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A B S T R A C T   

Mixed Quercus-Pinus stands are increasingly desired by forest managers to achieve a range of objectives, 
including biodiversity enhancement and resilience to global change. To create and perpetuate desired mixed 
Quercus-Pinus stand composition and structure, quantitative information on natural disturbance impacts on stand 
development and succession is necessary. Wind is the most common natural canopy disturbance in eastern North 
America, and impacts vary in severity and spatiotemporal scales. Intermediate-severity disturbance (ISD; events 
that occur along a classification gradient between frequent gap-scale and infrequent, stand-replacing events) is 
hypothesized to be an important driver of mixed Quercus-Pinus creation and maintenance. Our overarching goal 
was to quantify patterns of intermediate-severity wind disturbance in a mixed Quercus-Pinus echinata Mill. forest 
on the Cumberland Plateau in Tennessee, USA. Specifically, our objectives were to: 1) quantify post-disturbance 
species composition, stand structure, and residual tree spatial patterns, 2) infer individual-tree, neighborhood, 
and site-specific impacts on tree mortality, and 3) describe frequency, size, shape, and spatial distribution of ISD- 
created canopy openings. We inventoried plots in Pinus echinata-dominated, disturbance-impacted portions of the 
forest. To infer individual-tree and spatially-explicit neighborhood characteristics that influenced survival 
probability, we applied a random forest classification algorithm. To document changes in tree spatial distribution 
before and after disturbance, we used spatial point pattern analysis. To characterize forest-scale disturbance 
patterns, we classified canopy gaps from high-resolution orthoimagery. The most important predictors of survival 
were basal area, taxonomic group, and distance to nearest neighbor. Pre-disturbance trees and residuals were 
spatially randomly distributed. Most detected openings were 50–150 m2, and the opening size-frequency dis
tribution exhibited a reverse J-shape. Openings were spatially clustered within the forest at distances < 200 m 
and complex in shape. We provide quantitative recommendations on the frequency, size, shape, and spatial 
distribution of silvicultural entries patterned after natural disturbance. To emulate natural disturbance patterns, 
we recommend patch seedtree harvests with reserves or patch clearcuts with reserves, and these harvest-created 
openings should be concentrated (i.e., clustered) in portions of the stand in which P. echinata is most dominant 
and/or most competitive. Site preparation with prescribed fire, herbicide, and/or mechanical thinning may also 
be necessary to prepare the seedbed and reduce hardwood competition to favor Pinus establishment in openings.   

1. Introduction 

Forest disturbances alter the species composition, stand structure, 
and ecosystem function of forests globally (Foster et al., 1998; White and 
Jentsch, 2001; Seidl et al. 2017). All forests experience disturbance and 
are in a constant state of recovery. Forest disturbances are typically 
classified based on severity, spatial extent, seasonality, and frequency; 

and range from frequent, small events to infrequent, large, stand- 
replacing events (Oliver and Larson 1996). Intermediate-severity dis
turbances (ISD) are those that occur between each endpoint of the 
disturbance severity gradient (Hart and Kleinman 2018). Although 
relatively understudied compared to gap-scale and stand-replacing dis
turbances, ISD may be a more influential driver of forest ecosystem 
change than is typically understood (Hart and Kleinman 2018, Meigs 
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and Keeton 2018; Nagel et al., 2021), as these events typically have a 
shorter return interval than the lifespan of most canopy trees (Seymour 
et al., 2002; Hart et al., 2012; Cowden et al., 2014; Hart and Cox 2017), 
and they provide opportunity for a diversity of tree reproduction to 
establish and ascend into the overstory. At the stand level, ISD may 
result in a high frequency of localized events, a single large opening, or 
some combination of canopy openings across a wide range of sizes 
(Canham et al., 2001; Woods 2004; Nagel and Svoboda 2008). Canopy 
openings may be clustered, dispersed, or randomly distributed across 
stands, forests, and landscapes (Frelich and Reich 1995; Habashi 2019; 
Paluch and Jastrzębski, 2022). Intermediate-severity disturbance agents 
may include insect and pest outbreaks (e.g. Axelson et al., 2010), ice 
storms (e.g. Covey et al., 2015), wind storms (e.g. Cowden et al., 2014), 
and fires (e.g. Fulé et al., 2003). Among these canopy disturbance 
agents, wind is the most common in forests of eastern North America 
(Runkle 1985; Peterson et al. 2016). 

Wind disturbance severity is influenced by multiple interacting fac
tors that include storm characteristics, topography, and species 
composition and stand structure. Atmospheric disturbances may pro
duce strong winds associated with downbursts and tornados generated 
by convective systems, hurricanes, and topographically induced down
slope winds (Hjelmfelt et al., 2010). Intermediate-severity wind distur
bance has been studied following low-intensity tornados (e.g. < EF 2; 
Cox et al., 2016), hurricanes (Busing et al., 2008), derechos (Daniels 
et al., 2020), and downbursts (Battles et al., 2017). Individual-tree 
susceptibility to wind disturbance is influenced by individual-tree 
characteristics, neighborhood effects, and site conditions, but tree 
diameter is often the most consistent predictor of wind-induced mor
tality (Peterson 2007). Large-diameter trees, trees with low wood den
sity, and those with shallow rooting depth are more susceptible to 
snapping and uprooting in wind disturbances (Salas-Eljatib and Weis
kittel 2020). Neighborhood effects such as distance to nearest neighbor 
and neighborhood composition (Frelich, 2016; Rutledge et al., 2021), 
and site characteristics such as soil properties, topography, and under
lying geology may also influence tree mortality patterns (Waldron et al., 
2013). 

Intermediate-severity wind disturbance often results in irregular 
patterns of severity across space and a diverse arrangement of biological 
legacies (Meigs and Keeton 2018). Therefore, heterogenous spatial 
patterns of canopy openings, post-disturbance forest structure, initial 
floristics and other biological legacies may favor the establishment and 
recruitment of woody plant species with a variety of life-history strate
gies and functional traits. Intermediate-severity wind disturbance 
combined with recurring low-intensity fire may be required to maintain 
certain species assemblages. An example is mixed Quercus-Pinus systems 
of the eastern United States, in which wind disturbance is the most 
common canopy disturbance agent (Peterson et al., 2016). Mixed 
Quercus-Pinus ecosystems span millions of hectares in this region, but 
this forest type has experienced a dramatic decrease in extent (Oswalt 
et al., 2012). Quercus-Pinus stands exists in a mid-successional state 
(Cooper 1989). In this successional pathway, dominance of the faster 
growing, shade-intolerant Pinus spp. transitions to the more shade- 
tolerant Quercus spp. in the absence of the appropriate combination of 
fire and canopy disturbance. Land-use change, altered disturbance re
gimes, the proliferation of commercial Pinus plantations, and lack of 
active management have dramatically reduced the extent of mixed 
Quercus-Pinus forests (Oswalt et al., 2012, Vickers et al. 2021). Mixed 
Quercus-Pinus echinata stands of the eastern USA serve as an excellent 
model to investigate patterns of canopy disturbance, succession, and 
development to enhance the inherently complex management of these 
ecosystems, which often emphasizes accelerating or reversing succes
sion through manipulating the disturbance regime. Because of the wide 
ecological amplitude of Pinus echinata, it is well suited to co-occur with a 
variety of hardwood species under certain disturbance regimes (Lawson 
and Kitchens 1983). 

