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Abstract

In this study, two mathematical models are introduced to describe treatment of cancer

by continuous and pulsed radiotherapy. In the continuous radiotherapy model, we

determine all of the equilibrium points and conduct a thorough examination of the

stability of these equilibria. Criterions of the radiation dose that guarantee the cancer

to be eradicated or take a positive balance with normal cells are provided. In the pulsed

radiotherapy model, conditions of the existence and stability of cancer win periodic

solution, cancer eradication periodic solution and coexistent periodic solution are

derived. Meanwhile, numerical simulations to the effect of radiation dose on the cure

and spread of the cancer are carried out. A brief conclusion is presented, as well as a

few intriguing subjects for additional investigation are discussed.

Keywords Radiotherapy · Cure · Coexistence · Cancer eradication periodic solution ·

Cancer win periodic solution

1 Introduction

Cancer is a fatal disease that affects people all over the world and is difficult to treat.

Surgery, chemotherapy, radiotherapy and immunotherapy are four typical treatment

options in clinical practice. As a result of the intersection of mathematics and medicine,

many researchers have begun to utilize mathematical models to describe the cancer

progression and its treatments, and have discovered a wealth of interesting insights
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about cancer [1–6]. This study will theoretically and numerically simulate cancer treat-

ment using continuous and pulsed radiotherapy, as well as investigate its dynamical

behaviors.

As the first line of treatment, radiotherapy has been shown to be an effective weapon

in the fight against certain types of cancer [7, 8]. Radiation therapy uses radiation to

kill malignant cells. This treatment is designed to target cells that quickly replicate,

such as those found in cancer [9]. Michor and Beal [10] pointed out that mathematical

modeling can be applied to improve cancer treatment as well as provide mechanistic

insights. There have been a large number of studies that focus on cancer treatment

by radiotherapy via methods of mathematical models [3, 5, 11–15]. Belostotski in

[3] created a control theory model for radiotherapy treatment of cancer based on the

Lotka-Volterra competition system. He regarded radiation therapy as a harvesting-type

control term and equated the radiation-induced harvesting with the reduction of cancer

cell concentration, considered four different types of treatment delivery, constant,

linear, feedback and periodic, and investigated the cure or treatment of corresponding

systems. As to the hypothesis in [3] that the effect of radiation on normal cells is zero,

Freedman and Belostotski [11] improved the model by allowing the radiation affects

the normal cells to some extent while radiotherapy, established sufficient conditions on

the cure state to the four radiation delivery control mechanisms. Liu and Yang focused

on cancer treatment with period radiotherapy [5, 12], presented period radiotherapy

ODE models and studied their dynamic behaviors such as the coexistence of the normal

and cancer cells, the existence and globally asymptotic stability of the positive periodic

solution, the cancer eradication periodic solution and the cancer win periodic solution.

Farayola et al. [13, 14] formulated Caputo Fractional derivative models to simulate

cancer treatment process by radiotherapy, and gave the population changes in the cells

and the final volumes of the normal and cancer cells in their results. Pang et al. [15]

developed an impulsive differential equation model to describe tumor growth treated

by radiotherapy and investigated the influence on the effect of tumor radiotherapy

from the reoxygenation of hypoxic cells and the radiosensitivity of radiotherapy.

Though lots of mathematical models have been presented and studied on the can-

cer treatment with radiotherapy, there is still much basic and impressed work worth

to carry out. This paper aims to establish mathematical models to the cancer treat-

ment by continuous and pulsed radiotherapy and analyze their dynamical behaviors.

Based on ideas and rules of paper [3], we provide a cancer treatment model with

continuous radiotherapy. We calculate the four equilibrium points of the model and

make a comprehensive analysis on the stabilities of these four equilibrium points. To

the pulsed radiotherapy, we reconsider the period radiotherapy model in paper [12].

We investigate the existence and stability of boundary periodic solutions and positive

periodic solution by applying new methods that are different with the methods in [5,

12]. Moreover, we conduct numerical simulations to discuss in depth the effect of

radiation dose on the cure or spread of the cancer.

The organization of the remaining part is as follows. In Sect. 2, we present tumor

growth model without treatment and give a useful Lemma. A theoretically comprehen-

sive analysis on the existence and stability of the equilibrium points to the continuous

radiotherapy treatment model is done in Sect. 3. In Sect. 4, we investigate the pulsed
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Table 1 Definition of variables and parameters

ẋ dx/dt

x1 The concentration of the normal cells in the given tissue

x2 The concentration of the cancer cells in the given tissue

α1 The proliferation coefficient of the normal cells

α2 The proliferation coefficient of the cancer cells

K1 The allowed maximum concentration of the normal cells in the given tissue (carrying capacity)

K2 The allowed maximum concentration of the cancer cells in the given tissue (carrying capacity)

β1 Competition coefficient from cancer to normal cells

β2 Competition coefficient from normal to cancer cells

radiotherapy cancer treatment model theoretically and numerically. Finally, we con-

clude this paper and provide an interesting problem for further study.

2 Themodel without treatment

Considering a piece of bodily tissue that contain cancer cells, we model the interaction

between normal and cancer cells as a competition for tissue resources and take the

following Lotka-Volterra competition type [16–18]:

⎧

⎪

⎨

⎪

⎩

ẋ1 = α1x1

(

1 −
x1

K1

)

− β1x1x2,

ẋ2 = α2x2

(

1 −
x2

K2

)

− β2x1x2.
(2.1)

The definition of variables and parameters is given in Table 1.

According to the biological interpretation, we assume that x1(0) ≥ 0, x2(0) ≥ 0,

αi , Ki , βi are all positive constants for i = 1, 2. For model (2.1), the following

well-known results had been proved in [19, 20].

