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ARTICLE INFO ABSTRACT

Keywords: Mixed Quercus-Pinus stands are increasingly desired by forest managers to achieve a range of objectives,
Shortleaf pine including biodiversity enhancement and resilience to global change. To create and perpetuate desired mixed
Oak-pine

Quercus-Pinus stand composition and structure, quantitative information on natural disturbance impacts on stand
development and succession is necessary. Wind is the most common natural canopy disturbance in eastern North
America, and impacts vary in severity and spatiotemporal scales. Intermediate-severity disturbance (ISD; events
that occur along a classification gradient between frequent gap-scale and infrequent, stand-replacing events) is
hypothesized to be an important driver of mixed Quercus-Pinus creation and maintenance. Our overarching goal
was to quantify patterns of intermediate-severity wind disturbance in a mixed Quercus-Pinus echinata Mill. forest
on the Cumberland Plateau in Tennessee, USA. Specifically, our objectives were to: 1) quantify post-disturbance
species composition, stand structure, and residual tree spatial patterns, 2) infer individual-tree, neighborhood,
and site-specific impacts on tree mortality, and 3) describe frequency, size, shape, and spatial distribution of ISD-
created canopy openings. We inventoried plots in Pinus echinata-dominated, disturbance-impacted portions of the
forest. To infer individual-tree and spatially-explicit neighborhood characteristics that influenced survival
probability, we applied a random forest classification algorithm. To document changes in tree spatial distribution
before and after disturbance, we used spatial point pattern analysis. To characterize forest-scale disturbance
patterns, we classified canopy gaps from high-resolution orthoimagery. The most important predictors of survival
were basal area, taxonomic group, and distance to nearest neighbor. Pre-disturbance trees and residuals were
spatially randomly distributed. Most detected openings were 50-150 m?, and the opening size-frequency dis-
tribution exhibited a reverse J-shape. Openings were spatially clustered within the forest at distances < 200 m
and complex in shape. We provide quantitative recommendations on the frequency, size, shape, and spatial
distribution of silvicultural entries patterned after natural disturbance. To emulate natural disturbance patterns,
we recommend patch seedtree harvests with reserves or patch clearcuts with reserves, and these harvest-created
openings should be concentrated (i.e., clustered) in portions of the stand in which P. echinata is most dominant
and/or most competitive. Site preparation with prescribed fire, herbicide, and/or mechanical thinning may also
be necessary to prepare the seedbed and reduce hardwood competition to favor Pinus establishment in openings.
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1. Introduction and range from frequent, small events to infrequent, large, stand-

replacing events (Oliver and Larson 1996). Intermediate-severity dis-

Forest disturbances alter the species composition, stand structure,
and ecosystem function of forests globally (Foster et al., 1998; White and
Jentsch, 2001; Seidl et al. 2017). All forests experience disturbance and
are in a constant state of recovery. Forest disturbances are typically
classified based on severity, spatial extent, seasonality, and frequency;
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turbances (ISD) are those that occur between each endpoint of the
disturbance severity gradient (Hart and Kleinman 2018). Although
relatively understudied compared to gap-scale and stand-replacing dis-
turbances, ISD may be a more influential driver of forest ecosystem
change than is typically understood (Hart and Kleinman 2018, Meigs
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and Keeton 2018; Nagel et al., 2021), as these events typically have a
shorter return interval than the lifespan of most canopy trees (Seymour
et al., 2002; Hart et al., 2012; Cowden et al., 2014; Hart and Cox 2017),
and they provide opportunity for a diversity of tree reproduction to
establish and ascend into the overstory. At the stand level, ISD may
result in a high frequency of localized events, a single large opening, or
some combination of canopy openings across a wide range of sizes
(Canham et al., 2001; Woods 2004; Nagel and Svoboda 2008). Canopy
openings may be clustered, dispersed, or randomly distributed across
stands, forests, and landscapes (Frelich and Reich 1995; Habashi 2019;
Paluch and Jastrzebski, 2022). Intermediate-severity disturbance agents
may include insect and pest outbreaks (e.g. Axelson et al., 2010), ice
storms (e.g. Covey et al., 2015), wind storms (e.g. Cowden et al., 2014),
and fires (e.g. Fulé et al.,, 2003). Among these canopy disturbance
agents, wind is the most common in forests of eastern North America
(Runkle 1985; Peterson et al. 2016).

Wind disturbance severity is influenced by multiple interacting fac-
tors that include storm characteristics, topography, and species
composition and stand structure. Atmospheric disturbances may pro-
duce strong winds associated with downbursts and tornados generated
by convective systems, hurricanes, and topographically induced down-
slope winds (Hjelmfelt et al., 2010). Intermediate-severity wind distur-
bance has been studied following low-intensity tornados (e.g. < EF 2;
Cox et al., 2016), hurricanes (Busing et al., 2008), derechos (Daniels
et al., 2020), and downbursts (Battles et al., 2017). Individual-tree
susceptibility to wind disturbance is influenced by individual-tree
characteristics, neighborhood effects, and site conditions, but tree
diameter is often the most consistent predictor of wind-induced mor-
tality (Peterson 2007). Large-diameter trees, trees with low wood den-
sity, and those with shallow rooting depth are more susceptible to
snapping and uprooting in wind disturbances (Salas-Eljatib and Weis-
kittel 2020). Neighborhood effects such as distance to nearest neighbor
and neighborhood composition (Frelich, 2016; Rutledge et al., 2021),
and site characteristics such as soil properties, topography, and under-
lying geology may also influence tree mortality patterns (Waldron et al.,
2013).

Intermediate-severity wind disturbance often results in irregular
patterns of severity across space and a diverse arrangement of biological
legacies (Meigs and Keeton 2018). Therefore, heterogenous spatial
patterns of canopy openings, post-disturbance forest structure, initial
floristics and other biological legacies may favor the establishment and
recruitment of woody plant species with a variety of life-history strate-
gies and functional traits. Intermediate-severity wind disturbance
combined with recurring low-intensity fire may be required to maintain
certain species assemblages. An example is mixed Quercus-Pinus systems
of the eastern United States, in which wind disturbance is the most
common canopy disturbance agent (Peterson et al., 2016). Mixed
Quercus-Pinus ecosystems span millions of hectares in this region, but
this forest type has experienced a dramatic decrease in extent (Oswalt
et al., 2012). Quercus-Pinus stands exists in a mid-successional state
(Cooper 1989). In this successional pathway, dominance of the faster
growing, shade-intolerant Pinus spp. transitions to the more shade-
tolerant Quercus spp. in the absence of the appropriate combination of
fire and canopy disturbance. Land-use change, altered disturbance re-
gimes, the proliferation of commercial Pinus plantations, and lack of
active management have dramatically reduced the extent of mixed
Quercus-Pinus forests (Oswalt et al., 2012, Vickers et al. 2021). Mixed
Quercus-Pinus echinata stands of the eastern USA serve as an excellent
model to investigate patterns of canopy disturbance, succession, and
development to enhance the inherently complex management of these
ecosystems, which often emphasizes accelerating or reversing succes-
sion through manipulating the disturbance regime. Because of the wide
ecological amplitude of Pinus echinata, it is well suited to co-occur with a
variety of hardwood species under certain disturbance regimes (Lawson
and Kitchens 1983).

