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Green'’s function estimation is an important application of seismic interferometry but can require cross-
correlating very long time series that are difficult to gather, store, and transmit in resource-constrained
scenarios. We derive a compressive approach for estimating a Green’s function using only a small number
of random frequency samples from each signal. We bound the maximum error between this estimator
and the original cross-correlation and show how this error decreases as the number of samples increases.
We demonstrate the application of this technique to a numerical one-dimensional reflected wave case
and to estimation of surface wave Green'’s functions for the western United States using USArray data.
We show that the compressive approach can be extended to deconvolution as well, and we illustrate this
with pressure and displacement data recorded on a volcano. We also provide guidelines for implementing
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1. Introduction

Seismic interferometry commonly refers to the cross-correlation
and summation of seismograms to construct estimates of the
Green'’s function between sensor pairs, effectively turning each pair
of receivers into a virtual source-receiver pair [1-3]. Originally de-
veloped in the context of the reflection response of a horizontally
layered system from recorded transmitted waves [4], the technique
has been extended to multiple settings and scales [2,5-8].

Seismic interferometry can require cross-correlating very long
time series: one study [7] used over one year's worth of data sam-
pled at 0.2 Hz (N = 107 — 108, where N is the number of observa-
tions in the record), while another study [9] used three months’
worth of data sampled at 10 Hz (N = 108 — 10°). Gathering, stor-
ing, transmitting, and processing such lengthy time series can po-
tentially impose heavy burdens on data processing systems. It is
not difficult to imagine resource constrained scenarios in which in-
terferometric analysis would be rendered infeasible by the need to
work with large data sets. For example, both the submersible MER-
MAID sensor network [10] and the AGAP/GAMSEIS seismic array in
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eastern Antarctica [11] represent sensor networks where storage,
computation, and/or communication bandwidth might be scarce.

In this paper, we introduce a new technique called compressive
convolution. This new approach is based on a previous construc-
tion known as the compressive matched filter [12] and uses theory
from compressive sensing (CS) [13-15] to estimate either the con-
volution or the cross-correlation of two signals using a small num-
ber of randomly subsampled frequency components from each sig-
nal. Given the fundamental role that convolutions and correlations
play in signal processing and machine learning, one can envision
many possible applications of such a compressive estimator. In this
paper, we focus on the application of this technique to seismic in-
terferometry. We show that the compressive approach can reduce
the number of frequencies used for Green’s function estimation by
orders of magnitude.

An advantage of the compressive approach is that it may be
easily incorporated into existing seismic data processing schemes.
The only new operation is random subsampling of the spectra at
each receiver. Such random frequency samples can be computed
either (i) online at each sensor from a streaming input signal, or
(ii) offline at each sensor using the fast Fourier transform (FFT) on
a finite vector of samples. Only these random frequency samples
need be transmitted to a central node where the estimate of the
Green’s function is computed using a formula that we provide.

Our objective with this paper is twofold: (i) introduce compres-
sive convolution and (ii) demonstrate its applicability to seismic
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interferometry. In Section 2, we introduce and theoretically analyze
a compressive unbiased estimator of the convolution of two arbi-
trary signals from random frequency samples. Our analysis bounds
the error in the compressive convolution estimate in terms of the
number of random frequency samples collected, and this yields
insight into cases where the estimator can succeed with a num-
ber of frequency samples far lower than what would be required
with classical Nyquist sampling. In Section 3, we discuss how this
estimator can be applied to seismic interferometry. In Section 4,
we apply this technique to a one-dimensional numerical simula-
tion of the reflection response of a layered medium (Section 4.1).
Next, as a more comprehensive demonstration, we estimate the
Rayleigh waves propagating through the western United States
based on compressive seismic interferometry of USArray seismic
data (Section 4.2). Finally, we show in Section 4.3 that the concept
of compressive convolution can be extended to compressive decon-
volution and illustrate this with pressure and displacement data
recorded on a volcano. We summarize our conclusions in Section 5.

2. Compressive convolution
2.1. Methodology and main results

Consider the convolution of two arbitrary real-valued signals,
v(t) and w(t). Denote the Fourier transforms of the two signals
by 7(w) and w(w), respectively, and suppose there exist frequen-
cies w), and wy; such that ¥(w) and w(w) are bandlimited to
the frequency interval Q = [—wp;, —wjo] U [wyo, @pi] rad/s. That is,
V(w) = W(w) =0 for all w ¢ Q. Denote the set of positive frequen-
cies as Q2 = [wyy, @p;] rad/s.

Under these assumptions, the convolution of v(t) and w(t) is
given by

x(t)=Wxw)(t) = % /Q () 0 W(w))e dw

1 - o~ —iwt
= 57 V(@) ow(w), e™),
where © denotes the Hadamard (elementwise) product, (-, ) de-
notes the inner product, and T is the time interval of interest.

