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Abstract

In this study, two mathematical models are introduced to describe treatment of cancer
by continuous and pulsed radiotherapy. In the continuous radiotherapy model, we
determine all of the equilibrium points and conduct a thorough examination of the
stability of these equilibria. Criterions of the radiation dose that guarantee the cancer
to be eradicated or take a positive balance with normal cells are provided. In the pulsed
radiotherapy model, conditions of the existence and stability of cancer win periodic
solution, cancer eradication periodic solution and coexistent periodic solution are
derived. Meanwhile, numerical simulations to the effect of radiation dose on the cure
and spread of the cancer are carried out. A brief conclusion is presented, as well as a
few intriguing subjects for additional investigation are discussed.

Keywords Radiotherapy - Cure - Coexistence - Cancer eradication periodic solution -
Cancer win periodic solution

1 Introduction

Cancer is a fatal disease that affects people all over the world and is difficult to treat.
Surgery, chemotherapy, radiotherapy and immunotherapy are four typical treatment
options in clinical practice. As aresult of the intersection of mathematics and medicine,
many researchers have begun to utilize mathematical models to describe the cancer
progression and its treatments, and have discovered a wealth of interesting insights
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about cancer [1-6]. This study will theoretically and numerically simulate cancer treat-
ment using continuous and pulsed radiotherapy, as well as investigate its dynamical
behaviors.

As the first line of treatment, radiotherapy has been shown to be an effective weapon
in the fight against certain types of cancer [7, 8]. Radiation therapy uses radiation to
kill malignant cells. This treatment is designed to target cells that quickly replicate,
such as those found in cancer [9]. Michor and Beal [10] pointed out that mathematical
modeling can be applied to improve cancer treatment as well as provide mechanistic
insights. There have been a large number of studies that focus on cancer treatment
by radiotherapy via methods of mathematical models [3, 5, 11-15]. Belostotski in
[3] created a control theory model for radiotherapy treatment of cancer based on the
Lotka-Volterra competition system. He regarded radiation therapy as a harvesting-type
control term and equated the radiation-induced harvesting with the reduction of cancer
cell concentration, considered four different types of treatment delivery, constant,
linear, feedback and periodic, and investigated the cure or treatment of corresponding
systems. As to the hypothesis in [3] that the effect of radiation on normal cells is zero,
Freedman and Belostotski [11] improved the model by allowing the radiation affects
the normal cells to some extent while radiotherapy, established sufficient conditions on
the cure state to the four radiation delivery control mechanisms. Liu and Yang focused
on cancer treatment with period radiotherapy [5, 12], presented period radiotherapy
ODE models and studied their dynamic behaviors such as the coexistence of the normal
and cancer cells, the existence and globally asymptotic stability of the positive periodic
solution, the cancer eradication periodic solution and the cancer win periodic solution.
Farayola et al. [13, 14] formulated Caputo Fractional derivative models to simulate
cancer treatment process by radiotherapy, and gave the population changes in the cells
and the final volumes of the normal and cancer cells in their results. Pang et al. [15]
developed an impulsive differential equation model to describe tumor growth treated
by radiotherapy and investigated the influence on the effect of tumor radiotherapy
from the reoxygenation of hypoxic cells and the radiosensitivity of radiotherapy.

Though lots of mathematical models have been presented and studied on the can-
cer treatment with radiotherapy, there is still much basic and impressed work worth
to carry out. This paper aims to establish mathematical models to the cancer treat-
ment by continuous and pulsed radiotherapy and analyze their dynamical behaviors.
Based on ideas and rules of paper [3], we provide a cancer treatment model with
continuous radiotherapy. We calculate the four equilibrium points of the model and
make a comprehensive analysis on the stabilities of these four equilibrium points. To
the pulsed radiotherapy, we reconsider the period radiotherapy model in paper [12].
We investigate the existence and stability of boundary periodic solutions and positive
periodic solution by applying new methods that are different with the methods in [5,
12]. Moreover, we conduct numerical simulations to discuss in depth the effect of
radiation dose on the cure or spread of the cancer.

The organization of the remaining part is as follows. In Sect.2, we present tumor
growth model without treatment and give a useful Lemma. A theoretically comprehen-
sive analysis on the existence and stability of the equilibrium points to the continuous
radiotherapy treatment model is done in Sect. 3. In Sect. 4, we investigate the pulsed

@ Springer



Mathematical models and dynamic behaviors of cancer... 1821

Table 1 Definition of variables and parameters

X dx/dt

X1 The concentration of the normal cells in the given tissue

X7 The concentration of the cancer cells in the given tissue

o] The proliferation coefficient of the normal cells

an The proliferation coefficient of the cancer cells

K1 The allowed maximum concentration of the normal cells in the given tissue (carrying capacity)
K> The allowed maximum concentration of the cancer cells in the given tissue (carrying capacity)
B1 Competition coefficient from cancer to normal cells

B Competition coefficient from normal to cancer cells

radiotherapy cancer treatment model theoretically and numerically. Finally, we con-
clude this paper and provide an interesting problem for further study.

2 The model without treatment

Considering a piece of bodily tissue that contain cancer cells, we model the interaction
between normal and cancer cells as a competition for tissue resources and take the
following Lotka-Volterra competition type [16—18]:

. X1

X1 =061x1(1——> — Bix1x2,
K,

v <1 xz) Boxix

X2 = X - ) — .

2 2X2 X DX1X2

2.1)
The definition of variables and parameters is given in Table 1.

According to the biological interpretation, we assume that x1(0) > 0, x2(0) > 0,
ai, K;i, B;i are all positive constants for i = 1, 2. For model (2.1), the following
well-known results had been proved in [19, 20].

