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Abstract
Inference of species networks from genomic data under the Network Multispecies
Coalescent Model is currently severely limited by heavy computational demands. It
also remains unclear how complicated networks can be for consistent inference to be
possible. As a step toward inferring a general species network, this work considers
its tree of blobs, in which non-cut edges are contracted to nodes, so only tree-like
relationships between the taxa are shown. An identifiability theorem, that most fea-
tures of the unrooted tree of blobs can be determined from the distribution of gene
quartet topologies, is established. This depends upon an analysis of gene quartet con-
cordance factors under the model, together with a new combinatorial inference rule.
The arguments for this theoretical result suggest a practical algorithm for tree of blobs
inference, to be fully developed in a subsequent work.
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1 Introduction

Methods for inference of evolutionary relationships between organisms are well-
developed provided those relationships can be adequately described by a tree. If
hybridization or some form of lateral gene transfer has occurred, tools for data analy-
sis are much more limited. An essential complication is that when such gene transfer
has occurred between closely related taxa, the population-genetic effect of incomplete
lineage sorting is also likely. Thus individual gene relationships may conflict with the
primary tree-like species relationships (if some can be considered to be primary) due
to the intermixed effect of these two processes.

The appropriate stochastic model to capture these processes is the Network Mul-
tispecies Coalescent (NMSC). Under the NMSC combined with standard sequence
substitution models, Bayesian methods for inference of species networks have been
implemented: BEAST 2/SpeciesNetwork (Zhang et al. 2017), PhyloNet (Zhu et al.
2016, 2018), BPP (Flouri et al. 2019). However, they are limited by computational
demands to small data sets of few taxa and few genes. Pseudolikelihood methods
that treat inferred gene trees as data are able to handle larger data sets, PhyloNet (Yu
and Nakhleh 2015) and SNaQ (Solís-Lemus and Ané 2016), but require prespecifi-
cation of the number of reticulation events, with at best heuristic assessment of that
number. In addition, to reduce computational effort, inference may be limited to the
class of level-1 networks, though a biological justification for that may be lacking.
A final approach starting with inferred gene trees combines statistical tests for small
networks with combinatorial methods to assemble a large network, NANUQ (Allman
et al. 2019). This is considerably faster and offers some insight into model fit, but also
is currently limited to level-1 structure.

It is not known how complex a species network can be for its inference from specific
data types to be even theoretically possible. This is the question of identifiability of the
network (either topological or metric) under the NMSC model: Does the distribution
of observations under the NMSC uniquely determine the network? Themost complete
result in the level-1 topological case comes from Baños’ study of identifiability from
quartet concordance factors (Baños 2019). Using different notions of data, however,
several works have studied the identifiability question for general networks without
the coalescent. Researchers have, for instance, investigated what can be determined
from average intertaxon distances on a network (Xu and Ané 2021), as well as shortest
distances and distance multisets (van Iersel et al. 2020). Identifiability from induced 4-
taxon networks (Huber et al. 2018), rooted 3-taxon networks (Semple and Toft 2021),
and counts of paths from interior nodes to taxa (Erdős et al. 2019) have also been
explored, among other notions.

In this work we approach the network inference problem from a different direction,
trying to determine only the tree-like evolutionary relationships for a collection of taxa,
hence isolating the parts of their history when more complicated network features are
formed. More formally, we study the tree of blobs of the network (Gusfield et al.
2007), a tree in which each group of edges in the network describing complex gene
transfer, i.e., each blob, has been shrunk to a single node. (A closely related notion
appears in Murakami et al. 2019). The tree of blobs thus shows all tree-like parts of
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the network, and its inference could be useful to researchers who may subsequently
focus on inferring the structure of each blob by other methods.

Our goal here is to show the topology of the unrooted tree of blobs for a network is
identifiable from gene quartet data under the NMSCmodel. That is, the distribution of
gene quartet topologies arising under the NMSC on a fixed species network uniquely
determines the unrooted tree of blobs of that network. We make no assumptions on
blob structure, but do require that numerical parameters lie outside an exceptional set
of measure zero. Thus consistent inference of the tree of blobs is theoretically possible.

We first study the probabilities of quartets displayed across independent gene
trees under the NMSC, under a generic assumption on numerical parameters. These
probabilities—the quartet concordance factors (CFs)—allow for the identification of
some sets of 4 taxa that must be collectively related through a blob, while proposing a
resolved quartet tree topology for others. A new combinatorial inference rule is then
developed that allows this information to be used to identify additional sets of four taxa
related through a single blob, even though their CFs suggested otherwise. We show
that repeated application of this rule yields all sets of four taxa with blob relationships.
Then, with all such blob quartets known, and tree topologies assigned to other sets of
four taxa, by treating blob quartets as unresolved we obtain complete information on
all quartets displayed on the tree of blobs. This information is enough to determine
the tree of blobs (Semple and Steel 2005; Rhodes 2020).

Although rules for inference of large networks from 4-taxon networks have been
considered previously (Huber et al. 2018), our rule is different in purpose. It neither
assumes knowledge of the full 4-taxon blob structure, nor attempts to infer detailed
blob structure on a larger network. Earlier work on quartet closure rules for trees,
surveyed in Grünewald and Huber (2007), is also similar in spirit to the rule developed
here.

Our approach suggests an algorithm for tree of blobs inference that will be fully
developed in a subsequent paper focused on data analysis. First a statistical test can be
applied to gene quartet counts to detect blob and tree relationships on induced 4-taxon
networks. Then the inference rule is applied repeatedly, until no new blob relationships
on the full network are inferred. Finally, the quartet intertaxon distance (Rhodes 2020)
is computed treating blob relationships as unresolved. A standard distance-based tree
building algorithm, such as Neighbor-Joining (Saitou and Nei 1987), then yields an
estimate of the tree of blobs. This is broadly similar to the steps in NANUQ (Allman
et al. 2019) for inference of a level-1 network, but the inference rule step is new,
and the distance, which in principle should fit a tree, does not require an analysis by
NeighborNet (Bryant and Moulton 2004) or construction of a splits graph (Dress and
Huson 2004).

Many methods have been developed for a more detailed detection of hybridization
or gene transfer than the tree of blobs depicts, e.g. (Blischak et al. 2018; Green et al.
2010; Hamlin et al. 2020; Hibbins and Hahn 2022). Once the tree of blobs has been
inferred for a collection of taxa, such methods might be applied to a subset of the taxa
in order to explore the structure of a blob through a finer analysis. Unfortunately, these
methods are generally restricted to a small number of taxa, and simple scenarios (e.g.,
level-1). Much work remains to be done to both expand the scope of methodology
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for inferring blob structure, and to delineate both theoretical and practical limits to its
inference.

Our presentation is structured as follows. Section 2 provides basic definitions and
background on the NMSCmodel. In Sect. 3 we prove the fundamental result that from
quartet concordance factors under the NMSC on a 4-taxon network one can determine
whether the taxa are related through a single blob (i.e., a 4-blob), or not. If not, then
all displayed trees on the 4-network have the same tree topology, which can also be
determined. Establishing these facts requires an analysis based in the NMSC model.
In Sect. 4, we use combinatorial arguments to show that from such information on the
4-taxon induced subnetworks of a larger network we can, through certain inference
rules, gain information on all larger blobs. Section 5 quickly completes the argument
for identifiability, and sketches the algorithm for tree of blobs inference suggested by
the proof.

2 Networks andmodels

2.1 Phylogenetic networks

The Network Multispecies Coalescent model of gene tree formation within a species
network underlies this work, so we give an appropriate definition of a phylogenetic
network for that model.