In order to obtain a compressive estimator of x(t), suppose
we acquire M samples of ¥(w) and w(w) at positive frequencies
w1, Wy, ..., wy, Which are drawn at random from a uniform distri-
bution on 2, yielding vectors of frequency-domain observations
7, W e CM with elements

k] = / Y uetde and Wik = [ Y w(be-odt 2)

teT, (1)

for k=1,2,..., M. Such frequency-domain samples could be ac-
quired either (i) by computing the integrals in Eq. (2) in streaming
fashion as the signals v(t) and w(t) arrive at their sensors, or (ii)
using an FFT after the signals arrive. For each value of t € T, define
the associated template vector

e—ia)lt

e—iwzt

e CM. (3)
ot

Using the vectors 7, W, e; € CM, we define the compressive con-
volution estimator as follows. For each value of t € T, the estimate
X(t) of x(t) is defined as

M

‘Re{(Vow,e)} = |7ST2K/[| -Re{ > [k] wlk] e’
k=1

12|
aM

X(t) :=

(4)
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where Q.| = wpj —w, and Re{.} returns the real part of a pos-
sibly complex number. Because the frequencies w{, w,, ..., wy are
chosen at random, X(t) is a random process that is a function of
time. This random process x(t) has mean function

- |2, S
E[X(t)] = i Re ’ E[v][k] W[k] e}[K]]
k=1
=2~Re{21n[+§(a)) () eiwfdw} — x(0). (5)

where -* denotes the complex conjugate, the first equality uses the
definition of expectation, the second equality uses the fact that
the frequencies are drawn from a uniform distribution over 2.,
and the last equality follows from (1). One way to interpret the
estimator (4) is that we have approximated the ideal convolution
frequency-domain integral (1) as a sum of samples taken at ran-
dom locations in €. Eq. (5) shows that X(t) is an unbiased esti-
mator of x(t); in short, random sampling is unbiased.

Of fundamental interest is quantifying how close the random
process X(t) is to its mean x(t). In [16], we study a related but sim-
pler question, characterizing the covariance of the error induced
by randomly subsampling a single finite, discrete-time signal’s fre-
quency spectrum. Here, we derive a bound for the maximum devi-
ation between the compressive convolution estimator x(t) and its
mean over all t e T, a quantity denoted as sup;r |X(t) — x(t)|. This
quantity is random, and our first theorem (the proof of which is in
Appendix A) bounds its expectation.

Theorem 1. Suppose that |2, ||T| > 3. Then

. 3 VI IR
E[ sup [¥(6) = x(D)] < 1342y 10g I [T) - ¥——m——
(6)

Theorem 1 characterizes the relationship between the signal
bandwidth |€2,|, convolution interval T, spectral energy ||X(w)]>,
number of random spectral samples M, and expected maximum
deviation between X(t) and its mean. With other parameters fixed,
Theorem 1 guarantees that the expected maximum deviation de-
creases as 1/v/M; as expected, collecting more random spectral
samples results in more accurate estimates of x(t). Examining the
role of other parameters, the maximum deviation scales linearly
with the spectral energy, which is natural since rescaling a signal
will also rescale its estimate (and thus the error). In Section 2.2,
we provide more insight into the number of compressive samples
M required to guarantee a certain level of accuracy in estimating
x(t).

Note that the requirement that |2, ||T| > 3 is not a significant
restriction in practice. The time-bandwidth product |2 ||T| (which
also appears logarithmically in (6)) effectively counts the number
of degrees of freedom in x(t) over the observation interval T, and it
is a mild assumption that |2 ||T| > 3. Nevertheless, if |2, ||T| < 3,
both theorems hold but with larger constants.

Our second theorem (also proved in Appendix A) provides a
tail bound on sup;y |X(t) — x(t)|, ensuring that this quantity is un-
likely to achieve a value significantly larger than its expectation.

Theorem 2. Fix § > 0 and let

U =4.07-/log(12|Q2,||T|/5)

-max \/W V210g(4/8) - W
(7)
If |24]|T| = 3, then

P{sup IR() — x(0)] >U} <5 (8)
teT
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In words, depending on which term dominates the maximum
in (7), the factor U appearing in Theorem 1 scales essentially like
the expectation bound on sup.y |x(t) —x(t)| that was given in
Theorem 1. Theorem 1 states that sup;r [X(t) —x(t)] is unlikely to
exceed this value U.

As detailed in Appendix A, the methodology described in this
section can be generalized to complex-valued signals v(t) and w(t)
with spectral supports on an arbitrary interval [wq, wp]: one col-
lects samples randomly from a uniform distribution on [wq, w]

and uses the estimator X(t) = “25? - (DO W, e;).

2.2. Insight into sample complexity

A natural question is: how large must one choose the number
of random spectral samples M so that Theorems 1 and 2 provide
a useful bound on the maximum deviation between X(t) and x(t)?
A meaningful answer to this question depends on the time- and
frequency-domain properties of the true convolution signal x(t). In
many problems of interest—including seismic interferometry—x(t)
may contain a few prominent peaks, and one may wish to ensure
the maximum deviation between X(t) and x(t) is small relative to
the size of these peaks. From the Fourier transform definition, one
can show that |x(t)| < ||X(w)||; for all t. That is, the true convo-
lution signal in the time domain has an amplitude no larger than
IX(w) |1, and strong peaks in x(t) will tend to have an amplitude
which is on the order of || X(w)||;. Thus, ||x(w)||; provides a bench-
mark for measuring the error in the time domain between X(t) and
x(t).