To create and perpetuate mixed Quercus-Pinus echinata stands, it is
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critical to evaluate the multi-scale impacts of canopy disturbance on
species composition and stand structure. Therefore, our overarching
goal was to quantify impacts of intermediate-severity wind disturbance
in a mixed Quercus-Pinus echinata forest on the Cumberland Plateau in
Tennessee, USA. Specifically, our objectives were to: 1) quantify post-
disturbance species composition, stand structure, and residual tree
spatial patterns, 2) infer individual-tree, neighborhood, and site-specific
impacts on tree mortality, and 3) describe frequency, size, and spatial
distribution of ISD-created canopy openings. Although individual-tree
susceptibility to mortality has been well studied (Peterson et al.
2016), mortality may be confounded by interactions of disturbance
agents contributing to mortality, neighborhood characteristics, site
conditions, and species-specific traits. A comprehensive understanding
of individual-tree susceptibility may inform the design of silvicultural
systems that limit economic loss during and after wind disturbance
while also maintaining desired species composition and structure.
Furthermore, quantitative information on size, shape, frequency, and
spatial pattern of canopy openings is essential to design silvicultural
entries commensurate with natural patterns of disturbance and devel-
opment. Our results inform mixedwood silvicultural systems and
enhance our understanding of the necessary disturbance regime to
create and perpetuate resilient, biodiverse, and structurally complex
mixed Quercus-Pinus echinata ecosystems.

2. Methods
2.1. Study site

Our study occurred in a wind-disturbed mixed Quercus-Pinus echinata
forest of Savage Gulf Natural Area (SGNA) in Tennessee, USA. The SGNA
is a 6,309 ha state natural area managed by the Tennessee Department of
Environment and Conservation. Because of its biodiversity and unique
geological characteristics, the reserve is listed as a National Natural
Landmark by the US Department of the Interior. See Hart et al. (2012)
for a detailed description of settlement history, prior land use, species
composition and structure, and canopy disturbance history. The SGNA is
located on the Cumberland Plateau section of the Appalachian Plateaus
physiographic province, the westernmost physiographic province of the
Appalachian Highland realm (Fenneman 1938). The Cumberland
Plateau section is characterized by broad, uncut plateau remnants not
yet maturely dissected that are situated between deep valleys (Fenne-
man 1938). In this study, disturbance sampling plots were established
on the weakly dissected plateau landtype association of the true plateau
subregion as classified by Smalley (1986), characterized by broad un-
dulating to rolling ridges with gentle to moderately steep-sided slopes,
dissected by young valleys. The tablelands above Savage Creek, a deeply
incised tributary to the Collins River, are dissected by bedrock streams.
The underlying geology of the SGNA is in the Crab Orchard and Crooked
Forked groups, which are primarily composed of sandstone, conglom-
erate, siltstone, shale, and coal. Soil Series of the study area are Beer-
sheba, Jefferson, Lily, Lonewood, and Ramsey (USDA NRCS 2022),
which are characterized as being moderately to very deep and well
drained. These Soil Series are primarily derived from sandstone, shale,
siltstone, or quartzite, with loam, silt loam, and sandy loam textures
(USDA NRCS 2022). The regional climate of the SGNA is humid meso-
thermal (Thornthwaite 1948), with long, moderately hot summers and
short, mild winters. Mean annual temperature is 13.3° C, with the lowest
monthly mean temperature of 2.3° C in January and the highest monthly
mean temperature of 23.4° C in July (PRISM 2022). The amount of
precipitation is typically steady throughout the year with a mean annual
total of 1,607.3 mm. October receives the lowest mean precipitation
(91.9 mm) and March receives the greatest mean precipitation (154.9
mm, PRISM 2022).

The Cumberland Plateau supports diverse plant communities that
are intermediate between mixed mesophytic, mixed hardwood, and
mixed Pinus-hardwood forest types (Hinkle 1978, 1989). On upland sites
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of the Cumberland Plateau, including the tablelands of the SGNA, plant
community composition is a function of fine-scale topographic charac-
teristics, soil water availability, and canopy disturbance history (Hinkle
1978, Smalley 1986, Hart et al. 2012). The contemporary woody plant
assemblage of the SGNA tablelands is dominated by Quercus alba, Acer
rubrum, and P. echinata (Hart et al. 2012). At the genus level, Quercus is
the most dominant (46 % basal area), followed by Pinus (17 % basal
area), and Acer (16 % basal area). Quercus spp. and Pinus spp. represent
70 % of canopy trees, and Oxydendrum arboreum and Acer rubrum
represent the majority of understory trees (Hart et al. 2012). Interest-
ingly, these taxa represent a wide range of silvical characteristics. For
example, shade tolerance varies widely from the shade intolerant
P. echinata to the shade tolerant A. rubrum. Pinus echinata occurs in
spatially clustered neighborhoods in what is an otherwise Quercus
dominated forest (Goode et al., 2021).

The most frequent contemporary natural disturbance agent in the
SGNA is wind, with 103 recorded wind-related storm events from 1950
to 2019 that caused significant tree or structural damage (NOAA Storm
Events Database 2022). The return interval for ISD events in the SGNA is
ca. 50 years (Hart et al. 2012) and the last detected ISD event in this
forest occurred in 1976 (Goode et al. 2021). A reconstruction of fire
history revealed that mean fire interval for SGNA between 1834 and
1935 was 2.5 years, and increased to 13.7 years after 1940 during an
extended period of fire exclusion (Stambaugh et al. 2020).

On 6 November 2018, a quasi-linear convective system with
imbedded tornados impacted portions of central Tennessee. The systems
produced ten tornados, and among those, one EF-1 tornado dissipated
immediately prior to reaching SGNA. Although official storm surveys
indicated that the tornado did not impact SGNA, the same storm system
produced microburst wind damage that uprooted and snapped many
canopy stems on the eastern tablelands of SGNA (NOAA Storm Events
Database 2022). This wind event offered an excellent opportunity to
examine the impacts of intermediate-severity disturbance at the
individual-tree and stand-scales in a mixed Quercus-Pinus echinata forest.
We were specifically interested in the impacts of this disturbance in
P. echinata dominated neighborhoods, by evaluating post-disturbance
successional trajectories and quantifying P. echinata patch resilience.

2.2. Field methods

To quantify impacts of wind disturbance on P. echinata-dominated
neighborhoods, we established 0.04 ha fixed-radius plots using pre-
determined criteria. To be considered for use, a plot must have: (1) been
directly impacted by the wind event, (2) contained at least four canopy
P. echinata stems (>30 cm diameter at breast height, dbh; residual or
senesced), and (3) contained at least four pieces of coarse woody debris
(CWD > 10 cm diameter; to include the aforementioned P. echinata). We
walked a predetermined transect within SGNA until we encountered an
area that met our criteria. After establishing and sampling a plot in this
area, we then walked a new transect based on a new, random azimuth
and sampled any plots along this azimuth that satisfied our criteria.
Once no new plots were encountered along this new azimuth, we
returned to and continued along our predetermined transect. Using this
method, we sampled 32 plots (1.28 ha).

To determine plot composition and structure, we sampled trees (live
woody stems > 5 cm dbh), saplings (live woody stems < 5 cm dbh, > 1m
height), seedlings (live woody stems < 1 m height), and CWD and
standing dead trees (dead woody stems > 10 cm dbh). For each tree, we
recorded species, dbh, and crown class (based on the amount of inter-
cepted light; overtopped, intermediate, co-dominant, and dominant;
Oliver and Larson 1996). For saplings, we recorded species and tallied
abundance. We sampled seedlings in a nested 0.002 ha subplot (20 m?)
located at plot center, and recorded seedling species and abundance.
Coarse woody debris was assigned a decay class (1-5; based on Forest
Inventory and Analysis program; FIA 2005) and classified as either
standing or downed. Standing CWD was further classified as snags
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(crown mostly intact) or snaps (crown removed), identified to species,
and measured for dbh. Downed CWD was further classified as uproots
(root plate intact) or logs (root plate removed; > 1.3 m in length),
identified to species, and measured for length (excluding portions
outside the plot boundary). Uproots were measured for dbh 1.37 m
above the attached root plate, and logs were measured for diameter at
both ends or where the log intersected the plot boundary.

