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ARTICLE INFO ABSTRACT

Keywords: Accurately predicting pedestrian travel times is critically valuable in emergency response, wildland firefighting,
GIS disaster management, law enforcement, and urban planning. However, the relationship between pedestrian
GPS . movement and landscape conditions is highly variable between individuals, making it difficult to estimate how
Ei::z;rzzle long it will take broad populations to get from one location to another on foot. Although functions exist for
Travel time predicting travel rates, they typically oversimplify the inherent variability of pedestrian travel by assuming the
Least-cost path effects of landscapes on movement are universal. In this study, we present an approach for predicting the
variability in pedestrian travel rates and times using a large, crowdsourced database of GPS tracks. Acquired
from the outdoor recreation website AllTrails, these tracks represent nearly 2000 hikes on a diverse range of
trails in Utah and California, USA. We model travel rates as a function of the slope of the terrain by generating a
series of non-linear percentile models from the 2.5 th to the 97.5 th by 2.5 percentiles. The 50 th percentile
model, representing the hiking speed of the typical individual, demonstrates marked improvement over existing
slope-travel rate functions when compared to an independent test dataset. Our results demonstrate novel ca-
pacity to estimate travel time variability, with modeled percentiles being able to predict actual percentiles with
less than 10% error. Travel rate functions can also be applied to least cost path analysis to provide variability in

travel times.

1. Introduction

Pedestrian travel times, or the time it takes individuals to travel on
foot between locations, are used across a diverse array of professional
and academic disciplines (Rout, Nitoslawski, Ladle, & Galpern, 2021).
Urban planners use travel time to assess walkability, access to critical
resources, such as grocery stores and medical facilities, and even as a
predictor of neighborhood-level income inequality (dos Anjos Luis &
Cabral, 2016; Ewing & Handy, 2009; Reyes, Paez, & Morency, 2014;
Widener et al., 2017; Yang et al., 2015). Recreation management pro-
fessionals can incorporate travel time predictions into the strategic
development of new hiking trails and improved understanding of trail
use and recreation preferences (Chiou, Tsai, & Leung, 2010; Marquez-
Pérez, Vallejo-Villalta, & Alvarez-Francoso, 2017; Meijles, de Bakker,
Groote, & Barske, 2014; Orsi & Geneletti, 2016; Xiang, 1996). Travel
time is an important component of remoteness, which is important for
mapping and assessing wilderness quality and recreation suitability

(Carver, Comber, McMorran, & Nutter, 2012; Kliskey, 2000). To ensure
their safety, wildland firefighters need to know how long it will take
them to retreat to a safety zone or other low-risk area in dangerous
situations (Beighley, 1995; Campbell, Page, Dennison, & Butler, 2019;
Sullivan, Campbell, Dennison, Brewer, & Butler, 2020). Search and
rescue teams need to know how long it will take them to reach an injured
hiker to ensure that they can effectively plan their rescue operation
(Ciesa, Grigolato, & Cavalli, 2014). Emergency response planners use
travel times to simulate evacuations in the event of tsunamis, earth-
quakes, or other natural disasters (Bernardini, Santarelli, Quagliarini, &
D’Orazio, 2017; Wood & Schmidtlein, 2012). Police need to establish
search perimeters for missing persons, knowing how far they may have
traveled in a given period of time (Doherty, Guo, Doke, & Ferguson,
2014; Shalev, Schaefer, & Morgan, 2009). Military personnel can benefit
from accurate pedestrian travel time estimation in many ways, including
a basic understanding of how long it will take ground troops to reach a
target location (Fields, 1995).
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The prediction of travel times is inexorably linked with the predic-
tion of travel rates. However, the rate of pedestrian travel is highly
variable among human populations. This variability is partially dictated
by intrinsic factors, such as one’s degree of energy expenditure, level of
fitness, and physiological characteristics (Gottschall & Kram, 2003;
Minetti, Moia, Roi, Susta, & Ferretti, 2002; Wu & Zhao, 2021). It is also
partially dictated by extrinsic factors, such as terrain slope, the ground
surface condition, and obstructing landscape features (Campbell, Den-
nison, & Butler, 2017; Pandolf, Givoni, & Goldman, 1977; Peterson,
Brownlee, & Marion, 2018; Tobler, 1993; Wolf & Wohlfart, 2014). The
relationship between these intrinsic and extrinsic factors is perhaps one
of the most fundamental human-environment interactions — one that not
only defines the instantaneous speed of pedestrian movement, but also
the time it takes to travel between locations, and the selection of optimal
routes that minimize time, effort, or both (Campbell, Dennison, Butler,
& Page, 2019; Marquez-Pérez et al., 2017; White, 2015). Travel time
variability and uncertainty has been studied extensively in the context of
non-pedestrian modes of travel, such as driving and taking public
transit, with a particular focus on urban areas (e.g., Chen et al., 2017;
Chen, Wang, Wang, & Lam, 2019; de Palma & Picard, 2005; Ettema &
Timmermans, 2006). However, research into the prediction of pedes-
trian travel time variability is limited. What evidence there is comes
primarily from studies of tsunami evacuation (C. Chen, Mostafizi, Wang,
Cox, & Cramer, 2022; Fraser et al., 2014). C. Chen et al. (2022) compiled
GPS-tracked travel rates from an evacuation drill, modeling a proba-
bility distribution function of travel rates, though their analysis of the
relationship between slope and travel rates resulted in a singular pre-
dictive function that does not account for variability in travel rate. There
remains a critical need for a broadly-applicable set of predictive func-
tions for pedestrian travel time variability under a diverse range of
terrain conditions.

