
Carbon Acquisition Ecological Strategies

Carbon Pool Ecological Strategy

- 1° Decomposer
- 2° Decomposer
- **Passive Consumer**
- **Predator**

- **Complex Plant Detritus**
- **Complex Microbial Necromass**
- **Dissolved Organic Carbon**
- **Live Microbial Biomass**

Highlights (for review)

Highlights

- Microbes have specialized traits to use distinct pools of soil organic carbon
- Carbon acquisition traits may serve as a strong foundation for ecological strategies
- Ecological strategies can help condense microbial diversity for inclusion in models

Carbon acquisition ecological strategies to connect soil microbial biodiversity and carbon cycling

Authors:

Ember M. Morrissey^{1*}, Jennifer Kane¹, Binu M Tripathi¹, Md Shafiul Islam Rion¹, Bruce A. Hungate^{2,3}, Rima Franklin⁴, Chris Walter⁵, Benjamin Sulman⁶, Edward Brzostek⁵

*Corresponding Author: West Virginia University, Division of Plant and Soil Sciences, South Agricultural Sciences Building, P.O. Box 6108, Morgantown, WV, 26506, Email: ember.morrissey@mail.wvu.edu

Keywords: microbial biodiversity, soil carbon, ecological strategy, ecosystem modeling

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

¹Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506
²Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011
³Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011
⁴Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284
⁵Department of Biology, West Virginia University, Morgantown, WV, 26506
⁶Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Soil carbon feedbacks to global change are uncertain, and the biological processes that govern soil organic matter decomposition are not resolved in current ecosystem models. Though it is recognized that microbial biodiversity influences decomposition rates, incorporating this relationship into ecosystem models is challenging because microbial communities are prohibitively diverse. It is likely necessary to distill microbial biodiversity by focusing on functional groups or ecological strategies. The ecological strategies that currently dominate the microbial ecology literature derive from macroecological theory, have clear weaknesses, and have had limited success when applied to predict soil carbon dynamics. Here, we present a new framework for soil microorganisms: Carbon Acquisition Ecological Strategies (CAES), and we outline a path toward incorporating microbial biodiversity into ecosystem models using this framework to enhance predictions of soil carbon feedbacks to global change. Because a microorganism's diet is central to its ecological niche and likely to covary with other ecologically significant traits, we posit that carbon acquisition may serve as a tractable foundation for developing ecological strategies. We describe four candidate ecological strategies for soil microorganisms: 1° decomposers that assimilate complex plant polymers, 2° decomposers that assimilate microbial necromass, passive consumers that assimilate dissolved organic C (DOC), and predatory microbes that assimilate live microbial biomass C. These strategies are directly linked to soil carbon pools currently represented in ecosystem models and may provide a foundation for greater integration of microbial community dynamics into ecosystem models.

1. Introduction

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

C to global change.

Soil contains the second largest reservoir of carbon (C) on earth, surpassed only by the oceans (Ciais et al., 2013). Soil C cycling is highly sensitive to environmental changes, such as shifts in temperature and moisture (Hursh et al., 2017; Melillo et al., 2017). In addition, soil microbial community composition can alter C cycling processes such as decomposition (via anabolism and extracellular enzyme production; Allison et al., 2013; Don et al., 2017) and C sequestration (by producing microbial necromass, metabolites, and external polymeric substances that adsorb onto soil particles; Buckeridge et al., 2020; Raczka et al., 2021). As climate change continues, rising temperature and altered precipitation coupled with changes in above-ground communities, can influence soil microbial biodiversity (Fierer, 2017), which may feedback to regulate the balance of C decomposition and stabilization. However, many questions remain regarding the extent to which changes in microbial biodiversity and function may exacerbate or mitigate the impacts of global change on soil C stocks. Microbial ecologists and ecosystem scientists struggle to make meaningful connections between microbial biodiversity and soil C, often leading to the omission of microbial biodiversity from soil C models (Bradford et al., 2016; Denman et al., 2007; Hutchins et al., 2019). There have been some efforts to represent microbial biodiversity using functional groups that differ in key traits; these have relied on assumptions from theoretical frameworks that are difficult to measure and, thus, difficult to parameterize (Moorhead and Sinsabaugh, 2006; Wieder et al., 2014). A promising approach is to build a bridge from microbial biodiversity to soil C cycling using ecological theory. Building this bridge is necessary to enhance our predictive understanding of the extent to which microbial biodiversity drives the response of soil

Aboveground, the species composition of plant and animal communities influences ecosystem fluxes (e.g., Melvin et al., 2015; Wardle et al., 2012; Ylänne et al., 2015). Functional trait variation across species produces differences in resource use and interactions with the abiotic environment; consequently, community composition shapes ecosystem processes (Hooper and Vitousek, 1997; Verville et al., 1998). Increasing evidence suggests a similarly strong link between community composition and ecosystem function exists below ground. For example, carefully controlled manipulations of microbial community composition have been found to alter leaf litter decomposition (Allison et al., 2013), soil respiration (Don et al., 2017; Reed and Martiny, 2013), and nitrogen cycling (Delgado-Baquerizo et al., 2018; Philippot et al., 2013; Wagg et al., 2014). The composition of microbial communities belowground can also impact plant performance, creating another link to above-ground processes and drivers. Specifically, soil microbes can influence ecologically-important traits like flowering time and manipulate plant fitness under competition and during drought (Fitzpatrick et al., 2019; Lau and Lennon, 2011; Lu et al., 2018; Wagner et al., 2014). Despite clear experimental evidence that the "species" (or phylotype) composition of microbial communities influences ecosystem process rates, determining the impact of individual microbial taxa on community-level functioning remains challenging.

63

64

65

66

67

68

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

2. Ecological Strategies in Microbial Ecology

One path toward connecting the composition of microbial communities with ecosystem function is by classifying species based on ecological strategies. Ecological strategies describe traits that covary due to physiological and evolutionary tradeoffs, enabling species to be particularly successful under certain conditions. One such framework posits that animal species

fall on an r- to K- selection continuum. In this framework, natural selection favors species with the potential for rapid population growth in ecosystems with fluctuations in resource availability (r-strategists) and favors highly efficient and competitive organisms when resource availability is steady, and populations are near carrying capacity (K-strategists; MacArthur and Wilson, 2001; Pianka, 1970). Microbial ecologists adapted this framework, placing microbial species on a continuum from oligotrophic to copiotrophic. Oligotrophs are adapted to survive and compete in low nutrient conditions. They grow slowly and efficiently scavenge resources. Copiotrophs occupy the opposite trait space, growing rapidly when nutrient concentrations are high (Chen et al., 2021; Fierer et al., 2007; Lauro et al., 2009). A second well-known framework utilized by plant ecologists argues that plants adapt to maximize their ability to compete under steady and favorable conditions (competitors, "C"), withstand stressful conditions (stress tolerators, "S"), or thrive in high disturbance environments (ruderal, "R"; Grime, 2006, 1977). The C-S-R framework has helped enable the incorporation of plant community composition into dynamic vegetation models by developing trait distributions based on leaf longevity, resource investment, and photosynthesis rates (Berzaghi et al., 2020; Reich et al., 1997; Wright et al., 2004) (Berzaghi et al., 2020; Reich et al., 1997; Wright et al., 2004). Here again, microbial ecologists have attempted to adapt this framework to microorganisms (e.g., Fierer, 2017; Ho et al., 2017; Prosser et al., 2007); for instance, the Y-A-S framework proposes that microbes evolve to maximize growth yield ("Y"), resource acquisition ("A"), or stress tolerance ("S", Malik et al., 2020). The application of these and other ecological strategies, originally developed for macroorganisms, to microbial systems has provided some insight into community dynamics and function; however, these ecological strategies have not yielded a robust framework for predicting

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

relationships between taxonomic composition and ecosystem function for heterotrophic soil microorganisms.

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

The ecological strategies currently dominating microbial ecology have limited ability to explain soil C cycling because they do not adequately reflect variation in the C acquisition traits of microorganisms. For example, the copiotroph-oligotroph framework emerged from measurements of microbial growth and substrate affinity in culture using low molecular weight dissolved organic carbon (DOC) substrates (Semenov, 1991). As most environmental microbes are not culturable, more recent work has inferred the ecological strategies of microbes based on changes in relative abundance, determined by DNA sequence data, following the addition of simple DOC substrates to soil (e.g., Fierer et al., 2007; Ho et al., 2017). Consequently, the copiotroph-oligotroph framework has two implicit assumptions. First, it assumes that all heterotrophs rely primarily on simple DOC compounds. Second, it assumes that copiotrophs compete well at high concentrations while oligotrophs are most competitive at low concentrations. This premise of reliance on DOC is clearly flawed. Many fungi and bacteria present in soil are not easily categorized as either copiotrophs or oligotrophs because they can degrade large and insoluble substrates. For instance, Cytophagaceae have novel enzymes for cellulose digestion (Xie et al., 2007) that are membrane bound (McBride et al., 2014). Since the small soluble products of cellulose degradation are produced and consumed at the cell membrane where other microbes cannot access them, Cytophagaceae avoid competition for DOC. A recent study using stable isotope probing confirmed that saprotrophic bacteria effectively competing for and assimilating polymeric substrates like cellulose (e.g., Cytophagaceae, Caulobacteraceae) do not assimilate appreciable amounts of simple DOC substrates such as glucose and amino acids (Dang et al., 2022a). Specialization in large insoluble polymers is even more common among

fungi (Algora Gallardo et al., 2021; Bhatnagar et al., 2018; López-Mondéjar et al., 2020) which have evolved suites of enzymes to support distinct saprotrophic lifestyles (e.g., lignocellulose decay by *Polyporales and Agaricales*; Ruiz-Dueñas et al., 2021).