At each plot, we recorded the latitude and longitude of plot center
using a Trimble Juno t41/5 GPS receiver. We used hemispherical pho-
tographs taken 1 m above the ground at plot center to quantify canopy
openness. Photographs were captured using an Olympus Stylus TG-3
digital camera mounted on a self-leveling tripod, fitted with a 180°
field of view fisheye lens, and calibrated for use with WinSCANOPY
software (WinSCANOPY, Regent Instruments, Quebec City, Quebec,
Canada). To analyze spatial patterns, we recorded the distance and az-
imuth from plot center to each tree and CWD. For CWD, distance and
azimuth were recorded for both ends of the CWD, or where the CWD
intersected the plot boundary. To determine the age of canopy
P. echinata stems, we used an increment borer to extract a tree-ring
sample from the largest diameter P. echinata within or directly adja-
cent to the plot.

2.3. Analytical methods

2.3.1. Species composition, stand structure, and disturbance severity

To quantify disturbance severity variability and infer the drivers of
mortality for analyses described below, we calculated multiple biotic
and abiotic disturbance response and explanatory variables. Response
variables included canopy openness, standing CWD basal area (snags
and snapped stems, m? plot ), downed CWD volume (logs and uproots,
m® plot™ 1), and Shannon Damage Heterogeneity Index (Peterson 2019).
To remove background mortality from canopy disturbance unrelated to
the ISD, we calculated all CWD metrics for decay class I and II in-
dividuals only. Explanatory variables included mean age of canopy
P. echinita, transformed aspect (Beers et al. 1966), slope, pre-disturbance
tree Shannon diversity (with CWD considered), and relative Pinus basal
area plot1.

Canopy openness (%) was quantified using the software WinSCA-
NOPY. Shannon Damage Heterogeneity Index (Sh-DHI, Peterson 2019)
was used to quantify post-disturbance structural complexity based on
the diversity in composition and mode of death of CWD. For this metric,
we considered CWD species + MOD as individual “species,” and calcu-
lated Sh-DHI for each plot. To calculate volume of logs, we used the
equation for a conic paraboloid (Fraver et al., 2007). To calculate vol-
ume for uprooted stems, species-specific allometric equations were used
(Woodall et al., 2011; Parker and Hart, 2014). To determine the average
age of canopy P. echininata, extracted tree-ring samples were processed
based on the methods outlined in Stokes and Smiley (1996). Samples
were air dried, mounted with cells vertically aligned, and sanded to
reveal cellular structure. Tree rings were then dated to the calendar year
of formation with the aid of a stereozoom macroscope. Pith estimators
were used to estimate tree age based on visible ring curvature when
samples lacked pith (Villalba and Veblen, 1997).

To quantify the composition and structure of residual trees, saplings,
and seedlings, we calculated standard descriptors, species richness, and
Shannon diversity. For trees, standard descriptors included density
(stems ha_l), relative density (contribution to total tree density),
dominance (basal area, mzha’l), relative dominance (contribution to
total basal area), and importance (mean of relative dominance and
density).

2.3.2. Classification of survival probability

Traditionally, logistic regression is used to model tree mortality.
However, logistic regression is sensitive to class imbalance (i.e., more
live trees than dead trees). Therefore, to infer the drivers of individual-
tree mortality, we applied a random forest machine-learning
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Fig. 1. Fine-scale example of pixel-based classification scheme to classify canopy openings from true-color orthoimagery captured after a November 2018
intermediate-severity wind disturbance in Savage Gulf State Natural Area, TN, USA. User-defined training samples were created for shadows, bare ground, and forest
and classified into three categories: undisturbed forest, canopy openings, residual trees in openings using a support vector machine learning algorithm.

classification algorithm with balanced classes, which has been shown to
be more robust to problems with imbalanced data (Shearman et al.
2019). Random forest is an adaptation of classification and regression
trees, in which each tree casts a vote for each class (alive vs dead) based
on randomly sampled predictor variables (Liaw and Wiener 2002). For
each classification tree, a random set of samples and predictor variables
is selected with replacement, and those not selected are termed “out-of-
bag” (OOB) and utilized to evaluate error. However, when classes are
severely imbalanced, the likelihood of selecting the minority class in the
bootstrapped sample is low. Chen et al. (2004) proposed a balanced
random forest algorithm, in which an equal number of observations
from each class is sampled at each tree. We used the “randomforest”
package in R to determine the individual and plot-level predictors that
influenced individual-tree survival from a sample of 415 live trees and
114 dead trees > 15 cm dbh.

Individual-tree predictor variables included taxonomic group, basal
area (mztree'l), distance to nearest neighbor (m), taxonomic group of
nearest neighbor, and dominance. Dominance is a spatially-explicit
competition metric that quantifies the diameter differentiation of a
five tree neighborhood (Aguirre et al. 2003). Dominance is the propor-
tion of the four nearest neighbors that are of a smaller diameter than the
focal tree, and assumes five values from O to 1. To reduce edge bias in the
calculation of dominance, the NN1 edge correction was applied. (Pom-
merening and Stoyan 2006). Aggregated plot-level predictors included
Shannon diversity, relative Pinus basal area (percent contribution to
total plot basal area), mean age of trees within or in proximity to the
plot, and the Clark and Evans index. The Clark and Evans index (Clark

and Evans 1954) is a crude measure of aggregation of a point pattern,
with values > 1 indicating random pattern and values < 1 indicating
clustered pattern.

We randomly selected 70 % of the data to train the model and
withheld 30 % of the data for model validation (testing). We set the
sampsize parameter to select the maximum number of dead trees from
the training dataset (n = 85) for each classification tree (i.e., 85 trees
from the live and dead classes were selected). The final model was
hyper-tuned to optimize the number of trees grown at each split (ntree =
500) and number of variables chosen at each split (mtry = 3). These
parameters were selected after fitting multiple models and selecting the
model with the lowest OOB error and the greatest predictive perfor-
mance. Model performance was evaluated by plotting the receiver
operating characteristic curve, and subsequently calculating the area
under the curve (AUC). The AUC provides an indication of the predictive
ability of the model, with greater AUC values indicating enhanced dif-
ferentiation in classification between live and dead trees (Hosmer and
Lemesbow, 1980). Final model accuracy was determined by predicting
survival of trees in the training dataset and calculating classification
sensitivity and specificity. Sensitivity is the percentage of true positives
(live trees) and specificity is the percentage of true negatives (dead
trees). To determine the relative importance of predictor variables in the
final model, we calculated mean decrease Gini, which quantifies the
total decrease in node impurity averaged over all classification trees
(Wang et al. 2016). Greater mean decrease Gini values for a given pre-
dictor indicate greater importance. We created partial dependence plots
to visualize how probability of survival was influenced by variability in
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predictor variables over their distribution (e.g. visualize how probability
of survival was influence by variability in tree basal area) when all other
predictors are held constant. We constructed partial dependence plots
for the three most important predictor variables (as determined by mean
decrease Gini) with the package “pdp” in R (Greenwell 2017).

2.3.3. Canopy gap detection

To identify disturbance-created canopy openings at the forest scale,
we performed a pixel-based image classification on high-resolution
orthoimagery. We selected a 174 ha portion of SGNA that was of
mature mixed Quercus-Pinus echinata composition and structure and was
directly impacted by the 2018 wind event. Vexcel Imaging “Blue Sky”
imagery (Vexcel Imaging 2022) was acquired from the Tennessee State
government’s aerial imagery program. Images of the study site were
captured 10 months after the disturbance event, between 18 and 28
August 2019 with a Condor M1 4-band sensor mounted to a fixed wing
aircraft (Vexcel Imaging 2022). These images were collected with a
ground sampling distance of 20 cm and a horizontal and vertical accu-
racy of 120 cm. All image post-processing (geometric and atmospheric
corrections) was performed with the software UltraMap TE (Vexcel
Imaging 2022) prior to retrieving the data.