Lemma 2.1 The model (2.1) always has a trivial equilibrium Eo(0, 0) and two semi-
trivial equilibria E; (K1, 0) and EQ(O, K»). Denote A = a1y — 12 K1 K>, suppose
that
(i) A <0,

(D) ifar — B2 Ky > O, then Ey is an unstable node, E| is a saddle point and Es is
a stable focus;

(12) ifa; — B1K2 > 0, then Eo is an unstable node, E; is a stable focus and E, is
a saddle point;

(13)ifar — BaK1 < 0anday — B1 K2 < O, then E is an unstable node, E| and E
are stable focuses, model (2.1) has a unique positive equilibrium E *(x{, x3) which is
a saddle point, where

. o — Bk aro— Bk
_xl = =, X2=_—,
K> A Ky A
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(i) A > 0,

(i) ifar — B2 K1 < O, then Ey is an unstable node, E; is a stable focus and Es is
a saddle point;

(1i2) if a1 — B1K2 < 0, then Eo is an unstable node, E; is a saddle point and E,
is a stable focus;

(113) ifaa — BoK1 > 0 and a1 — B1 K2 > 0, then Ey is an unstable node, E| and
E» are saddle points, model (2.1) has a unique positive equilibrium E*()cl , X3) which
is globally asymptotically stable in the interior of the first quadrant.

Remark 2.1 From Lemma 2.1,

(1) Eg is always an unstable node, i.e., normal and cancer cells will never go extinct
simultaneously for any positive initial concentration of normal cells;

(2) If the interior positive equilibrium E* does not exist, then E| is a stable focus and
Ez is a saddle point (or exchange the stability), i.e., either the normal cells win the
competition and the cancer cells go extinct, or the cancer cells win the competition
and spread for all positive initial concentrations of normal and cancer cells;

(3) If there is an interior positive equilibrium E* of the model, then either it is globally
asymptotically stable in the interior of the first quadrant or it is a saddle point, at
this moment, E; and E» are stable focuses with stabilities depending on the location
of the initial values x1(0) and x> (0) in the first quadrant, i.e., either the normal and
cancer cells coexist or one of them wins the competition, which depends on the initial
concentrations of the normal and cancer cells.

As we all know, in the absence of treatment, most cancer will win the competition
and spread, i.e., E2(0, K7) is one globally stable equilibrium of model (2.1) for any
positive initial value. Criteria from Lemma 2.1 (also can refer to [ 16]) for this to happen
are

o] < B1K; and oy > B2K;. 2.2)

Throughout the rest of this paper, we assume that (2.2) holds.

In the following, we will modify model (2.1) by adding continuous or pulsed
radiotherapy and analyze their dynamical behaviors. Meanwhile, we will discuss the
medical meanings of these mathematical results.

3 Treatment by continuous radiotherapy

In this section, we consider the continuous application of radiotherapy, without pause
or interruption. We aims to make a theoretically comprehensive analysis on the treat-
ment by continuous radiotherapy which has not been done before, even if we know
this continuous radiation therapy may not be often used in real clinical treatment for
protecting the patient’s physical condition under the radiation.

To incorporate the effect of the radiation in model (2.1), we assume that the admin-
istration of radiation removes a large amount of cancer cells and a small amount of
normal cells from the system. Here, the terms “large” and “small” are used as a relation
to the appropriate cell population at a particular location in the organism. Radiotherapy
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is in fact a control mechanism on the rates of change of the concentrations of cancer
and normal cells by harvesting them. Model (2.1) is modified under the continuous
radiotherapy to take the form

. X1
X = Ollxl(l - —) — Bix1x2 — eyxi,
K
, S 3.1
X = 0!2)62(1 - —) — Baxix2 — yx2,
K>
where y is the radiation dose and ¢y is the proportion of the radiation to the normal
cells, 0 < ¢ < 1 (¢ = 01is the ideal, but impossible to achieve in a practical scenario).
Rewrite model (3.1) as

. X1
X1 = (a1 — Sy)xl[l - m] — Bix1xz,
, e @ (32)
X2 = (ap — V)Xz[l - m] — Bax1x2.
w

The rest of this section will analyze the equilibria and stabilities of model (3.2) as the
change of radiation dose y under assumption (2.2).

There are four possible nonnegative equilibria for model (3.2), namely E((0, 0),
E1(Ki(1=gy/ay),0), E2(0, Ko(1—y /a2)) and E* (x], x3). Eo, the null state, always
exists. If the inequalities @1 > ey and oy > y hold, the boundary equilibria E; and
E, exist. The interior equilibrium E*, if exists, will be

. Kioo(ap —ey) — KiKyBi(a2 — )

¥ =
A
—K1K — K —
= 1K2B2(ay 81)+061 2(an V), (.3)

where A still denotes the expression ooy — B162K1K>.

Applying Lemma 2.1, we analyze model (3.2) theoretically. Meanwhile, we
conduct numerical simulations to verify the results and to make the results more
visible. We use the non-dimensional number 1 to represent the carrying capac-
ity of normal and cancer cell populations [3]. Therefore, the initial conditions
should satisfy x1(0) < 1,x(0) < 1. We take initial values (x1(0), x2(0)) as
(0.1, 0.8), (0.25,0.05), (0.25,1), (0.5,0.7), (0.6,0.05), (0.75,0.4), (0.9,0.95),
(1, 0.2) respectively. Table 2 shows the parameters that are taken. The reasonable of
the parameters can be referred to papers [3, 9, 21, 22]. But note that they do not come
from any real cell populations.

Casel: A < 0.

We first analyze (I1)-(I3) under assumptions «; > €y and o > y.

