www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753

INVARIANT SIGNATURE, LOGIC REASONING, AND SEMANTIC NATURAL
LANGUAGE PROCESSING (NLP)-BASED AUTOMATED BUILDING CODE
COMPLIANCE CHECKING (I-SNACC) FRAMEWORK

SUBMITTED: July 2021
REVISED: October 2022
PUBLISHED: January 2023
EDITOR: Robert Amor

DOI: 10.36680/j.itcon.2023.001

Jin Wu, Ph.D.

Automation and Intelligent Construction (AutolC) Lab, School of Construction Management Technology,
Purdue University, West Lafayette, IN, 47907, United States

wul275@purdue.edu

Xiaorui Xue, Ph.D.

Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management Technology,
Purdue University, West Lafayette, IN, 47907, United States

xue39@purdue.edu

Jiansong Zhang, Ph.D.

Automation and Intelligent Construction (AutolC) Lab, School of Construction Management Technology,
Purdue University, West Lafayette, IN, 47907, United States

zhan3062@purdue.edu (*corresponding author)

SUMMARY: Traditional manual building code compliance checking is costly, time-consuming, and human error-
prone. With the adoption of Building Information Modeling (BIM), automation in such a checking process becomes
more feasible. However, existing methods still face limited automation when applied to different building codes.
To address that, in this paper, the authors proposed a new framework that requires minimal input from users and
strives for full automation, namely, the Invariant signature, logic reasoning, and Semantic Natural language
processing (NLP)-based Automated building Code compliance Checking (I-SNACC) framework. The authors
developed an automated building code compliance checking (ACC) prototype system under this framework and
tested it on Chapter 10 of the International Building Codes 2015 (IBC 2015). The system was tested on two real
projects and achieved 95.2% precision and 100% recall in non-compliance detection. The experiment showed that
the framework is promising in automating building code compliance checking. Compared to the state-of-the-art
methods, the new framework increases the degree of automation and saves manual efforts for finding non-
compliance cases.

KEYWORDS: Automated Compliance Checking, Building Codes, Invariant Signature, Building Information
Modeling (BIM), Natural Language Processing, Logic Reasoning.

REFERENCE: Jin Wu, Xiaorui Xue, Jiansong Zhang (2023). Invariant Signature, Logic Reasoning, and
Semantic Natural Language Processing (NLP)-Based Automated Building Code Compliance Checking (I-SNACC)
Framework. Journal of Information Technology in Construction (ITcon), Special issue: ‘The Eastman
Symposium’, Vol. 28, pg. 1-18, DOI: 10.36680/j.itcon.2023.001

COPYRIGHT: © 2023 The author(s). This is an open access article distributed under the terms of the Creative
Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

ITcon Vol. 28 (2023), Wu et al., pg. 1

http://www.itcon.org/
https://dx.doi.org/10.36680/j.itcon.2023.001
mailto:wu1275@purdue.edu
mailto:xue39@purdue.edu
mailto:zhan3062@purdue.edu
https://creativecommons.org/licenses/by/4.0/

1. INTRODUCTION

Traditional manual building code compliance checking exhibits a wide range of shortcomings: (1) prolonged code
compliance checking timespan, (2) tedious compliance checking effort, and (3) human error-prone code
compliance checking results (Eastman et al, 2009, Dimyadi and Amor, 2013, Preidel and Borrmann, 2018, Xue et
al, 2022). One of the main reasons for these shortcomings is the complexity of checking building designs. Plan
reviewers check omissions, errors, and non-compliance cases in building designs against building codes. If such
instances were found in building designs, designers will need to update the building designs or provide
amendments to the building designs. The code compliance checking process continues until plan reviewers have
verified that the building designs are error-free, omission-free, and fully compliant with building codes, where a
building permit can then be issued. The plurality and diversity of available governing building codes and other
regulatory documents make building code compliance checking even more complicated. Building codes can
govern an entire building, such as the International Building Code (IBC) (International Code Council, 2015) and
the International Fire Code (IFC) (International Code Council, 2000a), or a part of a building, such as the
International Mechanical Code (IMC) (International Code Council, 1996) and the International Plumbing Code
(IPC) (International Code Council, 1995). Some types of buildings need to comply with building codes specific to
their building types. For example, residential buildings need to comply with the International Residential Code
(IRC) (International Code Council, 2000b). The shortcomings and complexity of the traditional manual building
code compliance checking process made the automation of code compliance checking an urgent demand which
has achieved a growing consensus.

An automated code compliance checking system is a fast, inexpensive, and reliable alternative to the traditional
code compliance checking method, which relied on manual efforts (i.e., manual interpretation, manual
comparison). Recent years witnessed the rapid advancement of automated code compliance checking systems
(Eastman et al, 2009, Lee et al, 2020). However, the majority of automated code compliance checking systems
require manual conversion of building codes to computer processable formats, such as decision tables (Tan et al,
2010), semantic building code models (ilal and Giinaydim, 2017), knowledge models (Dimyadi et al, 2016b), and
logic rules (Zhong et al, 2012). (Pauwels et al, 2011) proposed an Industrial Foundation Classes (IFC)-based
automated code compliance checking system, which relies on domain experts to convert building codes to semantic
web data. (Hjelseth and Nisbet, 2011) proposed a manual mark-up method to convert building codes from
normative text to structured logic statements. (Beach et al, 2015) developed a rule-based code compliance checking
system that uses ontologies to map entities in IFC models of buildings to building code concepts. (Zhang et al,
2018) combined declarative rules with procedural programming to implement extended functions for querying
IFC data that can be used for automated code compliance checking, based on a standard and expressive query
language SPARQL and treating simplified properties and relationships as functions used in query runtime. The
encoding of regulatory requirements in SPARQL still needed to be manually performed. Solibri Model Checker
(SMC) contains a code compliance checking plugin that checks IFC models to a set of manually generated rules
(Eastman et al, 2009). Construction and Real Estate Network (CORENET) project is an IFC-based code
compliance checking system backed by the Singapore government (Sing and Zhong, 2001). Singapore government
provides building codes for checking building designs in a computer-processable format, which were still
generated manually as part of the project. KBimCode can check the compliance of IFC models against Korean
building code, which relies on domain experts to convert the building code from natural language to computer-
processable scripts (Park and Lee, 2016).

To address the heavy manual efforts required in the automated compliance checking system development, the
authors propose to build a new integrated and comprehensive framework for automated code compliance checking
system framework. The new system framework is named Invariant signature, logic reasoning, and Semantic
Natural language processing (NLP)-based Automated building Code compliance Checking (I-SNACC) framework.
Compared to existing logic-based BIM checking systems, such as the SPARQL query-based system (Zhang et al,
2018), where the rules were generated manually (e.g., by combining declarative rules with procedural
programming), the proposed system supports automatic rule generation. In addition to the integration with
automated processing (i.e., information extraction and transformation) of building code requirements and design
information, and automated logic-based reasoning, both from the state-of-the-art methods, the authors also: (1)
integrated a ruleset expansion method to enable efficient expansion of the range of checkable building code
requirements of the automated building code compliance checking (ACC) systems (Xue and Zhang, 2022); (2)
powered the extraction of building design facts by the state-of-the-art invariant signature-based model validation

ITcon Vol. 28 (2023), Wu et al., pg. 2

algorithm, which significantly extends the extracted information from BIM instance models targeting the matching
with concepts from building codes with high precision and recall (Wu and Zhang, 2022). Invariant signatures are
“a set of intrinsic properties of the object that distinguish it from others and that do not change with data schema,
software implementation, modeling decisions, and/or language/cultural contexts.” (Wu et al, 2021). They can fully
represent the BIM elements and be automatically processed into logic facts; (3) facilitated the automated code
compliance checking process by designing building code requirement representations that are logic-based and
extensible, and building design fact representations that are flexible and generalizable; (4) developed two new
modules based on the SNACC prototype system developed by (Zhang and El-Gohary, 2017), namely, a semi-
automated modification and verification module to refine the logic rules, and an interactive model validation
module to allow developments on generating and correcting logic facts based on input models and building codes;
(5) developed a new activation condition module based on checking the existence of entities that the logic rules
are associated with; and (6) improved several other modules of the existing SNACC system (Zhang and El-Gohary,
2017).

