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a b s t r a c t 

Green’s function estimation is an important application of seismic interferometry but can require cross- 

correlating very long time series that are difficult to gather, store, and transmit in resource-constrained 

scenarios. We derive a compressive approach for estimating a Green’s function using only a small number 

of random frequency samples from each signal. We bound the maximum error between this estimator 

and the original cross-correlation and show how this error decreases as the number of samples increases. 

We demonstrate the application of this technique to a numerical one-dimensional reflected wave case 

and to estimation of surface wave Green’s functions for the western United States using USArray data. 

We show that the compressive approach can be extended to deconvolution as well, and we illustrate this 

with pressure and displacement data recorded on a volcano. We also provide guidelines for implementing 

the technique. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Seismic interferometry commonly refers to the cross-correlation 

nd summation of seismograms to construct estimates of the 

reen’s function between sensor pairs, effectively turning each pair 

f receivers into a virtual source-receiver pair [1–3] . Originally de- 

eloped in the context of the reflection response of a horizontally 

ayered system from recorded transmitted waves [4] , the technique 

as been extended to multiple settings and scales [2,5–8] . 

Seismic interferometry can require cross-correlating very long 

ime series: one study [7] used over one year’s worth of data sam- 

led at 0.2 Hz ( N = 10 7 − 10 8 , where N is the number of observa-

ions in the record), while another study [9] used three months’ 

orth of data sampled at 10 Hz ( N = 10 8 − 10 9 ). Gathering, stor-

ng, transmitting, and processing such lengthy time series can po- 

entially impose heavy burdens on data processing systems. It is 

ot difficult to imagine resource constrained scenarios in which in- 

erferometric analysis would be rendered infeasible by the need to 

ork with large data sets. For example, both the submersible MER- 

AID sensor network [10] and the AGAP/GAMSEIS seismic array in 
� This work was supported by NSF grants CCF-1409258 and CCF-1704204 and NSF 

AREER grant CCF-1149225. 
∗ Corresponding author. 

E-mail address: mwakin@mines.edu (M.B. Wakin) . 
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astern Antarctica [11] represent sensor networks where storage, 

omputation, and/or communication bandwidth might be scarce. 

In this paper, we introduce a new technique called compressive 

onvolution . This new approach is based on a previous construc- 

ion known as the compressive matched filter [12] and uses theory 

rom compressive sensing (CS) [13–15] to estimate either the con- 

olution or the cross-correlation of two signals using a small num- 

er of randomly subsampled frequency components from each sig- 

al. Given the fundamental role that convolutions and correlations 

lay in signal processing and machine learning, one can envision 

any possible applications of such a compressive estimator. In this 

aper, we focus on the application of this technique to seismic in- 

erferometry. We show that the compressive approach can reduce 

he number of frequencies used for Green’s function estimation by 

rders of magnitude. 

An advantage of the compressive approach is that it may be 

asily incorporated into existing seismic data processing schemes. 

he only new operation is random subsampling of the spectra at 

ach receiver. Such random frequency samples can be computed 

ither ( i ) online at each sensor from a streaming input signal, or 

 ii ) offline at each sensor using the fast Fourier transform (FFT) on 

 finite vector of samples. Only these random frequency samples 

eed be transmitted to a central node where the estimate of the 

reen’s function is computed using a formula that we provide. 

Our objective with this paper is twofold: ( i ) introduce compres- 

ive convolution and ( ii ) demonstrate its applicability to seismic 

https://doi.org/10.1016/j.sigpro.2022.108863
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2022.108863&domain=pdf
https://doi.org/10.13039/100000001
mailto:mwakin@mines.edu
https://doi.org/10.1016/j.sigpro.2022.108863
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nterferometry. In Section 2 , we introduce and theoretically analyze 

 compressive unbiased estimator of the convolution of two arbi- 

rary signals from random frequency samples. Our analysis bounds 

he error in the compressive convolution estimate in terms of the 

umber of random frequency samples collected, and this yields 

nsight into cases where the estimator can succeed with a num- 

er of frequency samples far lower than what would be required 

ith classical Nyquist sampling. In Section 3 , we discuss how this 

stimator can be applied to seismic interferometry. In Section 4 , 

e apply this technique to a one-dimensional numerical simula- 

ion of the reflection response of a layered medium ( Section 4.1 ). 

ext, as a more comprehensive demonstration, we estimate the 

ayleigh waves propagating through the western United States 

ased on compressive seismic interferometry of USArray seismic 

ata ( Section 4.2 ). Finally, we show in Section 4.3 that the concept

f compressive convolution can be extended to compressive decon- 

olution and illustrate this with pressure and displacement data 

ecorded on a volcano. We summarize our conclusions in Section 5 . 

. Compressive convolution 

.1. Methodology and main results 

Consider the convolution of two arbitrary real-valued signals, 

 (t) and w (t) . Denote the Fourier transforms of the two signals

y ̂  v (ω) and ̂ w (ω) , respectively, and suppose there exist frequen- 

ies ω lo and ω hi such that ̂ v (ω) and ̂ w (ω) are bandlimited to 

he frequency interval � = [ −ω hi , −ω lo ] ∪ [ ω lo , ω hi ] rad/s. That is,
  (ω) = ̂ w (ω) = 0 for all ω / ∈ �. Denote the set of positive frequen-

ies as �+ = [ ω lo , ω hi ] rad/s. 

Under these assumptions, the convolution of v (t) and w (t) is 

iven by 

 (t) = (v ∗ w )(t) = 

1 

2 π

∫ 
�

( ̂  v (ω) � ̂ w (ω) ) e i ωt d ω 

= 

1 

2 π
〈 ̂  v (ω) � ̂ w (ω) , e −i ωt 〉 , t ∈ T , (1) 

here � denotes the Hadamard (elementwise) product, 〈·, ·〉 de- 
otes the inner product, and T is the time interval of interest. 

