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ABSTRACT 

 
The low-cost sensor has changed the air quality monitoring paradigm with the capacity for 

efficient network expansion and community engagement. The surge in its use has sparked new 
research interests in understanding its data quality. Many studies have employed field calibration 
to improve sensor agreement with co-located reference monitors. Yet, studies that systematically 
examine the performance of different calibration techniques are limited in scope and depth. This 
study comprehensively assessed ten widely used data techniques, namely AdaBoost, Bayesian ridge, 
gradient tree boosting, K-nearest neighbors, Lasso, multivariable linear regression, neural network, 
random forest, ridge regression, and support vector machine. We compared their performance using 
a standardized baseline dataset and their responses to various parameter combinations. We 
further assessed the training sample size effect to understand the optimal duration of field 
calibration for achieving good accuracy. Finally, we tested different predictor combinations to 
address whether the inclusion of more predictors will lead to better performance. Using baseline 
data, the neural network achieved the best performance, followed by the four regression-based 
methods, showing very consistent and stable performance. While confirming that the latest 
research tendency is deep learning, regression is still a viable option for studies with limited effort 
in parameter tuning and method selection, especially considering its computational efficiency 
and simplicity. The sample size effect is most evident when the sample size drops below 30%, 
which is equivalent to six weeks of continuously collected hourly data. Although algorithms react 
differently to the number of predictors, their performance was typically boosted by adding more 
predictors, especially the particle count and humidity. Our study not only describes an approach 
of sophisticated data-driven calibration for practical applications, but also provides insights into 
the compounding impacts of parameters, samples, and predictors in algorithm performance. 
 
Keywords: PurpleAir, Machine learning, Particulate matter, PM2.5, Air quality 
 

1 INTRODUCTION 
 

Air pollution is one of the global leading mortality risk factors (Apte et al., 2017; Liang and 
Gong, 2020). Even at low concentrations, fine particulate matter with aerodynamic diameters 
smaller than 2.5 µm (PM2.5) is significantly associated with an increased health hazard (Bell et al., 
2011) and adverse social-environmental effects (Sager, 2019). Increasing evidence proves that 
socio-economically disadvantaged communities suffer more from higher levels of air pollution 
(Colmer et al., 2020; Gray et al., 2013; Peled, 2011). There is a critical need to characterize the 
spatial-temporal patterns of PM2.5 at the granular level to better estimate and mitigate those risks 
at the individual or community level. 

A paradigm shift in granular-level air monitoring is the growing usage of low-cost sensors (LCSs) to 
supplement conventional sparsely located regulatory stations (Mao et al., 2019; Snyder et al., 2013). 
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Because of their affordability (Jiao et al., 2016), LCSs can detect fine-scale spatial-temporal PM2.5 
variability (Giordano et al., 2021; Hart et al., 2020). Some widely adopted sensors include the 
Plantower PMS series (module used in a variety of integrated sensor systems, such as PurpleAir), 
Alphasense OPC-N2, Panasonic PM2.5 sensors, NovaFitness SDS, Shinyei PPD series, Samyoung DSM 
series, and Sharp GP and DP series. Those sensors have been used under various scenarios, such as 
environmental regulation (Bi et al., 2020), hotspot detection (Mousavi et al., 2021), traffic-related 
studies (Amegah et al., 2022; McFarlane et al., 2021), and health assessment (Liang et al., 2019; 
Tsou et al., 2021). This change is significant in transforming environmental governance, especially 
in historically underserved countries or regions, where access to the air quality data is insufficient 
to act on pollution trends (Pope et al., 2018). Additionally, their user-friendly operation and crowd-
sourcing capacity can well support network expansion and community engagement (Morawska et al., 
2018). The easy integration of LCS data with multi-source information (such as remotely sensed data) 
further extends its utilization in multi-disciplinary studies at various scales (e.g., Gupta et al., 2021). 

