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Abstract

A system of two partial differential equations with fractional diffusion is considered in this study. The system extends the
conventional Zakharov system with unknowns being nonlinearly coupled complex- and real-valued functions. The diffusion is
understood in the Riesz sense, and suitable initial-boundary conditions are imposed on an open and bounded domain of the
real numbers. It is shown that the mass and Higgs’ free energy of the system are conserved. Moreover, the total energy is
proven to be dissipated, and that both the free and the total energy are non-negative. As a corollary from the conservation of
energy, we find that the solutions of the system are bounded throughout time. Motivated by these properties on the solutions
of the system, we propose a numerical model to approximate the fractional Zakharov system via finite-difference approaches.
Along with this numerical model for solving the continuous system, discrete analogues for the mass, the Higgs’ free energy
and the total energy are we provided. Furthermore, utilizing Browder’s fixed-point theorem, we establish the solubility of the
discrete model. It is shown that the discrete total mass and the discrete free energy are conserved, in agreement with the
continuous case. The discrete energy functionals (both the discrete free energy and the discrete total energy) are proven to be
non-negative functions of the discrete time thoroughly the boundedness of the numerical solutions. Properties of consistency,
stability and convergence of the scheme are also studied rigorously. Numerical simulations illustrate some of the anticipated
theoretical features of our finite-difference solution procedure.
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reserved.
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1. Introduction

The design of discrete models for solving conservative systems from physics has been an interesting area of
numerical analysis and simulations. Examples of well-known treatments include approximations of the unsaturated
flow equation [4], two-phase flow equation in porous media [3], nonlinear Schrédinger equation with wave oper-
ators [45], classical Rosenau-regularized long-wave equation [32], coupled fractional Klein-Gordon—Schrddinger
equation [15], Cahn—Hilliard equations in complex domains [37] and certain generalized hydrodynamic phase-field
model equations with different densities [14,22]. It is worth pointing out that some of the first conservative media
treated numerically under this perspective were the nonlinear Schrédinger equation [6], sine—Gordon equation [7]
and nonlinear Klein—Gordon equation [12]. These efforts led to the development of the discrete variational derivative
methods [8]. It is also important to mention that those continuous systems are usually derived from a conserved
quantity which is related to an energy, either a Hamiltonian or a Higgs’ free energy, and the governing equations
may be derived from them using standard arguments from calculus of variations [13]. The derivation in the discrete
case is usually carried out mimicking the continuous, and discrete forms of the formula for integration by parts are
required to that end. More generally, it is necessary to consider employing discrete operators which are self adjoint
and positive in order to guarantee the existence of some square-root operators [27]. Under these circumstances,
a general form of the well-known formula for integration by parts may be readily applied. Standard variational
arguments may guarantee the conservation of some energy-like functionals.

On the other hand, the recent development of fractional calculus has led to the design of discrete models for
solving conservative systems with fractional-order operators [10,23]. In fact, it has been established that some
fractional operators satisfy extensions of the formula of integration by parts and, thus, the use of variational
arguments can be feasible [1]. The fact that these arguments are sometimes susceptible to be translated to the
discrete case, has led to the development of conservative schemes for solving space-fractional partial differential
equations. To illustrate these facts, there are numerous reports on numerical schemes for the nonlinear fractional
Schrodinger equation [39], strongly coupled nonlinear fractional Schrodinger equations [35], fractional Klein—
Gordon—Schrodinger equations [41], fractional sine—Gordon equation [42], fractional Klein—Gordon—Schrodinger
system with generalized Yukawa interaction [2], two-component fractional Gross—Pitaevskii system [36], fractional
Higgs’ boson equation in the de Sitter space—time [28], fractional multidimensional Klein—Gordon—Zakharov
equations [21], and fractional Kawarada equations [46]. It is worth pointing out that most of these reports consider
nonlinear systems with fractional spatial partial derivatives of the Riesz or the Riemann-Liouville type [29] in
view that they satisfy suitable properties which resemble the formula for integration by parts. As a consequence,
variational arguments may be applied in their analysis, and conservation properties may be theoretically validated.

From the point of view of the discrete analysis, various discretizations for space-fractional operators of the
Riesz type have been proposed. For example, fractional-order centered differences were introduced to approximate
Riesz derivatives of fractional order with a quadratic order of consistency [30,31]. It is worthwhile mentioning that
various numerical models that conserve some relevant physical quantities have been designed using this approach in
order to solve space-fractional systems with Riesz derivatives. As examples, we can mention numerical methods to
solve the nonlinear fractional Schrodinger equation [39], a double-fractional conservative Klein—Gordon—Zakharov
system [24], a space-fractional Fermi—Pasta—Ulam-Tsingou medium [20], just to point out some examples. However,
it is worth pointing out that there are other different discretizations for Riesz fractional operators which have
been employed successfully in the literature, like weighted-shifted Griinwald-Letnikov differences, which have
been employed to solve Riesz variable-order fractional diffusion equations [16] and Hamiltonian wave equations
which extend the fractional nonlinear Klein—Gordon equation [11], among other systems. As the fractional centered
differences, the weighted-shifted Griinwald-Letnikov differences have a second order of consistency. The advantage
of the former approach over the latter is that they are relatively easy to implement computationally, while their
disadvantage is that they require more regularity on the solutions to guarantee the order of consistency.

In the present study, we will investigate a multi-fractional form of the generalized Zakharov equations [38]. These
equations have been used intensively to model plasmas with some quantum corrections [9]. In this manuscript,
we will focus at a one-dimensional system defined over a closed and bounded interval of R, considering spatial
fractional derivatives of the Riesz type and homogeneous Neumann boundary conditions at the endpoints. As we will
see, the system under investigation possesses a mass functional which is conserved throughout the time. Moreover,
we will show that the Higgs’ free energy of the system is conserved and non-negative. Furthermore, the total energy
of the system is also non-negative and dissipated with respect to time. The boundedness property of the solutions
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of this model will be a straight-forward consequence of these results. Based on these facts, we will propose a finite-
difference discretization of the system utilizing fractional-order central differences. Among the theoretical results
reported in this manuscript, the existence of solutions using will be proven via a fixed-point theorem. Discrete forms
of the mass, the free energy and the total energy of the system will be proposed. Discrete analogues of the results
obtained for the continuous system will be established. More concretely, we will prove that the discrete mass and
the discrete Higgs’ free energy are conserved, and that the discrete free and total energies are non-negative functions
under suitable parameter constraints. The consistency, stability and convergence of the finite difference scheme will
be proven. Computational simulations will illustrate and validate some of our theoretical results.

