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This study examined physics major retention to degree at two institutions with substantially different
admissions selectivity. Two modes of leaving the physics major were examined: leaving college and
changing to another major while staying in college. The risk of leaving college while still enrolled as a
physics major was highest in the spring freshman semester. The changing major risk was substantially
different between the two institutions. For the less selective institution, the students changed major at the
highest rate in the fall sophomore semester. For the more selective institution, the risk of changing major
was high through the first two years of college with highest risk in the fall freshman semester and the fall
junior semester. Different features were important in predicting the two modes of leaving; these also
differed between institutions. For the less selective institution, math readiness (being academically prepared
to enroll in Calculus 1 in the fall freshman semester) was the most predictive feature for leaving the physics
major while staying in college; high school GPA was the most important feature for predicting both leaving
college and graduating with a physics degree. For the more selective institution, ACT composite scores
were the only significant predictor of retention. The role of math readiness was dramatic at the less selective
institution with 41% of students not math ready upon enrolling in college as physics majors; 59% of these

students failed to enroll in the first required physics class.
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I. INTRODUCTION

Since its inception, physics education research (PER)
has investigated issues of critical importance to university
physics departments and to the physics community in
general. Much of this research has explored issues specific
to the teaching and learning of physics [1]. A second more
recent strand has explored another central issue, the
promotion of diversity, equity, and inclusion in physics
programs and physics classes [2,3]. A third issue of central
and sometimes existential importance to physics depart-
ments is the retention of physics majors to degree. While
the American Institute of Physics maintains detailed data
on the number of physics graduates [4] as well as junior and
senior undergraduate physics enrollment, little is known
about how many students enter physics programs and fail to
complete the degree. For many programs, because of the
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relation between the number of physics majors and uni-
versity economic support for the department, the retention
and recruitment of physics majors represents one of the
most important departmental priorities. For some programs,
because of state laws closing smaller academic units,
retention of majors is a matter of survival [5].

A. Research questions

This work explores physics major retention at two
institutions with student populations with differing levels
of high school academic preparation. This work inves-
tigates factors influencing students departing physics pro-
grams through two modes: leaving college entirely and
changing to a different major while staying in college.

RQ1: At which point in their undergraduate physics
career are students most at risk of leaving the physics
major? How does this differ by modes of leaving the
major? How similar are these risks across different
institutions?

RQ2: What precollege academic factors influence a stu-
dent’s risk of leaving the major through each mode? How
similar are these factors across different institutions?

This work focuses on precollege academic factors because
these factors largely control the student’s progression
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through the first year of college which will be shown to be
key to retaining physics majors. These factors determine
the first mathematics classes in which a student enrolls
which largely sets the progression of future courses the
student must take. Precollege factors such as ACT scores
also form the primary data available to physics programs to
inform the adjustment course structures and the placement
of students in those structures to allow more students to
succeed.

This work also introduces a number of methods to
visualize physics retention which may be useful for physics
departments to understand and improve the retention of
majors.

B. Results of prior research

While little research into physics major persistence has
been performed within PER, substantial research has
investigated general college persistence and success as
well as persistence in science, technology, engineering, and
mathematics (STEM) majors. Within PER, a substantial
research strand has investigated factors influencing student
success in physics classes, a key component of college
retention.

1. Physics retention

Some studies have explored the issue of retention in
physics including retention of majors to physics degrees,
retention within the introductory sequence, and intention to
persist in physics. Aiken et al. used a random forest
machine learning model to examine the factors most
important in predicting whether a student would earn a
physics degree [6]. They found that taking Modern Physics
and taking an engineering class were the variables most
important in the prediction.

Another study examined the retention of students in a
physics course sequence, which included other scientists
and engineers. Zwolak et al. used network analysis to
determine students’ social and academic integration which
was used to predict if students who enrolled in the first
course of an introductory physics course sequence would
persist to the second course in the sequence [7]. They found
that by using a student’s centrality measures in the
integration network, they could predict a student’s persist-
ence in the sequence at a rate of 75%. This is similar to
work done by Forsman et al. who used complexity science
in analyzing social and academic networks of students in
physics classes to explain student retention [8].

A largely qualitative study by Stiles-Clark and MacLeod
surveyed students after the second course of a two-course
calculus-based introductory physics sequence and asked
about factors that influenced the decision to continue in the
physics program or a different program at the university.
They found that the primary reasons for persistence were
the students’ interest in the subject matter, the quality of
their physics instructors, and their perceived career

opportunities with a physics degree [9]. The researchers
noted the need for physics faculty to engage students in
research-based classroom and lecture techniques, as well as
the need to combat misconceptions about career oppor-
tunities for physics degrees.

2. General college retention

College retention and college persistence are major
research strands in general education research. High school
academic preparation is an important predictor of college
success. Composite SAT scores are highly correlated with
GPA in the first year of college [10]. Benchmarks for ACT
composite scores have been created indicating the score
required for a 50% chance of earning at least a B in
introductory college classes [11]. High school GPA is more
variable due to the variety of high school curriculum [12]
but still a strong predictor of first year GPA [13,14] and
overall college GPA [15]. One educational data mining
study found that factors associated with the socioeconomic
status and first generation status were highly predictive of
retention after a student’s third year as was a lack of
academic preparedness based on ACT and COMPASS
scores [16]. The COMPASS tests are administered by
ACT Inc.; COMPASS scores are designed to help place
students in the appropriate college classes.

The amount of literature available on the subject of
college student retention is staggering. A book with a
forward by Tinto [17] reviews the history of the field
including differing models of student retention, economic
considerations of student retention, retention in less tradi-
tional colleges such as community colleges and online
colleges, as well as suggested actions to improve student
retention. Although several models of student retention
have been postulated, the most widely applied model was
developed by Tinto [18,19]. Tinto proposed that a stu-
dent’s persistence depends on their skills, attributes,
intentions, commitment, and interactions with students
and faculty within the college. He claimed the most
important factor in student retention was the student’s
experiences in the college, and as a student became more
integrated into the academic and social communities
at the college the more likely they were to persevere
until graduation. Social integration refers to student-to-
student interactions and extracurricular activities available
at the college. Academic integration is described as the
congruence of a student’s abilities, skills, and interests
with the academic demands of the institution and also
interactions between the student and faculty and staff. In
2012, Tinto introduced a framework for institutional
actions to improve student retention [20]. His framework
focused on improving teaching methods and classroom
interventions as this is the primary interaction between
students and faculty and thus the primary way they can
become integrated into the college’s academic commu-
nity. While improving retention is often an institutional
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priority, a study by Henderson et al. [21] showed that
among physics faculty only 48% use methods that have
been empirically proven to improve student learning, and
only 23% used them at a high level.