Definition 1 Solís-Lemus and Ané (2016), Baños (2019) A topological rooted binary
phylogenetic network N+ on taxon set X is a connected directed acyclic graph with
nodes V and edges E , where V is the disjoint union V = {r} � VL � VH � VT and
E is the disjoint union E = EH � ET , together with a bijective leaf-labeling function
f : VL → X with the following characteristics:

1. The root r has in-degree 0 and out-degree 2.
2. A leaf v ∈ VL has in-degree 1 and out-degree 0.
3. A tree node v ∈ VT has in-degree 1 and out-degree 2.
4. A hybrid node v ∈ VH has in-degree 2 and out-degree 1.
5. A hybrid edge e = (v,w) ∈ EH is an edge whose child node w is hybrid.
6. A tree edge e = (v,w) ∈ ET is an edge whose child node w is either a tree node

or a leaf.

See Fig. 1L for an example of a rooted binary phylogenetic network. In that figure,
and in others throughout this work, red indicates hybrid nodes and the hybrid edges
leading to them.

Definition 2 A cut edge in a graph is one whose deletion increases the number of
connected components.

Note that the notions of cut and non-cut edges are not the same as tree and hybrid
edges. Although a hybrid edge is never a cut edge, tree edges may or may not be cut
edges. For instance, in Fig. 1L, the child edges of v are both tree edges and non-cut,
while the parent edge of v is tree and cut.
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Fig. 1 L A species network N+, with edge lengths in coalescent units. Red indicates hybrid nodes and
hybrid edges. The lowest stable ancestor (LSA) of the network is v. This network has 6 non-trivial blobs
(a 5-blob, two 3-blobs, and three 2-blobs), and a single trivial 3-blob. C The tree-like structure of the
LSA network N⊕, obtained by deleting parts of the network above the LSA v, and showing blobs as red
spheres. A sphere is used to suggest an unknown and potentially complicated blob structure.R The reduced
unrooted tree of blobs, Trd (N−), obtained by shrinking blobs in the LSA network to nodes, unrooting, and
suppressing degree-2 nodes (color figure online)

Edge directions on a rooted phylogenetic network induce a partial order on its nodes.
We say that a node u is above or ancestral to a node v, or v is below or descended
from u, if there is a directed path in the network from u to v. Thus the root is above all
other nodes. We use the same terms to refer to similar relationships between edges, or
between edges and nodes.

A topological network is one parameter of the NMSCmodel. Additional numerical
parameters are introduced by giving the network a metric structure. Edge lengths are
measured in coalescent units (units of generations/population size). In addition, we
specify probabilities that a gene lineage at a hybrid node follows one or another hybrid
edge as it traces back in time toward the network root.

Definition 3 A metric rooted binary phylogenetic network (N+, {�e}e∈E , {γe}e∈EH )

is a topological rooted binary phylogenetic network together with an assignment of
weights or lengths �e to all edges and hybridization parameters γe to all hybrid edges
subject to the following restrictions:

1. The length �e of a tree edge e ∈ ET is positive.
2. The length �e of a hybrid edge e ∈ EH is non-negative.
3. The hybridization parameters γe and γe′ for a pair of hybrid edges e, e′ ∈ EH with

the same child hybrid node are positive and sum to 1.

Our use of the term hybridization parameter does not imply the NMSC model
only applies to describing hybridization in any strict biological sense; it is simply
a convenient shorthand for a parameter quantifying gene flow. In some works these
parameters are called inheritance probabilities (Solís-Lemus and Ané 2016).

Note that we require tree edges to have positive length, since lengths of zero would
effectively allow networks to be non-binary. Since zero lengths are non-generic in
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the parameter space, our formal statements of results holding for generic parameters
would need no modification if they were allowed, though perhaps they would be more
open to misinterpretation. We do explicitly allow hybrid edges to have length 0, to
model possibly instantaneous jumping of a lineage from one population to another. A
careful reading of our arguments shows that while such values are also non-generic,
they do not lead to additional points in the exceptional set of non-generic points where
our claims fail.

The following analog of the most recent common ancestor of taxa on a tree is
needed.

Definition 4 (Steel 2016) LetN+ be a (metric or topological) rooted binary phyloge-
netic network on X and let Z ⊂ V be any nonempty subset of the nodes of N+. Let
D be the set of nodes which lie on every directed path from the root r of N+ to any
z ∈ Z . Then the lowest stable ancestor (LSA) of Z on N+, denoted LSA(Z ,N+), is
the unique node v ∈ D such that v is below all u ∈ D with u �= v.

The LSA of the network, LSA(N+), is the LSA of its leaves, LSA(VL ,N+).

As shown in Fig. 1L, a rooted phylogenetic network may have a complex structure
above its LSA. (If the network is level-1, this is a chain of 2-cycles, as discussed in
Banos 2019). Since our methods based on gene quartets do not give us any informa-
tion about structure above the LSA, we focus only on the structure below the LSA,
sometimes with edge direction information lost.

To formalize this, by suppressing a node with both in- and out-degree 1 in a directed
graph we mean replacing it and its two incident edges with a single edge from its
parent to its child. Suppressing a degree-2 node between two undirected edges means
replacing it and its two incident edges with a single undirected edge. Suppressing a
node between an undirected edge and a directed out-edge means replacing it and its
two incident edges with a single edge with the out-edge direction. Suppressing a node
between a directed in-edge and an undirected edge means replacing it and its two
incident edges with a single undirected edge. In all these situations, for a metric graph
the new edge is assigned a length equal to the sum of lengths of the two replaced.
If the out-edge was hybrid, the new edge is also hybrid and retains the hybridization
parameter.

Definition 5 (Baños 2019) Let N+ be a (metric or topological) rooted binary phylo-
genetic network on X .

1. The LSA network N⊕ induced from N+ is the network obtained by deleting all
edges and nodes above LSA(N+), and designating LSA(N+) as the root node.

2. The semidirected unrooted network N− is the unrooted network obtained from
the LSA network N⊕ by undirecting all tree edges and suppressing the root, but
retaining directions of hybrid edges.

We often need to pass to a network on a subset of taxa from one on a larger set.

Definition 6 LetN+ be a (metric or topological) rooted binary phylogenetic network
on X and let Y ⊂ X . The induced rooted binary network N+

Y on Y is the network
obtained fromN+ by 1) retaining only those nodes and edges ancestral to one or more
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taxa in Y , 2) suppressing all nodes with both in- and out-degree 1, and 3) if the root
then has outdegree 1, removing it and its descendant edge and designating its child as
the root. We then say N+ displays N+

Y .

2.2 Cycles, blobs, and quartets

Since rooted phylogenetic networks are acyclic by definition, we use the word cycle
to refer to a sequence of edges in the network which forms a cycle when all edges are
undirected. A k-cycle is a cycle composed of k edges.

Althoughwe focus on phylogenetic networks, the following definition appliesmore
broadly.

Definition 7 A blob on a network is a maximal connected subnetwork that has no cut
edges. A blob is trivial if it consists of a single node. An edge in the network is said
to be incident to a blob if exactly one of its incident nodes is in the blob. A blob has
degree m or is an m-blob if (a) it has has exactly m cut edges incident to it and the
network’s root is not in the blob, or (b) it has exactly m − 1 cut edges incident to it
and the root is in the blob.

We define an m-blob in this way for two reasons: First, it results in the degree of
the blob containing the LSA not changing in passing from a rooted networkN+ to its
LSA networkN⊕. Second, theNMSCmodel considers an “above the root" population
of infinite duration in which lineages may coalesce. This is essentially an additional
edge, of infinite length, incident to the root. In our terminology if the root of a binary
network is a trivial blob, then it is a degree-2 node but forms a degree-3 blob.

A network’s blobs can equivalently be defined as the 2-edge-connected components
(Xu and Ané 2021), or as the connected components obtained by deleting all cut edges
in the network.

On a rooted binary phylogenetic tree, leaves are the only 1-blobs, while the root
and internal nodes are 3-blobs. On a non-binary tree, polytomous nodes are k-blobs
with k ≥ 4. Non-tree phylogenetic networks may have k-blobs that are not nodes for
any k > 1. The simplest blobs have the form of cycles, and a network with only such
blobs is level-1. In general, however, blob structure may be much more complicated,
with a few simple examples shown in Figs. 1L and 2.