2. BACKGROUND
2.1. Building information modeling for automated code compliance checking

The emergence of BIM as digital representations led to the development of BIM-based automated code compliance
checking tools, such as CORENET e-PlanCheck (Sing and Zhong, 2001), Solibri Model Checker (SMC)
(Khemlani, 2002), DesignCheck (Ding et al, 2006), and Compliance Audit Systems (Dimyadi et al, 2020). The
potential synergy between BIM and automated code compliance checking also drew the attention of many
researchers who have introduced different building code representations that could support automated code
compliance checking systems. For example, (Li et al, 2021) proposed a new defeasible reasoning engine to avoid
over complicated defeasible rules for normative provisions. (Sydora and Stroulia, 2020) proposed a rule-based
language for describing building regulatory requirements in a BIM environment. (ilal and Giinaydim, 2017)
adopted a four-level building code representation (organizational network, information network, detail
representation, and basic data item) to enhance BIM instance models for automated code compliance checking.
(Beach et al, 2015) proposed a semantic mapping method to map IFC entities to concepts in building codes. Some
researchers developed BIM-based automated code compliance checking systems for different types of built
environments. For example, (Xu and Cai, 2020) introduced a semantic schema for heterogeneous data (e.g., ESRI
Shapefiles, textual descriptions) with corresponding RDF converters, and a query mechanism with spatial
extensions, for the detection of non-compliant utility instances by querying RDF data, to support the compliance
checking of underground infrastructures. (Martins and Monteiro, 2013) developed a tool to check the hydraulic
design of water distribution systems and utilized IFC as a standard format of information exchange between BIM
software and their developed tool. Other researchers leveraged the fact that human is more capable of processing
visual signals than processing textual information and proposed to use visual programming language. For example,
(HéauBler et al, 2020) used visual programming language to describe the process to check the compliance of railway
geometry to building code requirements. (Ghannad et al, 2019) proposed an open visual programming language
standard and a building code-neutral representation for supporting a BIM rule-checking platform. (Kim et al, 2019)
developed a visual representation of KBimCode to aid the generation of machine-readable building code
representations. Some research focused on checking the compliance of BIM against target building codes, such as
the Florida Building Code (Nawari, 2019), International Building Code 2009 (Zhang and El-Gohary, 2015), and
New Zealand Building Code (Dimyadi et al, 2016a).

2.2. Logic programming

The formal foundations of logic programming started in the late 1970’s and were further developed in the early
1980°s (Alferes, 1996). With its declarative nature, logic programming became a good candidate for knowledge
representation. In addition, the close relations with deductive databases made logic programming even more
suitable for knowledge representation. Logic programming provides machines with an explicit representation of
the knowledge and makes the reasoning independent from implementations. It is context-free and easy to
manipulate. Among the implementations of logic programming, Prolog (Max, 2013, Spivey, 1996) is the most
widely used logic programming language. It does not require a background in mathematics, logic, or artificial
intelligence (AI) to use.

@ ITcon Vol. 28 (2023), Wu et al., pg. 3

2.3. Part-of-speech

English has eight major POS categories, namely: (1) noun, (2) verb, (3) adjective, (4) adverb, (5) pronoun, (6)
preposition, (7) conjunction, and (8) interjection (Butte College, 2016). Words under the same part-of-speech (POS)
category have the same grammatical or syntactic function (Petrov et al, 2011). POS tagging is a classification task
for POS taggers to classify words into corresponding POS categories (Bird et al, 2009). A word can have multiple
POS categories, and the POS category of a word can vary in different contexts. For example, the word “can” can
be a modal verb or a noun according to its contexts. POS taggers started as rule-based taggers that either use expert-
generated rules (Bird et al, 2009) or algorithm-generated rules (Brill, 1992). Then, the development of machine
learning shifted POS taggers to the use of statistical models, such as Support Vector Machines (Giménez and
Marquez, 2004), Decision Trees (Giménez and Marquez, 2004), or Hidden Mark Models (Brants, 2000). The
advancement of deep learning also leads to the development of POS taggers that use deep learning techniques,
such as Long-short Term Memory (Pota et al, 2019), Recurrent Neural Network (Shao et al, 2017), and attention
mechanism (Cai et al, 2019). Syntactic information carried by POS tags has a wide range of applications in the
construction domain. For example, (Zhou and El-Gohary, 2018) enriched building energy codes by POS tagging
and developed a schema to match objects in BIMs to corresponding objects in building energy codes. (Zhang and
El-Gohary, 2016) leveraged syntactic information with semantic information to automate the extraction of
regulatory information from building code requirements.

3. PROPOSED NEW INVARIANT SIGNATURE, LOGIC PROGRAMING, AND
SEMANTIC NATURAL LANGUAGE PROCESSING (NLP)-BASED
AUTOMATED BUILDING CODE COMPLIANCE CHECKING SYSTEM (I-
SNACC) FRAMEWORK

The authors propose a new framework to create, incorporate, and improve different components of automated code
compliance checking systems to expand the checking range and enhance automation. The new framework is called
an Invariant signature, logic programing, and Semantic NLP-based Automated building Code compliance
Checking (I-SNACC) system framework. While the new system’s name implicates its inheritance from the
SNACC system (Zhang and El-Gohary, 2017) developed, the new system is different in many aspects, such as the
level of inference, the logic rule validation, and the automated building design model pre-processing and validation,
thus I-SNACC improved the degree of automation upon SNACC in the overall ACC process. The workflow for
ACC systems under the I-SNACC framework is shown in Fig. 1. It also shows how the system processes the inputs
and interacts with the users to generate the final compliance report. The inputs include an ontology, building codes,
and IFC-based building design models.

Input: Buildi
/ Input: Ontology / / “pu(‘odl:-: e /
‘ [
i

Convert Building Codes

into Logic Rules Lupuiz LFC:Model /

1

[%% o Raline v ﬂ Model Validation for Input: Additional
.‘Lscr Refmenent Lagic Rule Reflilatriont GUI Target Concepts Information from User

Generate Activation
Conditions

‘ Generate Logic Facts |

l

Execution of Building
Codes on Selected Model

l

Generate Compliance
Checking Report

Output: Compliance
Checking Results

Fig. 1: The workflow of the new I-SNACC system framework.

@ ITcon Vol. 28 (2023), Wu et al., pg. 4

To implement such a system, the authors proposed a new eight-step process to produce desirable results, as shown
below.