3. STEM retention

The demand for employees having at least a bachelor’s
degree in a STEM discipline continues to grow [22]. In
2012, the President’s Council of Advisors on Science and
Technology [23] called for improved STEM retention to
prevent an estimated one million student shortfall in STEM
employment. Despite the critical need, only 40% of STEM
students graduate with a STEM degree [23]. In a 2014, the
U.S. Department of Education reported wide variation in
the attrition rates (defined as leaving the university or the
degree) of different STEM disciplines with an average rate
of 48%. Attrition was highest for computer and information
science majors (59%) and lowest for mathematics majors
(38%) [24]. This attrition rate was lower than the attrition
rate of students in the humanities or education (56%—62%)
and approximately equal to the rate for students in business
and social or behavioral science [24].

Many studies have investigated STEM degree retention
and methods to improve retention [24-31]. In general,
measures of prior high-school preparation (high school
GPA and ACT or SAT scores) as well as college perfor-
mance metrics such as credit completion and college GPA
were important factors in predicting student retention.
Other factors that have been found to be important include
relationships between faculty and students [32,33], the use
of learning communities [34], the implementation of a
career planning seminar or career planning course
[35,36], a scientific thought and methods course [37],
and for engineering students their grades in introductory
physics courses [38]. A study using self-reported survey
data [39] found that an institution’s academic environ-
ment was important for students deciding to stay in
STEM: specifically features such as smaller class sizes,
more integration of undergraduate student research, fac-
ulty teaching skills, and whether or not students were
engaged in active learning strategies were important. A
review article by Sithole et al. synthesizes many reforms
or changes that have been suggested to improve student
retention such as improved academic advising, blending
courses, peer mentoring, instruction in time management
and study habits, and improving high school STEM
curriculum and instruction [40].

The current work is a quantitative study that focuses on
the role of precollege academic factors on physics retention
with the goal of identifying quantitative factors that would
allow a physics department to identify incoming students
likely to leave the major. As such, this review focuses on
quantitative studies of retention. A large and excellent
qualitative body of research exists that both examines
STEM retention in general [41-43] and the retention of

specific demographic groups underrepresented in physics
in particular [44—47]. This body of research can provide
greater context into the factors that ultimately cause a
student to leave the sciences.

4. Educational data mining

With the advent of university learning management
systems and increases in computing power, a very sub-
stantial branch of education research has attempted to use
these large data systems and emerging computer techno-
logies to predict both in-class success and retention to
graduation. These techniques are called educational data
mining (EDM) or learning analytics. Multiple reviews have
summarized the efficacy of the numerous algorithms used
by EDM to predict both in-class and overall student
performance [48-55]. The application of data mining to
the university retention problem began in the early nineties;
Nandeshwar et al. provides a review of this work [16].
They report that college performance, high school GPA,
ACT scores, and some sociofamily factors affect student
retention.

These techniques have been used in multiple studies to
predict student first year retention and persistence
through graduation for engineering students [35,56-61].
Engineering students form the majority of the students in
the introductory physics classes taken by physics majors.
Machine learning has recently been applied in PER to
understand student performance in physics classes [62,63].

5. Physics course success

Many PER studies have examined factors that influence
student success in physics courses (generally introductory
classes) using metrics such as final exam grade, course
grade, and conceptual post-test scores. A certain level of
success in physics classes is typically required for persist-
ence in the major. One would also hypothesize that students
who are more successful in their introductory physics
courses are more likely to persist in the physics major.
Much of this research has examined either instructional
methods to increase success or conceptual barriers (mis-
conceptions) that prevent success. Meltzer and Thornton
provide an extensive review of research into interactive
instructional methods and the efficacy of these methods
[64]. Research into student misconceptions spans the
history of PER [65-69]. In 2014, the National Academy
of Sciences published a synthesis of results from many
disciplines showing interactive instruction improved con-
ceptual performance as well as course outcomes [70]. A
further meta-analysis demonstrated the efficacy of these
methods both at the college and precollege level [71].

Recent studies have examined how general high school
preparation metrics (ACT and SAT scores) and prior pre-
paration in physics measured by conceptual pretest scores
affect course outcome measures including final exam
grades, overall course grades, and conceptual post-test
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scores [72-74]. These studies show that both general high
school preparation and specific preparation in physics are
important in predicting student outcomes; they also show
that different factors are of varying importance for different
demographic groups. Studies have also investigated the
details of high school physics preparation as well as
noncognitive variables such as parental support as predic-
tors of success in college physics classes [75].

Success in calculus-based introductory physics courses
is also key for engineering and other science majors, who
generally make up the majority of the students in an
introductory physics class. A recent study by Wingate
et al. [38] found that success in introductory physics
courses was predictive of success in later engineering
courses and persistence to an engineering degree. Most
students who received a high grade in the introductory
physics sequence continued to achieve high grades through
the rest of the engineering coursework, while those who
received a lower grade continued to struggle through their
remaining classes.

The current work examines the retention of physics
majors with a variety of methods that have yet to be applied
to the problem of retention in the PER literature. This work
also investigates two different institutions with student
populations with differing levels of high school preparation
allowing the determination of which results are institution-
ally independent. Many of the factors identified as impor-
tant to retention in general are found to be important for
physics majors; however, the analysis will also allow us to
quantify when students are most at risk and to provide a
general overview of retention at both institutions.

II. METHODS
A. Sample

This study investigates retention using samples drawn
from two institutions. These are called Institution 1 and
Institution 2 in this work.

Institution 1: Institution 1 is a large land-grant research
university in the eastern United States with total under-
graduate enrollment in Fall 2020 of 20 500 students. The
overall demographics of the undergraduate population were
82% White, 4% Black or African American, 4% Hispanic
or Latino, 4% nonresident alien, 4% two or more races,
with other groups 2% or less. The ACT composite scores
range was 21 to 27 for the 25th percentile to the 75th
percentile of students scores [76]. This range of ACT
composite scores represents a range of ACT percentile
scores of 21 (59%) to 27 (85%). Thirty-one percent of
undergraduate students were eligible to receive Pell grants.
Pell grants are only given to students of lower socioeco-
nomic status (SES) and are a common measure of the
fraction of low SES students.

The dataset included all students who elected a physics
major at any point in their undergraduate career from the

Spring 2001 semester to the Fall 2019 semester. The
university undergraduate population grew during this time
from 16 000 in 2001. The university because more diverse
over the time period; White students formed 90% of the
undergraduate population in 2001. The ACT score range
increased slightly over this period. The details of the
filtering of this raw dataset to the analysis dataset are
given in Sec. III A to show some of the complexities of
working with institutional data.

Institution 1 presents both introductory physics and
mathematics classes using a variety of active learning
techniques. The institution has a strong commitment to
instruction and supports many professional teaching pro-
fessors both in mathematics and physics. These teaching
professionals prioritize student success through active
learning in their classrooms. Mathematics classes are
presented as a combination of large lecture and discussion
sections. Physics classes are presented in the large lecture
format with a required co-requisite laboratory session. All
freshman are required to take a freshman seminar course in
their discipline.