As is well known, on a tree any 3 taxa determine a unique node where undirected
paths between each pair of taxa meet, or equivalently a node whose deletion leaves
the taxa in distinct connected components. If the tree is not binary, larger sets of taxa
may or may not determine a node in this way. The following definition formalizes a
similar notion for networks.

Definition 8 A blob is determined by a set of leaf labels S with |S| ≥ 3 if deletion of
the cut edges incident to the blob leaves the elements of S in |S| distinct connected
components.

On a network N+ every subset of 3 taxa determines a blob, and every m-blob
with m ≥ 3 that is below the LSA of N+ is determined by one or more subsets of 3
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Fig. 2 Examples of blobs in networks. Red indicates hybrid nodes, and hybrid edges above them. Cut edges
incident to the blobs are represented by dotted line segments: L a planar 5-blob,C a non-planar 4-blob,R a
single 2-blob in a non-binary network, formed from two 2-cycles sharing a single node (color figure online)

Fig. 3 A network with a 5-blob
determined by the sets {a, b, c},
{a, b, d, f }, and other sets. The
set {a, b, e, f }, however, does
not determine a blob. Both
{a, b, c, d} and {a, b, d, e} are
B-quartets on this network.
While {a, b, c, d} is also a
B-quartet on its induced 4-taxon
network, {a, b, d, e} is a
T-quartet on its induced 4-taxon
network

taxa. Blobs above the LSA are not determined by any subset of taxa, while an m-blob
containing the LSA is determined by 3 taxa if m ≥ 4.

A set of k ≥ 4 taxa may or may not determine a blob, but if it does it must be
an m-blob with m ≥ k. For instance, the network of Fig. 3 has a 5-blob determined
by the sets {a, b, c}, {a, b, d, f }, and others. The set {a, b, e, f }, however, does not
determine a blob.

Note that our definition of blob differs slightly from that given by Gusfield et al.
(2007), in which a blob is a maximal set of edges formed by recursively including
cycles sharing at least one edge with an earlier cycle. By that definition, if two cycles
share only a node as in Fig. 2R, they would be considered to be 2 distinct blobs. In
contrast, they form a single blob under our definition. In Gusfield et al. (2007), this
situation is handled by inserting an edge to separate two such cycles, joining each at
the node they formerly shared, thus making edge-disjoint cycles also node-disjoint.
Our restriction to binary networks rules out this possibility regardless.

Definition 9 A chain of blobs in a network is a subnetwork composed of a sequence
of 1- and 2-blobs connected by their incident edges.

This notion generalizes the chain of 2-cycles defined for level-1 networks in Baños
(2019). A chain of blobs will have 1- or 2-blobs at its ends, but all other blobs in

123



The tree of blobs of a species network: identifiability… Page 9 of 26    10 

the chain will be 2-blobs. Just as a level-1 phylogenetic network may have a chain of
2-cycles above its LSA, a general phylogenetic network will have a (possibly empty)
chain of blobs as the subnetwork between its root and LSA, as in Fig. 1(L).

Definition 10 (Gusfield et al. 2007) The tree of blobs, T (N ), for a general connected
network,N , is the tree obtained by contracting each blob to a node, that is, by removing
all of the blob’s edges and identifying all its nodes. If the network is rooted, the tree of
blobs remains rooted at the same node, or the one arising from identifying the original
root with other nodes.

An equivalent construction of a blob tree in Xu and Ané (2021) has nodes for each
blob in N , with edges connecting them if there is an edge with endpoints in the two
blobs in N .

The tree of blobs is generally not binary, even when the network is. A blob with
m incident cut edges in a network produces an m-multifurcation in its tree of blobs.
Nodes of degree 4 or more in the tree of blobs indicate non-trivial blobs for a binary
network, while those of degree 2 or 3 may correspond to trivial or non-trivial blobs in
the network.

While this definition of a tree of blobs applies to an arbitrary connected network, a
slight variant is more useful here, as only some of the features of the tree of blobs for
a species network may be identified by our methods and data. Any 2-blobs become
nodes of degree 2 in the tree of blobs, but wewill suppress these since we cannot detect
them. Also, while we cannot detect any structure between the root of the network and
its LSA, even after suppressing nodes of degree 2 arising from blobs above the LSA,
an undetectable edge above the LSA might remain. We therefore discard this as well.

Definition 11 The reduced rooted tree of blobs, Trd(N+), of a rooted phylogenetic
network N+ is obtained from the tree of blobs T (N⊕) of the LSA network by sup-
pressing all nodes of both in-degree 1 and out-degree 1. The reduced unrooted tree
of blobs, Trd(N−), of N+ is obtained from the tree of blobs T (N−) of the unrooted
semidirected network by suppressing all nodes of degree 2.

See Fig. 1 for an example of a network and its reduced unrooted tree of blobs. The
reduced unrooted tree of blobs Trd(N−) is undirected since the only directed edges
in N− are hybrid edges, which are in blobs, and thus lost when passing to its tree of
blobs.

The reduced unrooted tree of blobs Trd(N−) can also be obtained from the rooted
one Trd(N+) by undirecting all edges, and either suppressing the root if it has degree
2 (as a node) or dropping its designation as the root if it has larger degree.

Note that if the LSA of the original phylogenetic network N+ lies in an m-blob,
m ≥ 4, that blob gives only an (m − 1)-multifurcation in the reduced unrooted tree of
blobs. If the LSA lies in a 3-blob, then that blob will be completely suppressed, and
not represented by a node.

We next introduce terminology to express the relationships a set of four taxa might
have to the blob structure of a network. We follow the standard convention of using
the word quartet to mean a particular unrooted binary topological tree on four taxa.
For instance the quartet ab|cd is the topology with cherries {a, b} and {c, d} separated
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by an internal edge. The unresolved quartet is the star topology for the 4-taxon tree,
denoted abcd. The following additional terminology is also useful in the network
setting.

Definition 12 A set of four taxa Q = {a, b, c, d} on an n-taxon phylogenetic network
is a Blob quartet, or B-quartet, if there is a blob on the network which is determined
by Q.

Equivalent conditions for Q = {a, b, c, d} being a B-quartet are (1) the deletion
of all edges in a single blob leaves the elements of Q in four distinct connected
components, and (2) the unresolved quartet abcd is displayed on the tree of blobs
Trd(N−). The blob referred to here may be an m-blob for any m ≥ 4.

If {a, b, c, d} is not a B-quartet, then in the tree of blobs there must be an edge
whose deletion disconnects two of these taxa from the others. Consequently, the tree
of blobs displays a resolved quartet tree for these taxa.

Definition 13 If a set of four taxa is not a B-quartet on an n-taxon phylogenetic net-
work, n ≥ 4, then it is a tree-like quartet, or T-quartet. The resolved quartet associated
to a T-quartet is that displayed on the tree of blobs Trd(N−).

Note that the induced 4-taxon network on a T-quartet need not be a tree, since
the induced network on the four taxa may contain non-trivial 2-blobs and 3-blobs.
However there can be no larger blobs. Nonetheless this induced network is “tree-like”
in the sense that it will have a cut edge whose removal disconnects the four taxa
into two groups of 2. Equivalently, every tree displayed on the 4-taxon network has
the same resolved quartet topology. Thus any T-quartet on a large network is also a
T-quartet on the induced quartet network.

In contrast, the induced network on a B-quartet may or may not have a 4-blob, and
can even be a tree. In passing from a network to an induced network on fewer taxa,
blobs may split into smaller blobs, and in some cases reduce to tree-like relationships.
Indeed, this happens even in the level-1 case with a single cycle of k edges, k ≥ 5.
In Fig. 3, for instance, {a, b, d, e} is a B-quartet in the full network, yet becomes a
T-quartet on the induced 4-taxon network. However, {a, b, c, f } is a B-quartet on both
the full and the induced networks.