With this benchmark in mind, consider the right hand side
of (6), which bounds the expected maximum deviation between
X(t) and x(t). Suppose that, for some small  « 1, we wish to en-
sure the right hand side of (6) is less than or equal to 7 - [|X(w)]|;.
Rearranging terms, we see that this is ensured if

1.342/1og 2|2 [IT) - /124 - IR (@) 2

n-TR@); )

This bound depends on the ratio of the L, and L; norms of X(w).
Roughly speaking, this ratio depends on the degree to which x(w)
is evenly spread across its bandwidth 2. More precisely, from a
standard inequality relating the L, and L; norms, it follows that

||§(60)||2> 1
Xl = /19] /219

where equality is achieved when X(w) has constant magnitude
across 2. In such a case, (9) becomes

2
- 1.342 .log(2|Q+||T|)
e (122) s, o

A similar analysis applies for ensuring the first term in the def-
inition of U (see (7)) is bounded by 7 - ||x(w)||. To bound the sec-
ond term in the definition of U by 7 - ||X(w)||1, we require

o= 207 +/log (122 [[T1/8) - /210g(4/8) - 12:] - |R(@) |
- n-IR(@)h '
(1)

This bound now depends on the ratio of the L,, and L; norms of
X(w), a ratio which again depends on the degree to which X(w) is
evenly spread across its bandwidth 2. From a standard inequality,
it follows that

Xl _ 1 1

TN 2 Ter = )
X(@)lln ~ 1] 2[24]
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with equality when X(w) has constant magnitude across 2. In such
a case, (11) becomes

M= 2.035 - /log(12|Q]|T|/8) - /2 log(4/8).
n

To summarize the implications of (10) and (12), in cases where
the spectrum of X(w) has roughly constant magnitude and where
x(t) has a strong peak in the time domain, M need only scale
logarithmically in the time-bandwidth product |2, ||T| to ensure
the maximum deviation between X(t) and x(t) is bounded by a
small multiple of the peak value of x(t). Importantly, such cases
arise naturally when x(t) has a sinc- or wavelet-like structure in
the time domain, which correspond (exactly or approximately) to a
rectangular frequency spectrum across the bandwidth 2. This log-
arithmic scaling is far better than the linear scaling in |2, ||T| that
would be required by the classic Nyquist theorem for deterministic
time-domain sampling. For other scenarios, where a smaller time-
domain bound may be desired or where the spectrum of X(w) is
highly nonuniform, Theorems 1 and 2 can be interpreted corre-
spondingly to yield insight on the required number of samples M.
We direct the reader to Eftekhari et al. [12] for a similar discus-
sion in the context of compressive matched filtering and to Snieder
and Wakin [16] for more insight into the “background noise” intro-
duced when one undersamples a signal’s frequency spectrum.

(12)

3. Compressive seismic interferometry

The operations of convolution and cross-correlation are inti-
mately related, differing only by a time-reversal of one signal in
the time-domain or, equivalently, a complex conjugation of one
signal in the frequency domain. For this reason, the compressive
convolution estimator can naturally be applied to estimating the
cross-correlation between two wavefields, which is fundamental to
seismic interferometry. For interferometric studies of surface waves
one normally correlates components of the displacement to ob-
tain the displacement Green’s function of surface waves. Strictly
speaking, one should correlate the displacement with the stress to
obtain the displacement Green’s function [17]. However, when the
noise sources are in the far field from the receivers, one can simply
correlate the displacement recorded at different receivers [18]. This
has been used in observational studies with USArray [19] and with
an industrial array [20] where is was shown that the correlation of
noise recorded on the vertical (or radial) components recorded at
different stations give the Rayleigh wave that propagates between
these stations, while the correlation of the transverse components
gives the Love wave.

We denote the Green’s function of a medium, defined as the
impulse response observed at some receiver at location X, from
a source at location xp, as G(xu,Xgp,t). Following the approach
described by Wapenaar et al. [3], the Green’s function between
two receivers at locations X4 and xg can be estimated by cross-
correlating and averaging an ensemble of concurrent observations
uA(t) := ¢ (x4, t) and uB(t) := ¢p(xp, t) of a noisy, ambient wave-
field ¢ (x, t). In this approach, uA(t) and uB(t) are partitioned into
L shorter segments, each of length Nsez samples. We denote the
observations associated with each segment as uf(t) and uf(t),
i=1,2,...,L. For example, given 100 days of observations sam-
pled at 1 Hz, one might divide each record into L = 100 one-day
segments, each containing Nseg = 86,400 samples. The total num-
ber of samples in each of the two records is Niot = Nsegl = 8.64 x
108. The Green’s function is related to the observations via the
equation [G(Xs, Xg. t) + G(Xa. Xg, —t)] x pss(t) = ((uA(t) xuB(-t))),
where we use ({-)) to denote ensemble averaging, and where
Pss(t) denotes the autocorrelation of the noise source [2,21]. Con-
sequently, a conventional seismic interferometry estimator using L
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segments of data is given by
1L
Cap(t) @ = I Zuf(f) *ub(=t)
i=1

~ [G(Xa, Xp, ) + G(X4, X5, —t) | * pss (). (13)

A compressive estimator of I'45(t) can be formed by applying
Eq. (4) to Eq. (13), allowing u’l.“(t) to play the role of v(t) and
u?(—t) to play the role of w(t) in each segment i=1,2,...,L. In
particular, assume the data is real-valued with positive bandwidth
Q. In time segment T; = [T; start. Tj enql, Ccollect spectral samples at

randomly chosen frequencies w; 1, w; 7, ..., Wi € Q24
o . Ti.end .

