallower depths (p < 0.001). More adults than
juveniles were observed overall (p < 0.001), yet juve-
niles and adults followed distinct spatial patterns (p <
0.001). In Kane'ohe Bay, abundance of juveniles was
higher than adults (2.0 juveniles versus 1.3 adults per
100 m?; Fig. 1b). In contrast, the south coast had the
highest abundance of adults and the lowest abun-
dance of juveniles (1.8 adults versus 0.04 juveniles
per 100 m?; Fig. 1b).

In surveys at 2 patch reefs within Kane'ohe Bay, we
observed 131 juvenile A. triostegus over 18 survey
dates from March 2015 to March 2016. When juve-
niles were observed, the number of juveniles was dif-
ferent between the northern and southern patch reef
(p < 0.001) and across survey months (p < 0.0001).
Overall, more juveniles were observed on the south-
ern patch reef than the northern patch reef (Fig. 3).
Juveniles were more likely to be observed from June
through October than during the rest of the year
(Fig. 3). Dates of spawning estimated from the ob-
served sizes of juvenile A. triostegus ranged from
January 2015 to November 2015. Estimated spawn-
ing dates indicate a successful spawning event
between January and March 2015 that resulted in
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higher settlement on the southern patch reef (n = 36)
than on the northern patch reef (n = 2) in June. There
was evidence of a few smaller successful spawning
events in May and June 2015 (Fig. 3).

4. DISCUSSION

Oceanographic, genetic, and ecological lines of
evidence all indicate that Kane'ohe Bay serves as an
effective retention zone for Acanthurus triostegus
larvae spawned along the windward coast of O'ahu.
In the biophysical model, larvae released within
Kane'ohe Bay had a much higher chance of settle-
ment than larvae released in other windward coast
regions (Fig. 2a), and larval settlement was higher to
sites within Kane'ohe Bay (Fig. 2b). In the parentage
analysis, more than half of the genetically linked
adult-juvenile pairs showed self-recruitment within
the bay (Fig. 5). In situ survey data confirmed the
highest abundance of juvenile A. triostegus within
Kane'ohe Bay compared to other coastal regions of
O'ahu (Fig. 1b). Evidence from these complementary
approaches aligns with expectations from coastal dy-
namics: larval retention along the windward coast of
O'ahu is expected to be strengthened by the trade
winds in this region, which move in an on-shore
direction with an average annual wind speed around
6 m s~!. Higher retention of larvae within Kane'ohe
Bay aligns with high particle retention times (Lowe
et al. 2009). The semi-enclosed nature of Kane'ohe
Bay shelters larvae from along-shore and offshore
water movement.

Oceanographic and genetic evidence similarly
connect regions within Kane'ohe Bay to regions out-
side of the bay. Biophysical model simulations indi-
cated that adults along the windward coast are a
source for juveniles within Kane'ohe Bay (Fig. 4); this
pattern was confirmed through multiple adult-juve-
nile pairs in the genetic data (Fig. 2c). While our
results predominately support the importance of
Kane'ohe Bay for retaining A. triostegus recruits, our
model simulations predicted, and our genetic data
confirmed, that adults within Kane'ohe Bay can be a
source, albeit a relatively weak one, of juveniles for
sites outside of the bay (Figs. 4 & 5).

Spatial variation in larval retention and connectiv-
ity was apparent within the bay. Simulations of
virtual larvae showed and parentage analyses vali-
dated connectivity among sites within Kane'ohe Bay
(Fig. 4), including support for self-recruitment at spe-
cific regions within the bay. Patterns of larval disper-
sal between sites within Kane'ohe Bay primarily fol-

lowed a north-to-south gradient. Virtual larvae re-
leased in northern regions of the bay regularly set-
tled in southern regions of the bay, and parentage
analyses validated north-to-south dispersal patterns
within Kane'ohe Bay. In addition to the support for a
north-to-south dispersal pattern, in situ survey data
and particle tracking models both indicated an over-
all pattern of higher recruitment in the southern
region of Kane'ohe Bay. The southeastern part of the
bay has high particle retention times (1-2 mo) and
limited water exchange both with other parts of
Kane'ohe Bay and with the coastal ocean (Lowe et al.
2009); hence, high water retention may be a driving
factor for high larval retention in the southern part of
Kane'ohe Bay.

Larval dispersal simulations and parentage analyses
provided evidence for connectivity along the wind-
ward coast and to other coastal regions of O‘ahu.
Some simulated larvae connected between windward
coast sites, and 19 % of genetically confirmed adult—
juvenile pairs connected adults with juveniles be-
tween sites on the windward coasts. Simulations
showed that some larvae were dispersed to outside of
the windward coast model domain, and this dispersal
to outside of the windward coast was greatest for
larvae released from sites outside of Kane'ohe Bay.
Parentage analyses validated along-shore larval
movement away from the windward coast through
connections between adults on the windward coast
and larvae settled elsewhere on O'ahu. Onshore
winds and along-shore currents, including the North
Hawaiian Ridge Current, simultaneously act as a bar-
rier to offshore dispersal (Basterretxea et al. 2013) and
contribute to the movement of larvae across coast-
lines.