2.3 Coalescent model on networks and quartet concordance factors

The formation of gene trees, tracking the ancestral relationships of individual lineages
within populations of ancestral species, is governed not only by the relationships of
those species, but also population-genetic effects. Going backwards in time, these lead
to gene lineages merging not when they first enter a common ancestral species, but
rather further in the past. If they fail to merge before entering an ancestral popula-
tion with yet other lineages, the gene tree relationships that form may differ from the
species relationships. When the species relationships are described by a tree rooted at
a common ancestor, the multispecies coalescent (MSC) model is the standard prob-
abilistic description of gene tree formation capturing this process (Pamilo and Nei
1988; Liu et al. 2009).
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The network multispecies coalescent (NMSC) model (Meng and Kubatko 2009;
Yu et al. 2012; Zhu et al. 2016) generalizes the MSC, allowing a finite number of
hybridization events, or other discrete lateral gene transfer events, between ancestral
populations. Its parameters are captured by a metric, rooted phylogenetic network,
assumed here to be binary, as in Definition 1. Edge lengths are given in coalescent units
(computed as number of generations/population size), so that the rate of coalescence
between two lineages is 1. At a hybrid node in the network, a gene lineage may pass
into either of two ancestral populations, with probabilities given by the hybridization
parameters γ, 1 − γ for the hybrid edges. This differs from other generalizations of
the MSC, such as the structured coalescent, where gene flow may be continuous over
a time interval.

The NMSC model determines a distribution of binary metric gene trees, and,
through marginalization, distributions of binary topological gene trees on subsets of
taxa. In this work we use only one type of marginalization, to unrooted binary topo-
logical gene trees on subsets of four taxa, or gene quartets. The probability of a gene
quartet is thus a function of the metric species network parameters under the NMSC.
Formulas for these probabilities were obtained in the tree case in Allman et al. (2011),
and for level-1 networks in Solís-Lemus and Ané (2016), with further study in Baños
(2019). Here we do not restrict to level-1 networks, and without any assumptions
on blob structure one cannot obtain precise formulas for gene quartet probabilities.
Nonetheless, some features of these probabilities can be analyzed sufficiently for
application to determining the tree of blobs of the network.

Definition 14 Let N+ be a metric rooted binary phylogenetic network on a taxon
set X , and a, b, c, d ∈ X distinct taxa. Then for the gene quartet ab|cd, the quartet
concordance factor CFab|cd = CFab|cd(N+) is the probability under the NMSC on
N+ that a gene tree displays the quartet ab|cd. The quartet concordance factor for
taxa a, b, c, d, or more simply the concordance factor, is the ordered triple

CFabcd = CFabcd(N+) = (CFab|cd ,CFac|bd ,CFad|bc)

of concordance factors of each quartet on the taxa.

Since under the NMSC gene trees are binary, and all gene tree topologies have pos-
itive probability, the entries of CFabcd are positive and sum to 1. Note that permuting
a, b, c, d permutes the entries of CFabcd . Nonetheless, when a, b, c, d are clear from
context, such as when |X | = 4, we write CF for CFabcd .

In Allman et al. (2011) it was shown that if the species network is a tree then two
of the three entries of CFabcd must be equal, with the third no smaller. We need the
following broader notion.

Definition 15 The concordance factor CFabcd is a cut CF if two of its entries are
equal, and strictly cut if in addition the third is distinct. If CFabcd is strictly cut with
CFab|cd �= CFac|bd = CFad|bc, then we sayCFabcd is strictly (ab|cd)-cut. IfCFabcd
is not cut, we say it is non-cut.

The term “cut" is motivated by Theorem 1 of the next section, which states that
for generic parameters a CF is cut exactly when there is a cut edge in the 4-taxon

123



   10 Page 12 of 26 E. S. Allman et al.

networkwhose deletion from the network leaves two connected components eachwith
two taxa.

We emphasize that Definitions 12 and 13 of B- and T-quartets refer to the relation-
ship of 4 taxa through the topology of a specified network, while Definition 15 of cut
and non-cut CFs refers to properties of the probability distribution under the NMSC.
In passing to an induced network, B-quartets may become T-quartets, although CFs
remain unchanged.

Theorem 1 below shows that on 4-taxon networks there is a close correspondence
between B-quartets and non-cut CFs. However, these notions are more subtly related
on larger networks. For the network of Fig. 3, for instance, {a, b, d, e} is a B-quartet
yet has a strictly cut CF . This issue is the main obstacle to showing identifiability of
the tree of blobs, to be overcome with Theorem 2 below.

3 Blob quartet identifiability on 4-networks

Wework under the NMSCmodel, so that specification of model parameters through a
metric rooted binary phylogenetic network determines a distribution of n-taxon gene
trees, and by marginalization, the theoretical quartet CFs for each subset of four taxa.

Although our ultimate goal is to identify the reduced unrooted tree of blobs of
a rooted phylogenetic network from the CFs, with no assumption on level or other
particular network structure, our approach to doing this is by first determining B-
quartets. In this sectionwe show that by applying certain inference rules, all B-quartets
on 4-taxon networks can be identified from the CFs, assuming generic values of
numerical parameters.

By generic numerical parameters we mean all those that lie outside of a subset of
measure zero in the parameter space. While we do not give an explicit description of
such an exceptional set, a good intuitive description that it has measure zero is that if
parameter values were chosen at random from an absolutely continuous distribution,
then with probability 1 they would not be exceptional. For complex stochastic models
it is quite common for identifiability results to depend upon the exclusion of some
“small” exceptional subsets of the parameter space (Allman et al. 2009).

A basic combinatorial observation, whose proof we omit, is the following.

Lemma 1 LetN+ be a 4-taxon rooted binary phylogenetic network. Then the semidi-
rected unrooted network N− must have either

1. exactly one 4-blob, or
2. exactly two 3-blobs.

In either case, N− may have any number of 2-blobs, but no other non-leaf blobs. In
case 1, the reduced unrooted tree of blobs Trd(N−) is the unresolved quartet tree and
the taxa form a B-quartet. In case 2, Trd(N−) is a resolved quartet tree and the taxa
form a T-quartet.

As shown in Solís-Lemus and Ané (2016), Baños (2019), for generic parameters
on a 4-taxon level-1 network one can detect B-quartets directly from the single CF .
We next extend the 4-taxon result for level-1 networks to arbitrary 4-blobs on 4-taxon
networks.
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Fig. 4 LSchematic depictions of two semidirected unrooted 4-taxon networksN−, where spheres represent
blobs of unspecified structure, and R their reduced unrooted trees of blobs Trd (N−). Up to taxon labelling,
these are the only possible 4-taxon topological reduced unrooted trees of blobs

As illustrated in Fig. 4, we can determine the reduced unrooted tree of blobs of a
4-taxon network by determining if it has a cut edge inducing a non-trivial split. If such
a cut edge exists, the tree of blobs is a quartet tree, and if it does not, the tree of blobs
is a star tree. That this feature can be detected by quartet concordance factors is the
content of the next proposition.

Theorem 1 (CF-detectability of 4-blobs on 4-taxon networks) Consider a 4-taxon
rooted binary phylogenetic networkN+ on taxa {a, b, c, d}with quartet concordance
factor CF = CFabcd and reduced unrooted tree of blobs T = Trd(N−). Then under
the NMSC for generic parameters:

1. T has the quartet tree topology ab|cd if, and only if, CFabcd is strictly (ab|cd)-cut.
2. T has the unresolved quartet topology if, and only if, CFabcd is non-cut.

Proof We prove the following statements, for generic parameters:

(a) If T has the quartet tree topology ab|cd, then CFabcd is strictly (ab|cd)-cut.
(b) If T has the unresolved quartet topology, then CFabcd is non-cut.

Were it not for the distinction between “cut" and “strictly cut", these statements
would immediately yield claims 1 and 2. But since the parameters are assumed to be
generic, this issue is easily overcome: Statement (b) implies for generic parameters
that if CFabcd is cut, then T has a resolved tree topology, which by (a) implies that
CFabcd is strictly cut. Thus for generic parameters CFabcd is cut if, and only if, it is
strictly cut.