2. Preliminaries

Let I, ={1,...,q} and Tq = I, U{0} for ¢ € N*. We use the symbol X to denote the closure of a set X € R”
under the usual topology of R”, where p € N* is a fixed natural number. For the remainder, we will suppose that
T > 0 represents a fixed period of time, and B = (x, xg) is a nonempty interval in R. Define {2 = B x (0, T),
and agree that all the functions of this study will be defined on the set 2 € R2. Moreover, we may extend the
domain of definition of our functions to R x [0, 7] whenever needed, and by allowing them to be equal to zero on
R\ [xz,xg]) x [0, T].

Definition 2.1 (Podlubny [34]). Let I' denote the usual Gamma function which extends the factorial function.
Suppose that f : R — R is any function, and assume that n is a non-negative integer and « is a real number, with
the property that n — 1 < o < n is satisfied. Whenever it exists, the Riesz fractional derivative of f of order o at
x € R is given by

df(x) 1 dr /°° 1(€)dg

d|x|® 2cos(F)(n —a) dx" J_o |x — g1
When u : R x [0,T] — R, the Riesz fractional partial derivative of u of order o with respect to x at
(x,1) €e R x [0, T] is given by (when it exists)

ux,1) —1 " /00 u(E, 1)de

Axl®  2cos(E)(n —a) dx" J_o |x — £

2.1)

2.2)

For any z € C, we will represent its complex conjugate using the standard notation z. Let us define the set
Lipy(2)={f:2 — F: f(-,1) € L,(B), foreacht € [0, T]}, where p € [1,00) and F' = R, C. On the other
hand, for any f € L, ,({2), we convey that

1/p
”f”x,P = (/lf(x’ t)lpdx> ’ vt € [0’ T]v (2'3)
B
which is a function of ¢ € [0, T']. Moreover, for each pair f, g € nyz(ﬁ), define the following function of ¢:

(f.8),= ﬁf(x, Hgx,t)dx, Ytel0,T]. 2.4)
B

For the remainder of this work, we fix «, 8 € (1, 2]. Assume that # and m are a complex- and a real-valued
functions, respectively, whose domains are both equal to 2. Moreover, let ug : B — C and mg,m; : B — R
be sufficiently smooth functions. Under these circumstances, the fractional extension of the Zakharov problem
investigated in this work is given by the system

b ) | STuCn D) e Dt 1) — . OPuGe 1) = 0, Y(x.1) € £,

Jat d|x|¢
32 0 Pm(x,r) 9P ik
m(x, 1) "m(x,1) (Jutx, DI*) —0. Vone Q.
ar? 9)x|? 3x|? 2.5)
u(x, 0) = up(x), m(x, 0) = mo(x), Vx € B,
. om(x, 0)
subject to — = mi(x), Vx € B,

u(xp,t) =u(xg, 1) =0, m(xg,t) =m(xg, 1) =0, Vrel0,T].
3
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Notice that the case @« = B = 2 is precisely the well-known Zakharov system [43,44]. For convenience, we define
the function v : 2 — R in such way that

3fu(x, 1) _ om(x,t)
axlf ot

. Y(x, 1) e 0. (2.6)

Definition 2.2. Let u, m be a pair of functions satisfying the initial-boundary-value problem (2.5). The mass density
of the system is given by the expression M(x, 1) = |u(x, 1)|?, for each (x, 1) € £2. In turn, the total mass at the
time t € [0, T] is calculated through M(z) = ||u||)2€y2. Let us define the Hamiltonian of our fractional Zakharov
equations as

a 2
H(x,t)z'a—': FHp(x, 1), V1) e Q. .7)
Here,
/2y, |2 #F P o1, 1,
HMx,t):’W + |ul? +mu* + = ‘8| e Em +§|u|, Y(x,t) e (2 (2.8)

denotes the Higgs’ free local energy density component, and v satisfies Eq. (2.6). For the sake of simplification
of the nomenclature, we obviated the dependence of all the functions on the right-hand side of this identity with
respect to (x, t). In turn, the associated total energy of the system at the time ¢ € [0, T'] is provided then by

o0 au ||?
5(t)=/ H(x, )dx = ‘ 2 + Er(2), (2.9)
—00 x,2
where
0 2u |° ) LTSN S ORI
Er = HW X’2+|lullx + (m, lul?) HaMM x2+§||mllx,2+5||u||x,4 (2.10)

represents the Higgs’ free energy at the time 7.
Theorem 2.3 (Conservation of Mass). If u and m satisfy the problem (2.5), then the total mass is conserved.

Proof. Take the imaginary part of the inner product between the first equation of (2.5) with u to obtain that

u 0%u
0=Im(i—
<’ TR

) 1d
—u—mu— |ul"u,u —Ed—llu”)(z, vVt e (0, T). 2.11)

The property of conservation of mass readily follows now from these identities. [J

Theorem 2.4 (Conservation of Free Energy). If u and m satisfy (2.5), then the free energy is non-negative and
constant.

Proof. Using the first equation of (2.5), it follows that

0=R 8u ou _R 0%u ut + | ou
e =Re u+mu+ ul"u, —
8 ot 8| |°‘ ot [,
2

8"‘/214
" 2dr H x|,

We conclude from this that 5}(0 =0, for each t € [0, T], as desired. The non-negativity of the function & readily
follows from its definition and the fact that (m, |u|*), < lm|2, + 1llu]l?, by Young’s inequality. OJ

a2y |

AxIP2 5

2 2 1
Fllullin + Om fulfe + 5

1 2 1 4
+ E”m”x,z + EIIMIIM , Vie(©,T1).

(2.12)
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Corollary 2.5 (Boundedness). Assume that u and m satisfy the initial-boundary-value problem (2.5). Suppose also
that u, 3%u / 0x% € L, 5(f2). Then there exists a constant C which depends only on the initial conditions, such that

[l ] v [
+ llull 2+H—
a|x|“/2 B K1RT G I

Moreover, the functtons (2.9) and (2.10) are both non-negative.