Lemma 2.1 The model (2.1) always has a trivial equilibrium Ē0(0, 0) and two semi-

trivial equilibria Ē1(K1, 0) and Ē2(0, K2). Denote � = α1α2 −β1β2 K1 K2, suppose

that

(i) � < 0,

(i1) if α2 − β2 K1 > 0, then Ē0 is an unstable node, Ē1 is a saddle point and Ē2 is

a stable focus;

(i2) if α1 − β1 K2 > 0, then Ē0 is an unstable node, Ē1 is a stable focus and Ē2 is

a saddle point;

(i3) if α2 −β2 K1 < 0 and α1 −β1 K2 < 0, then Ē0 is an unstable node, Ē1 and Ē2

are stable focuses, model (2.1) has a unique positive equilibrium Ē∗(x∗
1 , x∗

2 ) which is

a saddle point, where

x̄∗
1 =

α2

K2

α1 − β1 K2

�
, x̄∗

2 =
α1

K1

α2 − β2 K1

�
;
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(ii) � > 0,

(ii1) if α2 − β2 K1 < 0, then Ē0 is an unstable node, Ē1 is a stable focus and Ē2 is

a saddle point;

(ii2) if α1 − β1 K2 < 0, then Ē0 is an unstable node, Ē1 is a saddle point and Ē2

is a stable focus;

(ii3) if α2 − β2 K1 > 0 and α1 − β1 K2 > 0, then Ē0 is an unstable node, Ē1 and

Ē2 are saddle points, model (2.1) has a unique positive equilibrium Ē∗(x∗
1 , x∗

2 ) which

is globally asymptotically stable in the interior of the first quadrant.

Remark 2.1 From Lemma 2.1,

(1) Ē0 is always an unstable node, i.e., normal and cancer cells will never go extinct

simultaneously for any positive initial concentration of normal cells;

(2) If the interior positive equilibrium Ē∗ does not exist, then Ē1 is a stable focus and

Ē2 is a saddle point (or exchange the stability), i.e., either the normal cells win the

competition and the cancer cells go extinct, or the cancer cells win the competition

and spread for all positive initial concentrations of normal and cancer cells;

(3) If there is an interior positive equilibrium Ē∗ of the model, then either it is globally

asymptotically stable in the interior of the first quadrant or it is a saddle point, at

this moment, Ē1 and Ē2 are stable focuses with stabilities depending on the location

of the initial values x1(0) and x2(0) in the first quadrant, i.e., either the normal and

cancer cells coexist or one of them wins the competition, which depends on the initial

concentrations of the normal and cancer cells.

As we all know, in the absence of treatment, most cancer will win the competition

and spread, i.e., Ē2(0, K2) is one globally stable equilibrium of model (2.1) for any

positive initial value. Criteria from Lemma 2.1 (also can refer to [16]) for this to happen

are

α1 < β1 K2 and α2 > β2 K1. (2.2)

Throughout the rest of this paper, we assume that (2.2) holds.

In the following, we will modify model (2.1) by adding continuous or pulsed

radiotherapy and analyze their dynamical behaviors. Meanwhile, we will discuss the

medical meanings of these mathematical results.

3 Treatment by continuous radiotherapy

In this section, we consider the continuous application of radiotherapy, without pause

or interruption. We aims to make a theoretically comprehensive analysis on the treat-

ment by continuous radiotherapy which has not been done before, even if we know

this continuous radiation therapy may not be often used in real clinical treatment for

protecting the patient’s physical condition under the radiation.

To incorporate the effect of the radiation in model (2.1), we assume that the admin-

istration of radiation removes a large amount of cancer cells and a small amount of

normal cells from the system. Here, the terms “large” and “small” are used as a relation

to the appropriate cell population at a particular location in the organism. Radiotherapy

123



Mathematical models and dynamic behaviors of cancer… 1823

is in fact a control mechanism on the rates of change of the concentrations of cancer

and normal cells by harvesting them. Model (2.1) is modified under the continuous

radiotherapy to take the form

⎧

⎪

⎨

⎪

⎩

ẋ1 = α1x1

(

1 −
x1

K1

)

− β1x1x2 − εγ x1,

ẋ2 = α2x2

(

1 −
x2

K2

)

− β2x1x2 − γ x2,
(3.1)

where γ is the radiation dose and εγ is the proportion of the radiation to the normal

cells, 0 < ε ≤ 1 (ε = 0 is the ideal, but impossible to achieve in a practical scenario).

Rewrite model (3.1) as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ1 = (α1 − εγ )x1

[

1 −
x1

K1(1 −
εγ
α1

)

]

− β1x1x2,

ẋ2 = (α2 − γ )x2

[

1 −
x2

K2(1 −
γ
α2

)

]

− β2x1x2.
(3.2)

The rest of this section will analyze the equilibria and stabilities of model (3.2) as the

change of radiation dose γ under assumption (2.2).

There are four possible nonnegative equilibria for model (3.2), namely E0(0, 0),

E1(K1(1−εγ /α1), 0), E2(0, K2(1−γ /α2)) and E∗(x∗
1 , x∗

2 ). E0, the null state, always

exists. If the inequalities α1 > εγ and α2 > γ hold, the boundary equilibria E1 and

E2 exist. The interior equilibrium E∗, if exists, will be

x∗
1 =

K1α2(α1 − εγ ) − K1 K2β1(α2 − γ )

�
,

x∗
2 =

−K1 K2β2(α1 − εγ ) + α1 K2(α2 − γ )

�
, (3.3)

where � still denotes the expression α1α2 − β1β2 K1 K2.

Applying Lemma 2.1, we analyze model (3.2) theoretically. Meanwhile, we

conduct numerical simulations to verify the results and to make the results more

visible. We use the non-dimensional number 1 to represent the carrying capac-

ity of normal and cancer cell populations [3]. Therefore, the initial conditions

should satisfy x1(0) ≤ 1, x2(0) ≤ 1. We take initial values (x1(0), x2(0)) as

(0.1, 0.8), (0.25, 0.05), (0.25, 1), (0.5, 0.7), (0.6, 0.05), (0.75, 0.4), (0.9, 0.95),

(1, 0.2) respectively. Table 2 shows the parameters that are taken. The reasonable of

the parameters can be referred to papers [3, 9, 21, 22]. But note that they do not come

from any real cell populations.

Case I: � < 0.

We first analyze (I1)-(I3) under assumptions α1 > εγ and α2 > γ .