Image classification was conducted in ArcGIS Pro (ESRI 2022). To
identify canopy openings, we used supervised, pixel-based classification
of the true-color raster image. Support vector machine (SVM) learning
was used classify the image based on user-defined training samples. SVM
is a non-parametric classifier that is robust to pixel complexity in raster
images (Tzotsos & Argialas, 2008), does not require a large number of
training samples, and has been shown to classify images with a higher
accuracy compared to other classification algorithms (Lawrence 2022).
A training class schema was created with three classes based on the true-
color raster: shadow (n = 150), barren (n = 150), and forest (n = 150).
Shadows indicate a break in continuous canopy cover in which the
canopy trees on the edge of the openings cast shadows into the openings.
During image capture in August 2019 at 35.45° N and 85.62° W, the
declination of the sun was ca. 13° N (NOAA Solar Position Calculator
2022). Therefore, we were confident that shadows were evidence of
canopy openings at date of image capture.

The Image Classification Wizard in ArcGIS Pro was used to classify
the raster image (Fig. 1). We selected supervised, pixel-based classifi-
cation, with the classification schema of three classes (shadow, barren,
forest) and 450 training samples (150 class’l), SVM as the classification
algorithm, and the true-color raster as the image to be classified. We
created a final stand-cover map with two classes: canopy openings
(shadow + barren) and forest. Openings were classified as contiguous
pixels classified as openings and > 50 m?, which is the most frequent
minimum gap size found in the literature (e.g Hart and Kupfer 2011). We
used a 200 m? threshold to distinguish between large openings and small
openings (single or multi-tree gaps, Hobi et al. 2015, Richards and Hart
2011, Sefidi et al. 2011, Yamamoto 1995). We identified residual trees
in openings as pixels > 6 m? classified as forests and completely con-
tained within pixels classified as openings. Accuracy assessment was
conducted on the final classified image with the Accuracy Assessment
tool in ArcGIS Pro. A stratified random sampling approach was used,
with 100 points randomly distributed within each of the three classes.
For each of the 300 points, the true-color image was used to determine if
the point was located in shadow, barren, or forest class by an unbiased
user. These data were compared to the classified image and a confusion
matrix was produced to assess overall accuracy, user accuracy, producer
accuracy, and the Kappa Index.

To quantify the frequency, size, and shape irregularity of detected
canopy openings, we used the package “landscapemetrics” in R (Hes-
selbarth et al. 2019). This package is an adaptation of the commonly
used FragStats landscape metrics toolbox (McGarigal et al. 2012). For all
openings, small openings (<200 m?), and large openings (>200 m?), we
calculated landscape metrics to characterize opening heterogeneity
across the forest. The metrics calculated for each class included: 1)
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number of openings, 2) mean area of openings, 3) mean perimeter of
openings, 4) mean perimeter to area ratio, 5) mean shape complexity,
and 6) mean distance to nearest opening. The shape complexity index
(FRAQ) increases with increased opening shape complexity, with values
from 1 (perfect square) to 2 (irregular polygon).

2.3.4. Spatial analyses of trees and canopy openings

To determine disturbance-induced change in horizontal tree spatial
patterns, we considered snag, snapped, and uproot locations combined
with residual tree locations to reconstruct pre-disturbance tree spatial
patterns. Because sampling plots were disjunct in space and circular in
shape, we truncated and adjoined sampling plots to create a contiguous
4 x 8 grid of 16 x 16 m square plots (Woodall and Graham 2004). In-
dividual plot-level spatial point pattern analysis was not feasible
because multiple plots had fewer than four residual trees, which would
preclude meaningful results. We determined the maximum size of a
square that occurs completely within the circular sampling plot and
excluded all trees and CWD that occurred between the boundary of the
square plot and the border of the circular plot. The location of each
square plot was randomized and placed into a 4 x 8 m contiguous grid.

We used a spatial point pattern approach to quantify spatial patterns
of reconstructed pre-disturbance trees and post-disturbance residuals to
determine if trees or residuals were clustered, random, or dispersed in
horizontal space. We used the pair correlation function g(r) individually
on both pre-disturbance and post-disturbance trees. This function is a
second-order, non-cumulative modification of the commonly used Rip-
ley’s K function (Stoyan and Stoyan 1996). The g(r) quantifies the
number of points within annuli at multiple distances (r) relative to ex-
pected randomly distributed points (Baddeley et al., 2015). To test for
significant spatial clustering or dispersion, we contrasted observed data
to the upper and lower bounds of confidence envelopes. The 95 %
confidence envelopes were constructed from 99 Monte Carlo simula-
tions under the assumption of complete spatial randomness. The uni-
variate spatial pattern was defined as clumped, random, or dispersed if
the pattern was above, within, or below the confidence envelope,
respectively, at distance (d). A goodness-of-fit test for the null hypoth-
esis was also performed. The g(r) was performed at a 1 m lag distance
and did not exceed half the minimum length of the grid (32 m). To ac-
count for edge effects, an isotropic edge correction was applied. Uni-
variate point pattern analyses were performed with the package
“spatstat” in R (Baddeley and Turner, 2005). Because individual plots
were truncated and combined (Woodall and Graham 2004), results from
this point pattern analysis approach should be interpreted with caution
as the method used here is not as robust as if it were applied to a large
contiguous plot (Gray et al. 2018).

To quantify the spatial distribution of detected canopy openings, we
used a modified point pattern analysis approach for objects with finite
size and real shape with the grid-based software Programita (Wiegand
and Moloney, 2014). We reclassified the stand-cover raster from 0.2 m
pixel size to 5 m pixels for spatial analyses. If the pixel directly adjacent
to a gap pixel was also classified as gap, the software grouped these
pixels as one contiguous canopy opening. This process was crucial for
grouping pixels as one opening unit for the randomized simulation
procedure. To avoid the biases introduced from the cumulative nature of
Ripley’s K, we used the non-cumulative O-ring statistic to quantify the
patterns of openings. We quantified the spatial patterns of all openings,
small openings (<200 m?), and large openings (>200 m?). We compared
the spatial patterns of detected openings to confidence envelopes
simulated 99 times under the assumption of complete spatial
randomness.
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Table 1

Basal area (standing snags and snapped stems; m?ha1), relative basal area (%),
volume (downed logs and uproots; m>ha™!), and relative volume (%) for all
coarse woody debris > 10 cm diameter in a wind-disturbed forest at Savage Gulf
State Natural Area, TN, USA. Species are ranked by relative basal area.

Basal area Relative Volume Relative
(m*ha') basal area (m®ha') volume (%)
(%)

Pinus virginiana Mill. 1.96 38.4 24.63 23.7

Quercus 1.30 25.5 25.58 24.7
coccinea Miinchh.

Quercus alba L. 0.69 13.6 5.17 5.0

Pinus echinata Mill. 0.47 9.2 16.09 15.5

Quercus rubra L. 0.35 6.8 15.90 15.3

Quercus spp. 0.12 2.4 0.30 0.3

Oxydendrum 0.07 1.3 1.36 1.3
arboreum (L.) DC.

Liriodendron 0.06 1.2 0.06 0.1
tulipifera L.

Nyssa 0.05 0.9 0.44 0.4
sylvatica Marshall

Carya tomentosa L. 0.02 0.4 0.21 0.2

Acer rubrum L. 0.01 0.2 1.09 1.0

Pinus spp. 0.00 0.0 8.69 8.4

Quercus velutina Lam. 0.00 0.0 2.16 2.1

Diospyros 0.00 0.0 1.21 1.2
virginiana L.