+mli,<C, Vtel0,Tl. (2.13)
x,2

Proof. Notice that Theorem 2.4 assures that there exists a constant Cy € R such that £x(¢) = Cy, for each ¢ € [0, T].
It is worth pointing out that Cy = £¢(0), which is entirely expressed in terms of the initial conditions. On the other
hand, observe that |(m, [u|?)| < %(||m||§ + ||u||i) holds for all ¢ € [0, T]. Therefore, it follows that

2 9612y |2 L3
3C) = Ha| | +||u||xz—|<m ul?) |+H8| aa |+ lmls Sl »
9%/ 2 , 9812y |2 . \ :
>l el | o | Il el .
‘ el lluell 2 ‘ T lmlly + llully 4

Finally, we readily reach the conclusion of this result by letting C = 3Cy. [
Theorem 2.6 (Dissipation of Energy). The total energy of the system (2.5) is dissipated.

Proof. We compute firstly the derivative of the first equation of (2.5). Next, we take the imaginary part of the inner
product between that derivative and  to obtain, for each ¢ € [0, T'], that

u B (0%, o\ du 1d | ou|? dm 0w\ du
0=1Im{(: + — —u—mu—|ul‘u),—) =-— —Im(u| —4+u—1),—) .
ot tn ot ar ) ot ],

a2 alx|® Torf,  2dt
(2.15)
Using the property on the conservation of free energy and the last identity, we notice that
om ou\ Ju
E't)=2Im ,—) , Vte(,T). 2.16
(1) <u<8t+ a;) at>x (%) (2.16)

We conclude that the total energy of the system (2.5) is dissipated, as desired. [l

Before we close this section, we introduce the concept of fractional centered differences which will be the
cornerstone to provide consistent a discretization for Riesz-type fractional partial derivatives. For the remainder, we
will employ the discrete spatial step-size h = (xg — x)/J.

Definition 2.7 (Ortigueira [31]). Suppose that f : R — R is a function, and let « and & be real numbers such that
ae(0,1)U,2] and i > 0. Let (g,({“)),fi_oo be the two-sided infinite sequence given by

@ _ (=DM +1)
BT TE —k+ DG +k+1)

When it exists, the fractional-order centered difference of order o of f at the point x is defined as

Vk € Z. (2.17)

A f(x) = Z 8 f(x —kh), Vx eR, (2.18)

It is well known [40] that the sequence (g(“) e _o satisfies the following properties when o € (0, 1) U (1, 2]:

(ii) g = g(o‘k) < 0 for all k > 1, and

(i) Z g =

k=—00
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Moreover, if all the derivatives of the function f : R — R up to the order five are integrable over R and & > 0,
then the following consistency property holds true [40]:

d® f(x)

— + 0O, VxeR. (2.19)
d|x|

1
—h—aAZf(x) =

3. Numerical model

For the remainder, we will use the symbol F to denote any of R or C. Let J and N be arbitrary natural numbers,
and introduce the computational constant T = 7 /N. Fix regular partitions of [x,, xg] and [0, T'], respectively, in
the following way:

Xp =X <X <" <X; <--- < XJ=XR, VjGTJ, 3.1)
and
O=ty<ti<--<ty<---<ty=T, Vnely. (3.2)

Let us set ug‘ = u(x;,t,) and m;' = m(xj, t,), for each (j,n) € 1, x Iy, and agree that U.;-’ and M;’ denote
computational estimates for the exact values of u’; and m’;, respectively. We employ the notation V), to represent
the vector space of all [F-valued functions defined on the set {x; : j € I;} which vanish at xo and x;. If V € V},
we agree that V; = V(x;), for each j € 1,. Finally, set U" = (Uj'f) €V, and M" = (M;‘) €V, and let

Uu=unm and M = (M")

jE?_/ jETJ

11671\] n€7N :

Definition 3.1. Let 1 < g < oo. The functions {-,-) : Vi, x Vy = Cand || - |lg, | - lleo : V» — R are defined by

(U.V)=h> UjV;, YU, Ve, (3.3)
Jely

UL =h Y |U;|% YU €W, (3.4)
Jely

Ul = max {|U;]: jel,}, UeW. (3.5)

Moreover, for any V = (V") C V;, we define |||V ||| = sup{[|V"|loo : 1t € Iy}.

ne?N

Definition 3.2. Let V be U or M, and assume « € (0, 1) U (1, 2]. Introduce the discrete operators
ynr  _yn

8,V = %, Y(j,n) €l x Iy, (3.6)
V{‘L+1 _yn _ _

sV =L —~, Y(j,n)el; x In_y, (3.7

T

vith pyn -

wVj = % V(j,n)el; xIy_y, (3.8)

n+l1 n—1
/L‘”V”—u V(j.nyel; x1 (3.9)
t j = ) 5 J» J N—1- .

Using these definitions, we introduce the operators §'?) VIi=808 V], 8,(1)V;’ = j,; 08, V;“l, 8 V=806 Vj’fl

and ugz)Vj‘ = ;0 /,L,V]-rhl, for each (j,n) € I;_; x Iy. Moreover, let

1 o o . _
sy = - Z gOVE YGun) e Iy x Ty. (3.10)
ké]j

Lemma 3.3 (Macias-Diaz [19]). Assume that « € (1,2] and U, V € V. Then (—8@U, V) = (%7U, s v). O
6



R. Martinez, J.E. Macias-Diaz and Q. Sheng Mathematics and Computers in Simulation 202 (2022) 1-21

With this nomenclature, the discrete model proposed in the present manuscript to approximate the solutions of
(2.5) is summarized as the following coupled system of algebraic equations:

807 + 8@V Ur — Ut = MUy = (0P (wPuy) =0, vGm e,
§OMY — 8P M —sP\UT =0, V(n) el
UY = uo(x;), M) = mo(x)), Vjely, G.1D)
such that 3 p;"U? = uo(x),  &"M9 =m(x)), Vj el
Ul =U"=0, M}=M:=0, Vnely.

