

1 High Strain Rate Deformation of Aged TRIP

2 Ti-10V-2Fe-3Al (wt.%) Examined by In-situ Synchrotron

3 X-Ray Diffraction

5

November 18, 2022

6 Authors: B. Ellyson^{a*}, A. Saville^a K. Fezzaa^b, T. Sun^b, N. Parab^b, C. Finfrock^a, C.J. Rietema^a,
 7 D. Smith^a, J. Copley^a, C. Johnson^a, C.G. Becker^a, J. Klemm-Toole^a, C. Kirk^c, N. Kedir^d, J.
 8 Gao^c, W. Chen^{c,d}, K.D. Clarke^a A.J. Clarke^a

⁹ ^aGeorge S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of
¹⁰ Mines, Golden, Colorado

¹¹ ^bThe Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois

¹² ^cSchool of Aeronautics and Astronautics Engineering, Purdue University, West-Lafayette, Indiana

¹³ ^dSchool of Advanced Materials Engineering, Purdue University, West-Lafayette, Indiana

¹⁴ *Corresponding author: bellyson@mines.edu

15 1 Abstract

16 Transformation Induced Plasticity (TRIP) is a promising avenue for tailoring the work hardening
17 response of metastable β titanium (Ti) alloys. Here we show that aged TRIP Ti-10V-2Fe-3Al
18 (wt.%) maintains higher elongations and flow stresses as strain rate increases, if phase stability
19 and microstructural characteristics are tuned. Low temperature aging influences the matrix β
20 phase stability by ω phase precipitation, which affords a promising way to impact the TRIP
21 effect and obtain desirable mechanical properties, ranging from high damping capacity to good
22 strength/ductility combinations. Although TRIP is active during quasi-static and dynamic testing
23 up to 2000 s^{-1} , increasing aging time and/or strain rate reduces the overall propensity for the TRIP
24 effect and extent of transformation, which occurs rapidly just at the onset of yielding. TRIP with
25 ω phase precipitation provides interesting alloying, microstructure, and property design strategies
26 for engineering applications like lightweight protective structures, where high strains and the need

27 for energy absorption are encountered.

28 2 Introduction

29 Titanium (Ti) alloys are heavily used in the aerospace and defense sectors for structural com-
30 ponents to leverage their high strength to weight ratios. While providing high strengths, α +
31 β microstructures typically exhibit low work hardening rates and limited uniform elongation [1].
32 TRansformation Induced Plasticity (TRIP), or the formation of martensite from the metastable
33 parent β phase, provides a way to improve the work hardening characteristics of Ti alloys. Blast
34 armor is an example engineering application of Ti alloys in the defense sector [2], where the TRIP
35 effect may be beneficially used to provide increased survivability. Due to the superior formability
36 of metastable β Ti alloys, the production of more complex cold-formed parts also becomes possible.
37 TRIP is also known to produce simultaneously strong and ductile advanced high strength steel
38 grades for automotive applications [3]. Although Ti alloys have long been known to exhibit the
39 TRIP effect, opportunity exists to exploit TRIP in these alloys to improve their work hardening
40 characteristics and create interesting strength/ductility combinations [4]. Understanding the TRIP
41 effect in Ti alloys and the dependence of TRIP on factors such as temperature, strain rate, and
42 strain path are crucial to effectively designing phase stability and microstructures that exhibit
43 TRIP during deformation.

44

45 TRIP Ti alloys have been reported to exhibit low yield stresses, due to a low transformation
46 stress, leading to the onset of martensite formation prior to yielding of the β phase matrix from
47 slip [5]. However, recent publications have demonstrated the strong effect that short-time, low-
48 temperature aging has on yield strength and ductility of TRIP-exclusive [4] and TRIP/TWinng
49 Induced Plasticity (TWIP) Ti alloys [6]. For example, early-stage aging of athermal ω phase pre-
50 cipitates, in combination with TRIP, has been shown to produce high yield strengths and uniform
51 elongations in the alloy Ti-10V-2Fe-3Al (wt.%) (Ti-1023) [4]. **Aging at temperatures below**
52 **the metastable solvus for ω phase has been found to lead to coarsening of the ather-**
53 **mally formed precipitates, leading to significant strengthening combined with TRIP**
54 **, while avoiding the well-known brittle behavior reported for longer aging times (10s**
55 **of hours) and higher temperatures (up to 573 K) . While the fundamental mech-**
56 **anism is still not well understood, omega-phase strengthening through early stage**
57 **aging is a novel strengthening strategy for metastable β Ti alloys and requires sig-**
58 **nificantly more work to address some of the challenges presented by short times and**
59 **low temperatures involved. Additionally, initial reports on the behavior have raised**

60 important questions as to the thermal stability of *beta* Ti alloys presenting TRIP and
61 TRIP/TWIP enabled microstructures and the ω phase that will have to be addressed
62 for long-term use of these microstructural states [4]. Early evidence also suggests that
63 two-phase $\alpha + \beta$ microstructures can exhibit TRIP during deformation, providing improved work
64 hardening and yield strengths [7, 8]. Significant opportunity exists to better understand TRIP in
65 metastable Ti alloys, given the promising nature of $\beta + \omega$ and $\beta + \alpha$ TRIP microstructures to
66 produce good mechanical properties.

67

68 If TRIP, TWIP, or TRIP/TWIP Ti alloys are to be designed for impact/blast resistance or
69 formability, further knowledge of their dynamic response is needed. While extremely useful for
70 initial understanding of TRIP, quasi-static properties may be inherently problematic for design-
71 ing microstructures for high strain rate mechanical response. To the authors' knowledge, only a
72 few studies [9, 10] have been published on the dynamic response and microstructure evolution of
73 metastable Ti alloys. Only alloys exhibiting TRIP and TWIP (TRIP/TWIP) have been studied
74 at elevated strain rates up to 10^3 s^{-1} in compression [9, 10]. The high strain rate deformation
75 of TRIP-exclusive alloys is absent from the literature, particularly in tension. Here we examine
76 low-temperature aging and microstructure evolution in $(\beta + \omega)$ TRIP Ti-1023 during high strain
77 rate tensile deformation. In-situ synchrotron **X-ray** diffraction was performed to understand the
78 TRIP effect at strain rates up to 2000 s^{-1} , along with complementary electron microscopy.

79

80 3 Methodology

81 3.1 Sample Preparation, Conventional Mechanical Testing, and Microstruc- 82 ture Characterization

83 A hot-rolled Ti-1023 bar 50.8 mm in diameter was received from ATI in the $\alpha + \beta$ condition.
84 The chemistry, determined by inductive coupled plasma mass spectrometry, is provided in Table
85 1. Conventional machining was performed to produce miniature high strain rate tensile specimens
86 with a gage cross-section of $0.5 \times 1 \text{ mm}^2$ (see Supplementary Materials) for testing at the Advanced
87 Photon Source (APS) at Argonne National Laboratory (ANL) (described later). The tensile axis
88 was aligned with the rolling direction in all cases. Some variation in texture was observed, due to
89 the sample extraction strategy, as further discussed in the Supplementary Materials. The miniature
90 tensile specimens were ground to final thickness of 0.5 mm using 320 grit SiC metallographic paper.

91

92 All tensile specimens were cleaned, wrapped in Ta foil, and encapsulated under vacuum in

Table 1: Chemistry of the as-received Ti-1023 material in wt. %.

V	Fe	Al	O	C	N	Ti
9.97	1.88	2.77	0.12	0.02	0.01	Bal.

93 quartz tubes for heat treatment to minimize contamination and oxygen pick-up. The solutionizing
 94 heat treatment consisted of an isothermal hold at 1123 K for 30 min. All specimens were immedi-
 95 ately quenched into room temperature water by breaking each capsule underwater. The resulting
 96 microstructure was single phase β , with equiaxed grains and an average grain size of $\sim 100 \mu\text{m}$, as
 97 determined by electron backscatter diffraction (EBSD).

98

99 Three conditions were produced for this study: as-quenched (AQ) (solution treated, no in-
 100 tentional aging), maximum TRIP strength (MTS), and TRIP Inhibited (TI). The MTS and TI
 101 conditions were produced by aging in a closed-loop controlled synthetic oil bath at 423 K for
 102 900 s or 7200 s, respectively. These aging times were selected based upon previous work [4] to
 103 achieve different strength/ductility combinations and ω phase coarsening plus TRIP. The MTS
 104 condition exhibits an optimal strength/ductility combination, whereas the TI condition has maxi-
 105 mum strength, but ductility loss. Aging times beyond 1800 s were found to reduce TRIP activity
 106 and ductility [4]. Chemical analysis after the heat treatments revealed no measurable composition
 107 changes compared to the as-received condition.

108

109 Quasi-static tensile testing was conducted at the Colorado School of Mines on an electrome-
 110 chanical Alliance load-frame at a strain rate of 10^{-3} s^{-1} with a 25 mm Shepic-type extensometer.
 111 Intermediate strain rate testing was performed on a hydraulic MTS load-frame with a 25 mm MTS
 112 blade-type extensometer. All quasi-static and intermediate strain rate testing was performed on
 113 ASTM E8 subsized [11] tensile specimens with a gauge length of 25.4 mm and cross-section of
 114 $3.175 \times 6.35 \text{ mm}^2$.

115

116 Specimens for Electron Backscatter Diffraction (EBSD) were prepared by electropolishing at
 117 20 V and 253 K, with a mixture of 6 % perchloric and 4 % hydrochloric acid diluted with a 2:1
 118 mixture of methanol and butoxyethanol. EBSD scans were performed in a FEI Helios 600i dual-
 119 column Focused Ion Beam (FIB)/Scanning Electron Microscope (SEM), an accelerating voltage
 120 of 20 kV, beam current of 11 nA, and step size of 1 μm . No post-scan clean-up procedures were
 121 applied to the results.