To establish (a), suppose T is resolved, with topology ab|cd. Permuting taxon
names if necessary, we may assume that the reduced rooted tree of blobs thus has
topology (((a, b), c), d), ((a, b), (c, d)), or ((a, b), c, d).

In the first case, (((a, b), c), d), if a gene tree forms under the NMSC by the
a, b lineages coalescing below the 3-blob determined by a, c, d, it contributes to the
frequency of unrooted gene quartets with topology ab|cd. Otherwise, a, b enter that
blob as exchangeable lineages, and ac|bd and ad|bc will be equally probable as
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unrooted gene quartets. Thus CF is (ab|cd)-cut for all parameters. Moreover, if the
cut edges in N+ are given a sufficiently large length, CFab|cd can be made as close
to 1 as desired, and hence distinct from the other CF entries. Since CFabcd is an
analytic function of parameters and one parameter choice leads to its being strictly
(ab|cd)-cut, generic ones must as well (since any equality of analytic functions either
holds everywhere, or only on a lower-dimensional subset of the domain).

The remaining cases, of the reduced rooted trees of blobs ((a, b), (c, d)) and
((a, b), c, d), are similar. Any coalescence below the blob containing the LSA leads to
gene trees ab|cd. If no such coalescence occurs, then upon entering the blob containing
the LSA the lineages from a, b are exchangeable, so ac|bd and ad|bc will be equally
probable gene tree topologies, resulting in CFabcd being (ab|cd)-cut. Considering
sufficiently long cut edges in N+ again shows the CF is strictly cut generically.

To prove (b), suppose T has the unresolved topology, so thatN− has a 4-blob.Again
using the analyticity ofCFabcd it is enough to show there is a single choice of numerical
parameters that gives a non-cut CF . We can even choose these parameters to be on
the boundary of the stochastic parameter space, since the analytic parametrization of
the CFs extends to a larger open set. We now show such a parameter choice exists,
with some edge lengths and hybridization parameters 0.

If there are any 2-blobs on N−, set all edge lengths in N+ that give rise to them
equal to 0, with hybrid parameters arbitrary. Doing so, we have effectively removed
these blobs, and may thus assume there are no 2-blobs inN−. By Lemma 1, the only
non-leaf blob in N− is a 4-blob.

To further simplify the network, choose some total order for the nodes in N+
consistent with the partial order arising from the edge directions, with the root highest.
Focus on the lowest hybrid node w in this order, and its hybrid edges k1, k2. Consider
deleting one of the ki from N+ and with it all edges from which the only directed
path to a taxon leads through ki , suppressing any degree-2 nodes. If the semidirected
unrooted network of the resulting network still has a 4-blob, then set γi = 0 and lengths
for the removed edges to be arbitrary, so that we effectively consider a network with
one fewer hybrid nodes. Its semidirected unrooted network may have 2-blobs as well
as the 4-blob, but after repeatedly ‘removing’ 2-blobs and one of the lowest hybrid
edges in the 4-blob by setting certain parameters to 0, we arrive at a network such that
N− still has a single 4-blob and no other blobs, but for which removing either ofN+’s
lowest hybrid edges h1, h2, at lowest hybrid node v, in this way gives a semidirected
network with no 4-blobs. We henceforth assume our network N+ has this property.
See Fig. 5 for a schematic depiction of this simplification process, and as an aid in
following our subsequent steps.

If v is the lowest hybrid node onN+, then the subnetwork below v must be a tree.
But since N− has no 3-blobs, this tree can only have one leaf, and hence there is
only a single edge below v. By permuting taxon names, we assume the leaf below v

is labelled a. Removing from N+ either of the hi , and edges above it as described
earlier, gives connected subnetworks Ni which by suppressing degree-2 nodes give
phylogenetic networksN+

i . Moreover, the semidirected unrooted networksN−
i each

have exactly two 3-blobs, and possibly 2-blobs. By further permuting taxon names we
may assume N+

1 has reduced unrooted tree of blobs topology ab|cd.
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Fig. 5 The schematic form of the 4-taxon networkN+ used to establish Claim (b) in the proof of Theorem
1. The root (unlabelled) could be anywhere in the gray region. Red spheres represent biconnected subgraphs,
which may become blobs on induced networks on subsets of taxa. With w the lowest hybrid node in N+,
one of its hybrid edges, k1, is removed since doing so leaves a 4-blob. With v then the lowest hybrid node,
removing either of its hybrid edges, h1, h2, would result in no 4-blob. We let N+

1 be the result of further

removing edge h2 and edges ancestral to it and only the taxon a. The network N+
2 results similarly from

further removing edge h1 instead of h2. Removing all edges and nodes which lie above only the taxon a
gives network N3, shown in the gray region. The edge e is the cut edge incident to the single 3-blob in N3,
through which paths from that blob to taxon b pass (color figure online)

For the sake of contradiction, supposeN+
2 ’s reduced unrooted tree of blobs also has

topology ab|cd. Consider the subnetwork N3 on b, c, d obtained fromN+ by deleting
a and all edges above a that are not above any other taxa. Then N3 is a subnetwork of
both N1 and N2 which has a blob B determined by the 3 taxa b, c, d. Let e denote the
cut edge of N3 incident to B through which undirected paths to b pass. Now e must
be a cut edge in both N1 and N2, inducing the split ab|cd in both. Thus every edge in
N+ which is incident to N3 and ancestral to only the taxon a must be attached to N3
in the b-component of N3 � {e}. But this implies that e is a cut edge ofN+ inducing
the split ab|cd, a contradiction to the existence of a 4-blob on N−. Thus N+

2 has a
reduced unrooted tree of blobs topology that is resolved, but not ab|cd. We henceforth
assume this topology is ac|bd.

To pick values for the remaining parameters note that since a is the only taxon
below the hybrid node v,

CFabcd(N+) = γ1CFabcd(N+
2 ) + γ2CFabcd(N+

1 ).

where γ1, γ2 = 1 − γ1 are the hybridization parameters for h1, h2. Moreover, by (a)
we have that CF(N+

1 ) is strictly (ab|cd)-cut and CF(N+
2 ) is strictly (ac|bd)-cut for

generic parameters. Thus by first choosing the numerical parameters other than γ1, γ2
onN+ to yield such generic parameters on theN+

i , we may then pick values of γ1, γ2
so that CFabcd(N+) is non-cut. Thus CFabcd(N+) is generically non-cut. 
�

Applying this proposition to quartet CFs from large networks gives the following.

Corollary 1 LetN+ be a metric rooted binary phylogenetic network on taxa X, |X | ≥
4, with generic numerical parameters. Then under the NMSC, for each 4-taxon subset
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Fig. 6 An instance of the
network N (k)+ used in the
proof of Proposition 1, with
k = 3. All hybridization
parameters are 1/2, while ε and
M denote variable edge lengths

Q ⊆ X, the topology of the reduced unrooted tree of blobs on the induced network
Trd(N−

Q ) is identifiable from CFQ.

Proof By Theorem 1, for generic numerical parameter values on each induced 4-
taxon network we haveCF-detectability of a B-quartet or T-quartet. Since the generic
conditions only exclude a set of measure zero from the numerical parameter space of
each 4-taxon network, they give rise to a generic condition on numerical parameter
values on the n-taxon network ensuring that CF-detectability holds on all induced
4-taxon networks. 
�

We now characterize more fully the set ofCFs that arise on 4-networksN+ whose
trees of blobs are resolved. SupposeN+ has taxa a, b, c, d, and reduced unrooted tree
of blobs Trd(N−) with quartet topology ab|cd. IfN+ is a resolved tree, then Allman
et al. (2011) showed CFab|cd may take on any value in the interval (1/3, 1). If N+
is level-1, then Baños (2019) showed CFab|cd may take on any value in (1/6, 1). The
following generalizes these results to arbitrary networks.

Proposition 1 LetN+ bea4-taxon rootedbinary phylogenetic networkwhose reduced
tree of blobs has quartet topology ab|cd. Then under the NMSC the CF is ab|cd-cut,
with

CFabcd = (CFab|cd ,CFac|bd ,CFad|bc) = (p, q, q),

where 0 < p, q < 1, p + 2q = 1. Conversely, every such triple (p, q, q) arises as
the CF from such a network.