The first equation of this system yields an expression with complex parameters in which the only unknown is U ;7“.
Moreover, the second equation of (3.11) is a fully explicit difference equation which can be easily solved for M;’“,
for each (j, n) € I. Using then the initial data, we readily obtain that for each j € I,_;, the following identities
hold:

U} =up(x) + it [5§“>u0(x,) — up(x;) (1 + M)+ % (lUjl2 + [2uo(x;) — U}Iz))} ; (3.12)
2
M =mo(x;) + Tmy(x)) + %3,@ (mo(x;) + luo(x)I) . (3.13)

For the remainder of this manuscript, we will employ the sequence (V"), 7, in V, which satisfies 8¢ )V]" =§M7,
for each (j,n) € I,_1 X Tn_1. Under these circumstances, (U, M) will denote a solution of (3.11).

Lemma 3.4 (Macias-Diaz [19]). If V € V), and a € (1, 2] then

@ [8¢77V)2 < 2 g§>7‘;j||V||§,
b) 18«9V |3 = 18752V |]3,

2
© I8VIB =2 gi"h =18V IZ < 4 (g§h' ) IVIB:

In a first stage, we will prove the existence of solutions for the numerical model (3.11). The cornerstone in our
proof will be the following fixed-point result from the standard literature.

Lemma 3.5 (Browder Fixed-point [5]). Let (H, (-, -)) be a finite-dimensional inner-product space, let ||| : H - H
be the norm induced by (-, -), and suppose that F : H — H is continuous. Assume that there exists A > 0 such
that Re(F(z), z) > 0, for all z € H with ||z|| = A. Then, there is z* € H, such that F(z*) =0 and ||z*|| < M.

Theorem 3.6 (Solubility). The model (3.11) is solvable for any set of initial conditions.

Proof. Notice that the approximation (U?, M) is defined by the initial conditions. Proceeding inductively, suppose
that (U"~!, M"~1) and (U", M") have been already obtained for some n € Iy_;. In a first stage, observe that the
second equation of (3.11) can be written as A¥ = b, where ¥ is the unknown vector of approximations at time
t,+1, and the matrix A and the vector b, are given by

2.0 00 --- 00 0 0
o100 -- 000 O0
o o1 o0 -~ 000 O
- (3.14)
0 0 0 O 0 1 0
0O 0 0 o0 - 0 1 0
0 0 0 O 0 0 2
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and
0
sOWEE + 80 My + 5 (2my — M)
(S)((ﬂ)|Un|2 + 8)(/3)M" + 1 oMY — Mn—l
b= 2 2. rz( 2 2 ) . (3.15)
SN P+ 80 M L+ (M), - M)
0

Since A is nonsingular, there exists a vector M"*! which satisfies the system consisting of all the second difference
equations of (3.11) at time #,. On the other hand, observe that we can rewrite the first equation of (3.11) as

WUt — U i [—3;%5%7 + U+ MU + (ui”wﬂz) (,A”U;?)] —0. (3.16)
Now, let us consider the function F : V,, — V},, where each of the component functions of F is given by
Fin =) = U™ iz =@ 4 o)+ M)+ (wPWUsP) i ] VeV je . (3.17)

Then, taking the real part of the inner product between above identity and n, we obtain

1
Re(F(n),n) = [nll3 —Re(U" ", n) > Inll3 — (U™, n)| > 3 (Il = 11U "13) . (3.18)

Applying Browder’s fixed-point theorem with A = [|[U""!||3 + 1, it follows that there exists a vector U™ € V),
which satisfies the remaining equation of (3.11). O

Definition 3.7. Let (U, M) be a solution of (3.11). The discrete mass density of (3.11) at the point x; and time ,
is given by u,|Uj’.’|2, for each (j,n) € I;_1 x Iy—;. In turn, the total discrete mass of the system at time ¢, is given
by u/|U" ||§, for each n € Iy_;. The discrete energy density at the point x; and time ¢, is given by
2 1 2
H} = 18,U} P + w8 US | + wlU P + S 1872 v]|

: { L ) X (3.19)
+ MM+ S U S (MO MR VG € L X Iy
In turn, the total discrete energy at the time ¢, is defined, for each n € In_1, by
E"=h) H}=|8U"]}+ E}, (3.20)
jeJ
where
1 1 1
E} = w82 U 3 + w U5 + Enrsy’/”V"n% + §<M"+‘, M")y + Eutnv"ni
3.21)

1
+ 5 [(M”, |Un+1|2) + <M”+1, |Un|2):| ,

Here, the nomenclature |U"|> = (|U ;.’|2) is observed, for each n € Ty.

jel;

Theorem 3.8 (Conservation of Discrete Mass). If (U, M) is a solution of (3.11), then the total discrete mass is
conserved with respect to the discrete time.

Proof. Rewrite the first difference equation of the discrete model (3.11), compute the inner product on both sides
with MEI)U 7 and take imaginary parts. As a consequence, we readily check that

. n n 1 n 1 n
0= Im(—za,(”u U )= SVNUME = Soum U3, Vi € Iy, (3.22)

which yields what we wanted to prove. [
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Theorem 3.9 (Conservation of Discrete Free Energy). Suppose that (U, M) is a solution of (3.11). Then the discrete
free energy EY. is constant. Moreover, if7:2g0 h'=F <1, then E% >0and E" > 0, for each n € Iy_;.

Proof. Notice that, for each n € Iy_,, the following identities are satisfied:
0=Re <i8,(1)U”, 5,‘“U"> - Re<—8§°‘)u§1)U’l + 1O+ Mo 4 (u§1)|U"|2) (Mﬁ”U") : 3,“>U">,
(3.23)
0= (=82M" +58PM" + 8P \U"?, u, V') = %at (18E2V=12 4 (M, M"Y + (U P8 M™). (3.24)

Using identities of [26] and calculating the right-hand side of the first of these identities, we obtain that

1
81t <||a§“/2>U“||§ + U3+ §||U"1||i) +(M",88'U") =0, Vnely_. (3.25)

Observe now that the identity (M",8{"U") + (|U"|*, 8" M") = 1s, [(MH, U™ ) + (M™, |U”*1|2)] is satisfied,
for each n € Iy_. Finally, sum (3.24) and (3.25) to reach §; E }*1 = 0. For the second part, notice that Lemma 3.4(c)
implies that A#~1||8, M" |2 < 2g(()’3 )||(Sfc‘3 / 2)V"||%. Moreover, rearranging terms, using some algebraic simplifications
and applying the Cauchy—Schwarz inequality, we may observe that