Despite the increasing popularity of LCSs in the scientific, industrial, and civilian domains (Liang, 
2021), a rising concern is that their out-of-the-box data quality is generally lower than in the 
laboratory. Since most low-cost PM2.5 sensors are light scattering based (Morawska et al., 2018), 
they show larger uncertainty than reference instruments with degrading performance (Masson 
et al., 2015). Under natural conditions, LCSs show non-linear responsiveness to their interfering 
environments, such as meteorology (Feinberg et al., 2019) and background target and non-target 
gas interference (Castell et al., 2017). Thus, direct usage of LCS data without proper calibration 
can lead to undesirable outcomes (Rai et al., 2017). 

LCSs typically require field calibration before wide-scale deployment (Austin et al., 2015). A 
common approach is to collocate the sensors with a regulatory instrument in places where they 
will be deployed (Giordano et al., 2021) and use data-driven or empirical methods to adjust the drift 
of LCS data to reference data (Liang, 2021). Physical mechanism-based models, such as κ-Köhler 
theory or scattering efficiency derived relative humidity correction factor, correct the biased 
conversion from light-scattering to particle mass concentration due to humidity (Crilley et al., 2020; 
Zheng et al., 2018). Regression is one of the earliest data-driven methods used because of its 
simplicity and a high degree of method scalability (Liang, 2021). Recently, the advanced machine 
learning (ML) methods, such as neural networks, are leading the trend because of their problem-
specific and robust performance (Giordano et al., 2021; Johnson et al., 2018; Mahajan and Kumar, 
2020; Morawska et al., 2018; Zimmerman et al., 2018). However, little work has been done to 
understand essential questions during the procedures, such as how broadly applicable those 
methods are, how long the sensors should be collocated to provide enough calibration datasets, 
and what variables should be accounted for to achieve sufficient accuracy. 

Given the implications of LCSs in environmental monitoring and the importance of LCS 
calibration in their applications, this study aims to systematically compare different data-driven 
methods by quantitatively analyzing the coupling effects of algorithms, sample sizes, and explanatory 
variables on the calibration performance. In particular, we are driven by three research objectives: 
1) synthesize and compare the various mainstream data-driven algorithms in LCS field calibration. 
2) examine the influencing variables during calibration. 3) explore the sample size effects on the 
calibration model performance.  
 

2 METHODS 
 
2.1 Low-cost Sensors and Calibration Setup 
2.1.1 PurpleAir sensors 

We chose the PurpleAir (PA) sensors given their good performance and wide deployment 
among a broad spectrum of groups (Barkjohn et al., 2021). At a size of 22,530 registered sensors 
(as of April 22, 2022), this massive global network requires immediate attention to the data quality. 
Many field calibrations of PA sensors have been conducted on many continents, including Africa 
(McFarlane et al., 2021), Asia (Kim et al., 2019), Australia (Robinson, 2020), Europe (Stavroulas et 
al., 2020), and North America where most deployments were carried out (Ardon-Dryer et al., 
2020; Bi et al., 2020; Feenstra et al., 2019; Magi et al., 2020; Malings et al., 2019; Ouimette et al., 
2022; Tryner et al., 2020). 
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PA sensors are equipped with two laser scattering particle counters (Plantower PMS5003) that 
report independently at approximately a 120 s interval. The Plantower sensors use a fan to draw 
air through an inlet past the laser, producing a scattering effect that is detected by the 
photodiode. A proprietary algorithm developed by Plantower was applied to convert the amount 
of light scatter detected into particle sizes, and then from particle count (µm dl–1) into mass 
concentration (µg m–3). Because the indoor and outdoor conversion options are different, only 
data calculated using the outdoor conversion method was used. The mass concentration for PM1, 
PM2.5, and PM10 are reported, all of which are average for the two channels. If the outdoor particle 
values reported for the two channels drift apart, the PurpleAir system will downgrade one of the 
channels and exclude the channel from the data average. Raw particle count is also reported in six 
size bins ranging from 300 nm to 10 µm, separately particle sizes greater than 0.3 µm diameter, 
0.5 µm, 1.0 µm, 2.5 µm, 5.0 µm, and 10 µm. PA sensors also use a Bosch BME280 sensor to 
estimate relative humidity (RH), temperature, dew point, and pressure. The data transmission 
and storage are enabled by its Wi-Fi module for real-time data transmission and a built-in SD card 
as a backup solution to internet disconnection. 