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

The focus on DOC is a long-recognized flaw in the copiotroph-oligotroph framework, and other trophic classifications have been developed that attempt to further divide heterotrophs based on their ability to produce degradative enzymes (Semenov, 1991). The recent adaptation of the C-S-R framework proposed by Malik et al. (2020) is stronger in this regard as it acknowledges traits related to C acquisition from soil polymers are significant to the ecology of soil microorganisms. In this framework, Cytophagaceae would be classified under the resource acquisition strategy because they are motile and produces enzymes that degrade complex substrates (Malik et al., 2020). While the Y-A-S framework is more inclusive, some microbial taxa could fall into multiple categories based on their traits. For instance, many *Bacillus* species have a high growth rate (yield strategy) and also produce spores (stress tolerance strategy) (Sella et al., 2014). Further, this framework fails to encompass the diversity of microbial lifestyles in the soil environment. For instance, *Bdellovibrio* and like organisms (abbv. BALOs), are motile, obligately predatory bacteria (Rotem et al., 2014) common in soil environments (Davidov et al., 2006; Williams and Piñeiro, 2006). Given their predatory lifestyle, these organisms are unlikely to compete for DOC or polymeric substrates like cellulose. While they could arguably be placed in the 'acquisition' strategy because they expend energy to acquire resources, they are likely to have a very different influence on soil C cycling than 'acquisition' bacteria that degrade complex plant-derived organic substrates. For example, past works suggest that predation by BALOs reduces microbial biomass and activity (Davidov et al., 2006; Williams and Piñeiro, 2006), while the decomposition of complex plant substrates by "acquisition" bacteria has the opposite effect

of stimulating microbial biomass and activity (Xiao et al., 2015). In summary, many soil saprotrophic microorganisms do not fit neatly into the ecological strategies stipulated by current frameworks, perhaps because these frameworks were originally developed using a community ecology lens for macro-organisms. We propose a more effective framework can be built "from the bottom up," by instead focusing on the diverse traits, lifestyles, and functions of microbial taxa. When integrated, these attributes represent distinct strategies that drive soil C cycling at the ecosystem scale. We believe this novel framework for conceptualizing saprotrophic microbial communities may be especially useful in ecosystem models and could facilitate enhanced predictions of soil C feedbacks to global change.

3. Carbon Acquisition Ecological Strategies (CAES) for Soil Microorganisms

We propose that microbial ecologists draw inspiration from soil C biochemistry and ecosystem models to re-conceptualize the ecological strategies of soil saprotrophic microorganisms. Models of soil C mineralization and accumulation that distinguish chemically and functionally distinct soil organic C pools (Robertson et al., 2019; Sulman et al., 2018; Wieder et al., 2013) and explicitly represent microbial physiology (see Wieder et al., 2013) can outperform traditional first order decomposition models (Abramoff et al., 2022; Sulman et al., 2018; Wieder et al., 2013). While this is a step in the right direction, most of these "microbially explicit" models neglect microbial biodiversity and only simulate one microbial biomass pool. Some models (Moorhead and Sinsabaugh, 2006; Wieder et al., 2014) have integrated diversity using frameworks based on theoretical assumptions of how copiotrophs and oligotrophs differ in substrate use, activity, and growth. However, owing to methodological challenges in classifying copiotrophic or oligotrophic microbes and mapping differences between them in traits or

function, few studies have tested the assumptions or benchmarked the trait parameters underlying these models.

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

The classification of microorganisms into ecological strategies that clearly connect to soil C pools may facilitate the incorporation of microbial biodiversity into soil C models. To start simply, microbial saprotrophs could be partitioned into four ecological strategies based on the C pool or pools they utilize (Fig. 1): 1° decomposers that assimilate complex plant derived C, 2° decomposers that assimilate microbial necromass, passive consumers that assimilate labile DOC, and microbial predators that assimilate live microbial biomass. Unlike the ecological strategies that currently dominate the soil microbiology literature, these strategies are intimately associated with the pools and fluxes of C in soil (Fig. 1). As most bacteria can use DOC, many if not most of the 1° and 2° decomposers are also likely to consume DOC. However, we expect the majority of DOC will be taken up by passive consumers that are specialized for the rapid consumption of low molecular weight organic compounds (as reflected by arrow size in Fig. 1). Although 1° and 2° decomposers are similar in that they both specialize on complex, polymeric detritus that may have a long turnover time (Clemmensen et al., 2013), the differences between plant and microbial detritus are likely to favor consumers with distinct traits. First, plant litter and microbial necromass are biochemically distinct; for instance, plant litter is more nitrogen poor (consisting of primarily cellulose and lignin) while microbial necromass is nitrogen rich (aminosugars, proteins; Kögel-Knabner, 2002). Consequently, 1° decomposers, well suited to decompose plant litter (such as fungi), may have comparatively low biomass N requirements. Second, microbial necromass may be less susceptible to lysis by hydrolytic enzymes as it is more closely associated with soil minerals than plant detritus (Cotrufo et al., 2013) and gram negative cell wall membranes and fungal hyphae can be hydrophobic (Fernandez et al., 2016; Jørgensen et al., 2003). Adsorption, occlusion in soil aggregates, and hydrophobicity present unique challenges that 2° decomposers would need to overcome. It is also possible that some bacteria may be true generalists and have the capability to use DOC as well as decompose and assimilate complex C of both plant and microbial origin. While some microbial taxa may have the ability to use more than one C pool, eco-evolutionary tradeoffs and intense competition for resources have likely driven most microorganisms to specialize and become highly competitive on a relatively narrow range of substrates. Consequently, we expect true generalists to be rare (limited overlap in Fig. 1), and we hypothesize that the majority of microbes exhibit substrate specialization, where organisms that are highly effective at decomposing complex plant or microbial detritus will be relatively poor competitors for DOC and vice versa.

Substrate specialization during the decomposition of both simple and complex soil organic matter constituents has been observed in enrichment (Algora Gallardo et al., 2021) and stable isotope probing experiments in soil (Drigo et al., 2012; López-Mondéjar et al., 2020; Wilhelm et al., 2019). For instance, a recent DNA qSIP-based study of forest soil found little overlap between the dominant consumers of labile DOC (glucose and amino acids) and insoluble plant material (cellulose; Dang et al., 2022b). Likewise, consumers of bacterial necromass were distinct from glucose consumers across 27 grassland soils as determined by PLFA SIP (Buckeridge et al., 2020). Such substrate specialization has led researchers to construct and discuss decomposer guilds (e.g., Allison, 2005; Barnett et al., 2021; Bhatnagar et al., 2018; Moore et al., 2004). Notable work includes the detrital dynamics model wherein saprotrophs are split into fungi that specialize on recalcitrant organic matter, and bacteria that utilize only labile organic matter (Moore et al., 2004). Another two-guild model was proposed by Allison (2005) that included enzyme 'producers' that depolymerize complex detritus and compete with

'cheaters' that scavenge for DOC. These groupings are somewhat analogous to the I° decomposer and passive consumer strategies we propose. More recently, empirical studies have made strides connecting microbial biodiversity with substrate preferences and have proposed decomposer guilds, but these have been too specific (i.e., focusing on a single substrate; Algora Gallardo et al., 2021; Bhatnagar et al., 2018) and/or numerous (e.g., Barnett et al. (2021) has 28 guilds) for straightforward incorporation into soil C models. CAES builds upon this past work and attempts to connect microbial diversity and ecology to our evolving understanding of soil organic matter while striking a balance between simplicity and veracity.

Because ecological strategies are defined as suites of traits that covary, one could argue that classification based solely on C acquisition is not enough to constitute an ecological strategy. However, because the CAES framework focuses on substrate assimilation, which is central to the niche of saprotrophic microorganisms and their position is the soil food web, differences in the C acquisition traits are likely to covary with several other ecologically significant traits such as motility, extracellular enzyme production, and growth rate. Similar extrapolation is common in macroecology. For example, growth rate is a key indicator of ecological strategy in plants (Poorter and Garnier, 1999), which is fundamentally tied to the rate at which organisms assimilate, transform, and release elements, thus making it innately connected to ecosystem biogeochemistry.

