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ABSTRACT
In this paper, we present a discrete model governing the deformation of a
convex regular polygon subjected not to cross a given flat rigid surface, on
which it initially lies in correspondence of one point only. First, we set up
the model in the form of a set of variational inequalities posed over a non-
empty, closed and convex subset of a suitable Euclidean space. Second, we
show the existence and uniqueness of the solution. The model provides a
simplified illustrationof processes involved in virus imagingby atomic force
microscopy: adhesion to a surface, distributed strain, relaxation to a shape
that balances adhesion and elastic forces. The analysis of numerical simula-
tions results basedon thismodel opens anewwayof estimating the contact
area and elastic parameters in virus contact mechanics studies.
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1. Introduction

Due to its relevance for a variety of natural phenomena, contact mechanics of nanoscopic, isometric
polyhedral shells is a topic of great interest. For instance, the formation of polyhedral cages of water
molecules encapsulating other chemical species at low temperatures and high pressures govern the
sequestration of hydrocarbon gas molecules on arctic sea floors and in permafrost [1]. Bulk polycrys-
talline samples of such gas hydrates (clathrates) can be 20–40 times stronger than ice under uniaxial
compression. At larger spatial scales, but still nanoscopic, highly symmetric virus protein cages encap-
sulate nucleic acid cargo, exhibiting a hardness that is responsive to the chemical environment. For
such examples the discrete nature of the subunits and the size dependence of their properties cannot
be ignoredwhen attempting to understand cagemechanics in response to chemical or physical forces.

During the virus life cycle, there are multiple instances of interactions with interfaces. The ensu-
ing mechanical stresses elicit a response from either the host or the virus [2]. Since the nature and
magnitude of resultant deformations are key to understanding the response, virus mechanics has
been the topic of both experimental and computational studies [3–5]. In many viruses, the attrac-
tive interactions between the protein building blocks of a virus shell (also known as the capsid) are
necessarily weak, at least at the assembly stage [6, 7]. This allows for error correction, during the
growth phase. By comparison, the oligomeric building blocks themselves tend to bemuchmore stable
against dissociation [8, 9]. As a consequence of the difference in intra- and inter-subunit interaction
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Figure 1. (a) Example of an AFM image of a BromeMosaic Virus (BMV) particle in aqueous medium. (b) Cross-section showing the
shape profile and typical attainable resolution. (c) Molecular model (reprinted with permission from Ref. [4]). (d) Schematic of the
atomic force probe-sample geometry. The probe is in the shape of a rounded, inverted cone (gray). The sample is formed of a virus
(orange) adsorbed on the surface of a flat, solid substrate. As the probe tip is laterally scanned over the substrate, the probe-sample
distance is kept constant, and the tip trajectory relative to a reference position is recorded.

potential energies, and of the geometric frustration, local strain is expected to vary across the shell
structure [10, 11]. The inhomogeneous elastic stress distribution will influence how capsids deform
under mechanical stress.

Early theories of mechanical deformation in viruses sought to explain observations from nanoin-
dentation experiments [12, 13]. Nanoindentation experiments involve the measurement of axial
compression as a function of the force exerted by an atomic force microscope (AFM) probe in a
direction normal to the substrate on which the virus sits [14, 15]. Early models were based on the
continuum theory of elasticity [16, 17]. Later on, the discrete nature of the building blocks was taken
into account in coarse-grained and all-atommolecular dynamicsmodels of nanoindentation [18–21].
These models provided better qualitative predictions for stiffness distribution across the capsid than
the continuum theory, at least for small viruses. They are also inherently capable of including fluctua-
tions, which can influence the path through the energy landscape as the virus is deformed. However,
the great complexity of some of the numerical models makes it difficult to differentiate the layers
that would lead to a conceptual understanding of the process. The challenges are even greater if
one considers that, in nanoindentation experiments, the read-out of a three-dimensional conforma-
tional change is one-dimensional (axial distance). Solving the inverse problem of finding material
mechanical parameters from the axial distance dependence depends on the model. Moreover, since
the exact AFM probe-virus contact geometry changes from particle to particle and probe to probe,
force–deformation curves usually show significant experimental spread.