In order to obtain a compressive estimator of x (t) , suppose 

e acquire M samples of ̂ v (ω) and ̂ w (ω) at positive frequencies 

 1 , ω 2 , . . . , ω M 
, which are drawn at random from a uniform distri-

ution on �+ , yielding vectors of frequency-domain observations 
  , ̂  w ∈ C 

M with elements 

  [ k ] = 

∫ ∞ 

−∞ 

v (t)e −i ω k t d t and ̂ w [ k ] = 

∫ ∞ 

−∞ 

w (t)e −i ω k t d t (2)

or k = 1 , 2 , . . . , M. Such frequency-domain samples could be ac-

uired either ( i ) by computing the integrals in Eq. (2) in streaming

ashion as the signals v (t) and w (t) arrive at their sensors, or ( ii )

sing an FFT after the signals arrive. For each value of t ∈ T , define

he associated template vector 

 t := 

⎡ ⎢ ⎢ ⎣ 

e −i ω 1 t 

e −i ω 2 t 

. . . 

e −i ω M t 

⎤ ⎥ ⎥ ⎦ 

∈ C 
M . (3) 

Using the vectors ̂  v , ̂  w , e t ∈ C 
M , we define the compressive con-

olution estimator as follows. For each value of t ∈ T , the estimate
  (t) of x (t) is defined as 

  (t) := 

| �+ | 
πM 

· Re { 〈 ̂  v � ̂ w , e t 〉 } = 

| �+ | 
πM 

· Re 
{ 

M ∑ 

k =1 ̂

 v [ k ] ̂ w [ k ] e i ω k t 

} 

, 

(4) 
2 
here | �+ | = ω hi − ω lo and Re {·} returns the real part of a pos-
ibly complex number. Because the frequencies ω 1 , ω 2 , . . . , ω M 

are 

hosen at random, ˜ x (t) is a random process that is a function of 

ime. This random process ̃  x (t) has mean function 

 

[˜ x (t) 
]

= 

| �+ | 
πM 

· Re 
{ 

M ∑ 

k =1 

E [ ̂  v [ k ] ̂ w [ k ] e ∗t [ k ] ] 

} 

= 2 · Re 
{

1 

2 π

∫ 
�+ ̂

 v (ω) ̂ w (ω ) e i ωt d ω 

}
= x (t) , (5) 

here ·∗ denotes the complex conjugate, the first equality uses the 

efinition of expectation, the second equality uses the fact that 

he frequencies are drawn from a uniform distribution over �+ , 
nd the last equality follows from (1) . One way to interpret the 

stimator (4) is that we have approximated the ideal convolution 

requency-domain integral (1) as a sum of samples taken at ran- 

om locations in �+ . Eq. (5) shows that ˜ x (t) is an unbiased esti- 

ator of x (t) ; in short, random sampling is unbiased. 

Of fundamental interest is quantifying how close the random 

rocess ̃  x (t) is to its mean x (t) . In [16] , we study a related but sim-

ler question, characterizing the covariance of the error induced 

y randomly subsampling a single finite, discrete-time signal’s fre- 

uency spectrum. Here, we derive a bound for the maximum devi- 

tion between the compressive convolution estimator ˜ x (t) and its 

ean over all t ∈ T , a quantity denoted as sup t∈ T | ̃  x (t) − x (t) | . This
uantity is random, and our first theorem (the proof of which is in 

ppendix A ) bounds its expectation. 

heorem 1. Suppose that | �+ || T | ≥ 3 . Then 

 

[
sup 
t∈ T 

| ̃  x (t) − x (t) | ] ≤ 1 . 342 
√ 

log (2 | �+ || T | ) ·
√ | �+ | · ‖ ̂  x (ω) ‖ 2 √ 

M 

. 

(6) 

Theorem 1 characterizes the relationship between the signal 

andwidth | �+ | , convolution interval T , spectral energy ‖ ̂  x (ω) ‖ 2 ,
umber of random spectral samples M, and expected maximum 

eviation between ̃  x (t) and its mean. With other parameters fixed, 

heorem 1 guarantees that the expected maximum deviation de- 

reases as 1 / 
√ 

M ; as expected, collecting more random spectral 

amples results in more accurate estimates of x (t) . Examining the 

ole of other parameters, the maximum deviation scales linearly 

ith the spectral energy, which is natural since rescaling a signal 

ill also rescale its estimate (and thus the error). In Section 2.2 , 

e provide more insight into the number of compressive samples 

required to guarantee a certain level of accuracy in estimating 

 (t) . 

Note that the requirement that | �+ || T | ≥ 3 is not a significant

estriction in practice. The time-bandwidth product | �+ || T | (which 

lso appears logarithmically in (6) ) effectively counts the number 

f degrees of freedom in x (t) over the observation interval T , and it

s a mild assumption that | �+ || T | ≥ 3 . Nevertheless, if | �+ || T | ≤ 3 ,

oth theorems hold but with larger constants. 

Our second theorem (also proved in Appendix A ) provides a 

ail bound on sup t∈ T | ̃  x (t) − x (t) | , ensuring that this quantity is un-
ikely to achieve a value significantly larger than its expectation. 

heorem 2. Fix δ > 0 and let 

 = 4 . 07 ·
√ 

log (12 | �+ || T | /δ) 

· max 

( √ | �+ | · ‖ ̂  x (ω) ‖ 2 √ 

M 

, 
√ 

2 log (4 /δ) · | �+ | · ‖ ̂  x (ω) ‖ ∞ 

M 

) 

.

(7) 

f | �+ | | T | ≥ 3 , then 

 

{ 
sup 
t∈ T 

| ̃  x (t) − x (t) | > U 

} 
≤ δ. (8) 
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In words, depending on which term dominates the maximum 

n (7) , the factor U appearing in Theorem 1 scales essentially like 

he expectation bound on sup t∈ T | ̃  x (t) − x (t) | that was given in 

heorem 1 . Theorem 1 states that sup t∈ T | ̃  x (t) − x (t) | is unlikely to
xceed this value U . 

As detailed in Appendix A , the methodology described in this 

ection can be generalized to complex-valued signals v (t) and w (t) 

ith spectral supports on an arbitrary interval [ ω a , ω b ] : one col-

ects samples randomly from a uniform distribution on [ ω a , ω b ] 

nd uses the estimator ̃  x (t) = 

ω b −ω a 
2 πM 

· 〈 ̂  v � ̂ w , e t 〉 . 

.2. Insight into sample complexity 

A natural question is: how large must one choose the number 

f random spectral samples M so that Theorems 1 and 2 provide 

 useful bound on the maximum deviation between ̃  x (t) and x (t) ? 

 meaningful answer to this question depends on the time- and 

requency-domain properties of the true convolution signal x (t) . In 

any problems of interest—including seismic interferometry—x (t) 

ay contain a few prominent peaks, and one may wish to ensure 

he maximum deviation between ̃  x (t) and x (t) is small relative to 

he size of these peaks. From the Fourier transform definition, one 

an show that | x (t) | ≤ ‖ ̂  x (ω) ‖ 1 for all t . That is, the true convo-
ution signal in the time domain has an amplitude no larger than 

 ̂  x (ω) ‖ 1 , and strong peaks in x (t) will tend to have an amplitude

hich is on the order of ‖ ̂  x (ω) ‖ 1 . Thus, ‖ ̂  x (ω) ‖ 1 provides a bench-
ark for measuring the error in the time domain between ̃  x (t) and 

 (t) . 