1. Setup environment and identify system functions
Connect to refined logic rule generation module
Develop logic rule modification module

Develop new activation conditions module
Develop model validation module

Expand and verify the rule execution module

Connect to compliance checking report generation module

e T e R

System testing and iterative improvement

In each step, one module of the system was either developed, connected, or refined. Graphical User Interfaces
(GUI) were developed to interact with users, i.e., to present the information and allow the users to select and
modify the information.

3.1. Set up environment and identify system functions

Before solving a problem, it is always important to clarify the problem. In this research, the integrated system
needs to include and organize all necessary system functions, such as building code selection, generation,
refinement; model selection, validation; logic facts generation; rule execution, and reports generation. It is essential
to achieve those functions by reusing existing modules as much as possible, developing additional modules as
necessary, and checking for compatibility during the integration process. To realize such a seamless integration
process, each step and function of the system needs to be clearly identified and clarified. For the I-SNACC system
framework to achieve success in automated building code compliance checking, each function needs to work
correctly and generate expected intermediate results.

3.2. Connect to refined logic rule generation module

Building code requirements are represented as logic rules in the system. The system utilizes a set of pattern
matching-based rules proposed by (Zhang and EI-Gohary, 2016) to convert building code requirements from
natural language to Horn-Clause-type logic sentences. Pattern matching-based rules utilize syntactic and semantic
features, such as POS tags, gazetteer lists, and phrasal structure tags, to extract regulatory information from
building codes by matching texts in building codes with discovered patterns. Both syntactic and semantic
information of building codes were considered in the extraction patterns of regulatory information. For example,
the word “height” is recognized as a noun with its POS tag “NN” (i.e., POS tag for “singular or mass noun”). The
word “minimum” in the phrase “minimum clearance” indicates clearance must be equal to or greater than a certain
threshold because the word “minimum” carries this semantic meaning in English. Horn-Clause-type logic
sentences are a structured format that can avoid ambiguity and support automated logic reasoning. To extend the
range of checkable building codes, a ruleset expansion method was developed (Xue and Zhang, 2022), which
introduces new pattern matching-based rules to an existing ruleset iteratively. New pattern matching-based rules
were developed to capture regulatory information that was missed by the existing ruleset in a sample building code.
New pattern matching-based rules were added one at a time until the ruleset identified all regulatory information
in the sample building code. The new pattern matching-based rules met two criteria: (1) valid, and (2) general.
Valid pattern matching-based rules do not generate logic rules that they are not designed to generate. General
pattern matching-based rules need to be applied at least two times in the sample building code. The original ruleset,
for example, lacked patterns for extracting regulatory information regarding the comparative relationship between
two candidate subjects, thus a corresponding pattern and rule were created. The pattern in the rule is “candidate
subject (potential building components that need to be checked), relation verb (verb that describes the relation
between subjects or attributes), inter clause boundary relation (conjunction word that connects two clauses),
candidate subject.” This rule extracts building code requirements from sentences that contain the pattern. For
example, the following sentence in Section 505.2.1 of the IBC 2015 matches the rule: “The aggregate area of
mezzanines in buildings and structures of Type I or Il construction shall be not greater than one-half of the floor
area of the room in buildings and structures (candidate subject) equipped throughout (relation verb) with (inter

ITcon Vol. 28 (2023), Wu et al., pg. 5

clause boundary relation) an approved automatic sprinkler system (candidate subject) in accordance with Section
903.3.1.1 and an approved emergency voice/alarm communication system in accordance with Section 907.5.2.2.”
(IBC, 2015). The rule is valid because it only generates logic rules it was designed to generate. It is also general
because it was applied in another sentence in Section 1019.3 of the IBC 2015: “Exit access stairways and ramps
in buildings (candidate subject) equipped throughout (relation verb) with (inter clause boundary relation) an
automatic sprinkler system (candidate subject) in accordance with Section 903.3.1.1, where the area of the vertical
opening between stories does not exceed twice the horizontal projected area of the stairway or ramp and the
opening is protected by a draft curtain and closely spaced sprinklers in accordance with NFPA 13.” (IBC, 2015).
In previous research (Xue and Zhang, 2022), 64 new rules were added into an existing ruleset to extend it to
support two additional chapters of building codes. The original ruleset contained 306 rules. In the extension, one
chapter of the building code was used as training data, and another chapter was used as the testing data. It is logical
to extrapolate that at most 64 additional rules are needed to cover one more chapter of building codes and this is
going to further decrease as more chapters are used in training. However, the exact number also depends on the
length of a chapter. The experiment in the previous chapter does not reach 100% precision, recall, and F1-score.
Therefore, the expanded ruleset is not saturated yet. However, the rapid decrease in the marginal cost of covering
additional building code chapters (from the original 306 to the 64) shows the future saturation of the rules is
promising.

3.3. Develop logic rule modification module

While the refinement of the logic rule generation module had significantly improved the logic rules to be closer to
what a practical system needs, manual improvement of logic rules is still needed to fix the remaining errors as the
automatically generated logic rules did not achieve 100% accuracy. However, such manual effort is minimal.
Therefore, a manual rule-refinement module was introduced. The errors in the automatically generated logic rules
are not extensive. This manual effort in refining the rules is much less than the otherwise manual effort in creating
the rules from scratch. While this step involves the users modifying the rules manually, automation is leveraged
to minimize the needed manual effort. For example, the module can conduct programming language grammar and
syntax checks, format checks, and validity checks on all logic rules automatically. This step is designed for
developer users, not for end-users who have less background in logic programming. Developer users are domain
experts who are familiar with construction regulatory requirements and logic rule generation. In contrast, the
system does not expect end-users to have any expertise in logic rule generation, as the logic rules refined by the
developer users can be directly used by the system for automated reasoning. The system is expected to function
with similar performance on other building code chapters with manual adaptations, and the needed adaptations are
expected to gradually decrease as more development and testing is performed.

3.4. Develop new activation condition module

To allow the execution of the logic rules on the building design logic facts in a controlled manner, it is essential
to generate activation conditions. Activation conditions are the logic clause representations that check the existence
of entities that the logic rules are associated with. Such activation conditions can help identify and prevent false
positives (i.e., detected non-compliant cases that are not really non-compliant) caused by missing information. For
example, if a model does not contain any mezzanine, then the building code (in logic rule format) about the size
of the mezzanine should not be activated for checking, which will prevent a false-alarm non-compliance case. In
order to check the existence of the entities, it is essential to recognize target entities. The I-SNACC system
framework supports instance level checking and reporting, i.e., for each rule, all correspondingly related entities
are checked and reported. Thus, an algorithm to identify the target entities to be checked is needed. The target
entities also need to satisfy certain preconditions. For example, a requirement on the spaces with occupant loads
greater than 500 should not be applied to all spaces. The “occupant load greater than 500” is therefore a
precondition of the target entity (i.c., space). In summary, the activation condition generation module is required
to (1) identify the entities being checked, (2) identify preconditions of checking the entities, (3) generate logic
clauses that can link, select, and filter the entities, i.e., by using identified preconditions, and (4) develop linking
functions to record all the identified entities.

3.5. Develop model validation module

The model validation module checks for target concepts from building codes and identifies missing information
in the building design model (in order to be checked with the building codes).

