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Abstract

Soil carbon feedbacks to global change are uncertain, and the biological processes that
govern soil organic matter decomposition are not resolved in current ecosystem models. Though
it is recognized that microbial biodiversity influences decomposition rates, incorporating this
relationship into ecosystem models is challenging because microbial communities are
prohibitively diverse. It is likely necessary to distill microbial biodiversity by focusing on
functional groups or ecological strategies. The ecological strategies that currently dominate the
microbial ecology literature derive from macroecological theory, have clear weaknesses, and
have had limited success when applied to predict soil carbon dynamics. Here, we present a new
framework for soil microorganisms: Carbon Acquisition Ecological Strategies (CAES), and we
outline a path toward incorporating microbial biodiversity into ecosystem models using this
framework to enhance predictions of soil carbon feedbacks to global change. Because a
microorganism’s diet is central to its ecological niche and likely to covary with other
ecologically significant traits, we posit that carbon acquisition may serve as a tractable
foundation for developing ecological strategies. We describe four candidate ecological strategies
for soil microorganisms: /° decomposers that assimilate complex plant polymers, 2°
decomposers that assimilate microbial necromass, passive consumers that assimilate dissolved
organic C (DOC), and predatory microbes that assimilate live microbial biomass C. These
strategies are directly linked to soil carbon pools currently represented in ecosystem models and
may provide a foundation for greater integration of microbial community dynamics into

ecosystem models.
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1. Introduction

Soil contains the second largest reservoir of carbon (C) on earth, surpassed only by the
oceans (Ciais et al., 2013). Soil C cycling is highly sensitive to environmental changes, such as
shifts in temperature and moisture (Hursh et al., 2017; Melillo et al., 2017). In addition, soil
microbial community composition can alter C cycling processes such as decomposition (via
anabolism and extracellular enzyme production; Allison et al., 2013; Don et al., 2017) and C
sequestration (by producing microbial necromass, metabolites, and external polymeric
substances that adsorb onto soil particles; Buckeridge et al., 2020; Raczka et al., 2021).

As climate change continues, rising temperature and altered precipitation coupled with
changes in above-ground communities, can influence soil microbial biodiversity (Fierer, 2017),
which may feedback to regulate the balance of C decomposition and stabilization. However,
many questions remain regarding the extent to which changes in microbial biodiversity and
function may exacerbate or mitigate the impacts of global change on soil C stocks.

Microbial ecologists and ecosystem scientists struggle to make meaningful connections
between microbial biodiversity and soil C, often leading to the omission of microbial
biodiversity from soil C models (Bradford et al., 2016; Denman et al., 2007; Hutchins et al.,
2019). There have been some efforts to represent microbial biodiversity using functional groups
that differ in key traits; these have relied on assumptions from theoretical frameworks that are
difficult to measure and, thus, difficult to parameterize (Moorhead and Sinsabaugh, 2006;
Wieder et al., 2014). A promising approach is to build a bridge from microbial biodiversity to
soil C cycling using ecological theory. Building this bridge is necessary to enhance our
predictive understanding of the extent to which microbial biodiversity drives the response of soil

C to global change.
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Aboveground, the species composition of plant and animal communities influences
ecosystem fluxes (e.g., Melvin et al., 2015; Wardle et al., 2012; Ylédnne et al., 2015). Functional
trait variation across species produces differences in resource use and interactions with the
abiotic environment; consequently, community composition shapes ecosystem processes
(Hooper and Vitousek, 1997; Verville et al., 1998). Increasing evidence suggests a similarly
strong link between community composition and ecosystem function exists below ground. For
example, carefully controlled manipulations of microbial community composition have been
found to alter leaf litter decomposition (Allison et al., 2013), soil respiration (Don et al., 2017,
Reed and Martiny, 2013), and nitrogen cycling (Delgado-Baquerizo et al., 2018; Philippot et al.,
2013; Wagg et al., 2014). The composition of microbial communities belowground can also
impact plant performance, creating another link to above-ground processes and drivers.
Specifically, soil microbes can influence ecologically-important traits like flowering time and
manipulate plant fitness under competition and during drought (Fitzpatrick et al., 2019; Lau and
Lennon, 2011; Lu et al., 2018; Wagner et al., 2014). Despite clear experimental evidence that the
“species” (or phylotype) composition of microbial communities influences ecosystem process
rates, determining the impact of individual microbial taxa on community-level functioning

remains challenging.