The CAES of soil microorganisms may help explain and describe functional traits for soil microorganisms, including growth rates (Fig. 2), C use efficiency, enzyme production, and motility (Table 1). For instance, motility is likely to be highly beneficial for degraders of insoluble substrates (1° and 2° decomposers) and predators, but less prevalent among passive

consumers of DOC. Indeed, most Arthrobacter are non-motile (Busse et al., 2012), and members of this group can rapidly assimilate labile DOC in soil (Dang et al., 2022b; Mau et al., 2015).

Primary and secondary *decomposers* that consume complex plant- and microbe-derived organic C often invest energy into motility and enzyme production for resource acquisition (Allison et al., 2010), which may lead to a lower growth rate (Schmidt and Konopka, 2009) and C use efficiency (Fierer et al., 2007; Roller and Schmidt, 2015). Indeed, recent culture-based work supports a tradeoff between extracellular enzyme production and growth rate in soil bacteria (Ramin and Allison, 2019). Consequently, we hypothesize that 1° and 2° *decomposers* have higher motility and enzyme production, but lower growth rates and C use efficiencies than *passive consumers* (Fig. 2, Table 1).

While similar in some respects, I° and 2° decomposers are likely to have important differences. For instance, 2° decomposers may produce antimicrobial secondary compounds to kill neighboring cells. Actinobacteria are likely to be 2° decomposers, as they exude a wide variety of antibiotic metabolites (Vijayakumar et al., 2015), produce chitinolytic enzymes (Bai et al., 2016) and were especially enriched following the addition of 13 C bacterial necromass to soil (Buckeridge et al., 2020). Additionally, while both I° and 2° decomposers must produce exoenzymes to degrade polymers, we expect 2° decomposers will have lower rates of extracellular enzyme production than I° decomposers for the following reasons. First, microbial necromass is often tightly adhered to soil minerals, which could produce a lower return on investment for enzyme production (Wutzler et al., 2017). Second, 2° decomposers may be able to efficiently uptake and directly assimilate necromass constituents, such as such as muropeptides (cell wall oligomers; Fernandez et al., 2016; Hu et al., 2020) reducing the need for extracellular depolymerization. Exoenzymes are metabolically costly (Calabrese et al., 2022), and lower

exoenzyme production may allow 2° decomposers to have higher C use efficiencies than 1° decomposers (Table 1).

Predators that consume live microbes in soil include both prokaryotes (e.g., BALOs) and eukaryotic organisms like protists (Schulz-Bohm et al., 2017). BALOs have very small cells and can reproduce rapidly, generating multiple progenies (~5-30) per prey cell (Rotem et al., 2014; Stolp and Starr, 1963). Consequently, these organisms are likely to grow rapidly when prey populations (gram negative bacteria) are stimulated and have high C use efficiency if they directly assimilate the cellular building blocks from their prey. In support of this hypothesis, BALOs have been observed to exhibit high relative C assimilation rates and growth rates in soil (Dang et al., 2022b; Hungate et al., 2021). In contrast, eukaryotic predators have longer generation times, consume many prey cells prior to reproduction (Friman et al., 2008; Gallet et al., 2007), and thus may have comparatively low growth and C assimilation rates (Kramer et al., 2016) and C use efficiencies.

Within *passive consumers*, a wide variety of maximum growth rates are likely to be observed if *passive consumers* fall on a spectrum from relatively oligotrophic to relatively copiotrophic (Fig 2) due to tradeoffs between substrate affinity and growth rate (Fierer et al., 2007; Roller and Schmidt, 2015). Past work shows that organisms assimilating simple DOC display a wide range of growth rates (Morrissey et al., 2019, 2017). Further, research from aquatic systems reveals that the oligotroph-copiotroph framework explains the distribution (Lauro et al., 2009) and C acquisition patterns of bacterioplankton, which rely solely on DOC (Nelson and Carlson, 2012). For these reasons, applying the principles of the oligotroph-copiotroph within the *passive consumer* strategy is likely of value in predicting the fate of DOC.

Much research is needed to determine if and how the CAES framework described here could be used to describe the lifestyles of heterotrophic soil microbes. A clear weakness of the CAES framework is that it does not readily encompass microbial responses to stress, which are undoubtedly an essential part of structuring microbial community composition (Manzoni et al., 2012; Schimel, 2018) and determining community level functioning (Feckler et al., 2018). All ecological frameworks have strengths and weaknesses, and no ecological strategy can explain or predict the entirety of a species' traits. Despite the weaknesses mentioned above, the oligrophiccopiotrophic framework is clearly useful for understanding and modeling microorganisms in aquatic systems (Giovannoni and Stingl, 2007; Nelson and Carlson, 2012). Similarly, derivatives of the C-S-R framework may be effective in explaining the distribution of soil organisms (Nelson and Carlson, 2012) and may covary with ecosystem functions (Malik et al., 2020). Though new and untested, our CAES framework has the potential to be even more effective because it is built upon measurable microbial traits. Moreover, the fact that it can be so easily integrated with soil C models makes it potentially very powerful way to connect microbial biodiversity with soil C cycling.

288

289

290

291

292

293

294

295

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

4. Measuring microbial traits relevant to CAES

Due to the inherent challenges of studying tiny organisms in highly diverse communities, a suite of methodological approaches is needed to assign ecological strategies to individual microbial taxa (i.e., phylotypes, genera) and to characterize their traits. Identifying functional genes associated with the acquisition of a specific C pool (e.g., catabolic enzymes, transporters, motility, etc.) using gene-centric metagenomic approaches can aid in determining the ecological strategies of microbes. These utilize databases that store information on enzyme families

(Carbohydrate-Active enzyme (CAZy)) and biological pathways (Clusters of Orthologous Genes (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO)). For example, Tas et al. (2018) identified genes encoding specific classes of enzymes involved in the decomposition of soil organic C (e.g., chitin, cellulose, hemi-cellulose, and cellobiose degradation). Similarly, Li et al. (2022) proposed a list of KEGG orthologies for inferring the microbial life history strategies (growth yield, resource acquisition and stress tolerance) in soil metagenomes. These functional genes can also be taxonomically annotated to identify the microbial lineages that carry out a specific process (Boyd et al., 2018). However, gene-centric metagenomics does not allow reconstruction of metabolic pathways for individual microbial lineages, as genes originating from a single genome are distributed on highly fragmented sequence data and cannot be linked. Alternatively, genome-centric metagenomics approaches reconstruct metagenome assembled genomes (MAGs), which allow linking metabolic pathways to specific populations and can provide useful information to study how specific microbial lineages transform soil organic C (Woodcroft et al., 2018). However, a major caveat of both gene- and genome-centric metagenomic approaches is that these only provide information on potential functions and metabolic pathways employed by microorganisms. Gene and genome centric metagenomic approaches could be combined with metatranscriptomics and metaproteomics approaches (Woodcroft et al., 2018) as well as taxon-specific functional measurements to provide a more complete understanding of an organism's traits. Microbial C assimilation and growth in soil can be measured using stable isotope probing

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

Microbial C assimilation and growth in soil can be measured using stable isotope probing (SIP) which can track heavy isotopes (i.e., ¹³C, ¹⁸O) from target substrates into the lipids (phospholipid fatty acids, PLFA-SIP; Neufeld et al., 2007) or nucleic acids (DNA-SIP; Radajewski et al., 2000) of microorganisms. Quantitative stable isotope probing (qSIP) is more

sensitive than traditional DNA-SIP and enables the detection of quantitative variation in the functional traits of microbial taxa within natural communities (Hungate et al., 2015; Morrissey et al., 2019). The functional traits that can be measured via qSIP include relative growth rate (Li et al., 2022) and relative C assimilation rate from various ¹³C enriched substrates (Dang et al., 2022b; Morrissey et al., 2019). These traits are analogous to the phenotypic traits used to assess the ecological strategies of plants and animals, such as reproduction rate (Pianka, 1970) and photosynthetic capacity (Berzaghi et al., 2020; Bussotti, 2008), and can be directly compared to pools and transformation rates in microbial-explicit model simulations.

Pure culture-based characterizations of microbial functions and traits can also help facilitate ecological classification of soil microorganisms. For example, taxa closely related to microbial groups known to prey on live bacteria and fungi in culture may be putatively classified as *predators* (Hungate et al., 2021). These would include the prokaryotic BALOs (Rotem et al., 2014) as well as eukaryotic phagotrophic protists (Murase, 2017). If microbial specialization on soil C pools covaries with other ecologically significant traits (as predicted in Table 1 and Fig 3), CAES may provide a useful lens through which to understand and model the impact of microbial community composition on ecosystem function.