 
2.1.2 Reference instrument and calibration system 

Reference instruments typically refer to federal reference methods (FRMs) and federal equivalent 
methods (FEMs) that provide National Ambient Air Quality Standards (NAAQS) in the U.S. (U.S. 
EPA, 2011), or similar sampling technologies in other countries (Cao et al., 2013). FRMs and FEMs 
commonly use more sophisticated and regularly maintained technologies for particle mass 
measurement such as direct gravimetric methods, beta attenuation, and oscillating microbalance 
methods (Schmidt-Ott and Ristovski, 2003). Despite their gold standard role in air quality monitoring, 
the implementation and operational costs are high. For instance, it costs approximately $50 million 
to maintain U.S. national ambient air quality monitoring system per year (U.S. GAO, 2020). Besides, 
the site selection is primarily based on population density, with less consideration of other factors 
such as social inequality (Watson et al., 1997). 

 
2.2 Data Collection and Cleaning 

Here, we employed a US-wide PurpleAir correction dataset from a previous EPA work to make 
the results generic enough to avoid any location-specific biases (Barkjohn et al., 2021). Part of 
the collocation data was obtained from sensor calibration experiments that were operated by air 
monitoring agencies. Another portion of the data came from privately owned sensors that are 
within 30 m of an active EPA Air Quality System site reporting PM2.5 and have been confirmed by 
a local air monitoring agency for their identities. A thorough data cleaning was performed to 
ensure data quality following these steps (Fig. 1): 1) One Iowa dataset that constituted 55% of 
the entire collocated dataset was thinned from 10,907 to 3,762 data points to better balance the 
datasets among the states and to avoid building a final model that is Iowa dependent. All high-
concentration data (≥ 25 µg m–3) were retained and low concentration data were randomly 
drawn; 2) A 90% completion threshold was applied to data to enable a true representation of 
daily averages; 3) Extremely high and low values in PM2.5, temperature (> 540°C), and RH (> 100%) 
collected by PA were removed; and 4) Each PA units has two identical Plantower sensors (refer 
to as channels hereafter), and the agreement between the data collected from both channels 
can indicate potential data outliers. We first calculated the absolute and percentage differences 
between two PA channels using their 24-hour average. Percentage is the absolute difference 
divided by the average of the two channel readings. The percentage difference was used to deal 
with channel disagreement under a high concentration scenario that can not be captured by absolute 
difference. Records with an absolute difference of 5 µg m–3 or fall outside of two standard deviations 
of the entire percent difference dataset were removed. 

Because no Texas site was included in the national dataset, we supplemented it with the field 
calibration data that we collected at the Texas Commission on Environmental Quality (TCEQ) 
Denton Airport South station (EPA site number: 481210034, Lat: 33.2190759, Long: –91.19962841). 
From April 12, 2020 to September 17, 2020, four PA sensors were placed at a close distance (< 5 m) 
to a FEM regulatory instrument (BAM). To reduce data redundancy, we picked only one sensor 
with R2 > 0.9 between the two channels and with the highest agreement with other units during  
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Fig. 1. Flow of data cleaning. 

 
the same deployment period. After that, the same data download and cleaning procedure were 
applied. 

The final dataset contains 50 PA sensors that were located in 16 states across 39 sites (Fig. 2), 
with a total of 12,705 records. California and Iowa have 19 sensors and account for almost 60% 
of the total number of data records. The longest data collection period was 833 days and the 
shortest one was only two days. Thirty-eight sites contribute over 100 records, which is equivalent to 
approximately three-month period of data collection (Fig. S1). Overall, the PA sensors are in good 
agreement with the reference data, with the mean R2 as 0.88 using linear regression, but tend to 
overestimate the ambient PM2.5 level (Fig. 2). The mean R2 between the PA and reference data 
for all sites is 0.88, with the highest agreement as 0.996 and the lowest as 0.468. Detailed site 
information and data summary can be found in the supplementary file. One example of the time-
series comparison between the PA and reference data collected in the Texas site is displayed in 
Fig. S2. 