@ ITcon Vol. 28 (2023), Wu et al., pg. 6

The model validation module processes IFC models into invariant signatures. The invariant signatures preserve
geometric and locational information of the elements from the input BIM model, and can be matched to target
concepts in building codes. The model validation process is based on the method presented in (Wu and Zhang,
2022). The developed model validation module classifies target building code concepts into the following four
categories: (1) explicit concepts, which are “directly generable from the BIMs”; (2) inferable concepts, which “can
be heuristically inferred from the explicit information in the model with consistency”; (3) user-assisted concepts,
which “require user judgment”; and (4) system defaults, which are “not representing actual objects from a building
design” (Wu and Zhang, 2022). For explicit concepts, the matching is straightforward. For example, a wall object
from IFC (e.g., represented as an IfcWallStandardCase) can be used to directly generate an instance of the wall
concept with all relevant attributes such as length, width, and thickness. For inferable concepts, the algorithm uses
heuristic rules to infer the target information such as those for a main entrance. One possible heuristic rule for
identifying the main entrance is that it should be a door opening (typically the largest) sitting at the boundary of
the building on the first floor. For user-assisted concepts, a graphical user interface (GUI) will guide users to input
the missing information, for which the needed user input is minimized based on automated inference to the extent
possible. For system default concepts, no action is needed as these concepts do not directly map to BIMs and are
only needed in the later reasoning process (Wu and Zhang, 2022). The authors utilized these target concept
matching algorithms to conduct model validation for the selected building design model. During this process, each
instance of a target concept is identified, with and without the help of user inputs. Then all the matched information
is converted to logic facts to represent the building design models with enriched information for code checking. In
summary, this module takes logic rules (i.e., representing building code requirements) and BIM instance models
(i.e., representing building design) as input, and output logic facts that are ready to be used for checking with the
logic rules.

3.6. Expand and verify the rule execution module

To execute the checking and detect non-compliance cases, three sources of input are fed to the execution module:
(1) logic rules, (2) logic facts, and (3) activation conditions. During this step, all compliance and non-compliance
cases can be detected automatically through logic reasoning.

The execution starts with activation conditions. The activation conditions select and filter logic facts of target
concepts based on encoded preconditions. The logic facts that do not meet the preconditions are eliminated to
prevent the otherwise resulted false-positive non-compliance cases. The logic facts that meet the preconditions are
then checked by the corresponding logic rules. For each filtered entity in the logic facts, logic rules are executed
on that entity to detect non-compliance cases. In this way, the I-SNACC system framework can check for design
facts’ instance level compliance, i.e., each instance of a target building code concept is checked for any possible
non-compliance case related to that instance. For example, for the target concept “egress”, every egress of the
input building design model is detected and checked against rules related to egresses. To represent the checking
result, a list is generated for each rule to store the compliance and non-compliance cases corresponding to that rule.
In summary, the execution module takes the logic rules, logic facts, and activation conditions as input, and output
lists of compliance checking results, in which each rule corresponds to a list and each instance of a target concept
corresponds to an element in the list.

3.7. Connect to compliance checking report generation module

After the execution of the logic rules on the logic facts, a report of the compliance checking result will be generated.
Because the reporting format and content was changed from the SNACC reporting module (Zhang and El-Gohary,
2017), the algorithms of the SNACC reporting module were not reused. As the directly generated results from the
logic reasoning process contain lists of compliance and non-compliance cases, the system needs to convert the
lists of compliance checking results into human-readable outputs. To achieve that, the results are linked with the
corresponding building code requirements in the original text (instead of logic rules), because the end users are
not expected to have a background in logic programming or be able to interpret logic clauses.

In summary, the goal of the report generation module is that the users without any background in logic
programming or computer programming in general are able to see and understand the original building code
requirements and their corresponding results.

@ ITcon Vol. 28 (2023), Wu et al., pg. 7

3.8. System testing and iterative improvement

To test the functionality of the proposed I-SNACC system framework, both the usability of each system function
and the connection between different system functions shall be tested. For example, after changing a selected
building design model in the system, the subsequent modules, such as the model validation module, shall all update
the selected model accordingly.

In addition to checking the connection between adjacent functions, the independence between different functions
shall also be tested. For example, although building design models are processed after building codes, given that
the building code processing and building design model processing are relatively independent, the I-SNACC
framework should still allow users to change the building code inputs even after modifying the logic facts. In
summary, the system should allow certain flexibility for users to jump around to different functions. For any error
identified in this step when using the training models, such as compilation error due to human input, inaccurate
results due to inaccurate logic rules or activate conditions or logic facts, the [-SNACC framework is applied to fix
the error until the system can achieve 100% precision and 100% recall in non-compliance detection on the training
models. Then the system can be evaluated on testing models for final evaluation.

4. EXPERIMENT

The authors followed the proposed framework and developed an I-SNACC system that incorporated building code
processing, building design model processing, and building code checking execution and reporting functions. The
authors used three real-world project models to conduct the training, and tested the results on two additional real-
world models. The testing models were held out during the training period. The authors selected Chapter 10 of the
IBC 2015 (IBC, 2015) as the rule bases, which contains many spatial relations and quantitative rules. Aligned with
the previous SNACC system, the -SNACC system also focuses on checking quantitative requirements. Qualitative
requirements are out of the scope of this study and could be pursued in future research.

4.1. Set up environment and identify system functions

The authors chose Java as the main language for the integrated system because most existing functions were written
in Java, such as invariant signature extraction and object classification in the model validation module (Wu and
Zhang, 2022). The IFC processing toolkit (Apstex, 2018) provided libraries to interact with IFC models, and the
ProcessBuilder library (Oracle, 2020a) can run Python scripts that some other modules were developed in.

The authors analyzed and summarized ten functions in the I-SNACC system as follows, in comparison with the
predecessor SNACC system (Zhang and El-Gohary, 2017). Labels are added to show if the functions are newly
added, reused, or modified from the predecessor SNACC system.

1. Select the ontology to use (for processing building code) (reused)
Select the building codes (reused)
Process building codes and generate logic rules (modified)

Verify the logic rules (new)

2
3
4
5. Generate activation conditions (modified)
6. Select the design model to check (reused)

7. Validate the design model (new)

8. Allow user to input missing information (new)

9. Generate logic facts (modified)

10. Check compliance and generate report (modified)

These functions are high level breakdown of the system functionality. During the experiment of applying the
proposed eight-step process under the [-SNACC framework, these ten functions were achieved. A breakdown of
the functions developed during each step is shown in Fig. 2.

@ ITcon Vol. 28 (2023), Wu et al., pg. 8

Step 1 Set up environment and identify system functions N/A
1. Select the ontology to use
Step 2 Connect to refined logic rule generation module 2. Select the building codes
3. Process building codes and generate logic rules
Step 3 Develop logic rule modification module 4. Verify the logic rules
Step 4 Develop new activation condition module 5. Generate activation conditions
6. Select the design model to check

7. Validate the design model

Step 5 Develop model validation module
8. Allow user to input missing information
9. Generate logic facts
Step 6 Expand and verify rule execution module
10. Check compliance and generate report
Step 7 Develop report generation module
Step 8 System testing and iterative improvement N/A

Fig. 2: System functions and their development under the proposed I-SNACC framework.