2. Ecological Strategies in Microbial Ecology
One path toward connecting the composition of microbial communities with ecosystem
function is by classifying species based on ecological strategies. Ecological strategies describe
traits that covary due to physiological and evolutionary tradeoffs, enabling species to be

particularly successful under certain conditions. One such framework posits that animal species
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fall on an r- to K- selection continuum. In this framework, natural selection favors species with
the potential for rapid population growth in ecosystems with fluctuations in resource availability
(r-strategists) and favors highly efficient and competitive organisms when resource availability is
steady, and populations are near carrying capacity (K-strategists; MacArthur and Wilson, 2001;
Pianka, 1970). Microbial ecologists adapted this framework, placing microbial species on a
continuum from oligotrophic to copiotrophic. Oligotrophs are adapted to survive and compete in
low nutrient conditions. They grow slowly and efficiently scavenge resources.

Copiotrophs occupy the opposite trait space, growing rapidly when nutrient concentrations are
high (Chen et al., 2021; Fierer et al., 2007; Lauro et al., 2009). A second well-known framework
utilized by plant ecologists argues that plants adapt to maximize their ability to compete under
steady and favorable conditions (competitors, “C”), withstand stressful conditions (stress
tolerators, “S”), or thrive in high disturbance environments (ruderal, “R”’; Grime, 2006, 1977).
The C-S-R framework has helped enable the incorporation of plant community composition into
dynamic vegetation models by developing trait distributions based on leaf longevity, resource
investment, and photosynthesis rates (Berzaghi et al., 2020; Reich et al., 1997; Wright et al.,
2004) (Berzaghi et al., 2020; Reich et al., 1997; Wright et al., 2004). Here again, microbial
ecologists have attempted to adapt this framework to microorganisms (e.g., Fierer, 2017; Ho et
al., 2017; Prosser et al., 2007); for instance, the Y-A-S framework proposes that microbes evolve
to maximize growth yield (“Y”), resource acquisition (““A”), or stress tolerance (“S”, Malik et al.,
2020). The application of these and other ecological strategies, originally developed for macro-
organisms, to microbial systems has provided some insight into community dynamics and

function; however, these ecological strategies have not yielded a robust framework for predicting
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relationships between taxonomic composition and ecosystem function for heterotrophic soil

microorganisms.

The ecological strategies currently dominating microbial ecology have limited ability to
explain soil C cycling because they do not adequately reflect variation in the C acquisition traits
of microorganisms. For example, the copiotroph-oligotroph framework emerged from
measurements of microbial growth and substrate affinity in culture using low molecular weight
dissolved organic carbon (DOC) substrates (Semenov, 1991). As most environmental microbes
are not culturable, more recent work has inferred the ecological strategies of microbes based on
changes in relative abundance, determined by DNA sequence data, following the addition of
simple DOC substrates to soil (e.g., Fierer et al., 2007; Ho et al., 2017). Consequently, the
copiotroph-oligotroph framework has two implicit assumptions. First, it assumes that all
heterotrophs rely primarily on simple DOC compounds. Second, it assumes that copiotrophs
compete well at high concentrations while oligotrophs are most competitive at low
concentrations. This premise of reliance on DOC is clearly flawed. Many fungi and bacteria
present in soil are not easily categorized as either copiotrophs or oligotrophs because they can
degrade large and insoluble substrates. For instance, Cytophagaceae have novel enzymes for
cellulose digestion (Xie et al., 2007) that are membrane bound (McBride et al., 2014). Since the
small soluble products of cellulose degradation are produced and consumed at the cell membrane
where other microbes cannot access them, Cytophagaceae avoid competition for DOC. A recent
study using stable isotope probing confirmed that saprotrophic bacteria effectively competing for
and assimilating polymeric substrates like cellulose (e.g., Cytophagaceae, Caulobacteraceae) do
not assimilate appreciable amounts of simple DOC substrates such as glucose and amino acids

(Dang et al., 2022a). Specialization in large insoluble polymers is even more common among



114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

fungi (Algora Gallardo et al., 2021; Bhatnagar et al., 2018; Lopez-Mondéjar et al., 2020) which
have evolved suites of enzymes to support distinct saprotrophic lifestyles (e.g., lignocellulose
decay by Polyporales and Agaricales; Ruiz-Dueiias et al., 2021).