 
2.3 Data Experiments 
2.3.1 Testing the effects of different algorithms and parameter combinations 

We tested ten widely applied and openly accessible machine learning algorithms that can be 
roughly divided into four groups: regression-based, distance-based, network-based, and ensemble 
(Table 1). 

Regression-based algorithms. As one of the earliest methods being tested, multivariate linear 
regression (MLR) takes the linear form of one response variable and a set of explanatory variables. 
In LCS calibration studies, the readouts of the reference instrument are the response variable and 
the LCS data is the main explanatory variable. Other influencing factors, including environmental 
or mechanical ones (e.g., temperature, RH, sensor age), have also been widely used under the 
assumption that all factors respond linearly to the reference data. Ordinary least squares is often 
used by default in MLR to estimate the coefficients by minimizing the sum of the squared 
residuals. The final selected US-wide correction model for PA sensor adopted the MLR form 
Barkjohn et al. (2021): 

 
PM2.5 = 0.524 × PAcf – 0.0862 × RH + 5.75 (1) 

 
Ridge, Bayesian ridge, and Lasso are all extensions of MLR, with additional regularization parameter 

that aims to minimize complexity. Ridge regression uses a tunable additive L2 norm penalty 
term—the sum of squares of coefficients—in the optimization. Alpha is the parameter that 
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Fig. 2. The map shows the collocation sites. The color symbol indicates the total number of PA data records and the size symbol 
indicates the total number of collocation sites for each state. The scatter plot shows the relationship between the mean PM2.5 
concentration reported by the PA sensors and their corresponding reference station during the calibration period. The marks 
are labeled by site. Color represents the R2 between those two PM2.5 values. The box plot displays the five-number summary of 
the mean PA data. 

 
balances the minimization of the residual sum of squares and the magnitude of coefficients. The 
model complexity tends to reduce as the alpha value increases. An optimal alpha provides a 
trade-off between significant overfitting at low alpha values and underfitting at high alpha values. 
Bayesian ridge regression uses regularization in probabilistic terms. The model estimation is 
conducted by iteratively maximizing the marginal log-likelihood of the observations (Pedregosa 
et al., 2011). Lasso performs L1 regularization by adding a factor of the sum of absolute value of 
coefficients in the optimization process. The alpha works similar to that of ridge regression. 

Support vector machine (SVM) regression finds the best fit line as the hyperplane that has a 
maximum number of points. SVM uses kernel functions, including linear, polynomial, and gaussian 
radial basis kernel function, to convert low dimensional data space into a better dimensional 
space, so data points can be better separated.  

Distance-based algorithm. K-nearest neighbors (KNN) is a distance-based method that uses the 
mean of all the nearest neighbors’ values to predict the value of new data. K indicates the count of 
the nearest neighbors. The weights of neighbors could be assigned in two ways: uniform treats all 
neighbors equally, whereas distance-based weighting assigns higher weights to the closer neighbors. 

https://doi.org/10.4209/aaqr.220076
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Table 1. Algorithms, parameter settings, and paper citation. The default values for each parameter used in their corresponding 
package were underlined.  

Algorithms Abbrev. Parameters  Parameter settings Citation 
AdaBoost AB Number of Estimators 25, 50, 75, 100, 150, 200, 

300 
Freund and Schapire, 

1997 
Bayesian Ridge BR - - MacKay, 1992 
Gradient Tree Boosting GTB Number of Boosting 

Stages 
25, 50, 75, 100, 150, 200, 

300 
Friedman, 2001 

Fraction of Samples 0.7, 0.9, 1.0  
K-Nearest Neighbors KNN Number of Neighbors 1, 2, 3, 4, 5, 7, 10 Fix and Hodges, 1989 

Weight Function Uniform, Distance-based  
Least absolute shrinkage and 

selection operator 
Lasso Alpha 0.5, 0.75, 1.0, 1.5, 2.0 Tibshirani, 1996 

Multivariable Linear Regression MLR - - Mardia et al., 1979 
Neural Network NN Number of Layers 1, 2, 3 Hopfield, 1982 

Neurons per Layer 50, 100, 256, 512  
Random Forest RF Number of Trees 20, 40, 60, 80, 100, 120, 