Institution 2: Institution 2 is a large land-grant research
university in the southern United States with total under-
graduate enrollment in Fall 2020 of 24 500 students. The
overall demographics of the undergraduate population were
81% White, 5% Black or African American, 4% Hispanic
or Latino, 6% nonresident alien, 3% two or more races,
with other groups 2% or less. The ACT composite scores
range was 25 to 31 for the 25th percentile to the 75th
percentile of students scores [76]. This range of ACT
composite scores represents a range of ACT percentile
scores of 25 (78%) to 31 (95%). Seventeen percent of
undergraduate students were eligible to receive Pell grants.

The dataset included all undergraduate students who at
some point declared a physics major at the university
between the fall 2011 semester and the fall 2021 semester.
The university grew somewhat in this time from 20 500
undergraduates in 2011 and became somewhat more
diverse; the undergraduate population was 85% White in
2011. The ACT score range was consistent over this period.

Institution 2 presents all introductory mathematics and
physics courses using primarily lecture-based pedagogy.
All courses have multiple instructors teaching diffe-
rent sections of each course, but the style of teaching is
up to the individual instructor. Approximately 20% of the
physics faculty teach in specialized active learning class-
rooms recently built by the university. Mathematics
classes are taught in small sections of roughly 30 students
and meet three times per week for lecture and once per
week for discussion. Physics courses are presented pri-
marily in a large lecture format with a required co-
requisite laboratory section. The institution recently
implemented a required first-year seminar course, but
none of the students in the data presented here will have
taken the course.
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This work discusses four classes commonly taken by
physics majors. Calculus 1 is the single semester calculus
course introducing integration and differentiation. Physics
1 is the introductory calculus-based mechanics class taken
by physical scientists and engineers. Physics 2 is the
introductory calculus-based electricity and magnetism
course. Modern Physics is taken primarily by physics
majors and covers multiple topics including relativity,
quantum mechanics, and statistical mechanics.

B. Variables

This work uses a set of variables drawn from institutional
records. This study used high school GPA (HSGPA), ACT
or SAT mathematics percentile score (ACTM, Institution
1), ACT or SAT verbal percentile scores (ACTV Institution
1), ACT or SAT composite score (ACTC, Institution 2) and
a dichotomous variable MathReady. MathReady was one if
the student enrolled in Calculus 1 or a more advanced
mathematics class his or her first semester of college, zero
otherwise. For most students studied, taking Calculus 1 the
first semester of college was required by their four-year
degree plans.

C. Statistical and graphical methods

This work utilizes a number of graphical representations
of retention and statistical methods to characterize reten-
tion. Each will be introduced as it is used. All analyses were
performed with the R software system [77].

Sankey plots: Sankey plots give an overall visual picture
of retention in physics drawing retention patterns as
flows through a series of semesters. The Sankey plots
were drawn with the “ggalluvial” package [78] in “R.”

Survival analysis: Survival analysis is used to calculate
a student’s risk of leaving the physics major each
semester.

Logistic regression: Logistic regression is used to
predict the probability of a number of outcomes
including graduation, one-year persistence, and per-
sistence from Calculus 1 to Modern Physics.

III. RESULTS

A. Descriptive analysis

This section presents basic descriptive statistics for the
various datasets used in the study. To study retention, one
must restrict the temporal range of the data to allow time for
persistence or graduation. Different time windows were
applied for different outcomes (i.e., graduation or first-year
retention) generating datasets with different overall aver-
ages. Further, not all variables were available for all
students; restricting to complete records may change the
overall average of some variables. The general descriptive
statistics for Institution 1 and 2 are shown in Table I.

One goal of this work is to inform readers interested in
replicating this work about some of the complexities they

may encounter in working with institutional data. The
Institution 1 dataset studied included all students who
elected a physics major at any time during their under-
graduate career from the spring 2001 semester to the fall
2019 semester and course taking data for the same time
period, a total of N = 659 students. For students early in
the dataset, additional course records were obtained to
ensure a complete academic record was available for all
students. Of these, 30 students elected the physics major
prior to attending the university but were never enrolled as
physics majors for a semester in which they took classes; 23
students never took a class in a semester where they were
enrolled as a physics major. These students were removed
leaving 606 students. An additional 20 students elected a
physics major only after completing a degree in another
discipline and did not complete the physics major. These
students were also removed leaving 586 students.
Descriptive statistics for this set of students are included
in the complete dataset section of Table I (dataset 1.1).

At Institution 1, students were admitted to the univer-
sity under 11 different admission codes (admit codes). The
largest group was first-time freshman (FTF), 356 students,
followed by students readmitted to the university, 76
students, and transfer students, 70 students. Students with
admit codes suggesting they might have academic tra-
jectories distinct from other students were removed to
form the admit code dataset in Table I. Students without an
admit code (N =7) were removed as well as visiting
students (N = 5), transfer students (N = 70), nondegree
students (N = 13), and second degree students (N = 18).
This resulted in a dataset with 463 records (dataset 1.4,
Table I). Transfer students would be a fascinating cohort
to study, but there were not enough of them in the dataset
for statistical analysis.

High school academic control variables, HSGPA,
ACTM, and ACTYV, were not available for all students.
Descriptive statistics for students for which these variables
were available are shown in the HS rows of Table 1. To
investigate graduation or persistence to either sophomore
year (1-year persistence), junior year (2-year persistence),
or Modern Physics (3-year persistence), the latest records
must be removed so all students have the same time to
either graduate or persist; the data must be windowed. On
sequence students should take Modern Physics in the
spring sophomore semester; however, Modern is only
offered once per year, and therefore off sequence students
must often wait until their junior year to take the class.
Removing these records changed the overall statistics of the
sample little, as shown in Table I. A six-year window was
used to investigate graduation. With this window applied,
the percentage of students graduating with a physics degree
(Grad Phys %), graduating with a degree in another
discipline (Grad Other %), and not graduating (Not Grad
%) was calculated. Each of these outcomes is approxi-
mately equally likely in both the complete dataset and the
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TABLE I. Descriptive statistics applying a variety of filters for Institutions 1 and 2. Filters are abbreviated: HS (high school) for
students with HSGPA and ACT or SAT scores, P1 (Physics first) for students whose first declared major is physics, FTF (first-time
freshman) students admitted as first-time freshmen, Fall First, students whose first semester was the fall semester. Different windows
were also applied to investigate persistence and graduation. Grad (graduation) removes the last six years of records, 1Year (one year)
removes the last year of records, 2Year (two year) the last two years, and 3Year (three year) the last three years. Columns are abbreviated
ACTC% (ACT composite %), ACTM% (ACT or SAT mathematics %), ACTV% (ACT or SAT verbal %), HSGPA (high school GPA),
CGPA (college GPA), Grad Phys % (percentage of student graduating with a physics degree), Grad Other % (percentage of student
graduating with a degree other than physics), Not Grad % (percentage of students who do not graduate with any degree), Surv Soph %
(percentage of students enrolled as physics majors in their sophomore year), and Surv Junior % (percentage of students enrolled as
physics majors in their junior year). Note, Grad Phys %, Grad Other %, and Not Grad % should add to one; for rows in which they do not
it, is a result of the cumulative rounding of the numbers.