122

123 After post-scan analysis of EBSD results, reconstruction of pre-transformed β -Ti microstruc-

124 tures was completed using the MATLAB plugin MTEX Version 5.70 [12]. This process employed
125 a triple-point based voting reconstruction algorithm [13] to back-calculate parent grains prior
126 to deformation and evaluate the response of different deformation mechanisms as a function of
127 parent β -Ti grain orientation. The reconstruction process started with the previously reported
128 orientation relationship (OR) between α'' and β -Ti [14]. This orientation relationship was sub-
129 sequently optimized for the data acquired in each EBSD scan using the MTEX add-on ORTools
130 [13]. For the reconstructions reported in this work, the optimized OR was $\{12\bar{2}\}_{\beta} \parallel \{210\}_{\alpha''}$ and
131 $\langle 01\bar{1}\beta \rangle \parallel \langle 001\alpha'' \rangle$. Data processing of the as-transformed EBSD maps was completed prior
132 to implementing the reconstruction algorithm. This consisted of calculating unique grains with a
133 grain boundary misorientation threshold of 2° , removing any grains less than two pixels in size,
134 recalculating the filtered grains with 1.5° misorientation thresholds, and completing a smoothing
135 plus filling process with a half quadratic filter set to 0.5. During calculations for parent grain
136 reconstruction, a voting fit of $2.5-5^\circ$ was set when evaluating triple points, a minimum probability
137 of 0.7 was set for determining if a reconstruction calculation was valid, and the growth of parent
138 grains at boundaries was set to a 2.5° threshold. Further processing of merging parent grains with
139 less than 5° misorientations and merging reconstructed inclusions less than two pixels in size was
140 also completed. Calculation of grains in the reconstructed microstructure was completed with a
141 3° misorientation threshold and removing any parent grains less than 70 pixels in size. A half
142 quadratic filter of 0.25 was also applied to fill and smooth the reconstructed parent microstruc-
143 tures. Schmid factor calculations for the reconstructed microstructures were also completed using
144 MTEX Version 5.70. The slip system used for Schmid factor calculations was $\{110\}_{\beta} \langle 111 \rangle_{\beta}$,
145 and the system used for the shear component of the α'' transformation was $\{112\}_{\beta} \langle 111 \rangle_{\beta}$.

146

147 3.2 In-Situ Synchrotron X-Ray Diffraction and High Strain Rate Test- 148 ing

149 In-situ synchrotron x-ray imaging and diffraction were performed during high strain rate (modified
150 Kolsky) pressure bar testing at Sector 32-ID-B at the Advanced Photon Source (APS) at Argonne
151 National Laboratory (ANL), in Lemont, Illinois, USA. The details of the Kolsky bar setup have
152 been reported elsewhere [15, 16, 17, 18]. A “pink-beam” condition was used, with a maximum
153 flux at a wavelength of 0.512 and a characteristic, asymmetric intensity profile near the harmonic
154 energies. A beam size of 2 mm wide by 1 mm in height was used to illuminate the gauge length
155 of the miniature tensile specimens. Different detector positions were used to obtain specific res-
156 olution and ranges in q -space. Standards of pure Al and pure Ta foil were used to calibrate the
157 detector position. Ta was particularly useful, as the crystal structure (BCC) and lattice parameter

158 are similar to the β phase in Ti alloys. Analysis of the raw diffraction data was completed using
159 High Speed Polychromatic Diffraction (HiSPoD), a MATLAB program developed at Sector 32-ID.
160 Additional details are given elsewhere [19].

161

162 The (modified Kolsky) pressure bar apparatus used strain gauges to capture strain pulses. Due
163 to space restrictions in the hutch, the load signal was measured with a load cell, instead of a typical
164 transmission bar. Strain rates of roughly 1000 and 2000 s^{-1} were achieved.

165

166 For the synchrotron x-ray diffraction, multiple detector positions were selected from forward
167 modelling with HiSPoD. The intent was to capture diffraction signals of interest from the BCC
168 matrix β phase and orthorhombic α'' martensite (space group No. 63, Cmcm) during microstruc-
169 ture evolution and mechanical testing. Since α'' martensite is only a slight symmetry breakdown
170 of the β phase, many of the diffraction peaks are either coincident with, or near the β phase reflec-
171 tions. The lower order symmetry of the orthorhombic space-group of the martensite also leads to
172 additional reflections. Thoughtful selection of detector positions allowed for the measurement of
173 the α'' martensite reflections, without the overlap of β phase matrix reflections in some instances.
174 Calibration measurements and diffraction forward modelling are further discussed in the Supple-
175 mentary Materials.

176

177 4 Results

178 In the following sections, quasi-static, intermediate, and high strain rate mechanical testing and
179 microstructure development in Ti-1023 are presented and discussed, including the role of aging.

180

181 4.1 Mechanical Data

182 4.1.1 Quasi-Static and Intermediate Strain Rates

183 The AQ, MTS and TI conditions were quasi-statically strained at $10^{-3} s^{-1}$. The engineering
184 stress/strain and true stress/strain curves are shown in Figure 1a–b, respectively. The engineering
185 stress/strain curves show a clear trend in the effect of low-temperature aging on yield stress. Mi-
186 crostructural characterization of the AQ and aged conditions deformed at quasi-static strain rates
187 is reported elsewhere [4]. Optical microscopy of the tensile specimens deformed at intermediate
188 strain rates revealed a transformed microstructure consistent with those produced by quasi-static
189 strain rates, but is not shown here for conciseness. The yield stress increases from below 200 MPa

190 for the AQ condition to over 600 MPa for the MTS condition, representing a more than three-fold
 191 increase in strength. Unexpectedly, the MTS condition also appears to exhibit larger total elon-
 192 gation than the AQ condition (Table 2). The TI condition shows an increased yield strength (722
 193 MPa) compared to the MTS condition (607 MPa), but also exhibits reduced elongation (0.34 for
 194 MTS versus 0.16 for TI). When true stress/strain is considered, trends in the work hardening rate
 195 (WHR) and uniform elongation become evident. Low temperature aging significantly reduced the
 196 maximum WHR exhibited, as shown by the inset in Figure 1b. Low temperature aging also re-
 197 sulted in increased uniform elongation (0.26) of the MTS condition compared to the AQ condition
 198 (0.19), as discussed in the Supplementary Materials.

199

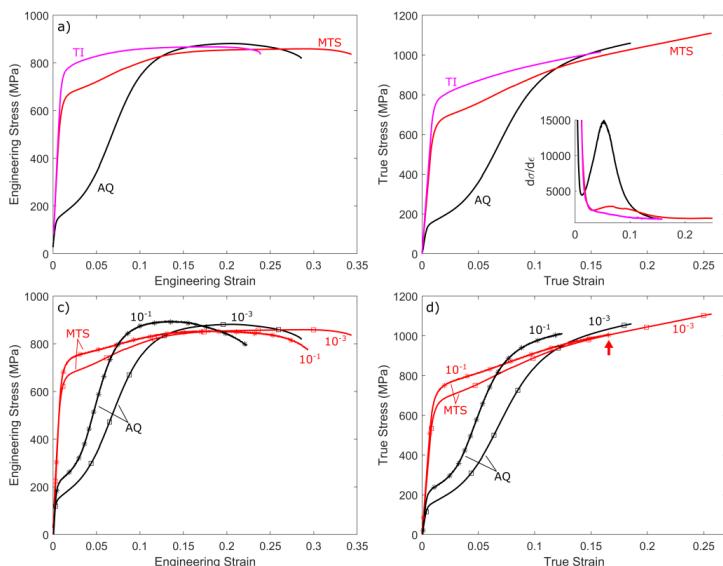


Figure 1: Quasi-static and intermediate strain rate mechanical response of Ti-1023 with aging.
 a) Engineering stress versus engineering strain and b) true stress versus true strain in the AQ, MTS and TI conditions. c) Engineering stress versus engineering strain curves for the AQ and MTS conditions tested at quasi-static ($10^{-3} s^{-1}$) and intermediate ($10^{-1} s^{-1}$) strain rates. d) True stress versus true strain curves for the AQ and MTS conditions tested at quasi-static and intermediate strain rates. The end of the intermediate strain rate MTS curve is indicated by a red arrow in d).

200 Quasi-static and intermediate strain rate testing was also performed on Ti-1023 in the AQ and
 201 MTS conditions to ascertain the effect of increasing strain rate on strengthening by low-temperature
 202 aging and TRIP. The AQ and MTS conditions were tested at a quasi-static strain rate of 10^{-3}
 203 s^{-1} and an intermediate strain rate of $10^{-1} s^{-1}$. Engineering stress/strain and true stress/strain
 204 curves are shown in Figure 1c-d, respectively.

205

206 A hundred-fold increase in strain rate caused an increase in 0.2 % offset yield stress from 162 to
 207 235 MPa for the AQ condition and 607 to 695 for the MTS condition. The increase in yield stress
 208 is accompanied by a decrease in uniform and total elongation for both the AQ and MTS conditions

209 (Table 2). On the other hand, both conditions exhibit decreasing Ultimate Tensile Stress (UTS)
 210 as strain rate increased from 10^{-3} to $10^{-1} s^{-1}$. The UTS decreased from 1059 to 1007 MPa for
 211 the AQ condition and from 1110 to 1004 MPa for the MTS condition. The increase in yield stress
 212 and decrease in UTS with strain rate aligns with Ma *et al.*'s reported results [20]. Ma *et al.* also
 213 reported the initial yield stress exhibited a strong positive strain rate sensitivity (SRS), whereas
 214 the UTS exhibited a slightly negative SRS.

215

Table 2: Mechanical Properties from Quasi-static and (Intermediate) Strain Rates from the AQ, MTS and TI conditions.

$\dot{\varepsilon} (s^{-1})$ Condition	0.2 % Offset Yield Stress (MPa)		Ultimate Tensile Stress (MPa)		Uniform Elongation		Total Elongation	
	10^{-3}	10^{-1}	10^{-3}	10^{-1}	10^{-3}	10^{-1}	10^{-3}	10^{-1}
AQ	162	235	1059	1007	0.19	0.12	0.27	0.22
MTS	607	695	1110	1004	0.26	0.17	0.34	0.2
TI	722	N/A	1016	N/A	0.16	N/A	0.24	N/A

216 4.1.2 High Strain Rate Mechanical Data

217 The high strain rate (modified Kolsky) pressure bar setup used in this work allowed for determina-
 218 tion of stress and strain responses during synchrotron x-ray imaging and diffraction. Figure 2
 219 shows high strain rate mechanical testing results at 1000 or $2000 s^{-1}$ for the AQ, MTS and TI
 220 conditions. Individual test results are shown in grey, which were used to calculate average curves
 221 shown in black. The averaging was performed due to the high variability exhibited by the individ-
 222 ual specimens for a given condition. The variability is likely caused by the size of the specimens
 223 relative to the grain size, varying texture within each specimen, and/or the use of a load cell instead
 224 of a transmission bar to measure the load signal.