Hardwood spp. 0.00 0.0 0.83 0.8

Sassafras albidum 0.00 0.0 0.02 0.0
(Nutt.) Nees

TOTALS 5.11 100.0 103.73 100.0

3. Results

3.1. Composition, structure, and spatial patterns of woody plant survival
and mortality

We documented 5.11 m?/ha of standing CWD and 103.73 m® ha™! of
downed decay class I and II CWD (Table 1). Plot-level impacts were
variable, ranging from 0.98 m? plot’1 (19.67 mz/ha) standing CWD to
no standing CWD. Downed CWD volume was similarly variable across
plots, ranging from 11.18 m® plot ! (155.20 m® ha™?!) to 0.75 m® plot
(23.00 m® ha™!). Mean Sh-DDI was 1.51 & 0.08 (SE), with a plot-level

Table 2
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range of 2.41-0.63. At the species level, Pinus virginiana had most
basal area lost (1.96 m%/ha standing CWD), followed by Q. coccinea
(1.30 m?/ha) and Q. alba (Table 1; 0.69 m?/ha). Quercus coccinea had
the highest volume of downed CWD (25.83 m3 ha’l), followed by
P. virginiana (24.63 m3 ha™!) and P. echinata (16.09 m® ha™1). We
documented a density of 62 standing CWD individuals ha~! and 219
downed CWD pieces ha™!. Mean plot-level canopy openness was 35.5 %
+ 1.0 % (SE), with a plot-level range of 25.3-47.4 %.

Residual tree basal area was 26.8 m?/ha and density was 945 trees
ha~! (Table 2). Plot-level residual basal area was variable, ranging from
1.63 m? plot ! (32.60 m?ha™!) to 0.61 m? plot ! (12.23 m?/ha). Of the
945 residual trees ha™!, 559 were subcanopy A. rubrum, O. arboreum,
and L opaca. Of the residual canopy trees, we documented 132 residual
Pinus individuals ha™! and 118 Quercus individuals ha~!. Residual tree
species richness was 25 and Shannon diversity was 1.73. We docu-
mented 1632 saplings ha! and 87,703 seedlings ha~! (Table 3). In the
sapling layer, A. rubrum was the most abundant species, representing 52
% of saplings, followed by I. opaca (22 %) and O. arboreum (12 %). In the
seedling layer, A. rubrum was most the abundant species, representing
46 % of seedlings, followed by Vaccinium spp. (12 %) and Q. stellata (5
%). Notably, P. echinata was absent in the sapling layer and minimally
present in the seedling layer (Table 3; 1 % of seedlings). Species richness
was 26 for saplings and 35 for seedlings. Shannon diversity was 1.22 for
saplings and 1.59 for seedlings. The wind disturbance marginally
increased mean tree diameter from 34.3 cm + 10.6 (SE) pre-disturbance
to 35.6 £ 9.2 (SE) post-disturbance. The spatial pattern of pre-
disturbance trees (residual trees + snaps, snags, and uproots) was
random (Fig. 2). Similarly, the spatial pattern of residual trees was
random, which indicated that the disturbance had no effects on the
spatial pattern of canopy trees.

3.2. Individual and neighborhood effects on survival probability

The random forest classification algorithm provided insight on the
individual-tree and plot-level characteristics that influenced probability
of survival. The final model had an OOB estimate of error rate of 23.7 %,
live tree classification error of 19 %, dead tree classification error of 34
%, and AUC of 0.77. When the model was used to predict survival of the
withheld test data, accuracy was 78 % (p = 0.12), Kappa index was 0.49,
sensitivity was 0.85, and specificity was 0.65. The most importance

Dominance (basal area; m?ha 1), relative dominance (%), density (stems ha™1), relative density (%), and importance (average of relative dominance and importance)
for all living trees > 5 cm dbh in a wind-disturbed forest at Savage Gulf State Natural Area, TN, USA. Species are ranked by importance.

Species Dominance (m?ha—') Rel Dom (%) Density (stems ha™') Rel Den (%) Importance (%)
Acer rubrum L. 2.95 12 264 30 20.7
Pinus echinata Mill. 7.39 29 73 8 18.7
Oxydendrum arboreum (L.) DC. 3.08 12 193 22 16.9
Pinus virginiana Mill. 4.16 16 50 6 11.0
Quercus alba L. 2.56 10 79 9 9.5
Quercus coccinea Miinchh. 1.88 7 13 1 4.4
Ilex opaca Aiton 0.24 1 67 8 4.3
Nyssa sylvatica Marshall 0.31 1 59 7 3.9
Carya tomentosa L. 0.68 3 39 4 3.5
Quercus rubra L. 0.65 3 6 1 1.6
Quercus velutina Lam. 0.51 2 6 1 1.4
Quercus stellata Wangenh. 0.33 1 7 1 1.0
Diospyros virginiana L. 0.10 0 9 1 0.7
Sassafras albidum (Nutt.) Nees 0.07 0 6 1 0.5
Liriodendron tulipifera L. 0.13 1 4 0 0.5
Quercus falcata Michx. 0.17 1 2 0 0.4
Fagus grandifolia Ehrh. 0.03 0 4 0 0.3
Prunus serotina Ehrh. 0.02 0 2 0 0.2
Carya glabra (Mill.) Sweet 0.02 0 2 0 0.2
Tsuga canadensis (L.) Carriere 0.04 0 1 0 0.1
Magnolia acuminata (L.) L. 0.01 0 1 0 0.1
Cornus florida L. 0.00 0 1 0 0.1
Crataegus spp. 0.00 0 1 0 0.0
TOTAL 25.33 100 889.06 100 100.0
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Table 3

Density (stems ha™1) and relative density (%) of seedlings (woody plants < 1 m
height) and saplings (woody plants > 1 m height; < 5 cm dbh) in a wind-
disturbed forest at Savage Gulf State Natural Area, TN, USA. Species are
ranked by relative density.

Species Seedlings Rel Saplings Rel
density Den density Den
(stems ha™" (%) (stems ha™? (%)

Acer rubrum L. 40359.4 46.0 841.7 51.6

Ilex opaca Aiton 2796.9 3.2 353.3 21.6

Oxydendrum arboreum 625.0 0.7 188.3 11.5
(L.) DC.

Vaccinium 6703.1 7.6 - -
elliottii Chapm.

Quercus rubra L. 5078.1 5.8 - -

Quercus 4390.6 5.0 2.5 0.2
coccinea Miinchh.

Nyssa sylvatica Marshall 1421.9 1.6 76.7 4.7

Quercus alba L. 3875.0 4.4 22.5 1.4

Quercus velutina Lam. 3703.1 4.2 6.7 0.4

Sassafras albidum (Nutt.) 3562.5 4.1 20.8 1.3
Nees

Vaccinium stamineum L. 2906.3 3.3 23.3 1.4

Rhododendron 2906.3 3.3 0.8 0.1
periclymenoides
(Michx.) Shinners

Liriodendron tulipifera L. 2250.0 2.6 4.2 0.3

Pinus virginiana Mill. 1375.0 1.6 - -

Diospyros virginiana L. 109.4 0.1 25.0 1.5

Pinus echinata Mill. 953.1 1.1 - -

Vaccinium 953.1 1.1 3.3 0.2
arboreum Marshall

Ilex montana Torr. & A. 937.5 1.1 12.5 0.8
Gray ex A. Gray

Cornus florida L. 125.0 0.1 16.7 1.0

Carya tomentosa L. 718.8 0.8 14.2 0.9

Prunus serotina Ehrh. 515.6 0.6 0.8 0.1

Fagus grandifolia Ehrh. - - 5.0 0.3

Asimina triloba (L.) 234.4 0.3 - -
Dunal

Crataegus spp. 203.1 0.2 3.3 0.1

Quercus falcata Michx. 171.9 0.2 - -

Ostrya virginiana (Mill.) 109.4 0.1 2.5 0.2
K. Koch

Castanea dentata 46.9 0.1 2.5 0.2
(Marshall) Borkh.