Math Grad Grad Not Surv Surv
Ready ACTC ACTM ACTV Phys Other Grad Soph Junior
No. Filter N % % % % HSGPA CGPA % % % % %
Institution 1—complete dataset

. None 586 63 2.99
1.2 Grad 411 68 3.01 38 29 32
1.3  Grad, HS 352 68 80 77 3.58 3.00 37 31 32

Institution 1—admit code dataset
1.4  None 463 63 3.00
1.5 Grad 314 68 3.00 36 30 35
1.6 Grad, HS 296 69 80 77 3.59 2.99 36 30 34
1.7  Grad, P1 198 68 76 74 3.51 291 31 31 38
1.8 Grad, HS, P1 187 69 81 78 3.60 2.90 31 32 37
1.9  1Year, HS, P1 247 66 79 78 3.63 2.92 64
1.10 2Year, HS, P1 231 67 79 78 3.62 2.91 64 46
1.11 3Year, P1 227 66 75 74 3.53 2.93 64 46
1.12 Grad, P1, First 143 68 2.94 34 28 38 64 43
Fall, FTF
Institution 2—complete dataset
2.1  None 269 87 3.16
2.2 Grad 145 94 3.28 28 35 37
2.3 Grad, HS 116 94 95 4.05 3.35 28 35 37
Institution 2—admit code dataset
2.4 None 204 84 3.18
2.5 Grad 81 91 3.29 22 35 43
2.6 Grad, HS 81 91 95 4.03 3.29 22 35 43
2.7  1Year, HS, P1 114 82 93 3.98 3.13 61
2.8  2Year, HS, P1 100 83 93 3.98 3.13 54 34
2.9  Grad, P1, First 54 91 3.18 22 51 30 63 33
Fall, FTF

admit code dataset. One-year and two-year persistence was  admissions codes: FTF and transfer. Transfer students
studied by windowing the data to remove the final one year (N = 53) and nondegree students (N = 12) were removed
or two years of records (the codes 1Year and 2Year in resulting in a dataset with 204 records (dataset 2.4, Table I)
Table I). For the one-year, two-year, three-year, and
graduation window, the fraction of students surviving to

sophomore year as physics majors was calculated (Surv. B. Visualizing retention

Soph. %). For the two-year, three-year, and graduation College retention is intrinsically a time dependent
window, the fraction of students surviving to junior year as  process. One method of visualizing the transitions students
physics majors was calculated (Surv. Junior %). make between majors and into college outcomes is a

At Institution 2, the admission classification was sim-  Sankey plot. The Sankey plots using the admit code filtered

pler; students were admitted to the university under two  datasets with a graduation window (Table I, dataset 1.5;
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FIG. 1.

Sankey plot showing major changing and graduation patterns for students who elect a physics major at any point in their

undergraduate career. Each group of two bars represents an academic year; fall semesters are odd numbers, spring semesters even.

Table I, dataset 2.5) are shown in Fig. 1. Students’ active
majors are classified as physics, engineering, other STEM,
and nonSTEM. Students’ outcomes are classified as leaving
college, graduate physics, and graduate other. The height of
the bar in the Sankey plot represents the number of students
in each category each semester. Semesters are numbered
from 1 (fall freshman) to 12 (spring year 6); summer

semesters have been suppressed. Two vertical bars represent
an academic year. Curves are drawn showing transitions
between semesters; the color of the curve shows the
classification in the later semester; the width of the curve
represents the number of students making the transition.
The figures for the two institutions are fairly similar.
More students who eventually at some point declare a
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TABLE II. Institution 1 major election sequences.
Grad Grad Not

Sequence phys % other % grad %
Physics 54 (54%) 0 (0%) 46 (46%)
Other—Physics 50 (76%) 1 2%) 15 23%)
Other—Physics—Other 0 (0%) 31 (62%) 19 (38%)
Physics—Other 0 (0%) 61 (68%) 29 (32%)
Physics—Other—Physics 8 (100%) 0 (0%) 0 (0%)

physics major, start as physics majors at Institution 2. Both
institutions, despite the general difference in academic
preparation measured by the ACT score range and SES
measured by Pell eligibility of the undergraduate popula-
tions, see a similar fraction of students leave college
without graduating. A somewhat larger fraction of students
graduate with a physics degree at Institution 1 than at
Institution 2, while a higher fraction of students at
Institution 2 graduate with a major other than physics.
These additional graduates come from other STEM dis-
ciplines; the fraction of graduates in nonSTEM disciplines
is commensurate. The Graduate Other category does not
disaggregate STEM and nonSTEM majors; however,
examining the enrollment at the end of year four (semester
8) shows the nonSTEM major bars are fairly identical while
the other STEM major bar is about twice as tall at
Institution 2. Both institutions see substantial outflows
from physics majors to leaving college after the second
semester. Both institutions see both inflows and outflows to
the major which are substantial in the first two years; these
seem to continue later at Institution 1.

Tables II and III summarize the patterns observed in
Fig. 1. These use the same dataset which was used to
construct the Sankey plot. At Institution 1, only 100 of the
314 students are physics majors for their entire under-
graduate career; these students graduate with a degree 54%
of the time. Unfortunately, 46% of these students do not
earn a college degree. This college graduation rate is lower
than that of the 90 students who start in physics and leave
the major for another degree; these students earn college
degrees 68% of the time. A substantial group of students,
N = 66, begin college in other majors and switch to
physics; these students graduate with physics degrees
76% of the time and graduate college 77% of the time.

TABLE III. Institution 2 major election sequences.

Grad Grad Not
Sequence phys % other % grad %
Physics 10 (56%) 0 (0%) 8 (44%)
Other—Physics 10 (59%) 0 (0%) 7 (41%)
Other—Physics—Other 0 (0%) 10 (100%) 0 (0%)
Physics—Other 0 (0%) 26 (76%) 8 (24%)
Physics—Other—Physics 2 (100%) 0 (0%) 0 (0%)

One student in the “Other-Physics” pathway earned a
degree in another discipline, but not physics. This student
was a physics major until the end of their undergraduate
career, but applied to graduate with a different major once
classes were over.

For Institution 2, the results for students who stay in
physics their entire undergraduate career are similar to
those of Institution 1. Students who start in other majors
and add the physics degree are somewhat less successful at
Institution 2. Students leaving the physics major graduate
from college at a high rate at both institutions. The small
number of students in many of the pathways at Institution 2
means the percentages should be viewed as suggestive only.

C. Survival analysis

The time dependent nature of college retention and
retention to major can be thought of the process of
surviving to graduation. As such, survival analysis, a
statistical analysis method originally developed to model
the survival of patients with life threatening diseases,
represents a promising method to model the process of
successfully graduating with the physics major.