225

226 Total ductility was determined using a cut-off stress for each condition to compare values, as the
 227 exact moment of fracture is nearly impossible to determine from these tests. Ductility decreases
 228 as strain rate increases for all aging conditions studied. The elongations decrease by 0.01, 0.05 and
 229 0.04, as strain rate goes from 1000 to $2000 s^{-1}$, for the AQ, MTS and TI conditions, respectively.
 230 Ductility also decreases as aging time increases at constant strain rate. The elongations are 0.20,
 231 0.15 and 0.13 at $1000 s^{-1}$, for the AQ, MTS and TI conditions, respectively. Average flow stress
 232 increases with aging time at constant strain rate, indicating that low temperature aging still pro-
 233 vides a strengthening effect at high strain rates. The average maximum flow stresses are roughly
 234 882, 1056 and 1110 MPa at $1000 s^{-1}$ for the AQ, MTS and TI, respectively. Increasing strength

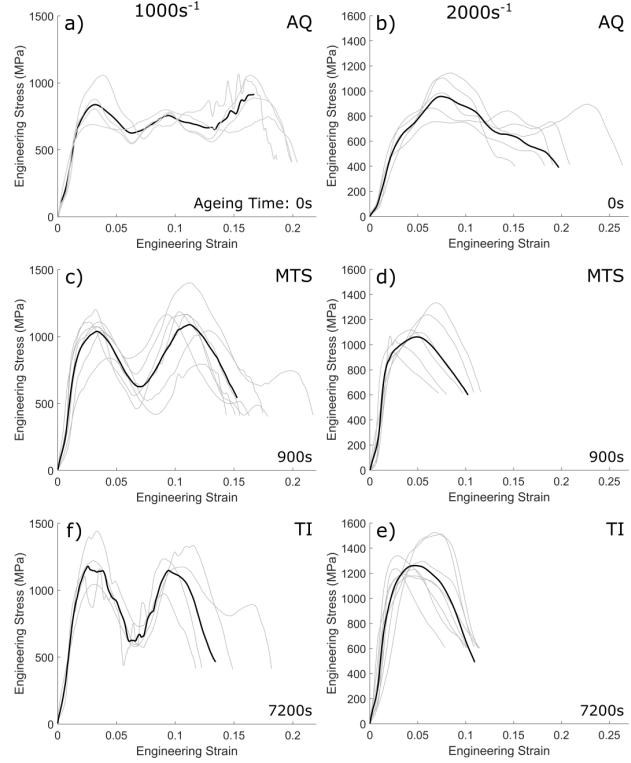


Figure 2: High strain rate mechanical testing results from (modified Kolsky) pressure bar testing during synchrotron x-ray imaging and diffraction. AQ specimens at a) 1000 s^{-1} and b) 2000 s^{-1} , MTS specimens at c) 1000 s^{-1} and d) 2000 s^{-1} , TI specimens at e) 1000 s^{-1} and f) 2000 s^{-1} . In all cases, individual specimen test results are shown in grey and average behavior for a given condition is shown in black.

235 with increasing strain rate is also exhibited for each aging condition. The average maximum flow
 236 stresses were roughly 956, 1061 and 1261 MPa at 2000 s^{-1} for the AQ, MTS and TI, respectively.

237

238 Pronounced signal oscillations are seen in the stress/strain response of all aged conditions at
 239 1000 s^{-1} . These oscillations are absent from the 2000 s^{-1} tests, due to the shorter time to fracture.
 240 **The oscillations are likely due to ringing occurring in the specimen and load cell during**
 241 **the testing. Details of the testing setup and discussion associated can be found in the**
 242 **supplementary materials of Ellyson et al. [18].** The amplitude of the oscillations appears
 243 to be much lower for the AQ condition. The maximum average amplitude of the oscillations is
 244 286 MPa for the AQ condition at 1000 s^{-1} compared to 413 and 540 MPa for the MTS and TI
 245 conditions at 1000 s^{-1} , respectively. Decreased ringing amplitude appears to indicate the AQ
 246 condition in Ti-1023 has a higher internal damping coefficient, which may help to explain the
 247 increased ductility exhibited by the AQ condition compared to the aged conditions.

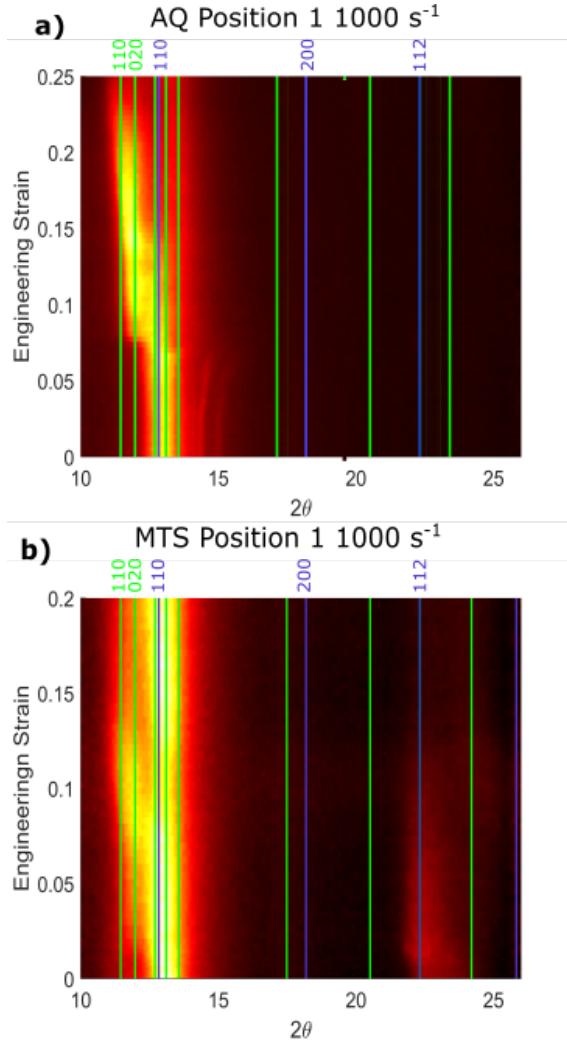


Figure 3: Integrated diffraction maps as a function of engineering strain for two specimens taken from detector position 1 (described in the Supplementary Materials) for a) an AQ specimen and b) and an MTS specimen. Both plots show stacked lineouts in the form of a heat map calculated by integrating individual frames and assembling them as a function of strain on the y axis. Theoretical diffraction positions for martensite (green), and beta phase (blue) are indicated with labeled reflections of interest for discussion purposes.

**248 4.2 In-Situ Synchrotron X-Ray Diffraction during High Strain Rate
249 Testing**

250 In-situ synchrotron x-ray diffraction data taken from detector position 1 (described in the Sup-
251 plementary Materials) provides the broadest range of d-spacings. Detector position 1 samples the
252 highest intensity peaks for both the β phase and martensite, i.e. the $\{110\}_\beta$ and $\{111\}_{\alpha''}$ (Figure
253 10). Both peaks are nearly identical in d-spacing, as the $\{111\}_{\alpha''}$ planes are formed from the $\{110\}_\beta$
254 planes. In-situ data taken from detector position 1 leads to significant overlap of diffracted inten-
255 sities, depending upon which peaks are measured and the initial texture present, as discussed in
256 the Supplementary Materials. Figure 3a-b show two sets of stacked diffraction patterns as interpo-
257 lated heat maps of 2θ versus engineering strain for both the MTS and AQ conditions, respectively.

258 Differences between the two conditions are visible for the theoretical positions of interest labeled
259 in blue for β and green for α'' above each of the heatmaps. For the MTS condition, intensity starts
260 to appear near the $\{110\}_{\alpha''}$ and $\{020\}_{\alpha''}$ peaks almost immediately after yielding begins (near 0.02
261 strain), showing evidence for the onset of transformation. Maximum intensity is reached near 0.1
262 total strain and corresponds to the lowest intensity of the $\{110\}_{\beta}$ peak. The minimum β inten-
263 sity coupled to a maximum in martensite intensity indicates that transformation has reached the
264 maximum extent. This is strongly supported by the steady loss of intensity near the $\{112\}_{\beta}$ peak.
265 From 0.1 total strain onward, the intensity at the $\{110\}_{\beta}$ peak increases at the expense of every
266 other peak. The increase is indicative of texture evolution in both phases, most likely due to slip
267 and internal twinning occurring from this strain up to fracture. It is impossible to determine to
268 which degree each of the two phases is contributing to the measured intensity, due to broadening
269 and overlap of the diffraction peaks. Intensity remains around the $\{110\}_{\alpha''}$ and $\{020\}_{\alpha''}$ up to the
270 point of fracture, whereas diffraction from the secondary peaks of the β phase is mostly absent.
271 This indicates the microstructure is composed mainly of martensite before fracture, and what little
272 β phase remains is strongly textured.

273

274 A stacked diffraction heat map is shown for the AQ condition (Figure 3a). The onset of trans-
275 formation occurs with yielding for the AQ condition, similar to the MTS condition. Conversely,
276 in the AQ condition the degree of transformation increases faster as a function of plastic strain,
277 since most of the diffracted intensity moves to the $\{110\}_{\alpha''}$ and $\{020\}_{\alpha''}$ peaks before 0.1 strain.
278 Diffracted intensity at the $\{110\}_{\beta}$ position decreases rapidly, in conjunction with the increase in
279 martensite diffracted intensity. The near total absence of β diffracted intensity implies that nearly
280 complete transformation has occurred in this specimen as soon as 0.1 to 0.12 total strain. Inter-
281 estingly, the relative intensity of the diffraction peaks exhibited by the AQ condition is completely
282 different from that observed by the MTS condition throughout the test, as shown in Figure 3a-b.
283 This is indicative of a different texture component evolving in the AQ condition compared to the
284 MTS condition. However, the starting texture of each specimen is likely different, as discussed in
285 the Supplementary Materials.