140, 160, 180, 200 
Breiman, 2001 

Ridge Regression RR Alpha 0.5, 0.75, 1.0, 1.5, 2.0 Hilt and Seegrist, 1977 
Support Vector Machine SVM Kernel Type Linear, Polynomial, Radial 

Basis Function 
Cortes and Vapnik, 

1995 
Note: algorithms are listed in alphabetical order. Abbrev.: abbreviation. 

 
Network-based algorithms. Neural network (NN) is relatively new but attractive to users 

because of its superior performance (Okafor et al., 2020; Yamamoto et al., 2017). One previous 
study has reported a 10% increase in R2 from MLR to NN, with the improvement attributable to 
its ability in capturing the data variation (Mahajan and Kumar, 2020). A NN is an architectural 
structure consisting of highly interconnected processing units (neurons) that are organized in 
layers. The weight of neurons is tuned and optimized through the supervised learning process.  

Ensemble methods. Ensemble techniques are typically built upon many weaker classifiers to 
create a strong classifier. AdaBoost is the first generation of boosting algorithms and another 
successful example is the random forests that build decision trees independently and combine 
results at the end. Both methods have a main parameter—the number of estimators or trees—
controlling the structure. Generally, a larger quantity of estimators can lead to better performance 
but longer training time. Additionally, the accuracy will plateau after a certain number of 
estimators. Gradient boosting differs by building one tree at a time and combining results along 
the way in a forward stage-wise fashion. A larger number of boosting stages usually results in 
better performance. The fraction of samples is fitting the individual base learners. A fraction less 
than one may lead to a reduction of variance and an increase in bias. 

Since there is no golden standard for choosing the optimal parameter, we tested a range of 
parameters that are recommended by the algorithm documentation or close to the default values 
picked by the sourcing code Scikit Learn (Pedregosa et al., 2011). Python 3.9.7 was used to 
implement those algorithms. All codes are available at: https://github.com/unt-geo/Calibration 

 
2.3.2 Sample size effect 

A critical question in data-driven techniques is to determine how much training data is needed 
to achieve a specific performance goal. In the context of the LCS field calibration, we aim to 
answer two questions: 1) As training data grows, will performance continue to improve? 2) Does 
the sample size effect vary by algorithms?  

The proper test of the sample size effect requires a geographically and size balanced dataset. 
Otherwise, the assessment may be misleading. To reduce the bias, we first adjusted the whole 
daily average dataset by selecting all 38 sites with more than 100 days of data, and further 
randomly selecting 100 data points from each site. The final dataset with 3,800 records was used 
to conduct the sample size experiment, which was randomly split into 90% for the training set 

https://doi.org/10.4209/aaqr.220076
https://aaqr.org/
https://github.com/unt-geo/Calibration


ORIGINAL RESEARCH 
 https://doi.org/10.4209/aaqr.220076 

Aerosol and Air Quality Research | https://aaqr.org 7 of 16 Volume 22 | Issue 9 | 220076 

and 10% for the test set. The training data was used to fit the model and the test data was to 
provide an unbiased evaluation of the model fit on the training dataset. We further prepared 
various training datasets at different sample sizes. Specifically, we constructed 10 sets of training 
samples with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% of the entire dataset in 
the order of data collection time. 

 
2.3.3 Predictor selection  

Many previous works are focused on using a single variable—PA PM2.5 concentration—to run 
the calibration model. However, because the responsive rate of LCSs is controlled by a range of 
internal and ambient environmental factors, it can be beneficial to include additional influencing 
variables in the modeling process as evidenced in the previous literature (Gao et al., 2015). Similar 
to the sample size effect, the key questions lie in whether more predictors will lead to better 
performance, and whether a plateau effect exists in the variable selection for certain algorithms. 

In this experiment, we picked seven variables that are commonly used in calibration studies, 
separately PM2.5 concentration (PM2.5 conc), PM2.5 count (C2.5), PM1 count (C1), PM5.0 count (C5), PM10 
count (C10), humidity (RH), and temperature (T). PM2.5conc is the mass concentration generated 
by the proprietary algorithm developed by the laser counter manufacturer Plantower, which 
incorporates assumptions about potentially varying density and shape of the particles. However, 
because the information on the assumptions is unrevealed, it is unlikely that the assumed particle 
properties would be similar to those observed in the fields. With this consideration, we included 
the other type of PA output values—the particle counts in different sizes, which are the raw 
reporting of airborne particle numbers. Some studies have found that particle counts explain well 
in the calibration model (Zusman et al., 2020).  