(I1) (α2 − γ ) − β2 K1(1 − εγ /α1) > 0, then E0 is an unstable node, E1 is a

saddle point, E2 is a stable focus and E∗ does not exist. Now we consider the value of

parameter γ . It follows from the assumption of (I1) that (α1 − β2 K1ε)γ < α1(α2 −

β2 K1). Obviously, it always holds for α1 − β2 K1ε ≤ 0 because of α2 > β2 K1. Then

we have α1/ε ≤ β2 K1 < α2 and γ < min{α1/ε, α2} = α1/ε. When α1 −β2 K1ε > 0,
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Table 2 Values of parameters for continuous radiotherapy

Parameters Values for � < 0 Values for � > 0 References

α1 0.2 0.1 [3, 22]

α2 0.6 0.45 [3, 21, 22]

K1 1 1 [3, 9]

K2 1 1 [3, 9]

β1 0.5 0.11 [3]

β2 0.55 0.15 [3]

then γ < min{α1/ε, α2, α1(α2 − β2 K1)/(α1 − β2 K1ε)} = α1/ε for α1/α2 ≤ ε and

γ < min{α1/ε, α2, α1(α2 − β2 K1)/(α1 − β2 K1ε)} = α1(α2 − β2 K1)/(α1 − β2 K1ε)

for α1/α2 > ε. Therefore we have γ < α1/ε holds for all ε ≥ α1/α2. Finally, for all

γ < α1/ε when α1/α2 ≤ ε ≤ 1 and all γ < α1(α2 − β2 K1)/(α1 − β2 K1ε) when

ε < α1/α2, we always have E2 is a stable focus and there are no other equilibrium

points. This indicates that cancer will win the competition and spread when γ take

values in these ranges. See Fig. 1A1 and B1.

Remark 3.1 Conditions and results of (I1) can be understood as follows. When

α1/α2 ≤ ε ≤ 1, larger proportion of radiation to the normal cells will lead to the

extinction of normal cells for all radiation dose γ < α1/ε. However, if we set a

smaller spilled proportion of radiation, i.e. ε < α1/α2, then the radiation dose γ will

satisfy γ < α1(α2 − β2 K1)/(α1 − β2 K1ε), this implies that less radiation dose can

not kill cancer cells successfully. In a word, radiation dose that satisfies condition (I1)

can not cure the cancer.

(I2) (α1 − εγ ) − β1 K2(1 − γ /α2) > 0, then E0 is an unstable node, E1 is a stable

focus, E2 is a saddle point and E∗ does not exist. From the assumption of (I2), we have

(α2ε − β1 K2)γ < α2(α1 − β1 K2). Obviously, γ does not exist for α2ε − β1 K2 ≥ 0

because of the inequality α1 < β1 K2. When α2ε − β1 K2 < 0, then α2(β1 K2 −

α1)/(β1 K2 − α2ε) < γ < min{α1/ε, α2}. However, γ also does not exist for all

α1/α2 ≤ ε since α2(β1 K2 − α1)/(β1 K2 − α2ε) − α2 ≥ 0. Hence, we focus on

α1/α2 > ε. Now we have α2(β1 K2 −α1)/(β1 K2 −α2ε) < γ < α2. This inequality is

reasonable as α2 −α2(β1 K2 −α1)/(β1 K2 −α2ε) = α2(α1 −α2ε)/(β1 K2 −α2ε) > 0.

Finally in case (I2) we have E1 is a stable focus and there are no other equilibrium

for all α2(β1 K2 − α1)/(β1 K2 − α2ε) < γ < α2 when α1/α2 < ε. Medically, the

normal cells will win the competition and cancer will be eradicated when α2(β1 K2 −

α1)/(β1 K2 − α2ε) < γ < α2. See Fig. 1A3 and B3.

Remark 3.2 When ε < α1/α2, it is shown that the cancer will win the competition for

all γ < α1(α2 − β2 K1)/(α1 − β2 K1ε) from (I1) and the cancer will be eradicated

for all α2(β1 K2 − α1)/(β1 K2 − α2ε) < γ < α2 from (I2). Moreover, we notice that

α2(β1 K2 − α1)/(β1 K2 − α2ε) − α1(α2 − β2 K1)/(α1 − β2 K1ε) > 0 under the basic

conditions α1 < K2β1, α2 > K1β2 and � < 0 when ε < α1/α2. Hence, from (I1) and

(I2) we can conclude that as the increase of the radiation dose for a smaller radiation

spill, the cancer can be cured in their early stages.
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(I3) (α2 − γ ) − β2 K1(1 − εγ /α1) < 0 and (α1 − εγ ) − β1 K2(1 − γ /α2) < 0, then

E0 is an unstable node, E1 and E2 are stable focuses, the unique positive equilibrium

E∗(x∗
1 , x∗

2 ) is a saddle point. From the assumption of (I3) we have

(α1 − β2 K1ε)γ > α1(α2 − β2 K1) (3.4)

and

(α2ε − β1 K2)γ > α2(α1 − β1 K2). (3.5)

Obviously, γ does not exist when α1 − β2 K1ε ≤ 0. When α1 − β2 K1ε > 0,

then α2ε − β1 K2 < 0 because of � < 0. Hence from (3.4) we have γ >

α1(α2 −β2 K1)/(α1 −β2 K1ε) and (3.5) we have γ < α2(α1 −β1 K2)/(α2ε −β1 K2).

Sequently we have α1(α2 − β2 K1)/(α1 − β2 K1ε) < γ < min{α1/ε, α2, α2(α1 −

β1 K2)/(α2ε − β1 K2)} for α1 − β2 K1ε > 0. If α1/α2 ≤ ε, then α1/ε ≤ α2 and

[α1(α2 − β2 K1)/(α1 − β2 K1ε)]/(α1/ε) = (α2 − β2 K1)ε/(α1 − β2 K1ε) ≥ 1.

Hence, γ does not exist when α1/α2 ≤ ε. On the other hand, if α1/α2 > ε,

i.e., α1/ε > α2, then α1(α2 − β2 K1)/(α1 − β2 K1ε) < γ < min{α2, α2(α1 −

β1 K2)/(α2ε − β1 K2)} = α2(α1 − β1 K2)/(α2ε − β1 K2) and the existence of γ is

guaranteed by α2(α1 − β1 K2)/(α2ε − β1 K2) − α1(α2 − β2 K1)/(α1 − β2 K1ε) > 0

for all α1/α2 > ε. Notice that α1/α2 > ε also implies α1 − β2 K1ε > 0. Finally,

case (I3) means that when α1/α2 > ε, E0 is an unstable node, E1 and E2 are sta-

ble focuses, E∗(x∗
1 , x∗

2 ) exists and is a saddle point for all α1(α2 − β2 K1)/(α1 −

β2 K1ε) < γ < α2(α1 − β1 K2)/(α2ε − β1 K2). Medically, when the radiation dose

α1(α2 − β2 K1)/(α1 − β2 K1ε) < γ < α2(α1 − β1 K2)/(α2ε − β1 K2), the cancer’s

spread or eradication will depend on the initial concentrations of the two kind cells.

See Fig. 1A2 and B2.