Quercus montana Willd. 125.0 0.1 - -

Carya glabra (Mill.) 78.1 0.1 1.7 0.1
Sweet

Quercus 15.6 0.0 1.7 0.1
stellata Wangenh.

Magnolia acuminata (L.) - - 1.7 0.1
L.

Hamamelis virginiana L. 46.9 0.1 - -

Prunus 31.3 0.0 0.8 0.1
americana Marshall

Carpinus 31.3 0.0 - -
caroliniana Walter

Callicarpa americana L. 15.6 0.0 - -

TOTALS 87375.0 100.0 1632.5 100.0

predictor of survival was individual-tree basal area (MDG = 17.0;
Fig. 3), followed by taxa (MDG = 16.6), and distance to nearest neighbor
(MDG = 14.1). Overall, individual-tree predictor variables exhibited
greater influence on survival probability than did aggregate plot-level
variables (Fig. 3). The partial dependence plot of the influence of taxa
on survival probability revealed that Acer spp. and O. arboreum were
most likely to survive (75 % and 72 %, respectively; Fig. 4), and
P. echinata and P. virginiana were least likely to survive (59 % and 46 %,
respectively) the wind event. Nearly all taxa were more likely to survive
than die (i.e., survival probability > 50 %) except P. virginiana (46 %,
Fig. 4). The relationship revealed in the partial dependence plots of basal
area and distance to nearest neighbor was non-linear, with little
discernable pattern (Fig. 5). Trees with less basal area (e.g. smaller
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diameter trees) were more likely to survive from 0.02 m? to 0.05 mz,
with decreased survival probability from 0.05 m? to 0.09 m? and
consistent survival probability of ca. 60 % with basal areas > 0.2 m?
(Fig. 5). Trees with distance to nearest neighbor > 7 m were less likely to
survive than trees with distance to nearest neighbor < 6 m, but this
relationship was tenuous (Fig. 6).

3.3. Frequency, size, shape, and spatial distribution of detected canopy
openings

The producer accuracy of the pixel-based supervised classification
algorithm was 0.75 for forest pixels, 1.00 for bare ground pixels, and
0.89 for shadow pixels, and the Kappa index was 0.79. In the wind-
disturbed mixed Quercus-Pinus echinata forest at SGNA, the classifica-
tion algorithm identified a total of 1183 canopy openings (ca. 7 openings
ha’l; Fig. 7) that ranged in size from 50-7300 m? (Fig. 8). Based on the
200 m? canopy opening-size threshold, we documented 1047 small
openings < 200 m? (ca. 6 openings ha1) and 136 large openings > 200
m? (<1 opening ha™!). The canopy openings-size frequency distribution
exhibited a reverse-J pattern, with a higher frequency of small openings
(50-150 m?) and fewer large openings (Fig. 8). Specifically, we docu-
mented ca. 2 openings ha™! in the 50-100 m? bin, 2 openings ha™ in the
100-150 m? bin, and ca. 1 opening ha™! in the 150-200 m bin. The
remaining size class bins had < 0.5 openings ha™'.

Mean area was 204 m? + 355 (SD) for all openings, 135 m? + 59
(SD) for small openings, and 734 m? + 868 (SD) for large openings
(Fig. 9). Mean perimeter was 153 m + 206 (SD) for all openings, 109 m
=+ 45 (SD) for small openings, and 469 m + 454 (SD) for large openings
(Fig. 9). The largest detected opening perimeter was 3084 m and the
smallest detected opening perimeter was 407 m. The mean perimeter
area ratio was 0.82 £ 0.17 for all openings, 0.83 + 0.17 for small
openings, and 0.68 + 0.12 for large openings (Fig. 9). The greater mean
perimeter-area ratio of small openings compared to large openings
indicated that, based on this shape complexity metric, small openings
were more complex in shape. However, the shape complexity index was
1.35 £ 0.09 (SD) for all openings, 1.34 + 0.08 (SD) for small openings,
and 1.43 + 0.07 (SD) for large openings (Fig. 9).

The general spatial pattern of canopy openings was significantly
dispersed at short distances, and clustered at intermediate and greater
distances (Fig. 10). This general pattern occurred for all openings and
large openings, but small openings were randomly spatially distributed
at greater distances. Specifically, all openings were significantly
dispersed from 0 to 10 m and significantly clustered at distances from 20
to 250 m. Small openings exhibited a similar spatial distribution across
the forest, with a significantly dispersed pattern documented from 0 to
10 m and a significantly clustered pattern from 30 to 100 m. Small
openings were randomly distributed at distances > 100 m. For large
openings, a significantly clustered spatial pattern was documented at
distances from 10 to 120 m, followed by a random pattern from 120 to
200 m, and clustered pattern from 210 to 240 m.

4. Discussion

4.1. Composition, structure, and spatial patterns of woody plant mortality
and survival

Intermediate-severity canopy disturbance often results in highly
variable damage patterns as these events may create a high frequency of
localized openings, few large openings, or some combination of canopy
openings across a wide range of sizes (Hart and Kleinman 2018). We
contend that ISD events are more frequent than commonly understood
and may be more influential drivers of forest ecosystem change
compared to gap-scale and stand-replacing disturbance (Nagel et al.,
2017; Hart and Kleinman 2018). We noted that forest damage variability
was high, with some portions of the disturbed forest exhibiting low-to
moderate severity tree damage (i.e., few unique dead species and low
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Fig. 2. Univariate pair correlation function g
(r) for reconstructed pre-disturbance trees
(top panel) and post-disturbance residual
trees (bottom panel) following a November
2018 intermediate-severity wind disturbance
in Savage Gulf State Natural Area, TN, USA.
Shaded areas represent a 95 % confidence
envelope (99 permutations excluding the five
highest and lowest values) simulated under
the assumption of complete spatial random-
ness (CSR). The red line is observed values.
Values above the gray shaded area indicate
significant (p < 0.05) clustering (i.e., trees
were closer in space than expected when
compared to tree locations simulated under
the assumption of CSR), and values below
the shaded area represent significant disper-
sion. Goodness-of-fit (GoF) for each g(r) is
reported in the top right of each panel. (For
interpretation of the references to color in
this figure legend, the reader is referred to
the web version of this article.)
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Fig. 3. Random forest classification algorithm variable importance rankings for the influence of individual-tree metrics (a) and neighborhood characteristics (b) on
individual-tree survival probability following a November 2018 intermediate-severity wind disturbance in Savage Gulf State Natural Area, TN, USA. Mean decrease
Gini values indicate the total decrease in node impurity averaged over all classification trees. Greater mean decrease Gini values for a given predictor indicate greater
importance. The Clark and Evans index is a crude measure of aggregation of a point pattern, with values > 1 indicating random pattern and values < 1 indicating
clustered pattern. Dominance is a spatially-explicit competition metric that quantifies the diameter differentiation of a five tree neighborhood.

diversity in mode of death), and some portions of the forest exhibiting
high-severity tree damage (i.e., large number of unique dead species and
high diversity in mode of death; Peterson 2019). The severe thunder-
storm that impacted the SGNA produced strong downbursts that

damaged a relatively large area (NOAA Storm Events Database 2022).
Imbedded within downbursts are microbursts, which are discreet high
severity wind gusts that result in concentrated patches of tree mortality
(Peterson et al., 2016). Similar patterns of canopy tree damage were
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Fig. 4. Partial dependence plot estimating the probability of survival as influenced by tree taxon following a November 2018 intermediate-severity wind disturbance
in Savage Gulf State Natural Area, TN, USA. Partial dependence plot depicts the influence of tree taxon on the likelihood of tree survival based on balanced random

forest classification algorithm when all other predictor variables are held constant.
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Fig. 5. Partial dependence plot estimating the probability of survival as influenced by individual-tree basal area (m?) following a November 2018 intermediate-
severity wind disturbance in Savage Gulf State Natural Area, TN, USA. Partial dependence plot depicts the influence of basal area (m?) on the likelihood of tree
survival based on balanced random forest classification algorithm when all other predictor variables are held constant.

documented from hurricane-produced downbursts in upland Quercus
forests in North Carolina (Greenberg and McNab 1998), in which the
damage was associated with multiple discreet downburst events pro-
duced from the same storm system. Similarly, disturbance-induced tree
mortality was documented in an upland Quercus stand in Alabama
following a low-intensity EF-1 tornado (Cox et al., 2016), in which large
stems were disproportionately removed from the canopy in the lightly
and moderately disturbed portions of the stand.