In this paper, we propose a new way to perform a three-dimensional measurement of confor-
mational changes of a virus under directional pressure and extract elastic parameters via an elastic
model based on a system of coupled discrete subunits with localized interactions. The model we
will be considering is discrete and is governed by a set of variational inequalities posed over a non-
empty, closed and convex subset of the Euclidean space. Similar problems have been considered in
the continuum framework in the static case [22–27] and in the time-dependent case [28]. For clarity
and simplicity, we consider the geometry two-dimensional, and the interactions linear. Extensions to
three dimensions and non-linear interactions will be considered in the forthcoming paper [29].

2. Basic principles of atomic force microscopy

Atomic force microscopy (AFM) is currently the only method capable of imaging small virus mor-
phology in real-time under environmental conditions, with a spatial resolution routinely reaching
3–5 nm [4, 30–33]. The study of single virus particles by atomic force microscopy and force spec-
troscopy has led to insights in virusmechanics and its relationship between the virus structure and the
chemical environment [3, 5, 34–38]. A schematic of the atomic force imaging principle is presented
in Figure 1.
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Figure 2. (a) A convex regular polygon with n = 10 edges initially in contact with the surface at one fixed vertex. (b) The com-
pressed shape under a constant, uniaxial (normal) force. Red: the circular sector that best fits the free perimeter. (c) The final shape
after removal of the normal force under the constraint of irreversible adhesion.

In AFM, a sharp (several nm) probe is brought in the proximity of the sample surface until the
probe-sample distance is so small that interfacial forces between the twobecomemeasurable. By raster
scanning the probe over the samplewhile simultaneously adjusting the probe-sample distance accord-
ingly the sample topography to maintain a constant interfacial force, one generates a nanoscopic map
of the sample topography. Scan areas may span from several nm2 to several hundreds of µm2.

In a direction normal to the substrate, spatial resolution is typically better than a nanome-
tre. However, lateral resolution is limited by the sample topographic range and the probe radius
(Figure 1).

Since the normal pressure can be adjusted at will during imaging, one can create three-dimensional
topographic maps of the upper shell under several constant forces. Our hypothesis is that, from these
topographic maps one should be able to determine the mechanical parameters that describe bending
and stretching of the shell under deformation.

3. Geometrical preliminaries

In this paper, we consider the deformation of a convex regular polygon with n edges whose vertices
(and so the edges) are subjected not to cross an undeformable flat surface. We assume that one and
only one vertex of the undeformed reference configuration is initially in contact with the flat surface,
and we denote this vertex by P1. The vertices of the polygon are labelled counter-clockwise from P1
to Pn (Figure 2 a). We further assume that the vertex P1 undergoes no displacement; this assumption
is critical to establish the existence and uniqueness of the solution of the governing equations. We
minimize the energy associated with the deformation of the convex regular polygon with n edges
under two types of constraints: (i) under the action of an applied body force (Figure 2b) and (ii)
after the force is removed, under the assumption of irreversible adhesion, i.e. vertexes brought on the
rigid surface by the inward pressure in (i) will remain on the surface at force removal (Figure 2c). We
consider the elastic energy to have a quadratic dependence on the elongation of the edges as well as
the variation of the angle between any pairs of consecutive edges [4]. Furthermore, we assume that
the edges aremassless and can only stretch, in the sense that there is no torsion acting on them.

A pointA in the plane corresponds to a vector inR2 of the formA =
( xAyA

)
, where xA ∈ R denotes

the abscissa of the point and yA ∈ R denotes its ordinate. Let us consider a Cartesian frame for the
two-dimensional plane with origin O =

( 0
0
)
and with canonical directions "e1 =

( 1
0
)
and "e2 =

( 0
1
)
.