Remark 3.3 When � < 0, for all 0 < ε < α1/α2, two radiation doses α1(α2 −

β2 K1)/(α1 − β2 K1ε) and α2(α1 − β1 K2)/(α2ε − β1 K2) are very important. We can

conclude that the cancer will win the competition for all γ < α1(α2 − β2 K1)/(α1 −

β2 K1ε), the cancer will be cured for all α2(α1 −β1 K2)/(α2ε −β1 K2) < γ < α2 and

the cancer’s spread or eradication will depend on the initial concentrations of the two

kind cells when α1(α2 −β2 K1)/(α1 −β2 K1ε) < γ < α2(α1 −β1 K2)/(α2ε−β1 K2).

To the analytical integrality in mathematics, we make the following complementary

analysis.

(I4) (a) 0 < ε < α1/α2. If α2 < γ < α1/ε, E2 and E∗ do not exist. Moreover, it

follows from model (3.3) that ẋ2(t) ≤ (α2 − γ )x2(t), i.e., limt→+∞ x2(t) → 0, then

limt→+∞ x1(t) → K1(1 − εγ )/α1. This means that E1 is a globally asymptotically

stable boundary equilibrium point, i.e., the cancer will be cured. See Fig. 1A4 and B4.

However, if γ > α1/ε, from model (3.2) we have E1 and E2 are nonexist, E0 is a

globally stable point and the existence of E∗ can not be judged but does not affect

the global behavior of E0. See Fig. 1A5 and B5. (b) ε ≥ α1/α2. If 0 < γ < α1/ε,

it follows from (I1) that E0 and E1 are unstable points, E∗ is nonexist and E2 is a

stable focus, i.e., the cancer will spread. See Fig. 2A6 and B6. If α1/ε ≤ γ ≤ α2,

applying the same analysis as (a) we have E1 and E∗ do not exist and E2 is a globally
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Fig. 1 The time series (t=t(hours)) and the phase of system (3.1) under 8 different initial values, where the

radiation spilled rate ε = 0.3 and radiation dose γ = 0.2, 0.45, 0.58, 0.6, 1 in A1,B1–A5,B5 respectively.

Other parameters are taken from Table 2
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Fig. 2 The time series (t=t(hours)) and the phase of system (3.1) under 8 different initial values, where

the radiation spilled rate ε = 0.5 and radiation dose γ = 0.2, 0.5, 1 in A6,B6–A8,B8 respectively. Other

parameters are taken from Table 2

asymptotically stable boundary equilibrium point, i.e., the cancer will spread. See

Fig. 2A7 and B7. Moreover, if γ > α2, from model (3.2) we have E1 and E2 are

nonexist, E0 is a globally stable point (See Fig. 2A8 and B8) and the existence of E∗

can not be judged but does not affect the global behavior of of E0.

Case II: � > 0.

Applying Lemma 2.1, conducting the same analysis as Case I, we have the following

results (II1)-(II4). Notice that, (II1)-(II3) are based on the assumptions that α1 > εγ

and α2 > γ .

(II1) (α2 − γ ) − β2 K1(1 − εγ /α1) < 0. When 0 < ε < α1/α2, for all α1(α2 −

β2 K1)/(α1 −β2 K1ε) < γ < α2, E∗ is nonexist, E0 is an unstable node, E1 is a stable

focus and E2 is a saddle point. Medically, the normal cells will win the competition
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and cancer will be eradicated for all α1(α2 − β2 K1)/(α1 − β2 K1ε) < γ < α2 when

0 < ε < α1/α2. See Fig. 3A11 and B11.

(II2) (α1 −εγ )−β1 K2(1−γ /α2) < 0. For all γ < α2(β1 K2 −α1)/(β1 K2 −α2ε)

when 0 < ε < α1/α2 and all γ < α1/ε when α1/α2 ≤ ε ≤ 1, we always have E∗

is nonexist, E0 is an unstable node, E1 is a saddle point and E2 is a stable focus,

medically, the cancer will win the competition and spread. See Fig. 3A9 and B9.

(II3) (α2−γ )−β2 K1(1−εγ /α1) > 0 and (α1−εγ )−β1 K2(1−γ /α2) > 0. When

0 < ε < α1/α2, for all α2(β1 K2 − α1)/(β1 K2 − α2ε) < γ < α1(α2 − β2 K1)/(α1 −

β2 K1ε), E0 is an unstable node, E1 and E2 are saddle points, the unique positive

equilibrium E∗(x∗
1 , x∗

2 ) is a globally asymptotically stable point in the interior of the

first quadrant, medically, the cancer and normal cells will coexist. See Fig. 3A10 and

B10.

(II4) Here, we neglect the restrictions of α1 > εγ and α2 > γ . (a) 0 < ε < α1/α2.

If α2 < γ < α1/ε, E2 and E∗ do not exist, E1 is a globally asymptotically stable

boundary equilibrium point, i.e., the cancer can be cured. See Fig. 3A12 and B12.

However, if γ > α1/ε, then we have E1 and E2 are nonexist, E0 is a globally stable

point and the existence of E∗ can not be judged but does not affect the global behavior

of E0. See Fig. 3A13 and B13. (b) ε ≥ α1/α2. If 0 < γ < α1/ε, it follows from (II2)

that E0 and E1 are unstable points, E∗ is nonexist and E2 is a stable focus, i.e., the

cancer will spread. See Fig. 4A14 and B14. If α1/ε < γ < α2, then E1 and E∗ do

not exist and E2 is a globally asymptotically stable boundary equilibrium point, i.e.,

the cancer will spread. See Fig. 4A15 and B15. Moreover, if γ > α2, obviously, E1

and E2 are nonexist, E0 is a globally stable point (See Fig. 4A16 and B16) and the

existence of E∗ can not be judged but does not affect the global behavior of E0.

Remark 3.4 When � > 0, from (II1)-(II4) we can conclude that when 0 < ε < α1/α2,

the cancer will win the competition for all γ < α2(β1 K2 − α1)/(β1 K2 − α2ε),

the cancer will be cured for all α1(α2 − β2 K1)/(α1 − β2 K1ε) < γ < α2 and the

cancer and normal cells will coexist when α2(β1 K2 − α1)/(β1 K2 − α2ε) < γ <

α1(α2 − β2 K1)/(α1 − β2 K1ε). Moreover, for all α2 < γ < α1/ε, E1 is a globally

asymptotically stable boundary equilibrium point and the cancer will be cured; for all

γ > α1/ε, both the normal and the cancer cells will die out. When ε ≥ α1/α2. If

0 < γ < α1/ε, E2 is a stable focus and the cancer will spread; if α1/ε < γ < α2, E2

is a globally asymptotically stable point and the cancer will spread; if γ > α2, both

the normal and the cancer cells will die out.