Proof By statement 1 of Theorem 1, it only remains to establish the final claim, that
every triple (p, q, q) with p, q > 0, p+ 2q = 1, arises as the CF of a network of the
sort described. We do this by constructing a sequence of topological networksN (k)+,
k ∈ Z

+, such that a triple (p, q, q) arises as a CF on N (k)+ for sufficiently large k
and certain numerical parameters.
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The form of N (k)+ is shown in Fig. 6 for k = 3. Edges lead from the root to the
taxon d and to a 3-blob. The other two edges incident to the 3-blob lead to c, and
to a cherry of a, b. The edge leading to the cherry has length ε and joins the blob
at a node that can be thought of as the ‘root’ of an inverted binary subtree of hybrid
edges (shown in red in Fig. 6), inverted so that its edges are directed toward this node.
This binary subtree has 2k ‘leaves’, and all internal edges of length ε. The ‘pendant’
edges of this subtree have lengths ε, ε + M, ε + 2M, . . . , ε + (2k − 1)M , with the
subtree ‘leaves’ connected by a path of edges all of lengthM . The pendant edges of the
network N (k)+, and the internal edge leading from the root of N (k)+ to the 3-blob
can be given any fixed lengths, but for concreteness, we make the network ultrametric
by choosing the remaining internal edge to have length 1 and the pendant edges to
a, b, c, d to be of lengths 1, 1, 1+ (k + 1)ε, 2+ (k + 1)ε + (2k − 1)M , respectively.
We set all hybridization parameters equal to 1/2.

Note that by Theorem 1, CFabcd is strictly (ab|cd)-cut for ε > 0.
We next show that under the NMSC on N (k)+, for ε ≈ 0 and k 
 0, with high

probability the a, b lineages will be on different edges of the network when they reach
a height of 1 + (k + 1)ε above the taxa. This event is the union of k disjoint events,
in which the lineages follow the same path without coalescing to height 1 + �ε for
any � ∈ {1, 2, . . . , k} at which point they diverge on different paths. The probability
of this for a specific � is (p/2)�, where p = exp(−ε) is the probability two lineages
do not coalesce on an edge of length ε. Thus the probability of the full event is

α =
k∑

�=1

(p/2)� = p

2
· 1 − (p/2)k

1 − p/2
.

Taking ε close to 0 ensures p is as close to 1 as desired. Then choosing k sufficiently
large, the probability α can be made as close to p/(2 − p) as desired, and hence
arbitrarily close to 1.

Now CFabcd can be expressed as

CFabcd = αCF1 + (1 − α)CF2,

where CF1 is the CF conditioned on the a, b lineages being on different edges at
height 1 + (k + 1)ε above the leaves, and CF2 the CF conditioned on the comple-
mentary event. To compute CF1, note that the conditioning ensures that all coalescent
events that can occur will have the same probability that they would if they instead
occurred on a species tree with topology (((c, a), b), d) or a species tree with topol-
ogy (((c, b), a), d), with each of these trees having equal probability. Moreover on
these trees the length of the edge ancestral only to the cherry is mM for some
m ∈ {1, 2, . . . , 2k − 1}. Thus by choosing M large enough, we can ensure with
probability as close to 1 as we like that gene tree topologies will match the population
tree, making CF1 as close to (0, 1/2, 1/2) as desired. Now since α can be made arbi-
trarily close to 1, we need not analyze CF2 (beyond knowing its entries are bounded)
to conclude that we can make CFabcd as close to (0, 1/2, 1/2) as desired by choices
of ε ≈ 0 and k, M 
 0.
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Fig. 7 Geometric view of CFs for 4-taxon network models, with dashed lines outlining the simplex �2.
The solid line segments represent CFs arising from species networks whose unrooted reduced trees of
blobs are resolved. The vertical line segment corresponds to ab|cd, the upward-sloping one to ac|bd, and
the downward sloping one to ad|bc. CFs off of these lines can only arise from networks with unresolved
unrooted reduced trees of blobs, and as shown in Baños (2019) all such points arise from level-1 networks.
Networkswhose unrooted reduced trees of blobs are unresolvedmay also produceCFs on the line segments,
but only for non-generic parameters

Using the same fixed k, so the network topology is still that of N (k)+, we could
instead take ε 
 0, making the probability of coalescence of a, b on the edge above
the {a, b} cherry as close to 1 as we like, so that CFabcd is arbitrarily close to (1, 0, 0).
Since CFabcd lies on the line of points of the form (q, p, p), q + 2p = 1 and is
a continuous function of numerical parameters, by connectedness of the numerical
parameter space for N (k)+, all intermediate points between the ones we found arise
as CFabcd for some parameters. 
�

The statements of Theorem 1 and Proposition 1 can be made geometric by plotting
CFs (Mitchell et al. 2019; Baños 2019; Allman et al. 2019, 2022). A CF is a point
in the interior of the 2-dimensional probability simplex,

�2 =
{
(p1, p2, p3) | pi ≥ 0,

∑
pi = 1

}
.

Figure 7 gives a depiction of �2, with the three blue line segments within it showing
the locations of cut CFs. If the unrooted reduced tree of blobs of a 4-taxon network
is ab|cd, then CFabcd lies on the vertical line segment shown in the figure, and every
point on this line segment within the simplex arises from some such network. The
other line segments in the simplex similarly show values of CFabcd arising from
networks with unrooted reduced trees of blobs ac|bd and ad|bc. Points in the simplex
off these line segments arise as CFs only for networks whose unrooted reduced trees
of blobs are unresolved. By Baños (2019), all points off the line segments arise from
level-1 networks with 4-cycles. Although a network with a more complicated 4-blob
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may produce a CF on the line segments for certain numerical parameters, this cannot
happen for generic parameters by Theorem 1.

4 Blob quartet identifiability on large networks

Theorem 1 will be applied to the induced network on four taxa arising from a larger
n-taxon network. TheCFs computed from the induced 4-taxon networks are the same
as gene tree probabilities from the large network marginalized to 4-taxon sets, by the
structure of the NMSC model. However, since four taxa which form a B-quartet on
a large network may not do so on an induced one, determining B-quartets on a large
network generally requires additional arguments, which are developed in this section.

The following lemma leads to one easy deduction of B-quartets from those on
induced networks.

Lemma 2 Consider a network N with degree-1 nodes bijectively labelled by X, and
a subnetwork M of N with the restricted labelling of some degree-1 nodes by Y ⊆ X.
If a set S ⊆ Y determines a blob on M, then S determines a blob on N. Moreover, the
incident cut edges of the blob on N leading to elements of S are in M.

Proof If S determines a blob B0 on M , then there exist undirected paths in M from B0
to each s ∈ S, with no edges in common among any pair of paths. But B0 is contained
in a blob B of N . For each s ∈ S, the path from B0 to s may include some edges in
B, but it has a subpath from B to s entirely outside of B. Moreover, these subpaths for
different s have no edges in common, and must thus pass through distinct cut edges
incident to B. Hence S determines B, and the incident cut edges leading to each s are
in M . 
�

To apply this to induced phylogenetic networks on subsets of taxa, observe that
induced networks are obtained from subnetworks by suppressing degree-2 nodes.
Under this operation, blobs pass to blobs, and cut edges to cut edges. Thus we have
the following.

Corollary 2 Let N+ be a rooted binary phylogenetic network on X, and M+ the
induced network on Y ⊂ X. Then any B-quartet on M+ is a B-quartet on N+.

