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Onlinematchingmarkets (OMMs) are commonly used in today’s world to pair agents from two parties (whom

we will call offline and online agents) for mutual benefit. However, studies have shown that the algorithms

making decisions in these OMMs often leave disparities in matching rates, especially for offline agents. In

this article, we propose online matching algorithms that optimize for either individual or group-level fair-

ness among offline agents in OMMs. We present two linear-programming (LP) based sampling algorithms,

which achieve competitive ratios at least 0.725 for individual fairness maximization and 0.719 for group fair-

ness maximization. We derive further bounds based on fairness parameters, demonstrating conditions under

which the competitive ratio can increase to 100%. There are two key ideas helping us break the barrier of

1− 1/e ∼ 63.2% for competitive ratio in online matching. One is boosting, which is to adaptively re-distribute

all sampling probabilities among only the available neighbors for every arriving online agent. The other is

attenuation, which aims to balance the matching probabilities among offline agents with different mass allo-

cated by the benchmark LP. We conduct extensive numerical experiments and results show that our boosted

version of sampling algorithms are not only conceptually easy to implement but also highly effective in prac-

tical instances of OMMs where fairness is a concern.
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1 INTRODUCTION

Matching markets involve heterogeneous agents (typically from two parties) who are paired
for mutual benefit. During the last decade, matching markets have emerged and grown rapidly
through the medium of the Internet. They have evolved into a new format, called Online
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Matching Markets (OMMs), with examples ranging from crowdsourcing markets to online
recommendations to rideshare. There are two features distinguishing OMMs from traditional
matching markets. The first is the dynamic arrivals of one side of the market, whose constituents
are referred to as online agents, e.g., keywords in Google Advertising, workers in Amazon

Mechanical Turk (AMT), and riders in Uber/Lyft. The constituents of the other side are known
a priori and referred to as offline agents, such as sponsors in Google advertising, tasks in AMT,
and drivers in rideshare platforms (when restricted to a short time window).1 The second feature
is the instant match-decision requirement. It is highly desirable to match each online agent with
one (or multiple) offline agent(s) upon its arrival, due to the low “patience” of online agents. There
are several articles that study matching-policy and/or pricing mechanism design in OMMs [6, 34].
The main focus of this article, instead, is fairness among offline agents in OMMs. Consider the
following two motivating examples.
Fairness among Task Requesters in Mobile Crowdsoucing Markets (MCM). In MCMs like Gigwalk

and TaskRabbit, each offline task has specific location information, and online workers have to
travel to that location to complete it (e.g., cleaning one’s house, delivering some package). Survey
results on TaskRabbit in Chicago [51] showed that tasks from certain areaswith low socioeconomic
status, like the South Side of Chicago, get assigned and completed at a much slower rate, and as a
result “low socioeconomic-status areas are currently less able to take advantage of the benefit of
mobile crowdsourcing markets.”
Fairness among Drivers in Ride-Hailing Services. There are several reports showing the earning

gap among drivers based on their demographic factors such as age, gender and race, see, e.g., [11]
and [45]. In particular, Hinchliffe [26] has reported that “Black Uber and Lyft drivers earned $13.96
an hour compared to the $16.08 average for all other drivers” and “Women drivers reported earn-
ing an average of $14.26 per hour, compared to $16.61 for men”. The wage gap among drivers
from different demographic groups is a consequence of the algorithms being employed which, for
one reason or another, end up allocating jobs to different demographics in ways that result in
statistically significant discrepancies in average wage rates.
Therefore, in this article, we explicitly propose fairness as an objective for the online match-

ing algorithm. We study the prototypical online matching model with known, independent, and
identical (KIID) arrivals, which is widely used to model the dynamic arrivals of online agents in
several real-world OMMs including rideshare and crowdsourcing markets [14, 18, 54]. We choose
this arrival model instead of the adversarial one, because under the latter it is impossible for an
online algorithm to perform well.2

The online matching model under KIID is as follows. We have a bipartite graph (I , J ,E), where I
and J represent the types of offline and online agents, respectively, and an edge e = (i, j ) indicates
the compatibility between the offline agent (of type) i and the online agent (of type) j. All offline
agents are static, while online agents arrive dynamically in a certain random way. Especially, we
have an online phase consisting of T rounds and during each round t ∈ [T ] � {1, 2, . . . ,T }, one
single online agent ĵ will be sampled (called ĵ arrives) with replacements such that Pr[ĵ = j] =
r j/T for all j ∈ J and

∑
j ∈J r j/T = 1. We assume that the arrival distribution {r j/T } is known,

independent, and identical (KIID) throughout the online phase. Upon the arrival of an online agent

1More precisely, “offline agents” in this article represent a general class of agents that have less mobility in nature compared

with the other party in the matching system; thus, they could join and depart the system dynamically in practice though

at a far slower pace as the online counterpart.
2This can be seen as follows: Suppose there are a large number of tasks, defined byT . The first arriving worker can perform

any of them. Workers 2, . . . , T can each perform a different specialized task such that there is one task that can be served

only by the first arriving worker. The online algorithm has a 1/T chance of correctly allocating the first worker to this

task.
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j, an immediate and irrevocable decision is required: either reject j or match j with one offline
neighbor i with i ∼ j, i.e., (i, j ) ∈ E. Throughout this article, we assume w.l.o.g. that each offline
agent has a unit matching capacity.3 Suppose we have a collection of groups G = {G}, where each
group G is a set of types of offline agents (possibly overlapping) that share some demographic
characteristic such as gender, race, or religion. Consider a generic online algorithm ALG, and let
Zi = 1 indicate that offline agent i is matched (or served). We define the following two objectives:

Individual Fairness Maximization (IFM): maxmini ∈I E[Zi ];
Group Fairness Maximization (GFM): maxminG ∈G

1
|G |
∑

i ∈G E[Zi ], where |G | is the car-
dinality of G.

Here IFM denotes the minimum expected matching rate over all individual offline agents,
while GFM denotes that over all pre-specified groups of offline agents. Our goal is to design
an online-matching policy such that the above two objectives are maximized. Observe that IFM
can be captured as a special case of GFM when each group consists of one single offline type.
Also observe that the objective achieved will always be higher under GFM than IFM (because
1
|G |
∑

i ∈G E[Zi ] ≥ mini ∈I E[Zi ] for any group G); however, the objective can often be much better

under GFM than in the special case where it captures IFM.
A related model: vertex-weighted online matching under KIID (VOM). VOM under KIID [9, 28]

shares almost the same setting as our model except in the objective, where each offline agent i
is associated with a non-negative weight wi and the objective is to maximize the expected total
weight of all matched offline agents, i.e., max

∑
i ∈I wi · E[Zi ].

Two assumptions on the arrival setting. (a) Integral arrival rates. Observe that for an offline agent
j, it will arrive with probability r j/T during each of the online T rounds. Thus, r j is equal to the
expected number of arrivals of j during the online phase and it is called arrival rate of j. In this
article, we consider integral arrival rates for all offline agents, and by following a standard tech-
nique of creating r j copies of j, we can further assume w.l.o.g. that all r j = 1 [9]. (b) T � 1. This
is a standard assumption in the literature of online bipartite matching under KIID [19, 24, 28, 39],
where the objective is typically to maximize a linear function representing the total weight of all
matched edges. We emphasize that both of these assumptions are mild in that: the interesting case
is T � 1 because if T is fixed then the problem, with state space |I |T , can be solved to optimality;
and under the assumption T � 1, the arrival rates are arbitrarily close to integers.

2 PRELIMINARIES AND MAIN CONTRIBUTIONS

2.1 A Clairvoyant Optimal and Competitive Ratio

Competitive ratio (CR) is a common metric to evaluate the performance of online algo-
rithms [41]. Consider an online maximization problem like ours. Let ALG(I) = EA∼I[ALG(S )]
denote the expected performance of ALG on an input I, where the expectation is taken over both
of the randomness of the arrival sequence A of online agents and that of ALG. Let OPT(I) =
EA∼I[OPT(S )] denote the expected performance of a clairvoyant optimal who has the privilege
to optimize decisions after observing the full arrival sequence A. We say ALG achieves a com-
petitive ratio of ρ ∈ [0, 1] if ALG(I) ≥ ρ OPT(I) for all possible inputs I. Generally, the com-
petitive ratio captures the gap in the performance between an online algorithm subject to the
real-time decision-making requirement and a clairvoyant optimal who is exempt from that. It is a
common technique to use a linear program (LP) to upper bound the clairvoyant optimal (called

3For an offline agent i with a capacity of bi ∈ Z+, the individual fairness on i after normalization (see definition below)

will be reduced to the group-level fairness by treating it as a group consisting of bi identical copies each having a unit

capacity.
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benchmark LP), and hence by comparing against the optimal value of the benchmark LP, we can
get a valid lower bound on the target competitive ratio.

2.2 Benchmark Linear Programs

In this article, we use the benchmark LP as shown below. For each edge (i, j ) ∈ E, let xi j be the
expected number of times that the edge (i, j ) is matched by the clairvoyant optimal. For each i , let
Ni = {j : (ij ) ∈ E} denote the set of offline neighbors of i . Similarly, Nj denotes the set of online
neighbors of j. For notation convenience, we use i ∼ j and j ∼ i to denote the relation that i is
incident to j (i.e., i ∈ Nj ) and j is incident to i (i.e., j ∈ Ni ), respectively.

IFM : max min
i ∈I

xi (1)

GFM : max min
G ∈G

1

|G |
∑
i ∈G

xi (2)

VOM : max
∑
i ∈I

wixi (3)

x j :=
∑
i∼j

xi j ≤ 1, ∀j ∈ J (4)

xi :=
∑
j∼i

xi j ≤ 1, ∀i ∈ I (5)

0 ≤
∑
j ∈S

xi j ≤ 1 − e−|S |, ∀S ⊆ Ni , |S | = O (1),4 ∀i ∈ I . (6)

Throughout this article, we use LP (1) to denote the LP with Objective (1) and Constraints (4)
to (6). Similarly for LP (2) and LP (3). Note that though Objective (1) is non-linear, we can reduce to
a linear one by replacing it withmax λ and adding one constraint

∑
j∼i xi j ≥ λ for all i ∈ I . Similarly

for Objective (2), we can replace it with max λ and add one extra constraint
∑

i ∈G
∑

j∼i xi j ≥ λ · |G |
for all G ∈ G, where |G | denotes the cardinality of group G. Our LPs are mainly inspired by [9].
In particular, Constraint (6) suggests that any offline agent i is matched by one of its neighbors
in S with a probability no more than 1 − e−|S | ; see more details in the proof of Lemma 1. For the
critical Constraint (6), we have omitted terms of size O (1/T ); see the proof of Lemma 1 for more
details. Those errors can affect the competitive ratio by at most O (1/T ) [9].5 Note that all the
above three LPs can be solved polynomially even after removing the restriction on the size of |S |
in Constraint (6).6

Lemma 1. LP (1), LP (2), and LP (3) are valid benchmarks for IFM, GFM, and VOM, respectively.