The focus on DOC is a long-recognized flaw in the copiotroph-oligotroph framework,
and other trophic classifications have been developed that attempt to further divide heterotrophs
based on their ability to produce degradative enzymes (Semenov, 1991). The recent adaptation of
the C-S-R framework proposed by Malik et al. (2020) is stronger in this regard as it
acknowledges traits related to C acquisition from soil polymers are significant to the ecology of
soil microorganisms. In this framework, Cytophagaceae would be classified under the resource
acquisition strategy because they are motile and produces enzymes that degrade complex
substrates (Malik et al., 2020). While the Y-A-S framework is more inclusive, some microbial
taxa could fall into multiple categories based on their traits. For instance, many Bacillus species
have a high growth rate (yield strategy) and also produce spores (stress tolerance strategy) (Sella
et al., 2014). Further, this framework fails to encompass the diversity of microbial lifestyles in
the soil environment. For instance, Bdellovibrio and like organisms (abbv. BALOs), are motile,
obligately predatory bacteria (Rotem et al., 2014) common in soil environments (Davidov et al.,
2006; Williams and Pifieiro, 2006). Given their predatory lifestyle, these organisms are unlikely
to compete for DOC or polymeric substrates like cellulose. While they could arguably be placed
in the ‘acquisition’ strategy because they expend energy to acquire resources, they are likely to
have a very different influence on soil C cycling than ‘acquisition’ bacteria that degrade complex
plant-derived organic substrates. For example, past works suggest that predation by BALOs
reduces microbial biomass and activity (Davidov et al., 2006; Williams and Pifieiro, 2006), while

the decomposition of complex plant substrates by “acquisition” bacteria has the opposite effect
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of stimulating microbial biomass and activity (Xiao et al., 2015). In summary, many soil
saprotrophic microorganisms do not fit neatly into the ecological strategies stipulated by current
frameworks, perhaps because these frameworks were originally developed using a community
ecology lens for macro-organisms. We propose a more effective framework can be built “from
the bottom up,” by instead focusing on the diverse traits, lifestyles, and functions of microbial
taxa. When integrated, these attributes represent distinct strategies that drive soil C cycling at the
ecosystem scale. We believe this novel framework for conceptualizing saprotrophic microbial
communities may be especially useful in ecosystem models and could facilitate enhanced

predictions of soil C feedbacks to global change.

3. Carbon Acquisition Ecological Strategies (CAES) for Soil Microorganisms
We propose that microbial ecologists draw inspiration from soil C biochemistry and

ecosystem models to re-conceptualize the ecological strategies of soil saprotrophic
microorganisms. Models of soil C mineralization and accumulation that distinguish chemically
and functionally distinct soil organic C pools (Robertson et al., 2019; Sulman et al., 2018;
Wieder et al., 2013) and explicitly represent microbial physiology (see Wieder et al., 2013) can
outperform traditional first order decomposition models (Abramoff et al., 2022; Sulman et al.,
2018; Wieder et al., 2013). While this is a step in the right direction, most of these “microbially
explicit” models neglect microbial biodiversity and only simulate one microbial biomass pool.
Some models (Moorhead and Sinsabaugh, 2006; Wieder et al., 2014) have integrated diversity
using frameworks based on theoretical assumptions of how copiotrophs and oligotrophs differ in
substrate use, activity, and growth. However, owing to methodological challenges in classifying

copiotrophic or oligotrophic microbes and mapping differences between them in traits or
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function, few studies have tested the assumptions or benchmarked the trait parameters
underlying these models.