@[k = / uA()e outde / Ul (e oudd, (14)
- Ti start

o0 —Ti.sur[ .
TP[k] = / uB(—t)e@utde / wB(—t)e @ntde,  (15)

~liend

for k=1,2,..., M. Combining all of these spectral samples, we ob-

tain the compressive estimator

T . €24 | - u ~Ar1,1 B iw; it

Tpp(t) = L ZRe > k] wrPlk] et £, (16)
i=1 k=1

4. Examples

4.1. One-dimensional reflected wave interferometry

Following the example of Claerbout [4], our first demonstration
is a simulation of one-dimensional reflected wave interferometry.
This example parallels a simplified exploration geophysics scenario
in which the reflection response R(t), the response of the system
to an impulsive source located at the surface, may reveal the depth
and reflection/transmission coefficients of subsurface boundaries.

Claerbout’s insight was in showing that R(t) is related to T(t),
the transmission response of the system to a deep impulsive
source, and that one may obtain a modulated form of R(t) by ob-
serving the response u(t) of the system to some deep source signal
S(t):

(R(®) + R(=1)) * pss(t) = pss(t) — puu(t), (17)

where pgs(t) is the autocorrelation of S(t) and pyy(t) is the auto-
correlation of u(t).

We simulate a reflected wave interferometry scenario with a
single reflective boundary located 1500 m below the surface and
a noisy source located 3000 m below the surface. In this sce-
nario, we use a reflection coefficient r = 0.9, transmission coeffi-
cient t = 0.44, and seismic wave velocity of 1500 m/s. The source
signal is simulated as bandlimited Gaussian noise with a central
frequency of 30 Hz, bandwidth of 10 Hz, and duration of 300 s.
The sampling frequency, fsamp, of the simulated receiver is set to
1000 Hz over the 300 s duration of the simulation, so the simu-
lated received signals are of length N = 3 x 10> samples.

Because the spectrum of the source is essentially supported on
Q =[-2730,-2710] U [27 10, 27r30] rad/s, we restrict our analy-
sis to using only frequencies in 2. The source and received signal
autocorrelation functions in Eq. (17) can be approximated using

pss(®)~ 5 [ Gw) 05 @)edo, (18)
Puu(t) = % /Q(ﬁ(a)) o U (w))edw. (19)

Using only frequencies in the band €2, we can reduce N from 3 x
10° real-valued time-domain samples to 6 x 103 complex-valued
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frequency-domain samples. (Because the signals are real-valued, it
suffices to keep the spectral samples only on the interval Q, =
[2710,2730] rad/s.) Based on these deterministic bandlimited
samples, the results of a non-compressive analysis are shown in
Fig. 1. The ideal reflection response R(t) is shown in Fig. 1(a)
and the autocorrelation function of the source psg(t) is shown
in Fig. 1(b). The causal parts of the left- and right-hand sides of
Eq. (17) are shown in Fig. 1(c) and (d), respectively.

We then repeated this experiment using compressive convolu-
tion to calculate estimates of the autocorrelation of u(t), denoted
Puu(t), using between M =6x 10! and M =3 x 103> complex-
valued spectral subsamples of u(t). All samples were collected uni-
formly at random from the interval 2, = [27 10, 27r30] rad/s. The
resulting compression ratios M/N range from 0.01 to 0.5, where N
is the number of deterministic samples on €2, described in the
previous paragraph. The estimated Green’s functions are shown in
Fig. 2. While the compressive estimates grow gradually less accu-
rate as the subsampling ratio decreases, it is clear that the shape
of the modulated reflection response (Fig. 1(c)), is generally recog-
nizable, even when ¥ < 0.01.

We can quantify this global preservation of the locations of the
peaks of pyy(t) using Theorem 1:

~ Q : Auu
[ sup ) - pun(©)] 1342,/ log 22, [y - V1oL 2,

(20)

Across 100 independent experiments for each value of M, Fig. 3
shows the empirical mean value of sup;cs |Ouu(t) — puu(t)| as a
function of M. In agreement with Theorem 1, the mean maximum
absolute error is approximately proportional to 1/+/M (the dashed
line on Fig. 3 is C/~/M, where C is a scaling constant chosen for the
sake of illustration).

As a coda to this example, the results provide a useful guideline
for choosing M. If one has an estimate of the order of magnitude
of the features of oy, (t) that are of interest, one should choose M
such that the right-hand side of Eq. (20) is approximately equal to
that magnitude. This ensures that the “noise floor” from the es-
timation errors does not overwhelm the features of interest. See
Section 2.2 for further discussion.