To develop the system functions in the prototype environment, the authors modified the main GUI panel from the
predecessor SNACC system (Zhang and El-Gohary, 2017) to connect all the ten functions (Fig. 3). In addition to
the ten functions that the users can click the corresponding buttons to activate, the main panel also included a text
field that could display the outputs for showing the progress or instructions of the next steps. With the main GUI
panel, the environment was set up and ready to be developed with actual functions.

&/1-SNACC - Ivarsint Signature and Semantic NLP-Based Automated Building Code Compliance Checking - o x

15ekect the Ontology to ke 1. Process Buikding Codes 5. Generate Activation Conditi.. 7.validate the FC Model 9. Generte Log Facts

10. CHECK COMPLIANCE

2 Selkedt the Builling Code 4. Verify the Logic Rukes 6.5elkect the IFC Model to Check 8. Input Missing informatlon

Fig. 3: A prototype of the I-SNACC system.
4.2. Connect to refined logic rules generation module

The rule generation module was implemented in Python 2 (Van Rossum, 2007), because the module adopted many
NLP packages, which were well developed in Python. In contrast, the I-SNACC system used Java in most of the
components. To allow full automation, the system incorporated the rule processing module into the java-based I-

ITcon Vol. 28 (2023), Wu et al., pg. 9

SNACC system using the operating system processes creation package (Oracle, 2020a) for connecting Java to
Python scripts.

The authors implemented I-SNACC system processes to enable the selection of building code being checked, the
selection of the ontology that the module needs, and execution of the developed Python scripts, of the refined logic
rule generation module. Then the system reads and displays the outputs from the module. To store the intermediate
results, the authors created a temporary file to store the generated logic rules for further processing. This was
needed because in the iterative improvement of Step 8, the temporary file would allow jumping to the current
module from different functions.

4.3. Develop logic rule modification module

As described in the proposed framework section, the existing logic rule generation module did not generate 100%
accurate results for the logic rules yet, so it is crucial to have a correction module to allow developer users to fix
any potential error in the automatically generated logic rules. The basic functions of the logic rule modification
module included: (1) presenting the current logic rules, (2) modifying and saving the current logic rules, and (3)
jumping between different rules. More importantly, the logic rule modification module shall conduct automated
checking and validation on the provided rules to achieve semi-automated rule modification.

For the three basic functions, the authors developed a user-friendly GUI in the system with default options in
accordance with user habits. For example, by default, after modifying one logic rule, its immediate next logic rule
will be displayed. Another critical function is jumping forward and backward to different rules, e.g., the GUI shall
allow users to jump back to a previous logic rule or jump to any logic rules identified by their rule numbers.

As a result, the authors developed the logic rule refinement GUI with six buttons (Fig. 4), one display window for
displaying messages, and another console window for taking refined logic rules input. The six buttons’ functions
are as follows:

1. Go to the next rule and print that rule
Fix the current rule by replacing the original rule with the user typed input

Go back to the previous rule and print that rule

2

3

4. Jump to any rule with a user input rule number

5. Print all logic rules for easy inspection of all the clauses
6

Save current rules and exit the program
1. Next Rule 3. Previous Rule 5. Print All Rules

2. Fix Current Rule 4. Goto ([Rule Number) 6. Save & Exit

Fig. 4: The developed GUI for logic rule refinement module.

To promote automation in rule validation and ensure that the users’ input is compatible with the system, a rule
checking and validation system was embedded in this module.

For grammar, syntax, and format checking, firstly, the input rules must follow a predefined naming standard, e.g.,
that the rule must start with “compliance of ,” otherwise an error message “Please enter rule following the format:
compliance_of xx(Var):- conditions.” would be prompted to the developer user. Second, the rule cannot share the
same name with other existing rules in the system, which can cause system errors in interpreting the rules, e.g.,
two rules about hardware should start as “compliance_hardwarel” and “compliance_hardware2” to differentiate
them. Third, the predicate for each rule clause cannot use built-in keywords in the backbone B-Prolog language
(Zhou, 2014). For example, although “exif” is a common concept in a building design, the word “exif” cannot be
used as a predicate name as it is a built-in predicate to indicate the termination of a logic program in B-Prolog
(Zhou, 2014). Alternatively, “exit ” or “exits” can be used. For example, “exit (Exit)” and “exits(Exits)” for one
or multiple exits are allowed in the rule, and “exit(Exit)” cannot be used. Last but not least, a simulation run of the
rule is conducted to check for additional syntactic issues, to ensure the rule can compile without any unexpected

ITcon Vol. 28 (2023), Wu et al., pg. 10

errors. This is done by checking if the logic rule can return true when each conjunct in the body of the rule is true.
In this way, common mistakes such as missing a comma, unbalanced parentheses, invalid variables, and

inconsistency or typos can be detected and resolved.

In addition to the four checking considerations above, the authors

also conducted a validity check for the logic

rules using graph theory methods to automatically build graphs composed with nodes and edges. Taking Rule 66

(Fig. 5) for example. In one version of the logic facts, the predicate
shows a visualization of the graphs by representing nodes as circles

“provided(Space, Exits)” was missing. Fig. 6
, and edges as bi-directional arrows. This rule

was grammatically correct, but it will not function as expected because the conditions that limit the exits within
certain spaces do not take effect without the clause “provided(Space, Exits)”. This will result in applying the rules

to all exits, whereas the rule was expected to only apply to a subs

et of them. To achieve the validity checking

function, the authors used a graph theory method to build each statement as a node, and build each variable as a
bi-directional edge to conduct breadth-first-search (BFS) traversal. If each node on the graph can be traversed from
any other node, then the rule is connected. For the graph that is not connected, the system was developed to prompt
the user with validation error messages saying that the rule is not valid because of the separation of logic clause
elements. With the automated checking function, rule modification can be finished more efficiently by further

saving otherwise needed manual effort in checking and verification.

Fig. 5: Rule 66 from the logic ru

les.

(exits (Exits);
exit_access_doo
rways (Exits))

f

Space|

Exits

provided (Space, v
Exits) !

number_of (Exits,
Number_of exit
s),

occupan
(Occupa

Number_of_exits Occupant_load

greater_than_or_
equal_to(Numbe
r_of_exits, 3).

(Occupa

One))

Fig. 6: Graph representation of Rule 66 for validity check.

greater_than

quantity(501,

space (Space)

with (Space,
Occupant_load)

t_load
nt_load)

Occupant_load

not greater_than
(Occupant_load,
quantity(1000,
One))

nt_load,

s

ITcon Vol. 28 (2023), Wu et al., pg. 11

4.4. Develop new activation conditions module

The authors developed activation conditions based on the identification of the target checking entity, which is
usually the subject of a sentence. In the activation condition generation module, a refined logic rule was processed
in four steps: (1) identify checking target, (2) identify checking pre-conditions, (3) generate activation clauses for
pre-condition validation, and (4) generate activation clauses for results recording.