1) (@a — y) — B2K1(1 — ey /o) > 0, then Ep is an unstable node, E; is a
saddle point, E> is a stable focus and E* does not exist. Now we consider the value of
parameter y. It follows from the assumption of (I1) that («¢; — f2K18)y < aq(og —
B2K1). Obviously, it always holds for «; — 82 K& < 0 because of oo > B> K. Then
wehave /e < foK] < ar and y < min{ag /e, 2} = o1 /e. Whenao — 2K > 0,
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Table 2 Values of parameters for continuous radiotherapy

Parameters Values for A < 0 Values for A > 0 References
o] 0.2 0.1 [3,22]

an 0.6 0.45 [3,21,22]
K 1 1 [3,9]

K> 1 1 [3,9]

B1 0.5 0.11 [3]

B 0.55 0.15 [3]

then y < min{a /e, oz, a1(oy — B2 K1) /(a1 — B2K18)} = oy /e for ay /ap < € and
y <min{ay /e, az, ai(ax — B2 K1) /(a1 — B2K18)} = ar(ax — B2 K1) /(1 — B2 K €)
for a1 /o > ¢. Therefore we have y < /¢ holds for all ¢ > «1/a. Finally, for all
y <ai/ewhenaj/oay < e <landall y < aj(ar — B2K1)/(1 — B2K1¢) when
& < op/ap, we always have E» is a stable focus and there are no other equilibrium
points. This indicates that cancer will win the competition and spread when y take
values in these ranges. See Fig. Al and B1.

Remark 3.1 Conditions and results of (I1) can be understood as follows. When
ar/ar < e < 1, larger proportion of radiation to the normal cells will lead to the
extinction of normal cells for all radiation dose y < «j/e. However, if we set a
smaller spilled proportion of radiation, i.e. & < «1/a2, then the radiation dose y will
satisfy y < aj(ap — B2K1) /(a1 — B2K1¢€), this implies that less radiation dose can
not kill cancer cells successfully. In a word, radiation dose that satisfies condition (I1)
can not cure the cancer.

(I12) (a1 — ey) — B1Ka2(1 — y/an) > 0, then Ej is an unstable node, E| is a stable
focus, E; is a saddle point and E* does not exist. From the assumption of (I2), we have
(axe — B1K2)y < aa(a; — B1K»2). Obviously, y does not exist for are — 1 K2 > 0
because of the inequality oy < B1K>. When ape — B1K2 < 0, then ar(B1K2 —
a1)/(B1Kr — axe) < y < min{ay/e, ap}. However, y also does not exist for all
ar/ay < e since ax(B1Ky — a1)/(B1K2 — axe) — an > 0. Hence, we focus on
a1/ar > e.Now we have oz (81 K2 — 1) /(B1 K2 —aze) < ¥y < ag. This inequality is
reasonable as oy — a2 (B1 Ko — 1)/ (B1 K2 —aze) = () —ane)/(B1 K2 —ane) > 0.
Finally in case (I2) we have E| is a stable focus and there are no other equilibrium
for all ap(B1K2 — @1)/(B1 K2 — ae) < y < ap when oy /oy < ¢. Medically, the
normal cells will win the competition and cancer will be eradicated when a2 (81 K2 —
a1)/(B1K2 —aze) < ¥ < ap. See Fig. 1A3 and B3.

Remark 3.2 When ¢ < a/ay, it is shown that the cancer will win the competition for
all y < a1(ar — B2K1) /(a1 — B2K1¢) from (I1) and the cancer will be eradicated
for all wx(B1 K2 — 1)/ (B1K2 — ane) < y < ap from (I2). Moreover, we notice that
ar(B1Ky — o)/ (B1 K2 — ane) —ay(az — B2K1) /(a1 — B2K1€) > O under the basic
conditions o] < K7B1, a2 > K1Brand A < Owhen e < a1 /az. Hence, from (I1) and
(I2) we can conclude that as the increase of the radiation dose for a smaller radiation
spill, the cancer can be cured in their early stages.
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13) (2 —y) = poK1(1 — ey /1) < Oand () — ey) — B1Ka(1 — y/az) <O, then
Ey is an unstable node, E1 and E; are stable focuses, the unique positive equilibrium
E*(x}, x}) is a saddle point. From the assumption of (I3) we have

(a1 — B2 Ki8)y > aj(ax — B2K1) (3.4

and
(26 — B1K2)y > an(a) — B1K2). (3.5)

Obviously, y does not exist when o1 — B2K1e < 0. When a1 — f2K1e > O,
then ape — B1K2 < O because of A < 0. Hence from (3.4) we have y >
ai(e2 — P2K1) /(1 — B2K1€) and (3.5) we have y < az(a1 — B1K2) /(226 — B1K2).
Sequently we have a1 (a2 — BoK1) /(a1 — B2K1e) < y < min{ay/e, an, ooy —
B1K2)/(are — B1K»2)} for o) — BrK1e > 0. If a1 /oy < ¢, then o1/ < ap and
[a1(ar — BoK1) /(a1 — PaKi8)l/(a1/e) = (a2 — PoK1)e/(ay — P2K1e) = 1.
Hence, y does not exist when «j/a2 < &. On the other hand, if aj/ar > e,
ie., ar/e > an, then aj(ay — BoK1) /(a1 — BoKie) < y < min{ag, ap(o] —
B1K2)/(are — B1K2)} = asx(a; — B1K2)/(ae — B1K2) and the existence of y is
guaranteed by as (o) — B1K2) /(@26 — B1K2) — ar(ax — fo K1) /(1 — B2K18) > 0
for all o1 /an > €. Notice that o1 /oy > ¢ also implies o1 — 2 K1e > 0. Finally,
case (I3) means that when o /a2 > €, Eq is an unstable node, E; and E, are sta-
ble focuses, E*(x}, x3) exists and is a saddle point for all oy (a2 — B2K1)/(1 —
BaK1e) <y < aa(a; — B1K2)/(aae — B1K2). Medically, when the radiation dose
aj(ar — BaK)/(oy — BaKie) < y < az(ar — B1K2)/(a2e — B1K2), the cancer’s
spread or eradication will depend on the initial concentrations of the two kind cells.
See Fig. A2 and B2.