Remark 3.5 From (I4) and (II4), we can conclude that for any 0 < ε ≤ 1, if γ >

max{α1/ε, α2}, both the normal and the cancer cells will die out. If α1/ε < γ < α2,

the cancer will spread. If α2 < γ < α1/ε, the cancer will be eradicated.

Based on the above analysis, we finally have the following result.

Theorem 3.1 System (3.1) has four possible nonnegative equilibria E0(0, 0), E1(K1

(1 − εγ /α1), 0), E2(0, K2 (1 − γ /α2)) and E∗(x∗
1 , x∗

2 ), where x∗
1 and x∗

2 are given

by (3.3). Based on assumption 2.2, we list all the cases on the existence and stability

of the equilibrium points in Table 3.
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Fig. 3 The time series (t=t(hours)) and the phase of system (3.1) under 8 different initial values, where

the radiation spilled rate ε = 0.05 and radiation dose γ = 0.205, 0.3, 0.4, 1, 2.2 in A9,B9–A13,B13

respectively. Other parameters are taken from Table 2
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Table 3 Constraints of parameters and existence and stability of equilibria

� ε γ E0 E1 E2 E∗ H-cells C-cells Cases Figures

� < 0 0 < ε <
α1

α2
0 < γ < γ1 us sd st, foc − ext win (1) (A1),(B1)

γ1 < γ < γ2 us st, foc st, foc sd div div (2) (A2),(B2)

γ2 < γ < α2 us st, foc sd − win ext (3) (A3),(B3)

α2 < γ < α1/ε sd gs − − win ext (4) (A4),(B4)

α1/ε < γ gs − − − ext ext (5) (A5),(B5)

α1

α2
≤ ε 0 < γ < α1/ε us sd st, foc − ext win (6) (A6),(B6)

α1/ε < γ < α2 sd − gs − ext win (7) (A7),(B7)

α2 < γ gs − − − ext ext (8) (A8),(B8)

� > 0 0 < ε <
α1

α2
0 < γ < γ̄1 us sd st, foc − ext win (9) (A9),(B9)

γ̄1 < γ < γ̄2 us sd sd st, nod coex coex (10) (A10),(B10)

γ̄2 < γ < α2 us st, foc sd − win ext (11) (A11),(B11)

α2 < γ < α1/ε sd gs − − win ext (12) (A12),(B12)

α1/ε < γ gs − − − ext ext (13) (A13),(B13)

α1

α2
≤ ε 0 < γ < α1/ε us sd st, foc − ext win (14) (A14),(B14)

α1/ε < γ < α2 sd − gs − ext win (15) (A15),(B15)

α2 < γ gs − − − ext ext (16) (A16),(B16)

1
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Fig. 4 The time series (t=t(hours)) and the phase of system (3.1) under 8 different initial values, where the

radiation spilled rate ε = 0.3 and radiation dose γ = 0.2, 0.4, 1 in A14,B14–A16B16 respectively. Other

parameters are taken from Table 2

where � = α1α2 − β1β2 K1 K2,

γ1 =
α1(α2 − β2 K1)

α1 − β2 K1ε
, γ2 =

α2(K2β1 − α1)

K2β1 − α2ε
,

γ̄1 =
α2(K2β1 − α1)

K2β1 − α2ε
, γ̄2 =

α1(α2 − β2 K1)

α1 − β2 K1ε
,

H-cells:=normal cells, C-cells:= cancer cells, st:= stable, us:=unstable, sd:=saddle,

foc:=focus, nod:=node, gs:=globally stable, coex:= coexistent, ext:=extinction,

div:=depends on initial value, −:=nonexistent.

In reality, we are more concern the cases that cancer is controlled or eradicated.

Hence, cases (3),(4),(10), (11) and (12) are of important significance for us. We detail
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Fig. 5 The dependence of the stability of the cancer eradiation equilibrium point E1 and cancer win

equilibrium point E2 on the initial values of the normal and cancer cells under three different radiation

doses (i.e., γ = 0.35, 0.45, 0.5). The cancer will be eradiated if the estimated initial concentrations of the

normal and cancer cells are exactly in region G1 and the cancer will spread if the initial values belong to

region G2

the range of parameters especially the radiation dose γ on these five cases in Table 4.

Here, we should note that condition (2.2) can not be omitted, i.e., cancer will win the

competition and spread if there is no treatment.

It is worth noting that when the radiation dose γ satisfies γ1 < γ < γ2, the

cancer’s spread or eradication depends on initial concentrations of the normal and

cancer cells. Figure 5C1–C3 demonstrate the dependence of the stability of the cancer

eradiation equilibrium point E1 and cancer win equilibrium point E2 on the initial

values of the normal and cancer cells under three different radiation doses (i.e. γ =

0.35, 0.45, 0.5). From Figures we see that under parameter settings of case (2), larger

radiation dose γ allows larger proportion of cancer cells to normal cells at the initial

moments. We provide a boundary curve to the initial value distribution. All solutions

that have initial conditions in region G1 will tend to equilibrium point E1, i.e., the

cancer will be eradicated. Otherwise, solutions that have initial conditions in region

G2 will tend to equilibrium point E2 and the cancer will spread at this circumstance.

Here, we omit the initial values that cause the solutions to go to the saddle point E∗

once are taken. The method to determine the boundary curve is as follows. Firstly,

we calculate the value of solution (x1(T ), x2(T )) (where T large enough to judge

that x1(T ) < 10−4 or x2(T ) < 10−4 holds) under each initial value (x1(0), x2(0)).