With this benchmark in mind, consider the right hand side 

f (6) , which bounds the expected maximum deviation between 
  (t) and x (t) . Suppose that, for some small η � 1 , we wish to en-

ure the right hand side of (6) is less than or equal to η · ‖ ̂  x (ω) ‖ 1 .
earranging terms, we see that this is ensured if 

 ≥
( 

1 . 342 
√ 

log (2 | �+ || T | ) ·
√ | �+ | · ‖ ̂  x (ω) ‖ 2 

η · ‖ ̂  x (ω) ‖ 1 

) 2 

. (9) 

his bound depends on the ratio of the L 2 and L 1 norms of ̂ x (ω) .

oughly speaking, this ratio depends on the degree to which ̂  x (ω) 

s evenly spread across its bandwidth �. More precisely, from a 

tandard inequality relating the L 2 and L 1 norms, it follows that 

‖ ̂  x (ω) ‖ 2 

‖ ̂  x (ω) ‖ 1 

≥ 1 √ | �| = 

1 √ 

2 | �+ | 
, 

here equality is achieved when ̂ x (ω) has constant magnitude 

cross �. In such a case, (9) becomes 

 ≥
(
1 . 342 √ 

2 

)2 

· log (2 | �+ || T | ) 
η2 

. (10) 

A similar analysis applies for ensuring the first term in the def- 

nition of U (see (7) ) is bounded by η · ‖ ̂  x (ω) ‖ 1 . To bound the sec-
nd term in the definition of U by η · ‖ ̂  x (ω) ‖ 1 , we require 

 ≥ 4 . 07 ·
√ 

log (12 | �+ || T | /δ) ·
√ 

2 log (4 /δ) · | �+ | · ‖ ̂  x (ω) ‖ ∞ 

η · ‖ ̂  x (ω) ‖ 1 

. 

(11) 

his bound now depends on the ratio of the L ∞ and L 1 norms of
  (ω) , a ratio which again depends on the degree to which ̂  x (ω) is

venly spread across its bandwidth �. From a standard inequality, 

t follows that 

‖ ̂  x (ω) ‖ ∞ 

‖ ̂  x (ω) ‖ 1 

≥ 1 

| �| = 

1 

2 | �+ | , 
3 
ith equality when ̂  x (ω) has constant magnitude across �. In such 

 case, (11) becomes 

 ≥ 2 . 035 ·
√ 

log (12 | �+ || T | /δ) ·
√ 

2 log (4 /δ) 

η
. (12) 

To summarize the implications of (10) and (12) , in cases where 

he spectrum of ̂ x (ω) has roughly constant magnitude and where 

 (t) has a strong peak in the time domain, M need only scale 

ogarithmically in the time-bandwidth product | �+ || T | to ensure 
he maximum deviation between ˜ x (t) and x (t) is bounded by a 

mall multiple of the peak value of x (t) . Importantly, such cases 

rise naturally when x (t) has a sinc- or wavelet-like structure in 

he time domain, which correspond (exactly or approximately) to a 

ectangular frequency spectrum across the bandwidth �. This log- 

rithmic scaling is far better than the linear scaling in | �+ || T | that
ould be required by the classic Nyquist theorem for deterministic 

ime-domain sampling. For other scenarios, where a smaller time- 

omain bound may be desired or where the spectrum of ̂ x (ω) is 

ighly nonuniform, Theorems 1 and 2 can be interpreted corre- 

pondingly to yield insight on the required number of samples M. 

e direct the reader to Eftekhari et al. [12] for a similar discus- 

ion in the context of compressive matched filtering and to Snieder 

nd Wakin [16] for more insight into the “background noise” intro- 

uced when one undersamples a signal’s frequency spectrum. 

. Compressive seismic interferometry 

The operations of convolution and cross-correlation are inti- 

ately related, differing only by a time-reversal of one signal in 

he time-domain or, equivalently, a complex conjugation of one 

ignal in the frequency domain. For this reason, the compressive 

onvolution estimator can naturally be applied to estimating the 

ross-correlation between two wavefields, which is fundamental to 

eismic interferometry. For interferometric studies of surface waves 

ne normally correlates components of the displacement to ob- 

ain the displacement Green’s function of surface waves. Strictly 

peaking, one should correlate the displacement with the stress to 

btain the displacement Green’s function [17] . However, when the 

oise sources are in the far field from the receivers, one can simply 

orrelate the displacement recorded at different receivers [18] . This 

as been used in observational studies with USArray [19] and with 

n industrial array [20] where is was shown that the correlation of 

oise recorded on the vertical (or radial) components recorded at 

ifferent stations give the Rayleigh wave that propagates between 

hese stations, while the correlation of the transverse components 

ives the Love wave. 

We denote the Green’s function of a medium, defined as the 

mpulse response observed at some receiver at location x A from 

 source at location x B , as G (x A , x B , t) . Following the approach

escribed by Wapenaar et al. [3] , the Green’s function between 

wo receivers at locations x A and x B can be estimated by cross- 

orrelating and averaging an ensemble of concurrent observations 

 
A (t) := φ(x A , t) and u 

B (t) := φ(x B , t) of a noisy, ambient wave-

eld φ(x , t) . In this approach, u A (t) and u B (t) are partitioned into

 shorter segments, each of length N seg samples. We denote the 

bservations associated with each segment as u A 
i 
(t) and u B 

i 
(t) , 

 = 1 , 2 , . . . , L . For example, given 100 days of observations sam-

led at 1 Hz, one might divide each record into L = 100 one-day

egments, each containing N seg = 86 , 400 samples. The total num- 

er of samples in each of the two records is N tot = N seg L = 8 . 64 ×
0 6 . The Green’s function is related to the observations via the 

quation [ G (x A , x B , t) + G (x A , x B , −t)] ∗ ρSS (t) = 〈〈 u A (t) ∗ u B (−t) 〉〉 ,
here we use 〈〈·〉〉 to denote ensemble averaging, and where 

SS (t) denotes the autocorrelation of the noise source [2,21] . Con- 

equently, a conventional seismic interferometry estimator using L 
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egments of data is given by 

AB (t) : = 

1 

L 

L ∑ 

i =1 

u A i (t) ∗ u B i (−t) 

≈
[
G (x A , x B , t) + G (x A , x B , −t ) 

]
∗ ρSS (t ) . (13) 

A compressive estimator of 	AB (t) can be formed by applying 

q. (4) to Eq. (13) , allowing u A 
i 
(t) to play the role of v (t) and

 
B 
i 
(−t) to play the role of w (t) in each segment i = 1 , 2 , . . . , L . In

articular, assume the data is real-valued with positive bandwidth 

+ . In time segment T i = [ T i, start , T i, end ] , collect spectral samples at

andomly chosen frequencies ω i, 1 , ω i, 2 , . . . , ω i,M 
∈ �+ : 

  
A 
i [ k ] := 

∫ ∞ 

−∞ 

u A i (t)e 
−i ω i,k t d t = 

∫ T i, end 
T i, start 

u A i (t )e 
−i ω i,k t d t , (14) 

  
∗B 
i [ k ] := 

∫ ∞ 

−∞ 

u B i (−t)e −i ω i,k t d t = 

∫ −T i, start 

−T i, end 

u B i (−t )e −i ω i,k t d t , (15) 

or k = 1 , 2 , . . . , M. Combining all of these spectral samples, we ob-

ain the compressive estimator 

 

AB (t) := 

| �+ | 
πML 

L ∑ 

i =1 

Re 

{ 

M ∑ 

k =1 ̂

 u A i [ k ] ̂  u ∗B i [ k ] e 
i ω i,k t 

} 

. (16) 

. Examples 

.1. One-dimensional reflected wave interferometry 

Following the example of Claerbout [4] , our first demonstration 

s a simulation of one-dimensional reflected wave interferometry. 

his example parallels a simplified exploration geophysics scenario 

n which the reflection response R (t) , the response of the system 

o an impulsive source located at the surface, may reveal the depth 

nd reflection/transmission coefficients of subsurface boundaries. 