We first tested the effects of each single predictor on explaining the variance of reference data 
using univariate linear regression. We then tested the combined effects of multiple predictors. 
Datasets 2–5 incorporated the RH and T to account for the known sensitivity of sensors to 
fluctuations in meteorological conditions (Castell et al., 2017). RH influences the LCS readings by 
changing the particle size and the refractive index when water condenses onto particles 
(Di Antonio et al., 2018; Molnár et al., 2020). The water moistening effect also partially explains 
the typical overestimation of LCSs, which is especially evident when RH exceeds 75%. Temperature 
interferes with the nature of the aerosol samples and impacts the sensor performance, especially 
in the ambient environment (Olivares and Edwards, 2015). However, how the sensors respond 
to the temperature is less studied and still unexplained. 

The seven variables were combined into five datasets (Table 2). For example, Dataset 3 included 
three variables while Dataset 4 used seven variables. Dataset 0 that uses PM2.5 concentration as 
the single explanatory variable was used as the baseline for comparison. Other variables were 
gradually included according to their importance values obtained from the single variable test 
(Tables S3 and S4). 

 
2.3.4 Accuracy metrics 

We used the coefficient of determination (R2) for quantifying the portion of the variation in 
the dependent variable that can be predicted from the model and the independent variables. 
Root mean squared error (RMSE) was used as indices of the respective average absolute error. 
In this paper, we reported how those algorithms respond to adjustments in training data and 
parameters. Accuracy values were used as an indicator for the degree of response. However, we  

 
Table 2. Variables as predictors and the dataset constitution. 

Dataset Variables Used Acronomy 
0 PM2.5 concentration  PM2.5 
1 PM2.5 concentration, PM2.5 count PM2.5 + C2.5 
2 PM2.5 concentration, PM2.5 count, humidity PM2.5 + C2.5 + RH 
3 PM2.5 concentration, PM2.5 count, humidity, temperature PM2.5 + C2.5 + RH + T 
4 PM2.5 concentration, PM2.5 count, humidity, temperature, PM1 count, 

PM5 count, PM10 count 
PM2.5 + C2.5 + RH + T + C1 + C5 + C10 
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intend to avoid listing those specific accuracy values, as different studies and datasets may reach 
varying results. Interested readers can find those values in figures, tables, and supplementary files. 
 

3 RESULTS AND DISCUSSION 
 
3.1 Effects of Algorithm and Parameter Settings 

We compared the effects of different algorithms on sensor data calibration by using the baseline 
Dataset 0 and tested with the default and most optimal parameter setting (Fig. 3, Table 3). 
Between the two major categories, the regression-based methods achieve overall high accuracies, 
except for Lasso. The ensemble methods show the largest discrepancies in their performance, with 
GTB proving to be the best and AB the worst. NN slightly outperforms some models, although at 
the higher computational cost. 

On average, the KNN models tend to perform best using a uniform weight function with a 
lower number of input features and a distance-based weight function with a higher number of 
variables (Fig. S3). For NN, neuron count and layer count seem to have similar levels of impact on 
the performance; both increase the model’s ability to create a representation of the input, but 
more neurons increase the amount of information gained while the number of layers increases 
attention to increasingly fine details (Fig. 4). 

In the ensemble methods, AdaBoost performs best on average when using a smaller number 
of classifiers (Fig. S4). The RF is very sensitive to the number of trees when only a few trees (seven) 
are used. The performance largely stagnates with an increasing number of trees (Fig. S5). This is 
because the trends in the data can be largely accounted for using only 7 or more trees. Most outliers 
are eliminated and overfitting to a particular input is diminished, so increasing the number of 

 

 
Fig. 3. The accuracy metrics of algorithms when tested on baseline Dataset 0 and using the default parameter setting. 

 
Table 3. Optimal parameter values and performance by algorithms. 