286

287 Detector position 2 (see Supplementary Materials) was used to track phase fraction evolution
288 more precisely. The time-resolved diffraction obtained from detector position 2 allows for direct
289 comparison of microstructural evolution with the mechanical testing data. Figure 4 shows in-
290 tegrated diffraction intensity for an AQ specimen. The diffraction peaks were integrated using
291 $\pm 0.5^\circ$ range from the theoretical position. Figure 4 shows integrated intensity for the $\{112\}_{\beta}$,
292 $\{132\}_{\alpha''}$ and $\{022\}_{\alpha''}$ peaks taken from position 2, along with engineering stress, both as a func-

tion of engineering strain. The data exhibits five distinct stages. In stage I, the onset of loading occurs as the stress pulse initially arrives at the specimen. In most tested specimens, the diffraction signal showed clear signs of specimen unbending at the onset of loading. The end of stage I also coincides with the onset of yielding and transformation. In stage II the intensity of the $\{112\}_\beta$ peak consistently decreases, and the integrated intensity of the $\{132\}_\alpha''$ and $\{022\}_\alpha''$ peaks increase in parallel. Interestingly, stage II also corresponds to a decrease in stress response, or strain softening. Stage III shows a distinct change in transformation behavior. The overall rate of transformation decreases, as can be seen by the lower rate of decrease in $\{112\}_\beta$ integrated intensity. Stage III is also accompanied by a change in relative intensity of the martensite reflections, which is indicative of texture evolution. Stage III appears to correspond to a slowdown in transformation, as the untransformed β phase is consumed and the capacity for further transformation is exhausted. Deformation via slip and twinning increase to compensate for the imposed plastic strain that transformation no longer accommodates. The gradual change in dominant deformation mechanisms is also accompanied by an increase in the stress response. The increasing stress indicates work hardening operating in both phases. Stage IV begins with a global reduction in total intensity of the diffraction data. The reduction in global intensity marks the onset of necking and fracture. Synchrotron x-ray imaging shows local thinning in the necked region (Figure 4b). The volume of illuminated material contributing to diffracted intensity is steadily decreasing, due to thinning of the necked region. Stage V corresponds to fracture, verified by the imaging data for this specimen (Figure 4c—d).

313

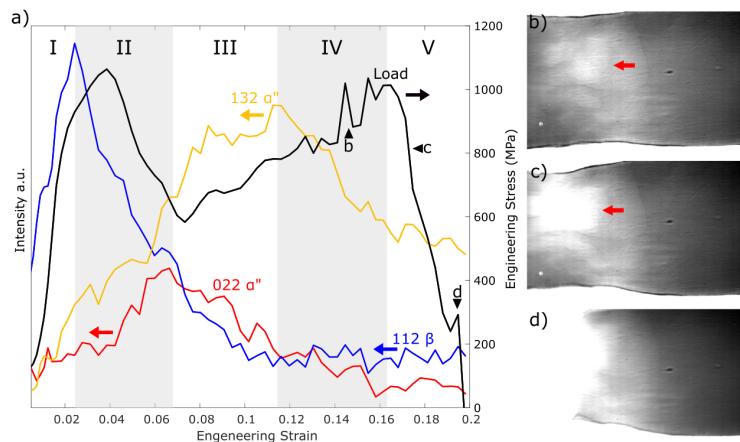


Figure 4: In-situ synchrotron x-ray imaging and diffraction of an AQ specimen deformed at $1000 s^{-1}$. a) Integrated intensity from in-situ synchrotron x-ray diffraction and engineering stress as a function of engineering strain for an AQ specimen deformed at $1000 s^{-1}$. Diffraction was taken at detector position 2. b) Synchrotron x-ray radiography taken near the UTS where the onset of local thinning is visible, as indicated by the red arrow. c) Synchrotron x-ray radiography taken after the UTS where fracture started, indicated by the red arrow. d) Synchrotron x-ray radiography taken after fracture, showing only the fixed end of the specimen.

314 Integrated intensity of diffraction peaks from the β and α'' phases measured at detector posi-
315 tion 2 and engineering stress versus engineering strain obtained from a MTS specimen is presented
316 in the Supplementary Materials. As soon as the yield stress is reached, the integrated intensity
317 of the $\{112\}_\beta$ peak starts decreasing and the $\{132\}_{\alpha''}$ peak correspondingly increases (Stage II).
318 The $\{132\}_{\alpha''}$ reaches a maximum value near a strain of 0.09 (Stage III), at which point both peaks
319 steadily decrease in intensity (Stage IV) until fracture occurs near 0.19 strain (Stage V). Over-
320 all, the results indicate that transformation slows down considerably and is nearly complete past
321 0.1 strain. Although the diffraction signal does not clearly show similar texture evolution in the
322 martensite as that shown in Figure 4 since a single peak is measured, slip and twinning are most
323 likely operating as the principal deformation mechanisms from 0.1 strain to fracture. Maximum
324 stress is reached near 0.12 total strain, at which point necking initiates and the total diffracted
325 intensity from both phases and the stress steadily decrease up to the point of fracture. In com-
326 parison to the behavior of the AQ specimen (Figure 4), stage III is much shorter for the MTS
327 condition than the AQ condition.

328

329 The synchrotron x-ray diffraction data for the TI condition is harder to interpret than for the
330 other two conditions. Transformation is not consistently detected in the diffraction signal, but
331 was confirmed in certain specimens. These results are presented in the Supplementary Materials.
332 As further confirmation, transformation was also discernible in the radiography for many of the
333 specimens, including the TI condition. The synchrotron x-ray radiography results are not shown,
334 but confirm the diffraction results.

335

336 4.3 Post-Mortem Microstructure Characterization

337 EBSD was conducted on the gauge section of the AQ, MTS, and TI specimens deformed at 1000
338 s^{-1} . Figure 5 shows an Inverse Pole Figure (IPF) + Image Quality (IQ) map in a) and a Phase
339 + IQ map in b). Fine laths in multiple different orientations cover most of the scanned area.
340 The original, equiaxed β phase grain boundaries are also visible. The IPF + IQ map shows a
341 single subset of orientations hosted within a given grain. Most grains exhibit two or three com-
342 mon orientations of martensite. The common orientations suggest a strong tendency for variant
343 selection, based on resolved shear stress. The microstructure evolution shown in Figure 5 supports
344 that martensite transformation is an effective mechanism for accommodating plastic strain, even
345 at high strain rates in metastable β Ti alloys. The Phase + IQ map indicates that most of the
346 indexed area can be attributed to α'' martensite. When the area fraction is averaged over many
347 scans, the AQ condition exhibits an α'' phase fraction of 0.91.

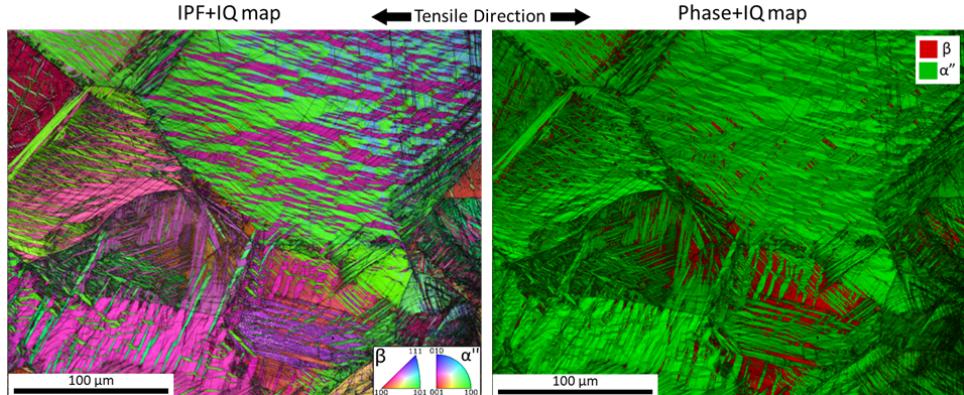


Figure 5: EBSD scan of an AQ specimen deformed at 1000 s^{-1} . a) IPF + IQ map and b) Phase + IQ map.

349 EBSD characterization was also performed on MTS specimens deformed at 1000 s^{-1} . Figure
 350 6a-c show an IPF + IQ map, while b and d show the Phase + IQ maps of two different scans,
 351 respectively. The scan shown in 6c-d is a higher magnification scan of the area indicated by the
 352 yellow box in Figure 6a-b. Striking similarities are apparent between Figure 5 and parts of Figure
 353 6a-b. Figure 6a shows a dense array of martensite laths populating prior β grains. The grain
 354 labeled “Grain A” in the Phase + IQ map in Figure 6b shows martensite laths of comparable
 355 width. Grain A has almost completely transformed to martensite, as evidenced by the densely
 356 packed laths, lack of misorientation across lath boundaries, and absence of measurable β phase in
 357 between.

358

359 Grain B, shown at high magnification in Figure 6c-d, reveals apparent difference in microstruc-
 360 ture evolution and degree of transformation. Such grains were readily visible in many of the MTS
 361 specimens characterized by EBSD, much more so than in the AQ condition. The Phase + IQ map
 362 shows a lower degree of transformation in Grain B compared to Grain A, with the area fraction of
 363 martensite only 0.65 in Grain B compared to the more than 0.9 exhibited in Grain A.

364

365 The MTS condition appears to exhibit a higher proportion of partially transformed grains (e.g.,
 366 Grain B) over completely transformed grains (e.g., Grain A) compared to the AQ condition. When
 367 the martensite area fraction is averaged over all areas characterized by EBSD for the MTS con-
 368 dition, the average area fraction is 0.77. The lower overall phase fraction of martensite is likely
 369 due to grains exhibiting nearly complete transformation (Grain A) with an area fraction near or
 370 exceeding 0.9 and grains that retain a significant portion of β phase (Grain B), where the local
 371 area fraction is usually near 0.6.

372

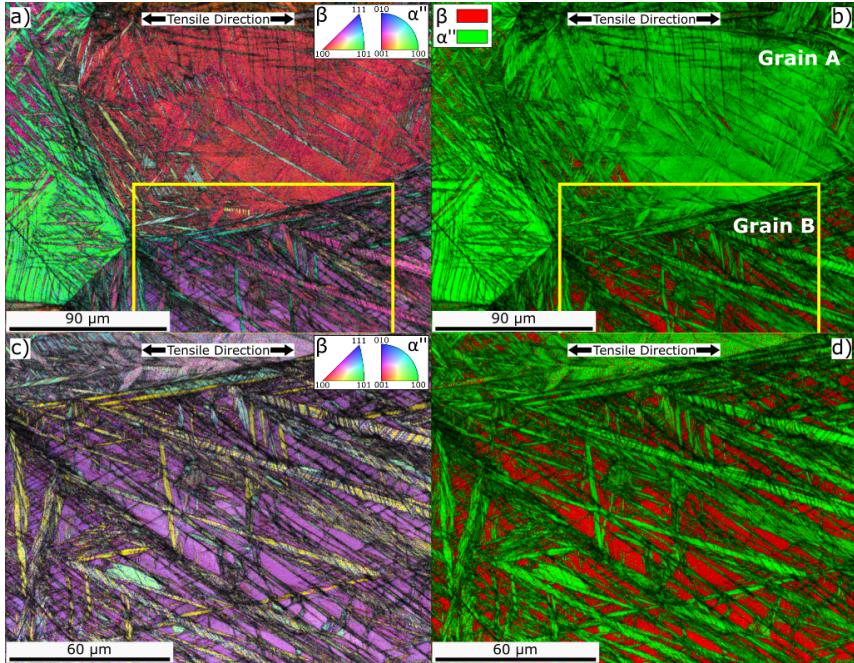


Figure 6: EBSD scan of an MTS specimen deformed at 1000 s^{-1} . a) IPF + IQ map and b) Phase + IQ map. c) IPF + IQ map and d) Phase + IQ map of the area highlighted in yellow in a) and b). This scan was taken from the same specimen shown in Figure 3a. Note the lower portion of the scan shown in c) and d) is outside the scan area shown in a) and b).

