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Abstract. We prove the the entropy production of the Boltzmann equation,
in the non cutoff regime, is bounded from below by a weighted Lp norm of the
solution. The estimate holds for a wide range of potentials including soft po-
tentials as well as very soft potentials. We discuss applications of this estimate
for weak solutions of the Boltzmann equation. In particular, we obtain that
weak solutions must be belong to the space L1([0, T ], Lp

q(R
d)) for some precise

exponents p and q.

1. Introduction. We study the entropy dissipation for the Boltzmann collision
operator without cutoff for a wide range of power law potentials. The main result
of the present work gives a bound on the entropy dissipation from below by a
weighted Lebesgue-Norm.

The Boltzmann equation is a nonlinear integro-differential equation which de-
scribes the dynamics of a diluted gas. It is of the form

∂tf(t, x, v) + v · ∇xf(t, x, v) = Q(f, f)(t, x, v), f(0, x, v) = f0(x, v), (1)

where t ≥ 0 and x, v ∈ R
d for d ≥ 2. The solution f describes the density of

particles at time t ≥ 0 with position x ∈ R
d having velocity v ∈ R

d. While the
left-hand side of (1) describes the transport of particles, the right-hand side takes
interactions between particles into account.

In the special case of spacial homogeneity, the Boltzmann equation simplifies to

∂tf(t, v) = Q(f, f)(t, v), f(0, v) = f0(v). (2)

The operator Q on the right-hand side of the Boltzmann equation denotes the
so-called Boltzmann collision operator, which acts on the function f(t, x, ·) for fixed
values of t, x and is given by1

Q(g, f)(v) =

∫

Rd

∫

Sd−1

(g(v′∗)f(v
′)− g(v∗)f(v))B(|v − v∗|, cosΘ) dσ dv∗,
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where for v, v∗ ∈ R
d, σ ∈ Sd−1

v′ =
v + v∗

2
+

|v∗ − v|
2

σ, cosΘ = σ · v∗ − v

|v∗ − v| ,

v′∗ =
v + v∗

2
− |v∗ − v|

2
σ.

The type of interactions of the particles is determined by the so-called collision
kernel B(|v − v∗|, cosΘ). A classical assumption on B is the integrability of the
collision kernel, referred to as Grad’s cutoff assumption. In this paper, we study
collision kernels that do not satisfy Grad’s cutoff assumption. To be more precise,
we consider collision kernels of the form B(|v − v∗|, cosΘ) = Φ(|v − v∗|)b(cosΘ).
We assume

Φ(|v − v∗|) = cΦ|v − v∗|γ (3)

for some cΦ > 0 and b satisfies

c−1
b Θ−1−2s ≤ sin(Θ)d−2b(cosΘ) ≤ cbΘ

−1−2s for all Θ ∈
(
0,
π

2

]
(4)

for some cb > 0, where γ > −d and s ∈ (0, 1). The case γ ≥ 0 is referred to as
the hard potential case and γ < 0 as soft potential case. In particular, the sub-case
γ + 2s < 0 is known as the very-soft potential case.

Many questions about the regularity of solutions are open in the very soft po-
tential range. For a recent review and open problems, see [15]. In that case, the
reaction term in the collision operator (we write it Q2 in (15)) is more singular. It
is difficult to control it with the diffusion part of the operator. In particular, there
is no known method that leads to L∞ estimates in the very soft potential case, even
for space homogeneous solutions. A similar difficulty arises for the Landau equation
in the very soft potential range, and in particular for Coulomb potentials. Our main
objective in this paper is to derive an entropy dissipation estimate that applies in
the very soft potential range, similar to the well known result by L. Desvillettes
[7] for the Landau equation with Coulomb potentials. Our main estimate is in a
weighted Lp space, with hopefully sharp asymptotics for large velocities.

The entropy dissipation for the Boltzmann collision operator is given by the
following formula

D(f) = −〈Q(f, f), ln f〉L2(Rd)

=

∫

Rd

∫

Rd

∫

Sd−1

f(v∗)f(v) [ln(f(v))− ln(f(v′))]B(|v − v∗|, cosΘ) dσ dv∗ dv.

(5)
The expression for D(f) applies to f as a function of v, for each frozen values

of t and x. The following entropy dissipation formula applies to solutions of the
Boltzmann equation:

∂t

∫∫

Rd×Rd

f log f dv dx = −
∫

Rd

D(f) dx. (6)

In the case of space-homogeneous solutions, the formula is simpler (and more pow-
erful) since it does not involve integration with respect to x.

The expression for D(f) is nonnegative. Due to the difficulty to obtain any other
coercive quantities associated to the Boltzmann equation, it is interesting to study
lower bounds for D(f) that lead to a priori estimates in standard function spaces.

With the aim of sudying estimates for D(f), we consider a nonnegative function
f = f(v) : Rd → [0,∞). There is no point in keeping track of the dependence of f
with respect to t and x since D(f) applies to f as a function of v only. Our estimate
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will depend on the mass, energy and entropy of f . To be more precise, it depends
on upper bounds for the energy and entropy, and upper and lower bounds for the
mass of f of the following form:

0 < m0 ≤
∫

Rd

f(v) dv ≤M0, (7)

∫

Rd

f(v)|v|2 dv ≤ E0, (8)

∫

Rd

f(v) log f(v) dv ≤ H0. (9)

For the spatially homogeneous Boltzmann equation, due to the conservation of mass
and energy, and the monotonicity of the entropy, it suffices that these inequalities
hold initially for them to hold for positive time. For the space-inhomogeneous
Boltzmann equation, the estimates in this paper would apply provided that the
inequalities above hold for every value of t and x.