The classification of microorganisms into ecological strategies that clearly connect to soil
C pools may facilitate the incorporation of microbial biodiversity into soil C models. To start
simply, microbial saprotrophs could be partitioned into four ecological strategies based on the C
pool or pools they utilize (Fig. 1): 1° decomposers that assimilate complex plant derived C, 2°
decomposers that assimilate microbial necromass, passive consumers that assimilate labile DOC,
and microbial predators that assimilate live microbial biomass. Unlike the ecological strategies
that currently dominate the soil microbiology literature, these strategies are intimately associated
with the pools and fluxes of C in soil (Fig. 1). As most bacteria can use DOC, many if not most
of the /° and 2° decomposers are also likely to consume DOC. However, we expect the majority
of DOC will be taken up by passive consumers that are specialized for the rapid consumption of
low molecular weight organic compounds (as reflected by arrow size in Fig. 1). Although /° and
2° decomposers are similar in that they both specialize on complex, polymeric detritus that may
have a long turnover time (Clemmensen et al., 2013), the differences between plant and
microbial detritus are likely to favor consumers with distinct traits. First, plant litter and
microbial necromass are biochemically distinct; for instance, plant litter is more nitrogen poor
(consisting of primarily cellulose and lignin) while microbial necromass is nitrogen rich
(aminosugars, proteins; Kogel-Knabner, 2002). Consequently, /° decomposers, well suited to
decompose plant litter (such as fungi), may have comparatively low biomass N requirements.
Second, microbial necromass may be less susceptible to lysis by hydrolytic enzymes as it is more
closely associated with soil minerals than plant detritus (Cotrufo et al., 2013) and gram negative

cell wall membranes and fungal hyphae can be hydrophobic (Fernandez et al., 2016; Jorgensen et
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al., 2003). Adsorption, occlusion in soil aggregates, and hydrophobicity present unique
challenges that 2° decomposers would need to overcome. It is also possible that some bacteria
may be true generalists and have the capability to use DOC as well as decompose and assimilate
complex C of both plant and microbial origin. While some microbial taxa may have the ability
to use more than one C pool, eco-evolutionary tradeoffs and intense competition for resources
have likely driven most microorganisms to specialize and become highly competitive on a
relatively narrow range of substrates. Consequently, we expect true generalists to be rare (limited
overlap in Fig. 1), and we hypothesize that the majority of microbes exhibit substrate
specialization, where organisms that are highly effective at decomposing complex plant or
microbial detritus will be relatively poor competitors for DOC and vice versa.

Substrate specialization during the decomposition of both simple and complex soil
organic matter constituents has been observed in enrichment (Algora Gallardo et al., 2021) and
stable isotope probing experiments in soil (Drigo et al., 2012; Lopez-Mondéjar et al., 2020;
Wilhelm et al., 2019). For instance, a recent DNA qSIP-based study of forest soil found little
overlap between the dominant consumers of labile DOC (glucose and amino acids) and insoluble
plant material (cellulose; Dang et al., 2022b). Likewise, consumers of bacterial necromass were
distinct from glucose consumers across 27 grassland soils as determined by PLFA SIP
(Buckeridge et al., 2020). Such substrate specialization has led researchers to construct and
discuss decomposer guilds (e.g., Allison, 2005; Barnett et al., 2021; Bhatnagar et al., 2018;
Moore et al., 2004). Notable work includes the detrital dynamics model wherein saprotrophs are
split into fungi that specialize on recalcitrant organic matter, and bacteria that utilize only labile
organic matter (Moore et al., 2004). Another two-guild model was proposed by Allison (2005)

that included enzyme ‘producers’ that depolymerize complex detritus and compete with



206  ‘cheaters’ that scavenge for DOC. These groupings are somewhat analogous to the /°

207  decomposer and passive consumer strategies we propose. More recently, empirical studies have
208  made strides connecting microbial biodiversity with substrate preferences and have proposed
209  decomposer guilds, but these have been too specific (i.e., focusing on a single substrate; Algora
210  Gallardo et al., 2021; Bhatnagar et al., 2018) and/or numerous (e.g., Barnett et al. (2021) has 28
211  guilds) for straightforward incorporation into soil C models. CAES builds upon this past work
212 and attempts to connect microbial diversity and ecology to our evolving understanding of soil
213 organic matter while striking a balance between simplicity and veracity.

214 Because ecological strategies are defined as suites of traits that covary, one could argue
215  that classification based solely on C acquisition is not enough to constitute an ecological

216  strategy. However, because the CAES framework focuses on substrate assimilation, which is
217  central to the niche of saprotrophic microorganisms and their position is the soil food web,

218  differences in the C acquisition traits are likely to covary with several other ecologically

219  significant traits such as motility, extracellular enzyme production, and growth rate. Similar
220  extrapolation is common in macroecology. For example, growth rate is a key indicator of

221  ecological strategy in plants (Poorter and Garnier, 1999), which is fundamentally tied to the rate
222 at which organisms assimilate, transform, and release elements, thus making it innately

223 connected to ecosystem biogeochemistry.