Secondly, we distinguish which initial values cause the solution of the system to
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Table 4 Some important cases in Table 3

Parameters and natural restrictions Radiation dose and results

parameters condition restriction of cases range of results cases Figures

parameters (2.2) spilled rate ε of � dose γ

α1 < β1 K 2 0 < ε <
α1

α2
� > 0 γ̄1 < γ < γ̄2 H-cells and C-cells (10) (A10),(B10)

α1 reach to a positive

α2 balance

β1 γ̄2 < γ <
α1

ε
cancer will be (11) (A11),(B11)

β2 α2 > β2 K 1 eradicated (12) (A12),(B12)

K1 � < 0 γ2 < γ <
α1

ε
cancer will be (3) (A3),(B3)

K2 eradicated (4) (A4),(B4)

1
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approach the equilibrium point E1, and which initial values cause the solution to

approach the equilibrium point E2. Thirdly, to the initial values that cause the solution

to tend to the equilibrium point E1, we select the maximal value x̂2(0) under the

same x1(0). Finally, we apply cubic polynomial to fit the curve by using every point

(x1(0), x̂2(0)) for all 0 ≤ x1(0) ≤ 1 and obtain the desired function. We point out here

that the method is reasonable according to the continuous dependence of the solution

on initial values. In clinical, the initial concentrations of the normal and cancer cells can

be estimated. The above analysis provide a method that one can predict the tendency of

the cancer under different radiation dose once initial values of the normal and cancer

cells are given. For example, under parameter settings in case (2), let γ = 0.45, we

can calculate by using the fit function y = −0.21x3 + 0.83x2 − 0.032x − 0.0019

that y(0.25) = 0.0387 < 0.05, y(0.75) = 0.3524 < 0.4, y(0.6) = 0.2323 >

0.05, y(1) = 0.5861 > 0.2. This determine the region G1 or G2 that the initial

value belongs to and then predict the final tendency of the solutions that take these

initial values. Calculation shows that (x1(0), x2(0)) = (0.25, 0.05) or (0.75, 0.4)

belongs to region G2 and solutions that have these initial values will go to cancer win

equilibrium point E2 and (x1(0), x2(0)) = (0.6, 0.05) or (1, 0.2) belongs to region

G1 and the solution will tend to cancer eradicated equilibrium point E1 once these

initial conditions are taken.

4 Treatment by pulsed radiotherapy

Usually, cancer radiotherapy is implemented many times over a period of time. Sup-

pose the time interval between two treatments is of equal. Then we can model the

cancer treatment in the form of pulsed radiotherapy with the following switching

system.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ1 = α1x1

(

1 −
x1

K1

)

− β1x1x2 − εγ x1

ẋ2 = α2x2

(

1 −
x2

K2

)

− β2x1x2 − γ x2

⎫

⎪

⎬

⎪

⎭

, t ∈ [nω, nω + L)(treatment stage),

ẋ1 = α1x1

(

1 −
x1

K1

)

− β1x1x2

ẋ2 = α2x2

(

1 −
x2

K2

)

− β2x1x2

⎫

⎪

⎬

⎪

⎭

, t ∈ [nω + L, (n + 1)ω)(no treatment stage), n = 0, 1, 2...,

(4.1)

where ω is the time interval between two treatments, 0 < L < ω is the radiation

treatment time, i.e., we implement radiation therapy when t ∈ [nω, nω + L) while do

not when t ∈ [nω+ L, (n +1)ω). n is the radiation times over the period of treatment.

In the following analysis, we still assume condition (2.2) holds.

It is easy to see that xi (t) ≥ 0 if xi (0) ≥ 0 for i = 1, 2. In fact, from model (4.1),

we can obtain that

x1(t) = x1(nω) exp

(

α1

(

1 −
x1(s)

K1

)

− β1x2(s) − εγ

)
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for all t ∈ [nω, nω + L) and

x1(t) = x1(nω + L) exp

(

α1

(

1 −
x1(s)

K1

)

− β1x2(s)

)

for all t ∈ [nω + L, (n + 1)ω). According to the piecewise iteration method and the

continuity of solutions, we have x1(t) ≥ 0 for any nonnegative initial value x1(0) ≥ 0.

The same analysis can be done to x2(t). Next, we will investigate the existences and

stabilities of cancer eradication periodic solution, cancer win periodic solution and

coexistent periodic solution.

4.1 Existence and global stability of cancer eradication (win) periodic solution

Firstly, let us investigate the existence of cancer eradication periodic solution of system

(4.1). Rewrite system (4.1) as

⎧

⎪

⎨

⎪

⎩

ẋ1 = α1x1

(

1 −
x1

K1

)

− β1x1x2 − εD(t)x1,

ẋ2 = α2x2

(

1 −
x2

K2

)

− β2x1x2 − D(t)x2,
(4.2)

where D(t) is a periodic function with period ω. D(t) ≡ γ > 0 when t ∈ [nω, nω +

L)(treatment stage) and D(t) ≡ 0 when t ∈ [nω + L, (n + 1)ω)(no treatment stage)

for all n = 0, 1, 2, .... Obviously, system (4.2) is ω-periodic. Consider the following

subsystem of (4.2) under the case x2(t) ≡ 0

ẋ1 = α1x1

(

1 −
x1

K1

)

− εD(t)x1. (4.3)

It is easy to know that system (4.3) admits a unique positive periodic solution x∗
1 (t)

when
∫ ω

0 [α1 − εD(t)]dt > 0, i.e., α1ω > εγ L . Consequently, system (4.1) has a

unique cancer eradiation periodic solution under the condition that α1ω > εγ L . In

the following, we will prove that this periodic solution is globally asymptotically stable

if α2ω < γ L .

For any solution (x1(t), x2(t)) of system (4.1) with initial values xi (0) ≥ 0 (i =

1, 2) that different from (x∗
1 (t), 0), there is an integer n ≥ 0 such that t ∈ [nω, (n +

1)ω). From the second equation of (4.2), we easily obtain

x2(t) ≤ x2(0) exp
(

∫ t

0

[α2 − D(s)]dt
)

= x2(0) exp
(

∫ nω

0

[α2 − D(s)]dt +

∫ t

nω

[α2 − D(s)]dt
)

≤ x2(0)e(α2+γ )ωen(α2ω−γ L).

This implies that x2(t) → 0 as t → +∞ if α2ω < γ L holds. Therefore, for any

η > 0, there is T > 0 such that x2(t) < η for all t > T . Take
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V (t) = | ln x1(t) − ln x∗
1 (t)|,

then for t > T we have

V̇ (t)= sgn(x1(t) − x∗
1 (t))

[(

α1 − εD(t) −
α1

K1
x1(t) − β1x2(t)

)

−
(

α1 − εD(t) −
α1

K1
x∗

1 (t)
)]

< −
α1

K1
|x1(t) − x∗

1 (t)| + β1η.

Because of the arbitrariness of η, one can obtain

V̇ (t) ≤ −
α1

K1
|x1(t) − x∗

1 (t)|. (4.4)

If there is T̄ ≥ T such that x1(t) ≡ x∗
1 (t) for all t ≥ T̄ , the global stability of the

periodic solution (x∗
1 (t), 0) is then obtained. Otherwise, (4.4) implies that V (t) → 0

as t → +∞. This also guarantee the global stability of the periodic solution (x∗
1 (t), 0).

Therefore, we have the following result.