Before, we formulate the main result of the present paper, let us recall the
weighted Lebesgue Norm. For p ≥ 1 and ℓ ∈ R, we define

‖g‖Lp
ℓ
=

(∫

Rd

〈v〉ℓp|g(v)|p dv

)1/p

,

where 〈v〉 = (1 + |v|2)1/2. The main result of the present paper is the following
entropy dissipation estimate:

Theorem 1.1. Let −d < γ ≤ 2 and s ∈ (0, 1). Let f be a non-negative function
satisfying (7), (8) and (9). Assuming γ ≤ 0, there is a finite constant c > 0,
depending on d, b, γ, s and the macroscopic bounds m0,M0, E0 and H0, and C > 0
depending on d, b, γ and s only, such that

D(f) ≥ c‖f‖Lp
−q

− CM2
0 , (10)

where 1/p = 1− 2s/d and q = 2s/d− γ − 2s.
When γ > 0, a similar estimate follows but depending on a higher moment instead

of M0.

D(f) ≥ c‖f‖Lp
−q

− C

(∫

Rd

〈v〉γf dv

)2

. (11)

The proof of Theorem 1.1 takes advantage of the simple idea of using the non-
negativity of the integrand in the entropy dissipation and replace the kinetic factor
Φ by a smaller bounded function ψ without the singularity on v = v∗ for γ < 0. The
estimate in a weighted Lp space, with a precise exponent, follows from an explicit
formula for integral quadratic forms. This estimate, given in Proposition 2.2, is one
of the main novelties of this paper.

As a corollary of Theorem 1.1, we see that H-solutions to the Cauchy problem
(2) are in a weighted Lebesgue space, that is

f ∈ L1
(
[0, T ], Lp−q(R

d)
)
,

where p and q are as in Theorem 1.1. This implies in particular that H-solutions to
(2) are weak solutions in the usual sense. For details, see Section 1.1.

The Landau equation can be derived as the grazing collision limit of the Boltz-
mann equation, see e.g. [5, 11, 19, 2, 3] and the references therein. Precisely, the
Boltzmann collision operator Q(f, f), properly normalized, converges to the Landau
operator as s → 1. In [7], Desvillettes proves an entropy dissipation estimate for
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the Landau equation with Coulomb interaction and presents applications to weak
solutions. The estimate we obtain in Theorem 1.1 is an analogous result but for
the Boltzmann collision operator. If we take d = 3 and γ = −3, and take s → 1 in
Theorem 1.1, we see that p→ 3 and q → 5/3. While, the exponent p coincides with
the one in [7], our exponent in the weight q is improved (L3

−5/3 as opposed to L3
−3),

suggesting that the weight exponent in [7] may not be optimal. It is worth noting
that the proof given in [7] cannot be applied to the Boltzmann collision operator.
The method in this paper is related to a simpler proof presented in [10].

The entropy dissipation is an important quantity in the analysis of the Boltz-
mann equation. It has various applications such as the construction of renormalized
solutions to the Cauchy problem for the Boltzmann equation, see [9], or the intro-
duction of H-solutions for the Boltzmann equation and Landau equations, see [19].
There are various lower bounds for the entropy dissipation in the literature. How-
ever, they have serious limitations when γ < 0 that we seek to overcome with the
present result.

One of the first and best known entropy dissipation estimates appeared in [1].
Their analysis applies when Φ is bounded below which, strictly speaking, is only
the case when γ = 0. For γ < 0, some further analysis in [1] leads to local estimates
restricted to bounded values of v. For other works on entropy dissipation estimates
and their applications, see for instance [20, 2, 6, 8, 17] and the references therein. In
[12, 13], Gressmann and Strain introduce a metric which captures the anisotropic
structure of the Boltzmann operator. Using this metric and the associated spaces,
the same authors obtain entropy dissipation estimates in [14] with sharp asymptotics
for large velocities. The estimates in [14] depend on a quantity (that the authors
call Cg) that is only controlled by moments of f when γ ≥ 0 (the hard potentials
case).

In addition of our main result, we present a refinement of the entropy dissipation
result of [14, Theorem 3] so that it applies to the soft potential range without resort-
ing to higher integrability assumptions on f . We recall the anisotropic fractional
Sobolev norm of Gressman and Strain:

|f |2
Ṅs,γ =

∫

Rd

∫

Rd

(f(v′)− f(v))2

dGS(v, v′)d+2s
(〈v〉〈v′〉)(γ+2s+1)/2

1{dGS(v,v′)≤1} dv′ dv, (12)

where

dGS(v, v
′) =

√
|v − v′|2 + 1

4
(|v|2 − |v′|2)2 (13)

measures the distance in the lifted paraboloid {v ∈ R
d+1 : vd+1 = 1

2 |(v1, . . . , vd)|2}.
We derive the following entropy dissipation estimate for soft potentials.

Proposition 1.2. Let −d < γ ≤ 0 and s ∈ (0, 1). Let f be a non-negative function
satisfying (7), (8) and (9). There is a constant c > 0 depending on d, s, γ and the
macroscopic bounds m0,M0, E0 and H0, and a constant C depending only on d, s
and γ only, such that

D(f) ≥ c|
√
f |2
Ṅs,γ − CM2

0 .

The novelty of Proposition 1.2 compared with [14, Theorem 3] is that our neg-
ative error term is in terms of the mass of f only. The result in the cited paper
has a negative error term depending on higher integrability assumptions on the
function. Roughly, they require f ∗ |v|γ to be locally bounded in [14, Assumption
U]. There is no apparent upper bound in terms of the hydrodynamic quantities for
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their parameter Cg when γ < 0. Proposition 1.2 implies that weak solutions to the
space-homogeneous Boltzmann equation belong to L1([0, T ], Ns,γ), which was not
available from earlier results in the literature.

While it is conceivable that one could potentially derive our main result in The-
orem 1.1 from Proposition 1.2 combined with some sharp form of a weighted frac-
tional Sobolev inequality (not readily available in the literature), we chose to prove
Theorem 1.1 directly, and then present an independent proof of Proposition 1.2.
The direct proof of Theorem 1.1 is relatively short and elegant. So, we think it is
worth presenting Theorem 1.1 as an independent result.

Notation. We write a . b if there is a universal constant c > 0 such that a ≤ cb.
The notation a & b means that b . a and a ≈ b that a . b and a & b.