373 The average area fraction of martensite in the TI condition after fracture is the lowest of all
 374 three conditions studied for a given strain rate. EBSD scans of the gauge section of TI specimens
 375 deformed at 1000 s^{-1} (7) show partially transformed grains, more akin to Grain B shown in Figure
 376 6. Fully transformed grains, like Grain A, were uncommon. Most grains contained an area frac-
 377 tion of martensite between 0.5 and 0.8. The IQ maps show signs of internal evolution within the
 378 primary martensite bands, likely from mechanical twinning of the transformation product. The
 379 heavy twinning of the martensite indicates plasticity continued after the primary martensite bands
 380 formed.

381
 382 Post-mortem characterization of the TI condition also revealed a higher fraction of transfor-
 383 mation occurred in the necked region compared to the gauge length. Microstructural evolution
 384 was the greatest in the necked region for all conditions, but the difference is the most striking for
 385 the TI condition. The TI aging treatment increases the stress necessary for transformation to a
 386 level comparable to or greater than the stress necessary for slip; however, the increased local strain
 387 rate and stress in the necked region leads to increased localized transformation. The localized
 388 transformation contributes to increasing post-uniform elongation, instead of uniform elongation.

389

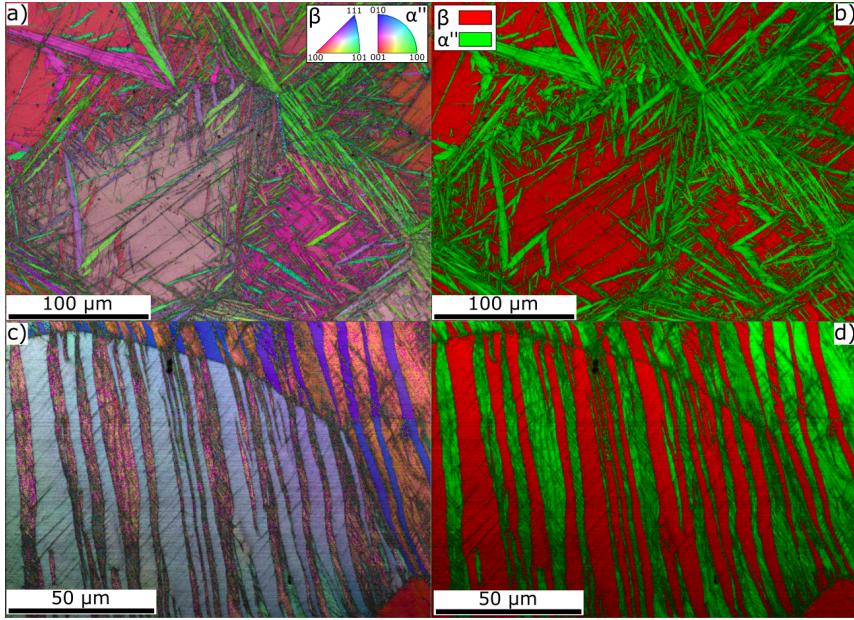


Figure 7: EBSD scan of two TI specimens deformed in tension at 1000 s^{-1} . a) IPF + IQ map and b) Phase + IQ map c) IPF + IQ map and (d) Phase + IQ map of another TI specimen. Both exhibit transformation, but at a lower phase fraction than observed for the AQ and MTS conditions.

390 5 Discussion

391 5.1 Low Temperature Aging and Transformation at High-Rates

392 Post-mortem characterization by EBSD was used to measure the area fraction of martensite in
 393 fractured specimens for each aged condition at both tested strain rates. The area fraction mea-
 394 surements were obtained from multiple scans performed on at least three samples per condition,
 395 per strain rate. More than 1 mm^2 of total scanned area was used to determine the average and
 396 standard deviation of the area fraction (Table 3). Increasing aging time caused a decrease in area
 397 fraction of martensite tested at both strain rates. The standard deviation of the mean area fraction
 398 also increases with aging time. **It should be noted that Ti-1023, as well as other TRIP**
 399 **and TRIP/TWIP β Ti alloys, have been reported, by means of in-situ tensile testing,**
 400 **to undergo some martensite reversion upon unloading, such that the unloaded state**
 401 **might not be perfectly representative of the microstructural state at the ultimate**
 402 **tensile stress.**

Table 3: Average area fraction (and standard deviation) of martensite for each condition and strain rate.

Condition	1000 s^{-1}	2000 s^{-1}
AQ	0.91 (0.03)	0.79 (0.09)
MTS	0.77 (0.11)	0.68 (0.09)
TI	0.63 (0.14)	0.55 (0.18)

403

404 While in-situ synchrotron x-ray diffraction shows an equivalence in the strain at which transfor-
405 mation initiates and slows for all conditions investigated, EBSD characterization shows the total
406 area fraction of martensite decreases with increasing aging time (Table 3). As such, increasing
407 aging time ultimately affects the total capacity for transformation at high strain rates, rather than
408 the plastic strain over which transformation occurs.

409

410 Both Yang *et al.* [9] and Xiao *et al.* [10] tested TRIP/TWIP β Ti alloys at high strain rates
411 in compression. Yang *et al.* tested TRIP/TWIP Ti-8.5Cr-1.5Sn (wt.%) at 1000, 1500 and 2000
412 s^{-1} . They found significant transformation and twinning in the deformed microstructure, with no
413 apparent suppression of TRIP or TWIP, which corroborates well with the findings presented here.
414 Xiao *et al.* conducted dynamic compression of TRIP/TWIP Ti-2Al-9.2Mo-2Fe (wt.%) at 3000 s^{-1} .
415 Their study serves as an interesting comparison to these results, as they studied two microstruc-
416 tural conditions containing different ω phase populations produced by different solution treatment
417 temperatures, followed by a quench to room temperature. The low-temperature condition (850
418 $^{\circ}C$ for 30 min) contained small “un-evolved” ω phase precipitates, while the higher temperature
419 condition (950 $^{\circ}C$ for 60 min) contained larger, well-defined ellipsoidal ω phase precipitates after
420 quenching. They found evidence of TWIP and TRIP at 0.1 and 0.17 true strain during testing
421 in the low temperature condition, while they found only TWIP and no evidence of TRIP in the
422 high temperature condition at the same true strain levels. All of their tests were conducted at
423 high strain rate and room temperature. These results strongly support the present findings that
424 athermal ω phase controls the propensity for TRIP at high strain rates (up to 2000 s^{-1} here and
425 3000 s^{-1} in Xiao *et al.*’s study). Secondly, it was also reported that microstructural evolution
426 severely slowed after 0.1 true strain, with dislocation slip operating instead from 0.1 to 0.17 true
427 strain.

428

429 Typically, no more than 5 to 10 grains were included in an area scanned with EBSD in this
430 work. When the amount of transformation is reduced (as is the case with increasing aging time),
431 the degree of transformation becomes more variable on a per grain basis. The increased variabil-
432 ity supports the hypothesis that certain grains undergo significant transformation, whereas other
433 grains transform less or by slip instead, effectively producing the “bi-modal” distribution of area
434 fraction transformed exhibited by the MTS conditions (e.g., Grains A and B in Figure 6). This
435 grain-by-grain selection of transformation or slip is most likely driven by the resolved shear stress
436 on specific slip or transformation systems as a function of grain misorientation relative to the
437 tensile axis, usually represented by the Schmid factor. Schmid factor analysis was performed on

438 EBSD maps reconstructed to contain only the parent β grains before deformation. Figure 8 shows
 439 a grain-by-grain Schmid factor map for the same EBSD scan shown in Figure 5. The grains in the
 440 lower sections of the scan in Figure 8 clearly show that the Schmid factor for slip is higher than
 441 that for transformation, while the phase map shown in Figure 5 proves the grains are almost fully
 442 transformed. This analysis supports the claim that, in the AQ condition, the stress for transforma-
 443 tion is significantly lower than that for slip, which leads grains to transform even when unfavorably
 444 oriented relative to slip and leads to high area fraction of transformed material.

445

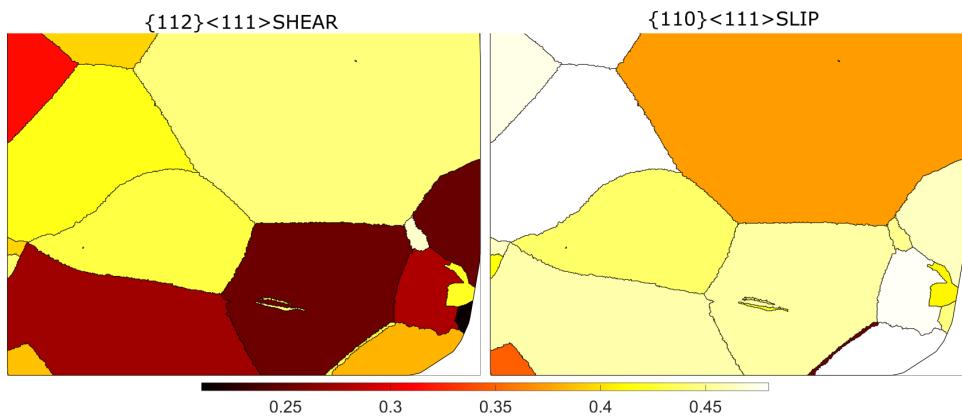


Figure 8: Schmid factor map for the reconstructed β phase obtained from an EBSD scan of an AQ specimen deformed at 1000 s^{-1} a) Schmid factor map for the martensitic transformation system b) Schmid factor map for the main BCC slip system. Note the bottom right corner of the map was unable to be reconstructed due to excessive deformation and was removed during the calculation process.

446 However, increasing aging time causes a gradual reduction of fully transformed grains (Grain A
 447 type), in favor of partially transformed grains (Grain B type), when deformed at high strain rates.
 448 This reduction in fully transformed grains is most likely due to an increase in transformation stress
 449 caused by increased aging. The increase in occurrence of partially transformed grains over fully
 450 transformed ones ultimately reduces the total area fraction of transformation product, as measured
 451 by EBSD, which directly correlates to reduced total elongation at both strain rates tested, i.e.,
 452 1000 s^{-1} and 2000 s^{-1} (Figure 9 b)).