To identify additional B-quartets from those identified by Theorem 1 and Corollary
2, we develop an inference rule. To state it concisely, we say taxa a, b are separated
in a resolved quartet if they lie in different cherries. Thus the taxa a, b are separated
in ac|bd and ad|bc, but are not separated in ab|cd.
Theorem 2 (B-quartet InferenceRule)Consider a rooted binary phylogenetic network
N+ on n taxa, n ≥ 5. Suppose that {a, b, c, d} and {b, c, d, e} are B-quartets onN+.
If on the induced 4-taxon network any one of {a, b, c, e}, {a, b, d, e}, or {a, c, d, e} is
(a) a T-quartet, with a, e separated in the reduced unrooted tree of blobs for the

induced 4-taxon network, or
(b) a B-quartet,
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Fig. 8 A schematic of the network N+, as described in Lemma 3. Edges are partitioned into four color-
coded sets. Black edges are ancestral to the taxon α and no other taxa, forming the subnetwork A. Non-black
edges form the subnetwork N ′, in which the blob B′ is determined by {a, b, c}. The red edge e0 incident
to B′ is a cut edge of N ′, separating the connected components Kab and Kcd , shown in green and blue,
respectively. The root of N+ might be in either Kab or Kcd . The nodes x, y, z are described in the proof
of the lemma (color figure online)

then all of {a, b, c, e}, {a, b, d, e}, and {a, c, d, e} are B-quartets on N+.

Proof The taxa b, c, d determine a blob inN+, corresponding to a node v in its tree of
blobs. But since {a, b, c, d} and {b, c, d, e} are B-quartets, undirected paths in the tree
of blobs from the taxa a and e also first meet those from b, c, d at v. The conclusion
will follow from showing the paths from a and e to v do not meet each other before
v, so that all 5 paths from a, b, c, d, e first meet at v.

Suppose the paths from a, e do meet before v. Then there is an edge in the tree
of blobs, and hence a cut edge in the network, that separates a, e from b, c, d. This
implies that picking any two of b, c, d, the taxa a, e are not separated in the 4-taxon
tree of blobs, nor do they form a B-quartet with a, e. 
�

For example, for the network of Fig. 3 both {a, b, c, d} and {b, c, d, e} are CF-
detectable B-quartets. While {a, b, d, e} is not a CF-detectable B-quartet, since
CFabde is strictly ab|de-cut, applying Theorem 2 shows that it is a B-quartet.

To show that the previous propositions give sufficient tools to detect all B-quartets
for generic parameters, we use the following lemma.

Lemma 3 Let N+ be a rooted binary phylogenetic network on taxa X for which
{a, b, c, d} is a B-quartet, and suppose for some α ∈ X the induced network N ′ on
X �{α} has a cut edge inN ′ separating a, b from c, d. Then {a, b, c, α} is a B-quartet
on the induced network M+ on X � {d}.
Proof We define several subnetworks ofN+, with Fig. 8 provided to assist the reader.
Let A be the connected subnetwork ofN+ whose edges are those ancestral to the taxon
α but no other taxa. Let N ′ be the connected subnetwork ofN+ whose edges are those
ancestral to at least one taxon other than α, and M the connected subnetwork of N+
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whose edges are ancestral to at least one taxon other than d. Note that N ′, M yield the
induced networksN ′,M+ on X � {α}, X � {d} by suppressing degree-2 nodes, and
N+ = N ′ ∪ A.

Let B′ be the blob in N ′ determined by a, b, and c, and let e0 be the cut edge of
N ′ incident to B′ through which paths to c pass. Thus e0 also separates a, b, from
c, d in N ′. Let Kab (respectively Kcd ) denote the connected component of N ′

� {e0}
containing a, b (respectively c, d). Then the edges of the four connected subnetworks
A, Kab, {e0}, and Kbc partition the edges ofN+, as shown in Fig. 8.We now construct
a cycle in N+ through these subnetworks with certain features.

First, there is an undirected path P1 entirely within A from α to a node x in Kab. If
this were not the case, then all paths from α to N ′ within A would end at nodes in Kcd .
But then e0 would separate a, b from c, d, α in N+, contradicting that {a, b, c, d} is
a B-quartet on N+.

There is also a path P2 from x to e0 in Kab, by the connectedness of Kab.
By a similar argument to that for P1, there is an undirected path from a node y ∈ Kcd

to α within A. Because y ∈ Kcd , y is ancestral to a taxon other than α. Since the edge
in the path incident to y is ancestral only to α, that edge’s parent node must be y and
there is a directed path from y to α within A. Choose some such directed path.

The nodes y and c must have a common ancestor in Kcd , since either the root of
N ′ is in Kcd or any directed path from the root to any node in Kcd passes through e0
and the child node of e0 is such an ancestor. Choosing z as a least common ancestor of
y, c in Kcd (i.e., a common ancestor with no descendent that is a common ancestor),
and a directed path from z to y, we form a combined directed path P4 from z through
y to α, with all edges ancestral to α.

If all edges and nodes ancestral only to d are deleted from N ′, the network remains
connected and contains both z and e0. Thus there is a path P3 from e0 to z in Kcd with
no edges that are ancestral to only the taxon d.

Combining the paths P1, P2, the edge e0, P3, and P4, and removing edges to
eliminate any self-intersections, yields a cycleC inN+ which passes through A, Kab,
e0, and Kcd . This cycle also lies in M , as none of its edges are ancestral only to the
taxon d. Since B′ also lies in M , and the cycle C and B′ intersect, they lie in the same
blob B of M .

It remains to show that {a, b, c, α} determines B in M , and hence is a B-quartet on
M+. Since {a, b, c} determines B′ in N ′ and hence in M ∩ N ′, by Lemma 2 {a, b, c}
determines B in M with incident cut edges leading to a, b, c in M ∩ N ′ ⊂ N ′. But
the initial segment of P1 gives a path from α to C . Since this path lies entirely in A,
the cut edge incident to B that leads to α must be in A, and is therefore distinct from
those to a, b, c. Thus {a, b, c, α} determines B in M . 
�

We arrive at the main result of this section.

Theorem 3 On an n-taxon rooted binary phylogenetic network N+ with generic
numerical parameters, all B-quartets can be identified from the quartet CFs using
CF-detectability (Theorem 1) and applications of the B-quartet Inference Rule
(Theorem 2).
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Proof By Corollary 1, for generic parameters we may identify the topologies of the
reduced unrooted trees of blobs of all induced networks on four taxa. Since the B-
quartet Inference Rule does not depend on parameters, we have only to show that this
information together with the inference rule is enough to identify all B-quartets.

We proceed by induction on the number n of taxa on the network N+, with the
base case of n = 4 established. Inductively assume that the result holds for networks
with fewer than n taxa, and consider N+ with n ≥ 5 taxa.

Suppose {a, b, c, d} is a B-quartet onN+, determining a blob B. Then consider the
connected components of the graph obtained by deleting B. Choose one taxon from
each component which contains a taxon, with four of these being a, b, c, d. Passing
to the induced network on those taxa, all edges in B are retained. If this network has
fewer than n taxa, then the inductive hypothesis gives that {a, b, c, d} can be identified
as a B-quartet on it, and by Corollary 2 on N+.

If the number of taxa was not decreased, thenN+ has a relatively simple structure:
Its LSA network N⊕ contains the blob B with n incident cut edges. If the LSA is in
B, then the incident cut edges connect to (possibly empty) chains of 2-blobs leading
to leaves. If the LSA is not in B, then n − 1 incident cut edges connect to chains of
2-blobs leading to leaves, and one connects through a chain of 2 blobs to a 3-blob
containing the LSA, which connects to another chain of 2-blobs leading to a leaf. For
a network N+ of this form if we remove any taxon other than a, b, c, d and pass to
the induced network, {a, b, c, d} either remains a B-quartet or does not. If {a, b, c, d}
remains a B-quartet, then we may delete that taxon, and again obtain the result from
the inductive hypothesis.

Suppose then that no taxon can be removed from N+ without {a, b, c, d} ceasing
to be a B-quartet in the induced network, and fix some α ∈ X � {a, b, c, d}. LetN ′ be
the induced rooted network on X � {α}. Then the blob B on N+ splits into multiple
blobs with cut edges joining them on N ′, and {a, b, c, d} is a T-quartet on N ′. There
must be a cut edge e0 inN ′ that separates two of a, b, c, d, say a, b, from the others,
c, d. Theorem 1 thus shows that CFabcd is (ab|cd)-cut.