1.1. Applications to spatially-homogeneous weak solutions. Before getting
into the proof of our main results, we discuss an application of Theorem 1.1 for
weak solutions to the spatially homogeneous Boltzmann equation. Let us have a
look at the weak formulation of the Boltzmann collision operator. In the following,
let f ∈ L∞([0,∞);L1

2(R
d))∩C([0,∞);D′(Rd)) be a nonnegative function satisfying

(7), (8) and (9).
In [19], Villani introduces a class of weak solutions, called H-solutions, to the

spatially homogeneous Boltzmann equation with bounded entropy dissipation. A
solution in this class might not be a weak solution in the usual sense. As explained
in [1, Section 7, Application 2] and [19], this problem appears because of the lack
of an a priori estimate in the very soft potential case of the form

∫ T

0

∫

BR

∫

BR

f(t, v)f(t, v∗)|v − v∗|γ+2 dv dv∗ dt <∞. (14)

It is mentioned in [1] that the (local) entropy dissipation estimate shows that H-
solutions are weak solutions in the usual sense when γ+2s ≥ d−2. The computation
is sketched without explicit details. Using our estimate in Theorem 1.1, we show
that (14) holds whenever γ + 2s > −2, covering the whole physical range of expo-
nents. There is no fundamental difference between the computation presented here
and the one proposed in [7]. It is not clear why they stated a suboptimal range in
[1], suggesting that it is possibly a typo in the paper. We explain the computation
explicitly below.

One important ingredient in the proof of (14) is that H-solutions are in a weighted
Lebesgue space. It follows immediately from Theorem 1.1 combined with the en-
tropy dissipation formula (6) (without integrating in space).

Corollary 1.3. Let T > 0, −d < γ ≤ 2 and s ∈ (0, 1). Let f be a non-negative
H-solution to the Cauchy problem (2) with initial datum f0. Assume f0 satisfies
(9).
Then f ∈ L1

(
[0, T ], Lp−q(R

d)
)
, where 1/p = 1− 2s/d and q = 2s/d− γ − 2s.

Proof. By definition, H-solutions satisfy the space-homogeneous form of (6). We get

that
∫ T
0
D(t) dt ≤

∫
f0 log f0 dv. The corollary follows applying Theorem 1.1.

We use Theorem 1.3 to show that H-solutions are weak solutions in the usual
sense by proving (14).

Corollary 1.4. Let T > 0, −d < γ ≤ 0 and s ∈ (0, 1), so that γ + 2s > −2. Let
f be a non-negative H-solution to the Cauchy problem (2) with initial datum f0.
Assume f0 satisfies (9). Then f satisfies (14).
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Proof.
∫ T

0

∫

BR

∫

BR

f(t, v)f(t, v∗)|v − v∗|γ+2
1{|v−v∗|≤1}) dv dv∗ dt

≤
∫ T

0

‖f‖L1 sup
v∈BR

∫

BR

f(t, v∗)|v − v∗|γ+2 dv∗ dt.

We apply Hölder’s inequality with 1/p = 1− 2s/d as in Corollary 1.3

≤
∫ T

0

‖f(t, ·)‖L1‖f(t, ·)‖Lp(BR) sup
v∈BR

‖|v − ·|γ+2‖Lp′ (BR) dt

≤ ‖f‖L∞([0,T ],L1(BR))‖f‖L1([0,T ],Lp(BR)) sup
v∈BR

‖|v − ·|γ+2‖Lp′ (BR).

It only remains to check whether the last factor is finite. We have

‖|v − ·|γ+2‖Lp′ (BR) =

(∫

BR

|v − v∗|(γ+2) d
2s dv∗

) 2s
d

.

The integral is finite provided that (γ + 2)d/(2s) > −d. This is clearly the case
when γ + 2s > −2.

2. Entropy dissipation estimates. The Boltzmann collision operator clearly
plays a central role in our analysis, since the entropy dissipation is defined through
it. In the following, we will briefly discuss the decomposition of the operator and
some selected properties.

The Boltzmann collision operator Q(f, g) can be decomposed into the sum of an
integro-differential operator Q1(f, g) and a lower order term Q2(f, g) (see [18]):

Q1(f, g)(v) := (LKf
g)(v) and Q2(f, g)(v) = g(v)

∫

Rd

f(v − w)B̃(|w|) dw. (15)

The integro-differential operator LKf
is defined by

LKf
g(t, v) = pv

∫

Rd

(g(t, v′)− g(t, v))Kf (t, v, v
′) dv′,

where pv denotes the Cauchy principal value around v ∈ R
d. The kernel Kf (t, v, v

′)
depends on the function f and is given by the formula

Kf (t, v, v
′) =

2d−1

|v′ − v|

∫

w⊥(v′−v)

f(t, v + w)B(r, cosΘ)r−d+2 dw, (16)

where

r =
√
|v′ − v|2 + |w|2, cos(Θ/2) =

|w|
r
,

v′∗ = v + w, v∗ = v′ + w.
(17)

While Q1 represents the singular part of the collision operator, the part Q2 is of
lower order. The lower order term can be handled using the cancellation lemma [1,

Lemma 1]. The function B̃ in (15) is given by

B̃(z) =

∫

Sd−1

(2d/2(1− σ · e)−d/2
(
B
(√

2z/(1− σ · e), cosΘ
)
−B(z, cosΘ)

)
dσ

= CbΦ(z) = CbcΦ|z|γ ,
where Cb is a positive constant depending on the angular function b. For details on
the decomposition of the Boltzmann collision operator, see [18].
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The idea for controlling the singularity of B̃ near v = v∗ for γ < 0 is to introduce
an auxiliary collision kernel, where we replace the kinetic factor Φ by a smaller
bounded function ψ in which we cut out this singularity. Since the integrand of
the entropy dissipation is non-negative, it can be bounded from below by the same
expression with B replaced by a smaller collision kernel. For a given function ψ on
R
d, we define the generalized collision kernel Bψ by

Bψ(|v − v∗|, cosΘ) = ψ(|v − v∗|)b(cosΘ).

The auxiliary collision kernel Bψ and the collision kernel B differ only in the fact
that we replace the kinetic factor Φ with the function ψ.