2

T
(M"Y M"Y = M5 — 7||&M"||§, Vn € Iy_i, (3.26)

n n 2 n n n n
(MUY - (MUY < s IMP13 + UL, Vi€ Ivoy. (3.27)
AS a Consequence,
n @/2)7n)2 w2 L[R! 2 ny2
By = w8203 + wllUM M+ 7 | = =7 JISM 1320, Ve Iy, (3.28)
8o

Moreover, E" = ||6,U ”||§ + E7 > 0, whence the conclusion of this result readily follows. [

Theorem 3.10 (Boundedness). Let ug,mqg € H' and uy,m, € L*(B), and suppose that (U, M) is the solution

of (3.11) corresponding to the initial data ug, mo, u, and my. If g(()’g)'l:zhl”3 < 1 holds, then the sequences
2 2

W82 U Dnezy, o WU Dty WS PV Dz, o UM 1)yety, and (IU"|4),e7,,_, are bounded by a

common constant.

Proof. Proceeding as in Theorem 3.9, we have

1 n TZ n 1 n n 1 - n| 2 1 n n T
SHllM I3 = ZIISQ‘”V 13 + 5 M oMy < Erzgéﬂ)hl P 8By + 5 M UMM, VneTy_g.
(3.29)

From the previous theorem, we know that there is a constant Cy such that E%. = Cy, for all n € Tn_1. Then

1 1
Co = I8 PUMI; + m U5 + EIISff’/Z)V"lI% + E(M"“, M")

1

] =5 et o) (3.30)

1 n 1 n n
+ SulU" I = 5 |

Applying Young’s inequality two times, we obtain
Y e N V| P 1 VT s R (3.31)
o o ] 3o 0| < M U7, e T, (332

Using (3.31) in (3.30) and simplifying algebraically, it is easy to see that
1 l8PUM3 + U5 + %nai‘*/”V”n% + %(M"“, M") — %utnM"n% <Cop, Vnely_. (3.33)

9
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Now, take the sum between both sides of (3.29) and (3.33) and simplify again. As a consequence, it follows that
1 —

Co = w8 U5 + U134 5 (1 = 220 ) 182V, vn e Ty, (3.34)

Using Lemmas 4.3 and 4.4 of [25], it readily follows that |31 V" |34+ (M" !, M™) < 2 (||5§f‘/2)v" 12 + | M™3).
Removing now the first two terms on right-hand side of (3.30), and using (3.32) and the previous remark yields

3 n 3 n 1 n 1 n T
Co =z 75182V I3 + Toul MM = ZIM" I = SullU™N3, - Vi€ Ty, (3.35)
Since u,||U" ||, is bounded, then u,||U"|4 is also bounded. Therefore, there is a constant C; such that

1 1 _
C, > Emuv"ni +Co = 55 [M™|3, Vnely_i. (3.36)

The conclusion of this theorem is obtained now by letting C = Cy +20C,. O

4. Numerical properties

In this section, we establish the main properties of the finite-difference method (3.11). More precisely, we prove
the consistency, the stability and the convergence of our numerical model. Some additional nomenclature will be
required to that end. For example, we will employ the continuous differential operators

ou(x,t)  0%u(x,t) _

Lo, =i— T u(x, t) —mx, Hu(x, 1) — lu(x, H)Pu(x, 1),  Y(x, 1) € 2, “.1)
X
B 2 m(x,t)  8Pm(x,1) 9P (|u(x, t)|2)
Ln(x,1)= 72 8|x|ﬂ 3|X|'3 , VY(x,r) e . 4.2)

Set L(x,t) = (L,(x, 1), Lnu(x, 1)), for each (x, t) € £2. Moreover, define E’} = L(x}, t,), for each (j,n) € T x1y.
For the sake of convenience, we let L" = (E;’.) jer,» for each n € Iy, and convey £ = (L")
On the other hand, let us introduce the discrete difference operators

n€7N'

Ly(xj, t,) = i(Sjl)Uj'.' + ‘Sﬁ“)uﬁ”U]'f _ MEUU;" — Mf'uﬁ”U}' _ <M§l)|U]"l|2> (;A”U}') =0, VY(,n)el, 4.3)
Lu(xj, 1) = 87 M) =8P M} — 6P |UJ P =0, V(j.m) €l (44)

As in the continuous case, we agree that L(x;, t,) = (Ly(x;, t,), Ly(x;, t,)), for each (j, n) € T, x 1y, and define
L; = L(xj,1,). Let us set L" = (Lf;) for eachn € Iy, and let L = (L")

J 67] ’ YLGTN *
Theorem 4.1 (Consistency). Suppose that u,m & ijf(ﬁ). Then there exist constants C and C' which are
independent of T and h, such that ||£ — L|||o < CET*+h% and || H — Hl|y < C'(t% + h?).

Proof. Using Taylor’s theorem, the mean value theorem and the regularity of the functions u and m, it is possible
to show that there are constants C; € R™ independent of T and A, for each i € Is, such that

—8“(’;;’ h §ut| < Ci(xr +hY), Y(i.n) e, (4.5)

% —8Wu | < G+, VG €L (4.6)

u(xy, ty) — | < Cye?, V(i m) e, 4.7)

Gy, e, ) = mip | < Coe, VGim e 1, (438)

e )Py 1) = (1)) ()| = €522 vim e 1. (49)

From the triangle inequality, there exists a constant C* € Rt which is independent of t and /, with the property
that || Ly — Lylll < C*(t?+h?). In similar fashion, there exist constants Cg, C;7, Cg € R* which are independent

10
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of both 7 and £, for which the inequalities

3% m(x;, t,) _ 5@

o Cml| < Co(r? + 1), V(m) el (4.10)
8,3 ity
‘% —8Pm"| < C1(*+h%), V(. el @.11)
X
3B (lu(x;, 1, 2
% — 8P| < Csh?, Y(jn) e, (4.12)

are satisfied. Again, we use the triangle inequality to show that there is a constant C** € R* which is independent
of  and h, with the property that |||£y — Ly|l|c < C**(z? + h?). The conclusion is following letting C as the
maximum of C* and C**. The second inequality of this result can be obtained in similar fashion. O

In view to show the stability and convergence properties of (2.5), assume that (u®, u', m°, m') and @°, @', m°, m")
are two sets of initial conditions of (2.5). Moreover, suppose that the initial data for (3 1 1) are provided exactly.