Normally, survival analysis attempts to make predictions
about a continuous random variable 7 which represents the
time a state-changing event happens (such as dying or
quitting school). The variable has probability density f(¢)
and cumulative distribution function F(r) = [*_ f(r)dt =
P(T < 1t); F(t) is the probability the event has already
happened. The survival function S(7) =1—-F(t)= [ f(¢)dt
is the probability the event happens after 7 or the probability
you have survived to .

The hazard function A(z) is the probability the event
happens in the range [f,7+ At] given the event has not
already happened at ¢, the rate the event is happening at
time ¢ is given by

. P@<T<t+ AT >1)
A0 = Jim, ar -

Survival through college to earn a physics degree is an
intrinsically discrete process because information on
changing majors and leaving college only exists at the
semester level. For the discrete case, Eq. (1) simplifies
dramatically. For example, the leaving college hazard in
semester j, ALC, is the ratio of the students enrolled in
semester j who have left college by semester j+ 1,

AN?%P to students enrolled in semester j, N;, given by
ANLC
J+1
e = 7]\§ J ) (2)

J

A similar definition can be given for the changing major
hazard, /1]-CM . The graduation hazard is the fraction of
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FIG. 2. Fraction departed or graduated for students entering the university declared as physics majors.

students enrolled in semester j who graduate that semester,
NG; 26 = NG /N,

For the survival analysis, the data were filtered to a set of
maximally homogeneous students after applying a gradu-
ation window. The admit code dataset was restricted to
include only students who began in the fall semester, who
were admitted as first-time freshmen, and who elected
physics as their first college major (Institution 1, Table I,
dataset 1.12, N = 143; Institution 2, Table I, dataset 2.9,
N = 54). This strong filter was necessary because students
who enter in a semester other than the fall have less time to
the critical first summer semester. Students who are not
initially physics majors may have different course trajec-
tories and require more time to graduate. For this analysis,
three modes of leaving the physics major were considered:
changing to another major while staying in college (change
major), leaving college without earning a degree (leave
college), and graduating with a physics degree (graduate
physics). The fraction of students in this dataset that leave
physics through each mode is shown in Fig. 2. The figure
shows that for Institution 1 approximately twice as many
students starting with a physics major leave physics by
changing to a different major than those who leave physics
by leaving college; for Institution 2, 4 times as many
students change major as leave college. A higher fraction of
physics majors leave college at the less selective Institution
1 than at Institution 2. The fraction of students leaving
college is not directly comparable to the Not Grad % in
Table I because the plot shows the fraction who leave
college while still enrolled as physics majors. Note, these
results are somewhat different than those shown in the
Sankey plots. These differences are a result of the different
datasets used. The students used in the survival analysis are
students who have the general academic trajectory (first-

time freshmen entering in fall semester) around which the
undergraduate physics program was designed and are a
particularly interesting subpopulation.

The hazard function for all three modes of leaving
physics is shown in Fig. 3. Note, the graduation hazard
(rate) is plotted against the right axis. For both Institution 1
and 2, there is a strong peak in the leaving college hazard at
Semester 2. This hazard is understandable; students not
thriving at college return home after their freshman year
and do not return. At Institution 1, there is a peak in the
change major hazard at Semester 3, the fall sophomore
semester. This likely results from students returning from
the summer between freshman and sophomore years and
changing their major upon their return. Institution 2 has
high changing major hazard throughout the first two years
with peaks in Semester 1 and Semester 5. The Semester
1 peak may be the result of students enrolling in physics
upon entering the university, discovering what is really
involved, and electing a different major. The Semester
5 peak (fall junior year) may result from students who have
completed their introductory science core having to make
the decision on what major to pursue at this point. The
Sankey plots show a strong exchange between physics and
other STEM and nonSTEM disciplines at this point. For
Institution 1, all semesters plotted in the hazard plot enroll
at least 50 students. The smaller Institution 2 dataset would
only retain one semester with this criteria; semesters are
included that enroll at least 19 students. The students per
semester is reported in the caption of Fig. 1. The small
enrollment implies the Institution 2 results should be used
with caution; however, the high changing major hazard
through the fall junior semester is also supported by the
linear fraction departed plot for this hazard mode until
that time.
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Hazard functions. The graduation hazard is plotted on a different scale shown by the right vertical axis. For Institution 1, each

semester plotted has at least 50 students enrolled as physics majors. Only 5 semesters could be plotted for the smaller Institution 2; these

semesters enroll 54, 40, 29, 24, and 19 students, respectively.

D. Logistic regression

Logistic regression allows the modeling of how factors
affect a dichotomous dependent variable. Logistic regres-
sion predicts the probability of the high level of the
dichotomous variable (Y = 1); the variable Y is coded so
the low level is zero and the high level is one. The probability
that ¥ =1 is observed for student i is modeled by the
probability function P;(¥ = 1). The odds of the ¥ =1
outcome for student i is then calculated as odds;, =
P;(Y=1)/[1=P;(Y =1)], the ratio of probability of
Y =1 being observed to the probability of ¥ = 0 being
observed. The range of the odds is from 0 to oo. To project
this quantity into an unbounded range, the log-odds is
calculated as log-odds; = In(odds;). The log-odds is then
predicted with a set of independent variables very much as a
continuous dependent variable would be in linear regression
(but with differing underlying statistical assumptions). For
example, to predict the log-odds using two independent
variables X and X,, an intercept 3, and two slopes 3, and 3,
are estimated as follows:

P(Y=1)

log-odds =In{ ————~
og-odds n(l—P(Yzl)

) =po+hXi+5X,.  (3)

The intercept predicts the log-odds when X and X, are both
zero. The slope f; is the change in log-odds for a one unit
increase is X;. Log-odds, however, is a fairly difficult
quantity to interpret qualitatively. It is much more intuitive
to discuss changes in the odds. To calculate the odds, both
sides of Eq. (3) are exponentiated, yielding

odds = M = ePo . 1 X1 . P2 Xs (4)
TPy =1

As such, e is the base odds when X; = 0 and e/ multiplies
this base odds when X; = 1.

Logistic regression was used to explore factors influ-
encing persistence to the sophomore year, the junior year,
and to graduation. For this analysis, the admit code dataset
was filtered to retain only students electing physics as their
first college major for whom high-school-level data were
available; the data were then windowed for each outcome
variable.