Remark 3.3 When A < 0, for all 0 < ¢ < oj/ap, two radiation doses aq(ay —
B2K1) /(a1 — B2K1¢) and oz (o1 — B1K2) /(a2 — B1 K») are very important. We can
conclude that the cancer will win the competition for all y < a1(a2 — B2K1) /(a1 —
B2K1¢), the cancer will be cured for all o (] — B1K2)/(a2e — B1K2) <y < ap and
the cancer’s spread or eradication will depend on the initial concentrations of the two
kind cells when a1 (o2 — B2 K1) /(1 — P2 K18) < ¥y < an(a — B1K2) /(a2e — B1K2).

To the analytical integrality in mathematics, we make the following complementary
analysis.

I4) (a)0 <& <aj/ap. Ifay <y < ay/e, E> and E* do not exist. Moreover, it
follows from model (3.3) that x> (#) < (a2 — y)x2(2), i.e., lim;— 4 oo x2(¢) — O, then
lim;— 400 x1(t) = Ki(1 — ey)/a. This means that E is a globally asymptotically
stable boundary equilibrium point, i.e., the cancer will be cured. See Fig. 1 A4 and B4.
However, if y > /e, from model (3.2) we have E; and E; are nonexist, Eg is a
globally stable point and the existence of E* can not be judged but does not affect
the global behavior of Ey. See Fig. 1AS and B5. (b) ¢ > «a1/a2. If 0 < ¥y < «ay/e,
it follows from (I1) that Eg and E; are unstable points, E* is nonexist and E; is a
stable focus, i.e., the cancer will spread. See Fig.2A6 and B6. If /¢ < y < ap,
applying the same analysis as (a) we have E] and E* do not exist and E is a globally
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Fig. 1 The time series (t=t(hours)) and the phase of system (3.1) under 8 different initial values, where the
radiation spilled rate ¢ = 0.3 and radiation dose y = 0.2, 0.45, 0.58, 0.6, 1 in A1,B1-AS5,B5 respectively.

Other parameters are taken from Table 2
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Fig. 2 The time series (t=t(hours)) and the phase of system (3.1) under 8 different initial values, where
the radiation spilled rate ¢ = 0.5 and radiation dose y = 0.2,0.5, 1 in A6,B6-A8,B8 respectively. Other
parameters are taken from Table 2

asymptotically stable boundary equilibrium point, i.e., the cancer will spread. See
Fig.2A7 and B7. Moreover, if y > a5, from model (3.2) we have E| and E; are
nonexist, Eq is a globally stable point (See Fig.2A8 and B8) and the existence of E*
can not be judged but does not affect the global behavior of of Ej.

CaseIl: A > 0.

Applying Lemma 2.1, conducting the same analysis as Case I, we have the following
results (IT1)-(I14). Notice that, (II1)-(I13) are based on the assumptions that o > ey
and ap > y.

1) (o2 — y) — oK1 (1 — ey /o) < 0. When 0 < & < o1 /ap, for all oy (oy —
BaK1) /(a1 —B2K1€) <y < ap, E*isnonexist, E( is an unstable node, E| is a stable
focus and E» is a saddle point. Medically, the normal cells will win the competition
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and cancer will be eradicated for all oy (o — f2K1) /(01 — B2K1€) < y < ap when
0 <ée < ay/ar. See Fig.3A11 and B11.

(112) (a1 —£y) — B1K2(1 -y faz) < 0. Forall y < ax(B1Kz —a1)/(B1 Kz — aze)
when 0 < ¢ < «/ap and all y < «;/e when o) /ay < ¢ < 1, we always have E*
is nonexist, Eq is an unstable node, E; is a saddle point and E» is a stable focus,
medically, the cancer will win the competition and spread. See Fig.3A9 and B9.

(I13) (a2 —y) = B2 K1 (1 =gy /ay) > Oand (a1 —ey)— 1 K2(1—y /o) > 0. When
0<e<apfay, forall ax(B1 Ky —a1)/(B1K2 —aze) <y < ar(ax — BaKy)/ (o) —
B2K1¢), Eq is an unstable node, E1 and E, are saddle points, the unique positive
equilibrium E*(x}, xJ) is a globally asymptotically stable point in the interior of the
first quadrant, medically, the cancer and normal cells will coexist. See Fig. 3A10 and
B10.

(IT4) Here, we neglect the restrictions of 1 > ey and oy > y.(a) 0 < & < a1 /an.
Ifay <y < ay/e, E; and E* do not exist, E; is a globally asymptotically stable
boundary equilibrium point, i.e., the cancer can be cured. See Fig.3A12 and B12.
However, if y > «y/e, then we have E| and E, are nonexist, Eg is a globally stable
point and the existence of E* can not be judged but does not affect the global behavior
of Eg. See Fig.3A13 and B13. (b) ¢ > a1 /2. If 0 < y < 1 /¢, it follows from (112)
that Eg and E are unstable points, E* is nonexist and E» is a stable focus, i.e., the
cancer will spread. See Fig.4A14 and B14. If o1 /¢ < y < ap, then E| and E* do
not exist and E» is a globally asymptotically stable boundary equilibrium point, i.e.,
the cancer will spread. See Fig.4A15 and B15. Moreover, if y > a2, obviously, E
and E; are nonexist, Eq is a globally stable point (See Fig.4A16 and B16) and the
existence of E* can not be judged but does not affect the global behavior of Ej.

Remark 3.4 When A > 0, from (II1)-(I14) we can conclude that when 0 < ¢ < a1 /a2,
the cancer will win the competition for all y < a2(B1K2 — a1)/(B1K2 — a2¢),
the cancer will be cured for all oj(ao — B2K1)/(1 — B2K1€) < y < ap and the
cancer and normal cells will coexist when o> (81 K2 — a1)/(B1 K2 — ane) < y <
a1 — B2K1) /(a1 — B2K1€). Moreover, for all o < y < aj/e, Ej is a globally
asymptotically stable boundary equilibrium point and the cancer will be cured; for all
y > /&, both the normal and the cancer cells will die out. When ¢ > oy /ap. If
0 < y < a1/¢, E; is a stable focus and the cancer will spread; if o1/ < y < a2, Ea
is a globally asymptotically stable point and the cancer will spread; if y > o>, both
the normal and the cancer cells will die out.