By simply replacing Φ by ψ, we can define the generalized kernel Kψ
f by

Kψf (t, v, v′) =
2d−1

|v′ − v|

∫

w⊥(v′−v)

f(t, v′ + w)ψ(r)b(cosΘ)r−d+2 dw, (18)

where r and cosΘ are defined in (17) and B̃ψ by

B̃ψ(z) = Cbψ(z). (19)

This leads to the decomposition of the auxiliary collision operator Qψ(f, g) (with the
collision kernel B replaced by Bψ) into the sum of an integro-differential operator

Qψ1 (f, g) and a lower order term Qψ2 (f, g), where the operators Qψ1 and Qψ2 are

defined as in (15) with Kf and B̃ replaced by Kψ
f resp. B̃ψ.

We define the auxiliary function ψ : Rd → R to be non-negative function satis-
fying ψ ≤ Φ and:

if γ < 0 :

{
1 ≤ ψ(|z|) ≤ 2 if |z| ≤ 1,

ψ(|z|) = Φ(|z|) if |z| > 1,

if γ ≥ 0 : ψ(|z|) = Φ(|z|) for all z ∈ R
d.

(20)

Note that by this choice, for any value of γ,
∫

Rd

∫

Rd

f(v)f(v∗)ψ(|v − v∗|) dv∗ dv .

{
M2

0 if γ ≤ 0,(∫
f〈v〉γ dv

)2
if γ > 0.

The entropy dissipation is naturally connected to a quadratic form, coming from
the singular part of the collision operator and a lower order term.

Lemma 2.1. Let −d < γ ≤ 2 and s ∈ (0, 1). Let ψ be a non-negative function
satisfying ψ ≤ Φ and (20) and let f be a non-negative function satisfying (7), (8)
and (9). There is an universal constant C > 0 such that

D(f) ≥
∫

Rd

∫

Rd

(√
f(v′)−

√
f(v)

)2
Kψ
f (v, v

′) dv′ dv − C

(∫

Rd

f(v)〈v〉γ+ dv

)2

.

(21)

Proof. Using the non-negativity of the entropy dissipation D(f) and ψ ≤ Φ, we get

D(f) =
1

2

∫

Rd

∫

Rd

∫

Sd−1

(ff∗ − f ′f ′∗) ln

(
ff∗
f ′f ′∗

)
B(|v − v∗|, cosΘ) dσ dv∗ dv

≥ 1

2

∫

Rd

∫

Rd

∫

Sd−1

(ff∗ − f ′f ′∗) ln

(
ff∗
f ′f ′∗

)
ψ(|v − v∗|)b(cosΘ) dσ dv∗ dv

=

∫

Rd

∫

Rd

∫

Sd−1

f(v∗)f(v) [ln(f(v))− ln(f(v′))]ψ(|v − v∗|)b(cosΘ) dσ dv∗ dv
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≥
∫

Rd

∫

Rd

∫

Sd−1

f(v∗)
(√

f(v′)−
√
f(v)

)2
ψ(|v − v∗|)b(cosΘ) dσ dv∗ dv

−
∫

Rd

∫

Rd

∫

Sd−1

f(v∗) (f(v
′)− f(v))ψ(|v − v∗|)b(cosΘ) dσ dv∗ dv

= I1 − I2.

In the second estimate, we used the inequality x(lnx− ln y) ≥
(√
y −√

x
)2−(y−x)

for all x, y ≥ 0 (See [1]). By the definition of the kernel Kψ
f (v, v

′), the term I1 can
be written as

I1 =

∫

Rd

∫

Rd

(√
f(v′)−

√
f(v)

)2
Kψ
f (v, v

′) dv′ dv.

For the term I2 we use the cancellation lemma (See [1] or [18] for details), which
leads to

I2 = C

∫

Rd

∫

Rd

f(v)f(v∗)ψ(|v − v∗|) dv∗ dv

≤ C

∫

Rd

∫

Rd

f(v)f(v∗)〈v − v∗〉γ dv∗ dv

≤ C

{
M2

0 if γ ≤ 0,(∫
f〈v〉γ dv

)2
if γ > 0.

Here C > 0 is a finite universal constant.

Our main result Theorem 1.1 will be derived from Theorem 2.1 and the following
estimate of the quadratic form from below by a weighted Lebesgue norm.

Proposition 2.2. Let γ > −d and s ∈ (0, 1). Let ψ be a non-negative function
satisfying (20), let f be a non-negative function satisfying (7), (8) and (9). Let p, q
and r be the exponents given by 1/p = 1−2s/d, q = 2s/d−γ−2s, and r = −γ−d+1.
Assume g ∈ Lp−q(R

d) and let a = C1‖g‖Lp
−q
, for some large constant C1. There is

a constant c0 > 0, such that
∫

Rd

∫

Rd

(√
g(v′)−

√
g(v)

)2
Kψ
f (v, v

′) dv′ dv ≥ c0‖g‖1−pLp
−q

∫

{g(v)≥a〈v〉r}

|g(v)|p〈v〉−qp dv.

Moreover, when q ≤ 0 we can take C1 = 0 and the right hand side is simply ‖g‖Lp
−q
.

Here, the constants C1 and c0 depend only on the dimension d, s, γ and the
macroscopic bounds m0,M0, E0 and H0

The proof of Proposition 2.2 is postponed to later in this section, after the next
four lemmas.

Since the estimate in Theorem 2.2 has no restrictions on γ > −d and s ∈ (0, 1),
it covers soft as well as hard potentials for the Boltzmann collision operator. It is
perhaps most interesting that it works in the case of very-soft potentials γ+2s < 0.
Note that outside of that range, if γ + 2s > 2s/d, the exponent q changes its sign.
We have q > 0 in the very soft potential range.