Definition 4.2. If f : F — F and V € V), then we define g(f(Vj)) = f(\7j) — f(V;), for each j € I;_;.

Lemma 4.3 (Pen-Yu [33]). Let (a)”)N o and (p" ) o be finite sequences of nonnegative real numbers, assume that
T > 0 and suppose that there exists C > 0 such that

k
of < pF+Ct Zw VkeIy. (4.13)
n=0

If © is sufficiently small then " < p"eC"* for each n € Ty.
Theorem 4.4 (Stability). Let ugy, mo, iy, g € H' (B) and uy,mp,u,m € LQ(B) Suppose that (U, M) and (U M)

are the solutions of (3.11) corresponding to @®, u',m® m"y and (i°, u', m°, m"), respectively. Let " = un—un,
" =M"—M" and v" = V" — V", for each n € Ty, and define

o" = e (117115 + 118" 13) + 18PV 13,  Vn e Iy_. (4.14)

0

For t sufficiently small, there exists C € Rt independent of h and t, such that o" < ’e"*, for each n € Ty_;.

Proof. Clearly the sequence (e, ¢) satisfies the system
i + 6@ uier — uer — 5[ (M + w0y P) (WP Up)] =0, VGmel,
87 =8Py =5 (8P P) =0, VGimel, @15
subject to el = ¢ =0and ¢! =¢" =0, Vnely.

Solving the first equation of (4.15) for i 851)5’?, computing the inner product on both sides of that identity with
2/151)8", taking imaginary parts, and using algebraic arguments, there exists C; > 0 such that, for each n € Iy_,

wdille 13 = 20m (5[ (M + u071?) (Puy) ] e

< Cr ("M 3 4 e 15 + ™ 3 4+ 18" 3+ 18" 15 + g™ 113) - o
Now, since §,¢{" = 8?3)1)" for each n € TN_l, is easy to check that
2[(=87¢", o) + 8P, | = 8 (18FP VR + 57 )
> 25 (189202 4 mnc"—l 2). @.17)
Take the inner product between the second equation of (4.15) and w,v"~", use the above inequality and the fact

that (8,713 < 2P [18%¥/* v 2. Tt is possible to show then that there is a constant C > 0 such that

eSS + 8 8PPV S < Co (e 113 + w8 Pu ) (4.18)
11
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Adding (4.16) and (4.18), and taking the sum from n = 1 to m on both sides of the resulting inequality, we obtain
that

m
e (1™ 15 4 12™13) + 1L P0™ 13 < e (1013 + 12°13) + 188720013 + Car D (13 + e 18872 0" 13)

n=1

m
+Crr Y (" 15+ e I3+ e 5+ g™ 3 + D15 + 12+ 13)

n=1

< (14(6Cy +2C)0) [1te (1€°113 + 12°13) + 18#720°)3]

m

+(6C1 +2C)t Y [ (I3 + 12"13) + 188/ v"13].

n=1

(4.19)

Let now C = 6C, +2C; and p = (1 + (6C; + 2C2)7) [H, (1112 + 112°)12) + ||5§f’/2>u0||§], and apply Lemma 4.3
to reach the conclusion of this theorem. [

The following is a straight-forward consequence from the stability property of (3.11).

Corollary 4.5 (Uniqueness). Let (ug, u1, mg, m) be a set of initial conditions satisfying uo, iig, mg € H' and
uy, iy € Ly. For sufficiently small values of T, the finite-difference scheme (3.11) is uniquely solvable. [

Definition 4.6. If f : F — F and V € V), then we define /S\(f(vj)) = f(v;) — f(V;), for each j € I;_; and
F=R,C.
We establish next the convergence property of our numerical model.

Theorem 4.7 (Convergence). Suppose that u, m € ij?(ﬁ). Then the solution of the problem (3.11) converges to
that of (2.5) with order O(t? + h?).

Proof. Consider the local truncation errors of the finite-difference system (3.11) at (x;, ,,), given by

.ol 1 1 1 1 2 1 j
oy = 16} + 80wy — iy —mi = () (wiPu) VG € 1. (4.20)
2 2 i |
0_]{1 — St( )mi} _ Siﬁ)m;{ _ 8)((ﬁ)|l/t7| — O, V(], }’l) el.

By Theorem 4.1, we know that |,0;.‘| + |<7J’.“| = O(t? + h?). Then, let (u, m) be a solution of (2.5) and (U, M)
a solution of (3.11), and define e;‘ = u']' — U;’, n;? = m’} — M;Z and 9]’? = v}’ — Vj”, VY(j,n) € I. Notice that,
8;93 ) 9;‘ = 8,;7;5, VY(j,n) € 1. Moreover, the pair (€, n) satisfies the system
806 + 80 — s B[ (s + ) ()] = . VGm <
o) — 8Py =8 (8PP ) = of. VGim el *-21)
subject to f =€ =0and ny =1 =0, Vnely.

Proceeding as in Theorem 4.4, we can check that there exist constants C3 and C4 such that

weS €3 < C3 (11" 13 + €™ M5 + €™ 15 + M€ + "~ M1I5 + ™ 115 + 0" +'113)

4.22)
w3 4 818820115 < Ca (llo™ 115 + €115 + welI8PP0m113) . (4.23)
For each k € Iy_y, take o* = i, ([I€¥]13 + In*113) + 18872652 and
p* = (14 (6C5 +2C)7) [1r (%113 + 1n°113) + 18L720°13] + (C3 + Cax D (10" 15+ lo"13) . (4.24)
n=0

12
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Fig. 1. Approximate solutions for (a) Reu(x, t), (b) Imu(x, t), (¢) |u(x, )| and (d) m(x, t) versus x and ¢. The approximations were obtained
using the finite-difference method (3.11) with parameters 7 = 0.5, t = 0.01, {2 = (=50, 50) x (0, 10) and & = g = 2. Computationally, we
used a tolerance in the infinity norm equal to 1 x 1072, and a maximum number of iterations equal to 30.