Proof. Observe that the three objectives (1), (2), and (3) capture metrics of IFM, GFM, and VOM,
respectively. Thus, it will suffice to justify the feasibility of all constraints for a clairvoyant optimal.
Constraint (4) is valid since the total number of matches relevant to an online agent j should be
no larger than that of expected arrivals, which is r j = 1. Constraint (5) is due to that every offline
agent i has a unit matching capacity. Constraint (6) can be justified as follows: Consider a given

4Here we assume the size of |S | is upper bounded by a given constant, say K = 100, which is independent of T � 1.
5Further evidence can be seen from the competitive analysis of our algorithms. Consider SAMP-B, for example. The final

competitive ratio is stated as a piecewise function with bounded first derivatives in the whole domain (Theorem 2), which

suggests any error in Constraint (6) can get inflated by at most a constant in the final ratio.
6Though the LPs may have exponential number of constraints after removing the restriction that |S | is a constant indepen-
dent of T , they all can be solved polynomially since they admit a polynomial-time separation oracle [27]. For presentation

convenience, we add that restriction and it will suffice for our analysis.
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i ∈ I and a given S ⊆ Ni . Observe that
∑

j ∈S Xi j = 1 denotes the random event that i is matched
with one of its neighbors in S , whose probability should be no larger than that of at least one
neighbor in S arrives at least once during the online T rounds. Thus,

∑
j ∈S

xi j = E

⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

Xi j

⎤⎥⎥⎥⎥⎥⎦
= Pr

⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

Xi j = 1

⎤⎥⎥⎥⎥⎥⎦
≤ 1 − Pr[none of neighbors in S arrives during the T rounds]

= 1 −
(
1 − |S |

T

)T
= 1 − e−|S | +O (1/T ).

The last equality is due to our assumption that |S | is upper bounded by a given constant indepen-
dent of T � 1. �

2.3 Overview of Our Techniques: LP-Based Sampling, Boosting, and Attenuation

Before describing our techniques, we first explain the standard LP-based sampling approach, which
has been commonly used in algorithm design for various online-matching models under known
distributions, either KIID [14] or known adversarial distributions [2] (where arrival distributions
are still independent but not necessarily identical). A typical framework is as follows: One uses the
benchmark LP to upper bound the performance of a clairvoyant algorithm, and then solves the LP
to get statistics regarding how to match an online agent with its offline neighbors. After that, one
uses these statistics to guide actions in the online policy. For example, suppose that, by solving the
LP, we know that the clairvoyant optimal will match each pair of offline-online agents (i, j ) with
probability xi j . Observe that, by Constraint (4) in the benchmark LP, we have

∑
i ∈Nj xi j ≤ r j = 1.

Thus, we can then transfer it to a simple non-adaptive matching policy as follows: Upon the arrival
of online agent j, sample a neighbor i ∈ Nj with probability xi j and match it if i is available.
A straightforward analysis yields that the aforementioned non-adaptive sampling policy

achieves 1 − 1/e of the LP optimum, see, e.g., [9] and [25]. However, such a policy also achieves
no better than 1 − 1/e, even when the LP has been tightened by Constraint (6).7 To go beyond the
competitive ratio of 1 − 1/e, we consider the following simple and natural idea:
Boosting. Suppose we are at (the beginning of) time t and an online agent j arrives. Assume that

by solving the benchmark LP, we learn a sampling distribution xj = {xi j |i ∈ Nj } for online agent
j with

∑
i ∈Nj xi j ≤ 1 from the clairvoyant optimal. LetNj,t ⊆ Nj be the set of available neighbors

of j at time t . Instead of non-adaptively following the same distribution xj overNj throughout the
online phase [15, 54], we try to sample a neighbor j fromNj,t only following a boosted version of
distribution x

′
j = {xi j/

∑
i ∈Nj,t xi j }. In this way, we promote the chance of each available neighbor

of j at t getting matched with j. Also, we can guarantee that the offline neighbor we have sampled
is available at the time and dismiss the case that we sample an unavailable neighbor and have to
reject j ultimately, which is also a desirable feature to have in practice. This is the key idea in the
algorithm we will present for IFM (see Theorem 2).
Note that our boosting idea has already been proposed and tested in several practical crowd-

sourcing applications [13, 14]. Though it proved to be helpful in some scenarios, the boosted ver-
sion of LP-based sampling is more challenging to analyze since one has to consider the adaptive
behavior of the algorithm. We are the first to show that it achieves a competitive ratio exceeding

7To see this, consider a complete bipartite graph with T nodes on each side. Setting xi j = 1/T for every edge (i, j ) is
feasible in the tightened LP that leaves every offline node fractionally matched. However, the corresponding sampling

policy would only leave each offline node matched with probability 1− 1/e. In fact, it can be seen on this example that any

non-adaptive sampling policy must leave some offline node matched with probability at most 1 − 1/e.
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1 − 1/e, of 0.725, for IFM. One can contrast this to [39] who studied unweighted online matching
under KIID and also introduced a boosting strategy, which is more complex—their main idea is to
generate two negatively correlated sampling distributions from the original one, and sample two
candidate neighbors for an online arriving agent.
Uniform vs. Non-Uniform Boosting. A critical element in our analysis of the simple boosting

algorithm for IFM, however, is that an optimal LP solution places identical total mass xi on each
offline agent i . By contrast, for GFM, an optimal LP solution may place higher mass on specific
offline agents, e.g., those belonging in many groups. We show that when there is heterogeneity in
the mass placed across offline agents, the boosting algorithm matches high-mass offline agents i
with probability no better than (1 − 1/e) · xi (see Lemma 4), i.e., its competitive ratio achieved is
no longer better than 1 − 1/e.
To break this barrier of 1 − 1/e for GFM, our idea is to use boosting in a non-uniform fashion.

In the simple boosting algorithm above, for an incoming arrival, the probability of sampling un-
available neighbors was re-distributed proportionally across its available neighbors. However, our
algorithm for GFM is more likely to suffer from offline agents i with high total mass xi , since as
explained above those agents are more difficult to match relative to its total mass xi .

To accomplish this, we add an attenuation factor to offline agents with small total mass in the LP
solution, in an attempt to balance the probability of matching every offline agent i relative to its
total mass xi . Most similar to ours are the attenuation techniques used in [9] and [28] to overcome
the barrier of 1−1/e for VOM under KIID. However, our attenuation technique is different and new
in the following sense. Consider an online agent j that arrives at time t and let xj = {xi j |i ∈ Nj }
be the sampling distribution of j before attenuation. The idea in [9] and [28] is to carefully design
factors αi j that are added directly to the sampling distribution xj such that we finally sample an
offline neighbor i ∈ Nj with an updated probability αi j · xi j upon the arrival of j. In this way, they
can both promote the performance of an offline agent i with large mass by setting αi j > 1 and
compress that of i with small mass by setting αi j < 1. In contrast, our idea is to adaptively and
randomly update the set of neighbors of j subject to sampling. Recall that the idea of boosting is
to sample a neighbor of j only from the set of available neighbors at that time following a boosted
version of distribution x′j = {xi j/

∑
i ∈Nj,t xi j }. Our attenuation idea is to further enhance the power

of boosting by randomly “muting” some available neighbors of j at time t with small mass (i.e.,
forcefully labeling them as unavailable) and then apply the boosting idea to the set of all available
neighbors that survives the muting procedure. As a result, our attenuation helps compress the
performance of offline agents with small mass and promote that of offline agents with large mass.
Overview of Simulation-Based Attenuation. The term “simulation” throughout this article refers

to the classical Monte Carlo simulation. Simulation-based attenuation is a powerful technique in al-
gorithm design for stochastic optimization problems; see, e.g., stochastic knapsack [35], stochastic
matching [1, 8], and matching policy design in rideshare [16, 20]. The high-level idea is as follows:
Suppose we have a random event EV that occurs with an unknown probability Pr[EV] = p > c ,
where c is a target we aim to attenuation EV to. A typical approach is as follows: We first apply
Monte Carlo simulations to get an estimate p̄ such that p̄ ∈ [(1 − ϵ )p, (1 + ϵ )p] with probability
at least 1 − δ . Then, by simply ignoring event EV with probability 1 − c/p̄ (regardless if EV hap-
pens), we can make that event EV will “occur” with probability cp/p̄ ∈ [c/(1 + ϵ ), c/(1 − ϵ )]. The
number of samples needed for an estimate as shown above is Θ(1/(cϵ2) · log(1/δ )) by applying a
standard Chernoff bound. In our context, a random event subject to attenuation is typically that an
offline agent is matched by some time, and the target c takes a constant value between [1/e, 1] (see
Section 5.2). We will take ϵ = 1/poly(N ), where N is the problem size such that the error ϵ will
bring lower-order terms in the final competitive ratios. A detailed discussion on simulation-based
attenuation can be seen Appendix B in [8].
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2.4 Price of Fairness

Price of Fairness (POF) is a common question when fairness promotion is considered together with
another potentially conflicting objective such as utility (a.k.a. system efficiency) maximization [4,
5, 12]. In our context, IFM (1) and GFM (2) each can be viewed as a fairness-related objective, while
VOM can be treated as a utility-oriented objective. Letuf be a fairness metric (such as IFM or GFM)
and μ be a utility metric (such as VOM). Consider a given instance I of online matching under
KIID. Let X (I) be the collection of all solutions feasible to Constraints (4), (5), and (6) related to
instance I. We define the POFon I and in general as follows:

POF(μf , μ,I) = 1 −
maxx∈argmaxX (I)μf μ (x)

max
x∈X (I) μ (x)

, (7)

POF(μf , μ ) = sup
I

POF(μf , μ,I), (8)

where the supremum in (8) is taken over all possible feasible instances Is.
Remarks on the Two Definitions Above. (1) For any fairness and utility metrics μf and μ, we have

POF(μf , μ ) ∈ [0, 1]. Also, in our context, POF(IFM, μ ) ≤ POF(GFM, μ ), since any feasible instance
of IFM can be cast as special case of GFM with each group consisting of one single offline agent.
(2) POF in (7) captures the relative loss in utility under μ between an optimal solution maximizing
μ and another one that maximizes the fairness μf and also makes the utility μ as large as possible
meanwhile. The definition of POF in (7) can be viewed as an optimistic version: We compute
the least possible loss in the utility by comparing against an optimal solution under the fairness
metric that is most favorable to the utility. We choose the optimistic version instead of pessimistic
(i.e., replacing max with min in the numerator) or general (choosing an arbitrary optimal solution
maximizing fairness) just to make the task of computing POF in (8) slightly more challenging. In
fact, we can otherwise easily come up with an instance I with POF(μf , μ,I) = 1 for μf being
either IFM or GFM and μ being VOM; see the example below.