The position vector associated with the point A is denoted by −→OA; the transpose of a vector −→OA
is denoted by −→OAT = (xA, yA); the angle between three points A, B and C with vertex at B is either
denoted by ÂBC or by a Greek letter. The Euclidean inner product and the vector product between
two vectors−→OA and−→OB are respectively denoted by−→OA · −→OB = −→OAT−→OB and−→OA × −→OB. The Euclidean



4 P. PIERSANTI ET AL.

norm of −→OA is denoted |−→OA|. Matrices, apart from the identity matrix I and the square null matrix
O, are denoted by capital Greek letters. Tensors are denoted by boldface capital Latin letters.

Let n ≥ 3 be an integer number. A regular polygon with n edges is the portion of plane within a
non-self intersecting closed broken line, whose n edges have all the same length (cf., e.g. [39]).

4. Formulation and well-posedness of the two-dimensional discrete model

When a vertex Pi of the convex regular polygon with n edges under consideration undergoes the
action of an applied body force, we denote by P′

i the new coordinates of the vertex in the plane.
Let F = ("fi)ni=2 ∈ R2n−2 denote the array of applied body forces acting on the polygon, where the

vector "fi denotes the applied body force acting on the vertex Pi. The application of the force vector "fi
on the point Pi displaces the position vector −→OPi by a vector "ui, and transforms the vector −→OPi into
the vector

−→
OP′

i via the following relation:
−→
OP′

i =
−→OPi + "ui, for each 2 ≤ i ≤ n.

We denote by ! the length of any edge of the undeformed reference configuration of the convex regular
polygon with n edges under consideration, namely,

∣∣∣
−−−→PiPi+1

∣∣∣ = !,

where the indices are meant from now onmodulo n.
Since the point P1 undergoes, by assumption, no deformation we let "u1 = (0, 0)T . The stretching

energy associated with the displacement

U =




"u2
...

"un



 ∈ R2n−2,

is computed via Hooke’s law (cf., e.g. [40]), i.e.

Js(U) := k
4

n∑

i=2

∑

j∈{i−1,i+1}
|"ui − "uj|2,

where the elastic constant k> 0 is associated with the elongation properties of the constitutive
material, and the nature of the energy is aptly recalled by the subscript ‘s’.

The stretching energy Js(U) can equivalently be expressed in matrix form. The matrix associated
with the stretching elastic force is a 2n × (2n − 2)matrix

" = 1
2





−I O O . . . O
I −I O . . . O
...

. . .
O . . . O I −I
O . . . O O I




.

Therefore, the stretching energy Js(U) in matrix form is

Js(U) = kUT"T"U .

The matrix "T" is positive-definite, in the sense that the smallest eigenvalue is greater than zero. To
see this, it suffices to observe that the matrix" has the same structure as the discrete gradient matrix
(cf., e.g. [41]).
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The variation of the angle between two consecutive edges is also associated with a change in
the energy. From now on, we will refer to this kind of energy as bending energy. Denote by αi =

̂Pi−1PiPi+1 the angle between the points Pi−1, Pi and Pi+1 that intersects the interior of the polygon
under consideration.

If the action of an applied body forces changes the angle αi into the angle α′
i = ̂P′

i−1P′
iP′

i+1, the
corresponding bending energy is given by

κ

2
|αi − α′

i |2,

where the elastic constant κ > 0 is associated with the bending properties of the constitutivematerial.
If the difference between αi and α′

i is small, we can approximate αi − α′
i ≈ sin(αi − α′

i). The latter
has the advantage that it can be expressed in terms of a vector product. More specifically, we have:

αi − α′
i ≈ sin(αi − α′

i) = sinαi cosα′
i − cosαi sinα′

i

= |−−−→PiPi+1 × −−−→Pi−1Pi|
|−−−→PiPi+1||

−−−→Pi−1Pi|

−−−→
P′
i−1P′

i ·
−−−→
P′
iP′

i+1

|
−−−→
P′
iP′

i+1||
−−−→
P′
i−1P′

i|
−

−−−→Pi−1Pi ·
−−−→PiPi+1

|−−−→PiPi+1||
−−−→Pi−1Pi|

|
−−−→
P′
iP′

i+1 ×
−−−→
P′
i−1P′

i|

|
−−−→
P′
iP′

i+1||
−−−→
P′
i−1P′

i|
.