5. Integrating CAES into a microbially explicit model

The Carbon Acquisition Ecological Strategies (CAES) proposed in Fig. 1 may be well suited for integration into soil C cycling models, which are structured based on stocks and transformation rates of specific C pools that can be classified under this framework. By way of example, the Carbon Organisms and Rhizosphere Processes in the Soil Environment (CORPSE) model (Sulman et al., 2017, 2014) divides SOM into three pools, representing rapidly-decomposing "labile" DOC, complex plant-derived substrates that are resistant to decomposition,

and microbial necromass. Ecological strategies encompassing groups of microorganisms that utilize these SOM pools and their corresponding traits may be a tractable conceptual advance toward integrating microbial biodiversity using data, rather than theoretical assumptions, into existing modeling frameworks like CORPSE. In this way, the CAES we propose are more conceptually aligned with current models of soil carbon cycling than other ecological stagey frameworks. For instance, because the oligotroph-copiotroph framework is built upon microbial responses to DOC, is not well suited to represent the influence of microbial biodiversity on exoenzyme production and the decomposition of complex soil organic matter. Further, neither the copiotroph-oligtroph nor the YAS frameworks yield insights into connections between microbial biodiversity and the decomposition of microbial necromass in soil. As mounting evidence suggests that microbial necromass accounts for a sizable fraction (Angst et al. 2021), if not the majority (Liang et al. 2019, Wang et al. 2021) of soil organic matter in many ecosystems, accurately modeling this pool is a high priority.

By directly linking microbial strategies with the soil C pools commonly represented in models, CAES provides a potential roadmap for integrating empirical data on microbial community diversity and function into soil C models and beyond. Using the CORPSE model as a case study, the CAES framework suggests a strategy to move beyond the current model, which uses one microbial biomass pool to represent the aggregate ability of the entire community to degrade all three soil C pools, into the four microbial groups that capture the strategies hypothesized by CAES. This could be accomplished by explicitly modeling three microbial groups that vary in their ability to decompose and assimilate DOC, primary plant material, and necromass. Currently, CORPSE models the decomposition of each pool based upon the following equation:

$$D_i = V_{max,i} \cdot f_i(T,\theta) \cdot C_{Ui} \frac{c_M/c_{U,i}}{c_{Ui}}$$
(1)

where the decomposition rate (D_i) of a given unprotected C substrate class $(C_{U,i})$ is a function of the maximum decomposition rate of the C substrate $(V_{max,i})$ scaled by its temperature (T), moisture sensitivity $f_i(T,\theta)$, and a saturating function of the ratio of microbial biomass (C_M) , C substrate pool $(C_{U,i})$, and microbial substrate affinity (k_M) . Decomposed C is partitioned into microbial biomass (B) and CO_2 production based on a substrate-specific carbon use efficiency (CUE_i) , which could also be altered for different microbial functional groups. Microbial biomass turns over at a fixed lifetime (τ_B) which integrates maintenance respiration and mortality:

$$\frac{dB}{dt} = \sum_{i} CUE_{i}D_{i} - \frac{B}{\tau_{B}}$$
 (2)

Using the measurement approaches outlined above, it may be possible to establish empirically grounded V_{max} , CUE, and k_M parameters controlling the ability of each functional group to decompose each substrate class. For example, 2° decomposers' preference for necromass would be represented by a higher V_{max} and CUE coupled with a comparatively lower k_M for that functional group decomposing necromass than for DOC or primary plant material. Because decomposition in the CORPSE model is a saturating function of the microbial biomass and the C substrate pool size, competition between microbial functional groups would be an emergent property of the model. In addition, predation in the model can be represented within the same framework by treating microbial biomass of another microbial functional group as the substrate for decomposition in Equation (1) (i.e., replacing $C_{U,l}$ with B of another functional group) and by adding an additional predation term to the mortality of the prey group in Equation (2). Different predator functional groups could be distinguished in turn using various maximum substrate acquisition rate (V_{max}), prey affinity (k_M), CUE, and mean lifetime (τ_B) parameters.

The empirical data needed to ground the V_{max}, CUE, and k_M parameters for the CAES functional groups are likely to derive from laboratory microcosm experiments, and scaling from laboratory measurements to ecosystem processes is challenging. However, process-based models are a valuable platform for applying laboratory process measurements to ecosystem-level predictions (McGuire and Treseder, 2010). For example, Wang and Allison (2019) showed that microbial decomposition kinetics can be effectively scaled to ecosystem processes across heterogeneous soils, and Wang et al. (2013) used a suite of measurements to constrain key microbial parameters in a microbial-explicit soil C model. In many cases, parameter values measured at laboratory scales cannot be directly integrated into ecosystem-scale models due to differences in definitions or contrasting laboratory and field conditions (e.g., Steinweg et al., 2012). However, tractable approaches for bridging scales from the microbially-relevant microscale to the soil profile or ecosystem level have been developed (Davidson et al., 2014), and measured relative differences across microbial functional groups or environmental conditions can be valuable constraints on the variations in model parameters even when exact values may not be directly transferable (Wang et al., 2022).

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

Once the functional groups posited by the CAES are added to a process-based model like CORPSE, there may be challenges with the ability of the model to capture complex interactions between functional groups and, eventually, model stability. As structured, CAES would limit competition between functional groups because it assumes that distinct substrate preferences by each group would reduce competition for C substrates. However, we expect this assumption to be challenged by new empirical findings or emerge in the model as competition for shared resources like inorganic nitrogen. Previous theoretical modeling efforts may provide a roadmap for dealing with this type of emerging complexity. For example, Loreau (2001) showed that

assuming microbes were either substrate specialists or generalists modified the impact of microbial diversity on nutrient recycling. Also, lessons learned from food web models that explicitly represent detritus (e.g., Moore et al., 2004; Moore and Hunt, 1988) may also provide a roadmap for maintaining the stability of the groups when there is instability in the inputs, outputs, and pool size of their preferred substrate or when *predators* are introduced into a process-based model. Overall, these challenges in scaling and complexity are inherent to any effort to incorporate microbial functional groups into microbial-explicit soil models. As such, future efforts to integrate CAES into these models should assess whether representing multiple functional groups improves model performance or instead leads to more model uncertainty when compared to existing first order kinetic and single microbial pool models.

6. Conclusion

While the frameworks that currently dominate the microbial ecology literature have utility, over reliance on the application of ecological strategies originally developed for macroorganisms may stifle progress. We may be able to develop a more robust predictive framework if we instead focus on ways to generalize and synthesize our understanding of the functional diversity of soil microorganisms and the biochemical diversity of soil organic matter. The Carbon Acquisition Ecological Strategies (CAES) framework we have described here does this, and may help bridge the gap between microbial ecologists, biogeochemists, and ecosystem modelers. CAES offers a promising novel pathway to connect microbial biodiversity conceptually and quantitatively with soil C fluxes to predict feedbacks to global change.

Acknowledgements: E. Morrissey and E. Brzostek were supported by the NSF DEB Award 2114570 and the Department of Energy award DE-SC0019472. B. Sulman was supported by the

433	Free Air Carbon Enrichment Model Data Synthesis (FACE-MDS) project of the U.S.
434	Department of Energy, Office of Science, Office of Biological and Environmental Research,
435	Environmental System Science program. Oak Ridge National Laboratory, was supported by the
436	Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.
437	Special thanks to Chansotheary Dang for assistance with the scientific illustrations.
438	B. Hungate was supported by DE-SC0020172 from the U.S. Department of Energy Genomic
139	Sciences Program