453

454 In other words, if the stress for transformation is low, as is the case for the AQ condition, it is
 455 likely a larger portion of grains will reach the transformation stress of at least one variant before
 456 other deformation mechanisms (e.g., slip) activate from hardening (as shown in Figure 8). On the
 457 other hand, if the stress for transformation is comparable or greater than the stress for slip in the
 458 β phase, then some grains will deform by slip rather than transformation, or as a combination of
 459 both. This likely occurs to some extent in the MTS and TI conditions. The propensity for selecting
 460 a deformation mechanism other than phase transformation seems to increase with increasing strain

461 rate. Since the microstructure is initially BCC, the stress for dislocation motion is strongly strain
462 rate dependent, meaning that the β phase will reach a higher elastic stress before initiating slip at
463 higher strain rates. Under these conditions, transformation is potentially favored if the stress for
464 transformation is less strain rate sensitive than the stress for slip.

465

466 **This conclusion is strengthened when quasi-static and intermediate strain rates are**
467 **considered. Microstructural characterization for the quasi-static testing is presented**
468 **in detail in a previous publication [4], while microstructural characterization for the**
469 **intermediate strain rate tests are presented in the supplementary materials (Figure**
470 **16). In both cases, deformed material from interrupted tensile tests is presented.**
471 **Ellyson et al. show that the degree of transformation does not differ strongly be-**
472 **tween aging condition during quasi-static deformation of samples deformed to 0.005**
473 **(0.5%) plastic strain by EBSD. Figure 16 shows micrographs taken from the gage**
474 **section of intermediate strain rate specimens strained to 0.03 plastic strain. The AQ**
475 **specimens exhibit a degree of transformation that is significantly higher than the**
476 **MTS specimens. In fact, most of the microstructure of the MTS presents partially**
477 **transformed grains, as compared to the high degree of transformation seen in the**
478 **AQ specimen. It appears as though, as strain rate is increased, the rate at which**
479 **transformation occurs as a function of plastic strain is reduced and that this trend**
480 **increases for increased aging time. In other words, aging and strain rate have a strong**
481 **interaction and individual effect in reducing the propensity for transformation during**
482 **deformation. On the other hand, microstructural characterization hasn't revealed any**
483 **significant difference in martensite morphology between aged conditions and strain**
484 **rates. It should be mentioned, that the contrast seen on EBSD IQ maps does sug-**
485 **gest that the internal structure of the martensite laths does become more complex as**
486 **strain rate and aging increases, although fine scale characterization would be required**
487 **to conclusively answer this question.**

488

489 Ultimately, these results show the increased propensity for transformation (i.e., low stress for
490 transformation) is beneficial for maintaining elongation at high strain rates in TRIP Ti alloys, as
491 shown for the AQ condition. This key insight establishes a tradeoff between high strength at quasi-
492 static strain rates and maintaining high elongation at strain rates up to 2000 s^{-1} when tuning the
493 transformation stress in TRIP Ti alloys by low temperature aging.

494

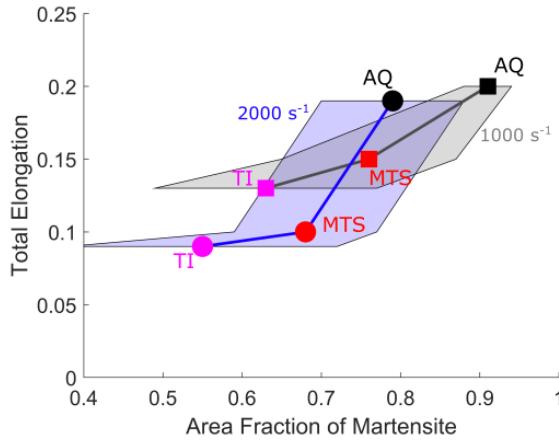


Figure 9: Effect of low temperature aging on the degree of phase transformation (i.e., TRIP) during high strain rate deformation. Total elongation versus area fraction of martensite for both strain rates (1000 s^{-1} and 2000 s^{-1}) tested. The shaded areas represent the variability in measured area fraction of martensite with EBSD. Aging conditions are indicated for each point in b).

495 5.2 Change in Strain Rate Sensitivity with Aging

496 An interesting finding from the high strain rate mechanical testing results is the reduced ringing
 497 amplitude exhibited by the AQ state at 1000 s^{-1} . Kolsky bars, or more generally pressure bars,
 498 use an elastic impulse travelling down an incident bar to load the specimen. Any mechanical oscil-
 499 lator submitted to a sudden acceleration will produce forced vibrations in response. Differences in
 500 ringing amplitude should be attributable to changes in internal damping coefficient. It then stands
 501 to reason that the reduced amplitude of the ringing exhibited by the AQ condition is likely due to
 502 an increased damping effect. A high internal damping subsequently reduced by low temperature
 503 aging would help to explain the decreased elongation observed with increasing aging time during
 504 high strain rate deformation of TRIP Ti-1023.

505

506 There is close conceptual connection between internal damping and strain rate sensitivity, m .
 507 Strain rate sensitivity is an important parameter in determining the ability of a material to delay
 508 instability and maintain uniform elongation. A strain rate sensitivity of 1 implies a material can
 509 undergo stable necking. The equivalency makes intuitive sense, since a high damping coefficient
 510 leads to a local stress increase in proportion to any localized increase in deformation speed, thus
 511 making these areas locally stronger and forcing de-localization of the deformation. If the AQ con-
 512 dition possess a higher strain rate sensitivity, it would allow for an increased resistance to necking
 513 and localization compared to conditions having undergone increased aging.

514

515 This hypothesis is further supported by the increased ductility exhibited by the AQ condition
 516 at strain rates of 1000 and 2000 s^{-1} . When strain rate is increased from 1000 to 2000 s^{-1} , the

517 AQ condition undergoes the greatest increase in average flow stress with the smallest decrease in
518 total elongation compared to the aged conditions. Further testing is planned to examine the effect
519 of low temperature aging on strain rate sensitivity. If confirmed, it would have implications for
520 controlling the ω phase and low-temperature aging to modify the strain rate sensitivity of TRIP
521 Ti alloys, while simultaneously optimizing for strength and ductility.

522

523 6 Conclusion

524 In this study, in-situ synchrotron x-ray diffraction was used to study microstructure evolution
525 and phase transformation in aged Ti-1023 during high strain rate deformation. The AQ and two
526 aged conditions were tested at quasi-static and intermediate strain rates of 10^{-3} and $10^{-1} s^{-1}$,
527 respectively, and compared to testing performed at 1000 and $2000 s^{-1}$. In-situ synchrotron x-ray
528 diffraction and EBSD were used to examine the transformation product. The following conclusions
529 can be drawn from the present work:

530

- 531 • High strain rate mechanical testing indicates the strengthening provided by low-temperature
532 aging (and the ω phase) is retained at strain rates up to $2000 s^{-1}$.
- 533 • Quasi-static ($10^{-3} s^{-1}$) and intermediate ($10^{-1} s^{-1}$) strain rate testing in conjunction with
534 high strain rate tensile data confirm that ductility decreases as strain rate increases over 6
535 orders of magnitude for all conditions.
- 536 • In-situ synchrotron x-ray diffraction shows phase transformation and the TRIP effect is the
537 most active from yielding to ~ 0.1 strain. The plastic strain range over which transformation
538 occurs during high strain rate testing is not strongly affected by low-temperature aging.
539 Low-temperature aging reduces the total transformed fraction of martensite.
- 540 • Post-mortem EBSD reveals the total fraction of phase transformation decreases significantly
541 with increasing aging time at high strain rates. The area fraction of transformed marten-
542 site falls from 0.91 in the AQ condition to 0.76 and 0.63 in the MTS and TI conditions,
543 respectively, for strain rates of $1000 s^{-1}$.
- 544 • Post-mortem microstructure characterization of samples tested at high strain rates reveals
545 the area fraction of martensite varies strongly on a per grain basis for the MTS and TI
546 conditions, while the AQ condition exhibits nearly complete transformation throughout the
547 microstructure. The decrease in occurrence of fully transformed grains (Grain A in 6) in favor
548 of partially transformed grains (Grain B in 6) as aging increases leads to a global reduction

549 in area fraction of transformation product. The reduction in transformation correlates to a
550 reduced total elongation at strain rates of 1000 and 2000 s^{-1} (Figure 9 b).

551 The findings presented in this work have important implications for the future design of TRIP-
552 capable microstructures in metastable β Ti alloys. The ω phase and low temperature aging have a
553 direct impact on ductility at high strain rates via the extent of transformation during deformation.

554 7 Acknowledgements

555 This work was supported by the department of the Navy, Office of Naval Research under award
556 No. N00014-18-1-2567. Any opinions, findings, and conclusions or recommendations expressed in
557 this material are those of the author(s) and do not necessarily reflect the views of the Office of
558 Naval research. The authors gratefully acknowledge ATI (Allegheny Technologies Incorporated)
559 for providing the Ti-1023 studied in this work. The authors also thank the Center for Advanced
560 Non-Ferrous Structural Alloys (CANFSA), a National Science Foundation Industry/University
561 Cooperative Research Center (I/UCRC) [Award No. 2137243] at the Colorado School of Mines for
562 support during the preparation of this manuscript. This research used resources of the Advanced
563 Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the
564 Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.

565 8 Declaration of Competing Interests

566 The authors have no competing interests to declare.

567 References

568 [1] Donachie MJ. Titanium: a technical guide. ASM international; 2000.

569 [2] Montgomery JS, Wells MG. Titanium armor applications in combat vehicles. JOM.
570 2001;53(4):29–32.

571 [3] Matlock DK, Speer JG, De Moor E, Gibbs PJ. Recent developments in advanced high strength
572 sheet steels for automotive applications: an overview. Jestechn. 2012;15(1):1–12.

573 [4] Ellyson B, Klemm-Toole J, Clarke K, Field R, Kaufman M, Clarke A. Tuning the strength
574 and ductility balance of a TRIP titanium alloy. Scripta Materialia. 2021;194:113641.

575 [5] Duerig T, Terlinde G, Williams J. Phase transformations and tensile properties of Ti-10V-
576 2Fe-3Al. Metallurgical Transactions A. 1980;11(12):1987–1998.

577 [6] Sun F, Zhang J, Vermaut P, Choudhuri D, Alam T, Mantri S, et al. Strengthening strategy
578 for a ductile metastable β -titanium alloy using low-temperature aging. Materials Research
579 Letters. 2017;5(8):547–553.