4.2. USArray seismic data analysis

Our next example involves testing the compressive approach
to seismic interferometry on real-world seismic data. Inspired by
the work of Lin et al. [7], we also estimated surface wave ve-
locity in the western USA by cross-correlating observations of
ocean-generated ambient seismic noise made with the Earth-
Scope/USArray Transportable Array. We cross-correlated observa-
tions made at each station (spread across several western states)
with those made at Station RO6C, located southeast of Lake Tahoe.
Cross-correlation yields an estimate of the travel time between the
elements of the virtual source-receiver pair. Velocity was calcu-
lated using the great circle distance between stations.

We used observations of the 24 s Rayleigh wave signal mea-
sured at a sampling frequency of 1 Hz between October 2004 and
November 2007 (available at http://ds.iris.edu/gmap/#network=_
US-TA&planet=earth). Following the data processing scheme de-
scribed by Bensen et al. [22], we bandpass filtered the observa-
tions using a Butterworth filter with a passband of 0.033-0.055 Hz
(i.e., periods between 18 and 30 s), partitioned the record, and
removed the mean before cross-correlating and stacking. Using a
non-compressive approach, we were able to replicate travel times
that [7] estimated between the RO6C station and other stations in
the western United States whose records overlap with that of RO6C
for at least 365 consecutive days.
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Fig. 1. Non-compressive example and illustration of terms appearing in Eq. (17).
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Fig. 2. Dependence of compressive estimate p,,(t) on subsampling ratio M/N. Py, (t) is shown in blue; py(t) is shown in red. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

Consider the case of the virtual source-receiver pair formed by
stations RO6C and RO4C. Station R04C is located 133 km west of
RO6C in Ione, CA. The records from these two stations overlap for
the 643 days between August 6, 2005 and May 28, 2007. At a sam-
pling rate of 1 Hz, Niot = 5.6 x 107. We set Nseg = 86,400 and L =
643. The non-compressive cross-correlation based on Eq. (13) is
shown in Fig. 4(a). The peak value of I'45(t), corresponding to
the time-of-arrival, occurs at 47 s, corresponding to a seismic ve-
locity of 2.8 km/s. This is in accord with the value obtained by

Lin et al. [7]. Fig. 4(b)-(d) show the corresponding compressive es-
timates using compression ratios (defined as M/Nseg) of 0.01, 0.001,
and 0.0001, respectively. While all the analyses result in the same
estimate of seismic velocity, the peak is not as distinct at more ag-
gressive compression ratios.

To quantify the effectiveness of the compressive approach, we
propose the signal-to-noise ratio (SNR) between the compressive
and conventional estimator as a metric. To justify this choice, we
performed a set of experiments using the RO6C-R04C pair: for a
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given compression ratio, we randomly generated a set of M fre-
quencies, sampled the spectra at those frequencies, compressively
cross-correlated the observations, and calculated the SNR. We per-
formed 100 simulations for each value of M for compression ra-
tios of 1/100, 1/200,...,1/10,000. Boxplots of SNR as a function
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lag time (s)

(a) Non-Compressive
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(¢) Compressive: M /Ngee = 0.001
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of compression ratio for these experiments are shown in Fig. 5(a).
As expected, SNR gets worse as M/N gets smaller.

However, the quantity of interest in seismic interferometry usu-
ally is estimated time-of-arrival. We also measured the effective-
ness of the compressive estimator by calculating the error in
time-of-arrival (where time-of-arrival is the lag time at which
the cross-correlation curve is maximum) with respect to the non-
compressive estimate. We denote the error as ey,. For our exper-
iments, an absolute time-of-arrival error of 3 s corresponds to a
relative error of 5%, a threshold we deem significant. We use this
threshold to produce Fig. 5(b), which shows the probability that
letoal > 3 s as a function of the compression ratio. We observe that
the probability that the compressive estimate is significantly dif-
ferent from the conventional estimate increases as M/N decreases.
Fig. 5(c) then plots the probability of a significant error in time-
of-arrival as a function of SNR. We observe that SNR is in fact a
strong predictor of the probability of a significant time-of-arrival
error, with high SNR values corresponding to low error probability.
We will show how this can be used in the following discussion.

Finally, we consider the question of how, in scenarios such as
this, one might optimize the choices of L and M for a given to-
tal number of compressive samples LM. Using our previous ob-
servation that the probability of error varies inversely with SNR,
one should choose L and M such that SNR is maximized. To guide
this choice, denote the observations made during the ith segment

T

st s

0 100 200 300 400 500 600
lag time (s)

(b) Compressive: M /Ngee = 0.01

lag time (s)

(d) Compressive: M /Ngeg = 0.0001

Fig. 4. Cross-correlation of overlapping records from stations RO6C and R04C.
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Fig. 5. Monte Carlo results: SNR and time-of-arrival error.

as uf(t) and uB(t), i=1.2,...,
correlation

xi(O) =ult)«ub(-t), i=1,2,... L (21)
The conventional Green’s function estimator from Eq. (13) becomes

L with the corresponding cross-

L
Ca(©) = 1 %), (22)
i=1

Because of noise in the original data and randomness in the source
signal, each cross-correlation x;(t) is itself a random process, serv-
ing as an estimate of the Green’s function g(t), which we use
as shorthand for the right hand side of Eq. (13). Suppose that
E[x;(t)] = g(t) for each segment i, and suppose o2(t) = Var[x;(t)]
is the variance of this estimate. Then it follows that E[['4g(t)] =
g(t) as well, with Var[['4p(t)] = @ if each segment provides an
independent estimate.