There are two broad approaches to quantifying pedestrian travel rate
variability: (1) at the individual level; and (2) at the population level. At
the individual level, it is theoretically possible to derive a function that
accounts for all of the intrinsic factors and extrinsic factors that deter-
mine travel rate, as well as the interactions between those factors.
Applied physiology research has made strides towards that end (Looney
etal., 2019; Ludlow & Weyand, 2017; Minetti et al., 2002; Pandolf et al.,
1977; Santee, Blanchard, Speckman, Gonzalez, & Wallace, 2003). By
incorporating variables such as body mass, oxygen consumption rates,
and external load carriage, and how they interact with the terrain slope
and surface type, these studies have the potential to quantify variability
at the scale of the individual; however, travel rate is not the prediction of
interest in these studies. Instead, the focus is on metabolic cost of
movement, where travel rate is a variable. Though it is possible to solve
these equations for travel rate (e.g., Herzog, 2010), doing so requires a
precise understanding of an individual’s or a group of individuals’
quantitative energy expenditure. As a result, their capacity for esti-
mating travel time variability among broad populations is limited.

Given this limitation, studies that quantify variability at the popu-
lation level tend to ignore the intrinsic factors and focus on how various
landscape conditions such as slope, ground surface conditions, and
vegetation affect movement (Campbell et al., 2017; Campbell, Denni-
son, et al.,, 2019; Davey, Hayes, & Norman, 1994; Higgins, 2021;
Irmischer & Clarke, 2018; Kay, 2012; Marquez-Pérez et al., 2017; Nai-
smith, 1892; Rees, 2004; Tobler, 1993). However, the fundamental
limiting assumption in most of these studies is that the effects of land-
scape conditions on travel rates will be consistent from one individual to
another. These efforts date back to the late 19th century, with Nai-
smith’s Rule predicting one hour of travel time for every three miles (4.8
km) of horizontal distance, and an additional hour for every 2000 ft.
(609.6 m) of vertical distance (Carver et al., 2012). The most popular of
these is Tobler’s Hiking Function (Goodchild, 2020; Tobler, 1993)
which, like Naismith’s Rule, uses the slope of the terrain as the basis of
travel rate prediction. This function does incorporate one dimension of
variability by adding a multiplier to adjust for on-trail versus off-trail
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travel, though it assumes that all individuals on- and off-trails travel
at the same rate. Likewise, Davey et al. (1994) allows for modification
based on an individualized flat-slope travel rate, but does not provide
likely bounds for estimating variability across a large number of in-
dividuals (Davey et al., 1994). Irmischer and Clarke (2018) produced
four slope-travel rate predictive functions, broken down by sex (male
versus female) and route type (on-trail versus off-trail), but the vari-
ability within these four categories remains high (Irmischer & Clarke,
2018).

Campbell, Dennison, et al. (2019) sought to address the question of
travel rate variability using a large database of crowdsourced GPS-
derived travel rate data. Using a percentile modeling approach, they
produced a series of functions that predicted travel rate based on slope
from very slow to very fast movement. Although an important step to-
wards quantifying travel rate variability, this study had some critical
limitations. The data used made no distinction between walking and
running. Thus, their results cannot be applied to the travel mode-specific
prediction of rates. The data were aggregated to relatively short trail
segments, rather than entire trails, which limited the capacity for esti-
mating travel time for continuous hiking over longer distances, as one
can travel at unsustainably-fast rates over short distances. Travel rate
data did not have any individually-identifying information — only ano-
nymized travel rates for each trail segment. This meant that there was no
way to link together travel rate records to determine if a record was part
of a short or long hike, and no way to differentiate individual-level
slope-travel rate relationships along entire hikes. Lastly, the data came
from a fitness tracker social media app that is focused on travel rate
comparison, introducing an element of competition that likely resulted
in an upward bias of travel rates.

The goal of this research is to quantify and enable the prediction of
pedestrian travel time variability among a broad population. To do this,
we use a large, crowdsourced database of raw GPS track data, gathered
from AllTrails (https://www.alltrails.com/), an outdoor recreation
website and mobile app. By comparing thousands of GPS tracks to
landscape slope derived from high-resolution, airborne lidar data, we
gain novel insight into the slope-travel rate variability. And by quanti-
fying the range of slope-predicted travel rates among this population, we
produce a series of equations that enable the prediction of
independently-validated travel time ranges. The results of this study can
be applied in the broad range of contexts within which travel time
prediction is of importance.

2. Methods
2.1. Data and study areas

To enable the creation of broadly-representative predictive travel
rate functions, we gathered GPS track data from a large number of in-
dividuals (N = 1955) on 20 trails, evenly split between trails near Salt
Lake City, Utah, USA and Los Angeles, California, USA (Table A1, Ap-
pendix A). These cities were selected because they both feature high
population densities in close proximity to abundant hiking trails, a
diverse range of terrain conditions, and freely-available airborne lidar
data for comparing GPS data to precise terrain data. For each city, the 10
most popular trails as defined by AllTrails were selected for this study.
All publicly-available, high-quality, hiking season data from 2021 were
downloaded. Track quality was qualitatively visually interpreted indi-
vidually for each track. A track would not be downloaded if it met any of
the following criteria: (1) poor GPS signal, as evident by a track line that
consistently deviated more than 10 m from the mapped trail; (2) too
short (track was less than approximately one quarter of the mapped
trail’s length); (3) too long (track extended well beyond mapped trail
and followed along other trails or roads for a distance greater than
approximately one tenth of the mapped trail’s length); (4) any activity
other than “hiking” indicated (e.g., “running”, “mountain biking”, etc.).
Hiking season was defined as May through September for Salt Lake City
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and April through November for Los Angeles, given the likely presence
of snow or higher probability of inclement weather in the mountains
before and after those temporal windows.

2.2. Trail creation and snapping

GPS units have inherent position uncertainty owing to a variety of
factors including the number and geometry of satellites providing po-
sitional information, both of which contribute to dilution of precision
(Rustamov & Hashimov, 2018; Santerre, Geiger, & Banville, 2017). This
is particularly true of the types of GPS receivers that are commonly used
for recreational activities, such as tracking hikes (Korpilo, Virtanen, &
Lehvavirta, 2017; Meijles et al., 2014). Although the GPS data we
downloaded from AllTrails did not provide accuracy or device infor-
mation, we assume that most GPS tracks were collected using smart-
phones and smartwatches. The accuracy of these devices varies greatly
by manufacturer, model, age, and environmental conditions, ranging
anywhere from submeter to more than 20 m (Merry & Bettinger, 2019).
Given the fact that the trails in this study tend to be located in moun-
tainous areas, positional error of even a few meters can significantly
limit the ability to accurately compare GPS points to spatially-coincident
lidar data, which is essential for deriving accurate terrain slope infor-
mation. To resolve this limitation, we developed a procedure to “snap”
GPS points to the nearest location along the trail. This requires a
positionally-accurate linear geospatial feature that represents each trail.
After a preliminary review of existing trails GIS data revealed persistent
inaccuracy and/or imprecision, we opted to create our own trails data,
using the procedure outlined in Fig. 1. This procedure begins by
compiling all of the GPS tracks for each trail of interest (Fig. 1A). It then
generates a kernel density raster, representing the spatial concentration
of those GPS points (Fig. 1B). We assume that the “true” trail location
can be captured by the locations of highest GPS point density. Accord-
ingly, the algorithm then adjusts the linear trail feature acquired from
AllTrails to align with the raster cells of highest point density (Fig. 1B).
Lastly, each point in each GPS track is then snapped to the nearest point
along the newly-generated trail (Fig. 1C).

2.3. Travel rate and slope calculation

For each GPS track, horizontal (two-dimensional) distance was
calculated as the distance between successive points in x and y di-
rections. Travel rates were calculated as the horizontal distance between
successive points divided by the GPS time between the same points. To
ensure a maximally-precise comparison between travel rates and
spatially-coincident terrain slope, we extracted ground elevations from
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1 m-spatial resolution, airborne lidar-derived digital terrain models,
acquired from the United States Geological Survey 3D Elevation Pro-
gram (Sugarbaker et al., 2017).

2.4. GPS data filtering

Filtering the GPS points was necessary to eliminate noisy or erro-
neous data. All points that had a snapping distance (distance between
original GPS point and trail-snapped point locations) greater than 10 m
were removed. We assume these points to be either inaccurate GPS
points, or a detour was taken from the trail of interest. All points with a
GPS collection interval of less than 3 s or greater than 30 s were also
removed. Preliminary analysis revealed that high-frequency points (1 s,
2 s intervals) produced very noisy travel rate estimates. Low-frequency
points failed to precisely capture the relationship between local-scale
terrain and travel rates. All points with travel rates less than 0.2 ms ™
were removed, as these points represent likely stoppage time (e.g.,
taking breaks while on an ascent, or at a viewpoint) plus drift of GPS
coordinates. This 0.2 ms~! threshold was chosen by examining histo-
grams of the travel rate data, where we found an uptick in data fre-
quency at and below this threshold, which we attributed to GPS points
that would result from extended periods of stoppage. All points with
travel rates greater than 5 ms~! were removed since these speeds indi-
cate running, and points with terrain slopes of less than —30° or greater
than 30° were removed, as they were poorly represented in the dataset
and could possess outsized leverage on the modeling process. Finally, all
points greater than or less than two standard deviations of the mean
travel rate within a two-minute moving window were removed, as these
may represent either erroneous or unrepresentative sudden increases or
decreases in speed. This filtration process removed approximately 23%
of the GPS points (Table A1, Appendix A).

2.5. Slope-travel rate smoothing

As discussed in the Introduction, instantaneous travel rates are
highly variable, even at a given terrain slope, both between individuals,
but also within an individual’s hike. In this study, we are interested
primarily in the “between individuals” variability. Variability within an
individual’s hike can stem from a variety of sources, including varied
exertion levels (e.g., moving faster at the start of a hike than at the end)
and trail traffic (e.g., moving slower while hiking behind a group). To
remove this within-hike variability, we performed a slope-travel rate
smoothing process, calculating the median travel rate using a moving
window of one degree of slope. An example of this can be seen in Fig. 2.
The resulting travel rates are thought to be a more accurate

20

1

Meters

== New Trail © Snapped Points

Fig. 1. Example of trail delineation and GPS point snapping procedure. Raw GPS points (A) are used to derive a kernel density raster that drives the spatial
adjustment of the original trail line from AllTrails to a new trail line based on maximum GPS point density (B). This new trail is then used to snap each raw GPS point

to the closest point along the new trail (C).
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Fig. 2. Example of the slope-travel rate smoothing process for a single GPS
track, whereby median travel rates within a moving window of one degree of
slope are calculated from the raw GPS-derived slope-travel rate data.

representation of the “hike-level” relationship between slope and travel
rate.

2.6. Slope-travel rate percentile modeling

All of the slope-travel rate smoothed tracks were compiled, and then
split at random into training data (80% of tracks) and test data (20% of
tracks). Using the training data, non-linear quantile regression was used
to generate a series of models from the 2.5th percentile to the 97.5th
percentile by 2.5 percentile interval (39 models in total). A modified
Lorentz function form was used (Campbell, Dennison, et al., 2019;
Sullivan et al., 2020):

1

r=c

+d+es (@D)]

where r is the travel rate in ms ™, s is the slope in degrees, and a, b, c, d,
and e are model coefficients. For a detailed review of the role that each
of these coefficients play in predicting travel rates, please refer to
(Campbell, Dennison, et al., 2019). Although the primary focus for our
analysis is travel rate variability, and thus each percentile model is
important, we also recognize that there is value in having a singular
function that is most representative of the typical pedestrian’s speed. In
the context of percentile modeling, this would be the 50th percentile, or
the median model. We assessed the accuracy of this model using the
travel rates from the 20% test data previously set aside. To compare the
extent to which this new function improves upon popular existing slope-
travel rate predictive functions, we also assessed the accuracy of the
following models: Tobler’s hiking function for on-trail movement
(Tobler, 1993), the function from Rees (2004), the modified Tobler’s
hiking function from Marquez-Pérez et al. (2017), male-female averaged
functions for both on-trail and off-trail travel from Irmischer and Clarke
(2018), the 5th percentile slope-travel rate model from Campbell,
Dennison, et al. (2019), and the “low” and “moderate” speed functions
from Sullivan et al. (2020). All of the above were assessed using two
error metrics, root mean squared error (RMSE) and bias, as follows:

RMSE = 2
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bias == 3)

where ¥, is the predicted travel rate for point i and y; is the actual travel
rate for point i for all points [i...n]. Calculating RMSE and bias for the
entire dataset provides insight into overall performance across all slopes
tested, but fails to capture the nuance of model performance at different
slopes. For example, a model that significantly underestimates travel
rates on steep slopes but overestimates travel rates on flat slopes could
result in a bias of 0 ms™?, giving the false appearance of model accuracy.
Accordingly, RMSE and bias were also calculated per degree of slope to
assess these nuanced effects.

2.7. Travel time accuracy assessment

The travel rate accuracy assessment described above provided
valuable insight into the performance of the singular, median model, but
did not provide a sense for how well the percentile models can predict
travel time variability. To that end, we acquired additional GPS track
data for three popular trails outside of the study regions to test the broad
applicability of the models (Table A2, Appendix A). They were selected
based on popularity, diversity in length (one short, one medium, one
long), and diversity in geography (Northeast, Southeast, and Northwest
Us).

The trails were delineated and tracks were snapped to the trail, in the
exact same manner as described in Section 2.2. Travel rates and times
were then computed for each GPS point, using the same procedure
described in Section 2.3. Points greater than 30 m from the trail were
removed, as were points with travel rates less than 0.2 ms 1. We used a
30 m threshold rather than the 10 m threshold used previously to retain
as much GPS data as possible, accommodating low GPS accuracy and
ensuring total travel time accuracy. Total travel times were computed as
the sum of elapsed times between each remaining GPS point.

To compare these actual travel times with modeled travel times, we
used each of the travel rate percentile models (2.5th to 97.5th, by 2.5
percentiles) to predict total travel time for each of the three trails. To do
this, we generated points every 2 m along the trail, calculated the slope
between each sequential point, and estimated the time it would take to
travel between points at each travel rate percentile. For each trail, these
travel times were summed to produce 39 total travel time estimates, one
for each modeled percentile. These modeled values were compared to
percentiles of the actual total travel times, and RMSE and bias were
calculated for each trail individually as well as for all three trails com-
bined. Relative RMSE (rRMSE) and bias (rbias) were also calculated by
dividing each error metric by the mean of the true values, as they pro-
vide an easily-interpretable measure of proportional error, calculated as
follows:

4

— )

To determine the extent to which the singular, median travel rate
model demonstrates improvement over other singular slope-travel rate
predictive models, the median travel time for each of the three test trails
was compared to modeled travel times for each predictive model out-
lined in Section 2.6.
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2.8. Demonstration of application

To demonstrate the utility of our travel time variability prediction
approach, we present a theoretical use case using least-cost path
modeling. Least-cost path modeling is a popular geospatial analysis
technique for determining the path of least resistance between an origin
and a destination (Adriaensen et al., 2003; Douglas, 1994; Goodchild,
1977). In the context of human pedestrian movement, the slope of the
terrain is the most common impediment used to determine optimal
routes and associated travel rates and times (Herzog, 2014). It is
important to note that other landscape conditions, such as the presence,
abundance, and arrangement of vegetation can have a significant impact
on route selection and travel time; however, there is only limited evi-
dence to date to accurately quantify these effects (Campbell et al., 2017).
Accordingly, our new models can not only predict the optimal route that
minimizes slope-based travel time, but also estimate the range and
distribution of times it would take for a broad population of individuals
to get from origin to destination. To demonstrate this, we used a 10 m-
resolution digital elevation model from the Wasatch Mountains outside
of Salt Lake City, UT with randomly-generated origin and destination
points. We used the 50th percentile model to map the least-cost path
between origin and destination. We extracted elevations from every
raster cell along the least-cost path and predicted accumulated travel
time between cells for each of the percentile models.

3. Results
3.1. Slope-travel rate smoothing

In total, the data in this study came from 1999 GPS tracks, containing
over four million GPS points on trails ranging in hike length from
approximately 2.8 km to 17.9 km. The distribution of slope-travel rate
data used to train and test the travel rate percentile models can be seen
in Fig. 3. Fig. 3A represents the instantaneous travel rate data, whereas
Fig. 3B represents the slope-smoothed travel rate data. Both datasets
demonstrate the typical relationship between slope and travel rate — that
is, people tend to move faster on flatter slopes and slower on steeper
slopes, both uphill and downhill. The slope-smoothed data possess a
much narrower range of travel rates, as expected, given that within-hike
variability is removed. The remainder of the results will be focused on
the slope-smoothed travel rate data as these will be used for prediction
of travel rates and times and the variability therein.

Travel Rate (m/s)

T T T T T T

-10 0 10 20 3
Slope (deg)

T
-30 -20
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3.2. Slope-travel rate percentile modeling

The percentile model coefficients can be seen in Table A3, Appendix
A. The values for coefficients a, b, ¢, d, and e can be fed into Eq. 1 to
predict travel rates at a given slope and percentile. For example, if one
wanted to predict the range of travel rates representative of 95% of the
population, one could use the 2.5th percentile and 97.5th percentile
coefficients.

Fig. 4 illustrates a comparison between true percentiles calculated
from slope-smoothed travel rate training data, binned by degree of slope
(Fig. 4A) and the modeled percentiles (Fig. 4B). The models accurately
capture the shape of the true percentiles with some minor deviations on
steeper slopes and higher percentiles, where the models tend to under-
estimate travel rates. However, given the sparseness of data at extreme
slopes, the uptick in travel rates at extreme slopes in the true percentiles
is likely the result of noise, as it is unlikely that people move significantly
faster at 30° uphill than they do at 28°. In addition, the true percentiles
tend to produce a “shelf” of consistent travel rates between approxi-
mately —7° and 3° of slope, whereas the functional form of the Lorentz
curve (Eq. 1) tends to produce a more rounded curve peak. As a result,
travel rates on near flat slopes at likely slightly overestimated, whereas
on slight uphill and downbhill slopes they are likely slightly under-
estimated. Alternative functions were tested to try to accommodate the
shape of the shelf, but did not improve fit over Eq. 1. As discussed in
Section 2.6, although the focus of this study is on travel rate variability,
it is still useful to have a singular predictive function in many situations.
The 50th percentile function, which represents the average pedestrian
hiking rate based on slope, is highlighted in red (Fig. 4).

A comparison between the 50th percentile function and an array of
popular, existing slope-travel rate functions reveals general agreement
(Fig. 5). Most functions reach a peak travel rate at a slightly downhill
slope with steadily decreasing travel rates as slope increases or decreases
on either side of the peak. The 50th percentile function reaches a
maximum travel rate of 1.15 ms ™" at a slightly downhill slope of —1.53°.
A key difference among these function is the shape of the curve peaks,
with Tobler (1993) and Marquez-Pérez et al. (2017) coming to a pro-
nounced peak, in what is known as a double-exponential or Laplace
function form, whereas the other models (including our new model)
feature a more rounded peak. Previous research has shown that the
sharp peak results in overestimation of maximum travel rates (Camp-
bell, Dennison, et al., 2019).

When comparing these functions to the travel rate test dataset, the
new function outperforms others in terms of both overall error, as
captured by RMSE (Fig. 6A), and the propensity for over- or

-
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Fig. 3. Distribution of all GPS-derived slope-travel data, including both training and test data, used in the percentile-based travel rate modeling procedure, including
the instantaneous travel rate data (A), as well as the slope-smoothed travel rate data (B).
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Fig. 4. Comparison between true percentiles calculate from slope-smoothed travel rate training data, binned by degree of slope (A) and the modeled percentiles (B).
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Fig. 5. Comparison between the new function (50th percentile function) and a range of popular, existing functions for predicting pedestrian travel rate based on
terrain slope, including (A) Campbell, Dennison, et al. (2019)’s 5th percentile function, (B) Irmischer and Clarke (2018)’s on- and off-road functions, (C) Marquez-
Pérez et al. (2017)’s function, (D) Rees (2004)’s function, (E) Sullivan et al. (2020)’s low and moderate functions, and (F) Tobler (1993)’s function-.

underestimating travel rates, as captured by bias (Fig. 6B). However,
integrating the accuracy assessment results across the full range of
slopes does not tell the full story, given the high concentration of data on
lower slopes and the lower concentration of data on steeper slopes.
Figs. 7 and 8 provide accounts of the performance of these functions by
degree of slope. Once again, the new function tends to outperform the
others across most slopes, with RMSE being consistently among the
lowest (Fig. 7), and bias being consistently nearest to zero (Fig. 8).
Nearly all of the models tend to perform better on flatter slopes —
perhaps due to greater abundance of data in these conditions — with the
exception of Tobler’s Hiking Function, whose peaked nature results in
significant overestimation of peak travel rates (Campbell, Dennison,
et al., 2019; Higgins, 2021; Marquez-Pérez et al., 2017).

3.3. Travel time accuracy assessment

The results of the travel time variability accuracy assessment can be
seen in Fig. 9 and Table 1. Comparing modeled to actual travel time
percentiles on the three test trails yields results that fall near the 1:1 line,
suggesting general agreement between the two (Fig. 9). Across all three
trails, travel time percentiles were estimated within 0.26 h, or 15.6 min
on average, which represents an error of approximately +9% of the true
travel time (Table 1). Bias is nearly zero across the three trails, sug-
gesting that, on average, travel times are neither over- nor under-
estimated. A closer, trail-level examination, however, reveals some more
nuanced errors. The longest trail, Alum Cave Trail to Mount Leconte,
produced the highest absolute RMSE, but this is partly due to the trail
length which produced the longest modeled and actual travel times, as
evident by the moderate rRMSE value. Conversely, the shortest trail,
Mount Willard Trail, produced the lowest absolute RMSE, but had the
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Fig. 6. Travel rate accuracy assessment results comparing new 50th percentile function to other popular slope-travel rate predictive functions, including RMSE (A)

and bias (B), integrated across all slopes.
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Fig. 7. Travel rate accuracy assessment results comparing new 50th percentile function to other popular slope-travel rate predictive functions, including (A)
Campbell, Dennison, et al. (2019)’s 5th percentile function, (B) Irmischer and Clarke (2018)’s on- and off-road functions, (C) Marquez-Pérez et al. (2017)’s function,
(D) Rees (2004)’s function, (E) Sullivan et al. (2020)’s low and moderate functions, and (F) Tobler (1993)’s function, calculated using root mean squared error by

degree of slope.

highest rRMSE. Overall, the shortest trail (Willard) tended to result in
underestimation of travel times (negative bias) and the longest trail
(Alum) tended to result in overestimation of travel times (positive bias),
whereas the mid-length trail (Skyline) resulted in the highest prediction
accuracy, both in rRMSE and rbias. This may be due to the fact that the
trails used to train the model had an average length that is identical to
the length of Skyline Trail Loop (8198 m). In addition, the higher per-
centiles (faster movement) tended to underestimate travel time, whereas
the lower percentiles (slower movement) tended to overestimate travel
time.

The results comparing the singular, median travel rate predictive

model with other singular slope-travel rate functions can be seen in
Table 2. As described above, the new function tends to underestimate
travel times on the two shorter trails (Skyline Trail Loop and Mount
Willard Trail) and overestimate on the longer trail (Alum Cave Trail).
However, averaging out the bias across all three trails, the new median
function has the lowest absolute bias, underestimating travel time by
approximately 2 min. The next best-performing model (that of Camp-
bell, Dennison, et al., 2019) has a positive bias of nearly 9 min. Irmischer
and Clarke (2018)’s on-road model is the third best, with an average
overestimation of 10 min. Notably, Tobler’s hiking function — certainly
the most widely-used among these functions — has an average bias of
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Table 1
Quantitative travel time variability accuracy assessment results.
Trail RMSE rRMSE bias rbias
(h) (%) (h) (%)
Alum Cave Trail to Mount
Leconte 0.39 8.58 0.28 6.13
Skyline Trail Loop 0.15 5.91 -0.11 —4.44
Mount Willard Trail 0.18 11.72 -0.17 -11.29
All 0.26 9.17 0.00 —0.03

Table 2

Comparison of modeled travel times on three test trails generated using the new,
median travel rate predictive function and a host of existing travel rate func-
tions. Numbers represent estimation bias in minutes from the actual median
travel rates among the GPS-recorded travel times for each trail (Alum Cave Trail
= 271.12 min; Skyline Loop Trail = 149.98 min; Mount Willard Trail = 89.82
min). The last column represents a mean bias for all three trails.

Travel Rate Model Alum Skyline Mount Mean for
Cave Trail  Loop Trail Willard All Trails
Trail
New Function —

Median 13.94 —8.49 -11.25 —1.93
Campbell,

Dennison, et al.

(2019) — 5th 29.52 2.23 —5.94 8.60
Irmischer and

Clarke (2018) —

Off-Road 151.91 58.64 26.42 78.99
Irmischer and

Clarke (2018) —

On-Road 37.15 0.16 —6.47 10.28
Mdérquez-Pérez et al.

(2017) 206.40 47.62 13.75 89.26
Rees (2004) 117.09 17.10 —2.80 43.80
Sullivan et al.

(2020) — Mod —42.10 —34.45 —25.30 —33.95
Sullivan et al.

(2020) — Low 81.05 18.20 3.49 34.24
Tobler (1993) 86.10 2.10 —9.42 26.26

over 26 min.

3.4. Demonstration of application

The modeled least-cost path between two randomly-selected origin
and destination points in the Wasatch Mountains can be seen in Fig. 10.
The route begins on fairly flat slopes and, as such, the resulting route is
relatively straight. When a steep hill is encountered, the route takes a
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Fig. 10. Example least-cost path generated from predicting the fastest route
from location A to location B in the Wasatch Mountains, based on the 50th
percentile travel rate percentile model. Contour interval is 20 m and the terrain
model is being displayed with a hillshade with a solar elevation of 45° and a
solar angle of 135°.

sharp northerly turn and follows the contour until reaching the desti-
nation point (B) near the bottom of a canyon. The cumulative travel
times associated with traveling along this route can be seen in Fig. 11.
The modeled median (50th percentile) travel time for traversing this
path is 93 min; however, the percentile models can be used to predict
time ranges for various portions of the population. For example, using
the 2.5th and 97.5th percentile models, we estimate that 95% of the
population would hike from A to B between 66 and 141 min. To estimate
the range of times for a known faster population (e.g., a wildland fire
crew or military personnel), a narrower and higher range of percentiles
can be used, such as the 50th and 97.5th, though the specific selection of
subpopulation percentiles should be independently validated.

4. Discussion

Our research provides valuable insight into the complex process of
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estimating variability in travel rates and times. Humans are inherently
variable in many ways that directly affect their pedestrian behaviors,
such as height, weight, stride length, fitness level, endurance level, en-
ergy expenditure, load carriage, familiarity and comfort level with
diverse terrain, and more. By gathering GPS data from over 2000 in-
dividuals, and using trails of different lengths, at different elevations,
and different levels of difficulty, the percentile travel rate functions we
developed using this dataset are intended to be representative of a broad
population of hikers within the US. However, these travel rate functions
may not be inclusive of all hikers due to inherent limitations in the
dataset. First, we do not have any demographic information about the
study’s sample population, as AllTrails profiles did not provide gender,
age, or other potentially insightful individual characteristics at the time
of data acquisition. Thus, we do not know the extent to which our
population is demographically representative of the US population as a
whole and were unable to use those demographics to understand po-
tential drivers of travel rate variability. For example, the data that were
used to develop the predictive functions came from trails near large
urban centers, which may suggest that the median age of our sample
population is younger than those in more rural settings. Enthusiasts may
be more likely to record their GPS tracks, and people with disabilities
may be underrepresented in the dataset. The bias towards such enthu-
siasts in our dataset may results in a flatter slope-travel rate curve, given
the fact that fit individuals are likely to be less affected by terrain slope.
Also, hikers may “self-select” trail difficulty (including length and slope)
based on their abilities. This can act to provide an upward bias in overall
travel rates, as inexperienced or unfit hikers may avoid more chal-
lenging trails with steeper slopes, the exclusion of which could poten-
tially reduce the number of low-speed data points. Although it may be
possible in the future to incorporate additional intrinsic and extrinsic
factors into a singular, all-encompassing predictive model, there are
currently no such datasets that can allow for this. In lieu of such a model,
we have presented a robust set of percentile-based travel rate predictive
models that can be applied directly to the important problem of pre-
dicting ranges of travel times within a margin of error of approximately
+9%.

Data from this study were gleaned from hikes that took place on
trails. We do not know the exact surface types or conditions of the trails
studied, but they may range from dirt to gravel, loose to packed, wet to
dry, and smooth to rough. In many of the aforementioned applications
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Fig. 11. Cumulative travel times and the associated distribution thereof, as illustrated by a kernel density estimator, for a simulated population hiking along the

least-cost path in Fig. 10.
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for travel time prediction — particularly those that take place in urban
settings — pedestrian travel will likely be on paved surfaces (roads and
sidewalks). Although roads and trails are similar, studies have shown
that traversing gravel/dirt surfaces requires slightly higher energy
expenditure (Pandolf et al., 1977; Richmond, Potter, & Santee, 2015).
Thus, at the same level of energy expenditure, we can assume that
movement on a trail is slightly slower than that of a paved road. It is
quite common to apply predictive functions derived from trail hiking
data to the prediction of travel rates and times in urban settings (e.g.,
Wood & Schmidtlein, 2012). Thus, we suggest that the results of our
study can be applied to travel on road networks with the understanding
that travel times might be overestimated.

In this study, we removed stoppage time from the GPS data and did
not consider it in our travel rate and travel time analyses. We opted to
take this approach as it would be difficult to predict how long in-
dividuals would rest while on a hike, with some perhaps taking only
brief respites while others may stop for lengthy periods of time (e.g.,
resting after reaching a mountain summit). This has two important
implications. First, applying the travel rate predictive functions we have
presented to estimate total travel times will only capture continuous
movement time. Assuming that the typical hiker or walker will take at
least one break during an activity, this means that our predictions will
generally underestimate the total, stoppage-inclusive travel time. Sec-
ond, resting while on a hike can provide a necessary energetic recharge
to an individual (e.g., temporarily lowering one’s heart rate). This could
increase the level of energy one could exert while in motion between
breaks, as compared to trying to maintain a lower, but more sustainable
level of exertion for continuous movement.

Least-cost path modeling is one of the most common analysis tech-
niques that relies on robust equations for predicting the rate of travel,
given a set of landscape impediments. In this study, we presented one
such example, using our newly-generated predictive functions for both
mapping the least-cost path and estimating the ranges of likely travel
times to traverse the path. However, it is important to note the limita-
tions of applying a function that was derived from on-trail travel in an
off-trail environment, particularly with respect to the impact of vege-
tation cover on travel rate, travel time, and optimal route selection
(Campbell et al., 2017; Richmond et al., 2015). Off-trail travel may also
involve uncompacted, rough, or otherwise difficult to traverse surfaces,
which can significantly affect travel rates (Campbell et al., 2017;
Irmischer & Clarke, 2018; Richmond et al., 2015). Future work should
aim to refine our understanding of the effects of vegetation structure and
ground surface conditions on travel rates.

Although we produced 39 separate percentile-based predictive
models, and the full consideration of all of those models enables the
prediction of travel time distributions, not every user will be interested
in making 39 separate predictions. We would encourage those with an
interest in predicting travel times using our models to focus on three
models. The first should be the 50th percentile travel rate function. This
represents the slope-controlled travel rate of an average hiker, and thus
is the most broadly-applicable among our functions. The selection of the
other two depends on the user’s needs. For example, the 2.5th and
97.5th travel rate functions produce times representing the range within
which 95% of the population will arrive at a destination, given an origin
location. Other percentile ranges may be more appropriate for specific
populations. For example, for a population that moves faster than
average hikers (e.g., wildland firefighters), a higher range of percentile
functions may be selected.
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5. Conclusions

In this study, we have presented a new approach for estimating the
variability in pedestrian travel rates and times, driven by the slope of the
terrain, using a database containing over 5 million GPS-tracked travel
rate records, a significant increase over the next largest study’s sample
size (Campbell, Dennison, et al., 2019). Previous pedestrian travel rate
literature has been limited by either (a) being tailored to the individual,
which limits the capacity for estimation at the population level; or (b)
resulting in oversimplified, population-level predictive functions, which
lack the capacity to estimate variability in travel rates and times. The
work we have presented offers robust, independently-validated equa-
tions for predicting travel rates and times that can be used in a variety of
applications. The median model, representing the travel rate of a typical
hiker, demonstrated improvement over previous slope-travel rate
functions, with a 9% improvement in RMSE and 87% improvement in
bias as compared to the next-best model. This model likewise demon-
strated improvement in the prediction of travel times over existing
functions, with an absolute bias of only 2 min averaged across three
independent test trails. The full range of percentile models was able to
estimate travel time ranges within a margin of error of approximately
9% of total travel time. In the presence of trails and/or roads, these
equations can be used in conjunction with a digital elevation model for
estimating along-network travel times and selecting optimal travel
routes within a network. In the absence of such a transportation
network, these equations can be applied using least-cost path modeling.
However, both of these endeavors should be undertaken cautiously, as
vegetation and ground surface conditions are not considered in the re-
sults of this study.
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Appendix

Table Al
Summary of GPS track data.

State Trail Name Length (m) Ntracks Npeople Npoints, Npoints,
pre-filter post-filter
CA Black Star Canyon Falls Trail 10,662 45 45 117,956 79,863
CA Bridge To Nowhere Via East Fork Trail 15,214 119 118 405,604 316,111
CA Eaton Canyon Trail 6848 137 136 190,207 136,878
CA Echo Mountain Via Sam Merrill Trail 8063 115 94 240,034 175,422
CA Icehouse Canyon to Cucamonga Peak Trail 17,882 95 95 442,768 354,261
CA Mount San Antonio and Mount Baldy Notch Trail 15,634 142 140 552,560 422,176
CA Runyon Canyon Trail 4198 75 72 73,311 51,619
CA Solstice Canyon Loop 4699 121 121 149,680 114,908
CA Switzer Falls Via Gabrielino Trail 5715 63 63 91,502 68,725
CA Temescal Canyon Trail 5885 110 107 132,395 99,476
UT Bells Canyon Trail to Lower Falls 7296 110 108 191,358 148,680
UT Cecret Lake Trail 2824 74 74 51,802 42,218
uT Donut Falls Trail 5231 84 84 72,535 52,591
uT Gloria Falls 3423 164 164 140,598 109,920
UT Grandeur Peak East Trail from Church Fork 8716 34 33 75,415 59,478
uT Lake Blanche Trail 12,453 199 196 539,960 436,600
uT Lake Mary Trail 4219 99 98 94,292 77,005
UT Living Room Lookout Trail 3706 44 43 38,216 30,729
UT Mount Olympus Trail 10,309 58 55 162,335 109,492
uT Red Pine Lake Trail 10,978 111 109 294,663 221,730
Total 163,955 1999 1955 4,057,191 3,107,882
Table A2
GPS track data used for testing travel time variability predictions.
State Trail Name Length (m) Nitracks Npeople Npoints, pre-filter Npoints, post-filter
NH Mount Willard Trail 4734 104 103 136,232 131,932
TN Alum Cave Trail to Mount LeConte 15,446 121 119 470,664 453,822
WA Skyline Trail Loop 8198 245 244 555,722 530,592
Total 28,378 470 466 1,162,618 1,116,346
Table A3

Model coefficients for percentile models derived from non-linear quantile regression.

Percentile a b c d e

2.5 —1.4190 19.1535 54.2746 —-0.0215 7.9526 x 107
5.0 -1.3914 20.2136 61.6700 —0.0459 9.2172 x 107*
7.5 —1.4515 20.9310 65.8647 —0.0516 8.1817 x 10°*
10.0 —1.4921 20.8687 65.9137 —-0.0329 6.7077 x 107*
12.5 —1.5744 20.5100 64.2547 —0.0034 6.2977 x 107*
15.0 —-1.6177 20.4735 64.5461 0.0075 5.7225 x 10~*
17.5 —-1.6107 19.9227 62.1549 0.0378 4.7355 x 107
20.0 -1.6236 19.8539 62.1986 0.0480 4.4430 x 107*
22.5 —1.6396 19.3788 60.0472 0.0762 4.1543 x 107*
25.0 —1.6920 19.4639 60.8517 0.0799 4.2500 x 104
27.5 —1.7100 19.4143 60.8487 0.0902 3.8552 x 1074
30.0 —1.7148 19.2929 60.4638 0.1032 3.3948 x 107*
32.5 —1.7245 20.0529 64.6180 0.0793 3.3463 x 10~*
35.0 —1.6867 20.2394 65.6540 0.0804 2.4034 x 1074
37.5 —1.6601 20.1343 65.2359 0.0922 1.5992 x 107*
40.0 -1.6161 20.0784 65.0172 0.1027 5.2507 x 107>
42.5 —1.6074 21.0144 70.2841 0.0706 1.1865 x 107°
45.0 -1.5730 21.6438 74.0125 0.0513 ~7.1719 x 107°
47.5 -1.5227 21.9340 75.6591 0.0480 -1.8281 x 1074
50.0 —1.4579 22.0787 76.3271 0.0525 —3.2002 x 1074
52.5 —1.4254 21.9986 75.6166 0.0675 —~3.9490 x 1074
55.0 —1.3802 22.4770 78.2737 0.0583 —-5.1117 x 1074
57.5 —1.3416 23.2824 83.1265 0.0338 —6.1657 x 1074
60.0 —1.3138 23.8222 86.2342 0.0232 —6.8611 x 1074
62.5 —1.3025 23.9738 86.6684 0.0322 —7.5286 x 1074
65.0 —1.3137 23.6565 83.8119 0.0650 —7.8491 x 10~*
67.5 —1.3157 23.8571 84.2605 0.0756 —8.4548 x 1074
70.0 —1.2750 24.2517 85.7576 0.0803 —9.7634 x 1074
72.5 —-1.2710 23.9933 82.7877 0.1173 -1.0212 x 103
75.0 —1.2842 23.1097 75.7319 0.1852 ~1.0541 x 1073

(continued on next page)
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Table A3 (continued)
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Percentile a b c d e

77.5 —1.2464 23.4466 76.0881 0.2019 ~1.1644 x 1073
80.0 —1.1997 23.0571 71.9543 0.2524 ~1.3087 x 1073
82.5 -1.1673 21.7316 62.7781 0.3429 ~1.4094 x 1073
85.0 -1.1299 21.7936 60.8815 0.3825 -1.5038 x 1073
87.5 —1.2537 20.6660 52.7387 0.4759 ~1.3440 x 1073
90.0 —1.4109 19.8424 46.8318 0.5561 ~1.1847 x 1073
92.5 —1.5847 18.2614 38.5108 0.6645 -1.1161 x 1073
95.0 —-1.7612 16.4733 31.5181 0.7733 ~1.0611 x 1073
97.5 -2.0921 16.8711 31.2808 0.8493 ~8.3866 x 10~
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