An essential tool for the proof of Theorem 2.2 are cones of nondegeneracy in-
troduced in [18]. Before we recall the cones of nondegeneracy and some important
properties, we first give a lower bound on the generalized kernel.
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Lemma 2.3. Let −d < γ < 0 and s ∈ (0, 1). Let ψ be a non-negative function
satisfying (20). Then

Kψ
f (v, v

′) & |v − v′|−d−2s

∫

w⊥(v′−v)

f(v′ + w)min
(
|w|γ+2s+1, |w|2s+1

)
dw. (22)

Note that in the hard potential case γ ≥ 0, the auxiliary kernel Kψ
f coincides

with the kernel Kf and therefore, there is nothing to do in this case. The respective
result is given in [18, Corollary 4.2], namely

Kf (v, v
′) & |v − v′|−d−2s

∫

w⊥(v′−v)

f(v′ + w)|w|γ+2s+1 dw, (23)

which provides a better lower bound. Nevertheless, the estimate (22) is sufficient
for our applications in the case of soft potentials.

Proof of Theorem 2.3. As in the proof of [18, Corollary 4.2], we study the two cases
cosΘ ≥ 0 and cosΘ < 0.

(i) If cosΘ ≥ 0, then |w| ≈ r and b(cosΘ) ≈ |v − v′|−d+1−2srd−1+2s. Hence,

ψ(r)b(cosΘ)r−d+2 ≈ |v − v′|−d−2s+1
(
|w|1+2s

1{r≤1}(r) + |w|1+2s+γ
1{r>1}(r)

)

≥ |v − v′|−d−2s+1 min
(
|w|γ+2s+1, |w|2s+1

)
.

(ii) In the case cosΘ < 0, we have |v′ − v| ≈ r and |w| = r cos(Θ/2). Therefore,
b(cosΘ) = cos(Θ/2)γ+2s+1. If r ≤ 1, then

ψ(r)b(cosΘ)r−d+2 ≈ r−d−2s+1|w|γ+2s+1

≈ |v′ − v|−d−2s+1|w|γ+2s+1

≥ |v − v′|−d−2s+1 min
(
|w|γ+2s+1, |w|2s+1

)
.

On the other hand, if r ≥ 1, we have

ψ(r)b(cosΘ)r−d+2 ≈ r−d+2 cos(Θ/2)γ+2s+1rγ

≈ |v − v′|−d−2s+1|w|2s+1 cos(Θ/2)γrγ

≈ |v − v′|−d−2s+1|w|γ+2s+1

≥ |v − v′|−d−2s+1 min
(
|w|γ+2s+1, |w|2s+1

)
.

This finishes the proof of Theorem 2.3.

Note that by the bound on the mass and energy, a certain amount of the mass of
the function f lies inside a ball centered around zero with radius depending on m0

and E0. The bound on the entropy H0 provides that this mass in not concentrated
on a set of measure zero. These observations lead to cones of nondegeneracy con-
structed by sets of the form {f ≥ ℓ}. To be more precise, for any point v ∈ R

d, there
is a symmetric cone of directions A(v) such that its perpendicular planes intersect
the set {f ≥ ℓ} on a set with Hd−1 positive Hausdorff measure. As a consequence
of Theorem 2.4 resp. (23), we get the existence of a cone of non-degeneracy for the

kernel Kψ
f . Here, one can simply follow the lines of the proof of [18, Lemma 4.8

and Lemma 7.1] and use the bound on the kernel Kψ
f given in Lemma 2.3
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Lemma 2.4. [18, Lemma 7.1] Let γ > −d and s ∈ (0, 1). Let ψ be a non-negative
function satisfying (20) and let f be a non-negative function satisfying (7), (8) and
(9). For any v ∈ R

d, there exists a symmetric subset A(v) ⊂ Sd−1 such that

(i) |A(v)| > µ〈v〉−1, where |A(v)| denotes the d− 1-Hausdorff measure of A(v),

(ii) Kψ
f (v, v

′) ≥ λ〈v〉1+2s+γ |v − v′|−d−2s whenever (v′ − v)/(|v′ − v|) ∈ A(v).

(iii) For every σ ∈ A(v), |σ · v| ≤ C.

The constants µ, λ and C depend on d and on the hydrodynamic bounds m0,M0, E0

and H0.

The set A(v) in the previous lemma describes a set of directions A(v) along

which the kernel Kψ
f has a lower bounds given in property (ii). We denote the

corresponding cone of nondegeneracy by Ξ(v) that is

Ξ(v) :=

{
v′ ∈ R

d :
(v′ − v)

|v′ − v| ∈ A(v)

}
.

Furthermore, the cone of nondegeneracy degenerates as |v| → ∞ and satisfies

|BR(v) ∩ Ξ(v)| ≈ Rd〈v〉−1.

The proof of Proposition 2.2 depends on estimating the size of the set of points in
the cone of nondegeneracy so that g(v′) < g(v)/2. The computation rather straight
forward when q ≤ 0, and slightly more involved when q > 0. Let us start with a
lemma for the easier case.

Lemma 2.5. Let p, q be exponents as in Proposition 2.2. Assume q ≤ 0. For a
universal constant C1 large enough, let a := C1‖g‖Lp

−q
. For any v ∈ R

d, choose R

so that g(v)pRd〈v〉−qp−1 = ap. Then

|{v′ ∈ BR(v) ∩ Ξ(v) : g(v′) ≥ g(v)/2}| ≥ cRd〈v〉−1,

for some universal constant c > 0.

Proof. If R < |v|/2, we observe that 〈v′〉 ≈ 〈v〉 for all v′ ∈ BR(v). We use Cheby-
shev’s inequality and get

|{v′ ∈ BR(v) ∩ Ξ(v) : g(v′) ≥ g(v)/2}|

. 〈v〉pqg(v)−p
∫

{v′∈BR(v)∩Ξ(v):g(v′)≥g(v)/2}

g(v′)p〈v′〉−pq dv′

. 〈v〉pqg(v)−p‖g‖p
Lp

−q
.

Our estimates on the cone of nondegeneracy say that |BR(v)∩Ξ(v)| ≈ Rd〈v〉−1 =
apg(v)−p〈v〉qp. Thus, we can make sure that g(v′) ≥ g(v)/2 holds for less than half
of the points in BR(v) ∩ Ξ(v) (in measure) by choosing C1 large enough.

If R > |v|/2, we repeat the same argument but replacing BR(v) with B8R(v) \
B4R(v).

The case q > 0 is the most interesting. In this case we get a version of Lemma
2.5 that applies only for those points v so that g(v) is large enough.

Lemma 2.6. Let p, q and r be exponents as in Proposition 2.2. Assume q > 0.
For a large enough constant C1, let a := C1‖g‖Lp

−q
. For any v ∈ R

d such that

g(v) ≥ a〈v〉r, choose R so that g(v)pRd〈v〉−qp−1 = ap. Then

|{v′ ∈ BR(v) ∩ Ξ(v) : g(v′) ≥ g(v)/2}| ≥ cRd〈v〉−1,
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for some constant c > 0.
Here, the constants C1 and c depend only on the dimension d, s, γ and the

macroscopic bounds m0,M0, E0 and H0

Proof. Since g(v) ≥ a〈v〉r, we see that

R :=
(
apg(v)−p〈v〉qp+1

)1/d

≤
(
〈v〉qp+1−rp

)1/d
= 〈v〉.

The last equality holds because of our choice of r = −d− γ + 1 = q − (d− 1)/p.
Since R ≤ 〈v〉, we have that 〈v′〉 . 〈v〉 for v′ ∈ BR(v). Therefore, if q ≥ 0, using

Chebyshev’s inequality,

|{v′ ∈ BR(v) ∩ Ξ(v) : g(v′) ≥ g(v)/2}|

. 〈v〉pqg(v)−p
∫

{v′∈BR(v)∩Ξ(v):g(v′)≥g(v)/2}

f(v′)p〈v′〉−pq dv′

. 〈v〉pqg(v)−p‖g‖p
Lp

−q

Our estimates on the cone of nondegeneracy say that |BR(v)∩Ξ(v)| ≈ Rd〈v〉−1 =
apg(v)−p〈v〉qp. Thus, we can make sure that g(v′) ≥ g(v)/2 holds for less than half
of the points in BR(v) ∩ Ξ(v) (in measure) by choosing C1 large enough.

We can finally prove Theorem 2.2.

Proof of Theorem 2.2. We describe the proof in the more interesting case q > 0.
The case q ≤ 0 follows the same steps applying Lemma 2.5 instead of Lemma 2.6.

Recall that by Theorem 2.4 for every v ∈ R
d, we know thatKψ

f (v, v
′) ≥ λ〈v〉1+2s+γ |v−

v′|−d−2s, whenever v′ ∈ Ξ(v). Furthermore, if g(v) ≥ a〈v〉r, let us choose R =
R(v) > 0 like in Lemma 2.6, so that for some large C1 > 0,

g(v)pRd〈v〉−qp−1 = ap = Cp1‖g‖pLp
−q
.

With this choice, applying Lemma 2.6,

|{v′ ∈ (BR(v) ∩ Ξ(v)) : g(v′) ≤ g(v)/2}| & |BR(v) ∩ Ξ(v)| ≈ Rd〈v〉−1.

Hence, using this information, we get
∫

Rd

(√
g(v′)−

√
g(v)

)2
Kψ
f (v, v

′) dv′ & Rd〈v〉−1g(v)
(
λ〈v〉1+2s+γR−d−2s

)

≥ c1R
−2sg(v)〈v〉γ+2s

= c2‖g‖−2sp/d

Lp
−q

g(v)1+2sp/d〈v〉γ+2s−2s(qp+1)/d,

where c1, c2 are constants depending on m0,M0, E0, H0. Our choice of p and q was
made so that p = 1 + 2sp/d and −qp = γ + 2s− 2s(qp+ 1)/d. Integrating over all
those v ∈ R

d so that g(v) ≥ a〈v〉r finally gives us
∫

Rd

∫

Rd

(√
g(v′)−

√
g(v)

)2
Kψ
f (v, v

′) dv′ dv ≥ c‖g‖−2sp/d

Lp
−q

∫

g(v)≥a〈v〉r
g(v)p〈v〉−qp dv.

Since −2sp/d = 1− p, we conclude the proof.

When q > 0, the estimate from Proposition 2.2 needs to be improved to account
for those points v so that g(v) ≤ a〈v〉r. This is the purpose of the next Lemma.
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Lemma 2.7. Let p, q and r be as in Proposition 2.2. Assume q > 0 and g ∈
Lp−q(R

d) ∩ L1(Rd). Then
∫

{g(v)<a〈v〉r}

|g(v)|p〈v〉−qp dv ≤ ap−1

∫

Rd

|g(v)| dv.

Proof. We simply bound the integrand |g(v)|p < ap−1〈v〉(p−1)rg(v) for every v and
proceed ∫

{g(v)<a〈v〉r}

|g(v)|p〈v〉−qp dv ≤ ap−1

∫

Rd

|g(v)|〈v〉−qp+(p−1)r dv.

We finish the proof by observing that −qp+ (p− 1)r = pγ(1− 2s/d) < 0 with our
choice of exponents when q > 0 (and in particular γ < 0).

Using Theorem 2.1, Theorem 2.2 and Theorem 2.7, we derive Theorem 1.1.

Proof of Theorem 1.1. Let us start by assuming that f ∈ Lp−q(R
d) and deduce the

a priori estimate. From Theorem 2.1, we have that

D(f) ≥
∫

Rd

∫

Rd

(√
f(v′)−

√
f(v)

)2
Kψ
f (v, v

′) dv′ dv − C

(∫

Rd

f(v)〈v〉γ+ dv

)2

.

Moreover, applying Theorem 2.2, we estimate the double integral as∫

Rd

∫

Rd

(√
f(v′)−

√
f(v)

)2
Kψ
f (v, v

′) dv′ dv

≥ c0‖f‖1−pLp
−q

∫

{f(v)≥a〈v〉r}

|f(v)|p〈v〉−qp dv

≥ c0

(
‖f‖Lp

−q
− ‖f‖1−p

Lp
−q

∫

{f(v)≤a〈v〉r}

|f(v)|p〈v〉−qp dv
)
.