For Institution 1, this produced three datasets shown in
Table I: 1-year persistence, dataset 1.9, N = 247; 2-year
persistence, dataset 1.10, N = 231; graduation, dataset 1.8,
N = 187). Table IV presents the logistic regression results
for Institution 1 for a number of outcome variables: leaving
college by the sophomore year, leaving college by the
junior year, leaving the physics major but staying in college
though the sophomore year, leaving the physics major but
staying in college through the junior year, and graduating
with a physics degree. These models were initially fit using
HSGPA, MathReady, ACTM, and ACTV as independent
variables. The full regression equation is given by

log -odds(Outcome) = f, + #; x HSGPA + 8, x ACTM
+ p3 x ACTV + B, x MathReady,

(5)

where f, is the intercept, f3; are the slopes, and outcome is
one of the following: graduation in physics, leaving college
by sophomore year, leaving college by junior year, leaving
physics while staying in college by sophomore year, and
leaving physics while staying in college by junior year.
For all models, the model using the independent vari-
ables was a statistically significant improvement over the
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TABLE 1V. Institution 1: Logistic regression. All regressions
are significant improvements over the null model (p < 0.001).
is the normalized regression coefficient, SE is its standard error, z
is the z score of the coefficient, p the probability a value larger
than z occurred by chance, and e? is the odds ratio.

Variable p SE z p er
Leave college by sophomore year (N = 247)
(Intercept) -2.12 022 -9.62 0.0000 0.12
HSGPA -0.69 019 =365 0.0003 0.50
Leave physics stay in college by sophomore year (N = 247)
(Intercept) -0.39 0.22 -1.73 0.0827 0.68
MathReady -132 031 —-425 0.0000 0.27
Leave college by junior year (N = 231)

(Intercept) —-1.83 0.20 —-8.94 0.0000 0.16
HSGPA -0.72  0.18 =393  0.0001 0.49
Leave physics stay in college by junior year (N = 231)
(Intercept) 034 0.23 147  0.1404 141
MathReady -1.29 029 —-440 0.0000 0.28
Graduate physics (N = 187)

(Intercept) —-1.64 040 —4.14 0.0000 0.19
HSGPA 091 0.23 4.02  0.0001  2.49
MathReady 0.88  0.45 1.96 0.0504 241
Enroll Calculus 1—Pass Physics 2 as major (N = 132)
(Intercept) 0.18  0.20 093  0.3527 1.20
HSGPA .13 0.24 4.78  0.0000  3.09
Enroll Calculus 1—Pass Modern as major (N = 132)
(Intercept) -0.67 0.21 -3.14 0.0017 0.51
HSGPA 1.14  0.26 4.37  0.0000 3.14

null model. For logistic regression, the null model is the
model including only the intercept term. Once the full
model shown in Eq. (5) was fit, it was examined for
statistically insignificant independent variables. These vari-
ables were removed producing a more parsimonious model.
An ANOVA test showed the model removing insignificant
independent variables was not significantly less well fitting
than the full model in all cases. This model is shown in
Table IV. For all models except graduating with a physics
degree, only one variable was retained.

For Institution 1, the results for persistence in physics
were quite different than the results for persistence in
college. Persistence in college while leaving the physics
major was most strongly related to math readiness (being
able to enroll in Calculus 1 the first semester of college).
The base odds of leaving physics while staying in college
(the odds, eg, of the intercept) was reduced by a factor of
0.27 for the sophomore year and 0.28 for the junior year for
math ready students. As such, being math ready decreases
the odds of leaving the major by (1/0.28 — 1) x 100% =
260%. The relation of math readiness to leaving the physics
major but remaining in college is very understandable;

nonmath-ready students have to take a sequence of mathe-
matics classes, often a year and a half of mathematics
classes, before ever enrolling in their first physics class.
They also are very unlikely to complete their degree in four
years. These factors make them very hard to retain and add
financial pressures to the student to change to a less math
intensive major.

The variables important in predicting whether a physics
student would leave college by the sophomore or
junior year were quite different; HSGPA was the most
important variable. While high school classes and cur-
ricula are extremely variable, HSGPA provides a measure
of how successful a student has been in the high school
academic system. This success is an important indicator of
whether the student will successfully navigate college.
Both MathReady and HSGPA were important in predict-
ing graduation with a physics degree (MathReady was
p = 0.0004, above the 0.05 significant threshold). A
student who graduates with a physics degree must avoid
both leaving the major and leaving college, so it is
reasonable that both factors are involved. Both factors
have similar odds ratios in predicting graduation; math
readiness increased the odds of graduating with a physics
degree by (2.41 —1) x 100% = 141% and a 1 standard
deviation increase in HSGPA increases the odds by 149%.

The analysis for Institution 2 produced different
results. The datasets used are shown in Table I: 1-year
persistence, dataset 2.7, N = 114; 2-year persistence,
dataset 2.8, N = 100; graduation, dataset 2.9, N = 54.
For Institution 2, the variables HSGPA, ACTC, and
MathReady were used as independent variables; the full
regression equation is given by

log -odds(Outcome) = S, + f; x HSGPA + 8, x ACTC
+ f3 x MathReady, (6)

where f is the intercept, f3; the slopes, and outcome is one
of the following: graduation in physics, leaving college by
sophomore year, leaving college by junior year, leaving
physics while staying in college by sophomore year, and
leaving physics while staying in college by junior year.
The logistic regression results for Institution 2 are pre-
sented in Table V.

The smaller sample size for Institution 2 and the more
homogeneous student academic preparation as evidenced
by the very high average levels of math readiness,
HSGPA, and ACTC shown in Table I reduced statistical
power. Many models did not contain a significant regres-
sor. As such, we report the most significant regressor in
each model. Because of low statistical power, it may be
more appropriate to examine the odds ratios. Only ACTC
was a significant regressor in predicting leaving the
physics major while staying in college by the sophomore
and junior year. Math readiness was the most important
regressor in predicting leaving college by the sophomore
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TABLE V. Institution 2: Logistic regression. All regressions are
significant improvements over the null model (p < 0.001). f is
the normalized regression coefficient, SE is its standard error, 7 is
the z score of the coefficient, p the probability a value larger than
z occurred by chance, and e# is the odds ratio.

Variable p SE z p er
Leave college by sophomore year (N = 114)
(Intercept) -294 039 =757 0.0000 0.05
MathReady -1.18 0.67 -1.78 0.0746 0.3l
Leave physics stay in college by sophomore year (N = 114)
(Intercept) —0.47 0.16 —-2.89  0.0038 0.63
ACTC -0.45 0.17 =271 0.0067 0.64
Leave college by junior year (N = 100)

(Intercept) -1.93 0.25 -7.60  0.0000  0.15
HSGPA -044 024 -1.86 0.0629 0.64
Leave physics stay in college by junior year (N = 100)
(Intercept) -025 017 -149 0.1366  0.79
ACTC -0.51 0.18 -2.89 0.0039 0.60
Graduate physics (N = 54)

(Intercept) -1.63 040 —-4.03 0.0000 0.19
ACTC 0.69 047 1.47  0.1430 199
Enroll Calculus 1—pass Physics 2 as major (N = 54)
(Intercept) -1.13 033 =339 0.0007 0.32
ACTC 0.58  0.37 1.55  0.1220 1.79
Enroll Calculus 1—pass Modern as major (N = 54)
(Intercept) -124 036 -342 0.0006 0.29
ACTC 094 043 221 0.0268  2.56

year; HSGPA predicting leaving college by the junior
year. Both were significant at the p < 0.1 level. ACTC
was the most important variable in predicting physics
graduation with an odds ratio commensurate to the odds
ratios in the sophomore and junior datasets (the odds ratio
for ACTC of not graduating is 1/1.99 = 0.5).