For example, for Rule No. 12 (Fig. 7) in the refined rules, “Means of egress” is the checking target. The checking
pre-conditions are the “means of egress(Means of egress)”, “ceiling height(Ceiling height)”, and

“has(Means_of egress, Ceiling height)”. The activation conditions used the “findall” statement to check all
egresses, and then filtered them by the pre-conditions. The qualified instances would be stored in a list L. Then for
each instance in the list L, the rule was activated, and the filtered instances could be reported using the “javeMethod”
to call the corresponding result recording function “record” in Java. The “record” function can record the result of
compliance checking of the instance, with “1” representing true and “0” representing false.

s
compliance_of_Ceiling_height_12()3
means_of_egress(¥
ceiling_height()4
has (,),
less_than(, quantity(90,))
Cion (
compliance_of_Ceiling_height_12_act()+
findall(’
(means_of_egress()5
ceiling_height()i
has (; i3
)y
(X in L,
(compliance_of_Ceiling_height_12(X)
javaMethod(,record(X,1)):

javaMethod (ACC, record(X,0)))).

Fig. 7: Logic Rule No. 12 with its original text and generated activation conditions.
4.5. Develop model validation module

In this step, the authors developed the validation module to incorporate the model validation method (Wu and
Zhang, 2022) into the I-SNACC system. For this step, Functions 6 to 9 shown in Fig. 2 were implemented.
Function 6 “Select the design model to check” was developed using the Java file input and output packages (Oracle,
2020b), the user can select an IFC model to be validated. For the validation process, the system incorporated the
developed model validation algorithm that processes IFC models into invariant signatures to match the following
four categories of target concepts. For explicit concepts, the algorithm was able to generate logic facts directly
based on invariant signatures. For inferable concepts, the algorithm was able to conduct inferences based on the
invariant signatures and then generate logic facts. For user-assisted concepts, the algorithm would create simple
multiple-choice questions for the user to input corresponding information. This function ensures the input from
users is minimal. The interaction with users was achieved by a simple GUI with a textbox for output and a textbox
for input (Function 8). For system defaults, the algorithm generated those clauses and set them to true by default,
as they do not directly interact with compliance checking result, therefore this will not affect the validity of the
test results. The authors incorporated and connected the model validation module and adapted it to Functions 6-9
of the I-SNACC system. With this module, logic facts can be generated to represent all needed building design
information to check.

@ ITcon Vol. 28 (2023), Wu et al., pg. 12

4.6. Expand and verify the rule execution module

The authors developed logic facts expansion algorithms for creating relations that connect concepts together. For
example, “lead_directly to(Exterior_exit_doors, Exit_discharge)” was a relation specifying that the exterior exit
door must lead directly to the exit discharge, and this was implemented by checking if the egress was connected
directly to the outside. Another example is the “within(Door opening, Dwelling unit).” This predicate was
implemented by iterating all the dwelling units and checking if any door is inside or at the boundary of the unit.
The checking is performed by analyzing the geometric and locational information using invariant signatures. With
the expanded logic facts, the logic rules that represent requirements from building codes were ready to be executed.
The predicate was generated using invariant signatures with the algorithms implemented in Java directly, as the
values were already hashed in the memory in the previous module. The authors used a data-driven approach to
expand relations and developed a total of 14 new relations. While each time there is a new relation predicate there
needs to be such a development, those relations are reusable by different concepts and different chapters. As the
development covers more training code chapters, the relational predicates will be accumulated and eventually
become comprehensive to cover any codes.

4.7. Connect to compliance checking report generation module

After the rule execution module for applying the logic rules to the logic facts, the authors developed a new report
generation module for reporting the compliance checking results.

Each generated report started with the description and statistics of the compliance checking. Then for each non-
compliance case, the corresponding information is reported. For each non-compliance case, the system was able
to display the violating entity, the violated logic rule, and the corresponding building code requirement. Fig. 8
shows an example of the report. The values of the violating object can be checked by observing its invariant
signatures.

System found 1 non-compliance

Mon-compliace 1:
Door 9 (1gPjXNLEr8rRF28rPA_nZA) and Rule 12

Rule 12:
compliance_of_Ceiling_height_12{Ceiling_height)-means_of_egress(Means_of_eqgress), ceiling_height(Ceiling_height),
has(Means_of_egress,Ceiling_height), not less_than(Ceiling_height, quantity(30, inches))

Building Code:
The means of egress shall have a ceiling height of notless than 7 feet 6 inches (2286 mm).

r----Finished Step 11-----

Fig. 8: Example report presenting one non-compliance case.

4.8. System testing and iterative refinement

The authors manually developed 60 non-compliance cases by adding or deleting objects and modifying the
dimensions of objects in the training models, with 20 cases for each model. Modifying existing real-world projects
provides more realistic cases than creating completely new models from scratch for non-compliance detection
(Engels and Walz, 2018). During the iterative refinement of the system components, the system was able to achieve
100% precision and recall in non-compliance detection, improved from 51.7% precision and recall in the first
iteration. Table 1 shows the corresponding results. Table 2 shows a few examples of the non-compliance cases
detected. Compared to a manual development, the developing time was reduced from 24.23 minutes per non-
compliance case to 13.22 minutes per non-compliance case (45.4% time saving), which is expected to further
decrease as more code chapters are covered in further development. Compared to a manual compliance checking,
the running time was reduced from 2.47 minutes per non-compliance case to 0.04 minutes per case (98.4% time
saving).

@ ITcon Vol. 28 (2023), Wu et al., pg. 13

Table 1. Compliance checking results on training data

Model Non-compliance count (count Precision Recall
without manual modifications)

Italian Restaurant 20 (11) 100% (55%) 100% (55%)

Warehouse 20 (7) 100% (35%) 100% (35%)

Convenience Store 20 (13) 100% (65%) 100% (65%)

Total 60 (31) 100% (51.7%) 100% (51.7%)

Table 2. Example non-compliance cases detected

Model Example non-compliance Description
Italian Restaurant Rule 12 Compliance of ceiling height. Door 9 is less than 90 inches high.
Warehouse Rule 294 Compliance of clear width. The width of door 4 is less than 32 inches.

. Compliance of occupant load. There are less than 3 (found 2) egresses for
Convenience Store Rule 66 .
a space with an occupant load of 681.

5. RESULTS AND ANALYSIS

The system was successfully integrated and tested on the three training models. To validate the robustness of the
system, the authors tested the system on two testing models, which were unseen and not used during the
development phase. The precision and recall of those two models can reflect the robustness of the system.
Comparing to 40 non-compliance cases in the testing models, the system was able to detect 42 non-compliance
cases. Among the 42 detected non-compliance, 40 were correct. As a result, 95.2% precision and 100% recall were
achieved on the testing data. Table 3 shows the detailed results.

Table 3. Compliance checking results on testing data

Model Non-compliance count Gold standard Precision Recall
Fast-food Restaurant 20 20 100% 100%
Hotel 22 20 91% 100%
Total 42 40 95.2% 100%

Our error analysis found that the error occurred because of an imperfection in the logic facts. In the hotel model,
two interior doors were mistakenly treated as egresses, which caused the requirements for the egresses to be
mistakenly applied to them. As a result, two false alarm non-compliance cases were reported.

There are at least two methods to fix the error. First, the error can be prevented by manually checking and
modifying the logic facts prior to the final rule execution. Theoretically, all possible errors can be fixed manually
by an expert in logic reasoning and compliance checking. While this approach is not desired, the current framework
can still significantly reduce the manual efforts during that checking. The verification of logic facts is still much
easier compared to generating them from scratch. As a result, the automation of the ACC is still significantly
improved. Alternatively, the error could be fixed by perfecting the model validation module. The state-of-the-art
model validation method can generate logic facts with an accuracy of 99% (Wu and Zhang, 2022). With 100%
accuracy, such errors in checking can be avoided.