References

440

- 441 Abramoff, R.Z., Guenet, B., Zhang, H., Georgiou, K., Xu, X., Viscarra Rossel, R.A., Yuan, W.,
- Ciais, P., 2022. Improved global-scale predictions of soil carbon stocks with Millennial
- Version 2. Soil Biology and Biochemistry 164, 108466.
- 444 https://doi.org/10.1016/j.soilbio.2021.108466
- Algora Gallardo, C., Baldrian, P., López-Mondéjar, R., 2021. Litter-inhabiting fungi show high level of specialization towards biopolymers composing plant and fungal biomass. Biol Fertil Soils 57, 77–88. https://doi.org/10.1007/s00374-020-01507-3
- Allison, S.D., 2005. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecology Letters 8, 626–635. https://doi.org/10.1111/j.1461-0248.2005.00756.x
- 451 Allison, S.D., Lu, Y., Weihe, C., Goulden, M.L., Martiny, A.C., Treseder, K.K., Martiny, J.B.H., 452 2013. Microbial abundance and composition influence litter decomposition response to 453 environmental change. Ecology 94, 714–725. https://doi.org/10.1890/12-1243.1
- Allison, S.D., Weintraub, M.N., Gartner, T.B., Waldrop, M.P., 2010. Evolutionary-Economic
 Principles as Regulators of Soil Enzyme Production and Ecosystem Function, in: Shukla,
 G., Varma, A. (Eds.), Soil Enzymology, Soil Biology. Springer, Berlin, Heidelberg, pp.
 229–243. https://doi.org/10.1007/978-3-642-14225-3
- Angst, G., Mueller, K. E., Nierop, K. G., Simpson, M. J., 2021. Plant-or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry 156, 108189. https://doi.org/10.1016/j.soilbio.2021.108189
- Bai, Y., Eijsink, V.G.H., Kielak, A.M., van Veen, J.A., de Boer, W., 2016. Genomic comparison
 of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environmental
 Microbiology 18, 38–49. https://doi.org/10.1111/1462-2920.12545
- Barnett, S.E., Youngblut, N.D., Koechli, C.N., Buckley, D.H., 2021. Multisubstrate DNA stable
 isotope probing reveals guild structure of bacteria that mediate soil carbon cycling.
 Proceedings of the National Academy of Sciences 118, e2115292118.
 https://doi.org/10.1073/pnas.2115292118
- Berzaghi, F., Wright, I.J., Kramer, K., Oddou-Muratorio, S., Bohn, F.J., Reyer, C.P.O., Sabaté,
 S., Sanders, T.G.M., Hartig, F., 2020. Towards a New Generation of Trait-Flexible
 Vegetation Models. Trends in Ecology & Evolution 35, 191–205.
 https://doi.org/10.1016/j.tree.2019.11.006
- Bhatnagar, J.M., Peay, K.G., Treseder, K.K., 2018. Litter chemistry influences decomposition
 through activity of specific microbial functional guilds. Ecological Monographs 88, 429–
 444. https://doi.org/10.1002/ecm.1303
- Boyd, J.A., Woodcroft, B.J., Tyson, G.W., 2018. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Research 46, e59. https://doi.org/10.1093/nar/gky174

- Bradford, M.A., Wieder, W.R., Bonan, G.B., Fierer, N., Raymond, P.A., Crowther, T.W., 2016.
 Managing uncertainty in soil carbon feedbacks to climate change. Nature Clim Change 6,
 751–758. https://doi.org/10.1038/nclimate3071
- Buckeridge, K.M., Mason, K.E., McNamara, N.P., Ostle, N., Puissant, J., Goodall, T., Griffiths, R.I., Stott, A.W., Whitaker, J., 2020. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ 1, 1–9. https://doi.org/10.1038/s43247-020-00031-4
- Busse, H.-J., Wieser, M., Buczolits, S., 2012. Genus III Arthrobacter Conn & Dimmick 1947,
 301AL emend. Koch, Schumann & Stackebrandt 1995, 838., in: Ergey's Manual of
 Systematic Bacteriology. Springer, New York, pp. 578–624.
- Bussotti, F., 2008. Functional leaf traits, plant communities and acclimation processes in relation to oxidative stress in trees: a critical overview. Global Change Biology 14, 2727–2739. https://doi.org/10.1111/j.1365-2486.2008.01677.x
- Calabrese, S., Mohanty, B. P., Malik, A. A., 2022. Soil microorganisms regulate extracellular enzyme production to maximize their growth rate. Biogeochemistry 158, 303-312. https://doi.org/10.1007/s10533-022-00899-8
- Chen, Y., Neilson, J.W., Kushwaha, P., Maier, R.M., Barberán, A., 2021. Life-history strategies
 of soil microbial communities in an arid ecosystem. ISME J 15, 649–657.
 https://doi.org/10.1038/s41396-020-00803-y
- Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., Defries, R.,
 Galloway, J., Heimann, M., Jones, C., Le QUÉRÉ, C., Myneni, R., Piao, S., Thornton, P.,
 Heinze, C., Tans, P., Vesala, T., 2013. Climate change 2013: The physical science basis,
 in contribution of Working Group I (WGI) to the Fifth Assessment Report (AR5) of the
 Intergovernmental Panel on Climate Change (IPCC), in: Climate Change 2013: The
 Physical Science Basis. Cambridge University Press.
- Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H., Stenlid,
 J., Finlay, R.D., Wardle, D.A., Lindahl, B.D., 2013. Roots and Associated Fungi Drive
 Long-Term Carbon Sequestration in Boreal Forest. Science 339, 1615–1618.
 https://doi.org/10.1126/science.1231923
- Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K., Paul, E., 2013. The Microbial
 Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition
 with soil organic matter stabilization: do labile plant inputs form stable soil organic
 matter? Global Change Biology 19, 988–995. https://doi.org/10.1111/gcb.12113
- Dang, C., Kellner, E., Martin, G., Freedman, Z.B., Hubbart, J., Stephan, K., Kelly, C.N.,
 Morrissey, E.M., 2022a. Land use intensification destabilizes stream microbial
 biodiversity and decreases metabolic efficiency. Science of The Total Environment 767,
 145440. https://doi.org/10.1016/j.scitotenv.2021.145440
- Dang, C., Walkup, J., Franklin, R.B., Schwartz, E., Hungate, B.A., Morrissey, E., 2022b.
 Phylogenetic patterns in the assimilation of chemically distinct substrates by soil bacteria.
 Ecology.

- 518 Davidov, Y., Friedjung, A., Jurkevitch, E., 2006. Structure analysis of a soil community of
- 519 predatory bacteria using culture-dependent and culture-independent methods reveals a
- 520 hitherto undetected diversity of Bdellovibrio-and-like organisms. Environmental
- Microbiology 8, 1667–1673. https://doi.org/10.1111/j.1462-2920.2006.01052.x 521
- 522 Davidson, E.A., Savage, K.E., Finzi, A.C., 2014. A big-microsite framework for soil carbon 523 modeling. Global Change Biology 20, 3610–3620. https://doi.org/10.1111/gcb.12718
- 524 Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge, D.J.,
- 525 Bardgett, R.D., Maestre, F.T., Singh, B.K., Fierer, N., 2018. A global atlas of the 526 dominant bacteria found in soil. Science 359, 320-325.
- 527 https://doi.org/10.1126/science.aap9516
- 528 Denman, S.E., Tomkins, N.W., McSweeney, C.S., 2007. Quantitation and diversity analysis of 529 ruminal methanogenic populations in response to the antimethanogenic compound 530 bromochloromethane. FEMS Microbiology Ecology 62, 313–322.
- 531 https://doi.org/10.1111/j.1574-6941.2007.00394.x
- 532 Don, A., Böhme, I.H., Dohrmann, A.B., Poeplau, C., Tebbe, C.C., 2017. Microbial community 533 composition affects soil organic carbon turnover in mineral soils. Biol Fertil Soils 53, 534 445–456. https://doi.org/10.1007/s00374-017-1198-9
- Drigo, B., Anderson, I.C., Kannangara, G.S.K., Cairney, J.W.G., Johnson, D., 2012. Rapid 535 536 incorporation of carbon from ectomycorrhizal mycelial necromass into soil fungal 537 communities. Soil Biology and Biochemistry 49, 4–10.
- https://doi.org/10.1016/j.soilbio.2012.02.003 538
- 539 Feckler, A., Goedkoop, W., Konschak, M., Bundschuh, R., Kenngott, K.G.J., Schulz, R., Zubrod, J.P., Bundschuh, M., 2018. History matters: Heterotrophic microbial community 540 541 structure and function adapt to multiple stressors. Global Change Biology 24, e402–e415. 542 https://doi.org/10.1111/gcb.13859
- 543 Fernandez, C.W., Langley, J.A., Chapman, S., McCormack, M.L., Koide, R.T., 2016. The 544 decomposition of ectomycorrhizal fungal necromass. Soil Biology and Biochemistry 93, 545 38–49. https://doi.org/10.1016/j.soilbio.2015.10.017
- 546 Fierer, N., 2017. Embracing the unknown: disentangling the complexities of the soil 547 microbiome. Nat Rev Microbiol 15, 579-590. https://doi.org/10.1038/nrmicro.2017.87
- 548 Fierer, N., Bradford, M.A., Jackson, R.B., 2007. Toward an Ecological Classification of Soil 549 Bacteria. Ecology 88, 1354–1364. https://doi.org/10.1890/05-1839
- 550 Fitzpatrick, C.R., Mustafa, Z., Viliunas, J., 2019. Soil microbes alter plant fitness under 551 competition and drought. Journal of Evolutionary Biology 32, 438-450.
- 552 https://doi.org/10.1111/jeb.13426
- 553 Friman, V.-P., Hiltunen, T., Laakso, J., Kaitala, V., 2008. Availability of prey resources drives
- 554 evolution of predator-prev interaction. Proceedings of the Royal Society B: Biological
- 555 Sciences 275, 1625–1633. https://doi.org/10.1098/rspb.2008.0174