To create and perpetuate mixed Quercus-Pinus echinata stands, it is 

critical to evaluate the multi-scale impacts of canopy disturbance on 
species composition and stand structure. Therefore, our overarching 
goal was to quantify impacts of intermediate-severity wind disturbance 
in a mixed Quercus-Pinus echinata forest on the Cumberland Plateau in 
Tennessee, USA. Specifically, our objectives were to: 1) quantify post- 
disturbance species composition, stand structure, and residual tree 
spatial patterns, 2) infer individual-tree, neighborhood, and site-specific 
impacts on tree mortality, and 3) describe frequency, size, and spatial 
distribution of ISD-created canopy openings. Although individual-tree 
susceptibility to mortality has been well studied (Peterson et al. 
2016), mortality may be confounded by interactions of disturbance 
agents contributing to mortality, neighborhood characteristics, site 
conditions, and species-specific traits. A comprehensive understanding 
of individual-tree susceptibility may inform the design of silvicultural 
systems that limit economic loss during and after wind disturbance 
while also maintaining desired species composition and structure. 
Furthermore, quantitative information on size, shape, frequency, and 
spatial pattern of canopy openings is essential to design silvicultural 
entries commensurate with natural patterns of disturbance and devel
opment. Our results inform mixedwood silvicultural systems and 
enhance our understanding of the necessary disturbance regime to 
create and perpetuate resilient, biodiverse, and structurally complex 
mixed Quercus-Pinus echinata ecosystems. 

2. Methods 

2.1. Study site 

Our study occurred in a wind-disturbed mixed Quercus-Pinus echinata 
forest of Savage Gulf Natural Area (SGNA) in Tennessee, USA. The SGNA 
is a 6,309 ha state natural area managed by the Tennessee Department of 
Environment and Conservation. Because of its biodiversity and unique 
geological characteristics, the reserve is listed as a National Natural 
Landmark by the US Department of the Interior. See Hart et al. (2012) 
for a detailed description of settlement history, prior land use, species 
composition and structure, and canopy disturbance history. The SGNA is 
located on the Cumberland Plateau section of the Appalachian Plateaus 
physiographic province, the westernmost physiographic province of the 
Appalachian Highland realm (Fenneman 1938). The Cumberland 
Plateau section is characterized by broad, uncut plateau remnants not 
yet maturely dissected that are situated between deep valleys (Fenne
man 1938). In this study, disturbance sampling plots were established 
on the weakly dissected plateau landtype association of the true plateau 
subregion as classified by Smalley (1986), characterized by broad un
dulating to rolling ridges with gentle to moderately steep-sided slopes, 
dissected by young valleys. The tablelands above Savage Creek, a deeply 
incised tributary to the Collins River, are dissected by bedrock streams. 
The underlying geology of the SGNA is in the Crab Orchard and Crooked 
Forked groups, which are primarily composed of sandstone, conglom
erate, siltstone, shale, and coal. Soil Series of the study area are Beer
sheba, Jefferson, Lily, Lonewood, and Ramsey (USDA NRCS 2022), 
which are characterized as being moderately to very deep and well 
drained. These Soil Series are primarily derived from sandstone, shale, 
siltstone, or quartzite, with loam, silt loam, and sandy loam textures 
(USDA NRCS 2022). The regional climate of the SGNA is humid meso
thermal (Thornthwaite 1948), with long, moderately hot summers and 
short, mild winters. Mean annual temperature is 13.3◦ C, with the lowest 
monthly mean temperature of 2.3◦ C in January and the highest monthly 
mean temperature of 23.4◦ C in July (PRISM 2022). The amount of 
precipitation is typically steady throughout the year with a mean annual 
total of 1,607.3 mm. October receives the lowest mean precipitation 
(91.9 mm) and March receives the greatest mean precipitation (154.9 
mm, PRISM 2022). 

The Cumberland Plateau supports diverse plant communities that 
are intermediate between mixed mesophytic, mixed hardwood, and 
mixed Pinus-hardwood forest types (Hinkle 1978, 1989). On upland sites 
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of the Cumberland Plateau, including the tablelands of the SGNA, plant 
community composition is a function of fine-scale topographic charac
teristics, soil water availability, and canopy disturbance history (Hinkle 
1978, Smalley 1986, Hart et al. 2012). The contemporary woody plant 
assemblage of the SGNA tablelands is dominated by Quercus alba, Acer 
rubrum, and P. echinata (Hart et al. 2012). At the genus level, Quercus is 
the most dominant (46 % basal area), followed by Pinus (17 % basal 
area), and Acer (16 % basal area). Quercus spp. and Pinus spp. represent 
70 % of canopy trees, and Oxydendrum arboreum and Acer rubrum 
represent the majority of understory trees (Hart et al. 2012). Interest
ingly, these taxa represent a wide range of silvical characteristics. For 
example, shade tolerance varies widely from the shade intolerant 
P. echinata to the shade tolerant A. rubrum. Pinus echinata occurs in 
spatially clustered neighborhoods in what is an otherwise Quercus 
dominated forest (Goode et al., 2021). 

The most frequent contemporary natural disturbance agent in the 
SGNA is wind, with 103 recorded wind-related storm events from 1950 
to 2019 that caused significant tree or structural damage (NOAA Storm 
Events Database 2022). The return interval for ISD events in the SGNA is 
ca. 50 years (Hart et al. 2012) and the last detected ISD event in this 
forest occurred in 1976 (Goode et al. 2021). A reconstruction of fire 
history revealed that mean fire interval for SGNA between 1834 and 
1935 was 2.5 years, and increased to 13.7 years after 1940 during an 
extended period of fire exclusion (Stambaugh et al. 2020). 

On 6 November 2018, a quasi-linear convective system with 
imbedded tornados impacted portions of central Tennessee. The systems 
produced ten tornados, and among those, one EF-1 tornado dissipated 
immediately prior to reaching SGNA. Although official storm surveys 
indicated that the tornado did not impact SGNA, the same storm system 
produced microburst wind damage that uprooted and snapped many 
canopy stems on the eastern tablelands of SGNA (NOAA Storm Events 
Database 2022). This wind event offered an excellent opportunity to 
examine the impacts of intermediate-severity disturbance at the 
individual-tree and stand-scales in a mixed Quercus-Pinus echinata forest. 
We were specifically interested in the impacts of this disturbance in 
P. echinata dominated neighborhoods, by evaluating post-disturbance 
successional trajectories and quantifying P. echinata patch resilience. 

2.2. Field methods 

To quantify impacts of wind disturbance on P. echinata-dominated 
neighborhoods, we established 0.04 ha fixed-radius plots using pre
determined criteria. To be considered for use, a plot must have: (1) been 
directly impacted by the wind event, (2) contained at least four canopy 
P. echinata stems (≥30 cm diameter at breast height, dbh; residual or 
senesced), and (3) contained at least four pieces of coarse woody debris 
(CWD ≥ 10 cm diameter; to include the aforementioned P. echinata). We 
walked a predetermined transect within SGNA until we encountered an 
area that met our criteria. After establishing and sampling a plot in this 
area, we then walked a new transect based on a new, random azimuth 
and sampled any plots along this azimuth that satisfied our criteria. 
Once no new plots were encountered along this new azimuth, we 
returned to and continued along our predetermined transect. Using this 
method, we sampled 32 plots (1.28 ha). 

To determine plot composition and structure, we sampled trees (live 
woody stems ≥ 5 cm dbh), saplings (live woody stems < 5 cm dbh, ≥ 1 m 
height), seedlings (live woody stems < 1 m height), and CWD and 
standing dead trees (dead woody stems ≥ 10 cm dbh). For each tree, we 
recorded species, dbh, and crown class (based on the amount of inter
cepted light; overtopped, intermediate, co-dominant, and dominant; 
Oliver and Larson 1996). For saplings, we recorded species and tallied 
abundance. We sampled seedlings in a nested 0.002 ha subplot (20 m2) 
located at plot center, and recorded seedling species and abundance. 
Coarse woody debris was assigned a decay class (1–5; based on Forest 
Inventory and Analysis program; FIA 2005) and classified as either 
standing or downed. Standing CWD was further classified as snags 

(crown mostly intact) or snaps (crown removed), identified to species, 
and measured for dbh. Downed CWD was further classified as uproots 
(root plate intact) or logs (root plate removed; ≥ 1.3 m in length), 
identified to species, and measured for length (excluding portions 
outside the plot boundary). Uproots were measured for dbh 1.37 m 
above the attached root plate, and logs were measured for diameter at 
both ends or where the log intersected the plot boundary. 