Claerbout’s insight was in showing that R (t) is related to T (t) ,

he transmission response of the system to a deep impulsive 

ource, and that one may obtain a modulated form of R (t) by ob-

erving the response u (t) of the system to some deep source signal 

(t) : 

R (t) + R (−t) 
)

∗ ρSS (t) = ρSS (t) − ρuu (t) , (17) 

here ρSS (t) is the autocorrelation of S(t) and ρuu (t) is the auto- 

orrelation of u (t) . 

We simulate a reflected wave interferometry scenario with a 

ingle reflective boundary located 1500 m below the surface and 

 noisy source located 30 0 0 m below the surface. In this sce- 

ario, we use a reflection coefficient r = 0 . 9 , transmission coeffi- 

ient t = 0 . 44 , and seismic wave velocity of 1500 m/s. The source

ignal is simulated as bandlimited Gaussian noise with a central 

requency of 30 Hz, bandwidth of 10 Hz, and duration of 300 s. 

he sampling frequency, f samp , of the simulated receiver is set to 

0 0 0 Hz over the 300 s duration of the simulation, so the simu-

ated received signals are of length N = 3 × 10 5 samples. 

Because the spectrum of the source is essentially supported on 

= [ −2 π30 , −2 π10] ∪ [2 π10 , 2 π30] rad/s, we restrict our analy-

is to using only frequencies in �. The source and received signal 

utocorrelation functions in Eq. (17) can be approximated using 

SS (t) ≈ 1 

2 π

∫ 
�
( ̂  S (ω) �̂ S ∗(ω ))e i ωt d ω , (18) 

uu (t) ≈ 1 

2 π

∫ 
�
( ̂  u (ω) �̂ u ∗(ω ))e i ωt d ω . (19) 

sing only frequencies in the band �, we can reduce N from 3 ×
0 5 real-valued time-domain samples to 6 × 10 3 complex-valued 
4 
requency-domain samples. (Because the signals are real-valued, it 

uffices to keep the spectral samples only on the interval �+ = 

2 π10 , 2 π30] rad/s.) Based on these deterministic bandlimited 

amples, the results of a non-compressive analysis are shown in 

ig. 1 . The ideal reflection response R (t) is shown in Fig. 1 (a)

nd the autocorrelation function of the source ρSS (t) is shown 

n Fig. 1 (b). The causal parts of the left- and right-hand sides of 

q. (17) are shown in Fig. 1 (c) and (d), respectively. 

We then repeated this experiment using compressive convolu- 

ion to calculate estimates of the autocorrelation of u (t) , denoted ˜ uu (t) , using between M = 6 × 10 1 and M = 3 × 10 3 complex-

alued spectral subsamples of u (t) . All samples were collected uni- 

ormly at random from the interval �+ = [2 π10 , 2 π30] rad/s. The

esulting compression ratios M/N range from 0.01 to 0.5, where N

s the number of deterministic samples on �+ described in the 
revious paragraph. The estimated Green’s functions are shown in 

ig. 2 . While the compressive estimates grow gradually less accu- 

ate as the subsampling ratio decreases, it is clear that the shape 

f the modulated reflection response ( Fig. 1 (c)), is generally recog- 

izable, even when M 

N ≤ 0 . 01 . 

We can quantify this global preservation of the locations of the 

eaks of ˜ ρuu (t) using Theorem 1 : 

 

[
sup 
t∈ T 

| ̃  ρuu (t) − ρuu (t) | 
]

≤ 1 . 342 
√ 

log (2 | �+ || T | ) ·
√ | �+ | · ‖ ̂  ρuu (ω) ‖ 2 √ 

M 

. 

(20) 

cross 100 independent experiments for each value of M, Fig. 3 

hows the empirical mean value of sup t∈ T | ̃  ρuu (t) − ρuu (t) | as a 
unction of M. In agreement with Theorem 1 , the mean maximum 

bsolute error is approximately proportional to 1 / 
√ 

M (the dashed 

ine on Fig. 3 is C/ 
√ 

M , where C is a scaling constant chosen for the

ake of illustration). 

As a coda to this example, the results provide a useful guideline 

or choosing M. If one has an estimate of the order of magnitude 

f the features of ˜ ρuu (t) that are of interest, one should choose M

uch that the right-hand side of Eq. (20) is approximately equal to 

hat magnitude. This ensures that the “noise floor” from the es- 

imation errors does not overwhelm the features of interest. See 

ection 2.2 for further discussion. 

.2. USArray seismic data analysis 

Our next example involves testing the compressive approach 

o seismic interferometry on real-world seismic data. Inspired by 

he work of Lin et al. [7] , we also estimated surface wave ve-

ocity in the western USA by cross-correlating observations of 

cean-generated ambient seismic noise made with the Earth- 

cope/USArray Transportable Array. We cross-correlated observa- 

ions made at each station (spread across several western states) 

ith those made at Station R06C, located southeast of Lake Tahoe. 

ross-correlation yields an estimate of the travel time between the 

lements of the virtual source-receiver pair. Velocity was calcu- 

ated using the great circle distance between stations. 

We used observations of the 24 s Rayleigh wave signal mea- 

ured at a sampling frequency of 1 Hz between October 2004 and 

ovember 2007 (available at http://ds.iris.edu/gmap/#network= _ 

S-TA&planet=earth ). Following the data processing scheme de- 

cribed by Bensen et al. [22] , we bandpass filtered the observa- 

ions using a Butterworth filter with a passband of 0.033–0.055 Hz 

i.e., periods between 18 and 30 s), partitioned the record, and 

emoved the mean before cross-correlating and stacking. Using a 

on-compressive approach, we were able to replicate travel times 

hat [7] estimated between the R06C station and other stations in 

he western United States whose records overlap with that of R06C 

or at least 365 consecutive days. 

http://ds.iris.edu/gmap/#network=_US-TA%26planet=earth
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Fig. 1. Non-compressive example and illustration of terms appearing in Eq. (17) . 