Let us observe that, if the displacement U = ("ui)ni=2 is infinitesimal, we have

|
−−−→
P′
i−1P

′
i| ≈ |−−−→Pi−1Pi|.

Since
−−−→
P′
i−1P

′
i =

−→
OP′

i −
−−−→
OP′

i−1 =
−→OPi + "ui −

−−−→OPi−1 − "ui−1 =
−−−→Pi−1Pi + "ui − "ui−1,

then the properties of the vector product (cf., e.g. [42]) in turn imply:

|
−−−→
P′
iP

′
i+1 ×

−−−→
P′
i−1P

′
i| = |(−−−→PiPi+1 + "ui+1 − "ui) × (

−−−→Pi−1Pi + "ui − "ui−1)| ≈ |−−−→PiPi+1 × −−−→Pi−1Pi|.

Therefore, the angle variation reads

αi − α′
i ≈ |−−−→PiPi+1 × −−−→Pi−1Pi|

|−−−→PiPi+1|2|
−−−→Pi−1Pi|2

(−−−→
P′
i−1P

′
i ·

−−−→
P′
iP

′
i+1 − −−−→Pi−1Pi ·

−−−→PiPi+1
)

= |−−−→PiPi+1 × −−−→Pi−1Pi|
|−−−→PiPi+1|2|

−−−→Pi−1Pi|2
(
(
−−−→Pi−1Pi + "ui − "ui−1) · (

−−−→PiPi+1 + "ui+1 − "ui) − −−−→Pi−1Pi ·
−−−→PiPi+1

)

≈ |−−−→PiPi+1 × −−−→Pi−1Pi|
|−−−→PiPi+1|2|

−−−→Pi−1Pi|2
(−−−→Pi−1Pi · ("ui+1 − "ui)+

−−−→PiPi+1 · ("ui − "ui−1)
)

= |−−−→PiPi+1 × −−−→Pi−1Pi|
|−−−→PiPi+1|2|

−−−→Pi−1Pi|2
(−−−→Pi−1Pi · "ui+1 + (

−−−→PiPi+1 − −−−→Pi−1Pi) · "ui −
−−−→PiPi+1 · "ui−1

)
.

Letting C := |−−−→PiPi+1×
−−−→Pi−1Pi|

|−−−→PiPi+1|2|
−−−→Pi−1Pi|2

and observing that this quantity is independent of the index i, we can
express the total bending energy in terms of the vertices displacements:

Jb(U) = κC2

2

n∑

i=2

∣∣∣
−−−→Pi−1Pi · "ui+1 + (

−−−→PiPi+1 − −−−→Pi−1Pi) · "ui −
−−−→PiPi+1 · "ui−1

∣∣∣
2
.
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The bending energy Jb(U) can equivalently be expressed in matrix form. The matrix associated with
the bending elastic force is a n × (2n − 2)matrix:

%=





(
−−→P2P3 − −−→P1P2)T

−−→P1P2T 0 . . . 0
−−→P3P4T (

−−→P3P4 − −−→P2P3)T
−−→P2P3T . . . 0

...
. . .

0 . . . 0 (
−−−−→Pn−1Pn −−−−−−−→Pn−2Pn−1)

T −−−−−−→Pn−2Pn−1
T

0 . . . 0 −−→PnP1T (
−−→PnP1 − −−−−→Pn−1Pn)T




.

Therefore, the bending energy Jb(U) in matrix form is

Jb(U) = κC2

2
UT%T%U ,

where the nature of the energy is aptly recalled by the subscript ‘b’.
The matrix %T% is nonnegative-definite, in the sense that the smallest eigenvalue is greater or

equal than zero. The total elastic energy associated with the displacement tensor U thus takes the
following form:

J(U) = Js(U)+ Jb(U) = UT
(
k"T" + κC2

2
%T%

)
U ,

so that the total energy matrix is positive-definite, being "T" positive-definite. This makes the total
elastic energy a strictly convex quadratic functional.