At each plot, we recorded the latitude and longitude of plot center 
using a Trimble Juno t41/5 GPS receiver. We used hemispherical pho
tographs taken 1 m above the ground at plot center to quantify canopy 
openness. Photographs were captured using an Olympus Stylus TG-3 
digital camera mounted on a self-leveling tripod, fitted with a 180◦

field of view fisheye lens, and calibrated for use with WinSCANOPY 
software (WinSCANOPY, Regent Instruments, Quebec City, Quebec, 
Canada). To analyze spatial patterns, we recorded the distance and az
imuth from plot center to each tree and CWD. For CWD, distance and 
azimuth were recorded for both ends of the CWD, or where the CWD 
intersected the plot boundary. To determine the age of canopy 
P. echinata stems, we used an increment borer to extract a tree-ring 
sample from the largest diameter P. echinata within or directly adja
cent to the plot. 

2.3. Analytical methods 

2.3.1. Species composition, stand structure, and disturbance severity 
To quantify disturbance severity variability and infer the drivers of 

mortality for analyses described below, we calculated multiple biotic 
and abiotic disturbance response and explanatory variables. Response 
variables included canopy openness, standing CWD basal area (snags 
and snapped stems, m2 plot−1), downed CWD volume (logs and uproots, 
m3 plot−1), and Shannon Damage Heterogeneity Index (Peterson 2019). 
To remove background mortality from canopy disturbance unrelated to 
the ISD, we calculated all CWD metrics for decay class I and II in
dividuals only. Explanatory variables included mean age of canopy 
P. echinita, transformed aspect (Beers et al. 1966), slope, pre-disturbance 
tree Shannon diversity (with CWD considered), and relative Pinus basal 
area plot−1. 

Canopy openness (%) was quantified using the software WinSCA
NOPY. Shannon Damage Heterogeneity Index (Sh-DHI, Peterson 2019) 
was used to quantify post-disturbance structural complexity based on 
the diversity in composition and mode of death of CWD. For this metric, 
we considered CWD species + MOD as individual “species,” and calcu
lated Sh-DHI for each plot. To calculate volume of logs, we used the 
equation for a conic paraboloid (Fraver et al., 2007). To calculate vol
ume for uprooted stems, species-specific allometric equations were used 
(Woodall et al., 2011; Parker and Hart, 2014). To determine the average 
age of canopy P. echininata, extracted tree-ring samples were processed 
based on the methods outlined in Stokes and Smiley (1996). Samples 
were air dried, mounted with cells vertically aligned, and sanded to 
reveal cellular structure. Tree rings were then dated to the calendar year 
of formation with the aid of a stereozoom macroscope. Pith estimators 
were used to estimate tree age based on visible ring curvature when 
samples lacked pith (Villalba and Veblen, 1997). 

To quantify the composition and structure of residual trees, saplings, 
and seedlings, we calculated standard descriptors, species richness, and 
Shannon diversity. For trees, standard descriptors included density 
(stems ha−1), relative density (contribution to total tree density), 
dominance (basal area, m2ha−1), relative dominance (contribution to 
total basal area), and importance (mean of relative dominance and 
density). 

2.3.2. Classification of survival probability 
Traditionally, logistic regression is used to model tree mortality. 

However, logistic regression is sensitive to class imbalance (i.e., more 
live trees than dead trees). Therefore, to infer the drivers of individual- 
tree mortality, we applied a random forest machine-learning 
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classification algorithm with balanced classes, which has been shown to 
be more robust to problems with imbalanced data (Shearman et al. 
2019). Random forest is an adaptation of classification and regression 
trees, in which each tree casts a vote for each class (alive vs dead) based 
on randomly sampled predictor variables (Liaw and Wiener 2002). For 
each classification tree, a random set of samples and predictor variables 
is selected with replacement, and those not selected are termed “out-of- 
bag” (OOB) and utilized to evaluate error. However, when classes are 
severely imbalanced, the likelihood of selecting the minority class in the 
bootstrapped sample is low. Chen et al. (2004) proposed a balanced 
random forest algorithm, in which an equal number of observations 
from each class is sampled at each tree. We used the “randomforest” 
package in R to determine the individual and plot-level predictors that 
influenced individual-tree survival from a sample of 415 live trees and 
114 dead trees ≥ 15 cm dbh. 

Individual-tree predictor variables included taxonomic group, basal 
area (m2tree-1), distance to nearest neighbor (m), taxonomic group of 
nearest neighbor, and dominance. Dominance is a spatially-explicit 
competition metric that quantifies the diameter differentiation of a 
five tree neighborhood (Aguirre et al. 2003). Dominance is the propor
tion of the four nearest neighbors that are of a smaller diameter than the 
focal tree, and assumes five values from 0 to 1. To reduce edge bias in the 
calculation of dominance, the NN1 edge correction was applied. (Pom
merening and Stoyan 2006). Aggregated plot-level predictors included 
Shannon diversity, relative Pinus basal area (percent contribution to 
total plot basal area), mean age of trees within or in proximity to the 
plot, and the Clark and Evans index. The Clark and Evans index (Clark 

and Evans 1954) is a crude measure of aggregation of a point pattern, 
with values > 1 indicating random pattern and values < 1 indicating 
clustered pattern. 

We randomly selected 70 % of the data to train the model and 
withheld 30 % of the data for model validation (testing). We set the 
sampsize parameter to select the maximum number of dead trees from 
the training dataset (n = 85) for each classification tree (i.e., 85 trees 
from the live and dead classes were selected). The final model was 
hyper-tuned to optimize the number of trees grown at each split (ntree =
500) and number of variables chosen at each split (mtry = 3). These 
parameters were selected after fitting multiple models and selecting the 
model with the lowest OOB error and the greatest predictive perfor
mance. Model performance was evaluated by plotting the receiver 
operating characteristic curve, and subsequently calculating the area 
under the curve (AUC). The AUC provides an indication of the predictive 
ability of the model, with greater AUC values indicating enhanced dif
ferentiation in classification between live and dead trees (Hosmer and 
Lemesbow, 1980). Final model accuracy was determined by predicting 
survival of trees in the training dataset and calculating classification 
sensitivity and specificity. Sensitivity is the percentage of true positives 
(live trees) and specificity is the percentage of true negatives (dead 
trees). To determine the relative importance of predictor variables in the 
final model, we calculated mean decrease Gini, which quantifies the 
total decrease in node impurity averaged over all classification trees 
(Wang et al. 2016). Greater mean decrease Gini values for a given pre
dictor indicate greater importance. We created partial dependence plots 
to visualize how probability of survival was influenced by variability in 

Fig. 1. Fine-scale example of pixel-based classification scheme to classify canopy openings from true-color orthoimagery captured after a November 2018 
intermediate-severity wind disturbance in Savage Gulf State Natural Area, TN, USA. User-defined training samples were created for shadows, bare ground, and forest 
and classified into three categories: undisturbed forest, canopy openings, residual trees in openings using a support vector machine learning algorithm. 

J. Davis Goode et al.                                                                                                                                                                                                                           



Forest Ecology and Management 526 (2022) 120582

5

predictor variables over their distribution (e.g. visualize how probability 
of survival was influence by variability in tree basal area) when all other 
predictors are held constant. We constructed partial dependence plots 
for the three most important predictor variables (as determined by mean 
decrease Gini) with the package “pdp” in R (Greenwell 2017). 

2.3.3. Canopy gap detection 
To identify disturbance-created canopy openings at the forest scale, 

we performed a pixel-based image classification on high-resolution 
orthoimagery. We selected a 174 ha portion of SGNA that was of 
mature mixed Quercus-Pinus echinata composition and structure and was 
directly impacted by the 2018 wind event. Vexcel Imaging “Blue Sky” 
imagery (Vexcel Imaging 2022) was acquired from the Tennessee State 
government’s aerial imagery program. Images of the study site were 
captured 10 months after the disturbance event, between 18 and 28 
August 2019 with a Condor M1 4-band sensor mounted to a fixed wing 
aircraft (Vexcel Imaging 2022). These images were collected with a 
ground sampling distance of 20 cm and a horizontal and vertical accu
racy of 120 cm. All image post-processing (geometric and atmospheric 
corrections) was performed with the software UltraMap TE (Vexcel 
Imaging 2022) prior to retrieving the data. 