Theorem 4.1 Suppose that α1ω > εγ L, then system (4.1) has a unique cancer eradia-

tion periodic solution. Moreover, if α2ω < γ L, the solution is globally asymptotically

stable.

Since x2 has a similar expression in the form of x1 in system (4.1), using the same

analytical technique, we have the following result on the cancer win periodic solution.

Theorem 4.2 Assume that α2ω > γ L, then system (4.1) has a unique cancer win

periodic solution. Moreover, if α1ω < εγ L, the solution is globally asymptotically

stable.

4.2 Existence and global stability of the coexistent periodic solution

In reality, cancer cells may not be eradicated. The coexistence of cancer cells and

normal cells is also of importance and should be concerned. We have the following

results about the coexistence of the normal and cancer cells.

Theorem 4.3 Suppose that

α1ω − εγ L >
β1 K2

α2
(α2ω − γ L) > 0 and α2ω − γ L >

β2 K1

α1
(α1ω − εγ L),

(4.5)

then system (4.1) has at least one positive periodic solution. Moreover, if

α1 > K1β2 and α2 > K2β1, (4.6)

the positive periodic solution is unique and globally asymptotically stable.
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Proof Based on inequalities of (4.5), it is easy to verified that conditions of Corollary

1 in paper [23]. The existence of positive periodic solutions of system (4.1) is now

guaranteed. Then, we prove the uniqueness and globally asymptotical stability of the

positive periodic solution under conditions of (4.6).

Let (x∗
1 (t), x∗

2 (t)) be a positive periodic solution of system (4.1). Take

V (t) = | ln x1(t) − ln x∗
1 (t)| + | ln x2(t) − ln x∗

2 (t)|,

where (x1(t), x2(t)) is any solution of system (4.1) that different from (x∗
1 (t), x∗

2 (t)).

Calculating the derivative of V (t) along system (4.2), we have

V̇ (t)= sgn(x1 − x∗
1 )

[(

α1 − εD(t) −
α1

K1
x1 − β1x2

)

−
(

α1 − εD(t) −
α1

K1
x∗

1 − β1x∗
2

)]

+ sgn(x2 − x∗
2 )

[(

α2 − D(t) −
α2

K2
x2 − β2x1

)

−
(

α2 − D(t) −
α2

K2
x∗

2 − β2x∗
1

)]

= −
α1

K1
|x1−x∗

1 | −
α2

K2
|x2−x∗

2 |

+sgn(x1−x∗
1 )(−β1)(x2−x∗

2 ) + sgn(x2−x∗
2 )(−β2)(x1−x∗

1 )

≤ −
( α1

K1
− β2

)

|x1 − x∗
1 | −

( α2

K2
− β1

)

|x2 − x∗
2 |.

Consequently, from condition (4.6), we have V̇ (t) < 0 for all t ≥ 0. By Lyapunov

stability theory (see [24, 25]), the positive periodic solution is unique and globally

asymptotically stable. 	


Note that condition (4.6) does not involve the treatment dose γ , which is undoubt-

edly an important parameter in the cancer treatment model. In the following, we will

establish some new sufficient conditions for the globally asymptotic stability of the

positive periodic solution applying a similar method as in [26].

Theorem 4.4 Suppose that conditions (4.5) hold and let (x∗
1 (t), x∗

2 (t)) be a positive

periodic solution to system (4.1). Further, let

b11(t) =
α1

K1
x∗

1 (t), b21(t) = β2x∗
1 (t), b22(t) =

α2

K2
x∗

2 (t), b12(t) = β1x∗
2 (t),

(4.7)

if

∫ ω

0

max
{

− b22(t) +
(b12(t) + b21(t))

2

4b11(t)
,−b11(t) +

(b12(t) + b21(t))
2

4b22(t)

}

dt < 0,

(4.8)

then (x∗
1 (t), x∗

2 (t)) is globally asymptotically stable.

Proof Let (x1(t), x2(t)) be any positive solution of system (4.1) with initial values

xi (0) > 0, i = 1, 2. It is easy to obtain the permanence of the system, i.e., there exist

two constants M > m > 0 such that m < xi (t) < M for t > 0, i = 1, 2, under

conditions (4.5) (see [26] and the reference cited therein).
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Let

u1(t) =
x1(t)

x∗
1 (t)

− 1, u2(t) =
x2(t)

x∗
2 (t)

− 1. (4.9)

Obviously, (u1(t), u2(t)) satisfies differential equations

{

u̇1(t) = (1 + u1(t))
(

− b11(t)u1(t) − b12(t)u2(t)
)

,

u̇2(t) = (1 + u2(t))
(

− b21(t)u1(t) − b22(t)u2(t)
)

,
(4.10)

where bi j (t), i, j = 1, 2 are defined by (4.7). Then the required assertion in the

Theorem is equivalent to the statement that

lim
t→+∞

|u1(t)| = 0 = lim
t→+∞

|u2(t)|. (4.11)

Take a solution (u1(t), u2(t)) of (4.10) with u1(0) > −1 and u2(0) > −1. Since the

system (4.1) is permanent, we get u1(t) > −1 and u2(t) > −1 for all t ≥ 0. Define a

Lyapunov function V (t) by

V (t) = u1(t) − ln(1 + u1(t)) + u2(t) − ln(1 + u2(t)).

Note that V (t) > 0, except for the zero solution u1(t) ≡ 0 ≡ u2(t) in which V (t)

vanishes. Calculating the derivation of V (t) along with (4.10), we have

V̇ (t) =
u̇1(t)u1(t)

1 + u1(t)
+

u̇2(t)u2(t)

1 + u2(t)
= −b11(t)u

2
1(t) − (b12(t)

+ b21(t))u1(t)u2(t) − b22(t)u
2
2(t).

By the same calculation as Theorem 5.2 in [26], we deduce that

V̇ (t) ≤ λ(t)
(

1 − e−(u1(t)+u2(t))(1 + u1(t))(1 + u2(t))
)

= λ(t)(1 − e−V (t)), (4.12)

where

λ(t) = max
{

− b22(t) +
(b12(t) + b21(t))

2

4b11(t)
,−b11(t) +

(b12(t) + b21(t))
2

4b22(t)

}

.

Integrating (4.12) from 0 to t and taking the periodic of λ(t) into account, we obtain

∫ V (t)

V (0)

ev

ev − 1
dv ≤

∫ t

0

λ(s)ds =
t

ω

∫ ω

0

λ(s)ds + q(t).