Combining these two inequalities with Theorem 2.7, we are left with

D(f) ≥ c0‖f‖Lp
−q

− c0C
p−1
1 M0 − C

(∫

Rd

f(v)〈v〉γ+ dv

)2

.

The constants c0 and C1 are chosen sufficiently small and sufficiently large re-
spectively in Proposition 2.2. We may choose c0 smaller if necessary so that
c0C

p−1
1 < M0. Thus,

D(f) ≥ c0‖f‖Lp
−q

−M2
0 − C

(∫

Rd

f(v)〈v〉γ+ dv

)2

.

This concludes the proof of Theorem 1.1 when f ∈ Lp−q(R
d).

For a function f /∈ Lp−q, we consider fm(v) := min(f(v),m). Since f ∈ L1
2(R

d),

we have fm ∈ Lp−q and Theorem 2.2 holds for g = fm. Moreover, ‖fm‖Lp
−q

→ ∞
and therefore, applying the monotone convergence theorem,∫

Rd

∫

Rd

(√
f(v′)−

√
f(v)

)2
Kψ
f (v, v

′) dv′ dv ≥

≥ lim
m→∞

∫

Rd

∫

Rd

(√
fm(v′)−

√
fm(v)

)2
Kψ
f (v, v

′) dv′ dv

≥ lim
m→∞

c0‖fm‖1−p
Lp

−q

∫

{f(v)≥a〈v〉r}

|fm(v)|p〈v〉−qp dv = +∞.

In view of Theorem 2.1, we must have D(f) = +∞.
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2.1. Entropy dissipation estimate involving an anisotropic fractional Sobolev

space. In this subsection, we present a second entropy dissipation estimate for the
Boltzmann collision operator. This estimate involves the anisotropic distance by
Gressmann and Strain [14].

Let us first briefly recall the sharp anisotropic coercivity estimate for the Boltz-
mann collision operator from [14]. Note that 〈Q(g, f), f〉 can be rewritten as

〈Q(g, f), f〉 =
∫

Rd

∫

Rd

∫

Sd−1

g(v∗)f(v) [f(v
′)− f(v)]B(r, cosΘ) dσ dv∗ dv

=
1

2

∫

Rd

∫

Rd

∫

Sd−1

g(v∗)
[
f(v′)2 − f(v)2

]
B(r, cosΘ) dσ dv∗ dv

− 1

2

∫

Rd

∫

Rd

∫

Sd−1

g(v∗) [f(v
′)− f(v)]

2
B(r, cosΘ) dσ dv∗ dv

=: Kg(f)−Ng(f).

(24)
In [14, Theorem 1], the authors prove that under mild assumptions on the func-

tion g, the term Ng(f) can be bounded from below the weighted anisotropic Sobolev
semi-norm |f |2

Ṅs,γ defined in (12). This estimate provides an entropy dissipation
estimate in terms of the anisotropic fractional Sobolev space. However, the result
depends on certain parameter Cq that would be difficult to bound when γ < 0.
In this section we prove Proposition 1.2, which is effectively a refinement of [14,
Theorem 1] in the soft potential range.

In [16], Imbert and Silvestre introduce a change of variables, which is used to
turn local Hölder and Schauder estimates into global ones. For v0 ∈ R

d let

v :=

{
v0 + v if |v0| < 2,

v0 + T0v if |v0| ≥ 2,

where

T0(av0 + w) =
a

|v0|
v0 + w, for all w ⊥ v0, a ∈ R. (25)

The function T0 : R
d → R

d, introduced in [16], has a strong connection to the
anisotropic distance (13). In [16, Lemma A.1] it is shown that for any given v0 ∈ R

d

with |v0| ≥ 2, we have

dGS(v1, v2) ≍ |T−1
0 (v1 − v2)| (26)

for all v1, v2 ∈ E1(v0) := v0 + T0(B1). We define

K
ψ

f (v, v
′) = |v0|−1−γ−2sKψ

f (v, v0 + T0v
′), (27)

where ψ is the auxiliary function ψ : Rd → R defined in (20). In [16], the authors
derive the global coercivity estimate by Gressmann and Strain by using the above
mentioned transformation and a local coercivity estimate. By using similar meth-
ods, we are able to prove Theorem 1.2. Before we draw our attention to the proof
of Theorem 1.2, we need some auxiliary results. Let us first state a local coercivity
estimate.

Lemma 2.8. Let γ > −d and s ∈ (0, 1). Let ψ be a non-negative function satisfying
ψ ≤ Φ and (20) and let f be a non-negative function satisfying (7), (8) and (9).
There is a constant λ > 0, depending on the macroscopic bounds m0,M0, E0 and
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H0, such that for every g : Rd → R

∫

B1

∫

B1

(g(v′)− g(v))
2
K
ψ

f (v, v
′) dv′ dv ≥ λ

∫

B1/2

∫

B1/2

(g(v′)− g(v))
2

|v − v′|d+2s
dv′ dv.

Proof. By Theorem 2.4, there is a cone of non-degeneracy for the kernel Kψ
f . Hence,

following the lines of the proof of [16, Lemma 5.6], there is also a cone of non-

degeneracy forK
ψ

f . Now the result follows from the coercivity condition [4, Theorem
1.3].

Let v0 ∈ R
d \B2 be given. For v ∈ R

d, let v be such that v = v0 + T0(v), where
T0 is defined in (25). Furthermore, let g(v) = g(v).

Lemma 2.9. Let γ > −d and s ∈ (0, 1). Let ψ be a non-negative function satisfying
ψ ≤ Φ and (20) and let f be a non-negative function satisfying (7), (8) and (9).
There are c > 0, R ∈ (2,∞) and ρ ∈ (0, 1], depending on the macroscopic bounds
m0,M0, E0 and H0, such that for all g : Rd → R∫∫

dGS(v,v′)<R

(g(v)− g(v′))2Kψ
f (v, v

′) dv′ dv

≥ c

∫∫

dGS(v,v′)<ρ

(g(v)− g(v′))2
(〈v〉〈v′〉)(γ+2s+1)/2

dGS(v, v′)d+2s
dv′ dv.