Image classification was conducted in ArcGIS Pro (ESRI 2022). To 
identify canopy openings, we used supervised, pixel-based classification 
of the true-color raster image. Support vector machine (SVM) learning 
was used classify the image based on user-defined training samples. SVM 
is a non-parametric classifier that is robust to pixel complexity in raster 
images (Tzotsos & Argialas, 2008), does not require a large number of 
training samples, and has been shown to classify images with a higher 
accuracy compared to other classification algorithms (Lawrence 2022). 
A training class schema was created with three classes based on the true- 
color raster: shadow (n = 150), barren (n = 150), and forest (n = 150). 
Shadows indicate a break in continuous canopy cover in which the 
canopy trees on the edge of the openings cast shadows into the openings. 
During image capture in August 2019 at 35.45◦ N and 85.62◦ W, the 
declination of the sun was ca. 13◦ N (NOAA Solar Position Calculator 
2022). Therefore, we were confident that shadows were evidence of 
canopy openings at date of image capture. 

The Image Classification Wizard in ArcGIS Pro was used to classify 
the raster image (Fig. 1). We selected supervised, pixel-based classifi
cation, with the classification schema of three classes (shadow, barren, 
forest) and 450 training samples (150 class−1), SVM as the classification 
algorithm, and the true-color raster as the image to be classified. We 
created a final stand-cover map with two classes: canopy openings 
(shadow + barren) and forest. Openings were classified as contiguous 
pixels classified as openings and > 50 m2, which is the most frequent 
minimum gap size found in the literature (e.g Hart and Kupfer 2011). We 
used a 200 m2 threshold to distinguish between large openings and small 
openings (single or multi-tree gaps, Hobi et al. 2015, Richards and Hart 
2011, Sefidi et al. 2011, Yamamoto 1995). We identified residual trees 
in openings as pixels > 6 m2 classified as forests and completely con
tained within pixels classified as openings. Accuracy assessment was 
conducted on the final classified image with the Accuracy Assessment 
tool in ArcGIS Pro. A stratified random sampling approach was used, 
with 100 points randomly distributed within each of the three classes. 
For each of the 300 points, the true-color image was used to determine if 
the point was located in shadow, barren, or forest class by an unbiased 
user. These data were compared to the classified image and a confusion 
matrix was produced to assess overall accuracy, user accuracy, producer 
accuracy, and the Kappa Index. 

To quantify the frequency, size, and shape irregularity of detected 
canopy openings, we used the package “landscapemetrics” in R (Hes
selbarth et al. 2019). This package is an adaptation of the commonly 
used FragStats landscape metrics toolbox (McGarigal et al. 2012). For all 
openings, small openings (<200 m2), and large openings (≥200 m2), we 
calculated landscape metrics to characterize opening heterogeneity 
across the forest. The metrics calculated for each class included: 1) 

number of openings, 2) mean area of openings, 3) mean perimeter of 
openings, 4) mean perimeter to area ratio, 5) mean shape complexity, 
and 6) mean distance to nearest opening. The shape complexity index 
(FRAC) increases with increased opening shape complexity, with values 
from 1 (perfect square) to 2 (irregular polygon). 

2.3.4. Spatial analyses of trees and canopy openings 
To determine disturbance-induced change in horizontal tree spatial 

patterns, we considered snag, snapped, and uproot locations combined 
with residual tree locations to reconstruct pre-disturbance tree spatial 
patterns. Because sampling plots were disjunct in space and circular in 
shape, we truncated and adjoined sampling plots to create a contiguous 
4 × 8 grid of 16 × 16 m square plots (Woodall and Graham 2004). In
dividual plot-level spatial point pattern analysis was not feasible 
because multiple plots had fewer than four residual trees, which would 
preclude meaningful results. We determined the maximum size of a 
square that occurs completely within the circular sampling plot and 
excluded all trees and CWD that occurred between the boundary of the 
square plot and the border of the circular plot. The location of each 
square plot was randomized and placed into a 4 × 8 m contiguous grid. 

We used a spatial point pattern approach to quantify spatial patterns 
of reconstructed pre-disturbance trees and post-disturbance residuals to 
determine if trees or residuals were clustered, random, or dispersed in 
horizontal space. We used the pair correlation function g(r) individually 
on both pre-disturbance and post-disturbance trees. This function is a 
second-order, non-cumulative modification of the commonly used Rip
ley’s K function (Stoyan and Stoyan 1996). The g(r) quantifies the 
number of points within annuli at multiple distances (r) relative to ex
pected randomly distributed points (Baddeley et al., 2015). To test for 
significant spatial clustering or dispersion, we contrasted observed data 
to the upper and lower bounds of confidence envelopes. The 95 % 
confidence envelopes were constructed from 99 Monte Carlo simula
tions under the assumption of complete spatial randomness. The uni
variate spatial pattern was defined as clumped, random, or dispersed if 
the pattern was above, within, or below the confidence envelope, 
respectively, at distance (d). A goodness-of-fit test for the null hypoth
esis was also performed. The g(r) was performed at a 1 m lag distance 
and did not exceed half the minimum length of the grid (32 m). To ac
count for edge effects, an isotropic edge correction was applied. Uni
variate point pattern analyses were performed with the package 
“spatstat” in R (Baddeley and Turner, 2005). Because individual plots 
were truncated and combined (Woodall and Graham 2004), results from 
this point pattern analysis approach should be interpreted with caution 
as the method used here is not as robust as if it were applied to a large 
contiguous plot (Gray et al. 2018). 

To quantify the spatial distribution of detected canopy openings, we 
used a modified point pattern analysis approach for objects with finite 
size and real shape with the grid-based software Programita (Wiegand 
and Moloney, 2014). We reclassified the stand-cover raster from 0.2 m 
pixel size to 5 m pixels for spatial analyses. If the pixel directly adjacent 
to a gap pixel was also classified as gap, the software grouped these 
pixels as one contiguous canopy opening. This process was crucial for 
grouping pixels as one opening unit for the randomized simulation 
procedure. To avoid the biases introduced from the cumulative nature of 
Ripley’s K, we used the non-cumulative O-ring statistic to quantify the 
patterns of openings. We quantified the spatial patterns of all openings, 
small openings (<200 m2), and large openings (≥200 m2). We compared 
the spatial patterns of detected openings to confidence envelopes 
simulated 99 times under the assumption of complete spatial 
randomness. 
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3. Results 

3.1. Composition, structure, and spatial patterns of woody plant survival 
and mortality 

We documented 5.11 m2/ha of standing CWD and 103.73 m3 ha−1 of 
downed decay class I and II CWD (Table 1). Plot-level impacts were 
variable, ranging from 0.98 m2 plot−1 (19.67 m2/ha) standing CWD to 
no standing CWD. Downed CWD volume was similarly variable across 
plots, ranging from 11.18 m3 plot−1 (155.20 m3 ha−1) to 0.75 m3 plot−1 

(23.00 m3 ha−1). Mean Sh–DDI was 1.51 ± 0.08 (SE), with a plot-level 

range of 2.41–0.63. At the species level, Pinus virginiana had most 
basal area lost (1.96 m2/ha standing CWD), followed by Q. coccinea 
(1.30 m2/ha) and Q. alba (Table 1; 0.69 m2/ha). Quercus coccinea had 
the highest volume of downed CWD (25.83 m3 ha−1), followed by 
P. virginiana (24.63 m3 ha−1) and P. echinata (16.09 m3 ha−1). We 
documented a density of 62 standing CWD individuals ha−1 and 219 
downed CWD pieces ha−1. Mean plot-level canopy openness was 35.5 % 
± 1.0 % (SE), with a plot-level range of 25.3–47.4 %. 