Fig. 2. Dependence of compressive estimate ̃  ρuu (t) on subsampling ratio M/N. ̃  ρuu (t) is shown in blue; ρuu (t) is shown in red. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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Consider the case of the virtual source-receiver pair formed by 

tations R06C and R04C. Station R04C is located 133 km west of 

06C in Ione, CA. The records from these two stations overlap for 

he 643 days between August 6, 2005 and May 28, 2007. At a sam- 

ling rate of 1 Hz, N tot = 5 . 6 × 10 7 . We set N seg = 86 , 400 and L =
43 . The non-compressive cross-correlation based on Eq. (13) is 

hown in Fig. 4 (a). The peak value of 	AB (t) , corresponding to 

he time-of-arrival, occurs at 47 s, corresponding to a seismic ve- 

ocity of 2.8 km/s. This is in accord with the value obtained by 
5 
in et al. [7] . Fig. 4 (b)–(d) show the corresponding compressive es- 

imates using compression ratios (defined as M/N seg ) of 0.01, 0.001, 

nd 0.0 0 01, respectively. While all the analyses result in the same 

stimate of seismic velocity, the peak is not as distinct at more ag- 

ressive compression ratios. 

To quantify the effectiveness of the compressive approach, we 

ropose the signal-to-noise ratio (SNR) between the compressive 

nd conventional estimator as a metric. To justify this choice, we 

erformed a set of experiments using the R06C-R04C pair: for a 
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Fig. 3. Simulated mean maximum absolute error E 

[
sup t∈ T | ̃  ρuu (t) − ρuu (t) | 

]
(shown as circles) as a function of M. The dashed line corresponds to C/ 

√ 

M . 
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iven compression ratio, we randomly generated a set of M fre- 

uencies, sampled the spectra at those frequencies, compressively 

ross-correlated the observations, and calculated the SNR. We per- 

ormed 100 simulations for each value of M for compression ra- 

ios of 1 / 10 0 , 1 / 20 0 , . . . , 1 / 10 , 0 0 0 . Boxplots of SNR as a function
Fig. 4. Cross-correlation of overlapping re

6

f compression ratio for these experiments are shown in Fig. 5 (a). 

s expected, SNR gets worse as M/N gets smaller. 

However, the quantity of interest in seismic interferometry usu- 

lly is estimated time-of-arrival. We also measured the effective- 

ess of the compressive estimator by calculating the error in 

ime-of-arrival (where time-of-arrival is the lag time at which 

he cross-correlation curve is maximum) with respect to the non- 

ompressive estimate. We denote the error as e toa . For our exper- 

ments, an absolute time-of-arrival error of 3 s corresponds to a 

elative error of 5%, a threshold we deem significant. We use this 

hreshold to produce Fig. 5 (b), which shows the probability that 

 e toa | > 3 s as a function of the compression ratio. We observe that

he probability that the compressive estimate is significantly dif- 

erent from the conventional estimate increases as M/N decreases. 

ig. 5 (c) then plots the probability of a significant error in time- 

f-arrival as a function of SNR. We observe that SNR is in fact a 

trong predictor of the probability of a significant time-of-arrival 

rror, with high SNR values corresponding to low error probability. 

e will show how this can be used in the following discussion. 

Finally, we consider the question of how, in scenarios such as 

his, one might optimize the choices of L and M for a given to- 

al number of compressive samples LM. Using our previous ob- 

ervation that the probability of error varies inversely with SNR, 

ne should choose L and M such that SNR is maximized. To guide 

his choice, denote the observations made during the i th segment 
cords from stations R06C and R04C. 
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Fig. 5. Monte Carlo results: SNR and time-of-arrival error. 
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Fig. 6. Signal-to-Noise Ratio vs. number of one-day segments L . On each curve, the 

total number of compressive samples LM is approximately constant. 
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(t) and u B 

i 
(t) , i = 1 , 2 , . . . , L with the corresponding cross-

orrelation 

 i (t) = u A i (t) ∗ u B i (−t) , i = 1 , 2 , . . . , L. (21) 

he conventional Green’s function estimator from Eq. (13) becomes 

AB (t) = 

1 

L 

L ∑ 

i =1 

x i (t) . (22) 

ecause of noise in the original data and randomness in the source 

ignal, each cross-correlation x i (t) is itself a random process, serv- 

ng as an estimate of the Green’s function g(t) , which we use 

s shorthand for the right hand side of Eq. (13) . Suppose that 

 [ x i (t) ] = g(t) for each segment i , and suppose σ 2 (t) = Var [ x i (t)]

s the variance of this estimate. Then it follows that E [ 	AB (t) ] = 

(t) as well, with Var [	AB (t)] = 
σ 2 (t) 

L if each segment provides an 

ndependent estimate. 

Now, let ˜ x i (t) denote the compressive estimator of the cross- 

orrelation of the i th segment, and denote the compressive esti- 

ator of the Green’s function from Eq. (16) as 

 

AB (t) := 

1 

L 

L ∑ 

i =1 ̃

 x i (t) . (23) 

ach ̃  x i (t) serves as an estimate of the respective cross-correlation 

 i (t) : conditioning on x i (t) , we have E [ ̃  x i (t) ] = x i (t) , and in

ppendix B we derive the fact that Var [ ̃  x i (t)] ≤ B 
M 
, where B is an

pper bound on 
| �+ |·‖ ̂  x i (ω) ‖ 2 

2 

2 π2 for all i . 

Accounting for both the randomness in x i (t) and in the com- 

ressive estimator, we conclude that E 

[˜ 	AB (t) 
]

= g(t) . Assuming 

ndependence across segments and modeling the deviations in 

 i (t) and ̃  x i (t) as independent, we also have 

ar [ ̃  	AB (t)] ≤
σ 2 (t) 

L 
+ 

B 

LM 

. (24) 

ssuming the length of each segment is fixed, then in order to 

aximize the SNR of ˜ 	AB (t) , we should minimize its variance. If 

he total compressive sample budget LM is fixed, then the variance 

n Eq. (24) can be minimized by making L (the number of seg- 

ents) as large as possible, and taking only a small number M of 

ompressive samples in each segment. 

This observation is validated by the experiment shown in Fig. 6 , 

hich illustrates how the tradeoff between L and M affects SNR 

f the number of compressive samples ( LM) is held constant. That 

lot shows the SNR with respect to g(t) , which is based on an un-

ompressed estimate obtained with all 643 days of data. 