Proof. The proof follows as in [16, Lemma A.2]. It uses the transformation (25),
the comparability (26) and the local coercivity estimate Theorem 2.8. Having these
results on hand, one can proceed in the exact same way as it is done in [16, Lemma
A.2].

The integral of Lemma 2.9 is over the points v, v′ ∈ R
d so that dGS(v, v

′) < ρ.
This value of ρ is not important. The next lemma shows that we can enlarge it at
will without altering the result.

Lemma 2.10. Let g : Rd → R be any measurable function, q ∈ R and ρ < 2. The
following inequality holds for some c > 0 depending only on dimension, s and q.

∫∫

dGS(v,v′)<ρ

(g(v)− g(v′))2
(〈v〉〈v′〉)q

dGS(v, v′)d+2s
dv′ dv

≥ c

∫∫

dGS(v,v′)< 3
2
ρ

(g(v)− g(v′))2
(〈v〉〈v′〉)q

dGS(v, v′)d+2s
dv′ dv.

Proof. Given v, v′ ∈ R
d so that dGS(v, v

′) < 3
2ρ, define

N(v, v′) :=

{
w ∈ R

d : dGS(v, w) <
2

3
dGS(v, v

′) and dGS(v
′, w) <

2

3
dGS(v, v

′)

}
.

From the triangle inequality, we observe that dGS(v, w) >
1
3dGS(v, v

′) for all

w ∈ N(v, v′). Moreover, since dGS(v, v
′) < 3

2ρ < 3, we also see that 〈v〉 ≈ 〈v′〉 ≈ 〈w〉
for all w ∈ N(v, v′).

Let us also define M(v, w) := {v′ ∈ R
d : w ∈ N(v, v′)}. The sets N(v, v′) and

M(v, w) are substantial portions of a ball with respect to the distance dGS . It is
not hard to estimate their volumes |N(v, v′)| ≈ |M(v, w)| ≈ 〈v〉−1dGS(v, v

′)d.
With this notation, we proceed with the computation

∫∫

dGS(v,v′)< 3
2
ρ

(g(v)− g(v′))2
(〈v〉〈v′〉)q

dGS(v, v′)d+2s
dv′ dv
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=

∫∫

dGS(v,v′)< 3
2
ρ

(g(v)− g(v′))2
(〈v〉〈v′〉)q

dGS(v, v′)d+2s
|N(v, v′)|−1

∫

N(v,v′)

dwdv′dv.

Using that (g(v) − g(v′))2 ≤ 2(g(v) − g(w))2 + 2(g(w) − g(v′))2 and |N(v, v′)| ≈
〈v〉−1dGS(v, v

′)d

.

∫∫

dGS(v,v′)< 3
2
ρ

∫

N(v,v′)

(
(g(v)− g(w))2 + (g(w)− g(v′))2

) (〈v〉〈v′〉)q+1/2

dGS(v, v′)2d+2s
dwdv′dv

Note the symmetry respect to v and v′ and that 〈v〉 ≈ 〈v′〉 ≈ 〈w〉.

≈
∫∫

dGS(v,w)<ρ

(g(v)− g(w))2
〈v〉2q+1

dGS(v, w)2d+2s

(∫

v′∈M(v,w)

dv′

)
dwdv

≈
∫∫

dGS(v,w)<ρ

(g(v)− g(w))2
〈v〉q〈w〉q

dGS(v, w)d+2s
dwdv.

Corollary 2.11. Let g : Rd → R be any measurable function, q ∈ R and ρ < 1.
The following inequality holds for some c > 0 depending only on dimension, s, q
and ρ.

∫∫

dGS(v,v′)<ρ

(g(v)− g(v′))2
(〈v〉〈v′〉)q

dGS(v, v′)d+2s
dv′ dv

≥ c

∫∫

dGS(v,v′)<1

(g(v)− g(v′))2
(〈v〉〈v′〉)q

dGS(v, v′)d+2s
dv′ dv.

Proof. We iterate Lemma 2.10 m times so that (3/2)mρ ≥ 1.

We finally have all tools to proof our main result of this section, that is Theo-
rem 1.2.

Proof of Theorem 1.2. Let ψ be a non-negative satisfying ψ ≤ Φ and (20). Pro-
ceeding as in the proof of Theorem 2.1,

D(f) ≥ Nϕ
f (
√
f)− CM2

0 ,

where C > 0 is a finite universal constant and

Nψ
f (
√
f) =

∫

Rd

∫

Rd

(√
f(v′)−

√
f(v)

)2
Kψ
f (v, v

′) dv′ dv.

By Theorem 2.9, there are c1 > 0 and ρ ∈ (0, 1), depending on m0,M0, E0 and
H0, such that

Nψ
f (
√
f) ≥ c1

∫∫

dGS(v,v′)<ρ

(
√
f(v)−

√
f(v′))2

(〈v〉〈v′〉)(γ+2s+1)/2

dGS(v, v′)d+2s
dv′ dv.

Because of Corollary 2.11, we can replace ρ in the formula above by 1 by adjusting
the constant c1. We get

Nψ
f (
√
f) ≥ c2

∫∫

dGS(v,v′)<1

(
√
f(v)−

√
f(v′))2

(〈v〉〈v′〉)(γ+2s+1)/2

dGS(v, v′)d+2s
dv′ dv.

Therefore, we conclude that

D(f) ≥ c|
√
f |2
Ṅs,γ − CM2

0 .



16 JAMIL CHAKER AND LUIS SILVESTRE

REFERENCES

[1] R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg. Entropy dissipation and long-
range interactions. Arch. Ration. Mech. Anal., 152(4):327–355, 2000.

[2] R. Alexandre and C. Villani. On the Boltzmann equation for long-range interactions. Com-

munications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, 55(1):30–70, 2002.

[3] R. Alexandre and C. Villani. On the Landau approximation in plasma physics. Ann. Inst. H.
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