Residual tree basal area was 26.8 m2/ha and density was 945 trees 
ha−1 (Table 2). Plot-level residual basal area was variable, ranging from 
1.63 m2 plot−1 (32.60 m2ha−1) to 0.61 m2 plot−1 (12.23 m2/ha). Of the 
945 residual trees ha−1, 559 were subcanopy A. rubrum, O. arboreum, 
and I. opaca. Of the residual canopy trees, we documented 132 residual 
Pinus individuals ha−1 and 118 Quercus individuals ha−1. Residual tree 
species richness was 25 and Shannon diversity was 1.73. We docu
mented 1632 saplings ha−1 and 87,703 seedlings ha−1 (Table 3). In the 
sapling layer, A. rubrum was the most abundant species, representing 52 
% of saplings, followed by I. opaca (22 %) and O. arboreum (12 %). In the 
seedling layer, A. rubrum was most the abundant species, representing 
46 % of seedlings, followed by Vaccinium spp. (12 %) and Q. stellata (5 
%). Notably, P. echinata was absent in the sapling layer and minimally 
present in the seedling layer (Table 3; 1 % of seedlings). Species richness 
was 26 for saplings and 35 for seedlings. Shannon diversity was 1.22 for 
saplings and 1.59 for seedlings. The wind disturbance marginally 
increased mean tree diameter from 34.3 cm ± 10.6 (SE) pre-disturbance 
to 35.6 ± 9.2 (SE) post-disturbance. The spatial pattern of pre- 
disturbance trees (residual trees + snaps, snags, and uproots) was 
random (Fig. 2). Similarly, the spatial pattern of residual trees was 
random, which indicated that the disturbance had no effects on the 
spatial pattern of canopy trees. 

3.2. Individual and neighborhood effects on survival probability 

The random forest classification algorithm provided insight on the 
individual-tree and plot-level characteristics that influenced probability 
of survival. The final model had an OOB estimate of error rate of 23.7 %, 
live tree classification error of 19 %, dead tree classification error of 34 
%, and AUC of 0.77. When the model was used to predict survival of the 
withheld test data, accuracy was 78 % (p = 0.12), Kappa index was 0.49, 
sensitivity was 0.85, and specificity was 0.65. The most importance 

Table 1 
Basal area (standing snags and snapped stems; m2ha−1), relative basal area (%), 
volume (downed logs and uproots; m3ha−1), and relative volume (%) for all 
coarse woody debris > 10 cm diameter in a wind-disturbed forest at Savage Gulf 
State Natural Area, TN, USA. Species are ranked by relative basal area.   

Basal area 
(m2ha1) 

Relative 
basal area 
(%) 

Volume 
(m3ha1) 

Relative 
volume (%) 

Pinus virginiana Mill.  1.96  38.4  24.63  23.7 
Quercus 

coccinea Münchh.  
1.30  25.5  25.58  24.7 

Quercus alba L.  0.69  13.6  5.17  5.0 
Pinus echinata Mill.  0.47  9.2  16.09  15.5 
Quercus rubra L.  0.35  6.8  15.90  15.3 
Quercus spp.  0.12  2.4  0.30  0.3 
Oxydendrum 

arboreum (L.) DC.  
0.07  1.3  1.36  1.3 

Liriodendron 
tulipifera L.  

0.06  1.2  0.06  0.1 

Nyssa 
sylvatica Marshall  

0.05  0.9  0.44  0.4 

Carya tomentosa L.  0.02  0.4  0.21  0.2 
Acer rubrum L.  0.01  0.2  1.09  1.0 
Pinus spp.  0.00  0.0  8.69  8.4 
Quercus velutina Lam.  0.00  0.0  2.16  2.1 
Diospyros 

virginiana L.  
0.00  0.0  1.21  1.2 

Hardwood spp.  0.00  0.0  0.83  0.8 
Sassafras albidum 

(Nutt.) Nees  
0.00  0.0  0.02  0.0 

TOTALS  5.11  100.0  103.73  100.0  

Table 2 
Dominance (basal area; m2ha−1), relative dominance (%), density (stems ha−1), relative density (%), and importance (average of relative dominance and importance) 
for all living trees ≥ 5 cm dbh in a wind-disturbed forest at Savage Gulf State Natural Area, TN, USA. Species are ranked by importance.  

Species Dominance (m2ha¡1) Rel Dom (%) Density (stems ha¡1) Rel Den (%) Importance (%) 

Acer rubrum L.  2.95 12 264 30  20.7 
Pinus echinata Mill.  7.39 29 73 8  18.7 
Oxydendrum arboreum (L.) DC.  3.08 12 193 22  16.9 
Pinus virginiana Mill.  4.16 16 50 6  11.0 
Quercus alba L.  2.56 10 79 9  9.5 
Quercus coccinea Münchh.  1.88 7 13 1  4.4 
Ilex opaca Aiton  0.24 1 67 8  4.3 
Nyssa sylvatica Marshall  0.31 1 59 7  3.9 
Carya tomentosa L.  0.68 3 39 4  3.5 
Quercus rubra L.  0.65 3 6 1  1.6 
Quercus velutina Lam.  0.51 2 6 1  1.4 
Quercus stellata Wangenh.  0.33 1 7 1  1.0 
Diospyros virginiana L.  0.10 0 9 1  0.7 
Sassafras albidum (Nutt.) Nees  0.07 0 6 1  0.5 
Liriodendron tulipifera L.  0.13 1 4 0  0.5 
Quercus falcata Michx.  0.17 1 2 0  0.4 
Fagus grandifolia Ehrh.  0.03 0 4 0  0.3 
Prunus serotina Ehrh.  0.02 0 2 0  0.2 
Carya glabra (Mill.) Sweet  0.02 0 2 0  0.2 
Tsuga canadensis (L.) Carrière  0.04 0 1 0  0.1 
Magnolia acuminata (L.) L.  0.01 0 1 0  0.1 
Cornus florida L.  0.00 0 1 0  0.1 
Crataegus spp.  0.00 0 1 0  0.0 
TOTAL  25.33 100 889.06 100  100.0  
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predictor of survival was individual-tree basal area (MDG = 17.0; 
Fig. 3), followed by taxa (MDG = 16.6), and distance to nearest neighbor 
(MDG = 14.1). Overall, individual-tree predictor variables exhibited 
greater influence on survival probability than did aggregate plot-level 
variables (Fig. 3). The partial dependence plot of the influence of taxa 
on survival probability revealed that Acer spp. and O. arboreum were 
most likely to survive (75 % and 72 %, respectively; Fig. 4), and 
P. echinata and P. virginiana were least likely to survive (59 % and 46 %, 
respectively) the wind event. Nearly all taxa were more likely to survive 
than die (i.e., survival probability > 50 %) except P. virginiana (46 %, 
Fig. 4). The relationship revealed in the partial dependence plots of basal 
area and distance to nearest neighbor was non-linear, with little 
discernable pattern (Fig. 5). Trees with less basal area (e.g. smaller 

diameter trees) were more likely to survive from 0.02 m2 to 0.05 m2, 
with decreased survival probability from 0.05 m2 to 0.09 m2, and 
consistent survival probability of ca. 60 % with basal areas > 0.2 m2 

(Fig. 5). Trees with distance to nearest neighbor > 7 m were less likely to 
survive than trees with distance to nearest neighbor < 6 m, but this 
relationship was tenuous (Fig. 6). 

3.3. Frequency, size, shape, and spatial distribution of detected canopy 
openings 

The producer accuracy of the pixel-based supervised classification 
algorithm was 0.75 for forest pixels, 1.00 for bare ground pixels, and 
0.89 for shadow pixels, and the Kappa index was 0.79. In the wind- 
disturbed mixed Quercus-Pinus echinata forest at SGNA, the classifica
tion algorithm identified a total of 1183 canopy openings (ca. 7 openings 
ha−1; Fig. 7) that ranged in size from 50–7300 m2 (Fig. 8). Based on the 
200 m2 canopy opening-size threshold, we documented 1047 small 
openings < 200 m2 (ca. 6 openings ha−1) and 136 large openings ≥ 200 
m2 (<1 opening ha−1). The canopy openings-size frequency distribution 
exhibited a reverse-J pattern, with a higher frequency of small openings 
(50–150 m2) and fewer large openings (Fig. 8). Specifically, we docu
mented ca. 2 openings ha−1 in the 50–100 m2 bin, 2 openings ha−1 in the 
100–150 m2 bin, and ca. 1 opening ha−1 in the 150–200 m bin. The 
remaining size class bins had < 0.5 openings ha−1. 

Mean area was 204 m2 ± 355 (SD) for all openings, 135 m2 ± 59 
(SD) for small openings, and 734 m2 ± 868 (SD) for large openings 
(Fig. 9). Mean perimeter was 153 m ± 206 (SD) for all openings, 109 m 
± 45 (SD) for small openings, and 469 m ± 454 (SD) for large openings 
(Fig. 9). The largest detected opening perimeter was 3084 m and the 
smallest detected opening perimeter was 407 m. The mean perimeter 
area ratio was 0.82 ± 0.17 for all openings, 0.83 ± 0.17 for small 
openings, and 0.68 ± 0.12 for large openings (Fig. 9). The greater mean 
perimeter-area ratio of small openings compared to large openings 
indicated that, based on this shape complexity metric, small openings 
were more complex in shape. However, the shape complexity index was 
1.35 ± 0.09 (SD) for all openings, 1.34 ± 0.08 (SD) for small openings, 
and 1.43 ± 0.07 (SD) for large openings (Fig. 9). 

The general spatial pattern of canopy openings was significantly 
dispersed at short distances, and clustered at intermediate and greater 
distances (Fig. 10). This general pattern occurred for all openings and 
large openings, but small openings were randomly spatially distributed 
at greater distances. Specifically, all openings were significantly 
dispersed from 0 to 10 m and significantly clustered at distances from 20 
to 250 m. Small openings exhibited a similar spatial distribution across 
the forest, with a significantly dispersed pattern documented from 0 to 
10 m and a significantly clustered pattern from 30 to 100 m. Small 
openings were randomly distributed at distances > 100 m. For large 
openings, a significantly clustered spatial pattern was documented at 
distances from 10 to 120 m, followed by a random pattern from 120 to 
200 m, and clustered pattern from 210 to 240 m. 

4. Discussion 

4.1. Composition, structure, and spatial patterns of woody plant mortality 
and survival 

Intermediate-severity canopy disturbance often results in highly 
variable damage patterns as these events may create a high frequency of 
localized openings, few large openings, or some combination of canopy 
openings across a wide range of sizes (Hart and Kleinman 2018). We 
contend that ISD events are more frequent than commonly understood 
and may be more influential drivers of forest ecosystem change 
compared to gap-scale and stand-replacing disturbance (Nagel et al., 
2017; Hart and Kleinman 2018). We noted that forest damage variability 
was high, with some portions of the disturbed forest exhibiting low-to 
moderate severity tree damage (i.e., few unique dead species and low 

Table 3 
Density (stems ha−1) and relative density (%) of seedlings (woody plants < 1 m 
height) and saplings (woody plants ≥ 1 m height; < 5 cm dbh) in a wind- 
disturbed forest at Savage Gulf State Natural Area, TN, USA. Species are 
ranked by relative density.  

Species Seedlings 
density 
(stems ha¡1) 

Rel 
Den 
(%) 

Saplings 
density 
(stems ha¡1) 

Rel 
Den 
(%) 

Acer rubrum L. 40359.4 46.0 841.7 51.6 
Ilex opaca Aiton 2796.9 3.2 353.3 21.6 
Oxydendrum arboreum 

(L.) DC. 
625.0 0.7 188.3 11.5 

Vaccinium 
elliottii Chapm. 

6703.1 7.6 – – 

Quercus rubra L. 5078.1 5.8 – – 
Quercus 

coccinea Münchh. 
4390.6 5.0 2.5 0.2 

Nyssa sylvatica Marshall 1421.9 1.6 76.7 4.7 
Quercus alba L. 3875.0 4.4 22.5 1.4 
Quercus velutina Lam. 3703.1 4.2 6.7 0.4 
Sassafras albidum (Nutt.) 

Nees 
3562.5 4.1 20.8 1.3 

Vaccinium stamineum L. 2906.3 3.3 23.3 1.4 
Rhododendron 

periclymenoides 
(Michx.) Shinners 

2906.3 3.3 0.8 0.1 

Liriodendron tulipifera L. 2250.0 2.6 4.2 0.3 
Pinus virginiana Mill. 1375.0 1.6 – – 
Diospyros virginiana L. 109.4 0.1 25.0 1.5 
Pinus echinata Mill. 953.1 1.1 – – 
Vaccinium 

arboreum Marshall 
953.1 1.1 3.3 0.2 

Ilex montana Torr. & A. 
Gray ex A. Gray 

937.5 1.1 12.5 0.8 

Cornus florida L. 125.0 0.1 16.7 1.0 
Carya tomentosa L. 718.8 0.8 14.2 0.9 
Prunus serotina Ehrh. 515.6 0.6 0.8 0.1 
Fagus grandifolia Ehrh. – – 5.0 0.3 
Asimina triloba (L.) 

Dunal 
234.4 0.3 – – 

Crataegus spp. 203.1 0.2 3.3 0.1 
Quercus falcata Michx. 171.9 0.2 – – 
Ostrya virginiana (Mill.) 

K. Koch 
109.4 0.1 2.5 0.2 

Castanea dentata 
(Marshall) Borkh. 

46.9 0.1 2.5 0.2 

Quercus montana Willd. 125.0 0.1 – – 
Carya glabra (Mill.) 

Sweet 
78.1 0.1 1.7 0.1 

Quercus 
stellata Wangenh. 

15.6 0.0 1.7 0.1 

Magnolia acuminata (L.) 
L. 

– – 1.7 0.1 

Hamamelis virginiana L. 46.9 0.1 – – 
Prunus 

americana Marshall 
31.3 0.0 0.8 0.1 

Carpinus 
caroliniana Walter 

31.3 0.0 – – 

Callicarpa americana L. 15.6 0.0 – – 
TOTALS 87375.0 100.0 1632.5 100.0  
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diversity in mode of death), and some portions of the forest exhibiting 
high-severity tree damage (i.e., large number of unique dead species and 
high diversity in mode of death; Peterson 2019). The severe thunder
storm that impacted the SGNA produced strong downbursts that 

damaged a relatively large area (NOAA Storm Events Database 2022). 
Imbedded within downbursts are microbursts, which are discreet high 
severity wind gusts that result in concentrated patches of tree mortality 
(Peterson et al., 2016). Similar patterns of canopy tree damage were 

Fig. 2. Univariate pair correlation function g 
(r) for reconstructed pre-disturbance trees 
(top panel) and post-disturbance residual 
trees (bottom panel) following a November 
2018 intermediate-severity wind disturbance 
in Savage Gulf State Natural Area, TN, USA. 
Shaded areas represent a 95 % confidence 
envelope (99 permutations excluding the five 
highest and lowest values) simulated under 
the assumption of complete spatial random
ness (CSR). The red line is observed values. 
Values above the gray shaded area indicate 
significant (p < 0.05) clustering (i.e., trees 
were closer in space than expected when 
compared to tree locations simulated under 
the assumption of CSR), and values below 
the shaded area represent significant disper
sion. Goodness-of-fit (GoF) for each g(r) is 
reported in the top right of each panel. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 3. Random forest classification algorithm variable importance rankings for the influence of individual-tree metrics (a) and neighborhood characteristics (b) on 
individual-tree survival probability following a November 2018 intermediate-severity wind disturbance in Savage Gulf State Natural Area, TN, USA. Mean decrease 
Gini values indicate the total decrease in node impurity averaged over all classification trees. Greater mean decrease Gini values for a given predictor indicate greater 
importance. The Clark and Evans index is a crude measure of aggregation of a point pattern, with values > 1 indicating random pattern and values < 1 indicating 
clustered pattern. Dominance is a spatially-explicit competition metric that quantifies the diameter differentiation of a five tree neighborhood. 
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documented from hurricane-produced downbursts in upland Quercus 
forests in North Carolina (Greenberg and McNab 1998), in which the 
damage was associated with multiple discreet downburst events pro
duced from the same storm system. Similarly, disturbance-induced tree 
mortality was documented in an upland Quercus stand in Alabama 
following a low-intensity EF-1 tornado (Cox et al., 2016), in which large 
stems were disproportionately removed from the canopy in the lightly 
and moderately disturbed portions of the stand. 