.3. Deconvolution 

As a final demonstration of the effectiveness and flexibility of 

andom spectral subsampling, we present an example involving de- 

onvolution of two signals from random samples of their frequency 

pectra. 
7 
Fig. 7 shows 10 0 0 s air pressure and displacement sig- 

als recorded at the Arenal Volcano in northern Costa Rica in 

997, along with their frequency (amplitude) spectra. As detailed 

n Snieder and Hagerty [23] , deconvolving the pressure from the 

isplacement gives an estimate of the displacement associated 

ith a single pressure pulse from the volcano. Since volcanoes 

re very inhomogeneous, wave propagation is complicated, and 

he deconvolved waveforms consist of a long wave-train of scat- 

ered waves [23] . Deconvolution is a process similar to convolution, 

ith the difference being that it corresponds to division in the fre- 

uency domain instead of multiplication. In our notation, letting 

 (t) denote the air pressure signal and v (t) denote the displace- 
ent signal, the goal in Snieder and Hagerty [23] is to compute 

he deconvolved signal x (t) whose Fourier transform equals 

  (ω) = ̂

 v (ω) � ̂ w 
∗(ω) 

| ̂  w ( ω) | 2 + ε
, (25) 

here ε is a small regularization parameter. (One may contrast this 

ith the relation ̂  x (ω) = ̂  v (ω) � ̂ w (ω) in the convolution (1) .) 

Due to the similarity between convolution and deconvolution, 

t is straightforward to adapt our compressive estimator (4) to es- 

imate the deconvolution of v (t) and w (t) from random samples 

f their frequency spectra. In particular, to implement the decon- 

olution described by (25) , one can replace the product ̂  v [ k ] ̂ w [ k ]

ppearing in (4) with the ratio 
̂ v [ k ] ̂  w ∗[ k ] 
| ̂  w [ k ] | 2 + ε . To demonstrate this, we 

andomly select 33 . 3% of the spectral samples of v (t) and w (t)

ver the bandwidth �+ = [0 , 20 π ] rad/s and implement the com- 

ressive deconvolution estimator. The result, plotted as the blue 

urve in Fig. 8 over the time scale of interest −6 s to 10 s, closely

atches the deconvolved signal obtained from the full pressure 

nd velocity recordings, presented as the red curve in Fig. 8 . 
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Fig. 7. Air pressure and displacement recorded at the Arenal Volcano in Costa Rica as used in the study of Snieder and Hagerty [23] . (a) Time series. (b) Magnitude of 

frequency spectra. 

Fig. 8. Deconvolution of the Arenal pressure and displacement recordings obtained 

from a deconvolution using all frequencies (red curve) and from frequencies ran- 

domly subsampled with a factor 3 (blue curve).. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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. Conclusion 

We present a new method for estimating the cross-correlation 

f two arbitrary signals from random samples of their frequency 

pectra, and we demonstrate the applicability of this method to 

eismic interferometry. The compressive cross-correlation estima- 

or approximates conventional cross-correlation using Eq. (4) . In 

heorems 1 and 2 , we provide uniform bounds on the deviation 

etween the true cross-correlation function and its compressive 

stimate. These theorems reveal how the maximum deviation de- 

reases as a function of the number M of compressive samples, and 

ive guidance on how to choose M as a function of other prob- 

em parameters. Rather than affecting the features of interest in 

he cross-correlation function, estimation errors tend to manifest 

s a “noise floor” whose magnitude increases with M. Thus, as dis- 

ussed in Section 2.2 , the number of samples M should be cho- 

en so that the right-hand side of Theorem 1 is sufficiently smaller 

han sup t∈ T | x (t) | . 
The compressive cross-correlation estimator can be applied to 

eismic interferometry with data collected over multiple time seg- 

ents by using Eq. (16) . For a given segment length, this tech- 

ique works best if we maximize the number of segments L 
8 
nd then minimize the number of samples M drawn from each 

egment. 
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ppendix A. Proofs of Theorems 1 and 2 

1. Conversion to complex baseband problem 

Recall that we assume the signals v (t) and w (t) are real-valued 

nd bandlimited to the frequency interval � = [ −ω hi , −ω lo ] ∪ 

 ω lo , ω hi ] rad/s. It follows immediately that x (t) = (v ∗ w )(t) is

lso real-valued and bandlimited to the same interval. Recall also 

hat our frequency-domain samples are collected from the interval 

+ = [ ω lo , ω hi ] rad/s. 

To begin our proof, in this section we argue that our prob- 

em of interest—bounding the quantity | ̃  x (t) − x (t) | —can be solved 

y considering a different and simpler to analyze scenario, where 

ll signals are complex-valued and baseband, and the frequency- 

omain samples are collected from the baseband frequencies. We 

onstruct this argument in two steps. 

1. First, define the complex version of v (t) using only its positive 
frequency content: 

v + (t) = 

1 

2 π

∫ 
�+ ̂

 v (ω) e i ωt d ω 

and note that v (t) = 2 Re { v + (t) } . Similarly define w + (t) and 
x + (t) , and note that x + (t) = (v + ∗ w + )(t) . Let ̂ v + = ̂  v ∈ C 

M and̂ w + = ̂ w ∈ C 
M , and note that ̂ v + and ̂ w + correspond to vectors 

of random frequency-domain samples of v + (t) and w + (t) , re- 
spectively, with the frequencies drawn from the full spectral 

support of these signals, which is �+ . Now define the estimator 

˜ x + (t) = 

| �+ | 
2 πM 

· 〈 ̂  v + � ̂ w + , e t 〉 
and note that E ̃  x + (t) = x + (t ) and ˜ x (t ) = 2 Re { ̃  x + (t) } . Now, we

have 
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| ̃  x (t) − x (t) | = | 2 Re { ̃  x + (t) } − 2 Re { x + (t) }| 
= 2 | Re { ̃  x + (t) − x + (t) }| 
≤ 2 | ̃  x + (t) − x + (t) | . (A.1) 

Therefore, to study the real-valued bandpass problem, it suf- 

fices to study the problem where all signals are complex-valued 

and bandpass, and the frequency-domain samples are collected 

from the bandpass frequencies. 