E. Traversing the course network

As a student persists in college they traverse a network of
required courses. For a physics major at Institution 1 or 2,
the key sequence of courses early in college is Calculus 1,
Physics 1, Physics 2, then Modern Physics. The logistic
regression analysis was repeated to explore the factors
influencing whether a student who enrolls in Calculus
1 persists to either Physics 2 or Modern Physics.

For Institution 1, HSGPA was the most important
predictor of a student who enrolled in Calculus 1 passing
either Physics 2 or Modern Physics as a major as shown in
Table IV. A 1 standard deviation higher HSGPA increased
the odds of staying a physics major through Modern by
200%. For Institution 2, ACTC was the most important
predictor of a student enrolling in Calculus 1 completing
Modern as a physics major as shown in Table V. For

Institution 2, HSGPA was substantially higher than at
Institution 1; this may have limited the variation in this
variable and its predictive power.

Examining the progression of students through the
network also provides additional insights. This analysis
was only performed for Institution 1; the better prepared
students at Institution 2 produced a much simpler network,
which is not shown to prevent identifying individual
student trajectories. Figure 4 shows the progression of
students who enter Institution 1 declared as physics majors
through Modern Physics and to graduation. For this
analysis, a 3-year window was applied to the admit code
filtered dataset (Table I, dataset 1.11, N = 227). Students
first enrolling in Modern Physics or a more advanced
physics class were removed (8 students); students who
never took a mathematics class were also removed
(10 students) leaving 209 students for analysis. The figure
uses the abbreviations “< Calc” for students whose first
mathematics class is less advanced than Calculus 1, “Calc”
for students whose first mathematics class is is Calculus 1,
and “> Calc” for students whose first mathematics class is
greater than Calculus 1.

The figure starkly shows the importance of math read-
iness for this population. Of the 209 students, 41% first
enroll in a mathematics class less advanced the Calculus 1;
59% of these students leave physics before enrolling in
Physics 1. Of the 37% of the students who first enroll in
Calculus 1; only 26% of these leave physics before
enrolling in Physics 1. Students with AP or transfer credit
for Calculus 1 first enroll in a mathematics class more
advanced than Calculus 1; only 7% of these students fail to
enroll in Physics 1. The advanced math entry students have
a persistence advantage over other students through
Modern Physics. Once either a nonmath-ready or a
Calculus 1 entering student enrolls in Physics 1, they
persist to Physics 2 at about equal rates. This indicates that
pre-college factors are most important in allowing students
to persist to enroll in a physics class; once the student
successfully enrolls in physics, pre-college factors become
less important. From Physics 2, the nonmath-ready student
persists to Modern at a somewhat lower rate than the
Calculus 1 entry student. Of the 209 initial physics majors,
19 of the 82 noncalculus-ready students enroll in Modern
Physics as a physics major, 23%; 44 of 84 Calculus 1 entry
students enroll in Modern Physics, 52%; 28 of the 43
advanced math entry students enroll in Modern
Physics, 65%.

For the graduation probabilities after enrolling in
Modern Physics in Fig. 4, a 6-year window was applied
(Table I, dataset 1.7, N = 198). As before, students who
first enroll in Modern or a more advanced physics class and
students who never enroll in a mathematics class were
removed, leaving 181 students. Figure 4 presents the
graduation probability of these students once they enroll
in Modern Physics. The graduation rates for all math entry
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FIG. 4. Traversing the major from entry to Modern Physics for students at Institution 1 who elect a physics major in their first semester.
The figure uses the abbreviations < Calc for students whose first mathematics class is less advanced than Calculus 1, Calc for students
whose first mathematics class is is Calculus 1, and > Calc for students whose first mathematics class is more advanced than Calculus 1.

points are approximately equal; all students who persist to
Modern have an equal chance of graduating with a physics
degree.

For the graduation filtered dataset, overall graduation
probabilities in physics were calculated for each stage of the
progression through the network. Of the 181 students who
initially enrolled as physics majors, 31% graduated with a
physics degree. Disaggregating by math readiness, of the
65 students not ready to take Calculus 1, 15% graduated; of
the 76 students who initially enrolled in Calculus 1, 34%
graduated with a physics degree; and of the 40 students who
initially enrolled in a mathematics class more advanced than
Calculus 1, 53% graduated with a physics degree. Of the
100 students who enrolled in Physics 1 as a physics major,
50% graduated with a physics degree (< Calc 1 42%, Calc
146%, > Calc 1 65%). Of the 107 students who enrolled in
Physics 2 as a physics major, 53% graduated with a physics
degree (< Calc 1 45%, Calc 1 53%, > Calc 1 58%). Of the
79 students who enrolled in Modern Physics as a
physics major, 65% graduated with a physics degree
(< Calc 1 67%, Calc 1 64%, > Calc 1 68%). As such,

the additional advantage confirmed by a more enriched high
school STEM experience was important in the early years of
college, but ceased to be important once a student pro-
gressed to their advanced coursework. We note the 65%
graduation rate for students who enroll in Modern Physics is
much smaller than the department would like and this will
be one target of retention efforts.

IV. DISCUSSION

This study sought to answer two research questions; they
will be addressed below. The detailed results were dis-
cussed above; the following will synthesize the most
important points.

RQI1: At which point in their undergraduate physics
career are students most at risk of leaving the physics
major? How does this differ by modes of leaving the
major? How similar are these risks across different
institutions? The risk (hazard) profiles for the two modes
of leaving the physics major (leaving college or leaving the
major while staying in college) were quite different as
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shown in Fig. 3. At both institutions, there was a peak in the
leaving college hazard in the spring freshman semester as
students failed to return to campus for the fall sophomore
semester. For both institutions, this hazard decreases
dramatically after this point.

The leaving the major while staying in college hazard
was quite different for the two institutions. For Institution 1,
this hazard peaked in the fall sophomore semester. Students
made the major changing decision when they returned to
campus for their sophomore year. The hazard declined after
this point, but did not reach zero until the fifth year. This
hazard was quite different for Institution 2 which saw the
highest rate of students changing major in their first
semester (fall freshman) and in their fifth semester (fall
junior); the hazard of changing major remained substan-
tially higher than at Institution 1 through the first two years
of college.