In damaged portions of the forest, basal area lost and CWD volume
was highly variable. These findings corresponded to other investigations
of intermediate-severity canopy disturbances in temperate forests of the
eastern United States (Woods 2004; Hanson and Lorimer 2007; Busing

et al., 2008; Holzmueller et al. 2012; Trammell et al., 2017). The CWD
volume ha™! documented after intermediate-severity disturbance was
well above the background CWD inputs reported on relatively undis-
turbed sites on the Cumberland Plateau (Muller and Liu 1991). We
documented relatively high residual basal area (26.8 m?ha~1) and tree
density (945 stems ha_l), which could be attributed to the relatively
high basal area and tree density of the pre-disturbance forest. But similar
to CWD metrics discussed above, we documented a wide range of
variability in plot-level residual basal area and tree density. Canopy
openness was also highly variable, which was likely influenced by
midstory tree and sapling density, as hemispherical photographs were
captured from 1 m height. Although the wind-disturbance removed
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Fig. 6. Partial dependence plot estimating the probability of survival as influenced by distance to nearest neighbor (m) following a November 2018 intermediate-
severity wind disturbance in Savage Gulf State Natural Area, TN, USA. Partial dependence plot depicts the influence distance to nearest neighbor (m) on the
likelihood of tree survival based on balanced random forest classification algorithm when all other predictor variables are held constant.
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Fig. 7. Study area map (174 ha) showing the distribution of detected small (yellow; < 200 m?) and large (blue; > 200 m?) canopy openings following a November
2018 intermediate-severity wind disturbance in Savage Gulf State Natural Area, TN, USA. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 8. Canopy opening size-frequency distribution of detected canopy openings following a November 2018 intermediate-severity wind disturbance in Savage Gulf

State Natural Area, TN, USA.

mature canopy trees, most potential understory light was captured by
the dense midstory of shade-tolerant taxa (Hanson and Lorimer, 2007;
Cowden et al., 2014; Meigs and Keeton, 2018).

Surviving trees exhibited a significantly random spatial pattern
through the damaged portions of the forest. Pre-disturbance canopy tree
locations were spatially random, and the canopy disturbance did not
alter this spatial pattern. Although species, neighborhood, and site-
specific variables influence patterns of canopy tree mortality, ISD has
been found to result in random horizontal spatial patterns of surviving
individuals (Boutet and Weishampel, 2003; Stueve et al., 2011). We
suspect that with increased disturbance severity, spatial patterns of re-
sidual trees would likely become either aggregated or dispersed
depending on the canopy disturbance mechanism. For example, high
severity, catastrophic wind disturbance may result in clustered spatial
patterns of mortality (Foster and Boose 1992; Cannon et al., 2016). Bi-
otic disturbance agents (e.g. insects) may results in dispersed patterns of
mortality, but these patterns may manifest at different spatial scales
across neighborhoods, stands, and forests (Frelich and Reich 1999;
Woods 2004). However, the documented random spatial patterns could
be a function of truncating and combining individual circular plots,
which has been found to result in lack of spatial clustering or dispersion
in other studies (see Gray et al. 2021).

4.2. Individual and neighborhood effects on survival probability

The RF classifier identified the most influential individual-tree and
site characteristics on individual-tree survival. Taxon was an influential
predictor of survival, which was driven by the diversity of life history
strategies and functional traits of documented taxa. Specifically, mid-
story shade-tolerant A. rubrum and O. arboreum were more likely to
survive based on subcanopy location in the vertical strata. Acer rubrum
and O. arboreum are commonly abundant in the midstory of upland
Quercus and Quercus-Pinus stands (Hart et al. 2012; Vander Yacht et al.,
2017). Survival of these species was most likely associated with canopy
position, diameter, and buffering effects from canopy trees (Greenberg
2021). These species were more likely buffered from the wind damage
by the overtopping canopy stratum. Midstory stems are not typically
damaged directly by wind, but by the falling crowns of canopy trees
(Brokaw 1985), or the entanglement of root networks from neighboring
uprooted canopy stems.

We found a negative relationship between individual-tree basal area
and probability of survival. This finding is congruent with a robust
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literature on the relationship between tree size and mortality (Peterson
et al., 2016; Salas-Eljatib and Weiskittel, 2020). Tree diameter is posi-
tively related to tree height, and trees situated in higher canopy strata
are exposed to greater wind speeds. The documented basal area-survival
relationship in our study revealed a peak probability of survival at small
basal areas (i.e., small diameters), which is a commonly reported trend
in the literature (e.g. Everham and Brokaw, 1996; White et al., 2015).
The nadir of survival probability occurred at basal areas of 0.09-0.11
m2, and plateaued at basal areas > 0.14 m? (ca. 42 cm dbh). Although
smaller individuals were more likely to survive, the range in survival
probability was < 10 % across all basal areas. We documented a weak,
non-linear relationship between distance to nearest neighbor and sur-
vival probability, although this finding may be confounded by edge ef-
fects. Few studies have examined spatially-explicit neighborhood effects
on tree survival probability (Peterson and Cannon 2021), such as dis-
tance to nearest neighbor (but see Gonzalez-Akre et al., 2016; Hiilsmann
et al. 2018). The importance of spatially-explicit, neighborhood-scale
predictor variables may aid the predictive ability of windthrow sus-
ceptibility models.

We found that individual-tree characteristics (e.g. basal area, taxa)
were more influential on survival than plot-level characteristics (Bakaj
et al. 2016). In order of importance, basal area, taxa, and distance to
nearest neighbor exerted the greatest influence on tree survival. The
plot-level variables selected were hypothesized to be more influential on
survival, but these relationships were tenuous and explained relatively
little variance compared to individual-tree predictors. Each of the plot-
level predictors had a similar MDG (range 6.1-10.0). Individual trees on
plots with greater Shannon diversity were marginally more likely to
survive. A similar pattern was documented with plot-level relative Pinus
spp. basal area and mean age. Mixed-species stands have been hypoth-
esized to be more resistant to disturbance (Griess and Knoke, 2011;
Panayotov et al., 2011; Kabrick et al., 2017) and our results provide
some, albeit weak, support for this hypothesis. For example, we expect
that individual trees on plots with greater Pinus spp. basal area or tree-
level Shannon diversity would experience marginally greater resistance
to mortality from a strong wind event. Our classification algorithm
confirmed this hypothesis, although these weak relationships were non-
linear. Future research should explicitly test the hypothesis that man-
agement for both hardwoods and softwoods does indeed enhance
ecosystem resilience and resistance to disturbance, including wind
events. Although we did document this pattern, windthrow resistance in
this Quercus-P. echinata stand was more so a function of individual-tree
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Fig. 9. Boxplots of canopy opening metrics calculated with the “land-
scapemetrics” package in R for all openings, small openings (<200 m?), and
large openings (>200 m?). Distance to nearest opening is the mean edge-to-
edge distance between openings in meters. Shape complexity is a scale-
independent, standardized metric based on the perimeter and area of open-
ings, with values ranging from 1 (least complex shape) to 2 (most complex
shape). Canopy openings were detected from orthoimagery using remote
sensing techniques following a November 2018 intermediate-severity wind
disturbance in Savage Gulf State Natural Area, TN, USA.