Example 1. Consider an unweighted bipartite graph made up of two disjoint parts: The first is a
star graph with n offline agents connected to one single online agent; the second part is a perfect
matching consisting of n disjoint edges. Thus, we have in total 2n offline agents and n + 1 online
agents. For this instance, we can verify that (1) the optimal value under VOM is (1 − 1/e) · n + 1;
(2) among all possible optimal solutions under IFM, the largest and lowest possible utility values
that could be ever achieved on VOM are (1 − 1/e) · n + 1 and 2, respectively. Thus, with μf and μ
being IFM and VOM, respectively, we have that under the “pessimistic” version of POF,

1 −
minx∈argmaxX (I)μf μ (x)

max
x∈X (I) μ (x)

= 1 − 2

(1 − 1/e) · n + 1 ,

which leads to POF(IFM,VOM) = 1 ≤ POF(GFM,VOM) = 1.

2.5 Main Contributions

In this article, we propose two generic online-matching based models to study individual and
group fairness maximization among offline agents in OMMs. Our main results are summarized as
follows:
Online Algorithm Design and Competitive Analysis for IFM and GFM. For IFM and GFM, we

present an LP-based sampling with boosting (SAMP-B) and another sampling algorithm with
boosting and attenuation (SAMP-AB), respectively.

Theorem 1. For IFM and GFM, both Greedy and Ranking achieve a competitive ratio of 0.

ACM Transactions on Economics and Computation, Vol. 10, No. 4, Article 16. Publication date: April 2023.
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Table 1. Competitive Ratio of η(τ ) Achieved by SAMP-B for IFM, Displayed for Values of τ where

τ = 1 − e−k for Some k = 0, 1, 2, . . .

k 0 1 2 3 4 5 6 7 8 ∞
η(1 − e−k ) 1 0.7970 0.7493 0.7339 0.7285 0.7266 0.7258 0.7256 0.7255 0.7254

We note that η (τ ) is a decreasing function of τ , so if τ takes a value, e.g., 0.5, which lies between 1 − e−0 = 1 and

1 − e−1 ∼ 0.632, then the competitive ratio will be between 1 and 0.7970.

Remarks on Theorem 1.We emphasize that Theorem 1 requires a non-trivial analysis and makes
a significant statement. Indeed, it is a priori unclear why Greedy (with randomized tiebreaking)
or Ranking should be so poor for fairness maximization, when randomization is built into both of
them. This contrasts with facts that Greedy achieves a ratio equal to 1 − 1/e for vertex-weighted
online matching under KIID [23] and Ranking achieves 1 − 1/e for unweighted online matching
even under adversarial [31]. This shows that IFM and GFM are new, and distinct online matching

problems in which the baseline algorithms of Greedy and Ranking do not work.

Theorem 2. A simple LP-based sampling algorithm with boosting (SAMP-B) achieves a competi-

tive ratio at least η(τ ) ≥ η(1) ∼ 0.7254 for IFM, where τ is the optimal value to LP (1), and η(τ ) is
an efficiently computable value defined later in Lemma 2.

Theorem 3. An LP-based sampling algorithm with attenuation and boosting (SAMP-AB) achieves
a competitive ratio at least 0.719 for GFM and VOM.

Remarks on Theorems 2 and 3. (1)We numerically compute a few values ofη(τ ) viaMathematica;8

see Table 1, where η(0) is obtained by taking τ → 0+. Note that neither of the algorithm SAMP-B
nor SAMP-AB takes the optimal value τ as part of the input. Results suggest that SAMP-B can
perform far beyond 1− 1/e when the benchmark LP value τ is small, which is common in practice
when offline agents are outnumbered by online ones (e.g., ride-hailing during off-peak hours with
drivers being more than riders). The dependence of SAMP-B’s performance on the benchmark LP
value offers another evidence that IFM essentially differs from VOM, where we are unaware of
any algorithm whose performance can adapt to the benchmark LP value. (2) As for the hardness
side of IFM or GFM: There is an upper bound of 0.865 due to [39] for unweighted KIID with
integral arrival rates, which can be modified to hold for IFM and GFM. We acknowledge that
for VOM under KIID with integral arrival rates, the guarantee of 0.719 implied by our SAMP-AB
algorithm does not improve the two state-of-the-art algorithms, which achieve ratios of 0.725 [28]
and 0.729 [9], respectively. However, we believe that the algorithms analyzed in this article are
much more natural than those from the aforementioned articles, in particular our simple boosting
algorithm SAMP-B, which has been previously suggested but for which no non-trivial competitive
ratio guarantees were previously known. Moreover, as displayed in Table 1, for most values of
parameter τ (more precisely, any τ ≤ 1 − e−3 ∼ 0.95), our guarantees are actually higher than any
known guarantees for VOM.
Comparison of Optimal Competitive Ratios on IFM, GFM, and VOM. We show the fairness maxi-

mization problems to be no harder than VOM in terms of the optimal competitive ratio. Indeed, for
a given model, let Φ(·) denote the optimal competitive ratio that an online algorithm can achieve
in the worst case. We establish the following:

Theorem 4. Φ(IFM) ≥ Φ(GFM) ≥ Φ(VOM).

8Throughout this article, all numerical computations are done via Mathematica 12.3.1.0 on PC Mac OS X x86 (64-bits) with

16-GM memory. We mainly use numerical functions offered by Mathematica.
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Of course, this result is on the theoretically optimal online algorithms, which cannot be
computed. The fairness maximization problems are computationally distinctive from VOM.
Price of Fairness with Respect to IFM and VOM. In this article, we study Price of Fairness with

respect to the individual fairness IFM and two utility metrics, a weighted version VOM and an
unweighted version VOM′ (in this case, all offline agents have a uniform weight).

Theorem 5. POF(IFM,VOM) = 1 and POF(IFM,VOM′) = 0.

The result above suggests that there is substantial difference in the relative loss imposed by IFM
between weighted and unweighed VOMs.
Empirical Evaluations on Real Datasets. We show that the algorithms analyzed in this article

also perform better in simulations. We compare our algorithms against Greedy, Ranking, and
these state-of-the-art algorithms in the literature [9, 28, 39] in simulations based on real data. Our
datasets include a public ride-hailing dataset collected from the city of Chicago, from which we
construct instances for IFM and GFM, as well as four datasets from the Network Data Reposi-
tory [46], from which we test the classical problem VOM. For IFM and GFM, simulation results
show that our algorithm SAMP-B, as well as the algorithm from [39] (after being adapted to our
problem), significantly outperform others. For VOM, simulation results show that SAMP-B, along
withGreedy, significantly outperform others. This demonstrates that among algorithms which ap-
pear to perform well in practice (boosting, Greedy, [39]), our simple boosting algorithm achieves
the best guarantee, and importantly, simultaneously performs well both for fairness maximization
and for weight maximization (whereas [39] only performs well for IFM/GFM while Greedy only
performs well for VOM). Our simple boosting idea is also much simpler to implement than the
cleverly correlated sampling of [39].
Roadmap. In Section 4, we present the algorithm SAMP-B for IFM and prove Theorem 2; in

Section 5, we present the algorithm SAMP-AB for IFM and VOM and prove Theorem 3; in Section 6,
we prove Theorems 1, 4, and 5; and in Section 7, we present details regarding our real datasets and
relevant experimental results.

3 OTHER RELATEDWORKS

In recent years, online-matching-based models have seen wide applications ranging from blood
donation [40] to volunteer crowdsourcing [38] and from kidney exchange [33] to rideshare [16].
Here we briefly discuss a few studies that investigate the fairness issue. Both works of [50] and [32]
have studied the income inequality among rideshare drivers. However, they mainly considered a
complete offline setting where the information of all agents in the system including drivers and
riders is known in advance. They justified that by focusing a short window and thus, all agents can
be assumed offline. There are several other works that considered fairness in matching in an offline
setting where all agents’ information is given as part of the input, see, e.g., [21] and [48]. Nanda
et al. [43] proposed a bi-objective online-matching-based model to study the tradeoff between the
system efficiency (profit) and the fairness among rideshare riders during high-demand hours. In
contrast, Xu and Xu [53] presented a similar model to examine the tradeoff between the system ef-
ficiency and the income equality among rideshare drivers. Unlike focusing on one single objective
of fairness maximization like here, both studies in [43] and [53] seek to balance the objective of fair-
ness maximization with that of profit maximization. Recently, Ma et al. [36] considered a similar
problem to ours but focus on the fairness among online agents. Manshadi et al. [37] studied fair on-
line rationing such that each arriving agent can receive a fair share of resources proportional to its
demand. The fairness issue has been studied in other domains/applications as well, see, e.g., online
selection of candidates [47], influence maximization [52], bandit-based online learning [22, 30, 44],
online resource allocation [3, 49], and classification [17].

ACM Transactions on Economics and Computation, Vol. 10, No. 4, Article 16. Publication date: April 2023.



16:10 W. Ma et al.

4 INDIVIDUAL FAIRNESS MAXIMIZATION (IFM)

Let Nj,t denote the set of available neighbors of j at t . For the ease of notation, we use {xi j } to
denote an optimal solution to LP (1) when the context is clear. Let xi �

∑
j∼i xi j for each i ∈ I .

Assume w.l.o.g. that xi = τ for all i ∈ I , where τ ∈ [0, 1] is the optimal value of LP (1).9 Our
LP-based sampling with boosting is formally stated as follows:

ALGORITHM 1: Sampling with Boosting (SAMP-B).

1 Offline Phase:

2 Solve LP (1) and let {xi j } be an optimal solution.

3 Online Phase:

4 for t = 1, . . . ,T do

5 Let an online agent of type j arrive at (the beginning of) time t .

6 Let Nj,t = {i ∈ Nj , i is available at t }, i.e., the set of available neighbors of j at t .
7 if Nj,t = ∅ then
8 Reject j.

9 else

10 Sample a neighbor i ∈ Nj,t with probability xi j/
∑
i′ ∈Nj,t xi′, j .

An Auxiliary Balls-and-Bins Model for Analysis Purposes. We present a virtual model that re-
interprets the matching process in SAMP-B as follows: Consider a given time t ∈ [T ], and let
It ⊆ I be the set of available (or unmatched) offline agents at (the beginning of) time t with I1 = I .
We can view each offline agent i ∈ It as a bin and each edge e = (i, j ) with i ∈ It as a ball;
at time t , a ball e = (i, j ) will be sampled from the pool {e = (i, j ) : i ∈ It } with probability
(1/T ) · (xi j/

∑
i′:i′∼j,i′ ∈It xi′, j ) (where 1/T is the probability of drawing type j) and it will land in

bin i and as a result, i becomes occupied (we also call it unavailable or matched). This model will
prove useful later in analyzing SAMP-B.