224 The CAES of soil microorganisms may help explain and describe functional traits for soil
225  microorganisms, including growth rates (Fig. 2), C use efficiency, enzyme production, and

226  motility (Table 1). For instance, motility is likely to be highly beneficial for degraders of

227  insoluble substrates (/° and 2° decomposers) and predators, but less prevalent among passive
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consumers of DOC. Indeed, most Arthrobacter are non-motile (Busse et al., 2012), and members
of this group can rapidly assimilate labile DOC in soil (Dang et al., 2022b; Mau et al., 2015).

Primary and secondary decomposers that consume complex plant- and microbe-derived
organic C often invest energy into motility and enzyme production for resource acquisition
(Allison et al., 2010), which may lead to a lower growth rate (Schmidt and Konopka, 2009) and
C use efficiency (Fierer et al., 2007; Roller and Schmidt, 2015). Indeed, recent culture-based
work supports a tradeoff between extracellular enzyme production and growth rate in soil
bacteria (Ramin and Allison, 2019). Consequently, we hypothesize that /° and 2° decomposers
have higher motility and enzyme production, but lower growth rates and C use efficiencies than
passive consumers (Fig. 2, Table 1).

While similar in some respects, /° and 2° decomposers are likely to have important
differences. For instance, 2° decomposers may produce antimicrobial secondary compounds to
kill neighboring cells. Actinobacteria are likely to be 2° decomposers, as they exude a wide
variety of antibiotic metabolites (Vijayakumar et al., 2015), produce chitinolytic enzymes (Bai et
al., 2016) and were especially enriched following the addition of '*C bacterial necromass to soil
(Buckeridge et al., 2020). Additionally, while both 7° and 2° decomposers must produce
exoenzymes to degrade polymers, we expect 2° decomposers will have lower rates of
extracellular enzyme production than /° decomposers for the following reasons. First, microbial
necromass is often tightly adhered to soil minerals, which could produce a lower return on
investment for enzyme production (Wutzler et al., 2017). Second, 2° decomposers may be able to
efficiently uptake and directly assimilate necromass constituents, such as such as muropeptides
(cell wall oligomers; Fernandez et al., 2016; Hu et al., 2020) reducing the need for extracellular

depolymerization. Exoenzymes are metabolically costly (Calabrese et al., 2022), and lower
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exoenzyme production may allow 2° decomposers to have higher C use efficiencies than /°
decomposers (Table 1).

Predators that consume live microbes in soil include both prokaryotes (e.g., BALOs) and
eukaryotic organisms like protists (Schulz-Bohm et al., 2017). BALOs have very small cells and
can reproduce rapidly, generating multiple progenies (~5-30) per prey cell (Rotem et al., 2014;
Stolp and Starr, 1963). Consequently, these organisms are likely to grow rapidly when prey
populations (gram negative bacteria) are stimulated and have high C use efficiency if they
directly assimilate the cellular building blocks from their prey. In support of this hypothesis,
BALOs have been observed to exhibit high relative C assimilation rates and growth rates in soil
(Dang et al., 2022b; Hungate et al., 2021). In contrast, eukaryotic predators have longer
generation times, consume many prey cells prior to reproduction (Friman et al., 2008; Gallet et
al., 2007), and thus may have comparatively low growth and C assimilation rates (Kramer et al.,
2016) and C use efficiencies.

Within passive consumers, a wide variety of maximum growth rates are likely to be
observed if passive consumers fall on a spectrum from relatively oligotrophic to relatively
copiotrophic (Fig 2) due to tradeoffs between substrate affinity and growth rate (Fierer et al.,
2007; Roller and Schmidt, 2015). Past work shows that organisms assimilating simple DOC
display a wide range of growth rates (Morrissey et al., 2019, 2017). Further, research from
aquatic systems reveals that the oligotroph-copiotroph framework explains the distribution
(Lauro et al., 2009) and C acquisition patterns of bacterioplankton, which rely solely on DOC
(Nelson and Carlson, 2012). For these reasons, applying the principles of the oligotroph-