Since q(t) is ω-periodic and
∫ ω

0 λ(t)dt < 0, then

lim
t→+∞

∫ V (t)

V (0)

ev

ev − 1
dv = −∞,
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Table 5 Values of parameters for pulsed radiotherapy

Parameters Values for Th.4.1 Values for Th.4.2 Values for Th.4.3 Data sources

α1 0.156 0.01 0.31 [3]

α2 0.14 0.162 0.38 [3, 21]

K1 1 1 1 [3, 9]

K2 1 1 1 [3, 9]

β1 0.2 0.02 0.32 [3]

β2 0.13 0.12 0.27 [3]

γ 0.2∼14 0.2∼14 0.2∼14 [3, 9]

ε 0.3 0.3 0.3 Assumption

ω 33.6 33.6 33.6 Estimation

L 0.5 0.5 0.5 Estimation

which implies that V (t) → 0 as t → +∞. Hence, statement (4.11) is true. This

completes the proof. 	


Remark 4.1 Theorem 4.4 involves radiation dose γ in the conditions that guarantee

the global stability of the positive periodic solution. This is an improvement compared

with conditions of Theorem 4.3. But a clear disadvantage is that they are difficult to

verify. Hence, in the following, we only numerically illustrate Theorem 4.3.

4.3 Numerical validation for pulsed radiotherapy

In this subsection, we will verify the existence and global stability of ω-periodic

solution numerically for cancer eradiation periodic solution (Theorem 4.1), cancer

win periodic solution (Theorem 4.2) and coexistent periodic solution (Theorem 4.3),

respectively. Futher, we will discuss the effect of variation of radiation dose γ on these

periodic solutions. Values of parameters for Theorems 4.1, 4.2 and 4.3 are given in

Table 5. But note that they do not come from any real cell populations.

Usually, cancer radiotherapy is treated 6 weeks, 5 times a week, 30 times totally

as a full course of treatment, and at a time lasts no more than 30 min. Hence, we can

regard ω = 6×7×24/30 = 33.6 hours as one treatment period, and consider L = 0.5

hours as one radiation time. Throughout Figures 4.1−4.3, we always choose the initial

values x1(0) = 0.8 and x2(0) = 0.5.

It is easy to verify that values for Theorems 4.1, 4.2 and 4.3 in Table 5 satisfy

all conditions of the corresponding Theorem. Conditions of Theorem 4.1 require that

the radiation dose γ must satisfies α2ω/L < γ < α1ω/(εL), i.e., 9.4080 < γ <

34.9440. Figure 6 illustrates the existence and globally stability of cancer eradiation

33.6-periodic solution under three different radiation doses γ , i.e., γ equals 10, 12

and 14 respectively. It can be seen from Fig. 6A1–A3 and B1–B3 that as the increase

of γ , the cancer eradiation periodic solution will move down and the amplitude will

increase. This inversely proves that the lower the dose, the better, if the cancer can

be eradicated. Theorem 4.2 provides restrictions of radiation dose γ under which the
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Fig. 6 The time series A1–A3 and the phases B1–B3 of system (4.1) under three different γ values (γ =

10, 12, 14). Obviously, system (4.1) has a globally stable cancer eradiation 33.6-periodic solution

cancer win periodic solution exists and is globally stable. Figure 7 demonstrates three

different cancer win periodic solutions under different radiation dose γ , which satisfies

the conditions of Theorem 4.2, i.e, 2.24 = α1ω/(εL) < γ < α2ω/L = 10.8864.

Obviously, the cancer win periodic solution will move down as the increase of γ , but

it does not disappear within the restriction of the dose. Figure 8 shows the existence

and global stability of the coexistent periodic solutions under conditions of Theorem

4.3, in which the restriction of γ is 1.2396 < γ < 10.0066. It is interesting to

observe that as the increase of the radiation dose γ , the concentration of the normal

cells will increase and the concentration of the cancer cells will decrease. But we

cannot eradicate the cancer cells no matter how to choose the γ under the constraint

of 1.2396 < γ < 10.0066.

It follows from A4 and B4 in Fig. 7 and A7 and B7 in Fig. 8 that the same

radiation dose γ (γ = 3) leads to different periodic solutions and stabilities.

These mainly caused by the different selections to the proliferation and compe-

tition coefficients on the normal and tumor cells. From Table 5, comparing the

values of α1, α2, β1 and β2 that taken in Theorems 4.2 and 4.3, we find that

(α1, α2, β1, β2)T h.4.2/(α1, α2, β1, β2)T h.4.3 = (31, 2.35, 16, 2.25), which means

that a larger proliferation and competition coefficients of healthy cells will be beneficial

to the fight between healthy and tumor cells and then be beneficial to the transition from

cancer win periodic solution to the coexistent periodic solution. This phenomenon is

consistent with the real facts.

5 Conclusion and discussion

In this paper, we took advantage of a pair of ordinary differential equations to model

the dynamics between the normal cells and cancer cells for the cancer treatment by

radiotherapy. We firstly presented a continuous radiotherapy cancer treatment model.
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Fig. 7 The time series A4–A6 and the phases B4–B6 of system (4.1) under three different γ values (γ =

3, 5, 7). Obviously, system (4.1) has a globally stable cancer win 33.6-periodic solution
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Fig. 8 The time series A7–A9 and the phases B7–B9 of system (4.1) under three different γ values (γ =

3, 6, 9). It is observed that system (4.1) has a globally stable coexistent 33.6-periodic solution

We figured out all the equilibrium points of the model and make a comprehensive

analysis on the stabilities of these four equilibrium points. The results of the analysis

demonstrated the quantitative relationship between radiation dose and cancer’s cure

or spread when the other parameters of the model are assumed to be unchanged.

Then, we reconsidered the pulsed radiotherapy cancer treatment model presented in

[12] and investigated the existence and stability of boundary periodic solutions and

positive periodic solution by applying new methods that are different with the methods

in [12]. Moreover, we performed numerical simulations to discuss in depth the effect

of radiation dose on the cure or spread of the cancer, which are different from the
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simulations in [12] that focus on the effect of the treatment time on the cancer’s cure

or spread.

The cancer treatment model discussed in this paper is only based on one treatment

measure, radiotherapy. Recently, immunotherapy has been studied extensively and

pre-clinical data and phased clinical studies have emphasized that immunotherapy

can enhance the efficacy of radiotherapy [27]. It may be more effective to treat cancer

by combining radiotherapy with immunotherapy. This must be an interesting problem

and deserve to carry out in the further work.
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