The search for an equilibrium position for the deformed polygon amounts to minimizing the cor-
responding total elastic energy. In view of the geometrical constraint according to which the vertices
do not have to cross the given flat surface, the admissible displacement fields are to be sought in the
following set:

U :=
{
V = ("vi)ni=2 ∈ R2n−2; "vi =

(
vi,1
vi,2

)
and (

−→OPi + "vi) · "e2 ≥ 0 for all 2 ≤ i ≤ n
}
.

It is straightforward to observe that the set U is non-empty (as V = 0 ∈ U), closed and convex.
Therefore, the latter together with the fact that the total elastic energy functional is strictly convex,

imply that the quadratic minimization problem

inf
V∈U

(J(V) − FTV)

admits a unique minimizer (cf., e.g. [43]). Finding the solution for this minimization problem is
equivalent to finding a tensor U that solves the following variational inequalities [44]:

((
k"T" + κC2

2
%T%

)
U

)
· (V − U) ≥ 1

2
F · (V − U), for all V ∈ U .

5. Numerical experiments. Part I: Analysis of the deformation under the action of an
applied body force

The first numerical experiment we conduct on the proposedmodel is classical and amounts to finding
the position of the deformed reference configuration of the convex regular polygon undergoing the
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Figure 3. Changes in height above the base line, relative to the initial value as the force per vertex is increased. Different marker
sizes are associated with different numbers of contact vertices.

action of an applied body force which acts on each vertex with the same magnitude. This distributed
applied force models the downward pressure that an AFM probe, which is comparable in size with
the virus will exert.

The numerical implementation for the problem under consideration is carried out by resorting
to the primal–dual active set method (cf., e.g. [45]). We consider different instances of the array
F = ("fi)ni=2 of applied body forces whose tangential component is zero and whose transverse compo-
nent is directed downwards, as well as a varying number n of vertices.

Figure 2(b) shows the shape of a regular decagon under directional pressure for the values k = κ =
1.0, and f = 0.25 in reduced units. For this specific load magnitude, half of the vertices are on the
surface and half are free. The free vertices align with a good approximation on a circle. The radius of
the circle that best approximates the polygonal segment formed of free vertices is 1.9 times the radius
of the circle in which the initial regular polygon was inscribed. The top of the deformed polygon is
at 0.41 from the initial, unperturbed value. We can now predict how the apparent height above the
surface changes as a function of the AFM imaging force. The apparent height is an accurately mea-
surable quantity. Figure 3 shows the result of such a prediction for the same decagon. The apparent
height above the surface decreases smoothly with the applied pressure. This result is consistent with
experimental observations obtained from AFM on the brome mosaic virus [5]. However, breaks in
the slope due to discrete changes in the number of sides laying flat on the base line are noticeable.
While the apparent height varies continuously, the number of surface contacts and hence the surface
adhesion does not (Figure 4). Considering that the imaged structure is the result of the balancing
act between adhesive, pressure, and elastic forces, the latter observation predicts that the number of
contacts could be discreetly varied by imaging at various probe pressures. On hydrophobic surfaces,
much like the substrates used in AFM imaging, adhesion is usually strong and irreversible. Thus, by
imaging at low pressures after an initial higher pressure scan, the contact area can be deduced from
the height and shape of the free surface as the particle relaxes. In other words, for a relaxed polygon
(no pressure) with a given partial contact length the shape and the height above the base line should
vary discretely, as a function of the number of contacts with the baseline.

By imaging at high force, and then at low force, and comparing with a model based on the one
presented here, one should be able, for the first time, to determine the virus-surface contact area
that corresponds to a certain applied force. This is why, we have considered useful to extend our
numerical approach and calculate the shape of the polygon, as a function of the number of con-
tact vertices (and thus of the initial imaging force) once the external force has been turned off
(Figure 2c).
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Figure 4. Changes in the number of points in contact with the flat surface as applied force is increased for a decagon.

Table 1. Ratio of upper polygon average radius (R) and
initial, undeformed radius (R0) as a function of the num-
ber of baseline vertices.