characteristics and less so of neighborhood conditions. However, our
analysis of individual-tree mortality was among the few to incorporate
both individual-tree characteristics and spatially-explicit neighborhood
conditions (Peterson and Cannon 2021). We suggest that future studies
incorporate abiotic site conditions as windthrow susceptibility predictor
variables, such as soil depth, underlying geology, and microtopography.
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4.3. Frequency, size, shape, and spatial patterns of detected canopy
openings

We detected many small canopy openings and frequency decreased
with increased opening size. These results conform to gap size-frequency
distributions documented in several other intermediate-severity wind
disturbance studies of tornados in P. palutris stands (Cannon et al., 2016)
and Quercus-Carya stands (Rebertus and Meier 2001), and severe
thunderstorm winds in northern hardwood stands (Evans et al. 2007),
among others (see Foster and Boose 1992; Curzon and Keeton 2010;
Panayotov et al. 2011). These patterns are hypothesized to be a result of
variable disturbance intensity. The intensity of wind events is often
relatively low over the extent of the atmospheric disturbance, and high-
intensity sub-events are imbedded over smaller areas (e.g. microbursts
in large thunderstorm systems). Furthermore, storm intensity is not al-
ways related to damage severity (Peterson 2000) as abiotic factors such
as topographic features (Cannon et al., 2016), tree structure and
morphological traits (e.g. Brisson 2001), and landscape characteristics
(e.g. distance to edge, Stueve et al.,, 2011) influence storm-related
damage.

Detected canopy openings ranged in size from 50-7300 m2. This is a
smaller range of canopy opening sizes than what some other studies
have reported after hurricane (Boutet and Weishampel, 2003; McNab
et al., 2004; Busing et al., 2008) and tornado disturbances (Peterson
et al. 2016; Rebertus and Meier 2001). We found that larger openings
had a greater shape complexity (i.e., less square), but smaller openings
had a greater mean perimeter-area ratio (i.e., more edge length).
However, perimeter-area ratios were less than those reported from
canopy gap analyses in mature Mediterranean Fagus stands (Solano
et al., 2022), which could indicate the canopy opening shapes are more
complex in older stands when analyzed across a broader temporal scale.
Therefore, both large and small openings exhibited complex shapes and
the discrepancy between metrics was likely a function of the pixel-based
classification. Structural heterogeneity may be enhanced by openings
that exhibit high shape complexity or perimeter-area ratios (Canham
et al.,, 1994). We suspect that stands with high canopy tree species
richness and a wide range of canopy tree size classes favor greater shape
complexity and perimeter-area ratio of canopy openings. Although our
study design did not permit testing of this potential relationship, we
hypothesize that damage diversity is positively related to canopy
opening shape complexity.

Large canopy openings are one component required for establish-
ment and recruitment P. echinata (Goode et al. 2021), and the return
interval of ISD events is often shorter than the lifespan of most canopy
trees. We found that larger openings (i.e., those > 200 m?) were spatially
clustered within the forest studied here at distances of 10-120 and
210-240 m. The spatial pattern of large openings was likely a function of
the wind event, as microbursts may result in clustered canopy openings
(Hjelmfelt et al., 2010; Gospodinov et al., 2015), and these patterns have
been documented in many forest types and across different disturbance
agents. Van der Meer and Bongers (1996) found clustered patterns of
small-canopy gaps around large gaps in tropical forests, which was
explained by site factors and wind exposure. In subtropical forests of
China, Liu et al. (2020) found that canopy gaps following ice storm
damage were clustered at distances > 70 m. Curzon and Keeton (2010)
found clustering of canopy gaps in Tsuga canadensis- northern hardwood
stands and McNab et al. (2004) found clusters of large canopy openings
following hurricane disturbance in stands of the Appalachian Highlands.
In addition to storm-related characteristics, a range of biophysical site
conditions may also explain the underlying mechanisms of opening
patterns including topography, soil conditions or neighborhood effects
(Poorter et al., 1994).

4.4. Management implications

Our findings provide quantitative information on natural canopy
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Fig. 10. Univariate O-ring function O(r) for

03 all openings (top panel), small openings
Al openings (<200 m? middle panel) and large openings
GOF =0.01 (>200 mz; bottom panel) following a
November 2018 intermediate-severity wind
disturbance in Savage Gulf State Natural
0.2 Area, TN, USA. Point-pattern analysis was
adapted for objects with finite size and real
shape (i.e., canopy openings). Shaded areas
represent a 95 % confidence envelope (99
permutations excluding the five highest and
0.1 lowest values) simulated under the assump-
tion of complete spatial randomness (CSR).
The red line is observed values. Values above
the gray shaded area indicate significant (p
< 0.05) clustering (i.e., openings were closer
0.15 . . . . in space than expected when compared to
S I . opening locations simulated under the
ma openlngs assumption of CSR), and values below the
GOF =0.01 shaded area represent significant dispersion.
Goodness-of-fit (GOF) for each O(r) is re-
0.1 ported in the top right of each panel. (For
= : interpretation of the references to color in
= this figure legend, the reader is referred to
O the web version of this article.)
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disturbances in Quercus-Pinus mixedwoods and can be used to inform
silvicultural systems that emulate natural disturbance and development
patterns that sustain mixedwood forests. We found individual canopy
openings were typically 50-7500 m? in size and all canopy openings
were typically irregular in shape. For single-tree gaps (i.e., openings of
< 200 m?), we documented a frequency of five openings ha™?, and these
openings were spatially clustered at distances of 30-100 m and
randomly distributed at distances > 100 m. Large openings of over 1000
m? had a frequency of 0.14 ha~l. On average, there was one canopy
opening of at least 200 m? for every 0.6 ha and openings of at least 200
m? were spatially clustered from 10 to 120 m and 210-240 m. Although
large openings on average occurred at a frequency of one per 0.6 ha,
they were not uniformly distributed across the forest; rather, they were
concentrated in patches (i.e., a clustered group of canopy openings).
These concentrated patches of canopy openings could occur as few
relatively large openings or up to five intermediate-sized openings.
Spatial analysis of canopy openings indicated that the edge-to-edge
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distance between them was significantly less than expected when
compared to openings simulated under the assumption of complete
spatial randomness. Within canopy openings, ca. 50 % of trees > 15 cm
dbh survived, and these trees were randomly distributed in space (i.e.,
not aggregated or dispersed).

In Quercus-Pinus mixedwood stands, the perpetuation of the Pinus
component is paramount (Kenefic et al. 2021). Silvicultural systems that
promote Pinus regeneration and are aligned with the natural patterns of
canopy disturbance documented here would include patch seedtree
harvests with reserves or irregular shelterwood harvests with an
emphasis on the retention of sexually mature P. echinata, or patch
clearcut harvests with reserves in neighborhoods that lack mature Pinus
individuals, but where abiotic conditions indicate Pinus may be able to
regenerate naturally and be competitive (e.g., sandy, nutrient poor
sites). In addition to Pinus stems, reserve trees in openings could be those
that produce fire-facilitating fuels to maintain desired fire effects
throughout the rotation. We recommend that harvest-created openings
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be up to 0.75 ha and be clustered in groups of 2-5 openings with an
edge-to-edge distance between openings of < 200 m. We acknowledge
that canopy disturbances must be coordinated in conjunction with
prescribed fire and possibly other treatments, such as chemical and
mechanical competition control, to regenerate and maintain P. echinata.
Outplanting of P. echinata in large harvest-created openings may be
necessary even when mature P. echinata trees are present to supplement
natural regeneration and would of course be required in openings that
lacked a Pinus seed source. Regardless of the approach used, we
recommend entries be spatially clustered and variable in size to emulate
the patterns of the natural disturbance documented here.
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