4.1 Proof of the Main Theorem 2

For an offline agent i ∈ I , let Zi = 1 indicate that i is matched in the end in SAMP-B. The key idea
is to show the lemma below:******

Lemma 2. For any value of τ ∈ [0, 1), let �τ denote the largest integer satisfying 1 − e−�τ ≤ τ .
Define

η(τ ) :=
1

τ

(
1 − exp

(
−дτ (1 − e

−1) + дτ (e
−1 − e−2) + · · · + дτ (τ − (1 − e−�τ ))

τ

))

for all τ ∈ [0, 1], with η(1) := limτ→1− η(τ ). Then, E[Zi ] ≥ τ · η(τ ) for all i ∈ I .

It is easy to numerically verify that η(τ ) is a decreasing function over [0,1], with a limiting value
of η(1) ≥ 0.725. Therefore, Lemma 2 suggests that each offline agent gets matched in SAMP-Bwith
probability at least 0.725 · τ . Since mini E[Zi ] ≥ 0.725 · τ ≥ 0.725 · OPT by Lemma 1, where OPT
denotes the performance of a clairvoyant optimal, Lemma 2 would establish the main Theorem 2.
We now proceed to prove Lemma 2. For each offline agent i ∈ I and t ∈ [T ], let χi,t = 1 indicate

that i is available at (the beginning of) t in SAMP-B, and qi,t be the probability that i is matched
during round t conditioning on i is available at (the beginning of) t , i.e., qi,t = Pr[χi,t+1 = 0|χi,t =
1]. Recall that Zi = 1 indicate that i is matched in the end in SAMP-B. Thus,

9We can always make it by decreasing all {xi j |j ∼ i } for those i with xi > τ without affecting the optimal LP value.
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E[Zi ] = 1 −
T∏
t=1

(1 − qi,t ). (9)

Recall that in the optimal solution, we have xi = τ for all i ∈ I .
Lemma 3. For any i and i ′ with i � i ′ and any time t , we have Pr[χi′,t = 1|χi,t = 1] ≤ (1−τ/T )t−1.
Lemma 3 suggests pairwise negative correlations among offline agents getting matched at any

time t . This plays a vital role in helping SAMP-B overcome the barrier of 1 − 1/e, which can be
seen as follows: The counterpart Lemma 5 serves a similar role in SAMP-AB.
Consider an instance such that xi = x j = 1 for all i and j.10 Consider a given i ∈ I . For an

offline agent i ′ � i , we call i ′ an offline neighbor of i if the two share at least an (online) neighbor
j with j ∼ i and j ∼ i ′. According to SAMP-B, i will be matched at t = 1 with probability equal to
q1 :=

∑
j ∈i (1/T ) · xi j/

∑
i′ ∈Nj,t xi′, j = 1/T sinceNj,t=1 = Nj (all neighbors of j is available at t = 1)

and thus,
∑

i′ ∈Nj,t xi′, j = x j = 1 and q1 =
∑

j∼i (1/T ) ·xi j = xi/T = 1/T . Note that ∪j∼iNj,t captures

the exact set of all available offline neighbors of i at t (except that it can possibly include i itself).
Assume i survives during t = 1, i.e., it is not matched during t = 1 with χi,2 = 1. Under

the absence of pairwise negative correlations among offline agents, it is possible that all offline
neighbors of i remain available at t = 2 conditioning on i’s availability, which suggests that
Nj,t=2 = Nj,t=1 = Nj for each j ∼ i . Applying the same analysis of i during t = 1 to t = 2, we get
that i will be matched during t = 2 with probability equal to 1/T . Continuing this reasoning for all
t ∈ [T ], we claim that i will be matched with probability equal to 1− (1−1/T )T ∼ 1−1/e in the end.
The pairwise negative correlation among offline agents shown in Lemma 3 can greatly improve the
analyses above: i’ availability at t = 2 suggests that every offline neighbor i ′ of i sharing some on-
line neighbor j∗ will survive at t = 2 with probability no more than the unconditional case, which
is equal to E[χi′,2] = 1− 1/T . This helps strictly decrease the value E[∑i′ ∈Nj∗,t=2 xi′, j∗ |χi,2 = 1] and

boost the matching probability for i when j∗ ∼ i arrives at t = 2.
We now prove Lemma 2 assuming Lemma 3 is true, and prove Lemma 3 afterward.

Proof of Lemma 2. Focus on a given offline agent i∗. For the ease of notation, we drop the
subscription of i∗, and use qt , χt , and Z to denote the corresponding values with respect to i∗.
Now, we try to lower bound the value of qt . Consider a given t . For each i � i∗, recall that

χi,t = 1 indicate that i is available at t . By the nature of SAMP-B, we see that conditioning on i∗ is
available at t (χt = 1), i∗ will be matched during t iff one of its neighbors j ∼ i∗ arrives and (i∗, j )
gets sampled. Recall that for each j ∼ i∗, Nj,t denotes the set of available neighbors incident to j
at t , and X j,t =

∑
i ∈Nj,t xi j . Observe that

qt = E

⎡⎢⎢⎢⎢⎢⎣
1

T

∑
j∼i∗

xi∗, j

X j,t

�����
χt = 1

⎤⎥⎥⎥⎥⎥⎦
≥ 1

T

∑
j∼i∗

xi∗, j

E[X j,t |χt = 1]
. (10)

The last inequality above is due to Jensen’s inequality and the convexity of function 1/x . Note that

E[X j,t |χt = 1] = E

⎡⎢⎢⎢⎢⎢⎣

∑
i ∈Nj,t

xi j |χt = 1

⎤⎥⎥⎥⎥⎥⎦
= xi∗, j +

∑
i�i∗,i∼j

xi, j · E[χi,t |χt = 1]

≤ xi∗, j +
∑

i�i∗,i∼j
xi, j · (1 − τ/T )t−1. (By Lemma 3)

≤ xi∗, j + (1 − xi∗, j ) · (1 − τ/T )t−1. (Due to Constraint (4) of LP (1))

10An example can be seen as a complete bipartite graph with |I | = | J | = n = T � 1, and we can verify that an optimal

solution to LP (1) is that all edges take a value of 1/n such that xi = x j = 1 for all i ∈ I and j ∈ J .
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Substituting the above inequality to Inequality (10), we have

qt ≥
1

T

∑
j∼i∗

xi∗, j

xi∗, j + (1 − xi∗, j ) · (1 − τ/T )t−1
.

Plugging the above results into Equation (9), we have

E[Z ] = 1 −
T∏
t=1

(1 − qt )

≥ 1 −
T∏
t=1

	

�
1 − 1

T

∑
j∼i∗

xi∗, j

xi∗, j + (1 − xi∗, j ) · (1 − τ/T )t−1
�

�

≥ 1 − exp 	

�
−

T∑
t=1

1

T

∑
j∼i∗

xi∗, j

xi∗, j + (1 − xi∗, j ) · (1 − τ/T )t−1
�

�

= 1 − exp 	

�
−
∑
j∼i∗

T∑
t=1

1

T

xi∗, j

xi∗, j + (1 − xi∗, j ) · (1 − τ/T )t−1
�

�

= 1 − exp 	

�
−
∑
j∼i∗

∫ 1

0

dζ
xi∗, j

xi∗, j + (1 − xi∗, j ) · e−τ ·ζ
�

�
(Taking T → ∞)

= 1 − exp 	

�
−1
τ

∑
j∼i∗

ln(1 + xi∗, j · (eτ − 1))�

�
.

The second inequality above is due to the fact that 1 − x ≤ e−x .
Let дτ (x ) = ln(1+x (eτ − 1)), where τ ∈ [0, 1] is a parameter. To get a lower bound for E[Z ], we

need to solve the below minimization program. For the ease of notation, we omit the subscription
of i∗ and use x j � xi∗, j .

⎧⎪⎪⎨⎪⎪⎩
min
∑
j∼i∗

дτ (x j ) :
∑
j∼i∗

x j = τ ;
∑
j ∈S

x j ≤ 1 − e−|S |,∀S ⊆ Ni∗ , |S | = O (1).
⎫⎪⎪⎬⎪⎪⎭

(11)

Note that the first constraint is due to our assumption xi∗ = τ ; the rest is due to Constraint (6)
in the benchmark LP. Function дτ is concave over (0,1), and hence the minimization problem (11)
must have an extreme point optimal solution. We claim that for any τ the only extreme points to
the feasible region in (11) are described by x j1 = 1−e−1,x j2 = e−1−e−2, . . . ,x j�τ = τ − (1−e

−�τ ) and

x j = 0 for all other indices j, where �τ is the largest integer satisfying 1 − e−�τ ≤ τ , and j1, . . . , j�τ
are some indices inNi∗ . Since the objective

∑
j∼i∗ дτ (x j ) is symmetric over {x j : j ∈ Ni∗ }, assuming

this claim is true, all extreme points must have the same objective value of

дτ (1 − e−1) + дτ (e−1 − e−2) + · · · + дτ (τ − (1 − e−�τ )) (12)

(because дτ (0) = 0). This would show that the optimal value of optimization problem (11)
equals (12).
We now prove this claim, by characterizing the extreme points of the feasible region to opti-

mization problem (11). Take any feasible solution (x j )j ∈Ni∗ , and let m := |Ni∗ | and re-index the
coordinates so that x1 ≥ x2 ≥ · · · ≥ xm . We show that if (x j )j ∈[m] does not satisfy

x1 = 1 − e−1,x2 = e−1 − e−2, . . . ,x�τ = τ − (1 − e−�τ ),x�τ +1 = 0, . . . ,xm = 0, (13)
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then it is not an extreme point. Indeed, for (x j )j ∈[m] to not satisfy (13), there must be a smallest

coordinate j such that x j is strictly less than the value e−(j−1) − e−j prescribed in (13). Due to
the constraint

∑m
j=1 x j = τ , we must still have that x j is non-negative; otherwise x j = x j+1 =

· · · = xm = 0 and
∑m

j=1 x j = τ can never be satisfied. Moreover, it must be the case that 0 <

x j+1 ≤ x j < e−(j−1) − e−j . Since we have that both x j ,x j+1 lie in (0, e−(j−1) − e−j ), it is clear that
we can replace x j ,x j+1 with either x j + ϵ,x j+1 − ϵ or x j − ϵ,x j+1 + ϵ for some small ϵ > 0 while
still satisfying

∑m
j=1 x j = τ . This perturbation also preserves overall feasibility in (11) (note that

1 − e−1 ≥ e−1 − e−2 ≥ · · · ≥ τ − (1 − e−�τ ) ), demonstrating that (x j )j ∈[m] is not an extreme point.
Therefore, an optimal solution to (11) takes the form described in (13).