Number of base line vertices 3 5 7
R/R0 0.99 1.05 1.04

6. Numerical experiments. Part II: search for a new equilibrium position for the
polygon and correlation with the continuousmodel

In the second experiment, we assume that the vertices of the polygon which engage contact with the
surface as a result of the application of the applied body force under consideration (cf. Section 5)
remain in contact with the surface when the applied body force ceases to act. This corresponds to the
case where the AFM cantilever pushing the ring downwards is lifted and a certain adhesion force acts
on the part of the elastic structure that engaged contact with the flat surface.

As a result, the vertices which do not engage contact with the surface tend to re-organize them-
selves in a way that minimizes the elastic energy; the points in contact with the surface are only
allowed to slide horizontally on the surface. The latter assumption is based on the observation that
the activation energy for surface diffusion of adsorbed molecules is usually at least an order of mag-
nitude smaller than the adsorption energy [46]. Thus lateral sliding is muchmore likely to occur than
desorption.

Because of its accurate measurability and practical interest, we study the root-mean-square fitted
average radius of the free sector (vertices that do not engage with the surface) after the equilibrium
restoration of the elastic polygon as a function of the number of contact points with the base line
(or, equivalent, as a function of the initial compression described in the previous section). We then
verify the genuineness of the proposed discrete model via a set of numerical experiments, where the
number of vertices vary. The expectation is that the relaxed shape will tend towards a circular sector
that minimizes the line tension.

Table 1 shows the dependence of the r.m.s. average radius of curvature of the free portion of the
decagon on the number of base line contacts. The changes in the average curvature of the polygon as
the number of contact vertices is increased in this example are small, but it is reasonable to assume
that they will be measurable if ∼102 data points collected during topographic mapping will be used
for fitting. Asmentioned before, the spatial resolution in the normal direction to the base line is better
than 0.5 nm, while the radius of a virus particle is typically 30–100 nm.

Finally, we consider the case where the same total vertical body force is applied, and we let the
number of vertices increase. The final polygonal shape should converge to the one expected from
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Figure 5. Increasing thenumber of total verticeswhile keeping all other parameters constant leads to a shape that does not change
anymore at higher number of vertices. The dotted line circle corresponds to the circle circumscribing the initial regular polygon and
is provided as a reference.

a continuum approach, with a circular free perimeter, a fixed contact angle and height at the top.
Figure 5 shows the result of such a comparison.

Beyond N ≈ 25 the shape does not change anymore. At this point, a continuum description will
be adequate. The dotted line circle in Figure 5 corresponds to the circle that circumscribes the initial,
regular polyhedron, added to the polygonal shape in a way that superposes the apex point of the circle
and the polygon and preserves the left-right symmetry. Below the continuum threshold, there are
some variations of the polygonal shape with respect to the circumscribing circle, but they are rather
minor in the vicinity of the apex point. However, the apex point height varies significantly below the
continuum threshold. The practical outcome of this observation is that the AFM measurement of
the top part of the virus, which is very accurate, could be used in fitting it at every map point with a
spherical shell. It is not unreasonable to hypothesize that, from the radius and the center of curvature
for that shell one could deduce the elastic constants of the virus particle at an unprecedented level of
accuracy.

7. Conclusion

In conclusion, we present a simple model for virus deformation under AFM imaging conditions. The
model includes discrete units and deformation modes, adhesion to a substrate, and unidirectional
loading forces. We show that numerical solutions based on the model provide a solution uniquely
associated to a set of parameters. As a direct application of our analysis, we propose a novel method
of using the AFM topographic mapping under different imaging force loads that should lead to deter-
minations of the contact area and elastic constants. The advantages of this approach with respect to
state-of-the art elastic deformation studies will be: (1) high throughput, because many viruses can be
imaged at the same time, and (2) accuracy, because the resolution of the topographic mapping is very
high (sub-nm) in a direction normal to the substrate, even at physiological conditions.

In the forthcoming paper [29], where we study a three-dimensional model governing the defor-
mation of viral capsids, we will compare the numerical results with experimental ones.
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