6. CONTRIBUTIONS TO THE BODY OF KNOWLEDGE

The authors proposed a new automated building code compliance checking framework, namely the I-SNACC
system framework. First and foremost, this new framework promotes automation of ACC by developing a semi-
automated approach to help validate the logic rules, for which the current SNACC system requires significant
manual efforts. The developed I-SNACC system under this framework has a logic rule modification module with
automated checking on grammar, syntax, format, and validity. Comparing to the state-of-the-art systems, this new

@ ITcon Vol. 28 (2023), Wu et al., pg. 14

logic rule modification module can significantly reduce the needed manual efforts in the refinement of logic rules,
by saving 45.4% of the time in rule refinement. Second, the new system incorporated a model validation module,
which only requires minimal input from users about the building design models. The model validation module can
make full use of the model’s existing information and combine it with user input to generate extended logic facts
needed for ACC, instead of manual conversion in the current SNACC system and other similar systems. Third, the
authors refined and developed several other modules, such as a new activation conditions module, which can
identify the entity being checked and use pre-conditions to help perform instance-level compliance checking with
the rules. Last but not least, the system architecture integrated the state-of-the-art works and separated the functions
from ACC modules under the new I-SNACC framework, so the system is easier to expand with more building
codes. Each module and function of the system became relatively independent, to allow future improvements on
each module. Most importantly, the authors demonstrated through an experiment that by integrating all
advancements as mentioned above in our I-SNACC system, a 100% recall in non-compliance detection was
achieved. Such contribution is critical to help bring fully automated building code compliance checking to practice.

7. CONCLUSIONS

The authors presented a new framework to develop an integrated system for ACC. The framework incorporated
several computing modules, such as interactive rule modification module, and invariant signature-based model
validation module. With the newly developed modules, more logic reasoning can be performed automatically.
Under the proposed framework, an ACC system - the I-SNACC system was successfully implemented with ten
functions designed for developer users and end-users. Each of the functions was implemented and tested to
function as expected. For the testing data, the system achieved 95.2% precision and 100% recall in non-compliance
detection. The high precision and recall showed that the new framework has great potential in producing a fully
automated compliance checking system for all building codes in the future.

8. LIMITATIONS AND FUTURE WORK

The authors evaluated the implemented system on Chapter 10 of the International Building Codes 2015 (IBC,
2015). While the prototype system showed excellent results in this Chapter 10, which implied good potential on
the other chapters, this system still needs to be further tested on more chapters.

Although the proposed framework could promote automation in building code compliance checking by saving
45.4% of manual rule refinement time, some of the development still involved manual efforts, such as in modifying
logic rules (by developer users). This will be the case until the ruleset becomes saturated, which will still require
more development and testing for an extended period of time in the foreseeable future. An ideal system should be
able to automatically generate correct logic rules based on input building codes. In addition, the system still
requires manual development of pattern matching-based rules in model validation to expand the range of checkable
building code requirements. We do not intend the I-SNACC systems to have perfect automation coverage for now.
However, 100% recall in non-compliance detection was achieved in the testing results. It is acknowledged that full
automation still has a long way to go. The main barrier is machine’s limited understanding of building codes, and
the ambiguity of natural languages in general. Allowing the system to fully understand the building codes requires
further development on the related NLP techniques. That is one of the goals of general artificial intelligence, which
is beyond the scope of this paper but could be part of the envisioned future research.

ACKNOWLEDGEMENT

The authors would like to thank the National Science Foundation (NSF). This material is based on work supported
by the NSF under Grant No. 1827733. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the NSF.

REFERENCES
Alferes J.J. (1994). Reasoning with logic programming. Springer, Berlin Heidelberg.
Apstex. (2018). IFC framework. <www.apstex.com> (Jul 29, 2021).

Beach T. H., Rezgui Y., Li H. and Kasim T. (2015). A rule-based semantic approach for automated regulatory
compliance in the construction sector. Expert Systems with Applications, 42(12), 5219-5231.

@ ITcon Vol. 28 (2023), Wu et al., pg. 15

https://www.sciencedirect.com/science/article/pii/S0926580522001030?casa_token=h9WWDdFgZswAAAAA%3AC2Q3Nit_f-_9an8P3gCkcNpmrjoirLdLWig5-mr2WRLtXtsBbpVypRgyahu0K_fd2zulbIqD>s0005
http://www.apstex.com/

Bird S., Klein E. and Loper E. (2009). Natural language processing with Python: analyzing text with the natural
language toolkit. O'Reilly Media, Inc.

Brants T. (2000). TnT: a statistical part-of-speech tagger. Proc., sixth conference on Applied natural language
processing, Association for Computational Linguistics, 224-231.

Brill E. (1992). A simple rule-based part of speech tagger. Proc., third conference on Applied natural language
processing, Association for Computational Linguistics, 152-155.

Butte College. (2016). The eight parts of speech.
<http://www.butte.edu/departments/cas/tipsheets/grammar/parts of speech.html>. (Sep 11st, 2019).

Cai X., Dong S. and Hu J. (2019). A deep learning model incorporating part of speech and self-matching
attention for named entity recognition of Chinese electronic medical records. BMC Medical Informatics
and Decision Making, 19(2), 65.

Dimyadi J. and Amor R. (2013). Automated building code compliance checking - where is it at? Proc. 19th Int.
CIB World Build. Congress, Brisbane, Australia.

Dimyadi J., Clifton G., Spearpoint M. and Amor R. (2016a). Computerizing regulatory knowledge for building
engineering design. Journal of Computing in Civil Engineering, C4016001.

Dimyadi J., Pauwels P. and Amor R. (2016b). Modelling and accessing regulatory knowledge for computer-
assisted compliance audit. /Tcon, Special issue CIB W78 2015 Special track on Compliance Checking,
21, 317-336.

Dimyadi J., Davies K., Fernando S. and Amor R. (2020). Computerising the New Zealand building code for
automated compliance audit. Proc., 6th New Zealand Built Environment Symposium, New Zealand.

Ding L., Drogemuller R., Rosenman M., Marchant D. and Gero J. (2006). Automating code checking for
building designs-DesignCheck. Clients Driving Innovation: Moving Ideas into Practice.

Eastman C., Lee J., Jeong Y. and Lee J. (2009). Automatic rule-based checking of building designs. Automation
in Construction, 18(8), 1011-1033.

Engels, Anita, Walz, Kerstin 2018. Dealing with multi-perspectivity in real-world laboratories: Experiences from
the transdisciplinary research project urban transformation. Gaia (Heidelberg, Germany), 2018, 27(S1).

Ghannad P., Lee Y., Dimyadi J. and Solihin W. (2019). Automated BIM data validation integrating open-standard
schema with visual programming language. Advanced Engineering Informatics, 40, 14-28.

Giménez J. and Marquez L. (2004). Fast and accurate part-of-speech tagging: The SVM approach revisited.
Recent Advances in Natural Language Processing III, 153-162.

HauBler M., Esser S. and Borrmann A. (2020). Code compliance checking of railway designs by integrating
BIM, BPMN and DMN. Automation in Construction, 121, 103427.