In damaged portions of the forest, basal area lost and CWD volume 
was highly variable. These findings corresponded to other investigations 
of intermediate-severity canopy disturbances in temperate forests of the 
eastern United States (Woods 2004; Hanson and Lorimer 2007; Busing 

et al., 2008; Holzmueller et al. 2012; Trammell et al., 2017). The CWD 
volume ha−1 documented after intermediate-severity disturbance was 
well above the background CWD inputs reported on relatively undis
turbed sites on the Cumberland Plateau (Muller and Liu 1991). We 
documented relatively high residual basal area (26.8 m2ha−1) and tree 
density (945 stems ha−1), which could be attributed to the relatively 
high basal area and tree density of the pre-disturbance forest. But similar 
to CWD metrics discussed above, we documented a wide range of 
variability in plot-level residual basal area and tree density. Canopy 
openness was also highly variable, which was likely influenced by 
midstory tree and sapling density, as hemispherical photographs were 
captured from 1 m height. Although the wind-disturbance removed 

Fig. 4. Partial dependence plot estimating the probability of survival as influenced by tree taxon following a November 2018 intermediate-severity wind disturbance 
in Savage Gulf State Natural Area, TN, USA. Partial dependence plot depicts the influence of tree taxon on the likelihood of tree survival based on balanced random 
forest classification algorithm when all other predictor variables are held constant. 

Fig. 5. Partial dependence plot estimating the probability of survival as influenced by individual-tree basal area (m2) following a November 2018 intermediate- 
severity wind disturbance in Savage Gulf State Natural Area, TN, USA. Partial dependence plot depicts the influence of basal area (m2) on the likelihood of tree 
survival based on balanced random forest classification algorithm when all other predictor variables are held constant. 
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Fig. 6. Partial dependence plot estimating the probability of survival as influenced by distance to nearest neighbor (m) following a November 2018 intermediate- 
severity wind disturbance in Savage Gulf State Natural Area, TN, USA. Partial dependence plot depicts the influence distance to nearest neighbor (m) on the 
likelihood of tree survival based on balanced random forest classification algorithm when all other predictor variables are held constant. 

Fig. 7. Study area map (174 ha) showing the distribution of detected small (yellow; < 200 m2) and large (blue; ≥ 200 m2) canopy openings following a November 
2018 intermediate-severity wind disturbance in Savage Gulf State Natural Area, TN, USA. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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mature canopy trees, most potential understory light was captured by 
the dense midstory of shade-tolerant taxa (Hanson and Lorimer, 2007; 
Cowden et al., 2014; Meigs and Keeton, 2018). 

Surviving trees exhibited a significantly random spatial pattern 
through the damaged portions of the forest. Pre-disturbance canopy tree 
locations were spatially random, and the canopy disturbance did not 
alter this spatial pattern. Although species, neighborhood, and site- 
specific variables influence patterns of canopy tree mortality, ISD has 
been found to result in random horizontal spatial patterns of surviving 
individuals (Boutet and Weishampel, 2003; Stueve et al., 2011). We 
suspect that with increased disturbance severity, spatial patterns of re
sidual trees would likely become either aggregated or dispersed 
depending on the canopy disturbance mechanism. For example, high 
severity, catastrophic wind disturbance may result in clustered spatial 
patterns of mortality (Foster and Boose 1992; Cannon et al., 2016). Bi
otic disturbance agents (e.g. insects) may results in dispersed patterns of 
mortality, but these patterns may manifest at different spatial scales 
across neighborhoods, stands, and forests (Frelich and Reich 1999; 
Woods 2004). However, the documented random spatial patterns could 
be a function of truncating and combining individual circular plots, 
which has been found to result in lack of spatial clustering or dispersion 
in other studies (see Gray et al. 2021). 

4.2. Individual and neighborhood effects on survival probability 

The RF classifier identified the most influential individual-tree and 
site characteristics on individual-tree survival. Taxon was an influential 
predictor of survival, which was driven by the diversity of life history 
strategies and functional traits of documented taxa. Specifically, mid
story shade-tolerant A. rubrum and O. arboreum were more likely to 
survive based on subcanopy location in the vertical strata. Acer rubrum 
and O. arboreum are commonly abundant in the midstory of upland 
Quercus and Quercus-Pinus stands (Hart et al. 2012; Vander Yacht et al., 
2017). Survival of these species was most likely associated with canopy 
position, diameter, and buffering effects from canopy trees (Greenberg 
2021). These species were more likely buffered from the wind damage 
by the overtopping canopy stratum. Midstory stems are not typically 
damaged directly by wind, but by the falling crowns of canopy trees 
(Brokaw 1985), or the entanglement of root networks from neighboring 
uprooted canopy stems. 

We found a negative relationship between individual-tree basal area 
and probability of survival. This finding is congruent with a robust 

literature on the relationship between tree size and mortality (Peterson 
et al., 2016; Salas-Eljatib and Weiskittel, 2020). Tree diameter is posi
tively related to tree height, and trees situated in higher canopy strata 
are exposed to greater wind speeds. The documented basal area-survival 
relationship in our study revealed a peak probability of survival at small 
basal areas (i.e., small diameters), which is a commonly reported trend 
in the literature (e.g. Everham and Brokaw, 1996; White et al., 2015). 
The nadir of survival probability occurred at basal areas of 0.09–0.11 
m2, and plateaued at basal areas > 0.14 m2 (ca. 42 cm dbh). Although 
smaller individuals were more likely to survive, the range in survival 
probability was < 10 % across all basal areas. We documented a weak, 
non-linear relationship between distance to nearest neighbor and sur
vival probability, although this finding may be confounded by edge ef
fects. Few studies have examined spatially-explicit neighborhood effects 
on tree survival probability (Peterson and Cannon 2021), such as dis
tance to nearest neighbor (but see Gonzalez-Akre et al., 2016; Hülsmann 
et al. 2018). The importance of spatially-explicit, neighborhood-scale 
predictor variables may aid the predictive ability of windthrow sus
ceptibility models. 

We found that individual-tree characteristics (e.g. basal area, taxa) 
were more influential on survival than plot-level characteristics (Bakaj 
et al. 2016). In order of importance, basal area, taxa, and distance to 
nearest neighbor exerted the greatest influence on tree survival. The 
plot-level variables selected were hypothesized to be more influential on 
survival, but these relationships were tenuous and explained relatively 
little variance compared to individual-tree predictors. Each of the plot- 
level predictors had a similar MDG (range 6.1–10.0). Individual trees on 
plots with greater Shannon diversity were marginally more likely to 
survive. A similar pattern was documented with plot-level relative Pinus 
spp. basal area and mean age. Mixed-species stands have been hypoth
esized to be more resistant to disturbance (Griess and Knoke, 2011; 
Panayotov et al., 2011; Kabrick et al., 2017) and our results provide 
some, albeit weak, support for this hypothesis. For example, we expect 
that individual trees on plots with greater Pinus spp. basal area or tree- 
level Shannon diversity would experience marginally greater resistance 
to mortality from a strong wind event. Our classification algorithm 
confirmed this hypothesis, although these weak relationships were non- 
linear. Future research should explicitly test the hypothesis that man
agement for both hardwoods and softwoods does indeed enhance 
ecosystem resilience and resistance to disturbance, including wind 
events. Although we did document this pattern, windthrow resistance in 
this Quercus-P. echinata stand was more so a function of individual-tree 

Fig. 8. Canopy opening size-frequency distribution of detected canopy openings following a November 2018 intermediate-severity wind disturbance in Savage Gulf 
State Natural Area, TN, USA. 
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characteristics and less so of neighborhood conditions. However, our 
analysis of individual-tree mortality was among the few to incorporate 
both individual-tree characteristics and spatially-explicit neighborhood 
conditions (Peterson and Cannon 2021). We suggest that future studies 
incorporate abiotic site conditions as windthrow susceptibility predictor 
variables, such as soil depth, underlying geology, and microtopography. 