Now, let X;(t) denote the compressive estimator of the cross-
correlation of the ith segment, and denote the compressive esti-
mator of the Green’s function from Eq. (16) as

L
Fa() == 1 Y50 (23)
i=1

Each X;(t) serves as an estimate of the respective cross-correlation
x;(t): conditioning on x;(t), we have E[X; (t)] =x;(t), and in
Appendix B we derive the fact that Var[x;(t)] < where B is an

upper bound on M for all i.

Accounting for both the randomness in x;(t) and in the com-
pressive estimator, we conclude that E[FAB(t)] = g(t). Assuming
independence across segments and modeling the deviations in
x;(t) and X;(t) as independent, we also have

2(t)

_Mv

Var[Tas(t)] < +— (24)

LM

Assuming the length of each segment is fixed, then in order to
maximize the SNR of fAB(t), we should minimize its variance. If
the total compressive sample budget LM is fixed, then the variance
in Eq. (24) can be minimized by making L (the number of seg-
ments) as large as possible, and taking only a small number M of
compressive samples in each segment.

This observation is validated by the experiment shown in Fig. 6,
which illustrates how the tradeoff between L and M affects SNR
if the number of compressive samples (LM) is held constant. That
plot shows the SNR with respect to g(t), which is based on an un-
compressed estimate obtained with all 643 days of data.

4.3. Deconvolution

As a final demonstration of the effectiveness and flexibility of
random spectral subsampling, we present an example involving de-
convolution of two signals from random samples of their frequency
spectra.
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Fig. 6. Signal-to-Noise Ratio vs. number of one-day segments L. On each curve, the
total number of compressive samples LM is approximately constant.

Fig. 7 shows 1000 s air pressure and displacement sig-
nals recorded at the Arenal Volcano in northern Costa Rica in
1997, along with their frequency (amplitude) spectra. As detailed
in Snieder and Hagerty [23], deconvolving the pressure from the
displacement gives an estimate of the displacement associated
with a single pressure pulse from the volcano. Since volcanoes
are very inhomogeneous, wave propagation is complicated, and
the deconvolved waveforms consist of a long wave-train of scat-
tered waves [23]. Deconvolution is a process similar to convolution,
with the difference being that it corresponds to division in the fre-
quency domain instead of multiplication. In our notation, letting
w(t) denote the air pressure signal and v(t) denote the displace-
ment signal, the goal in Snieder and Hagerty [23] is to compute
the deconvolved signal x(t) whose Fourier transform equals

X(w) =

where € is a small regularization parameter. (One may contrast this
with the relation X(w) = 7(w) ® W(w) in the convolution (1).)

Due to the similarity between convolution and deconvolution,
it is straightforward to adapt our compressive estimator (4) to es-
timate the deconvolution of v(t) and w(t) from random samples
of their frequency spectra. In particular, to implement the decon-
volution described by (25), one can replace the product U[k] W[k]
appearing in (4) with the ratio IU[1[<11<‘]/TZ[ L. To demonstrate this, we
randomly select 33.3% of the spectral samples of v(t) and w(t)
over the bandwidth 2, = [0, 207r] rad/s and implement the com-
pressive deconvolution estimator. The result, plotted as the blue
curve in Fig. 8 over the time scale of interest —6 s to 10 s, closely
matches the deconvolved signal obtained from the full pressure
and velocity recordings, presented as the red curve in Fig. 8.

V(w) o w*(w)

w@ +e¢ (25)
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Fig. 7. Air pressure and displacement recorded at the Arenal Volcano in Costa Rica as used in the study of Snieder and Hagerty [23]. (a) Time series. (b) Magnitude of

frequency spectra.
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Fig. 8. Deconvolution of the Arenal pressure and displacement recordings obtained
from a deconvolution using all frequencies (red curve) and from frequencies ran-
domly subsampled with a factor 3 (blue curve).. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

5. Conclusion

We present a new method for estimating the cross-correlation
of two arbitrary signals from random samples of their frequency
spectra, and we demonstrate the applicability of this method to
seismic interferometry. The compressive cross-correlation estima-
tor approximates conventional cross-correlation using Eq. (4). In
Theorems 1 and 2, we provide uniform bounds on the deviation
between the true cross-correlation function and its compressive
estimate. These theorems reveal how the maximum deviation de-
creases as a function of the number M of compressive samples, and
give guidance on how to choose M as a function of other prob-
lem parameters. Rather than affecting the features of interest in
the cross-correlation function, estimation errors tend to manifest
as a “noise floor” whose magnitude increases with M. Thus, as dis-
cussed in Section 2.2, the number of samples M should be cho-
sen so that the right-hand side of Theorem 1 is sufficiently smaller
than sup.r |x(t)].