Algorithms Parameters Parameter Values R2 RMSE 
AB Number of Estimators 25 0.64 3.22 
BR - - 0.81 2.33 
GTB Number of Boosting Stages 300 0.85 2.05 

Fraction of Samples 0.7 
KNN Number of Neighbors 5 0.86 2.02 

Weight Function Distance 
Lasso Alpha 0.5 0.50 3.83 
MLR - - 0.81 2.33 
NN Number of Layers 2 0.89 1.79 

Neurons per Layer 512 
RF Number of Trees 200 0.86 1.99 
RR Alpha Tie 0.81 2.33 
SVM Kernel Type RBF 0.82 2.26 
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Fig. 4. The performance of Neural Network with varying datasets and model parameters. 

 
trees has little effect. Gradient Tree Boosting shows improving performance with the number of 
trees increasing until past 50. However, the sample fraction shows mild performance changes 
(Fig. S6).  

Ridge regression, a modification of the linear regression model, performs nearly identically to 
MLR (Figs. S7 and S8). It appears that introducing a small amount of bias to the linear regression 
model does not significantly change the performance. Lasso regression performs the worst among 
all models. As the value of alpha increases, the model performs even worse. As the alpha value 
gets lower, meaning the lasso regression is approaching regular linear regression, the model 
better fits to the data (Fig. S9). Bayesian ridge regression performs similarly to regular ridge 
regression, with a very slight increase in R2 for the final dataset (Fig. S10). For SVM, the kernel 
plays a big role in determining the model performance. Default RBF outperforms the linear and 
polynomial kernels. The linear kernel increases in performance relatively slower compared to the 
other two kernels. RBF shows good performance whereas the polynomial kernel performs poorly, 
indicating that it is not a good fit for this dataset (Fig. S11). The underperformance of linear kernel 
is likely because the dataset is not linearly separable due to the nature of PM2.5. Similarly, the 
relatively simple 3rd-degree polynomial kernel used in this study does not fit well, especially to 
the datasets with fewer variables as these are likely more linearly separable, as shown by the 
similar performance of RBF and linear kernels with the less-variable datasets. 
 
3.2 Sample Size Effects 

Most algorithms show positive responses to increased training sample sizes, except for Lasso 
(Fig. 5). The algorithm most affected by the training sample size is AB, of which the R2 raised to 
100% from using one-tenth to 80% of the whole data. SVM, Lasso, and NN are the least affected. 
With a very small dataset (i.e., two weeks of hourly data, about 340 data points in this study), 
SVM, NN, and Lasso can produce relatively good results. When the dataset is rich (i.e., half a 
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Fig. 5. R2 (top) and RMSE (bottom) with relative change compared to 10% of data (right). (a) is R2, (b) is the relative change in R2, 
(c) is RMSE, and (d) is the relative change in RMSE. 

 
year’s hourly data), nine out of eleven algorithms reach the R2 higher than 0.8, with NN and RF 
especially high (over 0.9). Generally speaking, the sample size effect is most evident when the 
sample size drops below 30%.  

Calibration duration has been recognized as a non-neglectable factor in calibrating LCSs. The 
sample size effect can also provide insights into the optimal time length to co-locate LCS sensors 
with a reference instrument. Using our compiled national dataset, there is a consensus among 
various algorithms that the accuracy improves the most when the sample size increases to 
approximately 1000 records, which is equivalent to six weeks of continuously collected hourly 
data. Passing this threshold, the accuracy improves more slowly or remains stable. 
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3.3 Effects of Predictors 
Figs. 4 and S3–S11 displayed the results of the predictor selection. As a comparison, we applied 

the US-wide correction model (Formula (1)) to our dataset, which obtained R2 as 0.76 and RMSE 
as 2.63. For KNN, the input variables play a more significant role in the performance than the 
model parameters as would be expected, with sharp performance increases between the first, 
second, and third datasets and a moderate performance boost between the third and final 
datasets (Fig. S2). As a non-parametric method, more variables create a higher dimensional space 
for the distance calculation, which typically leads to more refined predictions. As the dimension 
gets higher, the advantages of multivariate distance calculation become weaker. In NN, the effect 
of the number of layers and neurons depends on the sample size. Higher numbers of both layers 
and neurons improve the model’s performance with higher values beginning to stagnate in a 
performance increase. This contrasts with the results at low levels of data, where the lower 
values perform better. This is likely because, at lower sample sizes, the larger neural networks 
are more likely to overfit the small amount of training data since there is not enough data to get 
a good generalization with that number of details.  