copiotroph within the passive consumer strategy is likely of value in predicting the fate of DOC.
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Much research is needed to determine if and how the CAES framework described here
could be used to describe the lifestyles of heterotrophic soil microbes. A clear weakness of the
CAES framework is that it does not readily encompass microbial responses to stress, which are
undoubtedly an essential part of structuring microbial community composition (Manzoni et al.,
2012; Schimel, 2018) and determining community level functioning (Feckler et al., 2018). All
ecological frameworks have strengths and weaknesses, and no ecological strategy can explain or
predict the entirety of a species’ traits. Despite the weaknesses mentioned above, the oligrophic-
copiotrophic framework is clearly useful for understanding and modeling microorganisms in
aquatic systems (Giovannoni and Stingl, 2007; Nelson and Carlson, 2012). Similarly, derivatives
of the C-S-R framework may be effective in explaining the distribution of soil organisms
(Nelson and Carlson, 2012) and may covary with ecosystem functions (Malik et al., 2020).
Though new and untested, our CAES framework has the potential to be even more effective
because it is built upon measurable microbial traits. Moreover, the fact that it can be so easily
integrated with soil C models makes it potentially very powerful way to connect microbial

biodiversity with soil C cycling.

4. Measuring microbial traits relevant to CAES
Due to the inherent challenges of studying tiny organisms in highly diverse communities,
a suite of methodological approaches is needed to assign ecological strategies to individual
microbial taxa (i.e., phylotypes, genera) and to characterize their traits. Identifying functional
genes associated with the acquisition of a specific C pool (e.g., catabolic enzymes, transporters,
motility, etc.) using gene-centric metagenomic approaches can aid in determining the ecological

strategies of microbes. These utilize databases that store information on enzyme families
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(Carbohydrate-Active enzyme (CAZy)) and biological pathways (Clusters of Orthologous Genes
(COQG), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO)). For
example, Tas et al. (2018) identified genes encoding specific classes of enzymes involved in the
decomposition of soil organic C (e.g., chitin, cellulose, hemi-cellulose, and cellobiose
degradation). Similarly, Li et al. (2022) proposed a list of KEGG orthologies for inferring the
microbial life history strategies (growth yield, resource acquisition and stress tolerance) in soil
metagenomes. These functional genes can also be taxonomically annotated to identify the
microbial lineages that carry out a specific process (Boyd et al., 2018). However, gene-centric
metagenomics does not allow reconstruction of metabolic pathways for individual microbial
lineages, as genes originating from a single genome are distributed on highly fragmented
sequence data and cannot be linked. Alternatively, genome-centric metagenomics approaches
reconstruct metagenome assembled genomes (MAGs), which allow linking metabolic pathways
to specific populations and can provide useful information to study how specific microbial
lineages transform soil organic C (Woodcroft et al., 2018). However, a major caveat of both
gene- and genome-centric metagenomic approaches is that these only provide information on
potential functions and metabolic pathways employed by microorganisms. Gene and genome
centric metagenomic approaches could be combined with metatranscriptomics and
metaproteomics approaches (Woodcroft et al., 2018) as well as taxon-specific functional
measurements to provide a more complete understanding of an organism’s traits.

Microbial C assimilation and growth in soil can be measured using stable isotope probing
(SIP) which can track heavy isotopes (i.e., °C, 1%0) from target substrates into the lipids
(phospholipid fatty acids, PLFA-SIP; Neufeld et al., 2007) or nucleic acids (DNA-SIP;

Radajewski et al., 2000) of microorganisms. Quantitative stable isotope probing (qSIP) is more
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sensitive than traditional DNA-SIP and enables the detection of quantitative variation in the
functional traits of microbial taxa within natural communities (Hungate et al., 2015; Morrissey et
al., 2019). The functional traits that can be measured via qSIP include relative growth rate (Li et
al., 2022) and relative C assimilation rate from various '°C enriched substrates (Dang et al.,
2022b; Morrissey et al., 2019). These traits are analogous to the phenotypic traits used to assess
the ecological strategies of plants and animals, such as reproduction rate (Pianka, 1970) and
photosynthetic capacity (Berzaghi et al., 2020; Bussotti, 2008), and can be directly compared to
pools and transformation rates in microbial-explicit model simulations.