- Gallet, R., Alizon, S., Comte, P., Gutierrez, A., Depaulis, F., van Baalen, M., Michel, E.,
 Müller- Graf, C.D.M., 2007. Predation and Disturbance Interact to Shape Prey Species
- 558 Diversity. The American Naturalist 170, 143–154. https://doi.org/10.1086/518567
- Giovannoni, S., Stingl, U., 2007. The importance of culturing bacterioplankton in the "omics" age. Nat Rev Microbiol 5, 820–826. https://doi.org/10.1038/nrmicro1752
- Grime, J.P., 2006. Plant Strategies, Vegetation Processes, and Ecosystem Properties. John Wiley & Sons.
- Grime, J.P., 1977. Evidence for the Existence of Three Primary Strategies in Plants and Its
 Relevance to Ecological and Evolutionary Theory. The American Naturalist 111, 1169–
 1194. https://doi.org/10.1086/283244
- Ho, A., Di Lonardo, D.P., Bodelier, P.L.E., 2017. Revisiting life strategy concepts in
 environmental microbial ecology. FEMS Microbiology Ecology 93, fix006.
 https://doi.org/10.1093/femsec/fix006
- Hooper, D.U., Vitousek, P.M., 1997. The Effects of Plant Composition and Diversity on
 Ecosystem Processes. Science 277, 1302–1305.
 https://doi.org/10.1126/science.277.5330.1302
- Hu, Y., Zheng, Q., Noll, L., Zhang, S., Wanek, W., 2020. Direct measurement of the in situ
 decomposition of microbial-derived soil organic matter. Soil Biology and Biochemistry
 141, 107660. https://doi.org/10.1016/j.soilbio.2019.107660
- Hungate, B.A., Marks, J.C., Power, M.E., Schwartz, E., van Groenigen, K.J., Blazewicz, S.J.,
 Chuckran, P., Dijkstra, P., Finley, B.K., Firestone, M.K., Foley, M., Greenlon, A., Hayer,
 M., Hofmockel, K.S., Koch, B.J., Mack, M.C., Mau, R.L., Miller, S.N., Morrissey, E.M.,
 Propster, J.R., Purcell, A.M., Sieradzki, E., Starr, E.P., Stone, B.W.G., Terrer, C., PettRidge, J., 2021. The Functional Significance of Bacterial Predators. mBio 12, e00466-21.
 https://doi.org/10.1128/mBio.00466-21
- Hungate, B.A., Mau, R.L., Schwartz, E., Caporaso, J.G., Dijkstra, P., van Gestel, N., Koch, B.J.,
 Liu, C.M., McHugh, T.A., Marks, J.C., Morrissey, E.M., Price, L.B., 2015. Quantitative
 Microbial Ecology through Stable Isotope Probing. Applied and Environmental
 Microbiology 81, 7570–7581. https://doi.org/10.1128/AEM.02280-15
- Hursh, A., Ballantyne, A., Cooper, L., Maneta, M., Kimball, J., Watts, J., 2017. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.

 Global Change Biology 23, 2090–2103. https://doi.org/10.1111/gcb.13489
- Hutchins, D.A., Jansson, J.K., Remais, J.V., Rich, V.I., Singh, B.K., Trivedi, P., 2019. Climate
 change microbiology problems and perspectives. Nat Rev Microbiol 17, 391–396.
 https://doi.org/10.1038/s41579-019-0178-5
- Jørgensen, N.O.G., Stepanaukas, R., Pedersen, A.-G.U., Hansen, M., Nybroe, O., 2003.
- Occurrence and degradation of peptidoglycan in aquatic environments. FEMS
- 593 Microbiology Ecology 46, 269–280. https://doi.org/10.1016/S0168-6496(03)00194-6

- Kögel-Knabner, I., 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry 34, 139–162. https://doi.org/10.1016/S0038-0717(01)00158-4
- Kramer, S., Dibbern, D., Moll, J., Huenninghaus, M., Koller, R., Krueger, D., Marhan, S., Urich,
 T., Wubet, T., Bonkowski, M., Buscot, F., Lueders, T., Kandeler, E., 2016. Resource
 Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural
 Soil. Frontiers in Microbiology 7.
- Lau, J.A., Lennon, J.T., 2011. Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytologist 192, 215–224. https://doi.org/10.1111/j.1469-8137.2011.03790.x
- Lauro, F.M., McDougald, D., Thomas, T., Williams, T.J., Egan, S., Rice, S., DeMaere, M.Z.,
 Ting, L., Ertan, H., Johnson, J., Ferriera, S., Lapidus, A., Anderson, I., Kyrpides, N.,
 Munk, A.C., Detter, C., Han, C.S., Brown, M.V., Robb, F.T., Kjelleberg, S., Cavicchioli,
 R., 2009. The genomic basis of trophic strategy in marine bacteria. Proceedings of the
 National Academy of Sciences 106, 15527–15533.
 https://doi.org/10.1073/pnas.0903507106
- Li, C., Liao, H., Xu, L., Wang, C., He, N., Wang, J., Li, X., 2022. The adjustment of life history strategies drives the ecological adaptations of soil microbiota to aridity. Molecular Ecology 31, 2920–2934. https://doi.org/10.1111/mec.16445
- Liang, C., Amelung, W., Lehmann, J., Kästner, M., 2019. Quantitative assessment of microbial
 necromass contribution to soil organic matter. Global Change Biology 25, 3578-3590.
 https://doi.org/10.1111/gcb.14781
- López-Mondéjar, R., Tláskal, V., Větrovský, T., Štursová, M., Toscan, R., Nunes da Rocha, U.,
 Baldrian, P., 2020. Metagenomics and stable isotope probing reveal the complementary
 contribution of fungal and bacterial communities in the recycling of dead biomass in
 forest soil. Soil Biology and Biochemistry 148, 107875.
 https://doi.org/10.1016/j.soilbio.2020.107875
- Loreau, M., 2001. Microbial diversity, producer–decomposer interactions and ecosystem
 processes: a theoretical model. Proceedings of the Royal Society of London. Series B:
 Biological Sciences 268, 303–309. https://doi.org/10.1098/rspb.2000.1366
- Lu, T., Ke, M., Lavoie, M., Jin, Y., Fan, X., Zhang, Z., Fu, Z., Sun, L., Gillings, M., Peñuelas, J.,
 Qian, H., Zhu, Y.-G., 2018. Rhizosphere microorganisms can influence the timing of
 plant flowering. Microbiome 6, 231. https://doi.org/10.1186/s40168-018-0615-0
- MacArthur, R.H., Wilson, E.O., 2001. The Theory of Island Biogeography. Princeton University Press.
- Malik, A.A., Martiny, J.B.H., Brodie, E.L., Martiny, A.C., Treseder, K.K., Allison, S.D., 2020.

 Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J 14, 1–9. https://doi.org/10.1038/s41396-019-0510-0
- Manzoni, S., Schimel, J.P., Porporato, A., 2012. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938.
- https://doi.org/10.1890/11-0026.1

- Mau, R.L., Liu, C.M., Aziz, M., Schwartz, E., Dijkstra, P., Marks, J.C., Price, L.B., Keim, P.,
- Hungate, B.A., 2015. Linking soil bacterial biodiversity and soil carbon stability. ISME J
- 637 9, 1477–1480. https://doi.org/10.1038/ismej.2014.205
- McBride, M.J., Liu, W., Lu, X., Zhu, Y., Zhang, W., 2014. The Family Cytophagaceae, in:
- Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The
- Prokaryotes: Other Major Lineages of Bacteria and The Archaea. Springer, Berlin,
- Heidelberg, pp. 577–593. https://doi.org/10.1007/978-3-642-38954-2 382
- McGuire, K.L., Treseder, K.K., 2010. Microbial communities and their relevance for ecosystem
- models: Decomposition as a case study. Soil Biology and Biochemistry 42, 529–535.
- https://doi.org/10.1016/j.soilbio.2009.11.016
- Melillo, J.M., Frey, S.D., DeAngelis, K.M., Werner, W.J., Bernard, M.J., Bowles, F.P., Pold, G.,
- Knorr, M.A., Grandy, A.S., 2017. Long-term pattern and magnitude of soil carbon
- feedback to the climate system in a warming world. Science 358, 101–105.
- 648 https://doi.org/10.1126/science.aan2874
- Melvin, A.M., Mack, M.C., Johnstone, J.F., David McGuire, A., Genet, H., Schuur, E.A.G.,
- 2015. Differences in Ecosystem Carbon Distribution and Nutrient Cycling Linked to
- Forest Tree Species Composition in a Mid-Successional Boreal Forest. Ecosystems 18,
- 652 1472–1488. https://doi.org/10.1007/s10021-015-9912-7
- Moore, J.C., Berlow, E.L., Coleman, D.C., de Ruiter, P.C., Dong, Q., Hastings, A., Johnson,
- N.C., McCann, K.S., Melville, K., Morin, P.J., Nadelhoffer, K., Rosemond, A.D., Post,
- D.M., Sabo, J.L., Scow, K.M., Vanni, M.J., Wall, D.H., 2004. Detritus, trophic dynamics
- and biodiversity. Ecology Letters 7, 584–600. https://doi.org/10.1111/j.1461-
- 657 0248.2004.00606.x
- Moore, J.C., Hunt, H.W., 1988. Resource compartmentation and the stability of real ecosystems.
- Nature 333, 261–263. https://doi.org/10.1038/333261a0
- Moorhead, D.L., Sinsabaugh, R.L., 2006. A Theoretical Model of Litter Decay and Microbial
- Interaction. Ecological Monographs 76, 151–174. https://doi.org/10.1890/0012-
- 9615(2006)076[0151:ATMOLD]2.0.CO;2
- Morrissey, E.M., Mau, R.L., Hayer, M., Liu, X.-J.A., Schwartz, E., Dijkstra, P., Koch, B.J.,
- Allen, K., Blazewicz, S.J., Hofmockel, K., Pett-Ridge, J., Hungate, B.A., 2019.
- Evolutionary history constrains microbial traits across environmental variation. Nat Ecol
- Evol 3, 1064–1069. https://doi.org/10.1038/s41559-019-0918-y
- Morrissey, E.M., Mau, R.L., Schwartz, E., McHugh, T.A., Dijkstra, P., Koch, B.J., Marks, J.C.,
- Hungate, B.A., 2017. Bacterial carbon use plasticity, phylogenetic diversity and the
- priming of soil organic matter. ISME J 11, 1890–1899.
- https://doi.org/10.1038/ismej.2017.43
- Murase, J., 2017. Quest of Soil Protists in a New Era. Microbes and Environments 32, 99–102.
- https://doi.org/10.1264/jsme2.ME3202rh