2. As a second step, we relate the complex-valued bandpass prob- 

lem to a complex-valued baseband problem. Define ω c to be 

the center frequency in �+ : ω c = 

ω lo + ω hi 
2 . Now define the 

signals v c (t) = v + (t )e −i ω c t and w c (t ) = w + (t)e −i ω c t . Both sig-

nals are baseband, with frequency-domain support on �c = 

[ −ω h , ω h ] , where ω h = 

ω hi −ω lo 
2 . Define the convolution x c (t) =

(v c ∗ w c )(t) and note that x c (t) = x + (t)e −i ω c t . Let ̂  v c = ̂  v + ∈ C 
M 

and ̂ w c = ̂  w + ∈ C 
M , and note that ̂  v c and ̂ w c correspond to vec- 

tors of random frequency-domain samples of v c (t) and w c (t) , 

respectively, with the frequencies drawn from the full spectral 

support of these signals, which is �c . For each k = 1 , 2 , . . . , M,

define the baseband frequencies ω k := ω k − ω c ; we can view 

ω 1 , ω 2 , . . . , ω M 
as frequencies drawn at random from the uni- 

form distribution on �c . The underline notation emphasizes 

that they are baseband frequencies rather than bandpass fre- 

quencies. Similarly, define the associated baseband template 

vector 

e t := 

⎡ ⎢ ⎢ ⎣ 

e −i ω 1 t 

e −i ω 2 t 

. . . 

e −i ω M t 

⎤ ⎥ ⎥ ⎦ 

∈ C 
M . (A.2) 

Finally, define the estimator 

˜ x c (t) = 

| �c | 
2 πM 

· 〈 ̂  v c � ̂ w c , e t 〉 (A.3) 

and note that E ̃  x c (t) = x c (t) . Now, we have 

| ̃  x + (t) − x + (t) | = 

∣∣∣∣ | �+ | 
2 πM 

· 〈 ̂  v � ̂ w , e t 〉 − (v + ∗ w + )(t) 

∣∣∣∣
= 

∣∣∣∣e −i ω c t 

( | �+ | 
2 πM 

· 〈 ̂  v � ̂ w , e t 〉 − (v + ∗ w + )(t) 

)∣∣∣∣
= 

∣∣∣∣ | �c | 
2 πM 

· 〈 ̂  v c � ̂ w c , e t 〉 − (v c ∗ w c )(t) 

∣∣∣∣
= | ̃  x c (t) − x c (t) | . (A.4) 

We see that to study the real-valued bandpass problem, it suf- 

ces to study the problem where all signals are complex-valued 

nd baseband, and the frequency-domain samples are collected 

rom the baseband frequencies. That is, moving forward we will 

ocus our analysis on the estimator ˜ x c (t) defined in (A.3) , where 

 1 , ω 2 , . . . , ω M 
as frequencies drawn at random from the uniform 

istribution on �c . From our analysis above, we know that 

 

[
sup 
t∈ T 

| ̃  x (t) − x (t ) | ] ≤ 2 E 

[
sup 
t∈ T 

| ̃  x c (t ) − x c (t) | 
]

(A.5)

nd that 

 

{ 
sup 
t∈ T 

| ̃  x (t) − x (t) | > U 

} 
≤ P 

{ 
sup 
t∈ T 

| ̃  x c (t) − x c (t) | > U/ 2 

} 
. (A.6) 

2. Expectation and tail bounds 

In this section, we focus on bounding 

 

[
sup 
t∈ T 

| ̃  x c (t) − x c (t ) | 
]
and P 

{ 
sup 
t∈ T 

| ̃  x c (t ) − x c (t) | > U/ 2 

} 
. 
9 
fter doing so, we can use (A.5) and (A.6) to complete the proofs 

f Theorems 1 and 2 , respectively. 

Our proofs in this section follow closely the analysis of the 

ompressive matched filter by Eftekhari et al. [12] , extending 

heir analysis from autocorrelation to cross-correlation. Similar 

o Eftekhari et al. [12] , we make the following definitions for nota- 

ional convenience: 

 0 = M 0 (x c ) := sup 
ω ∈ �c 

| ̂  x c ( ω ) | = ‖ ̂  x c ‖ ∞ 

nd 

 1 = M 1 (x c , M, �c ) := 

√ 

M 

| �c | ‖ ̂  x c ‖ 2 . 

Now, define 

(t) := 〈 ̂  v c � ̂ w c , e t 〉 = 

M ∑ 

k =1 ̂

 v c [ k ] ̂ w c [ k ] e 
∗
t [ k ] (A.7) 

nd note that 

  c (t) = 

| �c | 
2 πM 

ξ (t) . (A.8) 

e are interested in bounding | ̃  x c (t) − x c (t) | , which can be ex- 

ressed as 

 ̃  x c (t) − x c (t) | = | ̃  x c (t) − E [ ̃  x c (t)] | = 

| �c | 
2 πM 

| ξ (t) − E [ ξ (t)] | . (A.9) 
herefore, it suffices to bound | ξ (t) − E [ ξ (t) ] | . Now define the 

entered process 

(t) := ξ (t) − E [ ξ (t) ] = 

M ∑ 

k =1 ̂

 x c ( ω k )e 
i ω k t − 2 πM 

| �c | x c (t) . (A.10) 

et ψ 
′ (t) denote an independent copy of ψ(t) generated from an 

ndependent set of samples ω 
′ 
1 
, ω 

′ 
2 
. . . , ω 

′ 
M 

drawn uniformly from 

c , and define 

(t) := ψ(t) − ψ 
′ (t) = 

M ∑ 

k =1 ̂

 x c ( ω k )e 
i ω k t −̂ x c ( ω 

′ 
k )e 

i ω ′ 
k 
t . (A.11) 

ince each term in (A.11) is a symmetric random variable, ζ (t) has 

he same distribution as 

′ (t) := 

M ∑ 

k =1 

εk 
(̂ x c ( ω k )e 

i ω k t −̂ x c ( ω 
′ 
k )e 

i ω ′ 
k 
t 
)
, 

here ε1 , ε2 , . . . , εM 
is a sequence of independent Rademacher 

 ±1 ) random variables. 

Our goal is to bound sup t | ψ(t) | , which equals 

up t | ξ (t) − E [ ξ (t) ] | . The expectation of sup t | ψ(t) | can be 

ontrolled through the corresponding expectation of sup t | ζ ′ (t) | . 
n particular, 

 sup 
t 

| ψ(t) | ≤ E sup 
t 

| ζ ′ (t) | , (A.12) 

hich is proved in Lemma 9 of Eftekhari et al. [12] . We may then

ound the quantity E sup t | ζ ′ (t) | using a chaining argument out- 

ined in [12, Section IV] for a similar random process. Omitting 

he intermediate details, we arrive at the conclusion that, assum- 

ng | �c || T | ≥ 3 , 

 sup 
t 

| ζ ′ (t) | ≤ M 1 

(
4 . 25 

√ 

log (2 | �c || T | ) + 2 . 28 

)
(A.13) 

≤ 5 . 96 M 1 

√ 

log (2 | �c || T | ) . (A.14) 

ombining (A .5), (A .9), (A .10), (A .12) , and (A .14) , and using the fact

hat ‖ ̂  x ‖ = 

√ 

2 ‖ ̂  x c ‖ , we complete the proof of Theorem 1 . 
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To establish a tail bound, we bound the deviation of sup t | ψ(t) | 
rom its expectation through the corresponding deviation of 

up t | ζ ′ (t) | . In particular, in Lemma 10 of Eftekhari et al. [12] , it

s proved that for any λ ≥ 0 , 

 

{
sup 
t 

| ψ(t) | > 2 E sup 
t 

| ψ(t) | + λ

}
≤ 2 P 

{
sup 
t 

| ζ ′ (t) | > λ

}
. 