Pure culture-based characterizations of microbial functions and traits can also help
facilitate ecological classification of soil microorganisms. For example, taxa closely related to
microbial groups known to prey on live bacteria and fungi in culture may be putatively classified
as predators (Hungate et al., 2021). These would include the prokaryotic BALOs (Rotem et al.,
2014) as well as eukaryotic phagotrophic protists (Murase, 2017). If microbial specialization on
soil C pools covaries with other ecologically significant traits (as predicted in Table 1 and Fig 3),
CAES may provide a useful lens through which to understand and model the impact of microbial

community composition on ecosystem function.

S. Integrating CAES into a microbially explicit model
The Carbon Acquisition Ecological Strategies (CAES) proposed in Fig. 1 may be well
suited for integration into soil C cycling models, which are structured based on stocks and
transformation rates of specific C pools that can be classified under this framework. By way of
example, the Carbon Organisms and Rhizosphere Processes in the Soil Environment (CORPSE)
model (Sulman et al., 2017, 2014) divides SOM into three pools, representing rapidly-

decomposing “labile” DOC, complex plant-derived substrates that are resistant to decomposition,
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and microbial necromass. Ecological strategies encompassing groups of microorganisms that
utilize these SOM pools and their corresponding traits may be a tractable conceptual advance
toward integrating microbial biodiversity using data, rather than theoretical assumptions, into
existing modeling frameworks like CORPSE. In this way, the CAES we propose are more
conceptually aligned with current models of soil carbon cycling than other ecological stagey
frameworks. For instance, because the oligotroph-copiotroph framework is built upon microbial
responses to DOC, is not well suited to represent the influence of microbial biodiversity on
exoenzyme production and the decomposition of complex soil organic matter. Further, neither
the copiotroph-oligtroph nor the YAS frameworks yield insights into connections between
microbial biodiversity and the decomposition of microbial necromass in soil. As mounting
evidence suggests that microbial necromass accounts for a sizable fraction (Angst et al. 2021), if
not the majority (Liang et al. 2019, Wang et al. 2021) of soil organic matter in many ecosystems,
accurately modeling this pool is a high priority.

By directly linking microbial strategies with the soil C pools commonly represented in
models, CAES provides a potential roadmap for integrating empirical data on microbial
community diversity and function into soil C models and beyond. Using the CORPSE model as
a case study, the CAES framework suggests a strategy to move beyond the current model, which
uses one microbial biomass pool to represent the aggregate ability of the entire community to
degrade all three soil C pools, into the four microbial groups that capture the strategies
hypothesized by CAES. This could be accomplished by explicitly modeling three microbial
groups that vary in their ability to decompose and assimilate DOC, primary plant material, and
necromass. Currently, CORPSE models the decomposition of each pool based upon the

following equation:
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Cm/Cui
D; = Vmax,i 'fi(T’ 6)  Cyi oL (1)

Cc
=M
Cu,i

where the decomposition rate (D;) of a given unprotected C substrate class (Cv;) is a function of
the maximum decomposition rate of the C substrate (Vax,i) scaled by its temperature (7),
moisture sensitivity f;(T, 8), and a saturating function of the ratio of microbial biomass (Cy), C
substrate pool (Cy;;), and microbial substrate affinity (kar). Decomposed C is partitioned into
microbial biomass (B) and CO: production based on a substrate-specific carbon use efficiency
(CUE;), which could also be altered for different microbial functional groups. Microbial biomass

turns over at a fixed lifetime (75) which integrates maintenance respiration and mortality:

dB B
2 =2 CUED —— )

Using the measurement approaches outlined above, it may be possible to establish empirically
grounded Vi, CUE, and ky parameters controlling the ability of each functional group to
decompose each substrate class. For example, 2° decomposers’ preference for necromass would
be represented by a higher V,..x and CUE coupled with a comparatively lower & for that
functional group decomposing necromass than for DOC or primary plant material. Because
decomposition in the CORPSE model is a saturating function of the microbial biomass and the C
substrate pool size, competition between microbial functional groups would be an emergent
property of the model. In addition, predation in the model can be represented within the same
framework by treating microbial biomass of another microbial functional group as the substrate
for decomposition in Equation (1) (i.e., replacing Cy,; with B of another functional group) and by
adding an additional predation term to the mortality of the prey group in Equation (2). Different
predator functional groups could be distinguished in turn using various maximum substrate

acquisition rate (Vmax), prey affinity (ka), CUE, and mean lifetime (75) parameters.
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The empirical data needed to ground the Vmax, CUE, and kv parameters for the CAES
functional groups are likely to derive from laboratory microcosm experiments, and scaling from
laboratory measurements to ecosystem processes is challenging. However, process-based
models are a valuable platform for applying laboratory process measurements to ecosystem-level
predictions (McGuire and Treseder, 2010). For example, Wang and Allison (2019) showed that
microbial decomposition kinetics can be effectively scaled to ecosystem processes across
heterogeneous soils, and Wang et al. (2013) used a suite of measurements to constrain key
microbial parameters in a microbial-explicit soil C model. In many cases, parameter values
measured at laboratory scales cannot be directly integrated into ecosystem-scale models due to
differences in definitions or contrasting laboratory and field conditions (e.g., Steinweg et al.,
2012). However, tractable approaches for bridging scales from the microbially-relevant
microscale to the soil profile or ecosystem level have been developed (Davidson et al., 2014),
and measured relative differences across microbial functional groups or environmental
conditions can be valuable constraints on the variations in model parameters even when exact
values may not be directly transferable (Wang et al., 2022).

Once the functional groups posited by the CAES are added to a process-based model like
CORPSE, there may be challenges with the ability of the model to capture complex interactions
between functional groups and, eventually, model stability. As structured, CAES would limit
competition between functional groups because it assumes that distinct substrate preferences by
each group would reduce competition for C substrates. However, we expect this assumption to
be challenged by new empirical findings or emerge in the model as competition for shared
resources like inorganic nitrogen. Previous theoretical modeling efforts may provide a roadmap

for dealing with this type of emerging complexity. For example, Loreau (2001) showed that
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assuming microbes were either substrate specialists or generalists modified the impact of
microbial diversity on nutrient recycling. Also, lessons learned from food web models that
explicitly represent detritus (e.g., Moore et al., 2004; Moore and Hunt, 1988) may also provide a
roadmap for maintaining the stability of the groups when there is instability in the inputs,
outputs, and pool size of their preferred substrate or when predators are introduced into a
process-based model. Overall, these challenges in scaling and complexity are inherent to any
effort to incorporate microbial functional groups into microbial-explicit soil models. As such,
future efforts to integrate CAES into these models should assess whether representing multiple
functional groups improves model performance or instead leads to more model uncertainty when

compared to existing first order kinetic and single microbial pool models.

6. Conclusion

While the frameworks that currently dominate the microbial ecology literature have
utility, over reliance on the application of ecological strategies originally developed for macro-
organisms may stifle progress. We may be able to develop a more robust predictive framework if
we instead focus on ways to generalize and synthesize our understanding of the functional
diversity of soil microorganisms and the biochemical diversity of soil organic matter. The
Carbon Acquisition Ecological Strategies (CAES) framework we have described here does this,
and may help bridge the gap between microbial ecologists, biogeochemists, and ecosystem
modelers. CAES offers a promising novel pathway to connect microbial biodiversity

conceptually and quantitatively with soil C fluxes to predict feedbacks to global change.
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Figure Legends

Fig. 1. Carbon acquisition ecological strategies (CAES) of soil microorganisms and associated
carbon pools. In this framework, saprotrophic microbial taxa are categorized into an ecological
strategy based on the soil carbon pool they predominantly consume and their role in the soil food
web. Arrows reflect the assimilation of carbon from distinct soil organic matter pools into each

of the CAES groups.

Fig. 2. Hypothesized distribution of maximum growth rates for saprotrophic soil microbes within
each of the proposed carbon acquisition ecological strategies. Predators include both prokaryotic
Bdellovibrio and like organisms (“BALOs”) and eukaryotic organisms such as phagotrophic

protists.
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Table 1. Select traits predicted to covary with carbon acquisition ecological strategies and
associated soil carbon pools.

Ecological Soil Carbon Use Exoenzyme Motility
Strategy Carbon Pool Efficiency Production
1° Decomposer Complex plant detritus Low High High
2° Decomposer Microbial necromass Intermediate  Intermediate Intermediate
Passive Consumer Dissolved organic carbon High Low Low

Predator Live microbial biomass  Intermediate Low High
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