580 [7] Danard Y, Poulain R, Garcia M, Guillou R, Thiaudière D, Mantri S, et al. Microstructure
581 Design and in-situ investigation of TRIP/TWIP effects in a forged dual-phase Ti-10V-2Fe-
582 3Al alloy. Materialia. 2019;100507.

583 [8] Ahmed M, Wexler D, Casillas G, Savvakin DG, Pereloma EV. Strain rate dependence of
584 deformation-induced transformation and twinning in a metastable titanium alloy. Acta Ma-
585 terialia. 2016;104:190–200.

586 [9] Yang H, Wang D, Zhu X, Fan Q. Dynamic compression-induced twins and martensite and
587 their combined effects on the adiabatic shear behavior in a Ti-8.5 Cr-1.5 Sn alloy. Materials
588 Science and Engineering: A. 2019;759:203–209.

589 [10] Xiao J, Nie Z, Tan C, Zhou G, Chen R, Li M, et al. The dynamic response of the metastable β
590 titanium alloy Ti-2Al-9.2 Mo-2Fe at ambient temperature. Materials Science and Engineering:
591 A. 2019;751:191–200.

592 [11] Standard A. E8. Standard test method for tension testing of metallic materials. West Con-
593 shohocken (USA): ASTM. 2004.

594 [12] Bachmann F, Hielscher R, Schaeben H. Texture Analysis with MTEX – Free and Open Source
595 Software Toolbox;160:63–68. Available from: <https://www.scientific.net/SSP.160.63>.

596 [13] Niessen F, Nyyssönen T, Gazder AA, Hielscher R. Parent grain reconstruction from partially
597 or fully transformed microstructures in MTEX. Available from: <http://arxiv.org/abs/2104.14603>.

599 [14] Duerig TW, Middleton RM, Terlinde GT, Williams JC. Stress Assisted Transformation In
600 Ti-10V-2Fe-3Al;2.

601 [15] Wang Y, Liu X, Im KS, Lee WK, Wang J, Fezzaa K, et al. Ultrafast X-ray study of dense-
602 liquid-jet flow dynamics using structure-tracking velocimetry. Nature Physics. 2008;4(4):305–
603 309.

604 [16] Hudspeth M, Claus B, Dubelman S, Black J, Mondal A, Parab N, et al. High speed synchrotron
605 x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading.
606 Review of Scientific Instruments. 2013;84(2):025102.

607 [17] Hudspeth M, Sun T, Parab N, Guo Z, Fezzaa K, Luo S, et al. Simultaneous X-ray diffraction
608 and phase-contrast imaging for investigating material deformation mechanisms during high-
609 rate loading. *Journal of Synchrotron Radiation*. 2015 Jan;22(1):49–58.

610 [18] Ellyson B, Fezzaa K, Sun T, Parab N, Saville A, Finfrock C, et al. Transformation and
611 twinning induced plasticity in metastable Ti-Mo alloys under high strain rate deformation.
612 *Materials Science and Engineering: A*. 2022;143716.

613 [19] Sun T, Fezzaa K. HiSPoD: a program for high-speed polychromatic X-ray diffraction ex-
614 periments and data analysis on polycrystalline samples. *Journal of synchrotron radiation*.
615 2016;23(4):1046–1053.

616 [20] Ma X, Li F, Cao J, Li J, Sun Z, Zhu G, et al. Strain rate effects on tensile deformation behav-
617 iors of Ti-10V-2Fe-3Al alloy undergoing stress-induced martensitic transformation. *Materials*
618 *Science and Engineering: A*. 2018;710:1–9.

619 9 Supplementary Discussion

620 9.1 Synchrotron X-ray Detector Calibration

621 HiSPoD was used to model the resulting diffraction patterns from both detector positions to
 622 confirm that martensite could be successfully detected (Figure 10a–b). Crystallographic data used
 623 is presented in Table 5. The first detector position (10a) was selected to measure the most intense
 624 peaks from both the parent and product phases, which include the $\{110\}_{\beta}$ and $\{111\}_{\alpha''}$ near
 625 13° . Examples of lattice correspondence for specific families of planes are shown in Table 4. The
 626 second detector position (Figure 10b) was selected to more carefully measure changes in relative
 627 phase fraction, as two peaks from each phase are found in this position: ($\{112\}_{\beta}$ and $\{200\}_{\beta}$)
 628 and ($\{132\}_{\alpha''}$ and $\{022\}_{\alpha''}$). This detector position also avoids intensity wash-out from the higher
 629 intensity and overlapping peaks at lower 2θ positions. The difference in relative intensity can be
 630 seen in the right-most portion of Figure 10a compared to Figure 10b.

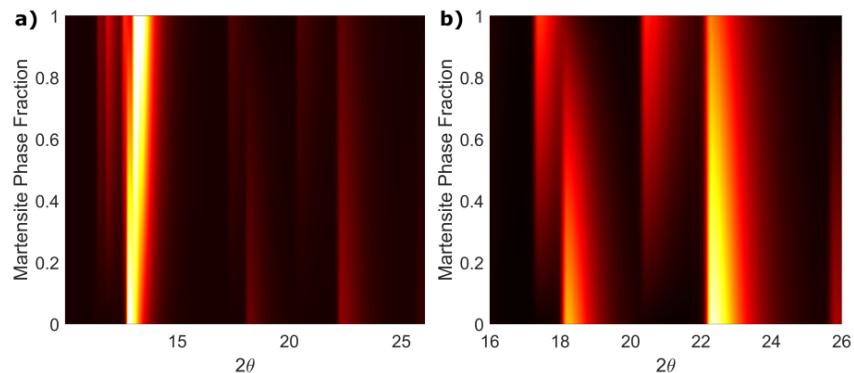


Figure 10: Simulated integrated diffraction patterns for Ti-1023 as a function of martensite phase fraction for detector a) position 1 and b) position 2.

631 Figure 11 shows simulated and measured diffraction patterns obtained from the high-purity Ta
 632 foil. Full rings of diffraction intensity were obtained due to the fine grain size of the Ta foil, which
 633 aided in detector position calibration. The simulated patterns (Figure 11a–b) were obtained from
 634 HiSPoD and consider only broadening occurring from the energy spectrum of the incident beam.

Table 4: Crystallographic correspondence for symmetry related martensitic variants for specific matrix planes

Variants	$g=\{110\}_{\beta}$	$g=\{112\}_{\beta}$
V1	$g=\{1\bar{1}\}_{\alpha''}$	$g=\{131\}_{\alpha''}$
V2	$g=\{111\}_{\alpha''}$	$g=\{1\bar{1}3\}_{\alpha''}$
V3	$g=\{\bar{1}11\}_{\alpha''}$	$g=\{13\bar{1}\}_{\alpha''}$
V4	$g=\{1\bar{1}1\}_{\alpha''}$	$g=\{113\}_{\alpha''}$
V5	$g=\{020\}_{\alpha''}$	$g=\{220\}_{\alpha''}$
V6	$g=\{002\}_{\alpha''}$	$g=\{202\}_{\alpha''}$

Table 5: Crystallographic information used for Ti-1023

Phase	Space Group	Lattice Parameters (Å)	Atom Position
β	229	$a=3.327$	$(0\ 0\ 0)$
α''	63	$a=3.01\ b=4.91\ c=4.63$	$(0\ 0.185\ 0.25)$

635 The broad, asymmetric profile of the “pink-beam” energy spectrum is evident in the broadening
 636 of the rings of the simulated Ta pattern (e.g. $\{110\}_\beta$ ring in Figure 11a). When the measured
 637 patterns (Figure 11c-d) are compared with simulated patterns, other sources of peak broadening
 638 become apparent. These sources include, but are not limited to, beam size, scattering from air,
 639 and microstructural parameters such as residual stress or grain size. The most prominent factors
 640 contributing to broadening remain, nonetheless, the energy spectrum and the beam size. The
 641 comparison of simulated and measured diffraction rings of the Ta foil and the relative broadening
 642 exhibited are crucial factors to consider when experimental diffraction results are presented in this
 643 work.

644

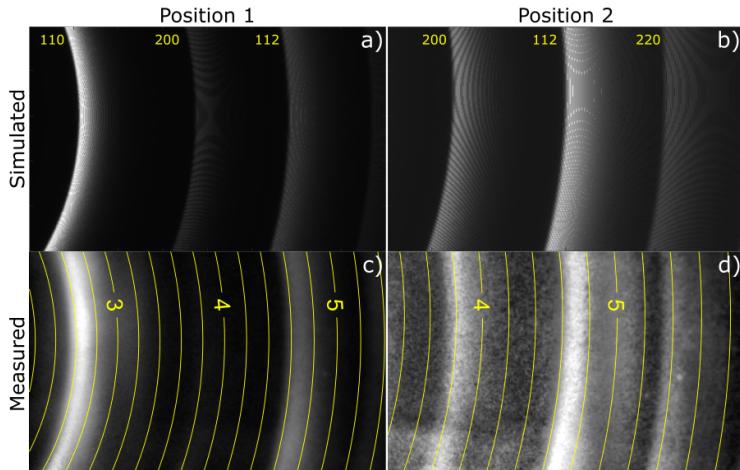


Figure 11: a-b) Simulated and c-d) measured raw diffraction patterns of Ta foil for both detector positions used. Simulated powder patterns obtained from HiSPoD for a) detector position 1 and b) detector position 2. The diffraction rings are labeled in yellow. Measured diffraction patterns for fine-grained Ta foil corresponding to c) position 1 and d) position 2. The yellow circular arcs represent lines of constant q (nm^{-1}) with positions for 3, 4 and 5 nm^{-1} labeled. The simulated pattern considers only broadening from the synchrotron x-ray energy spectrum. Other sources of experimental broadening are apparent in the measured patterns.

645 9.2 Initial Texture of Tensile Specimens

646 The as-received Ti-1023 was 50.8 mm diameter round bar with a radially symmetric rolling tex-
 647 ture across the cross-section. Rectangular blocks were extracted from the round bar to serve as
 648 blanks for the miniature tensile specimens. The miniature tensile specimens were extracted by
 649 conventional machining in the same orientation of the rectangular blocks. The orientation of the

650 rectangular blocks and tensile specimens was chosen so the tensile axis was aligned with the rolling
 651 direction. The axisymmetric nature of the rolling texture ensures that the texture component
 652 along the tensile direction is the same for all specimens. The way in which the texture component
 653 differed was in the transverse direction (Figure 12). If the broad, flat face of a tensile specimen is
 654 taken as the reference direction, two limiting cases emerge. First, when the specimen is extracted
 655 with the flat face parallel to the radial direction (i.e., the bottom or top of the bar cross-section).
 656 Second, when the specimen is extracted with the flat face parallel to the tangential direction of
 657 the bar (i.e., the sides of the bar cross-section). The extraction strategy caused a distribution
 658 of initial texture components in the transverse and normal directions. Since the specimens were
 659 randomized when they were associated to a given aging condition and a total of nearly 60 spec-
 660 imens were tested, the texture distribution is averaged for the overall trends, such as mechanical
 661 properties. The variability in initial texture becomes important when individual specimens are
 662 compared across aging conditions. As such, every effort was made to consider this discrepancy
 663 when discussing texture evolution from the in-situ diffraction data.

664

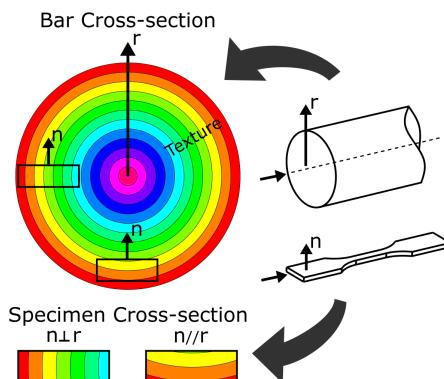


Figure 12: Schematic of the texture component of miniature specimens stemming from the chosen extraction strategy from initial round bar stock. The schematic indicates how the radially symmetric texture leads to different texture components in flat specimens.

665 9.3 Grain Size Effects and Low-Temperature Aging

666 Quasi-static strain rate mechanical testing data presented here appears to show a different trend
 667 in low temperature aging response compared to previously reported results [4]. This is most likely
 668 attributable to differences in grain size in the initial material, as the alloy composition is the same.
 669 Grain size effects and the interaction with low-temperature aging on TRIP in Ti alloys has been
 670 unreported in the literature. In light of this, a short discussion is warranted. Substantial post-
 671 uniform elongation is exhibited by all three conditions in the quasi-static and intermediate strain
 672 rate engineering stress/strain response (Figure 1a). Increased post-uniform elongation contrasts

673 with previous results, where post-uniform elongation was negligible in the AQ and MTS conditions,
 674 as coarser grained material was investigated (250 μm average grain size) [4]. Additionally, the TI
 675 condition in this work is found to exhibit some transformation. This is in stark contrast with the
 676 TI condition reported previously, where transformation was completely absent and deformation
 677 was characterized by localized slip bands. This indicates the onset of TRIP inhibition and, more
 678 broadly, the aging response is affected by grain size, as both conditions were aged for 7200 s at
 679 423 K. The stock used in this study has a grain size roughly 3x smaller than that used previously.
 680 The chemical composition in both studies is nominally the same (specifically oxygen content). The
 681 effect of grain size on low temperature aging is outside the scope of this work, but will be explored
 682 in an upcoming publication.

683

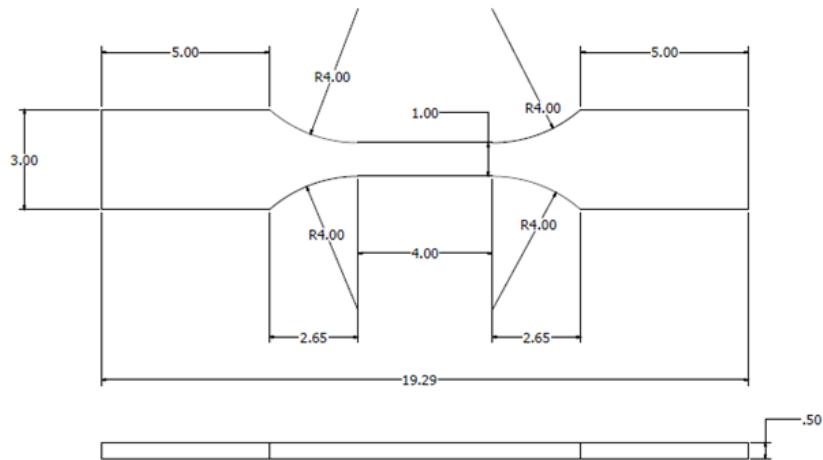


Figure 13: Geometry of the miniature tensile specimens used for the in-situ high strain rate testing at the Advanced Photon Source at Argonne National Laboratory.

684 Figure 14b shows the integrated diffraction heatmap as a function of engineering strain from a
 685 TI specimen, exhibiting clear signs of transformation. The integrated diffraction heatmap (Figure
 686 14b) is presented on the same x-axis as the engineering stress/strain curve (Figure 14a). The
 687 decrease in β phase fraction caused by the onset of transformation can be seen to start around 0.01
 688 strain, or the same strain as the onset of yielding (stage II). Additionally, the diffraction shows a
 689 decrease in diffracted intensity of the β phase near 0.1 total strain (Figure 14b). This decrease
 690 in β diffracted intensity corresponds to the maximum stress being reached in the stress/strain
 691 curve (Figure 14a). The decrease in diffracted intensity comes from necking and the decrease in
 692 illuminated volume (stage IV), as confirmed by the x-ray imaging. Raw diffraction frames are
 693 presented in Figure 14c-d, where a large single reflection near the theoretical β diffraction position
 694 (Figure 14c) splits into two distinct spots just after yielding (Figure 14d). The diffraction frames
 695 show the evolution of a single grain transformed into many smaller martensite laths in residual β

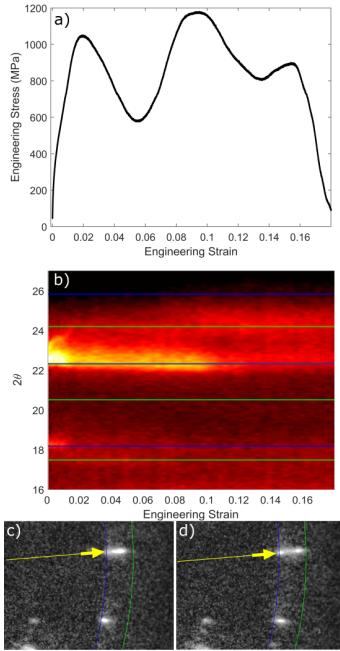


Figure 14: In-situ mechanical testing and synchrotron x-ray diffraction data for a TI specimen deformed in tension at 1000 s^{-1} . a) Engineering stress versus engineering strain curves. b) An integrated diffraction heatmap of 2θ versus engineering strain with theoretical positions of peaks for both phases overlaid (yellow corresponds to β and green corresponds to α''). c) Raw diffraction frame just before the onset of loading. d) Raw diffraction frame just after yielding. In both c) and d) the yellow arrow highlights the reflections of interest, which is the $\{112\}_\beta$ and the $\{132\}_{\alpha''}$, the line indicates the radial direction from the beam position, while the blue and green arcs represent the theoretical position of a β phase and martensite diffraction rings, respectively.

phase, since both reflections become smaller, move in tandem, and are always on the same radial line (yellow line in Figure 14c-d). In most TI specimens, it appears as though relative intensity and peak overlap contribute to washing-out the diffracted intensity from the martensite.

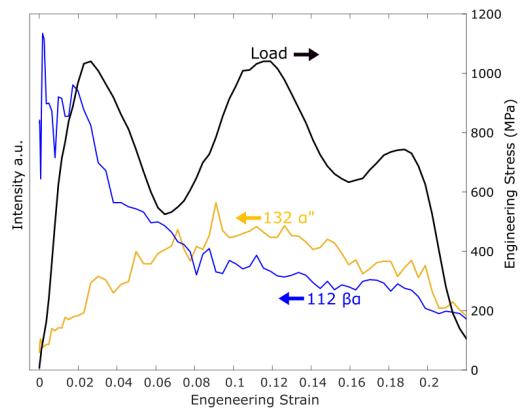


Figure 15: Integrated intensity from synchrotron x-ray diffraction and engineering stress as a function of engineering strain for an MTS specimen deformed at 1000 s^{-1} . Diffraction data was taken in detector position 2.

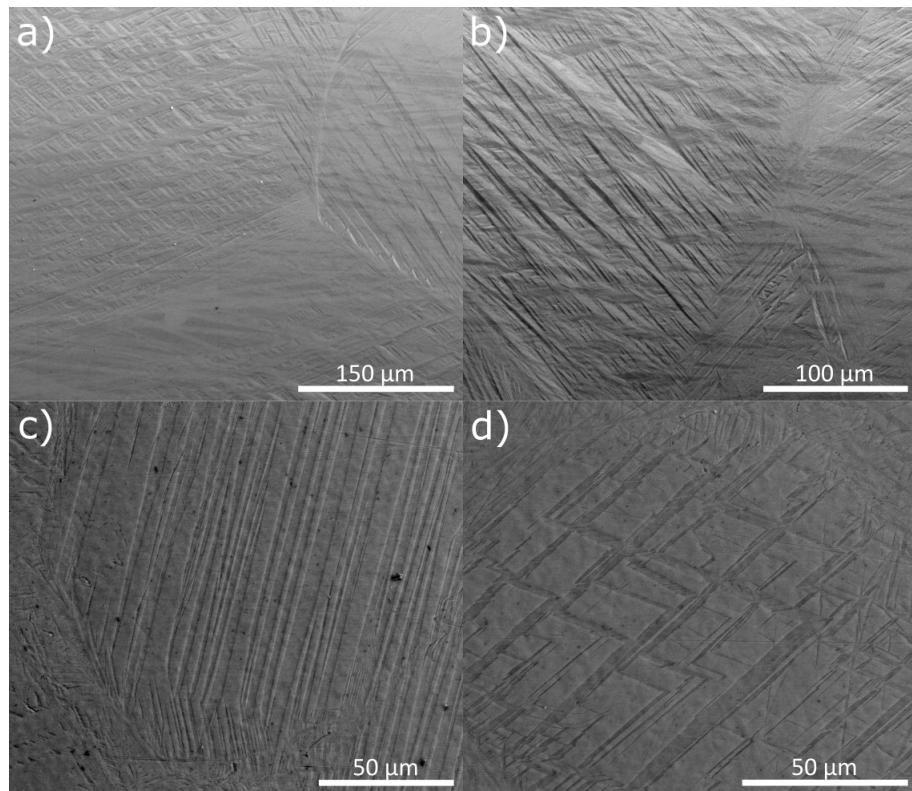


Figure 16: SEM micrographs of Ti-1023 specimens deformed in tension to 0.03 plastic strain at a strain rate of 10^{-1} s^{-1} in the a) and b) AQ and c) and d) MTS aged conditions