4.3. Frequency, size, shape, and spatial patterns of detected canopy 
openings 

We detected many small canopy openings and frequency decreased 
with increased opening size. These results conform to gap size-frequency 
distributions documented in several other intermediate-severity wind 
disturbance studies of tornados in P. palutris stands (Cannon et al., 2016) 
and Quercus-Carya stands (Rebertus and Meier 2001), and severe 
thunderstorm winds in northern hardwood stands (Evans et al. 2007), 
among others (see Foster and Boose 1992; Curzon and Keeton 2010; 
Panayotov et al. 2011). These patterns are hypothesized to be a result of 
variable disturbance intensity. The intensity of wind events is often 
relatively low over the extent of the atmospheric disturbance, and high- 
intensity sub-events are imbedded over smaller areas (e.g. microbursts 
in large thunderstorm systems). Furthermore, storm intensity is not al
ways related to damage severity (Peterson 2000) as abiotic factors such 
as topographic features (Cannon et al., 2016), tree structure and 
morphological traits (e.g. Brisson 2001), and landscape characteristics 
(e.g. distance to edge, Stueve et al., 2011) influence storm-related 
damage. 

Detected canopy openings ranged in size from 50–7300 m2. This is a 
smaller range of canopy opening sizes than what some other studies 
have reported after hurricane (Boutet and Weishampel, 2003; McNab 
et al., 2004; Busing et al., 2008) and tornado disturbances (Peterson 
et al. 2016; Rebertus and Meier 2001). We found that larger openings 
had a greater shape complexity (i.e., less square), but smaller openings 
had a greater mean perimeter-area ratio (i.e., more edge length). 
However, perimeter-area ratios were less than those reported from 
canopy gap analyses in mature Mediterranean Fagus stands (Solano 
et al., 2022), which could indicate the canopy opening shapes are more 
complex in older stands when analyzed across a broader temporal scale. 
Therefore, both large and small openings exhibited complex shapes and 
the discrepancy between metrics was likely a function of the pixel-based 
classification. Structural heterogeneity may be enhanced by openings 
that exhibit high shape complexity or perimeter-area ratios (Canham 
et al., 1994). We suspect that stands with high canopy tree species 
richness and a wide range of canopy tree size classes favor greater shape 
complexity and perimeter-area ratio of canopy openings. Although our 
study design did not permit testing of this potential relationship, we 
hypothesize that damage diversity is positively related to canopy 
opening shape complexity. 

Large canopy openings are one component required for establish
ment and recruitment P. echinata (Goode et al. 2021), and the return 
interval of ISD events is often shorter than the lifespan of most canopy 
trees. We found that larger openings (i.e., those ≥ 200 m2) were spatially 
clustered within the forest studied here at distances of 10–120 and 
210–240 m. The spatial pattern of large openings was likely a function of 
the wind event, as microbursts may result in clustered canopy openings 
(Hjelmfelt et al., 2010; Gospodinov et al., 2015), and these patterns have 
been documented in many forest types and across different disturbance 
agents. Van der Meer and Bongers (1996) found clustered patterns of 
small-canopy gaps around large gaps in tropical forests, which was 
explained by site factors and wind exposure. In subtropical forests of 
China, Liu et al. (2020) found that canopy gaps following ice storm 
damage were clustered at distances > 70 m. Curzon and Keeton (2010) 
found clustering of canopy gaps in Tsuga canadensis- northern hardwood 
stands and McNab et al. (2004) found clusters of large canopy openings 
following hurricane disturbance in stands of the Appalachian Highlands. 
In addition to storm-related characteristics, a range of biophysical site 
conditions may also explain the underlying mechanisms of opening 
patterns including topography, soil conditions or neighborhood effects 
(Poorter et al., 1994). 

4.4. Management implications 

Our findings provide quantitative information on natural canopy 

Fig. 9. Boxplots of canopy opening metrics calculated with the “land
scapemetrics” package in R for all openings, small openings (<200 m2), and 
large openings (≥200 m2). Distance to nearest opening is the mean edge-to- 
edge distance between openings in meters. Shape complexity is a scale- 
independent, standardized metric based on the perimeter and area of open
ings, with values ranging from 1 (least complex shape) to 2 (most complex 
shape). Canopy openings were detected from orthoimagery using remote 
sensing techniques following a November 2018 intermediate-severity wind 
disturbance in Savage Gulf State Natural Area, TN, USA. 
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disturbances in Quercus-Pinus mixedwoods and can be used to inform 
silvicultural systems that emulate natural disturbance and development 
patterns that sustain mixedwood forests. We found individual canopy 
openings were typically 50–7500 m2 in size and all canopy openings 
were typically irregular in shape. For single-tree gaps (i.e., openings of 
< 200 m2), we documented a frequency of five openings ha−1, and these 
openings were spatially clustered at distances of 30–100 m and 
randomly distributed at distances > 100 m. Large openings of over 1000 
m2 had a frequency of 0.14 ha−1. On average, there was one canopy 
opening of at least 200 m2 for every 0.6 ha and openings of at least 200 
m2 were spatially clustered from 10 to 120 m and 210–240 m. Although 
large openings on average occurred at a frequency of one per 0.6 ha, 
they were not uniformly distributed across the forest; rather, they were 
concentrated in patches (i.e., a clustered group of canopy openings). 
These concentrated patches of canopy openings could occur as few 
relatively large openings or up to five intermediate-sized openings. 
Spatial analysis of canopy openings indicated that the edge-to-edge 

distance between them was significantly less than expected when 
compared to openings simulated under the assumption of complete 
spatial randomness. Within canopy openings, ca. 50 % of trees ≥ 15 cm 
dbh survived, and these trees were randomly distributed in space (i.e., 
not aggregated or dispersed). 

In Quercus-Pinus mixedwood stands, the perpetuation of the Pinus 
component is paramount (Kenefic et al. 2021). Silvicultural systems that 
promote Pinus regeneration and are aligned with the natural patterns of 
canopy disturbance documented here would include patch seedtree 
harvests with reserves or irregular shelterwood harvests with an 
emphasis on the retention of sexually mature P. echinata, or patch 
clearcut harvests with reserves in neighborhoods that lack mature Pinus 
individuals, but where abiotic conditions indicate Pinus may be able to 
regenerate naturally and be competitive (e.g., sandy, nutrient poor 
sites). In addition to Pinus stems, reserve trees in openings could be those 
that produce fire-facilitating fuels to maintain desired fire effects 
throughout the rotation. We recommend that harvest-created openings 

Fig. 10. Univariate O-ring function O(r) for 
all openings (top panel), small openings 
(<200 m2; middle panel) and large openings 
(≥200 m2; bottom panel) following a 
November 2018 intermediate-severity wind 
disturbance in Savage Gulf State Natural 
Area, TN, USA. Point-pattern analysis was 
adapted for objects with finite size and real 
shape (i.e., canopy openings). Shaded areas 
represent a 95 % confidence envelope (99 
permutations excluding the five highest and 
lowest values) simulated under the assump
tion of complete spatial randomness (CSR). 
The red line is observed values. Values above 
the gray shaded area indicate significant (p 
< 0.05) clustering (i.e., openings were closer 
in space than expected when compared to 
opening locations simulated under the 
assumption of CSR), and values below the 
shaded area represent significant dispersion. 
Goodness-of-fit (GOF) for each O(r) is re
ported in the top right of each panel. (For 
interpretation of the references to color in 
this figure legend, the reader is referred to 
the web version of this article.)   
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be up to 0.75 ha and be clustered in groups of 2–5 openings with an 
edge-to-edge distance between openings of < 200 m. We acknowledge 
that canopy disturbances must be coordinated in conjunction with 
prescribed fire and possibly other treatments, such as chemical and 
mechanical competition control, to regenerate and maintain P. echinata. 
Outplanting of P. echinata in large harvest-created openings may be 
necessary even when mature P. echinata trees are present to supplement 
natural regeneration and would of course be required in openings that 
lacked a Pinus seed source. Regardless of the approach used, we 
recommend entries be spatially clustered and variable in size to emulate 
the patterns of the natural disturbance documented here. 
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