Consequently, we have for the arbitrary offline agent i∗ that

E[Zi∗]

τ
≥ 1

τ

(
1 − exp

(
− дτ (1 − e−1) + дτ (e−1 − e−2) + · · · + дτ (τ − (1 − e−�τ ))

τ

))
(14)

which completes the proof of Lemma 2. �

Proof of Lemma 3. Consider a given time t and let It be the set of unmatched offline agents
at t . According to the aforementioned balls-and-bins model: each i ∈ It corresponds to a bin and
each edge (ij ) with i ∈ It corresponds to a ball; at time t , the ball (ij ) will arrive with probability
(xi j/X j,t ) · (1/T ) and land in bin i , where X j,t �

∑
i′∼j,i′ ∈It xi′, j . Observe that for any j and t , we

have X j,t =
∑

i′∼j,i′ ∈It xi′, j ≤
∑

i′∼j xi′, j ≤ 1 due to Constraint 4 in LP (1).
The fact χi,t = 1 suggests that for any round t ′ < t , none of the balls e = (ij ) with j ∼ i arrives

at t ′. Consider a given t ′ < t and a given i ′ � i . Assume χi,t = 1 and i ′ is not occupied at t ′.
Then, we see that each ball e = (i ′, j ′) with j ′ ∼ i ′ will arrive and shoot i ′ with probability at
least (xi′, j′/X j′,t ′ ) · (1/T ) > xi′, j′/T since X j′,t ′ ≤ 1 for all j ′ ∼ i ′ and t ′ < t . This implies that the
probability that none relevant balls will shoot i ′ during t ′ should be at most 1 − ∑j′∼i′ xi′, j′/T =
1 − τ/T . Here we invoke our assumption that every offline agent i ′ has xi′ =

∑
j′∼i′ xi′, j′ = τ in

the optimal solution. Therefore, we claim that i ′ will remain unoccupied after t − 1 rounds with
probability at most (1 − τ/T )t−1. �

5 GROUP FAIRNESS MAXIMIZATION AND AGENT-WEIGHTED MATCHING

5.1 Motivation for Attenuation

Wefirst give an example showing that SAMP-B can never beat 1−e−1 for VOMwithout attenuation.

Example 2. Consider such a bipartite graph (I , J ,E) as follows: Recall that, by KIID assumption
with all unit arrival rates, we have T = n = |J |. The set of neighbors of j, denoted by Nj , satisfies
the property that (1) |Nj | = n,∀j ∈ J ; (2) ∩j ∈JNj = {i∗}. In other words, each j has a set of n
neighbors and they are almost disjoint except sharing one single offline agent i∗. Thus, under this
setting, we have (1) |I | = m = n(n − 1) + 1; (2) i∗ has J as the set of neighbors and every i � i∗

has one single neighbor in J . Let wi∗ = 1 and wi = ϵ3 with ϵ = 1/n for all i � i∗. We can verify
that any clairvoyant optimal will have a performance at least 1 by simply matching any arriving
online agent with i∗.

Lemma 4. SAMP-B can never beat the ratio of 1−e−1+o(1) on Example 2, where o(1) is a vanishing
term when T → ∞.

Proof. Consider i∗ and let Zi∗ = 1 indicate that i∗ is matched in SAMP-B in the end. Observe
that during every round t , one j ∼ i∗ will be sampled uniformly with probability 1/n and land in
one available neighbor i ∈ Nj,t . Let Nj = |Nj,T+1 | be the number of available neighbors incident
to j surviving in the end, and let Mj = n − Nj , which refers to the number of neighbors of j got
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occupied. Observe that we have T = n online arrivals and every arrival will land in one item in
Nj uniformly over all j ∈ J . This process can be interpreted as a balls-and-bins model where we
have n balls and n bins, and thus, M = maxj Mj can be viewed as the largest bin load. From [42],
we see that with probability 1 − 1/n, the largest bin load is M = Θ(lnn/ ln lnn) ≤ lnn when n is
sufficiently large.
Let SF be the event that M ≤ lnn. Assume SF occurs. We see that for all j ∼ i∗ and t ∈ [T ],

X j,t =
∑

i ∈Nj,t xi j ≥ ϵ (n −M ) ≥ ϵ (n − lnn) = 1 − lnn/n. Let Zi∗ = 1 indicate that i∗ is matched in
the end. We have

E[Zi∗ |SF] = 1 −
T∏
t=1

	

�
1 −
∑
j∼i∗

1

T
·
xi∗, j

X j,t

�

�
≤ 1 −

T∏
t=1

	

�
1 −
∑
j∼i∗

1

T
· ϵ

1 − lnn/n
�

�

= 1 −
(
1 − 1

T
· 1

1 − lnn/n

)T
≤ 1 − exp

(
− 1

1 − lnn/n −
1

T

1

(1 − lnn/n)2

)

≤ 1 − e−1 +O (lnn/n).

Therefore, we have that

E[Zi∗] = E[Zi∗ |SF] · Pr[SF] + E[Zi∗ |¬SF] · Pr[¬SF] ≤ 1 − e−1 +O (lnn/n).

Recall that any clairvoyant optimal has a performance at least 1. For each i � i∗, let Zi = 1 indicate
that i is matched in SAMP-B in the end. Observe that the expected total values obtained by SAMP-B
should be at most∑

i�i∗
wi · E[Zi ] +wi∗ · E[Zi∗] ≤ ϵ3 · n2 + E[Zi∗] ≤ 1 − e−1 +O (lnn/n).

Thus, the final competitive ratio of SAMP-B on Example 2 should be at most

1 − e−1 +O (lnn/n)

1
≤ 1 − e−1 +O (lnn/n). �

5.2 An LP-Based Sampling Algorithm with Attenuation and Boosting (SAMP-AB)

For a given offline agent i , we say i ′ ∈ I is an offline neighbor of i iff there exists one online agent
of j such that j ∼ i and j ∼ i ′. Let Si be the set of offline neighbors of i . Example 2 suggests
that when all offline neighbors of i have very small values in the optimal solution, the boosting
strategy shown in SAMP-B will have little effect on improving the overall matching probability of
i . Observe that for each offline vertices i � i∗ on Example 2, it will be matched with a probability
at least E[Zi ] ≥ 1 − e−ϵ ∼ ϵ = xi . In other words, the chance of getting matched for every i � i∗

in SAMP-B almost matches its contribution in the LP solution. In contrast, the chance that i∗ is
matched is only a fraction of 1− e−1 of its contribution in the LP solution. These insights motivate
us to add appropriate attenuations to those unsaturated offline vertices such that the boosting
strategy can work properly for those saturated ones.

Offline-Phase Simulation-Based Attenuation. Let us first introduce two auxiliary states for of-
fline vertices, called active and inactive, which are slightly different from available (not matched)
and unavailable (matched) as shown before. In our attenuation framework, we assume all offline
vertices are active at the beginning (t = 1). When an active offline agent i is matched, we will label
it as inactive. Meanwhile, we need to forcefully mute some active offline agent, label it as inactive,
and view it as being virtually matched. Consider the instance on Example 2: In order to make the
boosting strategy work for the dominant agent i∗, we have to intentionally label those active non-
dominant vertices i as inactive such that the sampling probability of i∗ can be effectively promoted
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when some j ∈ Ni∩Ni∗ arrives. Note that the transition from being active to inactive is irreversible:
Once an active offline agent i is labeled as inactive, it will stay on that state permanently.
Here are the details of our simulation-based attenuation. By simulating all online steps of

SAMP-AB up to time t , we can get a very sharp estimate of the probability that each i is active at
t , say αi,t . If αi,t ≤ (1− 1/T )t−1, then no attenuation is needed at t . Otherwise, add an attenuation
factor of (1 − 1/T )t−1/αi,t to agent i at t as follows: If i is active at t , then label i as inactive with
probability 1− (1−1/T )t−1/αi,t and keep it active with probability (1−1/T )t−1/αi,t . In this way, we
decrease the probability of i being active at t to the target (1− 1/T )t−1. The above attenuation can
be summarized as follows: If i is available at t , then label i as active and inactive with respective
probabilities βi,t and 1 − βi,t , where βi,t = min(1, (1 − 1/T )t−1/αi,t ).
Remarks on the Simulation-Based Attenuation Scheme Above. (1) When computing the attenu-

ation factor βi,t for i at t , we should simulate all online steps of SAMP-AB up to t that include
applying all the attenuation factors as proposed during all the rounds before t . (2) During every
round, we apply the corresponding attenuation factor to each active offline agent in an indepen-
dent way. (3) All attenuation factors can be computed in an offline manner, i.e., before the online
phase actually starts.

ALGORITHM 2: Sampling with Attenuation and Boosting (SAMP-AB).

1 Offline Phase:

/* The offline phase will take as input {(I , J ,E), {wi }, {r j },T }, and output {βi,t }, where

βi,t denotes the attenuation factor applied to an offline agent i during round t. */

2 Solve LP (3) and let {xi j } be an optimal solution.

3 Initialization: When t = 1, set βi,t = 1 for all i ∈ I .
4 for t = 2, 3, . . . ,T do

5 Applying Monte-Carlo method to simulate Step 10 to Step 15 for all the rounds t ′ = 1, 2, . . . , t − 1
of Online Phase, we get a sharp estimate of the probability that each offline agent i is active at (the
beginning of) t , say αi,t .

6 Set βi,t = min(1, (1 − 1/T )t−1/αi,t ).
7 Online Phase:

8 Initialization: Label all offline vertices active at t = 1.

9 for t = 1, . . . ,T do

10 Independently relabel each active offline agent i as active and inactive with respective probabilities

βi,t and 1 − βi,t .
11 Let an online agent of type j arrive at time t . Let Nj,t = {i ∈ Nj , i is active at t }, i.e., the set of

active neighbors of j at t .

12 if Nj,t = ∅ then
13 Reject j.

14 else

15 Sample a neighbor i ∈ Nj,t with probability xi j/
∑
i′ ∈Nj,t xi′, j and label i as inactive.

5.3 Proof of Theorem 3

Similar to the proof of Theorem 2, we aim to show that each offline agent i will be matched in
SAMP-AB with a probability E[Zi ] ≥ 0.719 · xi , where Zi = 1 indicates that i is matched in
SAMP-AB, and xi =

∑
j∼i xi j is the total mass allocated to i in the optimal LP solution. This will

suffice to prove Theorem 3. The argument is as follows: (1) For GFM, we have 1
|G |
∑

i ∈G E[Zi ] ≥
0.719
|G |
∑

i ∈G xi for all G ∈ G. This suggests that SAMP-AB = minG ∈G
1
|G |
∑

i ∈G E[Zi ] ≥ 0.719 ·
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minG ∈G
∑

i ∈G xi/|G | ≥ 0.719 · OPT due to Lemma 1, where SAMP-AB and OPT refer to the
performance of SAMP-AB and a clairvoyant optimal, respectively. (2) For VOM, we have
SAMP-AB =

∑
i ∈I wi · E[Zi ] ≥ 0.719 ·∑i ∈I wi · xi ≥ 0.719 · OPT.