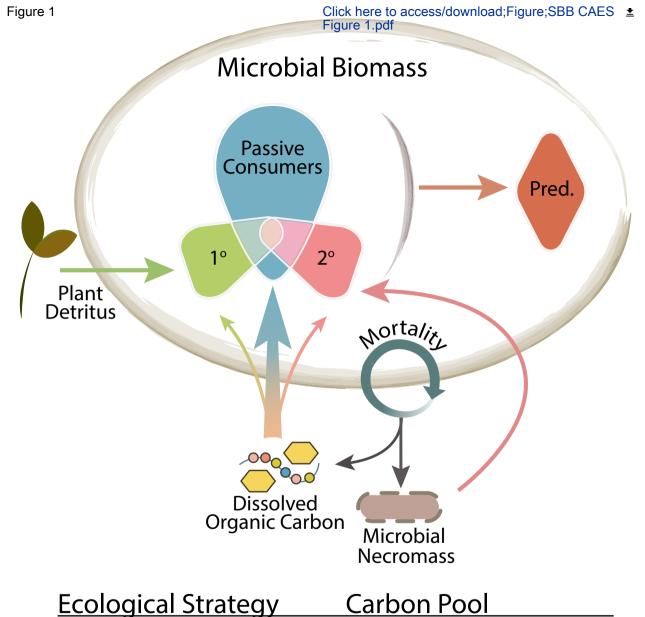
- Nelson, C.E., Carlson, C.A., 2012. Tracking differential incorporation of dissolved organic
- carbon types among diverse lineages of Sargasso Sea bacterioplankton. Environmental
- 675 Microbiology 14, 1500–1516. https://doi.org/10.1111/j.1462-2920.2012.02738.x
- Neufeld, J.D., Dumont, M.G., Vohra, J., Murrell, J.C., 2007. Methodological Considerations for the Use of Stable Isotope Probing in Microbial Ecology. Microb Ecol 53, 435–442. https://doi.org/10.1007/s00248-006-9125-x
- Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C.M., Sarr, A., Maron, P.-A.,
 2013. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal 7,
 1609–1619. https://doi.org/10.1038/ismej.2013.34
- Pianka, E.R., 1970. On r- and K-Selection. The American Naturalist 104, 592–597.
 https://doi.org/10.1086/282697
- Poorter, H., Garnier, E., 1999. Ecological significance of relative growth rate and its components, in: Handbook of Functional Plant Ecology (Eds. Pugnaire FI, Valladares F).

 Marcel Dekker, New York, pp. 81–120.
- Prosser, J.I., Bohannan, B.J.M., Curtis, T.P., Ellis, R.J., Firestone, M.K., Freckleton, R.P., Green,
 J.L., Green, L.E., Killham, K., Lennon, J.J., Osborn, A.M., Solan, M., van der Gast, C.J.,
 Young, J.P.W., 2007. The role of ecological theory in microbial ecology. Nat Rev
 Microbiol 5, 384–392. https://doi.org/10.1038/nrmicro1643
- Raczka, N.C., Piñeiro, J., Tfaily, M.M., Chu, R.K., Lipton, M.S., Pasa-Tolic, L., Morrissey, E.,
 Brzostek, E., 2021. Interactions between microbial diversity and substrate chemistry
 determine the fate of carbon in soil. Sci Rep 11, 19320. https://doi.org/10.1038/s41598-021-97942-9
- Radajewski, S., Ineson, P., Parekh, N.R., Murrell, J.C., 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403, 646–649. https://doi.org/10.1038/35001054
- Ramin, K.I., Allison, S.D., 2019. Bacterial Tradeoffs in Growth Rate and Extracellular Enzymes.
 Frontiers in Microbiology 10.
- Reed, H.E., Martiny, J.B., 2013. Microbial composition affects the functioning of estuarine sediments. ISME J 7, 868–879. https://doi.org/10.1038/ismej.2012.154
- Reich, P.B., Walters, M.B., Ellsworth, D.S., 1997. From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences 94, 13730–13734. https://doi.org/10.1073/pnas.94.25.13730
- Robertson, A.D., Paustian, K., Ogle, S., Wallenstein, M.D., Lugato, E., Cotrufo, M.F., 2019.
 Unifying soil organic matter formation and persistence frameworks: the MEMS model.
 Biogeosciences 16, 1225–1248. https://doi.org/10.5194/bg-16-1225-2019
- Roller, B.R., Schmidt, T.M., 2015. The physiology and ecological implications of efficient growth. ISME J 9, 1481–1487. https://doi.org/10.1038/ismej.2014.235
- Rotem, O., Pasternak, Z., Jurkevitch, E., 2014. Bdellovibrio and Like Organisms, in: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The Prokaryotes:
- Deltaproteobacteria and Epsilonproteobacteria. Springer, Berlin, Heidelberg, pp. 3–17.
- 712 https://doi.org/10.1007/978-3-642-39044-9 379

- Ruiz-Dueñas, F.J., Barrasa, J.M., Sánchez-García, M., Camarero, S., Miyauchi, S., Serrano, A.,
- Linde, D., Babiker, R., Drula, E., Ayuso-Fernández, I., Pacheco, R., Padilla, G., Ferreira,
- P., Barriuso, J., Kellner, H., Castanera, R., Alfaro, M., Ramírez, L., Pisabarro, A.G.,
- Riley, R., Kuo, A., Andreopoulos, W., LaButti, K., Pangilinan, J., Tritt, A., Lipzen, A.,
- He, G., Yan, M., Ng, V., Grigoriev, I.V., Cullen, D., Martin, F., Rosso, M.-N., Henrissat,
- B., Hibbett, D., Martínez, A.T., 2021. Genomic Analysis Enlightens Agaricales Lifestyle
- Evolution and Increasing Peroxidase Diversity. Molecular Biology and Evolution 38,
- 720 1428–1446. https://doi.org/10.1093/molbev/msaa301
- Schimel, J.P., 2018. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annual Review of Ecology, Evolution, and Systematics 49, 409–432.
- 723 https://doi.org/10.1146/annurev-ecolsys-110617-062614
- Schmidt, T.M., Konopka, A.E., 2009. Physiological and Ecological Adaptations of Slow-
- Growing, Heterotrophic Microbes and Consequences for Cultivation, in: Epstein, S.S.
- 726 (Ed.), Uncultivated Microorganisms, Microbiology Monographs. Springer, Berlin,
- 727 Heidelberg, pp. 257–276. https://doi.org/10.1007/978-3-540-85465-4_11
- Schulz-Bohm, K., Geisen, S., Wubs, E.R.J., Song, C., de Boer, W., Garbeva, P., 2017. The
 prey's scent Volatile organic compound mediated interactions between soil bacteria and
 their protist predators. ISME J 11, 817–820. https://doi.org/10.1038/ismej.2016.144
- Sella, S.R.B.R., Vandenberghe, L.P.S., Soccol, C.R., 2014. Life cycle and spore resistance of
 spore-forming Bacillus atrophaeus. Microbiological Research 169, 931–939.
 https://doi.org/10.1016/j.micres.2014.05.001
- Semenov, A.M., 1991. Physiological bases of oligotrophy of microorganisms and the concept of microbial community. Microb Ecol 22, 239–247. https://doi.org/10.1007/BF02540226
- Steinweg, J.M., Dukes, J.S., Wallenstein, M.D., 2012. Modeling the effects of temperature and moisture on soil enzyme activity: Linking laboratory assays to continuous field data. Soil Biology and Biochemistry 55, 85–92. https://doi.org/10.1016/j.soilbio.2012.06.015
- Stolp, H., Starr, M.P., 1963. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic,
 and bacteriolytic microorganism. Antonie van Leeuwenhoek 29, 217–248.
 https://doi.org/10.1007/BF02046064
- Sulman, B.N., Brzostek, E.R., Medici, C., Shevliakova, E., Menge, D.N.L., Phillips, R.P., 2017.
 Feedbacks between plant N demand and rhizosphere priming depend on type of
 mycorrhizal association. Ecology Letters 20, 1043–1053.
 https://doi.org/10.1111/ele.12802
- Sulman, B.N., Moore, J.A.M., Abramoff, R., Averill, C., Kivlin, S., Georgiou, K., Sridhar, B.,
 Hartman, M.D., Wang, G., Wieder, W.R., Bradford, M.A., Luo, Y., Mayes, M.A.,
- Morrison, E., Riley, W.J., Salazar, A., Schimel, J.P., Tang, J., Classen, A.T., 2018.
- Multiple models and experiments underscore large uncertainty in soil carbon dynamics.
- 750 Biogeochemistry 141, 109–123. https://doi.org/10.1007/s10533-018-0509-z