In addition to the spatial concordances between
our oceanographic, genetic, and ecological data,
there were temporal alignments as well. Our results
indicate that physical dispersal dynamics did not
drive large differences in annual recruitment success
of reef fishes between 2014 and 2015, though they do
help to account for seasonal settlement patterns.
Simulations indicated that settlement success occurs
across a wide variety of release dates and correspon-
ding oceanographic conditions. In situ observations
of juveniles in Kane'ohe Bay confirmed that some
settlement occurred throughout the year. Seasonally,
the highest probability of settlement was for virtual
larvae released in March and April. While our eco-
logical surveys did not have complete temporal over-
lap with our oceanographic model simulations, in situ
observations of juveniles in Kane'ohe Bay confirmed
a peak in settlement from June to November (Fig. 3).
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Despite advances in oceanographic models and the
alignment of our simulations with in situ survey data
and parentage analyses, there are still limitations to
simulating larval dispersal. For example, our model
predictions should not be used to estimate actual
numbers of settled reef fish. We released 100 eggs
per location and date, while in the natural environ-
ment an estimated 22 000 to 362 000 pelagic eggs are
released per female per spawning event (Longe-
necker & Langston 2008). Further, our model does not
include larval mortality, likely leading to an overesti-
mation of proportional settlement success given the
extremely high mortality of marine larvae in the nat-
ural environment (Garrido et al. 2015). In contrast,
larvae that crossed grid boundaries were lost from
the model, corresponding to an underestimation of
total successful recruitment. Another model limitation
was the exclusion of complex larval reef fish behav-
iors, such as orientation to light polarization axes
(Mouritsen et al. 2013, Berenshtein et al. 2014), swim-
ming towards chemical cues of habitat quality (Ger-
lach et al. 2007, Dixson et al. 2008, 2014, Lecchini et
al. 2013, Paris et al. 2013, Coppock et al. 2020), and
swimming towards reef sounds (Simpson et al. 2008,
Vermeij et al. 2010). Ontogenetic vertical migration
was included in preliminary simulations (Text S1),
but many of the larvae became stranded in the shal-
low areas of Kane'ohe Bay, negating the value of in-
cluding this behavior in our model. We examined
varying PLDs and found that although PLD ac-
counted for <0.1% of the variation in settlement,
shorter PLDs resulted in slightly higher settlement
success for A. triostegus, aligning with a previous
study of PLDs (Sanvicente-Anorve et al. 2018). Intra-
specific variation in PLD may be the result of variabil-
ity in food availability (Dower et al. 2009) or water
temperatures (Dekshenieks et al. 1993, McLeod et al.
2013). As particle tracking models continue to ad-
vance in their computing capacity and our knowledge
of larval behavior increases (Swearer et al. 2019),
simulating more nuanced larval behaviors will con-
tinue to strengthen the predictive power of biophysi-
cal models and narrow the spatial and temporal
alignment with ecological and genetic observations.

Understanding larval dispersal patterns is critical to
examining geographic aspects of marine population
dynamics (Satterthwaite et al. 2021), as larval disper-
sal is the main connection between locations for many
marine species. Unfortunately, understanding popu-
lation connectivity via larval dispersal has presented a
major challenge for marine ecology given the vast po-
tential range of movement and the small size of larvae
(Cowen et al. 2006, 2007, Botsford et al. 2009). In this

study, we explored the power of combining oceano-
graphic model simulations with in situ ecological sur-
vey data and genetic parentage analyses to reveal
patterns in settlement success and intergenerational
connectivity for a reef fish. Our results highlight spa-
tial patterns and the importance of a large embayment
for retaining A. triostegus recruits both from adults
found within the bay and from adults along the
broader windward coast of O'ahu. High settlement
success and self-recruitment were observed in the
bay, particularly in the semi-enclosed southern part of
the bay.

Using a multidisciplinary approach, we demon-
strated that a large tropical embayment acted as a
population sink and a favorable juvenile growth
location for a coral reef fish, and suggest that this
conclusion likely applies to many reef fishes with
similar life histories. The concordance among 3 dis-
parate approaches reinforces our conclusions and
provides greater confidence in finding biologically
realistic answers through oceanographic models that
incorporate relevant life history. Understanding lar-
val dispersal and the subsequent connectivity among
sites is fundamentally important for guiding effective
management strategies, including marine protected
areas (Pelc et al. 2010) and recovery plans (Gouezo et
al. 2021). Broader application of these multipronged
methods would enhance fisheries management and
the placement of marine protected areas for coral
reef fishes.
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