Hjelseth E. and Nisbet N. (2011). Capturing normative constraints by use of the semantic mark-up RASE
methodology. Proc., CIB W78-W102 Conference, 1-10.

Ilal S. M. and Giinaydin H. M. (2017). Computer representation of building codes for automated compliance
checking. Automation in Construction, 82, 43-58.

International Code Council. (2015). International Building Code. International Code Council, Falls Church, VA.
International Code Council. (2000a). International Fire Code. International Code Council, Falls Church, VA.

International Code Council. (1996). International Mechanical Code. International Code Council, Falls Church,
VA.

International Code Council. (1995). International Plumbing Code. Building Officials and Code Administrators
International, Country Club Hills, IL.

International Code Council. (2000b). International Residential Code for One-and two-family Dwellings.
International Code Council, Falls Church, VA.

@ ITcon Vol. 28 (2023), Wu et al., pg. 16

http://www.butte.edu/departments/cas/tipsheets/grammar/parts_of_speech.html

Khemlani L. (2002). Solibri model checker. Cadence, Austin,32-34.

Kim H., Lee J.K., Shin J. and Choi, J. (2019). Visual language approach to representing KBimCode-based Korea
building code sentences for automated rule checking. Journal of Computational Design and Engineering,
6(2), 143-148.

Li B., Schultz C., Dimyadi J. and Amor R. (2021). Defeasible reasoning for automated building code compliance
checking. Proc., ECPPM 2021-eWork and eBusiness in Architecture, Engineering and Construction:
Proc., 13th European Conference on Product & Process Modelling (ECPPM 2021), 15-17 September
2021, Moscow, Russia, CRC Press, 229.

Lee Y.C., Ghannad P., Dimyadi J., Lee J.K., Solihin W. and Zhang J. (2020). A comparative analysis of five rule-
based model checking platforms. Proc., Construction Research Congress 2020, ASCE, Reston, VA,
USA, 1127-1136.

Max B. (2013). Logic programming with Prolog. Springer, London.

Martins J. P., and Monteiro A. (2013). LicA: A BIM based automated code-checking application for water
distribution systems. Automation in Construction, 29, 12-23.

Nawari N. O. (2019). A generalized adaptive framework (GAF) for automating code compliance checking.
Buildings, 9(4), 86.

Oracle. (2020a). Class ProcessBuilder.
<https://docs.oracle.com/javase/7/docs/api/java/lang/ProcessBuilder.html> (Jul 29, 2021).

Oracle. (2020b). Class JFileChooser. <https://docs.oracle.com/javase/7/docs/api/javax/swing/JFileChooser.html>
(Jul 29, 2021).

Park S., Lee J.K. (2016). KBimCode-Based Applications for the Representation, Definition and Evaluation of
Building Permit Rules. Proc., 33rd International Symposium on Automation and Robotics in
Construction (ISARC), International Association for Automation and Robotics in Construction (IAARC),
720-728.

Pauwels P., Van Deursen D., Verstracten R., De Roo J., De Meyer, R. Van de Walle,R. and Van Campenhout J.
(2011). A semantic rule checking environment for building performance checking. Automation in
Construction, 20(5), 506-518.

Petrov S., Das D. and McDonald R. (2011). A universal part-of-speech tagset. arXiv preprint arXiv:1104.2086.

Pota M., Marulli F., Esposito M., De Pietro G. and Fujita H. (2019). Multilingual POS tagging by a composite
deep architecture based on character-level features and on-the-fly enriched Word Embeddings.
Knowledge-Based Systems, 164, 309-323.

Preidel C. and Borrmann A. (2018). BIM-based code compliance checking. Building information modeling:
Technology foundations and industry practice. pp. 367—381. Springer Nature, Switzerland.

Shao Y., Hardmeier C., Tiedemann J. and Nivre J. (2017). Character-based joint segmentation and POS tagging
for Chinese using bidirectional RNN-CRF. arXiv preprint arXiv:1704.01314.

Sing T. F. and Zhong Q. (2001). Construction and real estate NETwork (CORENET). Facilities, 19(11-12), 419-
428.

Spivey J. M. (1996). An introduction to logic programming through Prolog. London, New York, Prentice Hall.

Sydora C., and Stroulia E. (2020). Rule-based compliance checking and generative design for building interiors
using BIM. Automation in Construction, 120, 103368.

Tan X., Hammad A., and Fazio P. (2010). Automated code compliance checking for building envelope design.
Journal of Computing in Civil Engineering, 24(2), 203-211.

Van Rossum, G. (2007). Python Programming Language. Proc., USENIX annual technical conference, 36.

@ ITcon Vol. 28 (2023), Wu et al., pg. 17

Wu J., Sadraddin H.L., Ren R., Zhang J. and Shao X. (2021). Invariant signatures of architecture, engineering,
and construction objects to support BIM interoperability between architectural design and structural
analysis. Journal of Construction Engineering and Management, 147(1).

Wu J. and Zhang J. (2022). Model validation using invariant signatures and logic-based inference for automated
building code compliance checking. Journal of Computing in Civil Engineering, 36(3), 04022002.

Xu X. and Cai H. (2020). Semantic approach to compliance checking of underground utilities. Automation in
Construction, 109, 103006.

Xue X., Wu J. and Zhang J. (2022). Semi-automated generation of logic rules for tabular information in building
codes to support automated code compliance checking. Journal of Computing in Civil Engineering,
36(1), 04021033.

Xue X. and Zhang J. (2022). Regulatory Information Transformation Ruleset Expansion to Support Automated
Building Code Compliance Checking. Automation in Construction, 138, 104230.

Zhang C., Beetz J. and de Vries B. (2018). BInSPARQL: Domain-specific functional SPARQL extensions for
querying RDF building data. Semantic Web, 9(6), 829-855.

Zhang J. and El-Gohary N. M. (2015). Automated information transformation for automated regulatory
compliance checking in construction. Journal of Computing in Civil Engineering, 29(4), B4015001.

Zhang J. and El-Gohary N. M. (2016). Semantic NLP-based information extraction from construction regulatory
documents for automated compliance checking. Journal of Computing in Civil Engineering, 30(2),
04015014.

Zhang J. and El-Gohary N. (2017). Integrating semantic NLP and logic reasoning into a unified system for fully-
automated code checking. Automation in Construction, 73, 45-57.

Zhong B., Ding L., Luo H., Zhou Y., Hu Y. and Hu H. (2012). Ontology-based semantic modeling of regulation
constraint for automated construction quality compliance checking. Automation in Construction, 28, 58-
70.

Zhou N.-F. (2014). B-prolog user’s manual (version 8.1): Prolog, agent, and constraint programming.
<http://www.picat-lang.org/bprolog/download/manual.pdf> (Jan 16, 2023).

Zhou P. and El-Gohary N. (2018). Automated matching of design information in BIM to regulatory information
in energy codes. Proc., Construction Research Congress 2018, 75-85.

@ ITcon Vol. 28 (2023), Wu et al., pg. 18

https://ascelibrary.org/doi/10.1061/(ASCE)CP.1943-5487.0001000
https://ascelibrary.org/doi/10.1061/(ASCE)CP.1943-5487.0001000
https://ascelibrary.org/doi/10.1061/(ASCE)CP.1943-5487.0001000
http://www.picat-lang.org/bprolog/download/manual.pdf