AdaBoost performs best on average when using a smaller number of estimators. This performance 
trend is especially apparent for Datasets 3 and 4 where performance drastically decreases as the 
number of estimators increases (Fig. S3). Gradient Tree Boosting shows significant increases in 
performance with the larger datasets than with the smaller ones.  

The MLR model performance increases slowly after the second dataset is introduced. For both 
Ridge and Bayesian ridge regression, the dataset used does not significantly increase performance, 
except for going from the first dataset to the second. For Lasso, the dataset used makes almost 
no difference in the poor performance. For SVM, the inclusion of more predictors can lead to 
about a 10% increase in R2 from Dataset 0 to Dataset 4, regardless of the kernel type used. 

In general, the inclusion of humidity and PM2.5 count can improve model performance, as these 
two factors demonstrated the heaviest weights of coefficients in the four regression models 
(Table S3). PM2.5 also obtained the highest importance score in the three tree-based models 
(Table S4). Temperature and particle count at other sizes only slightly influence the outcome. 
Although when the single variable was evaluated against the reference data, temperature shows 
a slightly better correlation than RH (Table S2). This can be attributed to two reasons. First, 
ambient temperature has not been proved to significantly influence the physicochemical property 
of PM particles. Second, all particle counts are strongly correlated. Including highly correlated 
variables can introduce multicollinearity and data redundancy issues to the model. Particle 
counts at the different sizes all show high correlation (Table S1) and they can be good proxies for 
PA concentration data when the count to concentration conversion formula is not publicly 
available. 

We need to note that some predictors that may be important are not included in the analysis 
due to data limitation, such as sensor age. Dust sensors lose sensitivity and the accuracy drifts 
over time (De Vito et al., 2020; Jiao et al., 2016), which becomes another potential source of 
measurement artifact (Hasenfratz et al., 2012). PurpleAir sensor has a shorter shelf life than high-end 
reference instruments and the accuracy is found to degrade after 1 to 1.5 years after deployment 
(informal communication through PurpleAir User Group). Other meteorological factors influencing 
LCS performance include wind speed, sensor temperature, and sensor type (Liang, 2021).  
 

4 CONCLUSIONS 
 

Failure to invest in calibration may leave large uncertainties in retrieving reliable LCS data that 
further hinders its broader applications. As a result, field calibration of LCS has been recognized 
by a larger user group as a critical and necessary step before the LCS deployment for evaluating 
their reliability and improving the accuracy. Despite the increasing interest, there is an evident 
knowledge gap on how data-driven algorithms affect calibration performance. This paper aims 
to provide a first-hand report on the performances of each algorithm, and the impacts of sample 
size and predictor selection. The key findings are summarized below. 

Algorithms respond differently to the baseline dataset and there exists a large variation. While 
this study implies that NN and GTB slightly outperform the other methods, the users should test 
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the algorithms on their own as the datasets behave differently. Regression-based methods show 
the most consistent high accuracy, and we thus recommend it as a viable option for studies with 
limited effort in parameter tuning and method selection. 

The sample size effect is evident in our experiment, especially when the sample size is small. 
Regardless of the algorithm type, the accuracy drops significantly when the calibration model 
was trained using less than 1000 records, which is equivalent to six weeks of continuously collected 
hourly data. However, more training data doesn’t always lead to higher accuracy. The accuracy 
plateaued when the training sample reaches a certain level, which varies slightly among algorithms.  

More predictors lead to better accuracies, but the boosting is most evident when PM2.5 particle 
count and humidity were added to the data models. Temperature and particle counts at other 
sizes play a minor role. Considering the tradeoffs between computational efficiency and more 
predictors, we suggest the inclusion of PM2.5 concentration, particle count, and humidity in the 
model establishment. 
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