As might be expected, the more academically prepared
(higher ACTC, HSGPA, math-readiness) students at
Institution 2 left college at a lower overall rate than those
at Institution 1 as shown in Fig. 2. Far more students left
the physics major by changing to another major at
Institution 2 than at Institution 1 as shown in Fig. 2.
This may be partially explained by the Sankey plots in
Fig. 1. At Institution 2, there are substantially more
transitions between different STEM majors and the
physics major than at Institution 1; this may be the source
of the high levels of leaving the major early in college. At
Institution 1, nonSTEM majors approximately equal
STEM majors (including engineering) as alternate majors
selected by physics students.

RQ2: What pre-college academic factors influence a
student’s risk of leaving the major through each mode?
How similar are these factors across different institutions?
The factors influencing different outcomes, one year
persistence, two year persistence, and graduation, also
differed between the institutions. These factors were
explored using logistic regression as shown in Tables IV
and V. At Institution 1, leaving the major while staying in
college was most strongly related to math-readiness. The
odds that a math ready student would leave the physics
major for another major were 260% lower than a nonmath-
ready student. Not being math ready increases time to
degree and delays entry into physics classes, making
retention difficult, and other majors with less restrictive
mathematics requirements more attractive. Leaving college
was more related to general high school preparation and
success measured by HSGPA. Each standard deviation
increase in HSGPA lowered the odds of leaving college by
the junior year by 100%.

The regression results for Institution 2 are shown in
Table V. The combination of the more restricted range of
variation of the continuous variables due to a ceiling effect
and the smaller sample size resulted in fewer significant
regressors. For this dataset, ACTC significantly predicted

leaving physics while staying in college by the junior year,
as well as passing Modern Physics as a physics major after
enrolling in Calculus 1.

The progression through the major and the role of math
readiness at Institution 1 was further explored by examin-
ing the progression through the course network in Fig. 4. At
this institution, 41% of students enrolled as physics majors
their first semester were not ready to enroll in Calculus 1;
59% of these students left physics without ever enrolling in
Physics 1. Only 15% of these students graduated with a
physics degree. For students whose first mathematics class
was Calculus 1, 34% graduated with a physics degree; for
students who first enroll in a mathematics class more
advanced than Calculus 1 53% graduated with a physics
degree. This illustrates the importance of access to
advanced high school course offering to success in physics
at Institution 1. Some students underrepresented in physics
may have limited access to these courses [79]. There were
few differences in physics graduation rates for students who
remained in the major long enough to enroll in Modern
Physics.

V. IMPLICATIONS

The results for the two institutions were similar at some
points such as the spring freshman semester being a critical
point for retaining students to college; however, the results
were quite different in many areas. This suggests the need
for each physics department interested in retention to
explore their own data to understand the points where
there is an opportunity to improve retention. We note that
many of the differences between the two institutions
studied may have resulted from differences in the selec-
tivity of the admission requirements.

For Institution 1, the analysis suggests three points
where retention efforts could be directed. Nonmath-ready
students succeed in the major at very low rates and often
leave the major before taking Physics 1. Exploring
methods to allow these students to begin taking physics
while they catch up in mathematics might retain more to
the major. This might involve allowing these students to
take the algebra-based physics sequence and accepting
these for the calculus-based Physics 1 and 2 with
successful completion of Modern Physics and Calculus
1. There is a continuous slow attrition of majors after
semester 4 (spring sophomore semester) when students
are taking their advanced coursework. This attrition is not
present in Institution 2. This suggests Institution 1 should
examine the features of their advanced undergraduate
program that cause students to leave late in the program.
Finally, the institution loses majors at the highest rate after
the spring freshman semester to the leaving college hazard
and after the fall sophomore semester to the changing
major hazard (the changing major decision may have
been made the semester before). This suggests substantial
efforts be focused on retention in the first year of college.
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Efforts currently under discussion include a redesigned
freshman seminar course focused on retention, a freshman
research experience with a cohort building element, and
an introductory laboratory section for physics majors
taught by faculty.

For Institution 2, physics majors are lost to the pro-
gram overwhelmingly by changing to another major. The
students at Institution 2 are more academically prepared
to succeed in college than those on Institution 1 and,
therefore, it should be expected that fewer leave college
without a degree. Students change to majors other than
physics at a high rate through the fall junior semester.
After this point, the fraction of students who have
departed through this mode becomes approximately con-
stant. This pattern suggests retention efforts should be
implemented in both the freshman and sophomore years.
Efforts currently under way include a 1-credit seminar
course in the first semester to orient students to the physics
major and the career paths that are available to physics
degree holders. Other strategic planning elements for
retention include the development of different concen-
trations, e.g., Biophysics, Data Science, and Applied
Physics, to make the physics degree more flexible and
appealing.

VI. LIMITATIONS AND FUTURE WORK

This study was performed at two institutions with
relatively small physics undergraduate programs and found
strong differences in physics major retention between the
programs. This work should be replicated at other pro-
grams, both at larger programs and similar programs with
different demographic composition, so as to map out the
spectrum of physics retention. This work was unable to
explore differences in retention of demographic groups
underrepresented in physics; these differences should be
explored in future studies.

This work chose to focus analysis on pre-college
variables available to many physics departments so as
to understand the features of incoming students which
most predict physics success. Many other variables may
also be important to understanding retention including
noncognitive variables such as self-efficacy and a sense
of belonging. As students progress through college,
college-level variables such as course grades or general
college GPA may become better predictors of continued
success. All these factors should be investigated in
future work.

VII. CONCLUSIONS

This work examined the retention of physics majors
through multiple points in their undergraduate career at
two institutions. Institution 1 had an incoming student
population that was less accomplished in high school than
Institution 2. The patterns of major changing, risk, and the
factors influencing retention were quite different between
the two institution. This indicates that physics depart-
ments which seek to understand undergraduate retention
in more detail should replicate these analyses for their
students.

Both institutions experienced a peak in the risk of
leaving the physics major by leaving college in the spring
freshmen semester. At Institution 1, the changing major
risk was highest in the fall sophomore semester. At
Institution 2, this risk peaked in both the fall freshman
semester and the fall junior semester. At Institution 1,
math readiness emerged as the key factor predicting
changing to major other than physics while staying in
college. Math ready students are prepared to enroll in
Calculus 1 or a more advance mathematics class their first
semester of college. At Institution 1, 41% of students
electing a physics major their first semester were not math
ready; only 15% graduated with a physics degree; 37% of
incoming physics majors enrolled in Calculus 1 their first
semester; 34% graduated with a physics degree. This
analysis also suggested advanced high school college
preparatory curriculum was important in physics student
success; 22% of incoming physics majors had high
school credit for Calculus 1 and enrolled in a more
advanced class; 53% of these students graduated with a
physics major.

Different factors were important in predicting leaving
college and graduating. At Institution 1, high school GPA
was the most important factor in predicting retention to
college and graduation with a physics degree. At Institution
2, math readiness was the most important factor predicting
one-year retention to college; high school GPA for two-
year retention. At Institution 1, math readiness was the
most important factor predicting leaving physics while
staying in college; at Institution 2, ACT composite scores
were the most important in predicting changing to a major
other than physics.
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