Applying Lemma 3 twice, we conclude that {a, b, c, α} and {b, c, d, α} are B-
quartets on the networks induced from N+ by removing d and a respectively. As
these are networks on n − 1 taxa, the inductive hypothesis ensures that they can be
detected as B-quartets. But they must then also be B-quartets on N+ by Corollary 2.
An application of Inference Rule (a) of Theorem 2 then establishes the claim. 
�

Although the proof of Theorem 3 shows that only part (a) of Theorem 2 is needed to
infer all B-quartets from those that areCF-detectable, part (b) is useful in an inference
algorithm for reducing computational time.

Figure 9 shows several instructive examples of blobs for understanding the proof
and application of Theorem 3. On the left, a simple 7-cycle relates a, b, c, d, e, f
and hybrid taxon α. Though {a, b, c, d} is a B-quartet, it is not CF-detectable since
CFabcd is ad|bc-cut. To infer that {a, b, c, d} is a B-quartet by the argument of the
proof, the taxa e, f can be ignored, as passing to the induced network without them
leaves {a, b, c, d} a B-quartet. The taxon α will be used, since its deletion would make
{a, b, c, d} a T-quartet. The CFs for {α, a, c, d} and {α, b, c, d} show those sets are
B-quartets, so using that CFabcd is ad|bc-cut in inference rule (a) of Theorem 2 gives
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Fig. 9 L A 7-blob with a simple cycle structure. While many of its B-quartets are not CF-detectable,
each can be inferred from CF-detectable ones by a single application of the B-quartet Inference Rule. For
instance, {a, b, c, d} is a B-quartet although CFabcd is ad|bc-cut. The inference rule shows that it is a
B-quartet using the two CF-detectable ones, {α, a, c, d} and {α, b, c, d}. R A 7-blob with a more complex
structure. The B-quartet {a, b, c, d} is not CF-detectable, but three applications of the inference rule allow
it to be inferred from those that are

the desired conclusion. Every other B-quartet for this network can be similarly inferred
using the inference rule once.

A more complicated example with a 7-blob in Figure 9R illustrates the need for
the inductive argument for Theorem 3. Here we explain how to infer that {a, b, c, d}
is a B-quartet even though CFabcd is (ab|cd)-cut. Note that deletion of any one of
α, β, δ would give an induced network with {a, b, c, d} a T-quartet. We pick any
one of these, say α, and find that {a, b, c, α} is a B-quartet using its CF . Then, by
considering the induced 6-taxon network on {b, c, d, α, β, δ}, which has a 6-blobwhen
unrooted, we see inductively that {α, b, c, d} is a B-quartet, so by the inference rule
{a, b, c, d} is also. Tracing through the full argument for {b, c, d, α, β, δ} to explicitly
show {α, b, c, d} is a B-quartet requires several more applications of the inference
rule.

Of course in an inference algorithm, where the network structure is not yet known,
this analysis is done in the opposite order, by first finding allCF-detectable B-quartets,
and then using repeated applications of the rule to infer new ones until no more can
be produced.

5 Main result

The identifiability of the tree of blobs of a species network now follows easily.

Theorem 4 LetN+ be a rooted binary phylogenetic network. Then for generic numer-
ical parameters, the reduced unrooted tree of blobs Trd(N−) is identifiable from the
distribution of gene quartet topologies under the NMSC model.

Proof By Theorem 3, for generic numerical parameters onN+, all B-quartets onN+
can be identified from the quartet CFs, that is, from the distributions of gene quartet
topologies. By Corollary 1, we can additionally identify the topology of each unrooted
reduced quartet tree of blobs if it is resolved.
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TreatingB-quartets onN+ as unresolved,we thus can identify the topology of every
displayed quartet tree on Trd(N−). But the collection of displayed quartets determine
the tree (Semple and Steel 2005; Rhodes 2020), so the tree of blobs is identifiable. 
�

This result addresses the theoretical question of whether it is in principle possible to
infer Trd(N−) from quartetCFs, but its proof also suggests an algorithm for inference
of the tree of blobs from data. While the complete development and implementation
of the algorithm, together with sample analyses of empirical data, will be treated in
another publication, we outline the steps here.

For a set {a, b, c, d} of four taxa, a quartet count concordance factor (qcCF) is
a vector of counts (nab|cd , nac|bd , nad|bc) of unrooted topological quartet trees. We
assume for each given set {a, b, c, d} these counts summarize a sample of independent
draws under the NMSC. For instance, these could be displayed quartets on a collection
of independent gene trees on the full set X of taxa, or on subsets of X . While gene
trees are not empirically observable, given gene sequence data they may be inferred
by standard phylogenetic methods, at the price of introducing inference error.

Beginning with a collection of independent gene trees on X , the algorithm proceeds
as follows:

1. Tabulate qcCFs for all sets of four taxa.
2. Apply a statistical hypothesis test to each qcCF to judge whether the T-quartet

model can be rejected. If so, the taxa form a putative B-quartet on the induced
4-taxon network. If not, infer the resolved quartet tree of blobs topology.

3. Use the B-quartet Inference Rule repeatedly to determine all putative B-quartets
on the full network.

4. Treating putative B-quartets as unresolved quartet trees and T-quartets as resolved,
estimate the unrooted reduced tree of blobs, using the quartet intertaxon distance
(Rhodes 2020) and a tree building method.

This algorithm, is similar in outline toNANUQ(Allman et al. 2019),which provides
for statistically-consistent inference of a network provided it is level-1. However, since
it does not attempt to infer any details of blob structure, it avoids the complications
of interpreting splits graphs. Like NANUQ, it can be shown to provide a statistically
consistent estimate of the network features it seeks to infer.

Note that step 2 requires the development of a novel statistical test, since the cut
model has a singularity at the point (1/3, 1/3, 1/3) where the 3 model lines intersect.
Singularities cause significant problems in statistical analyses, so a new and non-
standard distribution must be developed for use in computing p-values associated to
qcCFs. Derivation of an appropriate distribution proceeds along the lines of the T3
test of Mitchell et al. (2019).

Step 3 cannot be done naively, since computational complexity needs to be con-
trolled for use on large networks. Multiple cycles of applying the B-quartet inference
rule are needed in which any recently inferred B-quartets are compared to known ones.
Byminimizing the number of pairs of B-quartets considered, this can be accomplished
in time O(n5), for n taxa.

Finally, for step 4 numerous existing methods for determining a tree from its dis-
played quartets could be used, provided that they tolerate some amount of noise due
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to mistakes in classifying qcCFs as signifying resolved or unresolved quartet trees of
blobs. We choose to use the quartet intertaxon distance of Rhodes (2020) combined
with a tree building method such as Neighbor-Joining as a means of addressing such
noise in the quartets and still achieving reasonable runtimes. In the end, the compu-
tational time is O((n + m)n4), where m is the number of input gene trees and n the
number of taxa. An implementation will be given in the MSCquartets R package.

The tree of blobs shown to be identifiable by Theorem 4, and estimated by the
algorithm sketched above, is of course a topological tree. Researchers might prefer
a metric tree of blobs, indicating (in coalescent units) the distance between blobs.
For edges between trivial blobs, it is straightforward to see that edge lengths are
identifiable, and heuristics such as those used by ASTRAL (Sayyari and Mirarab
2016) for species tree inference provide a fast estimate of them. However, if either,
or both, endpoints of an edge are in non-trivial blobs, then both identifiability and
methods for effective estimation are far from obvious. For example, on the 4-taxon
network in Fig. 6 if the length ε of the edge between the blobs is held fixed but k
or M varied, the CF varies over a line segment. This segment overlaps a similarly
constructed segment of CFs for a nearby value ε′ ≈ ε. Thus the distance between
blobs cannot be identified in this 4-taxon case. This identifiability question for larger
networks will also be studied in a future work.
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