For each offline agent i , let χ ′i,t = 1 and χi,t = 1 indicate that i is active at t before and after

the attenuation procedure shown in Step 10 prior to the sampling process. Let αi,t = E[χ ′i,t ] and
γi,t = E[χi,t ]. Let qi,t be the probability that i is matched during t conditioning on i is active at
t after attenuation, i.e., qi,t = Pr[χ ′i,t+1 = 0|χi,t = 1] = 1 − E[χ ′i,t+1 |χi,t = 1]. According to our
attenuation, for all i and t , we have

γi,t = αi,t · βi,t , βi,t = min
(
1, (1 − 1/T )t−1/αi,t

)
, αi,t+1 = γi,t · (1 − qi,t ). (15)

Observe that αi,1 = βi,1 = 1 for all i , and γi,t ≤ (1 − 1/T )t−1 for all i and t . Though our definition
of {χi,t } is slightly different than before, Lemma 3 of Section 4 still works here.

Lemma 5. For any i and i ′ with i � i ′ and any time t , we have Pr[χi′,t = 1|χi,t = 1] ≤ (1−1/T )t−1.

Proof. The proof of Lemma 3 in Section 4 suggests that χ ′i,t and χ ′i′,t are negatively correlated

before attenuation. Thus, we have Pr[χ ′i′,t = 1|χ ′i,t = 1] ≤ Pr[χ ′i′,t = 1]. Observe that attenuation

factors are applied independently to all offline vertices. Therefore,

Pr[χi′,t = 1|χi,t = 1] = βi′,t ·Pr[χ ′i′,t = 1|χ ′i,t = 1] ≤ βi′,t ·Pr[χ ′i′,t = 1] = βi′,t ·αi′,t ≤ (1−1/T )t−1.
�

Consider a given offline agent i∗ with a fixed value of xi∗ �
∑

j∼i∗ xi∗, j . For the ease of notation,
we drop the subscription of i∗ and use χ ′t , χt , αt , βt , γt , and qt to denote the corresponding values
relevant to i∗. Here are a few properties of {qt }.

Lemma 6. (P1): qt ≤ qt+1, ∀t ≥ 1; (P2) qt ≥ 1
T

∑
j∼i∗

xi∗, j
xi∗, j+(1−xi∗, j ) ·(1−1/T )t−1 , ∀t ≥ 1.

Proof. Recall that for each j ∼ i∗, Nj,t denotes the set of active neighbors of j at t right after
attenuation. Let X j,t =

∑
i ∈Nj,t xi j =

∑
i∼j xi j · χi,t . Observe that

qt = E

⎡⎢⎢⎢⎢⎢⎣
1

T

∑
j∼i∗

xi∗, j

X j,t

�����
χt = 1

⎤⎥⎥⎥⎥⎥⎦
= E

⎡⎢⎢⎢⎢⎢⎣
1

T

∑
j∼i∗

xi∗, j∑
i�i∗,i∼j xi, j · χi,t + xi∗, j

�����
χt = 1

⎤⎥⎥⎥⎥⎥⎦
. (16)

Observe that for each given i � i∗, {χi,t |t = 1, 2, . . . ,T } will be a non-increasing sequence due to
the irreversibility of the transition from active to inactive of i . Therefore, we claim that {qt |t =
1, . . . ,T } is a non-decreasing series. Thus, we prove (P1). From Equation (16), we have

qt ≥
1

T

∑
j∼i∗

xi∗, j∑
i�i∗,i∼j xi, j · E[χi,t |χt = 1] + xi∗, j

≥ 1

T

∑
j∼i∗

xi∗, j

(1 − xi∗, j ) · (1 − 1/T )t−1 + xi∗, j
.

The first inequality is due to Jensen’s inequality and convexity of the function 1/x . The second
one follows from Lemma 5 and the fact of

∑
i∼j xi j ≤ 1 due to Constraint (4). We get (P2). �

(P1) in Lemma 6 suggests that {qt } is a non-decreasing sequence. Let K ∈ [T ] be such a turning
point that qK−1 < 1/T and qK ≥ 1/T .

Lemma 7. For each 1 < t ≤ K , we have βt < 1 and γt = (1 − 1/T )t−1, and for each t > K , βt = 1.

Proof. By (P1), we have q1 ≤ q2 ≤ · · · ≤ qK−1 < 1/T . Observe that α1 = β1 = γ1 = 1. Now
we consider t = 2. From Equation 15, we see i∗ will be active at t = 2 before attenuation with
probability α2 = γ1 · (1 − q1) > 1 − 1/T . Thus, β2 = (1 − 1/T )/α2 < 1 and γ2 = 1 − 1/T . Continuing
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this analysis, we see for each t = 2, 3, . . . ,K , αt > (1− 1/T )t−1, βt < 1, and γt = (1− 1/T )t−1. Now
consider the case t = K + 1. We see that

αK+1 = γK · (1 − qK ) = (1 − 1/T )K−1 · (1 − qK ) ≤ (1 − 1/T )K .

Therefore, βK+1 = 1 and γK+1 = αK+1. Following this analysis, we have αt = γt ≤ (1− 1/T )t−1 and
βt = 1 for all t ≥ K + 1. �

The above lemma implies that we will keep adding a proper attenuation factor βt < 1 to the
agent i∗ for all 1 < t ≤ K , and afterwards, we will essentially add no attenuation to i∗. Let Z = 1
indicate that i∗ is matched in the end in SAMP-AB.

Lemma 8. E[Z ] ≥ 0.719 · xi∗ .

Proof. Let Z = Za +Zb , where Za = 1 and Zb = 1 indicate that i∗ is matched during any round
t < K and t ≥ K , respectively. Let K/T = κ + o(1), where κ ∈ [0, 1] is a constant and o(1) is a
vanishing term when T → ∞. Let f (p,x ) = x

x+(1−x ) ·p . We can verify that for any fixed p ∈ (0, 1],

f (p,x ) is an increasing concave function over x ∈ [0, 1].
Lower Bounding the Value of E[Za]. For each t < K , let Zt = 1 indicate that i∗ is matched during

the round of t . Observe that Zt = 1 iff i∗ is active at t after attenuation (i.e., χt = 1) and i∗ is
inactive at t + 1 before attenuation (i.e., χ ′t+1 = 0). Thus, we have

E[Zt ] = Pr[(χt = 1) ∧ (χ ′t+1 = 0)] = Pr[χt = 1] · Pr[χ ′t+1 = 0|χt = 1] = γt · qt .

Observe that from Lemma 7, we have γt = (1 − 1/T )t−1 for all 2 < t ≤ K and it is valid for t = 1
as well. Therefore, we have

E[Za] =
∑

1≤t<K
E[Zt ] =

∑
1≤t ≤K

γt · qt =
∑

1≤t<K

(
1 − 1

T

)t−1
· qt (17)

≥
∑

1≤t<K

(
1 − 1

T

)t−1
· 1
T

∑
j∼i∗

xi∗, j

xi∗, j + (1 − xi∗, j ) · (1 − 1/T )t−1
. (18)

Recall that f (p,x ) = x
x+(1−x ) ·p is an increasing concave function over x ∈ [0, 1]. Define S (x ) =

{x } if 0 ≤ x ≤ 1 − e−1, and S (x ) = {1 − e−1,x − (1 − e−1)} if 1 − e−1 < x ≤ 1 − e−2, and
S (x ) = {1 − e−1, e−1 − e−2,x − (1 − e−2)} if 1 − e−2 < x ≤ 1. Following the same analysis as shown
in Lemma 2, we see that∑

j∼i∗

xi∗, j

xi∗, j + (1 − xi∗, j ) · (1 − 1/T )t−1
≥
∑

x ∈S (xi∗ )
f ((1 − 1/T )t−1,x ). (19)

Recall that K/T = κ + o(1). Plugging Inequality (19) to Inequality (18), we have

E[Za] ≥
∑

1≤t<K

(
1 − 1

T

)t−1
· 1
T
·
∑

x ∈S (xi∗ )
f ((1 − 1/T )t−1,x )

=
∑

x ∈S (xi∗ )

∫ κ

0
dζ · e−ζ · f (e−ζ ,x ). (Taking T → ∞).

Lower Bounding the Value of E[Zb ]. By definition, E[Zb ] =
∑

K ≤t ≤T E[Zt ]. Observe that i
∗ will be

active at (the beginning of) t after attenuation with probability E[χK ] = (1−1/T )K−1. What’s more,
there will be no attenuation in essence during all t > K . Thus, assume i∗ is active after attenuation
at t = K , we can apply almost the same analysis as in Section 4 to lower bound E[Zb ].
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E[Zb ] =
∑
t ≥K

E[Zt ] =
(
1 − 1

T

)K−1 	
�
1 −
∏
t ≥K

(1 − qt )�
�

≥
(
1 − 1

T

)K−1 ⎡⎢⎢⎢⎢⎢⎣
1 − exp 	


�
−
∑
t ≥K

∑
j∼i∗

1

T
·

xi∗, j

xi∗, j + (1 − xi∗, j ) (1 − 1/T )t−1
�

�

⎤⎥⎥⎥⎥⎥⎦
≥
(
1 − 1

T

)K−1 ⎡⎢⎢⎢⎢⎢⎣
1 − exp 	


�
−
∑
t ≥K

1

T
·
∑

x ∈S (xi∗ )
f ((1 − 1/T )t−1,x )�


�

⎤⎥⎥⎥⎥⎥⎦
= e−κ

⎡⎢⎢⎢⎢⎢⎣
1 − exp 	


�
−
∑

x∼S (xi∗ )

∫ 1

κ

dζ · f (e−ζ ,x )�

�

⎤⎥⎥⎥⎥⎥⎦
(Taking T → ∞)

= e−κ
⎡⎢⎢⎢⎢⎢⎣
1 −

∏
x∼S (xi∗ )

exp

(
−
∫ 1

κ

dζ · f (e−ζ ,x )
)⎤⎥⎥⎥⎥⎥⎦
.

Putting together the lower bounds on E[Za] and E[Zb ]*, we have

E[Z ] ≥ F (xi∗ ,κ) �
∑

x ∈S (xi∗ )

∫ κ

0

dζ · e−ζ · f (e−ζ ,x ) + e−κ
⎡⎢⎢⎢⎢⎢⎣
1 −

∏
x∼S (xi∗ )

exp

(
−
∫ 1

κ

dζ · f (e−ζ ,x )
)⎤⎥⎥⎥⎥⎥⎦
.

We can verify via Mathematica that min0≤xi∗ ≤1,0≤κ≤1 F (xi∗ ,κ)/xi∗ ≥ 0.719 and the inequality be-
comes tight when xi∗ = 1 − e−1 and κ = 1. �

6 PROOF OF MAIN THEOREMS 1, 4, AND 5

6.1 Proof of Theorem 1

Let us briefly describe Greedy and Ranking here for IFM and GFM. For Greedy, it will always
assign an online arriving agent to an offline available neighbor such that the match can improve
the current objective of IFM and GFM most; break the tie uniformly at random if any if possible.
For Ranking, it will first choose a random permutation π over all offline neighbors and then it
will always assign an online arriving agent to an offline available neighbor with the lowest rank
in π . Observe that IFM is a special case of GFM when each group consists of one single offline
type. Thus, it will suffice to show thatGreedy and Ranking achieve a ratio of zero for IFM to prove
Theorem 1.