Remark 3.5 From (I4) and (II4), we can conclude that for any 0 < ¢ < 1,if y >
max{w1/¢e, oz}, both the normal and the cancer cells will die out. If @1 /e < y < an,
the cancer will spread. If «x» < y < «j/e, the cancer will be eradicated.

Based on the above analysis, we finally have the following result.
Theorem 3.1 System (3.1) has four possible nonnegative equilibria Ey(0, 0), E (K}
(1 —ey/a1),0), E2(0, K> (1 — y/a2)) and E*(x}, x3), where x| and x5 are given

by (3.3). Based on assumption 2.2, we list all the cases on the existence and stability
of the equilibrium points in Table 3.
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Fig. 3 The time series (t=t(hours)) and the phase of system (3.1) under 8 different initial values, where

the radiation spilled rate ¢ =
respectively. Other parameters are taken from Table 2

0.05 and radiation dose y = 0.205,0.3,0.4, 1, 2.2 in A9,B9-A13,B13
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Table 3 Constraints of parameters and existence and stability of equilibria

A e y Egy E E> E* H-cells C-cells Cases Figures
A <O 0<e< “a O<y <y us sd st, foc — ext win (1) (A1),(B1)
a
yI<y <y us st, foc st, foc sd div div 2) (A2),(B2)
Y <y <w us st, foc sd — win ext 3) (A3),(B3)
a) <y <ay/e sd gs - - win ext “4) (A4),(B4)
ay/e <y gs — — — ext ext (®)] (AS5),(BS)
adl <e O0<y<ay/e us sd st, foc — ext win (6) (A6),(B6)
o)
ap/e <y <y sd - gs - ext win (7) (A7),(B7)
)y <y gs - — — ext ext (8) (A8),(B8)
A>0 0<e< i O0<y <y us sd st, foc — ext win ) (A9),(B9)
o)
yI<y <Py us sd sd st, nod coex coex (10) (A10),(B10)
<y <w us st, foc sd - win ext (11) (A11),(B11)
) <y <ay/e sd gs - — win ext (12) (A12),(B12)
ay/e <y gs — — — ext ext (13) (A13),(B13)
a <e¢ O0<y<ay/e us sd st, foc - ext win (14) (A14),(B14)
o)
aj/e <y <an sd — gs — ext win (15) (A15),(B15)
oy <y gs — — — ext ext (16) (A16),(B16)

0€8L
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(A14) (B14)
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Fig.4 The time series (t=t(hours)) and the phase of system (3.1) under 8 different initial values, where the
radiation spilled rate ¢ = 0.3 and radiation dose y = 0.2, 0.4, 1 in A14,B14-A16B16 respectively. Other
parameters are taken from Table 2

where A = ajap — B1S2K1 K2,

b = ai(ar — B2 K1) vy = a2 (K21 —ai)
a1 — poKie K>B1 — ane
5 = (K —a1)  _  ailee — frKy)

, V2=
K>B1 — aze a; — poKie

H-cells:=normal cells, C-cells:= cancer cells, st:= stable, us:=unstable, sd:=saddle,
foc:=focus, nod:=node, gs:=globally stable, coex:= coexistent, ext:=extinction,
div:=depends on initial value, —:=nonexistent.

In reality, we are more concern the cases that cancer is controlled or eradicated.
Hence, cases (3),(4),(10), (11) and (12) are of important significance for us. We detail
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Fig. 5 The dependence of the stability of the cancer eradiation equilibrium point Ej and cancer win
equilibrium point E5 on the initial values of the normal and cancer cells under three different radiation
doses (i.e., y = 0.35, 0.45, 0.5). The cancer will be eradiated if the estimated initial concentrations of the
normal and cancer cells are exactly in region G1 and the cancer will spread if the initial values belong to
region G2

the range of parameters especially the radiation dose y on these five cases in Table 4.
Here, we should note that condition (2.2) can not be omitted, i.e., cancer will win the
competition and spread if there is no treatment.

It is worth noting that when the radiation dose y satisfies y1 < y < y», the
cancer’s spread or eradication depends on initial concentrations of the normal and
cancer cells. Figure 5C1-C3 demonstrate the dependence of the stability of the cancer
eradiation equilibrium point E; and cancer win equilibrium point £ on the initial
values of the normal and cancer cells under three different radiation doses (i.e. y =
0.35, 0.45, 0.5). From Figures we see that under parameter settings of case (2), larger
radiation dose y allows larger proportion of cancer cells to normal cells at the initial
moments. We provide a boundary curve to the initial value distribution. All solutions
that have initial conditions in region G1 will tend to equilibrium point Eq, i.e., the
cancer will be eradicated. Otherwise, solutions that have initial conditions in region
G2 will tend to equilibrium point E» and the cancer will spread at this circumstance.
Here, we omit the initial values that cause the solutions to go to the saddle point E*
once are taken. The method to determine the boundary curve is as follows. Firstly,
we calculate the value of solution (x1(7), x2(T")) (where T large enough to judge
that x1(T) < 107* or x2(T) < 10~* holds) under each initial value (x1(0), x2(0)).
Secondly, we distinguish which initial values cause the solution of the system to
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Table 4 Some important cases in Table 3

Parameters and natural restrictions

Radiation dose and results

parameters
parameters
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results

cases

Figures

o]
o
Bi
B2
K
K>

o
0<s<—1
o

H-cells and C-cells

reach to a positive

balance
cancer will be
eradicated
cancer will be

eradicated

(10)

an
12)
3
@

(A10),(B10)

(Al1),(B11)
(A12),(B12)
(A3),(B3)
(A4),(B4)

***130UBD JO SI0IARYS( JIWBUAP pue S|9poW [edlewayie|y

£€8L



1834 Z.liuetal.

approach the equilibrium point Eq, and which initial values cause the solution to
approach the equilibrium point E». Thirdly, to the initial values that cause the solution
to tend to the equilibrium point E|, we select the maximal value x,(0) under the
same x1(0). Finally, we apply cubic polynomial to fit the curve by using every point
(x1(0), X2(0)) forall 0 < x1(0) < 1 and obtain the desired function. We point out here
that the method is reasonable according to the continuous dependence of the solution
oninitial values. In clinical, the initial concentrations of the normal and cancer cells can
be estimated. The above analysis provide a method that one can predict the tendency of
the cancer under different radiation dose once initial values of the normal and cancer
cells are given. For example, under parameter settings in case (2), let y = 0.45, we
can calculate by using the fit function y = —0.21x> + 0.83x% — 0.032x — 0.0019
that y(0.25) = 0.0387 < 0.05, y(0.75) = 0.3524 < 0.4, y(0.6) = 0.2323 >
0.05, y(1) = 0.5861 > 0.2. This determine the region G1 or G2 that the initial
value belongs to and then predict the final tendency of the solutions that take these
initial values. Calculation shows that (x;(0), x2(0)) = (0.25,0.05) or (0.75,0.4)
belongs to region G2 and solutions that have these initial values will go to cancer win
equilibrium point £, and (x1(0), x2(0)) = (0.6, 0.05) or (1, 0.2) belongs to region
G1 and the solution will tend to cancer eradicated equilibrium point E; once these
initial conditions are taken.

4 Treatment by pulsed radiotherapy

Usually, cancer radiotherapy is implemented many times over a period of time. Sup-
pose the time interval between two treatments is of equal. Then we can model the
cancer treatment in the form of pulsed radiotherapy with the following switching
system.

X
X = Oélxl(l - Kfl) — Bix1x2 —eyxg
X3 , t € [nw, nw + L)(treatment stage),
Xy = azXz(l - 7) — Bax1x2 —yx2
i (4.1)
X) = am(l - IT) — Bix1x2
le , t € [nw+ L, (n+ l)w)(no treatment stage), n =0, 1, 2...,
Xy = azXz(l - ?2) — Bax1x2

where o is the time interval between two treatments, 0 < L < w is the radiation
treatment time, i.e., we implement radiation therapy when ¢t € [nw, nw + L) while do
notwhent € [nw+ L, (n+ 1)w). n is the radiation times over the period of treatment.
In the following analysis, we still assume condition (2.2) holds.

It is easy to see that x; () > 0if x;(0) > 0 fori = 1, 2. In fact, from model (4.1),
we can obtain that

x1(s)
K

x1(t) = x1(nw) exp (al (1 - ) — Bixa(s) — 8)/)
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forallt € [nw, nw + L) and

x1(1) = x1 (nw + L) exp (oq (1 - x;((ls)) - ﬁlxz(s)>

forall t € [nw+ L, (n 4+ 1)w). According to the piecewise iteration method and the
continuity of solutions, we have x(#) > 0 for any nonnegative initial value x; (0) > 0.
The same analysis can be done to x> (¢). Next, we will investigate the existences and
stabilities of cancer eradication periodic solution, cancer win periodic solution and
coexistent periodic solution.

4.1 Existence and global stability of cancer eradication (win) periodic solution

Firstly, let us investigate the existence of cancer eradication periodic solution of system
(4.1). Rewrite system (4.1) as

X
x| = 0!1)61(1 - —l) — pixixa —eD(t)xy,
K,

‘ X3 “4.2)
Xy = C(zxz(l — —) — Bax1x2 — D(t)x2,
K>

where D(t) is a periodic function with period w. D(¢) = y > 0 when t € [nw, nw +
L)(treatment stage) and D(t) = 0 when ¢ € [nw + L, (n + 1)w)(no treatment stage)
foralln =0, 1, 2, .... Obviously, system (4.2) is w-periodic. Consider the following
subsystem of (4.2) under the case x; () =0

1 = a1 (1 - ;—‘1) — eD(1)x). (4.3)

It is easy to know that system (4.3) admits a unique positive periodic solution xj (¢)
when fow[ozl —eD(t)]dt > 0, i.e., ajw > ey L. Consequently, system (4.1) has a
unique cancer eradiation periodic solution under the condition that ¢y > ey L. In
the following, we will prove that this periodic solution is globally asymptotically stable
if vow < yL.

For any solution (x(#), x2(¢)) of system (4.1) with initial values x;(0) > 0 (i =
1, 2) that different from (xi‘(t), 0), there is an integer n > 0 such that ¢ € [nw, (n +
1)w). From the second equation of (4.2), we easily obtain

t
x2(t) < x2(0) exp (/0 [on — D(S)]dt)

t
— x2(0) exp (/O [y — D(s)]dt + / [ — D(s)]dt)

<x (O)e(a2+}/)wen(azw—}’L) )

This implies that x(#) — 0 as ¢t — 400 if apw < yL holds. Therefore, for any
n > 0, there is T > 0 such that x,(t) < n forall ¢t > T. Take
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V() = |Inx;(t) — Inx{ ()],

then for t+ > T we have

V(0= sene 0 = xtO)| (@1 = D) — Zr0 (0 = fra®) — (@1 D) — oxf)]
< =20 =X (0] + Bin.
1

Because of the arbitrariness of 1, one can obtain

V) < —%m(r) N (4.4)
1

If there is T > T such that x; () = x{(t) forall t > T, the global stability of the
periodic solution (xj (¢), 0) is then obtained. Otherwise, (4.4) implies that V (t) — 0
ast — +o0. This also guarantee the global stability of the periodic solution (x}(¢), 0).
Therefore, we have the following result.

Theorem 4.1 Suppose that xyw > ey L, then system (4.1) has a unique cancer eradia-
tion periodic solution. Moreover, if o < y L, the solution is globally asymptotically
stable.

Since x; has a similar expression in the form of x; in system (4.1), using the same
analytical technique, we have the following result on the cancer win periodic solution.

Theorem 4.2 Assume that apyw > y L, then system (4.1) has a unique cancer win
periodic solution. Moreover, if ajw < ey L, the solution is globally asymptotically
stable.

4.2 Existence and global stability of the coexistent periodic solution

In reality, cancer cells may not be eradicated. The coexistence of cancer cells and
normal cells is also of importance and should be concerned. We have the following
results about the coexistence of the normal and cancer cells.

Theorem 4.3 Suppose that

ajw —eyL > ;Kz (taw —yL) >0 and arw—yL > ﬁfol (jw — ey L),
’ 1 4.5)
then system (4.1) has at least one positive periodic solution. Moreover, if
o) > K1y and op > Kypq, 4.6)

the positive periodic solution is unique and globally asymptotically stable.
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Proof Based on inequalities of (4.5), it is easy to verified that conditions of Corollary
1 in paper [23]. The existence of positive periodic solutions of system (4.1) is now
guaranteed. Then, we prove the uniqueness and globally asymptotical stability of the
positive periodic solution under conditions of (4.6).

Let (x{(¢), x5 (t)) be a positive periodic solution of system (4.1). Take

V() = |Inx (1) — InxX ()] + | Inx2(t) — In x5 (1)),

where (x1 (1), x2(¢)) is any solution of system (4.1) that different from (xj (¢), x5 (¢)).
Calculating the derivative of V (¢) along system (4.2), we have

V()= sgn(x| — x]")[(al —eD(t) — ;—llxl — ,lez) — (ozl —eD(t) — %I]xi“ - ﬂ1x§‘>]
+sgn(x — x;)[(az - D(t) — %xz - ﬂle) - (012 - D(t) — %xf - ﬁsz)]

o o)
= —Elm—ﬁ‘l - EIXz—xi“l
+sgn(xy —x)(—=B1) (x2—x3) + sgn(x2 —x3) (—p2) (x1 —x7)
< —(ﬂ - ﬂz)lxl — Xyl = (ﬂ - ﬂl)lxz - x3l.
- K K>

Consequently, from condition (4.6), we have V(t) < 0 for all # > 0. By Lyapunov
stability theory (see [24, 25]), the positive periodic solution is unique and globally
asymptotically stable. O

Note that condition (4.6) does not involve the treatment dose y, which is undoubt-
edly an important parameter in the cancer treatment model. In the following, we will
establish some new sufficient conditions for the globally asymptotic stability of the
positive periodic solution applying a similar method as in [26].

Theorem 4.4 Suppose that conditions (4.5) hold and let (x} (t), x3(t)) be a positive
periodic solution to system (4.1). Further, let

mmn=%%ﬁmbﬂm=ﬂﬂﬁmbmn=3%ambmn=mﬁax
1 K>

4.7
if
@ (b12(t) + ba1 (1))? (b12(1) + b1 (1))?
/o max [ —ba(t) + T ,—b11(t) + 200 (0) }dl <0,
4.8)

then (x{(t), x5 (t)) is globally asymptotically stable.

Proof Let (x1(t), x2(¢)) be any positive solution of system (4.1) with initial values
x;(0) > 0,7 = 1, 2. It is easy to obtain the permanence of the system, i.e., there exist
two constants M > m > O suchthat m < x;(t) < M fort > 0,i = 1,2, under
conditions (4.5) (see [26] and the reference cited therein).
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Let
_xa@ _ @
u(t) = ) 1, ux(t) = 50 4.9)
Obviously, (u(2), uz(t)) satisfies differential equations
{ w1 (t) = (L4 ur () (= bri(Du1 (1) — bra(ua(t)), 4.10)
w2 (t) = (14 uz2(0))( — b1 (Du1 (1) — by (Hua(t)), '

where b;(t),i, j = 1,2 are defined by (4.7). Then the required assertion in the
Theorem is equivalent to the statement that

Jm Ju ()] =0=lim Juz()]. (4.11)

Take a solution (u1(t), us(t)) of (4.10) with u(0) > —1 and u»(0) > —1. Since the
system (4.1) is permanent, we get #1(¢) > —1 and u5(¢) > —1 for all + > 0. Define a
Lyapunov function V (¢) by

V() =ui1(t) —In(1 + u1(t)) + up(t) — In(1 + uy(t)).

Note that V() > 0, except for the zero solution u1(¢) = 0 = u;(¢) in which V (¢)
vanishes. Calculating the derivation of V (¢) along with (4.10), we have

n Ou (@) | up(Dua() )
Tt 1tme —on®ui® = Gn®

+ b1 (1)u1 (Dua(t) — b (Hu3(1).

V(t) =

By the same calculation as Theorem 5.2 in [26], we deduce that
V() < 2@ (1 = e “OHOA 4wy 0) (1 + w2 (1) = 201 — eV D), 4.12)

where

B (b12(1) + b1 (1))* (b12(1) + by (1))*
A(f) = max { b0+ = b + }

Integrating (4.12) from O to ¢ and taking the periodic of A(¢) into account, we obtain

Vi) v t t @
/ dv < / r(s)ds = —/ A(s)ds +q(1).
v 0 @ Jo

(0) e’ — 1

Since ¢ (t) is w-periodic and fow A(t)dt < 0, then

V(i) v

lim

dv = —00,
t——+00 V(0) eV — 1

@ Springer



Mathematical models and dynamic behaviors of cancer...

1839

Table 5 Values of parameters for pulsed radiotherapy

Parameters Values for Th.4.1 Values for Th.4.2 Values for Th.4.3 Data sources
o] 0.156 0.01 0.31 [3]

an 0.14 0.162 0.38 [3,21]

K 1 1 1 [3,9]

Ky 1 1 1 [3,9]

B1 0.2 0.02 0.32 [3]

B2 0.13 0.12 0.27 [3]

y 0.2~14 0.2~14 0.2~14 [3,9]

& 0.3 0.3 0.3 Assumption
3 33.6 33.6 33.6 Estimation
L 0.5 0.5 0.5 Estimation

which implies that V() — 0 as t — +4o00. Hence, statement (4.11) is true. This
completes the proof.

O

Remark 4.1 Theorem 4.4 involves radiation dose y in the conditions that guarantee
the global stability of the positive periodic solution. This is an improvement compared
with conditions of Theorem 4.3. But a clear disadvantage is that they are difficult to
verify. Hence, in the following, we only numerically illustrate Theorem 4.3.

4.3 Numerical validation for pulsed radiotherapy

In this subsection, we will verify the existence and global stability of w-periodic
solution numerically for cancer eradiation periodic solution (Theorem 4.1), cancer
win periodic solution (Theorem 4.2) and coexistent periodic solution (Theorem 4.3),
respectively. Futher, we will discuss the effect of variation of radiation dose y on these
periodic solutions. Values of parameters for Theorems 4.1, 4.2 and 4.3 are given in
Table 5. But note that they do not come from any real cell populations.

Usually, cancer radiotherapy is treated 6 weeks, 5 times a week, 30 times totally
as a full course of treatment, and at a time lasts no more than 30 min. Hence, we can
regard w = 6 x7 x24/30 = 33.6 hours as one treatment period, and consider L = 0.5
hours as one radiation time. Throughout Figures 4.1—4.3, we always choose the initial
values x1(0) = 0.8 and x> (0) = 0.5.

It is easy to verify that values for Theorems 4.1, 4.2 and 4.3 in Table 5 satisfy
all conditions of the corresponding Theorem. Conditions of Theorem 4.1 require that
the radiation dose y must satisfies cow/L < y < ajw/(eL), i.e., 9.4080 < y <
34.9440. Figure 6 illustrates the existence and globally stability of cancer eradiation
33.6-periodic solution under three different radiation doses y, i.e., y equals 10, 12
and 14 respectively. It can be seen from Fig. 6A1-A3 and B1-B3 that as the increase
of y, the cancer eradiation periodic solution will move down and the amplitude will
increase. This inversely proves that the lower the dose, the better, if the cancer can
be eradicated. Theorem 4.2 provides restrictions of radiation dose y under which the
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Fig.6 The time series A1-A3 and the phases B1-B3 of system (4.1) under three different y values (y =
10, 12, 14). Obviously, system (4.1) has a globally stable cancer eradiation 33.6-periodic solution

cancer win periodic solution exists and is globally stable. Figure 7 demonstrates three
different cancer win periodic solutions under different radiation dose y, which satisfies
the conditions of Theorem 4.2, i.e, 2.24 = ajw/(eL) < y < arw/L = 10.8864.
Obviously, the cancer win periodic solution will move down as the increase of y, but
it does not disappear within the restriction of the dose. Figure 8 shows the existence
and global stability of the coexistent periodic solutions under conditions of Theorem
4.3, in which the restriction of y is 1.2396 < y < 10.0066. It is interesting to
observe that as the increase of the radiation dose y, the concentration of the normal
cells will increase and the concentration of the cancer cells will decrease. But we
cannot eradicate the cancer cells no matter how to choose the y under the constraint
of 1.2396 < y < 10.0066.

It follows from A4 and B4 in Fig.7 and A7 and B7 in Fig.8 that the same
radiation dose y (y = 3) leads to different periodic solutions and stabilities.
These mainly caused by the different selections to the proliferation and compe-
tition coefficients on the normal and tumor cells. From Table 5, comparing the
values of «y, ap, B1 and B that taken in Theorems 4.2 and 4.3, we find that
(a1, az, B1, B2)rnaz/(a1, a2, B1, B)rnas = (31,2.35,16,2.25), which means
that a larger proliferation and competition coefficients of healthy cells will be beneficial
to the fight between healthy and tumor cells and then be beneficial to the transition from
cancer win periodic solution to the coexistent periodic solution. This phenomenon is
consistent with the real facts.

5 Conclusion and discussion
In this paper, we took advantage of a pair of ordinary differential equations to model
the dynamics between the normal cells and cancer cells for the cancer treatment by

radiotherapy. We firstly presented a continuous radiotherapy cancer treatment model.
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Fig.7 The time series A4—A6 and the phases B4-B6 of system (4.1) under three different y values (y =
3,5, 7). Obviously, system (4.1) has a globally stable cancer win 33.6-periodic solution

(A7) =3 (A8) =6 (A9)7=9.
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Fig.8 The time series A7-A9 and the phases B7-B9 of system (4.1) under three different y values (y =
3,6,9). It is observed that system (4.1) has a globally stable coexistent 33.6-periodic solution

We figured out all the equilibrium points of the model and make a comprehensive
analysis on the stabilities of these four equilibrium points. The results of the analysis
demonstrated the quantitative relationship between radiation dose and cancer’s cure
or spread when the other parameters of the model are assumed to be unchanged.
Then, we reconsidered the pulsed radiotherapy cancer treatment model presented in
[12] and investigated the existence and stability of boundary periodic solutions and
positive periodic solution by applying new methods that are different with the methods
in [12]. Moreover, we performed numerical simulations to discuss in depth the effect
of radiation dose on the cure or spread of the cancer, which are different from the
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simulations in [12] that focus on the effect of the treatment time on the cancer’s cure
or spread.

The cancer treatment model discussed in this paper is only based on one treatment
measure, radiotherapy. Recently, immunotherapy has been studied extensively and
pre-clinical data and phased clinical studies have emphasized that immunotherapy
can enhance the efficacy of radiotherapy [27]. It may be more effective to treat cancer
by combining radiotherapy with immunotherapy. This must be an interesting problem
and deserve to carry out in the further work.
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