(A.15) 

e may bound P 
{
sup t | ζ ′ (t) | > λ

}
using a combination of a chain- 

ng argument and an application of Bernstein’s inequality, similar 

o the steps outlined in Eftekhari et al. [12 , Section IV] for a simi-

ar random process. Omitting the intermediate details, we arrive at 

he conclusion that 

 

{
sup 
t∈ T 

∣∣ζ ′ ( t ) 
∣∣ > u 

}
≤ δ

2 

here 

 := 7 . 11 max 

(
M 1 , M 0 

√ 

log (4 /δ) 
)√ 

log (12 | �c || T | /δ) . 

hus, using (A.13) and (A.15) , we have 

P 

{
sup 
t 

| ψ(t) | > 8 . 5 M 1 

√ 

log (2 | �c || T | ) + 4 . 56 M 1 + u 

}
≤ P 

{
sup 
t 

| ψ(t) | > 2 E sup 
t 

| ψ(t) | + u 

}
≤ 2 P 

{
sup 
t 

| ζ ′ (t) | > u 

}
≤ δ. (A.16) 

ote that 

 . 5 M 1 

√ 

log (2 | �c || T | ) + 4 . 56 M 1 + u 

≤ max 

(
M 1 , M 0 

√ 

log (4 /δ) 
)

·
(
8 . 5 

√ 

log (2 | �c || T | ) + 4 . 56 + 7 . 11 
√ 

log (12 | �c || T | /δ) 
)

≤ max 

(
M 1 , M 0 

√ 

log (4 /δ) 
)

·
(
15 . 61 

√ 

log (12 | �c || T | /δ) + 4 . 56 

)
≤ max 

(
M 1 , M 0 

√ 

log (4 /δ) 
)

·
( 

15 . 61 
√ 

log (12 | �c || T | /δ) + 

4 . 56 √ 

log 36 

√ 

log (12 | �c || T | /δ) 

) 

≤ 18 . 02 max 

(
M 1 , M 0 

√ 

log (4 /δ) 
)√ 

log (12 | �c || T | /δ) , (A.17) 

here the third inequality uses the assumption that | �c || T | ≥ 3 .

ombining (A .6), (A .9), (A .10), (A .16) , and (A .17) , and using the fact

hat ‖ ̂  x ‖ 2 = 

√ 

2 ‖ ̂  x c ‖ 2 , we complete the proof of Theorem 2 . 

ppendix B. Variance of the estimator ˜ x (t) 

In this section, we derive the variance of ˜ x (t) at any given t ∈
 . Again, we use similar arguments to [12] . Using the compressive 

onvolution estimator (4) and the definition of variance, we have 

ar { ̃  x (t) } = Var 

{ 

| �+ | 
πM 

· Re 
[ 

M ∑ 

k =1 ̂

 v [ k ] ̂ w [ k ] e ∗t [ k ] 

] } 

≤ Var 

{ 

| �+ | 
πM 

·
M ∑ 

k =1 ̂

 v [ k ] ̂ w [ k ] e ∗t [ k ] 

} 

= E 

⎡ ⎣ 

∣∣∣∣∣ | �+ | 
πM 

·
M ∑ 

k =1 ̂

 v [ k ] ̂ w [ k ] e ∗t [ k ] 

∣∣∣∣∣
2 
⎤ ⎦ 
10 
−
∣∣∣∣∣E 

[ 

| �+ | 
πM 

·
M ∑ 

k =1 ̂

 v [ k ] ̂ w [ k ] e ∗t [ k ] 

] ∣∣∣∣∣
2 

= E 

⎡ ⎣ 

∣∣∣∣∣ | �+ | 
πM 

·
M ∑ 

k =1 ̂

 v [ k ] ̂ w [ k ] e ∗t [ k ] 

∣∣∣∣∣
2 
⎤ ⎦ − 4 | x + (t) | 2 . (B.1) 

oncerning the first term in (B.1) , we have 

 

[ ∣∣∣∣∣ | �+ | 
πM 

·
M ∑ 

k =1 ̂

 v [ k ] ̂ w [ k ] e ∗t [ k ] 

∣∣∣∣∣2 
] 

= 

| �+ | 2 
π2 M 

2 
E 

[ ∣∣∣∣∣ M ∑ 

k =1 ̂

 v [ k ] ̂ w [ k ] e ∗t [ k ] 

∣∣∣∣∣2 
] 

= 

| �+ | 2 
π2 M 

2 
E 

[ ∣∣∣∣∣ M ∑ 

k =1 ̂

 x (ω k ) e 
i ω k t 

∣∣∣∣∣2 
] 

= 

| �+ | 2 
π2 M 

2 

M ∑ 

k 1 =1 

M ∑ 

k 2 =1 

E 

[̂ x (ω k 1 ) ̂  x (ω k 2 )e 
i(ω k 1 −ω k 2 ) t 

]
= 

| �+ | 2 
π2 M 

2 

M ∑ 

k 1 =1 

E 

[| ̂  x (ω k 1 ) | 2 
]

+ 

| �+ | 2 
π2 M 

2 

M ∑ 

k 1 =1 

∑ 

k 1 � = k 2 
E ω k 1 

[̂ x (ω k 1 )e 
i ω k 1 t 

]
· E ω k 2 

[̂ x (ω k 2 )e 
−i ω k 2 t 

]
= 

| �+ | 2 
π2 M 

2 

M ∑ 

k 1 =1 

1 

| �+ | 
∫ 
�+ 

| ̂  x (ω) | 2 d ω 

+ 

| �+ | 2 
π2 M 

2 

M ∑ 

k 1 =1 

∑ 

k 1 � = k 2 

1 

| �+ | 2 
(∫ 

�+ ̂

 x (ω)e i ωt d ω 

)
·
(∫ 

�+ ̂

 x (ω)e i ωt d ω 

)
∗

≤ | �+ | 2 
π2 M 

2 

(
M 

2 | �+ | ‖ ̂  x (ω) ‖ 
2 
2 + 

M(M − 1)4 π2 

| �+ | 2 | x + (t) | 2 
)

= 

| �+ | · ‖ ̂  x (ω) ‖ 
2 
2 

2 π2 M 

+ 4 
M − 1 

M 

| x + (t) | 2 . (B.2) 

eturning to (B.1) , we have 

ar { ̃  x (t) } ≤ | �+ | · ‖ ̂  x (ω) ‖ 
2 
2 

2 π2 M 

+ 4 
M − 1 

M 

| x + (t) | 2 − 4 | x + (t) | 2 

= 

| �+ | · ‖ ̂  x (ω) ‖ 
2 
2 

2 π2 M 

− 4 

M 

| x + (t) | 2 

≤ | �+ | · ‖ ̂  x (ω) ‖ 
2 
2 

2 π2 M 

. (B.3) 
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