Example 3. Consider such an instance I of IFM as follows: We have |I | = |J | = T = n offline
and online agents. For j = 1, it can serve all offline agents, i.e., Nj=1 = I . For each online agent
j = 2, 3, . . . ,n, it can serve one single offline agent i = j. Consider such an offline algorithm
ALG (not necessarily a clairvoyant optimal): Try to match each online agent j ∈ J with i = j if
agent j arrives at least once. We can verify that in ALG, each offline agent will be matched with
probability at least 1−e−1. Thus, we claim that for any clairvoyant optimal, its performance should
have OPT ≥ ALG ≥ 1 − e−1.

Lemma 9. Greedy achieves a competitive ratio of zero for IFM Example 3 when T = n both ap-

proach infinity.

Proof. Let Kt be number of unmatched offline agents excluding i = 1 at time t . According to
Greedy, when j = 1 arrives at t , it will match i = 1 with a probability 1/(Kt + 1) if i = 1 is not

ACM Transactions on Economics and Computation, Vol. 10, No. 4, Article 16. Publication date: April 2023.



Fairness Maximization among Offline Agents in Online-Matching Markets 16:19

matched then. Observe thatKt ≥ n−1− (t −1) = n−t , which implies that 1/(Kt +1) ≤ 1/(n−t +1).
Thus, we see that i = 1 will be matched at time t with a probability at most (1/n) · 1/(n − t + 1)
given i = 1 is not matched during the first t −1 rounds. Thus, i = 1 will be matched inGreedywith
probability at most

∑n
t=1 1/(n · (n− t + 1)) = Θ(lnn/n). This is in contrast with that OPT ≥ 1− 1/e.

Thus, we establish that Greedy achieves a ratio of zero when n → ∞. �

Lemma 10. Ranking has a competive ratio of zero for IFM on Example 3 whenT = n both approach
infinity.

Proof. Let S be the (random) set of indices of offline nodes that fall before i = 1 under π .
Consider a given S with |S| = K . For each j ∈ J , let Aj,t be the number of arrivals of online agent
j ∈ J before the start of time t ∈ [T ]. For each i ∈ S, let Zi,t = 1 indicate that i ∈ S is matched by
t . Observe that

Pr

⎡⎢⎢⎢⎢⎣
∑
i ∈S

Zi,t ≥ K
⎤⎥⎥⎥⎥⎦
≤ Pr

⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

min(Aj,t , 1) +A1,t ≥ K

⎤⎥⎥⎥⎥⎥⎦
.

Observe that A1,t can be viewed as the sum of t i.i.d. Bernoulli random variables each with 1/T .

By Chernoff bound, Pr[A1,t ≥ K/e2] ≤ e−Ω(K 2 ·T /t ) . Thus, we have that

Pr

⎡⎢⎢⎢⎢⎣
∑
i ∈S

Zi,t ≥ K
⎤⎥⎥⎥⎥⎦
≤ Pr

⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

min(Aj,t , 1) +A1,t ≥ K

⎤⎥⎥⎥⎥⎥⎦
(20)

≤ exp(−Ω(K2 ·T /t )) + Pr
⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

min(Aj,t , 1) + K/e
2 ≥ K

⎤⎥⎥⎥⎥⎥⎦
. (21)

Observe that (1) {min(Aj,t , 1)} are negatively associated due to [29]; (2) E[min(Aj,t , 1)] = 1 − (1 −
1/T )t = 1 − e−t/T−o (t/T ) for each j ∈ S. By applying Chernoff-Hoeffding bound, we have

Pr

⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

min(Aj,t , 1) + K/e
2 ≥ K

⎤⎥⎥⎥⎥⎥⎦
(22)

= Pr

⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

min(Aj,t , 1) − E
⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

min(Aj,t , 1)

⎤⎥⎥⎥⎥⎥⎦
≥ K − K/e2 − K · (1 − e−t/T−o (t/T ) )

⎤⎥⎥⎥⎥⎥⎦
(23)

= Pr

⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

min(Aj,t , 1) − E
⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

min(Aj,t , 1)

⎤⎥⎥⎥⎥⎥⎦
≥ K · e−t/T−o (t/T ) − K/e2

⎤⎥⎥⎥⎥⎥⎦
(24)

≤ Pr

⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

min(Aj,t , 1) − E
⎡⎢⎢⎢⎢⎢⎣

∑
j ∈S

min(Aj,t , 1)

⎤⎥⎥⎥⎥⎥⎦
≥ K · e−t/T−o (t/T )/2

⎤⎥⎥⎥⎥⎥⎦
(25)

≤ exp(−e−2t/T−o (t/T ) · K/2). (26)

Thus, plugging into the above result to Inequality (21), we have

Pr

⎡⎢⎢⎢⎢⎣
∑
i ∈S

Zi,t ≥ K
⎤⎥⎥⎥⎥⎦
≤ exp(−Ω(K2 ·T /t )) + exp(−e−2t/T−o (t/T ) · K/2).
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Consider a given S with |S| = K . We see that

E[Z1 |K] ≤
1

T

T∑
t=1

Pr

⎡⎢⎢⎢⎢⎣
∑
i ∈S

Zi,t ≥ K
⎤⎥⎥⎥⎥⎦

≤ 1

T

T∑
t=1

[exp(−Ω(K2 ·T /t )) + exp(−e−2t/T−o (t/T ) · K/2)]

= e−Ω(K 2 ) +

∫ 1

0
e−(K/2) ·e−2ζ dζ ≤ e−Ω(K 2 ) + e−K/(2e2 ) .

Observe that K takes values 0, 1, 2, . . . ,n − 1 with a uniform probability 1/n. Thus,

E[Z1] ≤
1

n

n−1∑
K=0

(e−Ω(K 2 ) + e−K/(2e2 ) ) = O (1/n).

This is in contrast with that OPT ≥ 1 − 1/e. Thus, we claim that Ranking achieves a ratio of
zero. �

6.2 Proof of Theorem 4

Consider any bipartite graph (I , J ,E) and letT denote the length of the time horizon. Let Ψ denote
the finite set of all deterministic online matching policies given the graph and T . For any ψ ∈ Ψ
and offline node i ∈ I , let qi,ψ denote the probability (over the random arrival draws) that i gets
matched under algorithmψ by the end of the time horizon.

Let n = |I | and fix a feasible solution x ∈ [0, 1]n to the LP (4)–(6) for the graph. Consider the
following LP:

max γ

s.t.
∑
ψ ∈Ψ

qi,ψ zψ ≥ xiγ ∀i = 1, . . . ,n

∑
ψ ∈Ψ

zψ = 1

zψ ≥ 0 ∀ψ ∈ Ψ,
where variable zψ represents the probability that a randomized algorithm for IFM or GFM selects
deterministic policyψ . Objective γ is set to the maximum value for which the randomized online
algorithm can uniformly guarantee a matching probability of xiγ for every offline agent i . Taking
the dual of this LP, we get:

min θ

s.t.

n∑
i=1

qi,ψwi ≤ θ ∀ψ ∈ Ψ (27)

n∑
i=1

xiwi = 1

wi ≥ 0 ∀i = 1, . . . ,n.

Since Ψ is finite, by strong LP duality, whenever there exists a x ∈ [0, 1]n such that the opti-
mal objective value of the primal LP is γ = c , there exist feasible weights wi ≥ 0 such that in
the dual LP, (27) holds with θ = c . That is, the LP for VOM has a feasible solution x with objec-
tive value

∑
i xiwi = 1, yet any deterministic online policy ψ cannot earn more than c (by (27)).
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Since deterministic online policies are optimal in VOM with known weights, this shows that the
competitive ratio for VOM cannot be better than c .
We complete the proof with the following argument. An upper bound of c on the competitive

ratio for GFM must consist of an instance and an optimal offline solution that matches each agent
i with probability xi . The GFM objective of the offline solution is

min
G

1

|G |
∑
i ∈G

xi . (28)

It must be impossible to have a randomized online algorithm match each offline agent i with prob-
ability at least cxi , since then the objective of the online algorithm would be at least c times the
value in (28). By our LP duality argument, this implies that any online algorithm (knowing the
weights wi ) cannot collect more than c

∑
i ∈I wixi , whereas the offline algorithm would be able to

collect
∑

i ∈I wixi , yielding an upper bound of c on the competitive ratio for VOM as well. Taking
an infimum over instances completes the proof that Φ(GFM) ≥ Φ(VOM), while Φ(IFM) ≥ Φ(GFM)
trivially holds since IFM is a special case of GFM.
We emphasize that this result ignores any computational differences between the problems,

and also does not suggest that there is no separation in their worst-case competitive ratios. Indeed,
more structure is imposed on the optimal offline solution (xi )i ∈I in GFM than VOM: we have a
lower bound on 1

|G |
∑

i ∈G xi for every group G, instead of just one lower bound on
∑

i ∈I wixi for

a set of weights (wi )i ∈I . Even more structure is imposed on the optimal offline solution under
IFM: we have a lower bound on xi for every agent i . This is why we only conclude that Φ(IFM) ≥
Φ(GFM) ≥ Φ(VOM).

6.3 Proof of Theorem 5

We split the whole proof into the following two parts.

Lemma 11. POF(IFM,VOM) = 1.

Proof. Consider a weighted star graph instance I as follows: There are n + 1 offline agents
connected to one single onine agent with the weight on the first offline agent being w0 = n � 1
and all the rest being wi = ϵ � 1 with i ∈ [n] := {1, 2, . . . ,n}. We can verify that: (1) The optimal
value under VOM is at least (1 − 1/e) · n; (2) There is one single optimal solution under IFM in
which all xe = 1/(n + 1) and thus, it achieves a utility of n/(n + 1) + ϵ · n/(n + 1) on VOM. Thus,

POF(IFM,VOM,I) ≥ 1 − n/(n + 1) + ϵ · n/(n + 1)
(1 − 1/e) · n ,

which leads to POF(IFM,VOM) = 1. �

Lemma 12. POF(IFM,VOM′) = 0.