It follows that there exists a constant C > 0, with the property that o <C pk, for each k € Iy_;. As a consequence,
€™ |2, 17" 12 < ~/C(x2+h?), which implies that the solutions of (3.11) converge quadratically to those of (2.5). O

5. Computer simulations

The purpose of this section is to provide computer simulations using a Matlab implementation of the numerical
model (3.11) to solve the Zakharov system (2.5). The computer code was employed a fixed-point approach to
approximate the solution of the first discrete equation of (3.11) at each iteration. Meanwhile, the second equation
of our numerical model was solved explicitly and exactly. For the sake of convenience, we provide a computer
program coded in Matlab at the end of this work, in Appendix.

To produce our simulations, we will impose homogeneous Neumann conditions on the boundary of B, along
with the following set of initial conditions:

V10— /2 1+5 , 2
———sech —x |exp|i, ——=x], 5.1
2 2 1++/5

13

uo(x) =
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Fig. 2. Left column: approximate solutions for (a) Mu(x,t) and (c) Hru(x,t) versus x and f. Right column: approximate solutions for
(b) M(¢) and (d) Ep(t). The approximations were obtained using the finite-difference method (3.11) with parameters 4 = 0.5, T = 0.01,
2 = (=50,50) x (0,10) and @ = g = 2. Computationally, we used a tolerance in the infinity norm equal to 1 x 10~'2, and a maximum
number of iterations equal to 30.

1445
mo(x) = —2 sech? +fo (5.2)

k]

14+4/5 14+4/5
—_— X —_— X

2

my(x) = —4 sech? anh (5.3)

As a matter of fact, it is worth pointing out that these functions are initial conditions for an exact solution of
the well-known Klein—Gordon—Zakharov equations which describe the propagation of Langmuir waves in plasma
physics. That exact solution is actually provided by the set of functions (see [17,18])

V10— 2 1++/5 2 _
u(x,t):T“/—sech +fo—t exp|i| | ———=x—1t]|, V1) eRxRT, (5.4)

1++/5
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Fig. 3. Approximate solutions for (a) Reu(x, t), (b) Imu(x, t), (c) |u(x, )| and (d) m(x, t) versus x and ¢. The approximations were obtained
using the finite-difference method (3.11) with parameters 4 = 0.5, v = 0.01, 2 = (—50, 50) x (0, 10), « = 1.2 and B = 1.8. Computationally,
we used a tolerance in the infinity norm equal to 1 x 107'2, and a maximum number of iterations equal to 30.

[14+5 -
m(x, 1) = —2 sech? +T‘/_x—t . V(x,1) €R x RT. (5.5)

In a first approach, we consider the system (2.5) with « = B8 = 2, and defined over the space—time domain
2 = (—=50,50) x (0, 10). Computationally, we let » = 0.5 and v = 0.01. As we mentioned previously, the
mathematical model will be solved using the finite-difference scheme (3.11), which will require a computational
implementation of a fixed-point method to solve the first difference equation at each iteration. To that end, we will set
a tolerance in the infinity norm equal to 1 x 10~!2, and a maximum number of iterations equal to 30. In the absence
of a known exact solution for the Zakharov system, we will obtain the first approximations of our methodology
using the exact solutions (5.4)—(5.5). Under these circumstances, Fig. | provides the approximate solutions for (a)
Reu(x,t), (b) Imu(x, t), (c) lu(x, t)| and (d) m(x, t) versus x and ¢. In turn, Fig. 2 shows graphs of the approximate
solutions for (a) Mu(x, t) and (¢) Hru(x, t) versus x and ¢, and for (b) M(¢) and (d) Er(¢) versus ¢. From these
results, we can readily observe that the total mass and the Higgs’ free energy are approximately conserved in the
discrete domain, in agreement with the theoretical results presented in this work.

Before closing this section, we will provide a new set of simulations using now ¢ = 1.2 and g = 1.8. All
the initial and boundary conditions along with the model and computational parameters are as before. With these
conventions, Fig. 3 shows the approximate solutions for (a) Reu(x, t), (b) Imu(x, t), (c) |u(x, )| and (d) m(x, 1)

15
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Fig. 4. Left column: approximate solutions for (a) Mu(x,t) and (c) Hpu(x,t) versus x and ¢. Right column: approximate solutions for
(b) M(z) and (d) Er(t). The approximations were obtained using the finite-difference method (3.11) with parameters 4 = 0.5, T = 0.01,
2 = (-50,50) % (0, 10), « = 1.2 and B = 1.8. Computationally, we used a tolerance in the infinity norm equal to 1 x 1072, and a maximum
number of iterations equal to 30.

versus x and z. On the other hand, Fig. 4 shows graphs of the approximate solutions for (a) Mu(x,t) and (c)
Hru(x,t) versus x and ¢, and for (b) M(¢) and (d) Ep(¢) versus r. The results show again the capability of the
finite-difference scheme to preserve the total mass of the system and the Higgs’ free energy in the discrete scenario.
Again, this is in agreement with the theoretical results provided in this work.

6. Conclusions

A space-fractional extension of the Zakharov system was introduced and investigated in this study from analytical
and numerical points of views. The system consists of two partial differential equations with nonlinear coupling,
and initial and boundary conditions are imposed on a bounded interval of real numbers. It was proven that the
fractional system is capable of preserving the mass and Higgs’ free energy throughout time, and that the total
energy is dissipated. Moreover, the total mass, the total free energy and the total energy are non-negative functions
of time. Consequently, the boundedness of the solutions of the system we established. Motivated by these results,
we proposed a finite-difference scheme to solve this system via fractional-order central difference approximations.
The discrete model proposed is a three-level scheme whose implementation was implemented by using both vector
equations and fixed-point techniques. The existence of solutions was proven rigorously through Browder’s fixed-
point theorem, and proposed discrete expressions for the total mass, Higgs’ free energy and the total energy. It was

16
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shown theoretically that the numerical model is capable of preserving the discrete mass and the discrete Higgs’
free energy. Moreover, the positivity of the mass, the free energy and the total energy was also verified. From
the numerical analysis point of view, we proved systematically properties of consistency, stability and convergence
of the algorithm. As a consequence of these investigations, the uniqueness of the numerical solutions was also
validated. Computer simulations based on the discrete model were presented. The computational experiments
illustrate important properties of our numerical solution, including its capability to preserve the mass and Higgs’
free energy.
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Appendix. Matlab code