The compressive cross-correlation estimator can be applied to
seismic interferometry with data collected over multiple time seg-
ments by using Eq. (16). For a given segment length, this tech-
nique works best if we maximize the number of segments L

and then minimize the number of samples M drawn from each
segment.
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Appendix A. Proofs of Theorems 1 and 2
Al. Conversion to complex baseband problem

Recall that we assume the signals v(t) and w(t) are real-valued
and bandlimited to the frequency interval Q = [-wy;, —wjo|U
[wyo, @pi] rad/s. It follows immediately that x(t) = (v+xw)(t) is
also real-valued and bandlimited to the same interval. Recall also
that our frequency-domain samples are collected from the interval
Q4 = [wy, wpi] rad/s.

To begin our proof, in this section we argue that our prob-
lem of interest—bounding the quantity |X(t) — x(t)|—can be solved
by considering a different and simpler to analyze scenario, where
all signals are complex-valued and baseband, and the frequency-
domain samples are collected from the baseband frequencies. We
construct this argument in two steps.

1. First, define the complex version of v(t) using only its positive
frequency content:

v, (t) = % fﬂ () e'de

and note that v(t) = 2Re{v,(t)}. Similarly define w,(t) and
x4 (t), and note that x, (t) = (v *wy)(t). Let v =T e CM and
Wi =w e CM, and note that ¥; and w; correspond to vectors
of random frequency-domain samples of v, (t) and w, (t), re-
spectively, with the frequencies drawn from the full spectral
support of these signals, which is €2,. Now define the estimator

~ Q
X () = |27'[JIrV|I '

and note that EX, (t) = x,(t) and X(t) = 2Re{X, (t)}. Now, we
have

vy ows, er)
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[X(¢) = x(6)| = [2Re{X.(£)} — 2Re{x, ()}
=2|Re{X, (t) —x, (D)}

< 20X () — x4 (D)]. (A1)

Therefore, to study the real-valued bandpass problem, it suf-
fices to study the problem where all signals are complex-valued
and bandpass, and the frequency-domain samples are collected
from the bandpass frequencies.

2. As a second step, we relate the complex-valued bandpass prob-
lem to a complex-valued baseband problem. Define w. to be
the center frequency in Q.: w;= % Now define the
signals v.(t) = v, (t)e @t and wc(t) = w, (t)e i@, Both sig-
nals are baseband, with frequency-domain support on . =
[~wp. wy], where @y, = “hiz% Define the convolution X(t) =
(ve *we)(t) and note that x.(t) = x, (t)e~i®t, Let T, = Uy e CM
and W, = W, € CM, and note that 7, and W, correspond to vec-
tors of random frequency-domain samples of v.(t) and wc(t),
respectively, with the frequencies drawn from the full spectral
support of these signals, which is Q.. For each k=1,2,..., M,
define the baseband frequencies w; := wy — wc; we can view
w1, @y, ..., wy as frequencies drawn at random from the uni-
form distribution on .. The underline notation emphasizes
that they are baseband frequencies rather than bandpass fre-
quencies. Similarly, define the associated baseband template
vector

e—iogt
e—iwyt
e = . eCM. (A.2)
oot
Finally, define the estimator
~ Q] ~ <
Re(t) = 5or - (DO Werey) (A3)
and note that EX;(t) = xc(t). Now, we have
~ Q ~
R0~ %0 = | 124 o m.e) - 0 xw o)
= |e7iod 182 VoW, e)— Wy xwy)(t)
27TM ) + +
Q ~
= 2|7T;\|,1 (Ve O We, &) — (Ve x W) (t)
= |§c(t) —Xc(t)]. (A4)

We see that to study the real-valued bandpass problem, it suf-
fices to study the problem where all signals are complex-valued
and baseband, and the frequency-domain samples are collected
from the baseband frequencies. That is, moving forward we will
focus our analysis on the estimator X.(t) defined in (A.3), where
w1, @5, ..., wy as frequencies drawn at random from the uniform
distribution on €2.. From our analysis above, we know that

E[ sup [X(t) = x(0)]] = 2E[ sup [%:(6) — (1] (A5)

and that

P { sup [R(t) — x(£)] > u} <P { sup [Ro(6) — xe(8)] > U/Z}. (A6)
teT teT

A2. Expectation and tail bounds
In this section, we focus on bounding

E[ sup [%(t) — xc(t)|] and P { sup [Re () — X (£)] > U/Z}.
teT teT
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After doing so, we can use (A.5) and (A.6) to complete the proofs
of Theorems 1 and 2, respectively.

Our proofs in this section follow closely the analysis of the
compressive matched filter by Eftekhari et al. [12], extending
their analysis from autocorrelation to cross-correlation. Similar
to Eftekhari et al. [12], we make the following definitions for nota-
tional convenience:

Mo = Mo (xc) := sup [xc(@)] = [IXc[l

WeQe
and
M | -
My = M (xe, M, Q) = [ 757 IXcll2-
[€2]
Now, define
M
E(t) := (Uc O We, &) = Y Uc[k] We[k] ef [K] (A7)
k=1
and note that
S (rX
Xc(t) = 2m\/lé(t). (A8)

We are interested in bounding |X:(t) —xc(t)|, which can be ex-
pressed as

€2

Re(0) =X (D] = Re(t) ~ E[Re(D)]] = 5116 (0) ~E[E(D]]. (A.9)

Therefore, it suffices to bound |§(t) —E[£(t)]|. Now define the
centered process

LN , 2TM
V() :=E() —E[E(M)] =) Xe(w e — TagX®:

k=1

(A.10)

Let ¥’ (t) denote an independent copy of v/ (t) generated from an
independent set of samples w}, ), ..., ®}, drawn uniformly from
Qc, and define

M
L) =9 () =Y/ () = ) Re(@p)e ™ —Re(w))e'. (A11)

k=1
Since each term in (A.11) is a symmetric random variable, ¢ (t) has
the same distribution as

M
20 =Y € (Re(@)e ! — Xe(w))elel),
k=1

where €1,€,,...,€y is a sequence of independent Rademacher
(£1) random variables.