Proof. We prove the claim by contradiction. Suppose there exists an unweighted bipartite graph
instance I such that POF(IFM,VOM′,I) > 0. Let Xf and X denote the collections of optimal
solutions under IFM and VOM′, respectively. The fact that POF(IFM,VOM′,I) > 0 suggests Xf ∩
X = ∅. Let x̄ ∈ X be an optimal solution under VOM′ that achieves a largest possible value under
IFM. Since x̄ � Xf , we claim that (1) there must exist one local perturbation applied to x̄ such that
IFM can get improved strictly since x̄ � Xf ; (2) any local perturbation that can strictly improve
IFM on x̄ will result in a strict decrease in VOM′ by the choice of x̄. WLOG consider a typical
local perturbation, that is to increase by ϵ > 0 the value on some critical edge e = (i, j ) such that
the fairness on i gets improved; meanwhile, it is to decrease by ϵ the value on some other edge
e ′ = (i ′, j ). In this way, the sum on j remains invariant, and so does VOM′ since an unweighted
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Fig. 1. The distribution of Lyft drivers by races, i.e.,White/Caucasian, Hispanic/Latino, Black/African Amer-

ican, Asian or Pacific Islander, and some other ethic background.

version is considered. Thus, we end up with such a local perturbation on x̄ that we can improve
IFM strictly while maintaining VOM′ unchanged. This contradicts our previous claim. �

7 EXPERIMENTAL RESULTS

7.1 Experiments on IFM and GFM

Preprocessing of a Ride-Hailing Dataset.We test our algorithms of IFM and GFM on a public ride-
hailing dataset, which is collected from the city of Chicago.11 Following the setting in [43] and [53],
we focus on a short time window and assume that drivers are offline agents while riders are on-
line agents that arrive dynamically. Our goal is to maximize individual and group fairness among
all drivers. The dataset has more than 169 million trips starting from November 2018. Each trip
record includes the trip length, the starting and ending time, the pick-up and drop-off locations
for the passenger, and some other information such as the fare and the tip. Note that Chicago
is made up of 77 community areas that are well defined and do not overlap. Thus, we can cate-
gorize all trips according to the pre-defined community areas. According to the statistics of Lyft
drivers12 in 2021, we divide all drivers into 5 groups based on races, i.e., White/Caucasian, His-
panic/Latino, Black/African American, Asian or Pacific Islander, and some other ethic background.
The distribution of these 5 groups can be found in Figure 1. Recall that our metric of group fairness
is defined as the minimum matching rates of offline agents over all groups, which reflects the min-
imum average-earning-rate among ride-hailing drivers across different races in Chicago. Thus, we
believe our objective of maximizing group fairness among drivers across different races can help
promote the racial and social equity.
We construct the input bipartite graph as follows: We focus on the time window from 18 : 00 to

19 : 00 on September 29, 2020, and subsampleT trips from a total of 11, 228 trips. For each trip, we
create an individual driver i and rider j, where i has an attribute of a starting community area while
j has an attribute of a pair of starting and ending areas. In this way, we have |I | = |J | = T . For each
driver in GFM, we set its race group following the distribution in Figure 1. For each driver-rider
pair, we add an edge if they share the same starting area.
Algorithms. For the problems IFM and GFM, we compare our algorithm SAMP-B against the

following: (a) GREEDY: Assign each arriving agent to an available neighbor (IFM) or an available
neighbor whose group has the lowest matching rate at the time of arrival (GFM); break ties uni-
formly at random. (b) RANKING: Fix a uniform random permutation of I at the start; assign each

11https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p.
12https://financesonline.com/lyft-statistics/.
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Fig. 2. Experimental results of IFM and GFM on a real ride-hailing dataset in Chicago: The total number of

arrivals T takes values from {50, 75, 100, 125, 150} with |I | = |J | = T . We add a 95% confidence interval to

each bar.

arriving agent to the adjacent available offline agent who is earliest in this order. (c) BSSX: The
algorithm from [8] but customized to our setting by replacing its benchmark-LP objectives with
LP (1) (IFM) and LP (2) (GFM). (d) MGS: Similar to our boosting algorithm, but following [39],
generating two random candidate neighbors upon the arrival of every online agent instead, and
matching it with the first available one. Note that here we do not compare against the algorithm
in [28], which relies on the special structure of the LP solution that all xe ∈ {0, 1/3, 2/3}. This
structure unfortunately no longer holds when the objective is either LP (1) (IFM) or LP (2) (GFM).

Computational complexity of SAMP-B. SAMP-B consists of two parts: Offline Phase and On-
line Phase. As forOffline Phase, SAMP-B needs to solve the benchmark LP (1) that has N := |E |
variables. Thus, theoretically the running time on the part of solving LP (1) can be as low as
O∗ (N 2+1/6 log(N /δ )) [10], where δ is the relative accuracy and N = |E |. As for Online Phase,
SAMP-B just needs to sample an assignment from a one-dimensional vector with a size no larger
the size of neighboring offline agents, which is bounded by |I | (a constant). Thus, the dominant
part of the running time will be solving the benchmark LP (1) in Offline Phase. Fortunately, all
computations inOffline Phase can be done well before the online process starts. Similar analyses
can be applied to SAMP-AB.
Results and Discussions. For the real dataset, we vary the number of subsampled trips T in
{50, 75, 100, 125, 150}. We first construct 100 subsampled instances for each given T , and then run
100 trials on each instance, reporting the average performance. Note that in the offline phase of
SAMP-AB, when it comes to estimation of the attenuation factor βi,t for i at t , we apply the Monte-
Carlo method by simulating 100 times and then taking the average.
Figure 2(a) shows that for IFM, SAMP-B performs as well asMGS, and both have a significant ad-

vantage overGREEDY, RANKING, andBSSX. The competitive ratios of SAMP-B always stay above
0.722, which is consistent with our theoretical bound in Theorem 2. Figure 2(b) shows that for GFM,
SAMP-B performs as good as RANKING, BSSX and MGS, and only SAMP-AB and GREEDY fall
behind. That being said, unlike GREEDY, SAMP-AB achieves a steady ratio well above 0.7 over
different choices of T . This is consistent with results in Theorem 3. All results here suggest that
SAMP-B and MGS are top two candidates in practice for both IFM and GFM.

We emphasize that although our SAMP-B algorithm does not significantly outperform the
(fairness-adapted)MGS algorithm from the literature, it is both conceptually and implementation-
wise much simpler. To our understanding, it is surprising that such a simple adaptive boosting
algorithm has not been analyzed and extensively tested before.
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Table 2. Network Data Statistics for Graphs from the Network Data Repository [46]

Nodes Edges Max degree Min degree Ave. degree

socfb-Caltech36 769 16,700 248 1 43

socfb-Reed98 962 18,800 313 1 39

econ-beause 507 44,200 766 2 174

econ-mbeaflw 492 49,500 679 0 201

7.2 Experiments on VOM

Construction of Input Instances.We acknowledge that it is hard to identify real applications that
can perfectly fit the model of VOM. Borodin et al. [7] have conducted comprehensive experimental
studies, which compare the performance of different algorithms for unweighted online matching
under KIID on a wide variety of synthetic and real datasets. They proposed an idea, called random
balanced partition method, to generate a bipartite graph from a practical social network. The details
are as follows: Suppose we have a real social network withV being the set of vertices and E being
the set of edges. The method partitions V uniformly randomly into two blocks L and R, such that
|L| = �|V |/2� and |R | = �|V |/2�. It keeps only those edges that connect two vertices from the
two different partitions. As indicated by [7], research on how to form a maximum matching on a
bipartite graph constructed from a real social network can offer great insights regarding how to
boost friendship ties among users active in online social platforms (e.g.,Meta Platforms).
We follow the idea in [7] and select four datasets from theNetworkData Repository [46], namely,

socfb-Caltech36, socfb-Reed98, econ-because, and econ-mbeaflw. The former two datasets
are Meta Platforms social-network graphs, where vertices are users and edges are friendship ties.
The latter two datasets are two economic networks collected from theU.S.A. in 1972, where vertices
are commodities/industries and edges are economic transactions.We list detailed statistics of these
four datasets in Table 2. For each network graph (V ,E), we first downsample the network size |V |
to 200. Since the original graphs are non-bipartite, we first partition all nodes uniformly at random
into two blocks to construct I and J , such that |I | = �|V |/2� and |J | = �|V |/2�. We keep only the
edges that connect two vertices from different partitions. We assign the weight for each offline
vertex i to be a random value, uniformly selected from [0, 1].

Algorithms. Similar to IFM and GFM, we compare SAMP-B and SAMP-AB against several base-
lines, including GREEDY, RANKING, BSSX [8], andMGS [39]. Additionally, we test the algorithm
presented by [28], denoted by JL. For each of the four instances, we run the above 7 algorithms for
100 times and take the average as the final performance.

Results and Discussion. Figure 3 shows that SAMP-B is second only to GREEDY and is compara-
ble to GREEDY in half of the total instances. The gap between SAMP-B and GREEDY declines as
the average degree of all nodes increases; see econ-because and econ-mbeaflw. For all instances,
SAMP-B outperforms the other three LP-based algorithms, BSSX,MGS and JL, all of which involve
a much more complicated implementation. This establishes the superiority of SAMP-B in practi-
cal instances of VOM over the three LP-based baselines. We observe that the competitive ratios of
SAMP-AB are always above 0.719, which is consistent with our theoretical bound in Theorem 3.
Also, note that SAMP-AB can beat the rest three LP-based baselines in almost all scenarios (ex-
cept for socfb-Reed98), which suggests that SAMP-AB is a top candidate among all LP-based
algorithms.

8 CONCLUSIONS AND FUTURE WORK

In this article, we proposed two online-matching based models to study individual and group fair-
nessmaximization among offline agents in OMMs. For individual and group fairnessmaximization,

ACM Transactions on Economics and Computation, Vol. 10, No. 4, Article 16. Publication date: April 2023.



Fairness Maximization among Offline Agents in Online-Matching Markets 16:25

Fig. 3. Experimental results of VOM with on four real datasets from the Network Data Repository [46]. We

add a 95% confidence interval to each bar.

we presented two LP-based sampling algorithms, namely SAMP-B and SAMP-AB, which achieve
competitive ratios at least 0.725 and 0.719, respectively. We conducted extensive numerical exper-
iments and results show that SAMP-B is not only conceptually easy to implement but also highly
effective in practical instances of fairness-maximization related models.
One interesting future direction is to show some explicit upper bounds for IFM, GFM, and VOM.

So far, all existing upper bound for the threemodels is 0.865, which is due to the case of unweighted
online matching under KIID with integral arrival rates (UOM-KIID) [39]. Can we derive some
upper bounds specifically for IFM, GFM, or VOM? We expect the upper bound of IFM should be
higher than that of VOM as suggested by Theorem 4. To get an improved upper bound for IFM, for
example, which is strictly lower than that from UOM-KIID, we need to first identify the structural
properties exclusively existing in IFM, and then exploit them to design an instance that canweaken
the power of an optimal online algorithm further compared with the clairvoyant optimal. Note
that IFM differs from UOM-KIID only in the objective: the former takes the minimum while the
latter the sum over all offline agents. This suggests it is impossible to break the barrier on any
symmetric instances, on which both the clairvoyant optimal and online optimal achieve a uniform
performance on every offline agent. Thus, our last resort is some asymmetric instances, where at
least one of the clairvoyant optimal and online optimal should demonstrate a certain “preference”
to some particular offline agent.
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