The following is a preliminary version of the Matlab code used to approximate the solutions of the mathematical
model (2.5). The final version of the code is available from the corresponding authors upon reasonable request.

function [t,E]l=zakharov

function surfplot(X,Y,Z,title)
figure;
surf (X,Y,2Z);
shading interp;
colormap jet;
xlabel('x','interpr','latex','fontsize',b14);
ylabel('t','interpr','latex','fontsize',b14);
zlabel (title, 'interpr','latex','fontsize',14);
grid off;
lighting gouraud
set (gca, 'fontsize' ,12);
myfig=gcf;
myfig.RendererMode = 'manual';

end

function lineplot(t,F,title)
figure
plot (t,F, 'linewidth',2)
xlabel('t','interpr','latex','fontsize',b14);
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ylabel (title, 'interpr','latex','fontsize',14);
grid off;
set (gca, 'fontsize' ,12);
myfig=gcf;
myfig.RendererMode = 'manual';
end

function u=uexact (x,t)
u=0.5.%(sqrt (10) -sqrt (2)) .*sech(sqrt (0.5.*%(1+sqrt(5))) .*x-t) .*...
exp(1i.*x((sqrt(2)./(1+sqrt(5))) .*x-t));
end

function m=mexact (x,t)
m=-2.*sech(sqrt (0.5.*%(1+sqrt(5))) .*x-t) . 2;

end
xL=-50;
xR=50;
T0=10;
alpha=2;
beta=2;
h=0.5;
tau=0.01;
tol=1e-8;
NumIt=20;
x=xL:h:xR;

t=0:tau:TO;

M=length (x) ;
N=length(t);

[X,T]l=meshgrid(x,t);
u=zeros (size(X));
m=zeros (size (X)) ;
u(l,:)=uexact(x,t(1));
m(1l,:)=mexact(x,t(1));
u(2,:)=uexact (x,t(2));
m(2,:)=mexact(x,t(3));

ga=zeros (1,M);
gb=zeros (1,M);
gha=zeros (1,M);
ghb=zeros (1,M);
ga (1) =gamma (alpha+1) /gamma (0.5*%alpha+1) "2/h"~alpha;
gb(1)=tau*tauxgamma (beta+1) /gamma (0.5*xbeta+1) "2/h " beta;
gha (1) =gamma (0.5%*alpha+1) /gamma (0.25*alpha+1) "2/h~(0.5%alpha) ;
ghb (1) =gamma (0.5*xbeta+1) /gamma (0.25*beta+1) "2/h" (0.5*beta) ;
for k=1:M-1

ga(k+1)=(1-(alpha+1) /(0.5*%alpha+k))*ga(k);

18
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gb(k+1)=(1-(beta+1) /(0.5*xbeta+k))*xgb(k);

gha(k+1)=(1-(0.5*alpha+1) /(0.25*alpha+k))*gha(k);

ghb (k+1)=(1-(0.5*beta+1) /(0.25*xbeta+k) ) *ghb (k) ;
end

I=eye(M);
Ha=zeros (M,M) ;
Hb=zeros (M,M) ;
Hha=zeros (M, M) ;
Hhb=zeros (M, M) ;
for i=1:M
for j=1:M
Ha(i,j)=-ga(abs(i-j)+1);
Hb(i,j)=-gb(abs(i-j)+1);
Hha (i, j)=-gha(abs(i-j)+1);
Hhb (i, j)=-ghb(abs(i-j)+1);
end
end

for n=3:N
m(n,:)=2.*m(n-1,:)-m(n-2,:)+abs(u(n-1,:)) . 2%*Hb+m(n-1,:) *Hb;

k=0;

diff=1;

pO=u(n-1,:);

while (k<NumIt)&&(diff>tol)
pl=u(n-2,:)+tau.*1i.*x((pO0+u(n-2,:))*(Ha-I)-(pO+u(n-2,:)).%...

(m(n-1,:)+0.5.%x(abs(p0) . " 2+abs(u(n-2,:)).72)));

diff=norm(pO-pl,Inf);
pO=p1;
k=k+1;

end

u(n,:)=p0;

m(n,1)=0;

m(n,M)=0;

u(n,1)=0;

u(n,M)=0;
end

W=(m(2:N,:)-m(1:N-1,:))/Hhb./tau;

MassDensity=0.5.*(abs(u(1:N-1,:)) . 2+abs(u(2:N,:))."~2);

Hf=0.5.*%(abs(u(2:N,:)*Hha) . " 2+abs(u(1:N-1,:)*Hha) . 2)...
+0.5.*%(abs(u(2:N,:)) . " 2+abs(u(1:N-1,:))."2)...
+0.5.%abs(W) . 2+0.5.*m(2:N,:) .*m(1:N-1,:)...
+0.25.x(abs(u(2:N,:)) . 4+abs(u(1:N-1,:)).74)...
+0.5.x(m(1:N-1,:) .*xabs(u(2:N,:)) . 2+m(2:N,:) .*xabs(u(1:N-1,:))."2);

H=Hf+abs(m(2:N,:)-m(1:N-1,:))."2./tau./tau;

Mass=h.*sum(MassDensity,2);
Ef=h.*sum (Hf ,2) ;
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E

S
S
S
S

S
S

S

1

=h.*xsum(H,2) ;

urfplot (X,T,real(u), '$\mathrm{Rer(u(x,t))$"');
urfplot (X,T,imag(u), '$\mathrm{Im} (ul(x,t))$"');
urfplot (X,T,abs(u), '$\vert u(x,t)\vert$');
urfplot (X,T,m, '$m(x,t)$");

urfplot (X(1:N-1,:),T(1:N-1,:),MassDensity, '$\mathcal{M}(x,t)$"');
urfplot (X(1:N-1,:),T(1:N-1,:) ,Hf, '$\mathcal{H} _F(x,t)$');
urfplot (X(1:N-1,:),T(1:N-1,:) ,H, '$\mathcal{H}(x,t)$"');

ineplot (t(1:N-1) ,Mass, '$\mathcal{M}(t)$"');

lineplot (t(1:N-1) ,Ef, '$\mathcal{E}_F(t)$');
lineplot (t(1:N-1),E, '$\mathcal{E}(t)$');
end
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