Our goal is to bound sup;|y(t)], which equals
sup, |&(t) —E[£(t)]|. The expectation of sup, |y (t)] can be
controlled through the corresponding expectation of sup; [’ (t)].
In particular,

IESL:DIW(f)I sEsgplC’(t)l, (A12)
which is proved in Lemma 9 of Eftekhari et al. [12]. We may then
bound the quantity Esup, |¢/(t)| using a chaining argument out-
lined in [12, Section IV] for a similar random process. Omitting
the intermediate details, we arrive at the conclusion that, assum-
ing [Qc||T] = 3,

Esup|’(£)] < My (4.25 log (2| [|T]) + 2.28) (A13)
t
< 5.96M;+/log (2|L2:||T]). (A14)

Combining (A.5), (A.9), (A.10), (A.12), and (A.14), and using the fact
that ||X]|, = v2||Xc|l2, we complete the proof of Theorem 1.
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To establish a tail bound, we bound the deviation of sup; |y (t)|
from its expectation through the corresponding deviation of
sup; [¢/(t)|. In particular, in Lemma 10 of Eftekhari et al. [12], it
is proved that for any A > 0,

P{sgplw(t)l > ZESLtlplw(t)l +A} <2P {sgplé/(t)l > /\}.
(A15)

We may bound P {supt [z ()| > A} using a combination of a chain-
ing argument and an application of Bernstein’s inequality, similar
to the steps outlined in Eftekhari et al. [12, Section IV] for a simi-
lar random process. Omitting the intermediate details, we arrive at
the conclusion that

P sup|§’(t)|>u §§
teT 2
where

u :=7.11 max <M1, MO\/log(4/8)>\/log(12|QC||T|/8).
Thus, using (A.13) and (A.15), we have

p {sup [ (t)] > 8.5M;/1og(2|Q||T|) + 4.56M; +u}
t

<P {sgplw(t)l > ZIESLtlpIt/f(t)l +u}

sZP{sup|§’(t)|>u}
t

< 4.
Note that

8.5M;./10g(2|2||T|) + 4.56M; +u
< max (Ml, Mm/log(4/6)>

. (8.5 10g (2] |[T]) +4.56 + 7.11,/1og(12|szc||r|/5))
< max <M1, Mm/log(4/6)> . (15.61 log(12]R2||T|/8) + 4.56)
< max (Ml,MO,/log(4/8)>

15.61,/log(12|2||T|/8) + ‘/log(12|S2 IT]/8) )
( vl

< 18.02 max <M1, MO\/log(4/8)>\/log(12|QC||T|/8),

where the third inequality uses the assumption that |Q2.||T| > 3.
Combining (A.6), (A.9), (A.10), (A.16), and (A.17), and using the fact
that ||X||, = v2||X||2, we complete the proof of Theorem 2.

(A16)

(A17)

Appendix B. Variance of the estimator X(t)

In this section, we derive the variance of X(t) at any given t
T. Again, we use similar arguments to [12]. Using the compressive
convolution estimator (4) and the definition of variance, we have

- Q| Mo
Var{X(t)} = Var 1 Re > vlk] wlk] e;[k]
k=1
V. |Q+| u l Ak *I
<Var) — -’;ﬁMW[ ] ef[k]
B [N S——.
= T -;U k] wik] e;[k

10
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2, & 2
- ‘E|: nl(r/l : gﬂk] wlk] e;‘[k]:|
y 2
_ €24 D B 2
=E i -y Ulk] wlk] ef[k] 4|x,(t)|°. (B.1)
k=1

Concerning the first term in (B.1), we have

m| |18 %ﬂk]fv[k]e*[k]z
M 'k= ¢
_ '%1*\/'12 [Zﬂk] Wk k] }

Q - .
| +|2 Z Z Eow,, [x(a)k Yelk, ]'Ewkz [X(a)kz)e"“’sz]

Kki=1 ky ks

Z a |[ R(w)2dew
|§2+|2 Z » |Q+|2 (/ x(a))eiwfdw> : (/ ?(w)ei“’tda))*

T2M2
—1 ky ks £,

|2,
T2M?2

M(M — 1)47?
12,2

Lix, o2,

2,
: 1121\/|12(2|Q IR@)I3 + X (OF)

Q.- 2
_ 120 IR M
2m2M
Returning to (B.1), we have

vy < (L R@IB M1
Var(R(0)} = ST A (0)]

2l IR@)IE
- 272M

_ 12 IR@)

- 2m2M ’

(B.2)

- 4|X+(t)|2

4
M|X+(t)|2

(B.3)
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