- Sulman, B.N., Phillips, R.P., Oishi, A.C., Shevliakova, E., Pacala, S.W., 2014. Microbe-driven
 turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nature
 Clim Change 4, 1099–1102. https://doi.org/10.1038/nclimate2436
- Taş, N., Prestat, E., Wang, S., Wu, Y., Ulrich, C., Kneafsey, T., Tringe, S.G., Torn, M.S.,
 Hubbard, S.S., Jansson, J.K., 2018. Landscape topography structures the soil microbiome
 in arctic polygonal tundra. Nat Commun 9, 777. https://doi.org/10.1038/s41467-018 03089-z
- Verville, J.H., Hobbie, S.E., Chapin, F.S., Hooper, D.U., 1998. Response of tundra CH4 and
 CO2 flux tomanipulation of temperature and vegetation. Biogeochemistry 41, 215–235.
 https://doi.org/10.1023/A:1005984701775
- Vijayakumar, R., Vaijayanthi, G., Panneerselvam, A., Thajuddin, and N., 2015. Actinobacteria:
 A predominant source of antimicrobial compounds, in: Antimicrobials. CRC Press, p. 26.
- Wagg, C., Bender, S.F., Widmer, F., van der Heijden, M.G.A., 2014. Soil biodiversity and soil
 community composition determine ecosystem multifunctionality. Proceedings of the
 National Academy of Sciences 111, 5266–5270.
 https://doi.org/10.1073/pnas.1320054111
- Wagner, M.R., Lundberg, D.S., Coleman-Derr, D., Tringe, S.G., Dangl, J.L., Mitchell-Olds, T.,
 2014. Natural soil microbes alter flowering phenology and the intensity of selection on
 flowering time in a wild Arabidopsis relative. Ecology Letters 17, 717–726.
 https://doi.org/10.1111/ele.12276
- Wang, B., Allison, S.D., 2019. Emergent properties of organic matter decomposition by soil
 enzymes. Soil Biology and Biochemistry 136, 107522.
 https://doi.org/10.1016/j.soilbio.2019.107522
- Wang, C., Qu, L., Yang, L., Liu, D., Morrissey, E., Miao, R., Ziping, L., Wang, Q., Fang, Y.,
 Bai, E., 2021. Large- scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology 27, 2039-2048.
 https://doi.org/10.1111/gcb.15550
- Wang, G., Gao, Q., Yang, Y., Hobbie, S.E., Reich, P.B., Zhou, J., 2022. Soil enzymes as
 indicators of soil function: A step toward greater realism in microbial ecological
 modeling. Global Change Biology 28, 1935–1950. https://doi.org/10.1111/gcb.16036
- Wang, G., Post, W.M., Mayes, M.A., 2013. Development of microbial-enzyme-mediated
 decomposition model parameters through steady-state and dynamic analyses. Ecological
 Applications 23, 255–272. https://doi.org/10.1890/12-0681.1
- Wardle, D.A., Jonsson, M., Bansal, S., Bardgett, R.D., Gundale, M.J., Metcalfe, D.B., 2012.
 Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100, 16–30.
 https://doi.org/10.1111/j.1365-2745.2011.01907.x
- Wieder, W.R., Bonan, G.B., Allison, S.D., 2013. Global soil carbon projections are improved by
 modelling microbial processes. Nature Clim Change 3, 909–912.
 https://doi.org/10.1038/nclimate1951

- Wieder, W.R., Grandy, A.S., Kallenbach, C.M., Bonan, G.B., 2014. Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences 11, 3899–3917.
 https://doi.org/10.5194/bg-11-3899-2014
- Wilhelm, R.C., Singh, R., Eltis, L.D., Mohn, W.W., 2019. Bacterial contributions to
 delignification and lignocellulose degradation in forest soils with metagenomic and
 quantitative stable isotope probing. ISME J 13, 413–429. https://doi.org/10.1038/s41396-018-0279-6
- Williams, H.N., Piñeiro, S., 2006. Ecology of the Predatory Bdellovibrio and LikeOrganisms, in:
 Jurkevitch, E. (Ed.), Predatory Prokaryotes: Biology, Ecology and Evolution,
 Microbiology Monographs. Springer, Berlin, Heidelberg, pp. 213–248.
 https://doi.org/10.1007/7171_2006_058
- Woodcroft, B.J., Singleton, C.M., Boyd, J.A., Evans, P.N., Emerson, J.B., Zayed, A.A.F.,
 Hoelzle, R.D., Lamberton, T.O., McCalley, C.K., Hodgkins, S.B., Wilson, R.M., Purvine,
 S.O., Nicora, C.D., Li, C., Frolking, S., Chanton, J.P., Crill, P.M., Saleska, S.R., Rich,
 V.I., Tyson, G.W., 2018. Genome-centric view of carbon processing in thawing
 permafrost. Nature 560, 49–54. https://doi.org/10.1038/s41586-018-0338-1
- Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares,
 J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K.,
 Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas,
 M.-L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov,
 V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The
 worldwide leaf economics spectrum. Nature 428, 821–827.
 https://doi.org/10.1038/nature02403
- Wutzler, T., Zaehle, S., Schrumpf, M., Ahrens, B., Reichstein, M., 2017. Adaptation of microbial
 resource allocation affects modelled long term soil organic matter and nutrient cycling.
 Soil Biology and Biochemistry 115, 322–336.
 https://doi.org/10.1016/j.soilbio.2017.08.031
- Xiao, C., Guenet, B., Zhou, Y., Su, J., Janssens, I.A., 2015. Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation. Oikos 124, 649–657. https://doi.org/10.1111/oik.01728
- Xie, G., Bruce, D.C., Challacombe, J.F., Chertkov, O., Detter, J.C., Gilna, P., Han, C.S., Lucas,
 S., Misra, M., Myers, G.L., Richardson, P., Tapia, R., Thayer, N., Thompson, L.S.,
 Brettin, T.S., Henrissat, B., Wilson, D.B., McBride, M.J., 2007. Genome Sequence of the
 Cellulolytic Gliding Bacterium Cytophaga hutchinsonii. Applied and Environmental
 Microbiology 73, 3536–3546. https://doi.org/10.1128/AEM.00225-07
- Ylänne, H., Stark, S., Tolvanen, A., 2015. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra. Global Change Biology 21, 3696–3711. https://doi.org/10.1111/gcb.12964


Figure Legends Fig. 1. Carbon acquisition ecological strategies (CAES) of soil microorganisms and associated carbon pools. In this framework, saprotrophic microbial taxa are categorized into an ecological strategy based on the soil carbon pool they predominantly consume and their role in the soil food web. Arrows reflect the assimilation of carbon from distinct soil organic matter pools into each

of the CAES groups.

Fig. 2. Hypothesized distribution of maximum growth rates for saprotrophic soil microbes within each of the proposed carbon acquisition ecological strategies. Predators include both prokaryotic Bdellovibrio and like organisms ("BALOs") and eukaryotic organisms such as phagotrophic protists.

Table 1. Select traits predicted to covary with carbon acquisition ecological strategies and associated soil carbon pools.

Ecological Strategy	Soil Carbon Pool	Carbon Use Efficiency	Exoenzyme Production	Motility
1° Decomposer	Complex plant detritus	Low	High	High
2° Decomposer	Microbial necromass	Intermediate	Intermediate	Intermediate
Passive Consumer	Dissolved organic carbon	High	Low	Low
Predator	Live microbial biomass	Intermediate	Low	High

1° Decomposer 2° Decomposer Passive Consumer Predator Complex Plant Detritus Complex Microbial Necromass Dissolved Organic Carbon Live Microbial Biomass

Declaration of Interest Statement

Declaration of interests

⊠The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.
□The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests: